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1. Introduction

It is well known that in general relativity, gravitational effects
on fermions provide an effective magnetic field like interaction,
that might have important experimental signatures [1], [2], [3],
[4]. The purpose of this paper is to study the equivalent effect
in an analog gravity black hole setup in the context of superfluid
He3-A. Analog gravity setups have seen tremendous interest in the
past few decades and a large volume of literature is available on
the subject, both in the context of theory and experiment.! On
the experimental front, exciting progress has been made recently
by Steinhauer and his group. Following their important works that
appeared in [13], [14], [15] and [16], the recent work of [17] re-
ported the observation of Hawking radiation from black holes in
analog gravity, thus opening up the exciting possibility of further
testing black hole physics in the laboratory.

In a similar spirit, in this paper, we will consider an analog
black hole in a generalized draining bathtub geometry advocated
in [18], and focus on such relativistic effects on fermionic quasi-
particles (Weyl fermions), which are effectively massless in the
background of an analog gravity metric but move with finite speed.
The motivation for this work comes from the fact that such analy-
sis (in real black hole scenarios) involving curved space-times are
difficult to envisage, especially in the context of massless fermions,
which would then move with the speed of light. The analog grav-

* Corresponding author.
E-mail addresses: bpritam@iitk.ac.in (P. Banerjee), svnkr@iitk.ac.in (S. Paul),
tapo@iitk.ac.in (T. Sarkar).
1 For excellent reviews and more recent works, see [5], [6], [7], [8], [9], [10], [11],
[12].

https://doi.org/10.1016/j.physletb.2018.12.027

ity picture on the other hand offers a somewhat simpler situation
to consider, from which useful physical insights can be gleaned.

The equation for massless Weyl fermions in a curved analog
background was written down by Volovik [19]. Here, following
the usual procedure, we analyze the Lagrangian corresponding to
this equation and in particular study the interaction Lagrangian for
massless fermions in the background of the analog metric. This
is done in null Fermi coordinates, and we obtain an interaction
term (the curvature coupling) via an effective magnetic field for
these fermions that arise out of analog gravity effects (this is dis-
tinct from any real magnetic effects present in the system and
arise purely due to the background curvature). Standard analysis
in quantum mechanics then implies interesting effects that should
arise due to this coupling. In order to obtain numerical estimates
of our results, we use the uncertainty relation and an energy con-
dition as applicable to low energy quasiparticles in He>-A.

It is known [20] that in an analog gravity setup of superflu-
ids, there is a special class of observers, the “inner” observers,
who view the inhomogeneous fluid as a space-time in which free
quasiparticles should move in (roughly) geodesic trajectories. We
will mainly focus on such observers, and the relativistic computa-
tions here are carried out in coordinates that are locally flat along
a geodesic trajectory. These are the Fermi normal coordinates. In
general, spinning particles do not follow geodesic trajectories, but
the deviation from the latter are known to be small. Since our
computations are relevant for effectively massless fermions, we use
null Fermi coordinates, and interpret the results as those that will
be seen by a null observer who moves along a (null) geodesic tra-
jectory.

We should point out here that in visualizing a classical trajec-
tory for the quasiparticles, we are in a sense assuming that the
latter are localised near a geodesic path. We note that this is an
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assumption which has been abundantly used in previous litera-
ture. We will proceed with this assumption here, and our results
are valid only near such geodesic trajectories of the quasiparticles.

In the rest of this paper, we will analyse analog gravity coupling
to massless fermionic quasiparticles in the context of an acoustic
black hole. After providing the explicit analog gravity metric in the
next section following [18], in section 3 we provide the general
formalism for treating Weyl fermions in null Fermi coordinates.
Sections 4 and 5 deal with radial and circular geodesics in these
coordinates, and expressions for the effective magnetic field are
obtained. In section 6, we provide numerical estimates of our re-
sults and conclude the paper with discussions in section 7.

2. Analog black hole in He3-A

We will be interested in an analog black hole in the context of
He3-A. Following [18], we consider a 2-D thin film of He>-A, which
forms the background of the system, and is moving towards the
orifice at the center where it goes into the third (vertical) dimen-
sion. In this case, it can be shown [18] that the energy spectrum
for the low-energy Bogoliubov fermionic quasiparticles yields

(E—p-v)> =c*(p; + p}) + Vi (D2 — epr)? M

where e = +1. The velocity of the quasiparticles along the film
(c ~3 cm/s) is much smaller than the velocity normal to the film
(v ~ 55 m/s). So the degree of anisotropy of the velocity is large.
This energy spectrum of the Bogoliubov quasiparticles in Eq. (1)
can be recast into an effective motion of a charged, massless rel-
ativistic particle in a (3 + 1)-dimensional curved space-time with
the following form of the metric [18] that is a generalization of the
draining bathtub geometry described in [21]

2
ds? = — <62 — vz(r)> dt* + 2v(r)drdt + dr* + r*d¢? + C—zdzz
VE

(2)

where (r,0) are polar coordinates on the 2-D film, z is the ver-
tical direction, and we have denoted v = (vx, vy). The above line
element also shows that the ggp component of the metric changes
sign as v(r) becomes greater than c inside r =r, confirming the
formation of a black hole.

We mention in passing that one can, in this case, make a coor-
dinate transformation

_ v(r)dr
t—‘C-l-/m (3)

This equation is integrable, and in terms of the coordinate t, yields
the metric

2 2
ds? = — (¢ —v?)de? + i 4 r2dg? + S d? (4)
2 _y2 v%
The metrics in Eq. (2) or (4) give equivalent results. We will use
the form in Eq. (2) in what follows.
In the remainder of this paper, we study massless fermionic
quasiparticles in the background of the geometry of Eq. (4) (equiv-
alently Eq. (2)).

3. Curvature coupling of quasiparticles
Let us imagine that the superfluid excitations, known as Bo-

goliubov quasiparticles, move in geodesics in an effectively curved
space-time. Since these quasiparticles are excitations of superfluid

He3-A vacuum, they are just the dressed He? atoms having Bo-
goliubov spin, and are fermionic in nature. As a result, they will
exhibit the characteristic signatures of their spin while moving in
(nearly) geodesic trajectories by getting coupled with the intrinsic
curvature of the space-time metric that they see. As mentioned
before, we have in mind an observer who makes a measurement
on the fermions, in coordinates that are locally flat all along a
given geodesic. These are the Fermi normal coordinates [22].

Consider a set of four orthogonal vectors which satisfies the
following two relations along a timelike geodesic of a massive par-
ticle [22]

bo-p=nap . Vu@h)ey =0 (5)

where V denotes covariant derivative, 1yp is the usual Minkowski
metric with signature (—, +, +, +) and e represents the tangent
vector to the timelike geodesic. The primed indices refer to the
components of the vectors in the original coordinate system of the
metric, and the unprimed indices refer to the corresponding com-
ponents in Fermi normal coordinates. The structures ééf/, é/‘g/... de-
fine the different elements of the coordinate transformation matrix
from general coordinates to Fermi normal coordinates. Therefore,
once the above tetrad is set as the basis of Fermi normal coordi-
nate system, we can in principle compute the components of every
tensor in this locally flat system. For Riemann curvature tensor,
these components are

NTION 'aN A
Rapys =8y €4 €8] Runuer (6)

The metric close to the geodesic (G), now, looks like, up to second
order in coordinates [22,23]

2
800 = —1— Roiomlc Xx™, goi = _§R01im|G M,
1
gy = bij = 3 Rjmlc X" @

where the Latin indices i, j, k, ... take the values 1,2 and 3. Here,
the observer’s time dependence enters the metric only through the
curvature tensor components as they are evaluated at a particular
proper time along the geodesic G. After obtaining such a coordi-
nate system, we can study the covariant Dirac Lagrangian given by

L=/=g(yy* Doy —my ) (8)
where Y% are the flat space Dirac matrices in the Weyl basis as
appropriate for massless fermions.> Here, we have defined

i
Do = (00 — Zwﬁyaaﬁ}/) 9)
where the spin connection (wgy ) and oPY are given, respectively,
by

R N4 ' Ay A0 l
Wpya =8p(Ouly + T, &80), o =-lyP .yl (10)

In the above expressions, Fff, p are the Christoffel connections, and

eéf/ denotes, as stated before, the coefficient of the transformation
matrix connecting the curved and flat space-times. If the expres-
sion of D, is put in the Lagrangian equation, i.e., Eq. (8), the
corresponding term coming from the spin connection involves an
interaction Lagrangian of the form ¥ y%y by [3,4].

2 Here « being a flat space index, the effects of curvature enter via the spin con-
nection in eq. (10).
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In analog gravity of He3-A, the quasiparticles are in principle
massless fermions moving in a curved space-time as described
earlier. Therefore, it is more useful to consider a null observer,
and we need to reformulate the above analysis for null geodesics,
and find the modified expressions of curvature couplings. The first
question that arises in this regard is how to define the notion of
Fermi normal coordinates for null geodesics. The construction here
is somewhat subtle, and has been recently addressed in [24]. The
technical subtlety here is that since the tangent to a null geodesic
is a null vector, the corresponding set of four vectors which act as
the basis of null Fermi coordinates cannot be orthonormal.

Following the construction of [24], let us define four pseudo-
orthonormal vectors satisfying the same two relations as given in
Eq. (5) along a null geodesic N/

Ea-Ep=nas ., Vu(EDE =0 (11)

where I§+ is tangent to the null geodesic and n4p is still the flat
Minkowski metric but expressed in a new E”-basis. The matrix
form of n4p in this new basis and the corresponding line element
along N are given by

0100
100 _

n85=10 0 1 0 , ds?|xr = 2EYE™ + 8 E°EP (12)
0001

where each A, B, ... takes the values (+, —, 2,3) and each a,b, ...
takes (2, 3). The corresponding Fermi coordinates of a point x are
denoted as (x4) = (xt, x~, x%) and their definition is given in [24].
Once again, the quantities I:Zﬁ/ represent the different elements
of the basis transformation matrix from the actual x* coordinate
system to the Fermi coordinate system x“. Along A/, the two coor-
dinate systems are related by

A /
W g g (13)
x|y R axA T A

The components of Riemann curvature tensor in Fermi coordi-
nates are evaluated from the equation which is similar to Eq. (6),
and are given by

Rapcp = Eﬁ Eg/éé/E%/vaWc’ (14)

The components of the metric tensor in the vicinity of the geodesic
N, up to second order, can be shown to be given by

. 1 ca
g++=—R 2.3 |N XKl g = _§R’E’a ‘N A
2 c.d 1 ¢,d
gr-=1-3Rc 4 IS 8ab = 8ab — 5 Rgepg e XK
2 ¢ d 1 ¢\ d
gra=—3R i [y XX 8a=—3R g | XX (15)

where (@) = (—, a).

We will now analyse the covariant Dirac Lagrangian for mass-
less fermions appropriate to the Weyl equations obtained in [19].
This is given by

L=iJ=gyyDay (16)

where (see, e.g. [19]) D4 is given by Eq. (9) (apart from a term
involving an effective gauge field), with «'s replaced by A’s, and
the corresponding expressions of spin connection and 048 are also
similar to Eq. (10):

wBCAZEBu’(aAEICL/‘FFM EY E'O) UBA:%[)/B,)/A] (17)
We note here that inclusion of the additional term involving the
effective gauge field [19] makes the expressions cumbersome, and
for the moment we will work with the terms of Eq. (9) purely for
ease of presentation, and the term involving the gauge field will
be introduced later, following Eq. (28).

Here, we will have to be careful in defining y4. Unlike the pre-
vious case where each y“ represents one of the standard Dirac
matrices, the forms of y4’s, in this case are different. Note that
the Lagrangian in flat space-time for massless fermions can be de-
composed into two parts

£/=i1/_/)/"8ulﬂ=iuial‘auu_+iu16"8uu+ (18)

where o# = (1,0l), 3* = (1, —o') with o’s being the Pauli ma-
trices and ¢ = (uy, u_)". In case of a massive fermion, uy and u_
cannot be separated completely, but we can describe a massless
fermion by u4 or u_ alone with the respective equation of motion
given by

ichouy =0, or ictdu_=0 (19)

These equations are the well known Weyl equations for massless
fermions, and involve Pauli matrices. Now, let us apply this analysis
to the covariant Dirac Lagrangian for massless fermions expressed
in null Fermi coordinates, Eq. (16)

L=iJ/—g uT_&ADAu_ +i/—g qutADAuJr (=L1+ L) (20)

The corresponding Weyl equations for u or u_ will be respec-
tively

i(?ADAqu =0, or i6%Dsu_=0 (21)

Let us compare the second expressions of equations (19) and (21).
These expressions are similar with 9, replaced by DA and o#
replaced by 64. The difference between o* and 64 is easy to
understand. o# in Eq. (19) is just the Pauli matrices with the back-
ground flat metric given by Diag(—1,1, 1, 1). The forms of the &4
in Eq. (21) are different from Pauli matrices. The reason for this
is that 64 is expressed in terms of null Fermi coordinates and if
we follow the definition (11) of pseudo-orthonormal Fermi frames
with E+ and E~ being null vectors, the corresponding background
locally flat metric along a null geodesic takes the form given in the
first expression of Eq. (12).

Therefore, the transformation relations from 7,, —> nap have
to be applied on o* to obtain the corresponding expressions of 4
in the new coordinate system. The forms of &4, after this trans-

formation, are given as 64 = (61,65~,52,653), where we have
defined
- 1 1 1 -1 1
6t=——0"+—0o'= ( ) ,
V2 V2 V2 -1

=5 =m0 1)

~2 2 0 —i ~3 3 __ 1 0
o“=0 _<i 0),0_0 _<0 _1) (22)

Since the forms of 64 are changed from the usual Pauli matrices,
so do those of the corresponding (4 x 4) y# matrices, and as a re-
sult, they do not exactly resemble the Dirac matrices. In particular,
we will use the following forms of the y# matrices:
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0 o°
a __ —
y _<_5a 0) (@=2,3) (23)
With the new definitions and expressions of 4, we are now in
a position to define the curvature coupling of massless fermions
expressed in null Fermi coordinates. The expressions of vierbeins
can be shown to be

. 1 S . 1 - =
EA =58 — SR G Inv XK, EA =52 — ERAH v x5x9,

5 A
~ 1 - 5
EA=s] - ERAM v xx¢ (24)

The corresponding expressions of affine connections, in Fermi co-
ordinates, are
_ 1 .
A A A A A d
My v =R"gar v x", Tp v = -3 (R pea T R aB&) I X
(25)

Now, if we expand the first term of the Lagrangian (20) in Fermi
coordinates by using the expressions of Eq. (15), Eq. (24) and
Eq. (25), it takes the following form

Li=v—gu" (i&AaA + b4, +iaA6A) u_ (26)

The third term which is anti-hermitian vanishes when its conju-
gate part is added to the Lagrangian. Therefore, the only interaction
term that survives is the second one which is hermitian. The ex-
pressions of the components of this gravitational coupling term
(b4) come out to be

1 1 1
b= flab [6 (R+iiap = R—abin) + 3 (R-ravin + R—parn)

N =

+ (Rfrﬁab + R+barﬁ):| Xﬁl

_ 1 1 7 1
b™ = —Zélab |:6R7ﬁzab + gRmar + 3 (Rabm + R—api)

1 _
+ 5 (R—pam + R+bam)] X"

1 7 1 1
bt = ZGMC |:6R—aﬁ1+ —Ryqm + gR—a—nﬁ + §R+a—m

1
+ 5 (R+farh + Rf—arﬁ)] XM (27)

where again (a) = (—,a) and a, b, c, ... take values (2, 3).

The above expressions were evaluated for the form of the co-
variant derivative given in Eq. (9). Including the vector potential
term, the full covariant derivative is given by [19]:

i
Dp=04 — Za)BDAO‘BD — 1Az (28)

where, Ay = Aa + Xa, with the expressions of x4 and A4 being

Y

1 5
XAzgékyquA)d E)li, (al,L/EBV/_aV/EBH./) ,
Ap=(0,0,0,pF) (29)

The corresponding expressions of x4 in Fermi coordinates are
evaluated to be

N _ 11 2 1 o
X =0, x =1 §R+32m+§R+m23—§R+23m X",

5 1(2 1 1 &
X = 2 §R+ﬁ13—— §R+37ﬁ1+§R+—3n'1 X,
1 2 1 1 .
3 m
=-—|—=Ryma-+=Riam— =Ry om)x 30
X 4< 3 +m2 +3 +2—m 3 2m> (30)

The total magnetic field including the gauge field term is now
given by

BA=pA 4 x4 + A4 (31)

with the form of b4 given in Eq. (27). Note that the last term in
Eq. (31) is a constant term, and we will ignore this in our analysis.
In what follows, we will focus on the first two terms of Eq. (31)
and in the next section, we proceed to evaluate the components of
B4 for both radial and circular null geodesics in the background of
analog gravity and study its characteristic features in some details.

4. Massless fermionic quasiparticles in radial null geodesics

For null geodesics in the space-time of Eq. (2), the normaliza-
tion of the four-velocity yields

2
P2 4+ 2v(r)iF + r2é% — <62 — vz(r)) i + C—222 =0 (32)
VF
where over-dots represent derivative with respect of an affine pa-
rameter along the null geodesic. For timelike geodesics, a standard
choice of this affine parameter is the proper time. But in case of
a null geodesic, the affine parameter cannot be the proper time.
Instead, normal coordinate time or radial distance may be consid-
ered as the affine parameter, if they satisfy the geodesic equation
of the form

V@ yu” =0 (33)

where u# is the tangent vector to the null geodesic under con-
sideration. Here, by radial null geodesics, we mean the set of null
geodesics for which ¢ = g—f =0, with A being the affine parame-
ter. Therefore, for radial null geodesics outside the orifice, Eq. (32)
becomes

2 4 2v(r)ii — (c2 - vz(r)> 2=0 (34)

With condition (34) in mind, we can find out the pseudo-
orthonormal Fermi tetrad basis for the analog metric along a null
radial geodesic as:

E,M/_<v(r)—c_ ke + kv (r) cz—v(r)z_E k )

2c? 2(c2—v2(n)"  2c? 2'r
o vz s c+v(n)
B =(0.0.0.2%) . £/ _<762_v(r)2,1,0,0 :

Al kc + kv (r) 1
Ef =(—————=,—k,—,0 35
; (Cz_vz(r), . 1.0). (35)

where k is a constant. The tangent vector to the geodesic, ut
or f:’i/ takes the form I::ﬁ/ = (t,7,0,0), for a general affine pa-
rameter A. In the present case, we have set i =1, i.e.,, we have
explicitly chosen r as the affine parameter along the geodesic N.
This choice simplifies the calculation as well as it satisfies the re-
quired geodesic equation condition.

Now the above choice of tetrad has to satisfy the required con-
ditions of Eq. (11). Let us rewrite the first condition of Eq. (11)
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and analyze it using the tetrad defined above. From the condition
Ea - Ep =nap, we obtain

I:I,-I:Z,:n,,:O
(for A=B=—)= gu E"EY =0= k(k—1)=0  (36)

So only two values of the constant k satisfy the required condi-
tions for E_, i.e. k takes two values, 0 and 1. All other components
of the tetrad automatically satisfy the required conditions of (11).
Therefore, we have two different set of tetrads with k =0 and
k =1 which can be chosen as the basis of null Fermi frame.

Having obtained the Fermi tetrad basis, we can readily find out
the components of the Riemann curvature tensor in null Fermi co-
ordinates using Egs. (14) and (35). Then we use Eqgs. (27) and (30)
to calculate the components of the effective magnetic field due to
curvature coupling and find that the corresponding expressions are
given by

B*=B =B?>=0
B = [kr(4h — ky)v'(r)? + v(r) (kr(4h — ky)v" (1)
+ (k(=4h +2ky — y) + y)v'(") ] [24¢%r] (37)

where h, y, z represent observer’s coordinates or Fermi coordi-
nates.

The above expression of B3 has been evaluated for a general
v(r). But in case of the draining bathtub type geometry, the spe-
cific form of v(r) happens to be v(r) = —%. So if we put this form
of v(r) in Eq. (37), we obtain the following expression of B3:

53 r2[16hk + (=1 +k — 5k?) y]

38
24r4 (38)
The expressions of B3 for k=0 and k=1 are given by
2 2
ey r7(16h — 5y)
BP=—-1" k=0),B =" _""" (k=1 39
24r4 ( ) 24r4 ( ) (39)

We need to analyze this result in more detail. Eq. (38) tells us
that the effective magnetic field component (b3) diverges at r = 0.
Since r =y, represents the position of event horizon of the analog
black hole and we are particularly interested in the phenomena
occurring outside ry, the effective magnetic field is always finite in
this region. From Eq. (38) we see that the effective magnetic field
falls off as r—* as a function of the radial distance.

5. Massless fermionic quasiparticles in circular null geodesic

We will now compute the curvature coupling of fermionic
quasiparticles in circular null geodesics. This is of course a spe-
cial case, as we discuss. For such geodesics, it can be checked
from Eq. (2) that the only allowed value of the radial coordinate
is r = /2ry, for v(r) = —cry/r as in the previous subsection. This
is the analog of the photon sphere in GR [25], and a null observer
in a circular geodesic is uniquely located at this value of r. This is
to be kept in mind in the analysis that follows.

Similar to the radial case, first we need to set up the pseudo-
orthonormal Fermi frame for a circular null geodesic G. Then we
find out components of Riemann tensor in Fermi coordinates and
use it to calculate the effective magnetic field. By “circular null
geodesic” we mean the family of null geodesics for which r is con-
stant, i.e., f =7 = 0. The corresponding Fermi frame for a circular
null geodesic G are found to be

A/ 1 1

Et = ———.0.-.0

B _ r¢?v(nv'(r) L ovo 1
- 22/c2—v(in?2 & 2/ —v(@)?
_Tgv(V'() Vv |1 )

—, 0
c2 2¢2 + 2r

g ¢, v VE-v@? gV —va?
2\ ¢ oJRovi? ¢ ’ cr ’

NG Vv
B = (0,0,0, —Z> (40)
C

’

with the condition rv(r)v/(r) + ¢ — v(r)2 = 0. It has to be remem-
bered that the above expressions in Eq. (40) have to be evaluated
at r = +/2r, and we have denoted v/(r) = %.

It is to be noted that the tetrad components depend explic-
itly on ¢. This might seem surprising, given that the analog metric
that we start with is spherically symmetric, but is due to the fact
that the tetrad must satisfy the pseudo-orthonormal and parallel
transport conditions given in Eq. (11), along the null geodesic. As
the first two vectors of the tetrad basis E* and E~ are null, for
circular geodesic they demand its components to depend explic-
itly on the affine parameter which in this case is chosen to be the
arc-length of the circular geodesic +/2ry¢. Similar dependence can
also be seen for the timelike circular geodesic where ¢ dependence
comes into the phases of harmonic functions [26] but not explic-
itly, the reason being that the tetrad basis is made of the timelike
tangent vector and three spacelike vectors.

The corresponding expressions of the components of effective

magnetic field in this case are

3 _ 8v2he (¢* +4) — (¢ —96) y

Bt=B~=B?=0, B =
384r?

(41)

6. Numerical estimates

It now remains to provide numerical estimates of the B# that
we have evaluated. In order to do this, we will take recourse to
various approximations that we now discuss. We note that the di-
mension of BA for both radial and circular geodesics is an inverse
length (contrary to usual magnetic fields that come in dimensions
of 1/L2). In order to convert B4 into a quantity having dimensions
of a magnetic field (Gauss or Tesla), we will need to divide it by
the Bohr magneton, expressed in GeV per Tesla (or GeV per Gauss)
[27]. Doing this, it can be checked that a magnetic field of 10~12
Gauss translates to a value of BA ~1072° GeV. This is the limit of
measurability of the magntic field, as of now. In the analysis that
follows, we will use energy units only, for convenience.

Let us first consider the case of radial geodesics and consider
the case k =0, i.e. the first expression given in Eq. (39). Since this
has dimension L~!, we convert this to energy units by multiply-
ing with hic;, where c; is the speed of light (=3 x 10® m/s). Thus
we have B3(k =0) = —r yhc,/(24r*). In order to get an estimate
for the coordinate y, we use the uncertainty relation. Remember-
ing that the quasiparticles are dressed Helium-3 atoms of mass m*,
moving with speed ¢ =3 cm/s, we have y ~h/p = h/(m*c). Plug-
ging this in, we have in electron-volts,

252
|B3(k:O)|:irhhicL eV (42)
24 r4m*c x g
where g, is the electron charge. We now use the fact that m*
is 3 times the mass of Helium-3 atoms, which is given by 3.016
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atomic mass units. A numerical estimate of |B3(k = 0)| is obtained
by putting in this value of m*.

Now we note that the theory of low energy quasiparticles is
valid for

AZ
E<—Y . jie. E«10 10y (43)
DFVF

Since B/ appears in the interaction energy term in the Lagrangian
of Eq. (26), as an estimate we equate B>(k =0) ~ 10710, to obtain
r =0.067/r (in metres). For E « 1071%V, we therefore require
r > 0.067.,/r. A typical value of r, ~1 pm will thus ensure that
our results are valid for r 3> 0.0067 cm. Hence on a radial geodesic,
at say r ~1 cm, our results should be robust, and at this radial
distance, we have B3(k = 0) ~ 1028 GeV. Smaller values of the
radial distance may push up this value to ~ 10727 — 10726 GeV,
while respecting the energy condition. This discussion was for k =
0. For k =1, the analysis of the second expression of Eq. (39) is
qualitatively similar, and yields similar numerical estimates.

We will now turn to circular geodesics. An analysis similar to
the one outlined above shows that in this case, setting y =0 in
Eq. (41) implies that B* = (1/r7)(5.6 x 107 1°¢ +1.4x 10713¢3) eV.
If we now set a typical value of ¢ = 7, then in order to satisfy
E « 1071%yV, we require r, > 2.4 cm. As an estimate, if we set
rn = 10 cm, we obtain B3 ~ 10~2! GeV.

Our numerical analysis above establishes the fact that the effec-
tive magnetic field that is seen by an inner observer in superfluid
He3-A are withing bounds reachable by present experiments, i.e.
these are not vanishingly small. Hence, such an observer should
measure effects that are known in quantum mechanics regarding
the interaction of spins with such magnetic fields. In this case,
however, the effective magnetic field is non-uniform. For radial
null geodesics, this falls off as the fourth power of the radial
distance, while for circular null geodesics, it is explicitly depen-
dent on the angular variable. From Eq. (39), using the condition
r > 0.067,/ry, it is seen that for relatively large values of r (com-
pared to ry), B3 varies slowly. Hence, if we approximate B3 by a
uniform (average) value, for such large r, one should expect the
inner observer to see oscillations between a spin up and a spin
down state of the massless fermionic quasiparticles when the sys-
tem evolves from a general spin state. Similar analysis holds for
null circular geodesics, for small values of the angular coordinate.
The external observer (moving at 3 cm per sec) along a radial
coordinate or moving at a fixed radius, however, perceives these
quasiparticles as dressed Helium-3 atoms. It would therefore seem
that such an observer is likely to see the spin of the quasiparticles
to also oscillate between an up-spin state and a down-spin state.

We note here that the time difference between two events for
the external observer At is related to that for the inner observer

AT by [20] At = AT/, /1 —rﬁ/rz. Hence, the characteristic fre-
quency of oscillation (assuming a uniform magnetic field) for the
external observer is dilated by a factor of ,/1 — rfl/rz, as compared
to the inner observer. For null radial geodesics, for small values
of rp/r, At ~ At. This is relevant for us, as we have already seen
that the energy condition demands that here, r > 0.067,/r;, and
that the effective magnetic field can be approximated to a constant
for small values of ry,/r. For circular geodesics, since r = +/2ry, the
dilation factor is /2.

7. Discussions and conclusions
In this paper, we have presented an analog gravity equivalent

of fermion curvature couplings to gravity in general relativity. To
the best of our knowledge, this analysis, which applies to massless

fermions, is novel. In particular, we have used the recent construc-
tion of [24] of null Fermi coordinates to understand such curvature
couplings. We started with a He3-superfluid system where the vac-
uum excitations are Bogoliubov fermions, which are dressed He3
atoms and see an effective curved space-time with moving super-
fluid vacuum in the background. We first established the Fermi
coordinates along a null radial as well as a null circular geodesics,
and calculated the components of the Riemann curvature tensor in
these coordinates. Having obtained the curvature tensor, we de-
termined an effective magnetic field due to curvature coupling.
The whole analysis was done in the analog black hole draining
bath-tub geometry discussed by Volovik in [18], and numerical es-
timates of the effective magnetic field have been provided.

As is known, spinning particles do not follow exactly geodesic
trajectories, but the difference of the latter from their actual paths
is small. We can then envisage an inner null observer of section 2
(feeling the analog metric), on such a geodesic trajectory, who
makes a measurement on the fermionic system. This inner null
observer moves with a finite speed (~ 3 cm/s) and sees the non-
trivial effect of curvature coupling to the fermionic quasiparticles.
It is however somewhat unclear how a precise experimental sig-
nature of this should be realisable. In principle, this would imply
that one introduces a model interaction between the two sets of
observers in our theoretical computations. This should be interest-
ing to probe further.

We should also point out that our analysis in this paper con-
cerns massless fermions in analog gravity. A natural extension
should be to analyse massive fermions in such models. Indeed,
massive bosons were introduced in analog models via a two-
component Bose-Einstein condensate in [28]. We are not aware
of a corresponding analysis for fermions, although we expect that
this should be more complicated than the bosonic case. This would
be an interesting direction for further study.

Before ending this paper, we should point out that the analysis
that we have presented here is limited by the fact that it is appli-
cable only to two special class of geodesics, i.e. radial or circular.
A generic geodesic path may be neither of these. However, this
last case is difficult to analyse analytically, and we leave a study of
such a situation for a future publication.
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