
PYG4OMETRY UPDATE: A TOOL TO CREATE GEOMETRIES FOR
GEANT4, BDSIM, G4BEAMLINE AND FLUKA

S. T. Boogert∗, Cockcroft Institute, Daresbury Laboratory, Daresbury, UK
L. Nevay† , F. Stummer, F. Metzger, CERN, Geneva, Switzerland
W. Shields, Royal Holloway, University of London, Egham, UK
L. Pertoldi, M. Huber, Technical University Munich, Germany

Abstract
Studying the energy deposition in accelerator compo-

nents, mechanical supports, services, ancillary equipment
and shielding requires a detailed computer readable descrip-
tion of the component geometry. The creation of geometries
is a significant bottleneck in producing complete simula-
tion models and reducing the effort required will allow non-
experts to simulate the effects of beam losses on realistic
accelerators. This paper describes a flexible and easy to
use Python package to create geometries usable by either
Geant4 (and so BDSIM or G4Beamline) or FLUKA either
from scratch or by conversion from common engineering
formats, such as STEP or IGES created by industry stan-
dard CAD/CAM packages. This paper describes the up-
dates to pyg4ometry since IPAC19. These updates include
ROOT geometry loading, refactored geometry processing
using CGAL, direct CAD file loading using Open Cascade,
geometrical feature extraction, geometry comparison algo-
rithms and improvements to FLUKA conversion. The paper
includes small examples of the new features with explana-
tions.

INTRODUCTION
Pyg4ometry is a Python package with the aim to make

the creation of input geometry for radiation transport Monte
Carlo codes quicker, easier and less error prone. In addition,
it allows new workflows for the creation and conversion of
geometry. The package has classes which represent com-
mon geometric concepts in Geant4 (and hence BDSIM [1],
G4BEAMLINE) and FLUKA [2] as well as geometric al-
gorithms and functions (provided by CGAL [3] and Open
Cascade [4]). Internally, pyg4ometry closely matches con-
cepts found in Geant4 and GDML. Each format supported
can be loaded and viewed using a 3D visualiser based on
VTK [5]. Geometries can be inspected, checked for overlaps,
combined, converted, or created from scratch in a Python
script.

Pyg4ometry is effective as it uses best-in-class open
source software. Both CGAL and Open Cascade are very
large C++ projects and pyg4ometry requires only a small sub-
set of the available functionality. External packages based on
C++ are made accessible in Python by using pybind11 [6].

Pyg4ometry was not envisioned nor designed to replace
DD4Hep and other similar frameworks for the HEP com-
munity. DD4Hep deals with a significantly larger problem
∗ stewart.boogert@cockcroft.ac.uk
† laurie.nevay@cern.ch

space of geometry and its subsequent use in simulation, re-
construction and display. Pyg4ometry does not attempt to
solve these problems and it is focused on the workflows most
commonly required for accelerator physicists.

Full details of the implementation can be found in the
publication [7], but this paper presents the latest code devel-
opments and example use-cases.

ROOT GEOMETRY IMPORT
ROOT is a data format and analysis package that is domi-

nant in the high-energy physics community. It also includes
its own geometry description that can be used with Geant4
and other codes [8]. A loader was written in pyg4ometry
for ROOT geometry, and once loaded the geometry can be
visualised with the usual VTK viewer. This was used to
load detector geometries and then, with the new compari-
son algorithms described later in this paper, to compare and
validate newly prepared GDML geometry of the LHCb de-
tector at CERN. This geometry was created independently of
pyg4moetry but it was used to validate that the new geometry
was equivalent across the thousands of volumes.

CGAL IMPROVEMENTS
Recently pyg4ometry has created granular bindings to

both CGAL and Open Cascade. For example GDML to
FLUKA conversion relies heavily on 2D convex decompo-
sition of arbitrary polygons. A monolithic binding strategy
would be to create a function that matches the pyg4ometry re-
quired functionality, so for example decompose(polygon)
and this function return the desired result. A more granular
approach would be to bind the CGAL polygon object, bind
all the CGAL functions and allow the user to decompose the
polygon. The more granular binding approach allows users
to customise and extend the capability of pyg4ometry within
Python and leveraging the full capability of CGAL and/or
Open Cascade. A more granular approach is significantly
more time consuming for the developers as more C++ needs
to be wrapped and tested within Python, however, there is a
clear benefit and this was the chosen strategy.

With this granular approaching to binding, future work-
flows can trivially be added with minimal extension to
pyg4ometry. For example, mesh repair algorithms and tetra-
hedralisation of meshes are clear future additions making
full use of the capability of the underlying tools to process
meshes loaded from CAD.



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-MOPS24

MC5.D03 Calculations of EM fields Theory and Code Developments

763

MOPS: Monday Poster Session: MOPS

MOPS24

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



CAD LOADING IMPROVEMENTS
CAD descriptions of geometry differ significantly from

those used by Geant4 and FLUKA, in that CAD models typi-
cally use a B-rep structure which includes a sense of topology.
An example could be a simple cube, which in Geant4 and
FLUKA would be presented by a single solid or body respec-
tively. In B-rep, a cube would be a SOLID which has six
FACES and each FACE would have one square WIRE which
bounds the face and then the WIRE could consist of four
EDGEs, each EDGE would require two VERTICES. The
FACEs in this example are a simple plane and the EDGEs
are lines in three dimensions.

The most recent version of pyg4ometry allows users to
navigate the topological data in a CAD file by exposing the
relevant Open Cascade functionality using pybind11. In
general a common workflow would be conversion of a CAD
solid to a mesh-like data structure and with a monolithic
interface only this single function needs to be exposed. This
granular interface enables feature extraction, half-space de-
composition, and conversion to half-space representations
that are valuable additions to the code.

GEOMETRICAL FEATURE EXTRACTION
Direct and complete conversion from CAD to

Geant4/GDML is not always required. For example,
a detailed beam pipe model including flanges, mounting
plates, screws etc. might exist in a CAD model. However,
such a detailed model is unnecessary and would be
computationally prohibitive, and the original software is not
always available to physicists creating radiation transport
models. With feature extraction, the CAD model can be
loaded and inspected to give, for example, three radii (inner
and outer minor radii and major radius) of a torus. These
parameters can then be used to quickly created new original
geometry for FLUKA or Geant4.

GEOMETRY COMPARISON AND
REGRESSION

When converting geometry either with pyg4ometry or
externally through other means, it is often useful to know
whether two models are consistent or different. A new set of
comparison algorithms was added to allow both exact and
equivalent comparison of two geometry trees. A set of tests
can be defined for the comparison and certain comparisons
can be ignored if known to be different. Using the available
visualisation meshes in pyg4ometry, we can compare surface
area and volume to allow equivalence comparison even if
geometry is create from different shapes or primitives.

CONVERSION TO FLUKA
There already is an excellent tool in FLAIR [9], but there

is still a need for automatic and programmatic (i.e scriptable)
interface to FLUKA geometry. In particular, configurable
geometry for devices such as collimators, can be easily re-

generated in a Python script with simple calculations and
parameters.

Conversion from Geant4 to FLUKA was in the original
release of pyg4ometry, however, recent work has greatly
improved the usefulness of the produced FLUKA input by
more carefully considering the conversion. Because of some
of the more complex shapes and the geometry hierarchy
in Geant4, the resultant FLUKA input may contain a pro-
hibitive quantity of brackets. Expanding these could result
in an explosion of terms making the input unusable, and
possibly poor tracking performance. This problem is partic-
ularly acute at the top level of a geometry where a structure
like

WORLD -(OBJECT1) -(OBJECT2) -(OBJECT3) ...

might arise. If each object is composed of multiple regions,
this is problematic and it is highly preferable that those
objects are made from a single primitive such as a BOX,

Additionally, the conversion of a Boolean expression for
a REGION into the disjunctive normal form (DNF), i.e the
union of convex solids, was introduced. The expansion is
performed symbollically using SymPy [10].

Conversion of Geant4 to FLUKA geometry requires con-
struction of a sequence of a hierarchy of transformations
(ROTDefi in FLUKA). It is possible to completely remove
all transformations by including the transformation in the
BODY definition. For example FLUKA has an arbitrary
plane (PLA in FLUKA) defined by a normal n and point
in the plane p0. Removal (or baking in) the transformation
x = Mx + d would give new plane normal of Mn and plane
point Mp0 + d. This is relatively straightforward for all
FLUKA bodies apart from those that are quadrics. Here,
the transformation is a little more complex if the quadric
is defined as 𝑥𝑄𝑥𝑇 + 𝑃 ⋅ 𝑥 + 𝑅 = 0, then the transformed
quadric is

𝑄′ = 𝑀𝑇𝑄𝑀,
𝑃′ = 𝑀𝑃 + 𝑀𝑇𝑄𝑇𝑑 + 𝑀𝑇𝑄𝑑,
𝑅′ = 𝑅 + 𝑑𝑇𝑄𝑑 + 𝑑𝑇𝑃.

FLUKA does not allow reflections in the transform (ROT-
Defi) definitions, however, Geant4 physical volumes can po-
tentially include reflections. During Geant4 to FLUKA con-
version, if pyg4ometry detects a reflection (i.e det(M) ≠ 1)
then the complete transformation including reflection is com-
pounded into the body as previously described.

As an example, Figure 1 shows a BDSIM quadrupole,
which has been exported to GDML and converted to FLUKA
input. This quadrupole geometry cannot be expanded to
DNF and so will not run in FLUKA, but shows the potential
of pyg4ometry conversion. Therefore, further development
was introduced to handle such a case.

Some of the problems with subtracting extrusions can
be avoided by performing a 2D decomposition of the ex-
trusion section, including voids. This is implemented in
pyg4ometry using 2D convex decomposition in CGAL. A



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-MOPS24

764

MC5.D03 Calculations of EM fields Theory and Code Developments

MOPS24

MOPS: Monday Poster Session: MOPS

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Figure 1: Example of a BDSIM (Geant4) quadrupole con-
verted using pyg4ometry to FLUKA input and displayed in
FLAIR.

new ‘extruder’ class was introduced to register 2D polygons
with assigned materials and to maintain a simple boundary
that corresponds to a single boundary primitive.

INTERESTING USE CASES
Since publication and deployment, pyg4ometry is finding

applications in high energy physics (HEP) detector and ac-
celerator collaborations. In HEP, models for FASER, the
Möller experiment, LUXE, and Legend have made use of the
code. In accelerator applications, there are many BDSIM
users preparing geometry with pyg4ometry.

FASER is a forward search experiment at the LHC in
CERN searching for axion-like particles and measuring neu-
trino fluxes [11]. A detailed beamline model of the ∼ 500 m
of LHC accelerator and its environment were modelled com-
bining FLUKA geometry, BDSIM-generated GDML files
and new geometry created directly using pyg4ometry. Addi-
tionally, studies for FASER-2 [12] at the Forward Physics
Facility [13] are making use of the code rapidly test and
optimise detector configurations.

LUXE is a non-linear QED experiment proposed for the
European XFEL [14]. LUXE converts its Geant4 model
(the nominal source of the geometry) to a FLUKA model
for neutron fluence studies, with great success.

The Möller experiment is a sin2 𝜃𝑊 experiment and has
been using pyg4ometry combined with a ray tracing code
to determine the number of bounces optical photons would
require to reach detectors [15]. This uses the meshing of
GDML geometry. Figure 2 shows experiment where the
geometry is rendered in Fusion 360. The regions highlighted
in red are visible to the source, whereas regions highlighted
in green are visible to the source and detector.

The authors of this proceeding are also preparing a new
Python package for constructing beamlines in FLUKA heav-
ily based on pyg4ometry, called pyflubl. This allows the
creation of FLUKA models of complete beamlines whilst
allowing the user to define the source of geometry for each

Figure 2: The Möller experiment geometry rendered in Fu-
sion 360.

component, be it from a FLUKA input file for that single
component, or a user-provided Python class using pyg4om-
etry to create the geometry newly. Such a package is only
possible with a class library package such as pyg4ometry.

CONCLUSIONS
Pyg4ometry is a mature and stable code used by the HEP

and accelerator community alike. It allows users a progra-
matic interface to common geometry tasks and the ability to
automate and parameterise these tasks. Significant improve-
ments have been made to the CAD and CGAL interfaces and
conversion to FLUKA. Given the developments described in
this paper two important future develops will be 1) using the
Open Cascade-CAD interface to allow conversion to half-
space representations of solids and 2) a notebook (Jupyter)
interface to pyg4ometry. The first improvement will allow a
direct path between CAD models and FLUKA. The second
improvement will allow users to work in a familiar analysis
environment, and allow the integration of MC output with
geometry for creation of visualisations and plots.

REFERENCES
[1] L. J. Nevay et al., “BDSIM: An accelerator tracking code

with particle–matter interactions”, Comput. Phys. Commun.,
vol. 252, p. 107200, Jul. 2020.
doi:10.1016/j.cpc.2020.107200

[2] T. T. Böhlen et al., “The FLUKA Code: Developments and
Challenges for High Energy and Medical Applications”, Nucl.
Data Sheets, vol. 120, pp. 211–214, Jun. 2014.
doi:10.1016/j.nds.2014.07.049

[3] M. Botsch, D. Sieger, P. Moeller, A. Fabri, “CGAL User
and Reference Manual, 5.0.3 Edition”, CGAL Editorial
Board, 2020. https://doc.cgal.org/5.0.3/Manual/
packages.html#PkgSurfaceMesh

[4] Open Cascade SAS, Open Cascade, https://www.
opencascade.com, 2024 (cited 15th May 2024).



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-MOPS24

MC5.D03 Calculations of EM fields Theory and Code Developments

765

MOPS: Monday Poster Session: MOPS

MOPS24

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



[5] W. Schroeder, K. Martin, B. Lorensen, The Visualization
Toolkit–an Object-Oriented Approach to 3D Graphics, 4th
edition, Kitware, Inc., 2006.

[6] pybind11: Seamless operability between C++11 and Python,
https://github.com/pybind/pybind11/.

[7] S. D. Walker, A. Abramov, L. J. Nevay, W. Shields, and S. T.
Boogert, “Pyg4ometry: A Python library for the creation of
Monte Carlo radiation transport physical geometries”, Com-
put. Phys. Commun., vol. 272, p. 108228, Mar. 2022.
doi:10.1016/j.cpc.2021.108228

[8] R. Brun and F. Rademakers, “ROOT-An object oriented data
analysis framework”, Nucl. Instrum. Methods Phys. Res., Sect.
A, vol. 389, no. 1–2, pp. 81–86, Apr. 1997.
doi:10.1016/s0168-9002(97)00048-x

[9] V. Vlachoudis, “FLAIR: A Powerful But User Friendly Graph-
ical Interface For FLUKA”, in Proc. Int. Conf. on Mathemat-
ics, Computational Methods & Reactor Physics (M&C 2009),
Saratoga Springs, New York, 2009.

[10] SymPy, https://www.sympy.org/en/index.html/.

[11] FASER Collaboration, “Technical Proposal for FASER: For-
wArd Search ExpeRiment at the LHC”, 2018.
doi:10.48550/arXiv.1812.09139

[12] FASER-2 Collaboration, O. Salin et al., “Development of
tracking software and detector design studies for the proposed
FASER-2 experiment at the Large Hadron Collider”, in Proc.
LHCP2023, Belgrade, Serbia, May 2023, p. 241.
doi:10.22323/1.450.0241

[13] J. L. Feng et al., “The Forward Physics Facility at the High-
Luminosity LHC”, J. Phys. G: Nucl. Part. Phys., vol. 50, no. 3,
p. 030501, Jan. 2023. doi:10.1088/1361-6471/ac865e

[14] R. Jacobs, “LUXE: A new experiment to study non-
perturbative QED in electron-LASER and photon-LASER
collisions”, 2022. doi:10.48550/arXiv.2205.06096.

[15] L. A. Barrett, J. Mott, and K. S. Kumar, “Program to Identify
Secondary Background Sources in the MOLLER Experi-
ment”, presented at APS DNP & JPS Fall Meeting 2023,
https://www.lucbarrett.info/Poster.pdf/.



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-MOPS24

766

MC5.D03 Calculations of EM fields Theory and Code Developments

MOPS24

MOPS: Monday Poster Session: MOPS

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


