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Bogoliubov quasiparticles moving in the background of superfluid He3-A see an apparently curved space–
time metric when the background superfluid vacuum is in motion. We study how this curvature couples 
with the spins of the effectively massless quasiparticles. First, we set up the problem in null Fermi 
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seen by the quasiparticles. We obtain an effective magnetic interaction due to curvature coupling, and 
provide numerical estimates. Some possible implications of these results are then pointed out.
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1. Introduction

It is well known that in general relativity, gravitational effects 
on fermions provide an effective magnetic field like interaction, 
that might have important experimental signatures [1], [2], [3], 
[4]. The purpose of this paper is to study the equivalent effect 
in an analog gravity black hole setup in the context of superfluid 
He3-A. Analog gravity setups have seen tremendous interest in the 
past few decades and a large volume of literature is available on 
the subject, both in the context of theory and experiment.1 On 
the experimental front, exciting progress has been made recently 
by Steinhauer and his group. Following their important works that 
appeared in [13], [14], [15] and [16], the recent work of [17] re-
ported the observation of Hawking radiation from black holes in 
analog gravity, thus opening up the exciting possibility of further 
testing black hole physics in the laboratory.

In a similar spirit, in this paper, we will consider an analog 
black hole in a generalized draining bathtub geometry advocated 
in [18], and focus on such relativistic effects on fermionic quasi-
particles (Weyl fermions), which are effectively massless in the 
background of an analog gravity metric but move with finite speed. 
The motivation for this work comes from the fact that such analy-
sis (in real black hole scenarios) involving curved space–times are 
difficult to envisage, especially in the context of massless fermions, 
which would then move with the speed of light. The analog grav-
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ity picture on the other hand offers a somewhat simpler situation 
to consider, from which useful physical insights can be gleaned.

The equation for massless Weyl fermions in a curved analog 
background was written down by Volovik [19]. Here, following 
the usual procedure, we analyze the Lagrangian corresponding to 
this equation and in particular study the interaction Lagrangian for 
massless fermions in the background of the analog metric. This 
is done in null Fermi coordinates, and we obtain an interaction 
term (the curvature coupling) via an effective magnetic field for 
these fermions that arise out of analog gravity effects (this is dis-
tinct from any real magnetic effects present in the system and 
arise purely due to the background curvature). Standard analysis 
in quantum mechanics then implies interesting effects that should 
arise due to this coupling. In order to obtain numerical estimates 
of our results, we use the uncertainty relation and an energy con-
dition as applicable to low energy quasiparticles in He3-A.

It is known [20] that in an analog gravity setup of superflu-
ids, there is a special class of observers, the “inner” observers, 
who view the inhomogeneous fluid as a space–time in which free 
quasiparticles should move in (roughly) geodesic trajectories. We 
will mainly focus on such observers, and the relativistic computa-
tions here are carried out in coordinates that are locally flat along 
a geodesic trajectory. These are the Fermi normal coordinates. In 
general, spinning particles do not follow geodesic trajectories, but 
the deviation from the latter are known to be small. Since our 
computations are relevant for effectively massless fermions, we use 
null Fermi coordinates, and interpret the results as those that will 
be seen by a null observer who moves along a (null) geodesic tra-
jectory.

We should point out here that in visualizing a classical trajec-
tory for the quasiparticles, we are in a sense assuming that the 
latter are localised near a geodesic path. We note that this is an 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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assumption which has been abundantly used in previous litera-
ture. We will proceed with this assumption here, and our results 
are valid only near such geodesic trajectories of the quasiparticles.

In the rest of this paper, we will analyse analog gravity coupling 
to massless fermionic quasiparticles in the context of an acoustic 
black hole. After providing the explicit analog gravity metric in the 
next section following [18], in section 3 we provide the general 
formalism for treating Weyl fermions in null Fermi coordinates. 
Sections 4 and 5 deal with radial and circular geodesics in these 
coordinates, and expressions for the effective magnetic field are 
obtained. In section 6, we provide numerical estimates of our re-
sults and conclude the paper with discussions in section 7.

2. Analog black hole in He3-A

We will be interested in an analog black hole in the context of 
He3-A. Following [18], we consider a 2-D thin film of He3-A, which 
forms the background of the system, and is moving towards the 
orifice at the center where it goes into the third (vertical) dimen-
sion. In this case, it can be shown [18] that the energy spectrum 
for the low-energy Bogoliubov fermionic quasiparticles yields

(E − p · v)2 = c2(p2
x + p2

y) + v2
F (pz − epF )2 (1)

where e = ±1. The velocity of the quasiparticles along the film 
(c ∼ 3 cm/s) is much smaller than the velocity normal to the film 
(v F ∼ 55 m/s). So the degree of anisotropy of the velocity is large. 
This energy spectrum of the Bogoliubov quasiparticles in Eq. (1)
can be recast into an effective motion of a charged, massless rel-
ativistic particle in a (3 + 1)-dimensional curved space–time with 
the following form of the metric [18] that is a generalization of the 
draining bathtub geometry described in [21]

ds2 = −
(

c2 − v2(r)
)

dt2 + 2v(r)drdt + dr2 + r2dφ2 + c2

v2
F

dz2

(2)

where (r, θ) are polar coordinates on the 2-D film, z is the ver-
tical direction, and we have denoted �v = (

vx, v y
)
. The above line 

element also shows that the g00 component of the metric changes 
sign as v(r) becomes greater than c inside r = rh confirming the 
formation of a black hole.

We mention in passing that one can, in this case, make a coor-
dinate transformation

t = τ +
∫

v(r)dr

c2 − v(r)2
(3)

This equation is integrable, and in terms of the coordinate τ , yields 
the metric

ds2 = −
(

c2 − v2
)

dτ 2 + c2

c2 − v2
dr2 + r2dφ2 + c2

v2
F

dz2 (4)

The metrics in Eq. (2) or (4) give equivalent results. We will use 
the form in Eq. (2) in what follows.

In the remainder of this paper, we study massless fermionic 
quasiparticles in the background of the geometry of Eq. (4) (equiv-
alently Eq. (2)).

3. Curvature coupling of quasiparticles

Let us imagine that the superfluid excitations, known as Bo-
goliubov quasiparticles, move in geodesics in an effectively curved 
space–time. Since these quasiparticles are excitations of superfluid 
He3-A vacuum, they are just the dressed He3 atoms having Bo-
goliubov spin, and are fermionic in nature. As a result, they will 
exhibit the characteristic signatures of their spin while moving in 
(nearly) geodesic trajectories by getting coupled with the intrinsic 
curvature of the space–time metric that they see. As mentioned 
before, we have in mind an observer who makes a measurement 
on the fermions, in coordinates that are locally flat all along a 
given geodesic. These are the Fermi normal coordinates [22].

Consider a set of four orthogonal vectors which satisfies the 
following two relations along a timelike geodesic of a massive par-
ticle [22]

êα · êβ = ηαβ , ∇ν ′(êμ′
α )êν ′

0 = 0 (5)

where ∇ denotes covariant derivative, ηαβ is the usual Minkowski 
metric with signature (−, +, +, +) and ê0 represents the tangent 
vector to the timelike geodesic. The primed indices refer to the 
components of the vectors in the original coordinate system of the 
metric, and the unprimed indices refer to the corresponding com-

ponents in Fermi normal coordinates. The structures êμ′
α , ̂eν ′

β ... de-
fine the different elements of the coordinate transformation matrix 
from general coordinates to Fermi normal coordinates. Therefore, 
once the above tetrad is set as the basis of Fermi normal coordi-
nate system, we can in principle compute the components of every 
tensor in this locally flat system. For Riemann curvature tensor, 
these components are

Rαβγ δ = êμ′
α êν ′

β êλ′
γ êσ ′

δ Rμ′ν ′λ′σ ′ (6)

The metric close to the geodesic (G), now, looks like, up to second 
order in coordinates [22,23]

g00 = −1 − R0l0m|G xlxm, g0i = −2

3
R0lim|G xlxm,

gij = δi j − 1

3
Riljm|G xlxm (7)

where the Latin indices i, j, k, ... take the values 1,2 and 3. Here, 
the observer’s time dependence enters the metric only through the 
curvature tensor components as they are evaluated at a particular 
proper time along the geodesic G . After obtaining such a coordi-
nate system, we can study the covariant Dirac Lagrangian given by

L = √−g(iψ̄γ αDαψ − mψ̄ψ) (8)

where γ α are the flat space Dirac matrices in the Weyl basis as 
appropriate for massless fermions.2 Here, we have defined

Dα ≡ (∂α − i

4
ωβγασβγ ) (9)

where the spin connection (ωβγα) and σβγ are given, respectively, 
by

ωβγα = êβμ′(∂α êμ′
γ + �

μ′
ν ′ρ ′ êν ′

γ êρ ′
α ) , σ βγ = i

2
[γ β,γ γ ] (10)

In the above expressions, �μ′
ν ′ρ ′ are the Christoffel connections, and 

eμ′
α denotes, as stated before, the coefficient of the transformation 

matrix connecting the curved and flat space–times. If the expres-
sion of Dα is put in the Lagrangian equation, i.e., Eq. (8), the 
corresponding term coming from the spin connection involves an 
interaction Lagrangian of the form ψ̄γ αγ 5bαψ [3,4].

2 Here α being a flat space index, the effects of curvature enter via the spin con-
nection in eq. (10).
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In analog gravity of He3-A, the quasiparticles are in principle 
massless fermions moving in a curved space–time as described 
earlier. Therefore, it is more useful to consider a null observer, 
and we need to reformulate the above analysis for null geodesics, 
and find the modified expressions of curvature couplings. The first 
question that arises in this regard is how to define the notion of 
Fermi normal coordinates for null geodesics. The construction here 
is somewhat subtle, and has been recently addressed in [24]. The 
technical subtlety here is that since the tangent to a null geodesic 
is a null vector, the corresponding set of four vectors which act as 
the basis of null Fermi coordinates cannot be orthonormal.

Following the construction of [24], let us define four pseudo-
orthonormal vectors satisfying the same two relations as given in 
Eq. (5) along a null geodesic N

Ê A · Ê B = ηAB , ∇ν ′(Êμ′
A )Êν ′

+ = 0 (11)

where Ê+ is tangent to the null geodesic and ηAB is still the flat 
Minkowski metric but expressed in a new E A -basis. The matrix 
form of ηAB in this new basis and the corresponding line element 
along N are given by

ηAB =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , ds2|N = 2E+E− + δab Ea Eb (12)

where each A, B, ... takes the values (+, −, 2, 3) and each a, b, ...
takes (2, 3). The corresponding Fermi coordinates of a point x are 
denoted as (xA) = (x+, x−, xa) and their definition is given in [24]. 
Once again, the quantities Êμ′

A represent the different elements 
of the basis transformation matrix from the actual xμ′

coordinate 
system to the Fermi coordinate system xA . Along N , the two coor-
dinate systems are related by

∂xA

∂xμ′

∣∣∣∣
N

= Ê A
μ′ ,

∂xμ′

∂xA

∣∣∣∣
N

= Êμ′
A (13)

The components of Riemann curvature tensor in Fermi coordi-
nates are evaluated from the equation which is similar to Eq. (6), 
and are given by

R ABC D = Êμ′
A Êν ′

B Êλ′
C Êσ ′

D Rμ′ν ′λ′σ ′ (14)

The components of the metric tensor in the vicinity of the geodesic 
N , up to second order, can be shown to be given by

g++ = −R+c̄+d̄

∣∣
N xc̄xd̄ , g−− = −1

3
R−c̄−d̄

∣∣
N xc̄xd̄ ,

g+− = 1 − 2

3
R+c̄−d̄

∣∣
N xc̄xd̄ , gab = δab − 1

3
Rac̄bd̄

∣∣
N xc̄xd̄ ,

g+a = −2

3
R+c̄ad̄

∣∣
N xc̄xd̄ , g−a = −1

3
R−c̄ad̄

∣∣
N xc̄xd̄ (15)

where (ā) = (−, a).
We will now analyse the covariant Dirac Lagrangian for mass-

less fermions appropriate to the Weyl equations obtained in [19]. 
This is given by

L = i
√−gψ̄γ ADAψ (16)

where (see, e.g. [19]) DA is given by Eq. (9) (apart from a term 
involving an effective gauge field), with α’s replaced by A’s, and 
the corresponding expressions of spin connection and σ AB are also 
similar to Eq. (10):
ωBC A = Ê Bμ′(∂A Êμ′
C + �

μ′
ν ′ρ ′ Êν ′

C Êρ ′
A ) , σ B A = i

2
[γ B , γ A] (17)

We note here that inclusion of the additional term involving the 
effective gauge field [19] makes the expressions cumbersome, and 
for the moment we will work with the terms of Eq. (9) purely for 
ease of presentation, and the term involving the gauge field will 
be introduced later, following Eq. (28).

Here, we will have to be careful in defining γ A . Unlike the pre-
vious case where each γ α represents one of the standard Dirac 
matrices, the forms of γ A ’s, in this case are different. Note that 
the Lagrangian in flat space–time for massless fermions can be de-
composed into two parts

L′ = iψ̄γ μ∂μψ = iu†
−σμ∂μu− + iu†

+σ̄ μ∂μu+ (18)

where σμ = (1, σ i), σ̄ μ = (1, −σ i) with σ i ’s being the Pauli ma-
trices and ψ = (u+, u−)T . In case of a massive fermion, u+ and u−
cannot be separated completely, but we can describe a massless 
fermion by u+ or u− alone with the respective equation of motion 
given by

iσ̄ μ∂μu+ = 0, or iσμ∂μu− = 0 (19)

These equations are the well known Weyl equations for massless 
fermions, and involve Pauli matrices. Now, let us apply this analysis 
to the covariant Dirac Lagrangian for massless fermions expressed 
in null Fermi coordinates, Eq. (16)

L = i
√−g u†

−σ̃ ADAu− + i
√−g u†

+ ¯̃σ ADAu+ (≡ L1 +L2) (20)

The corresponding Weyl equations for u+ or u− will be respec-
tively

i ¯̃σ ADAu+ = 0, or iσ̃ ADAu− = 0 (21)

Let us compare the second expressions of equations (19) and (21). 
These expressions are similar with ∂μ replaced by DA and σμ

replaced by σ̃ A . The difference between σμ and σ̃ A is easy to 
understand. σμ in Eq. (19) is just the Pauli matrices with the back-
ground flat metric given by Diag (−1,1,1,1). The forms of the σ̃ A

in Eq. (21) are different from Pauli matrices. The reason for this 
is that σ̃ A is expressed in terms of null Fermi coordinates and if 
we follow the definition (11) of pseudo-orthonormal Fermi frames 
with Ê+ and Ê− being null vectors, the corresponding background 
locally flat metric along a null geodesic takes the form given in the 
first expression of Eq. (12).

Therefore, the transformation relations from ημν −→ ηAB have 
to be applied on σμ to obtain the corresponding expressions of σ̃ A

in the new coordinate system. The forms of σ̃ A , after this trans-
formation, are given as σ̃ A = (σ̃+, σ̃−, σ̃ 2, σ̃ 3), where we have 
defined

σ̃+ = − 1√
2
σ 0 + 1√

2
σ 1 = 1√

2

( −1 1
1 −1

)
,

σ̃− = 1√
2
σ 0 + 1√

2
σ 1 = 1√

2

(
1 1
1 1

)
,

σ̃ 2 = σ 2 =
(

0 −i
i 0

)
, σ̃ 3 = σ 3 =

(
1 0
0 −1

)
(22)

Since the forms of σ̃ A are changed from the usual Pauli matrices, 
so do those of the corresponding (4 × 4) γ A matrices, and as a re-
sult, they do not exactly resemble the Dirac matrices. In particular, 
we will use the following forms of the γ A matrices:
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γ + =
(

0 σ̃+
−σ̃− 0

)
, γ − =

(
0 σ̃−

−σ̃+ 0

)
,

γ a =
(

0 σ̃ a

−σ̃ a 0

)
(a = 2,3) (23)

With the new definitions and expressions of σ̃ A , we are now in 
a position to define the curvature coupling of massless fermions 
expressed in null Fermi coordinates. The expressions of vierbeins 
can be shown to be

Ê A+ = δA+ − 1

2
R A

c̄+d̄ |N xc̄xd̄, Ê A− = δA− − 1

6
R A

c̄−d̄ |N xc̄xd̄,

Ê A
a = δA

a − 1

6
R A

c̄ad̄ |N xc̄xd̄ (24)

The corresponding expressions of affine connections, in Fermi co-
ordinates, are

�A
B+ |N = R A

Bā+|N xā, �A
b̄c̄ |N = −1

3

(
R A

b̄c̄d̄ + R A
c̄b̄d̄

)
|N xd̄

(25)

Now, if we expand the first term of the Lagrangian (20) in Fermi 
coordinates by using the expressions of Eq. (15), Eq. (24) and 
Eq. (25), it takes the following form

L1 = √−g u†
−

(
iσ̃ A∂A + bA σ̃A + iaA σ̃A

)
u− (26)

The third term which is anti-hermitian vanishes when its conju-
gate part is added to the Lagrangian. Therefore, the only interaction 
term that survives is the second one which is hermitian. The ex-
pressions of the components of this gravitational coupling term 
(bA ) come out to be

b+ = 1

4
ε1ab

[
1

6

(
R+m̄ab − R−abm̄

) + 1

3

(
R+abm̄ + R−bam̄

)
+ 1

2

(
R−m̄ab + R+bam̄

)]
xm̄

b− = −1

4
ε1ab

[
1

6
R−m̄ab + 7

6
R+m̄ab + 1

3

(
R+abm̄ + R−abm̄

)
+ 1

2

(
R−bam̄ + R+bam̄

)]
xm̄

bc = 1

4
ε1ac

[
7

6
R−am̄+ − R+a+m̄ + 1

6
R−a−m̄ + 1

3
R+a−m̄

+ 1

2

(
R+−am̄ + R−−am̄

)]
xm̄ (27)

where again (ā) = (−, a) and a, b, c, ... take values (2, 3).
The above expressions were evaluated for the form of the co-

variant derivative given in Eq. (9). Including the vector potential 
term, the full covariant derivative is given by [19]:

DA ≡ ∂A − i

4
ωB D Aσ B D − i Ã A (28)

where, Ã A = A A + χA , with the expressions of χA and A A being

χA = 1

8
ελ′γ ′μ′ν ′

E Aλ′ E B
γ ′

(
∂μ′ E Bν ′ − ∂ν ′ E Bμ′

)
,

A A = (0,0,0, pF ) (29)

The corresponding expressions of χ A in Fermi coordinates are 
evaluated to be
χ+ = 0 , χ− = 1

4

(
1

3
R+32m̄ + 2

3
R+m̄23 − 1

3
R+23m̄

)
xm̄ ,

χ2 = 1

4

(
2

3
R+m̄3− − 1

3
R+3−m̄ + 1

3
R+−3m̄

)
xm̄ ,

χ3 = 1

4

(
−2

3
R+m̄2− + 1

3
R+2−m̄ − 1

3
R+−2m̄

)
xm̄ (30)

The total magnetic field including the gauge field term is now 
given by

B A = bA + χ A + A A (31)

with the form of bA given in Eq. (27). Note that the last term in 
Eq. (31) is a constant term, and we will ignore this in our analysis. 
In what follows, we will focus on the first two terms of Eq. (31)
and in the next section, we proceed to evaluate the components of 
B A for both radial and circular null geodesics in the background of 
analog gravity and study its characteristic features in some details.

4. Massless fermionic quasiparticles in radial null geodesics

For null geodesics in the space–time of Eq. (2), the normaliza-
tion of the four-velocity yields

ṙ2 + 2v(r)ṫṙ + r2φ̇2 −
(

c2 − v2(r)
)

ṫ2 + c2

v2
F

ż2 = 0 (32)

where over-dots represent derivative with respect of an affine pa-
rameter along the null geodesic. For timelike geodesics, a standard 
choice of this affine parameter is the proper time. But in case of 
a null geodesic, the affine parameter cannot be the proper time. 
Instead, normal coordinate time or radial distance may be consid-
ered as the affine parameter, if they satisfy the geodesic equation 
of the form

∇ν ′(uμ′
)uν ′ = 0 (33)

where uμ′
is the tangent vector to the null geodesic under con-

sideration. Here, by radial null geodesics, we mean the set of null 
geodesics for which φ̇ = dφ

dλ
= 0, with λ being the affine parame-

ter. Therefore, for radial null geodesics outside the orifice, Eq. (32)
becomes

ṙ2 + 2v(r)ṫṙ −
(

c2 − v2(r)
)

ṫ2 = 0 (34)

With condition (34) in mind, we can find out the pseudo-
orthonormal Fermi tetrad basis for the analog metric along a null 
radial geodesic as:

Êμ′
− =

(
v(r) − c

2c2
− kc + kv(r)

2
(
c2 − v2(r)

) ,
c2 − v(r)2

2c2
− k

2
,

k

r
,0

)
,

Êμ′
3 =

(
0,0,0,

vz

c

)
, Êμ′

+ =
(

c + v(r)

c2 − v(r)2
,1,0,0

)
,

Êμ′
2 =

(
−kc + kv(r)

c2 − v2(r)
,−k,

1

r
,0

)
, (35)

where k is a constant. The tangent vector to the geodesic, uμ′

or Êμ′
+ takes the form Êμ′

+ = (ṫ, ̇r, 0, 0), for a general affine pa-
rameter λ. In the present case, we have set ṙ = 1, i.e., we have 
explicitly chosen r as the affine parameter along the geodesic N . 
This choice simplifies the calculation as well as it satisfies the re-
quired geodesic equation condition.

Now the above choice of tetrad has to satisfy the required con-
ditions of Eq. (11). Let us rewrite the first condition of Eq. (11)
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and analyze it using the tetrad defined above. From the condition 
Ê A · Ê B = ηAB , we obtain

Ê− · Ê− = η−− = 0

(for A = B = −) ⇒ gμ′ν ′ Êμ′
− Êν ′

− = 0 ⇒ k(k − 1) = 0 (36)

So only two values of the constant k satisfy the required condi-
tions for Ê− , i.e. k takes two values, 0 and 1. All other components 
of the tetrad automatically satisfy the required conditions of (11). 
Therefore, we have two different set of tetrads with k = 0 and 
k = 1 which can be chosen as the basis of null Fermi frame.

Having obtained the Fermi tetrad basis, we can readily find out 
the components of the Riemann curvature tensor in null Fermi co-
ordinates using Eqs. (14) and (35). Then we use Eqs. (27) and (30)
to calculate the components of the effective magnetic field due to 
curvature coupling and find that the corresponding expressions are 
given by

B+ = B− = B2 = 0

B3 = [
kr(4h − ky)v ′(r)2 + v(r)

(
kr(4h − ky)v ′′(r)

+ (
k(−4h + 2ky − y) + y

)
v ′(r)

) ][
24c2r

]−1
(37)

where h, y, z represent observer’s coordinates or Fermi coordi-
nates.

The above expression of B3 has been evaluated for a general 
v(r). But in case of the draining bathtub type geometry, the spe-
cific form of v(r) happens to be v(r) = − crh

r . So if we put this form 
of v(r) in Eq. (37), we obtain the following expression of B3:

B3 = r2
h

[
16hk + (−1 + k − 5k2

)
y
]

24r4
(38)

The expressions of B3 for k = 0 and k = 1 are given by

B3 = − r2
h y

24r4
(k = 0) , B3 = r2

h(16h − 5y)

24r4
(k = 1) (39)

We need to analyze this result in more detail. Eq. (38) tells us 
that the effective magnetic field component (b3) diverges at r = 0. 
Since r = rh represents the position of event horizon of the analog 
black hole and we are particularly interested in the phenomena 
occurring outside rh , the effective magnetic field is always finite in 
this region. From Eq. (38) we see that the effective magnetic field 
falls off as r−4 as a function of the radial distance.

5. Massless fermionic quasiparticles in circular null geodesic

We will now compute the curvature coupling of fermionic 
quasiparticles in circular null geodesics. This is of course a spe-
cial case, as we discuss. For such geodesics, it can be checked 
from Eq. (2) that the only allowed value of the radial coordinate 
is r = √

2rh , for v(r) = −crh/r as in the previous subsection. This 
is the analog of the photon sphere in GR [25], and a null observer 
in a circular geodesic is uniquely located at this value of r. This is 
to be kept in mind in the analysis that follows.

Similar to the radial case, first we need to set up the pseudo-
orthonormal Fermi frame for a circular null geodesic G . Then we 
find out components of Riemann tensor in Fermi coordinates and 
use it to calculate the effective magnetic field. By “circular null 
geodesic” we mean the family of null geodesics for which r is con-
stant, i.e., ṙ = r̈ = 0. The corresponding Fermi frame for a circular 
null geodesic G are found to be
Êμ′
+ =

(
1√

c2 − v(r)2
,0,

1

r
,0

)

Êμ′
− =

(
rφ2 v(r)v ′(r)

2c2
√

c2 − v(r)2
+ φv(r)

c2
− 1

2
√

c2 − v(r)2
,

− rφv(r)v ′(r)
c2

,
φ2 v(r)v ′(r)

2c2
+ 1

2r
,0

)

Êμ′
2 =

(
−φ

c
+ v(r)

c
√

c2 − v(r)2
,

√
c2 − v(r)2

c
,−φ

√
c2 − v(r)2

cr
,0

)

Êμ′
3 =

(
0,0,0,

vz

c

)
(40)

with the condition rv(r)v ′(r) + c2 − v(r)2 = 0. It has to be remem-
bered that the above expressions in Eq. (40) have to be evaluated 
at r = √

2rh and we have denoted v ′(r) = ∂v(r)
∂r .

It is to be noted that the tetrad components depend explic-
itly on φ. This might seem surprising, given that the analog metric 
that we start with is spherically symmetric, but is due to the fact 
that the tetrad must satisfy the pseudo-orthonormal and parallel 
transport conditions given in Eq. (11), along the null geodesic. As 
the first two vectors of the tetrad basis Ê+ and Ê− are null, for 
circular geodesic they demand its components to depend explic-
itly on the affine parameter which in this case is chosen to be the 
arc-length of the circular geodesic 

√
2rhφ. Similar dependence can 

also be seen for the timelike circular geodesic where φ dependence 
comes into the phases of harmonic functions [26] but not explic-
itly, the reason being that the tetrad basis is made of the timelike 
tangent vector and three spacelike vectors.

The corresponding expressions of the components of effective 
magnetic field in this case are

B+ = B− = B2 = 0 , B3 = 8
√

2hφ
(
φ2 + 4

) − (
φ4 − 96

)
y

384r2
h

(41)

6. Numerical estimates

It now remains to provide numerical estimates of the B A that 
we have evaluated. In order to do this, we will take recourse to 
various approximations that we now discuss. We note that the di-
mension of B A for both radial and circular geodesics is an inverse 
length (contrary to usual magnetic fields that come in dimensions 
of 1/L2). In order to convert B A into a quantity having dimensions 
of a magnetic field (Gauss or Tesla), we will need to divide it by 
the Bohr magneton, expressed in GeV per Tesla (or GeV per Gauss) 
[27]. Doing this, it can be checked that a magnetic field of 10−12

Gauss translates to a value of B A ∼ 10−29 GeV. This is the limit of 
measurability of the magntic field, as of now. In the analysis that 
follows, we will use energy units only, for convenience.

Let us first consider the case of radial geodesics and consider 
the case k = 0, i.e. the first expression given in Eq. (39). Since this 
has dimension L−1, we convert this to energy units by multiply-
ing with h̄cL , where cL is the speed of light (= 3 × 108 m/s). Thus 
we have B3(k = 0) = −r2

h yh̄cL/(24r4). In order to get an estimate 
for the coordinate y, we use the uncertainty relation. Remember-
ing that the quasiparticles are dressed Helium-3 atoms of mass m∗ , 
moving with speed c = 3 cm/s, we have y ∼ h̄/p = h̄/(m∗c). Plug-
ging this in, we have in electron-volts,

|B3(k = 0)| = 1

24

r2
hh̄2cL

r4m∗c × qe
eV (42)

where qe is the electron charge. We now use the fact that m∗
is 3 times the mass of Helium-3 atoms, which is given by 3.016
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atomic mass units. A numerical estimate of |B3(k = 0)| is obtained 
by putting in this value of m∗ .

Now we note that the theory of low energy quasiparticles is 
valid for

E � �2
v

pF v F
, i.e. E � 10−10 eV (43)

Since B A appears in the interaction energy term in the Lagrangian 
of Eq. (26), as an estimate we equate B3(k = 0) ∼ 10−10, to obtain 
r = 0.067

√
rh (in metres). For E � 10−10eV, we therefore require 

r � 0.067
√

rh . A typical value of rh ∼ 1 μm will thus ensure that 
our results are valid for r � 0.0067 cm. Hence on a radial geodesic, 
at say r ∼ 1 cm, our results should be robust, and at this radial 
distance, we have B3(k = 0) ∼ 10−28 GeV. Smaller values of the 
radial distance may push up this value to ∼ 10−27 − 10−26 GeV, 
while respecting the energy condition. This discussion was for k =
0. For k = 1, the analysis of the second expression of Eq. (39) is 
qualitatively similar, and yields similar numerical estimates.

We will now turn to circular geodesics. An analysis similar to 
the one outlined above shows that in this case, setting y = 0 in 
Eq. (41) implies that B3 = (1/r2

h)(5.6 ×10−15φ+1.4 ×10−15φ3) eV. 
If we now set a typical value of φ = π , then in order to satisfy 
E � 10−10eV, we require rh � 2.4 cm. As an estimate, if we set 
rh = 10 cm, we obtain B3 ∼ 10−21 GeV.

Our numerical analysis above establishes the fact that the effec-
tive magnetic field that is seen by an inner observer in superfluid 
He3-A are withing bounds reachable by present experiments, i.e.
these are not vanishingly small. Hence, such an observer should 
measure effects that are known in quantum mechanics regarding 
the interaction of spins with such magnetic fields. In this case, 
however, the effective magnetic field is non-uniform. For radial 
null geodesics, this falls off as the fourth power of the radial 
distance, while for circular null geodesics, it is explicitly depen-
dent on the angular variable. From Eq. (39), using the condition 
r � 0.067

√
rh , it is seen that for relatively large values of r (com-

pared to rh), B3 varies slowly. Hence, if we approximate B3 by a 
uniform (average) value, for such large r, one should expect the 
inner observer to see oscillations between a spin up and a spin 
down state of the massless fermionic quasiparticles when the sys-
tem evolves from a general spin state. Similar analysis holds for 
null circular geodesics, for small values of the angular coordinate. 
The external observer (moving at 3 cm per sec) along a radial 
coordinate or moving at a fixed radius, however, perceives these 
quasiparticles as dressed Helium-3 atoms. It would therefore seem 
that such an observer is likely to see the spin of the quasiparticles 
to also oscillate between an up-spin state and a down-spin state.

We note here that the time difference between two events for 
the external observer �t is related to that for the inner observer 
�τ by [20] �t = �τ/

√
1 − r2

h/r2. Hence, the characteristic fre-

quency of oscillation (assuming a uniform magnetic field) for the 
external observer is dilated by a factor of 

√
1 − r2

h/r2, as compared 
to the inner observer. For null radial geodesics, for small values 
of rh/r, �t ∼ �τ . This is relevant for us, as we have already seen 
that the energy condition demands that here, r � 0.067

√
rh , and 

that the effective magnetic field can be approximated to a constant 
for small values of rh/r. For circular geodesics, since r = √

2rh , the 
dilation factor is 

√
2.

7. Discussions and conclusions

In this paper, we have presented an analog gravity equivalent 
of fermion curvature couplings to gravity in general relativity. To 
the best of our knowledge, this analysis, which applies to massless 
fermions, is novel. In particular, we have used the recent construc-
tion of [24] of null Fermi coordinates to understand such curvature 
couplings. We started with a He3-superfluid system where the vac-
uum excitations are Bogoliubov fermions, which are dressed He3

atoms and see an effective curved space–time with moving super-
fluid vacuum in the background. We first established the Fermi 
coordinates along a null radial as well as a null circular geodesics, 
and calculated the components of the Riemann curvature tensor in 
these coordinates. Having obtained the curvature tensor, we de-
termined an effective magnetic field due to curvature coupling. 
The whole analysis was done in the analog black hole draining 
bath-tub geometry discussed by Volovik in [18], and numerical es-
timates of the effective magnetic field have been provided.

As is known, spinning particles do not follow exactly geodesic 
trajectories, but the difference of the latter from their actual paths 
is small. We can then envisage an inner null observer of section 2
(feeling the analog metric), on such a geodesic trajectory, who 
makes a measurement on the fermionic system. This inner null 
observer moves with a finite speed (∼ 3 cm/s) and sees the non-
trivial effect of curvature coupling to the fermionic quasiparticles. 
It is however somewhat unclear how a precise experimental sig-
nature of this should be realisable. In principle, this would imply 
that one introduces a model interaction between the two sets of 
observers in our theoretical computations. This should be interest-
ing to probe further.

We should also point out that our analysis in this paper con-
cerns massless fermions in analog gravity. A natural extension 
should be to analyse massive fermions in such models. Indeed, 
massive bosons were introduced in analog models via a two-
component Bose–Einstein condensate in [28]. We are not aware 
of a corresponding analysis for fermions, although we expect that 
this should be more complicated than the bosonic case. This would 
be an interesting direction for further study.

Before ending this paper, we should point out that the analysis 
that we have presented here is limited by the fact that it is appli-
cable only to two special class of geodesics, i.e. radial or circular. 
A generic geodesic path may be neither of these. However, this 
last case is difficult to analyse analytically, and we leave a study of 
such a situation for a future publication.
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