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Abstract

These lectures concentrate on evolution and generation of dark mat-
ter perturbations. The purpose of the lectures is to present, in a sys-
tematic way, a comprehensive review of the cosmological parameters
that can lead to observable effects in the dark matter clustering proper-
ties. We begin by reviewing the relativistic linear perturbation theory
formalism. We discuss the gauge issue and derive Einstein’s and con-
tinuity equations for several popular gauge choices. We continue by
developing fluid equations for cold dark matter and baryons and Boltz-
mann equations for photons, massive and massless neutrinos. We then
discuss the generation of initial perturbations by the process of infla-
tion and the parameters of that process that can be extracted from the
observations. Finally we discuss evolution of perturbations in various
regimes and the imprint of the evolution on the dark matter power
spectrum both in the linear and in the nonlinear regime.
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1 Introduction

The study of the correlations in the dark matter and in the Cosmic Mi-
crowave Background (CMB) is revolutionizing cosmology. Fluctuations across
a range of scales have been detected and the precision in the determination of
the power spectra are improving steadily. Over the past few years, a coher-
ent cosmological model appears to have emerged: CMB observations[1, 2, 3]
suggest that the universe is flat; a host of astronomical observations[4] sug-
gest that most of the matter in the universe is non-baryonic and that the
energy density in this dark matter is not sufficient to explain the observed
flatness; and supernova observations[5, 6] imply that the expansion of the
universe is, surprisingly, accelerating. These observations suggest that most
of the energy density of the universe is in some new form. This dark energy
may be quintessence[7] associated with a light scalar field, or due to the
energy of the vacuum. While this emerging standard model is an important
intellectual triumph, the unknown nature of the dark matter and the dark
energy suggests that there may be important missing physics in the model.

Among the questions that we still need to address are: What is the dark
matter? What is the mass of the neutrino? What is the nature of the
dark energy? Did structure form by gravitational instability? How did the
universe begin? These questions were among those identified in the recent
National Academy of Sciences’ Committee on the Physics of the Universe
study|8].

Determining the linear power spectrum of dark matter can provide an-
swers to many of these questions. From the theoretical perspective the dark
matter clustering can give information on the exact nature of dark matter.
For example, the clustering of cold dark matter differs from that of hot or
warm dark matter and this information can be extracted from the mass
power spectrum. The latter is also sensitive to neutrino mass, since massive
neutrinos strongly suppress the level of mass fluctuations on small scales be-
cause of the high neutrino momentum before they become nonrelativistic. In
principle the sensitivity of upcoming surveys is such that it will be possible
to test neutrino masses below 0.1-1eV [9], close to those suggested by recent
Super-Kamiokande neutrino results [10].

Another family of models that recently received a lot of attention is that
where a significant fraction of the dark matter is really dark energy that only
weakly clusters on small scales. The family can be described by its equation
of state, which in principle can evolve in time and by the contribution to the
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overall energy density. These models can also be studied through the effects
on the dark matter power spectrum and its time evolution.

From the observational perspective there are several surveys, such as
2dF! and SDSS?, which will measure redshifts of more than a million galax-
ies. 3-dimensional mass power spectrum is sensitive to a number of cos-
mological parameters, such as matter density, Hubble constant, primordial
power spectrum slope and amplitude, massive neutrinos, baryon density etc.
In addition, this sensitivity is further improved if information from higher
redshifts is provided, such as from the CMB, Ly-a forest or weak lensing.

The purpose of these lectures is to present a comprehensive review of the
theory behind the dark matter perturbations. These are determined both
by the initial conditions and by their subsequent evolution. Because the
perturbation wavelengths can be larger or smaller than the size of observ-
able universe one must describe both the generation and the evolution of
perturbations in the context of general relativity. We first review the rela-
tivistic linear perturbation theory formalism. We discuss the gauge issue and
describe several popular gauge choices. We then derive Einstein’s and con-
tinuity equations for these gauge choices. We continue by developing fluid
equations for cold dark matter and baryons and Boltzmann equations for
photons, massive and massless neutrinos. These equations describe a com-
plete set which is sufficient to solve the perturbations starting from their
initial conditions, as long as the evolution is linear (i.e., the perturbations
are small).

Next we discuss the generation of initial perturbations by the process
of inflation and the parameters of that process that can be observationally
accessible. Finally we discuss evolution of perturbations in various regimes
and the imprint of the evolution on the dark matter power spectrum both
in the linear and in the nonlinear regime.

2 Relativistic perturbation theory

The goal of studying cosmological perturbations is to understand the evo-
lution of the structure in the universe. Relativistic perturbation theory de-
scribes this evolution in a general relativistic context. In cosmology such
an approach is required, because we want to describe perturbations not just
on small scales where Newtonian laws suffice, but also on scales comparable

"http://www.mso.anu.edu.au/2dFGRS/
*http://www.astro.princeton.edu/BBOOK
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or larger to the Hubble length, which can be used as a typical scale of ob-
servable universe. Before we introduce the perturbations we must however
describe the unperturbed (homogeneous) evolution of the universe, to which
we turn next.

2.1 Homogeneous universe

The fundamental assumption of cosmology is that the universe is homo-
geneous and isotropic on average. To be more precise, our paradigm is
that we live in a perturbed Robertson-Walker universe, in which the met-
ric perturbations are small, so the averaging procedure is well defined and
the backreaction of the metric fluctuations on the homogeneous equations is
negligible. One can write the line element in a homogeneous and isotropic
universe using conformal time 7 and comoving coordinates z* as

ds® = Y datdz” = a(7) {—dT2 + %’jdmidxj} . (1)

This is the Robertson-Walker metric. We will often use greek indices to
denote 4-tensors and latin to denote spatial 3-tensors. Here a(7) is the scale
factor expressed in terms of conformal time 7, which is related to the proper
time ¢ via dt = adr. Similarly, proper coordinates r; are related to the
comoving coordinates z; via r; = ax;. We adopt units such that ¢ = 1. The
space part of the background metric can be written as

vijdatda! = dx?* + r*(d6?* + sin® 0d¢?),

K-1Y2sin K2y, K >0
r=singx=4¢ x, K=0 (2)
(—=K)~1/2sinh(-K)Y2x, K <0

where K is the curvature term which can be expressed using the present
density parameter in all components 2y and the present Hubble parameter
Hy as K = (Qp — 1)HZ. The density parameter ) can have contribu-
tions from mass density €2, which can consist of baryons, cold dark matter
(CDM), massive neutrinos (mixed dark matter MDM, warm dark matter
WDM etc.), cosmological constant €2 or some more general dark energy (or
quintessence) Qg, Qo = Qp + Q) + Qy. The advantage of using the con-
formal time 7 is that the metric becomes conformally Euclidean (K = 0),
3-sphere (K > 0) or 3-hyperboloid (K < 0) and leads to a simple geometrical
description of light propagation and other processes.
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Einstein’s equation is

GY, = 8xGTY, (3)

where G, is the Einstein tensor and 7%, is the stress-energy tensor. Ein-
stein’s tensor is related to the spacetime Ricci tensor Ry, by

R
Guw =Ry — 59w R= R“u , Ry = Rﬁ;mu . (4)
The spacetime Riemann tensor is defined according to the convention
Ruun)\ = a"ﬂruu)\ - a)\l—wun + Fuanrau)\ - Fua)\raun ’ (5)

where the affine connection coeflicients are
1
FN,,)\ = 5 HE (augn)\ + a)\gm/ - angl/)\) . (6)

The Einstein field equations 3 show that the stress-energy tensor provides
the source for the metric variables. The stress-energy tensor takes the well-
known form

" = (p + p)ut'u” + pg"” + plI"* | (7)

where p and p are the energy density and pressure, u = dz*/d\ (where
d)\? = —ds?) is the fluid 4-velocity and pIT*” is the shear stress absent for a
perfect fluid. In locally flat coordinates in the fluid frame, 7% = p, T = 0,
and T% = pé* for a perfect fluid.

Einstein’s equations applied to the background metric gives the evolution
of the expansion factor a(7),

N
<9> =G — K, 5= Ga2(5+ 3p). (8)
a 3 3
Overdots denote derivatives with respect to the conformal time 7. For con-
venience we introduced comoving Hubble parameter n = a/a, which will
appear often in the equations below. Its value today is Hy. These are the
Friedmann equations applied to the Robertson-Walker metric. The density
p is related to the density parameter €y via 87mGpy/3 = HSQO.

The mean density of the universe p (and similarly the mean pressure p)
can be written as a sum of matter, radiation, cosmological constant or any
other dark energy contributions,

p=pma >+ prat + pr + ppa 20T, (9)
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where w is the equation of state of the dark energy.
The energy-momentum tensor is required to obey local conservation law
Tl = 0, which gives
p+3n(p+p)=0. (10)
One can also derive the evolution equation for a homogeneous scalar field
¢ evolving in a potential V(¢). Its Lagrangian is

1 14
L==g 59" 0,00+ V(9)| (11)
where g"” is the metric. Stress energy tensor in this case is
12 (}'32
Po = 5.2 + V() py= 22 V(¢). (12)

Equation of state w = p/p is in general a function of time. Continuity
equation (10) gives

b+ 2md + a®V' = 0. (13)
The scalar field source has to be added to the Friedmann equations above and
modifies the expansion of the universe. It obeys the same energy-momentum
conservation as the other fluids and can be easily integrated to find energy
density as a function of time (or expansion factor as in equation 9). In the
limit where kinetic term is negligible compared to the potential scalar field
reduces to the cosmological constant with w = —1. This case is relevant
both for inflation and for the possible late time contribution from the dark
energy.

2.2 Perturbations in the metric and in the energy-momentum
tensor

Our universe is not homogeneous: we see inhomogeneities caused by gravity
present on all scales, from planets to clusters, superclusters and beyond.
We want to describe the deviations from the isotropy and homogeneity of
the universe using general relativity. Small perturbations h,, around the
Robertson-Walker metric are

Guv = a2(’7uv + h/w)- (14)
In the most general form one can write the perturbed line element using
conformal time 7 and comoving coordinates z* as
ds® = a?(7) {—(1 +2A)dr? — 2B;drdz’ + [(1 + 2HL)vij + 2hij] d:vidxj} .
(15)
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The perturbations have been decomposed into time-time component —2A,
time-space component —2B;, trace of the space-space component 2H;, and
traceless space-space component 2h;;. Vector field B; can be further decom-
posed into a scalar component, which arises from a gradient of a scalar field,
and a pure vector component, which is the remainder of what is left. Sim-
ilarly we can decompose tensor h;; into a scalar, vector and tensor compo-
nents. As we show below these perturbations can be decomposed into scalar
(m = 0, compressional), vector (m = %1, vortical) and tensor (m = £2,
gravitational wave) eigenmode components, which differ in their transfor-
mation properties under spatial rotations. The advantage of this decompo-
sition is that the linearized equations decouple into separate scalar, vector
and tensor components, with no cross-coupling between them.

In linear theory, each eigenmode of the Laplacian for the perturbation
evolves independently, and so it is useful to decompose the perturbations via
the eigentensor Q™). where

v2QIm =47Q[) = —k*Q™), (16)

with “|” representing covariant differentiation with respect to the three met-
ric y;;. Note that the eigentensor Q(™) has |m| indices (suppressed in the
above). To obtain a pure vector component we must subtract out a compo-
nent of a vector field that can be obtained from a scalar field. In real space
this is a gradient of a scalar field. This mean that vector modes satisfy the
auxiliary condition

Q=0 (17)

which represents the divergenceless condition for vorticity waves.

Similarly, to obtain a pure tensor mode we must subtract out components
that can be formed from a scalar and vector field. The auxiliary conditions
are

YIQU = Qi — o, (18)

which represent the divergenceless and transverse-traceless conditions re-
spectively, as appropriate for gravity waves.

We will often focus on perturbations in flat space, both because they
lead to simplified expressions and because they seem to be observationally
favored. In this case the eigenmodes are particularly simple. If we assume
the direction of the wavevector k in é3 then

QE™ (61 £iéo)i, ... (61 £ i8o);, exp(ik-Z), (K =0,m>0), (19)

21--m
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where the presence of é;, which forms a local orthonormal basis with é3 = lAc,
ensures the divergenceless and transverse-traceless conditions. One can see
now the transformation properties of eigenmodes under rotation in the plane
perpendicular to és is such that

Q(:I:m) — Q(:I:m)e:Fim’ljJ’ (20)

where 7 is the rotation angle.
It is also useful to construct (auxiliary) vector and tensor objects out of
the fundamental scalar and vector modes through covariant differentiation

1
Q=K QP =k - 5000,

Q5 = - (@f" + Q). (22)
For K = ( this becomes

1
QY = —ik 'kQ®, Q) =~k *kikQ¥ — 2%Q",  (23)
Q" = =i2k) QY + KiQ). (24)
The eigenmodes form a complete set, so that any perturbation can be ex-
panded in terms of these.
The metric perturbations can be broken up into the normal modes of
scalar (m = 0), vector (m = £1) and tensor (m = £2) type,

A = AOQO) m, — Hg))Q(O)

1
B = — Y BmQ™,
m=-—1
2 (m) A (m)
hij = Y Hy Qi - (25)
m=—2

The stress energy tensor can likewise be broken up into scalar, vector, and
tensor contributions. The fluctuations can be decomposed into the normal
modes as

5T00 — _5p(0) Q(O)’
5TY = YL i[(p+p) (™ — Bm) Q™ o)
0Tyt = Yk 1l(p+p)ot™ QM

6T = p05,QO + 2, plmQumi.
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Note that the two mixed time-space components are not equal. We in-
troduced above the density perturbation dp(9), pressure perturbation dp(®,
velocity perturbation v(™) where m = 0,+1 and anistropic stress pertur-
bation pII™), which can be scalar (m = 0), vector (m = %1) or tensor
(m = £2) type. These are in general a sum from all of the species present,

6o =3 op”, (27)

where the index i stands for baryons, CDM, photons, neutrinos (massive
and massless), dark energy etc.

A minimally coupled scalar field ¢ also has perturbations, ¢ = ¢ + ¢,
which are related to the fluid quantities as [11, 12]

59((,)0) _ a—2(¢§5'¢(0) —A®G2) L 540

ipy) = a=2(9ip"” — AV ) — V590,

(pg+pg) (0§ — BO) = a2k,
pelly) =0, (28)

where V' denotes derivative with respect to ¢. This shows that there are no
vector or tensor modes associated with the scalar field, as expected in the
linear order. Applying energy-momentum conservation one finds

56+ 2086 + (K2 + a2v")s¢ = (A© — 31,0 — kB©)g — 2,2V 40, (29)

2.3 Perturbed Einstein’s equations

The general covariant form of linearized perturbed Einstein’s equations fol-
lows from the definitions above. The algebra is straightforward (although
lengthy) and leads to the following set of equations

2.3.1 Scalar perturbations
(k? = 3K) [Hy + § Hr + nk~2(kB — Hr)| = 47Ga? [6p + 3n(p + p) (v — B)/K]
nA — Hy, — Hy — £ (kB — Hy) = 4nGa®(p+ p) (v — B) /k
(2% —2n% + 77% - %kQ) A— (% + 77) (Hp, + kB) = 4nGa®(6p + 34p)

k?(A+ Hp + 3Hr) + (% + 277) (kB - HT) = 87Ga’pll.
(30)
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These are density (Poisson), momentum, pressure and anisotropic stress

equations, respectively. The superscripts (0) have been dropped.
Corresponding energy-momentum tensor conservation equations are con-

tinuity and Euler’s equations, which in the general covariant form are

(% +3n) 6p + 3n0p = —(p + p) (kv + 3H)
(2 +4n) [5+)(v — B)/K] = 0p — 3(1 - 35)pIT + (5 + P)A.

Energy-momentum tensor conservation equations are not independent of

(31)

Einstein’s equations, since they follow from Bianchi identities. They are
nevertheless useful, since they involve only first derivatives instead of second
as in the case of Einstein’s equations. In total we have 4 equations for 4 met-
ric perturbations, which are sourced by 4 components of energy-momentum
tensor. As we will see below the number of equations can be further reduced
by the gauge freedom.

2.3.2 Vector perturbations

Since density and pressure are scalar quantities there are only two Einstein’s
equations for vectors, momentum and anisotropic stress,

(1-35) (kB - Hy) = 16xGa*(p + p)(v - B)/k (32)
(% + 277) (kB — Hy) = —87Ga?pll.

Energy-momentum conservation consists of Euler’s equation only,
0 L 2K
2 (gt ) (P -BM = Gy —1)pn @)

and we suppressed 1 superscript on all the variables. Here again we have
2 Einstein’s equations for 2 metric variables, but fixing the gauge freedom
reduces this to a single equation.

2.3.3 Tensor perturbations

There is only one equation in this case, corresponding to the tensor part of
the anisotropic spatial component in Einstein’s equations,

Hr + 2nHy + (k% 4+ 2K)Hr = 4nGa?pll, (34)
where again superscript £2 was suppressed. There is no gauge freedom in

the tensor case, as we discuss next. Equation above is a wave equation and
describes gravity wave propagation and sourcing in an expanding universe.
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2.4 Gauge transformations

So far we have described the perturbations in a given coordinate system,
but we did not say much about the coordinate system itself. In the absence
of perturbations there is a preferred coordinate system, which corresponds
to comoving frame, in which the observers see the momentum density to be
zero at that point and the comoving observers are free falling. The spatial
slices (defined as slices of constant time) are orthogonal to the time threading
(defined as a constant coordinate Z) and for K = 0 they are spatially flat.
For K < 0 they correspond to a 3-hyperboloid and for K > 0 to a 3-sphere.
This defines the background space-time.

The choice of coordinates becomes nontrivial once we discuss the per-
turbations and there is no unique choice. One can, for example, choose the
coordinates in which the observers are free-falling (corresponding to the syn-
chronous gauge), but this is no longer the same choice as if the observers
are comoving so that the momentum density vanishes (corresponding to the
comoving gauge). One can instead choose a spatially flat gauge so that spa-
tial components of the metric vanish, or a gauge with zero metric shear with
threading and slicing being orthogonal (corresponding to conformal Newto-
nian or longitudinal gauge).

To represent the perturbations we must thus make a gauge choice. A
gauge transformation is a change from one coordinate choice to another.
The most general form is Z,, = z,, + 0z, or

7T = 74T,
- 35

I, = x;+ L. (35)
T corresponds to a choice in time slicing and L; a choice of spatial coordi-
nates. This can be decomposed into Fourier modes

7 = r4+T7OQO),
Fio= mi+ Yk LQM™.
Since gauge freedom only uses scalar (m = 0) and vector quantities (m =

+1), it is clear that tensor modes (m = %2) will not change under gauge
transformation. Even though the coordinates can change the metric dis-

(36)

tance ds? must remain invariant, g, dz#dz” = §,,di*dz". Since g, is a
tensor and transforms in the same way as other tensors we can derive the
transformation property of a general tensor

9z 0P

le(jv) = Biua—izu op (Ty — 07)
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=Ty — Tup0,02° — Tn,0,02% — 62%0,T),. (37)
This transformation law applied to the metric in equation 15 gives [11, 12]

AQ = 40 _ ) _ ()
B pm) 4 jm) | ppm)
k

79 = glo_ 5 AONEON
am o= H™ 4 e, (38)
where m = 0, £1.

The stress-energy perturbations in different gauges are similarly related
by the gauge transformations

500 = )0 _ h7©
5p@ = 5p© _ 470
Fm) = m)  flm)
nm™ = mm, (39)

where m = 0, %1 in the velocity equation and m = 0,+1, 42 in anisotropic
stress equation. The anisotropic stress is gauge-invariant.
A scalar field transforms as

S¢(0) - 5¢(0) _ q'gT(O) ) (40)

2.5 Popular gauge choices

The choice of gauge can be governed by the simplicity of equations, numerical
stability of solutions, Newtonian intuition or other considerations. As we
discussed above there is no gauge ambiguity for tensor modes. For vector
modes the choice can either be B&ED = 0 or H;il) = (. The latter specifies
the gauge completely, since it fixes LD while the former only fixes L(1)
and thus leads to unspecified integration constant in Hj(wil). This however
does not lead to any dynamical effects. Since vector modes are unlikely to
be generated in the early universe we will not discuss them further. Instead
we will look at four popular gauge choices for scalar modes that we will have
the chance to use in the rest of the lectures. We will drop the superscripts
(0) from now on.
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2.5.1 Synchronous gauge

This gauge was very popular in the early development of perturbation theory.
Its main advantage from today’s perspective is its numerical stability, which
is why it is still the gauge of choice in CMBFAST [13] numerical package.
It corresponds to setting A = B = 0, so that only the spatial metric is
perturbed. This implies that slicing is orthogonal to the threading and that
a set of freely falling observers remains at a fixed coordinate position. To
show this one must show that the spatial part of 4-velocity u* = dz*/dA,
where ) is affine parameter parametrizing the geodesic, vanishes. Geodesic
equation is

Du¥ —  dz¥  du”

— =u! = U

DX~ Wdx  dx P
Since A = B(™) =0 implies T}, = 0 it follows that u* = 0 is a geodesic.

The property that the fundamental observers follow geodesics means

that the coordinates are Lagrangian and this gauge can only be used while
dp/p < 1. In the nonlinear regime where this condition is not satisfied one
can have orbit crossings where two observers with different Lagrangian coor-

auf = 0. (41)

dinates find themselves at the same real (Eulerian space) position. This can
only happen if the metric perturbations diverge and the linear perturbation
theory is no longer valid. While this limits the use of this gauge at late times
it can still be used successfully in the early universe, as long as the density
perturbations are small.

Another shortcoming of this gauge is that the gauge choice does not fully
specify it. One can see this by using a gauge transformation from a general
gauge. Imposing A = B =0 to the equations 38 we find

T = a_l/aAdT+cla_1
L = —/(B-l-kT)dT-i-cQ, (42)

where ¢; and co are integration constants. These remain unspecified in
this gauge. They lead to unphysical gauge mode solutions for the density
perturbations outside horizon. While historically this caused some confusion
in their interpretation they are not really a problem since these modes do
not show up in any observable quantity and are at any rate decaying faster
than the physical modes.

The remaining two scalar variables in this gauge are Hy, and Hr. Instead
of these one often introduces n = —Hy, — Hy/3 and h = 6Hp,, but we will



Lectures on Dark Matter 45

not make this replacement here to avoid confusion with comoving Hubble
parameter 7 = a/a. Einstein’s equations are

1 .
—(k* — 3K)(Hp + gHT) +3nH, = 4nGa?ép,

) 1 )
H + 5(1 —3K/kK*)Hy = —4nGd*(p+ p)v/k,
. : 1
H; +nH;, = —47rGa2[§(5p + 0p],
.. . 1
Hr +nHyp — K*(Hp + 5HT) = —871Ga’plIl. (43)

Two of these are of course redundant. The conservation equations are

(% + 377) p+3ndp = —(p+ p) (kv + 3H)

3 2 K (44)
(2 +4n) (15 +B)v/k] = 6p — 3(1 - 38)pIL

2.5.2 Newtonian gauge
In Newtonian gauge one sets B = Hp = 0. The remaining two scalar
perturbations are renamed into A = ¥ and H, = —®. A general gauge
transformation into Newtonian gauge gives

Hr = 0— L=—Hr/k

B = 0— T=-B/k+ Hp/k. (45)

One can see that there is no remaining gauge freedom, so the gauge is entirely
fixed. The main advantage of this gauge is that there is a simple Newtonian
correspondence and the equations reduce to Newtonian laws in the limit of
small scales. The Einstein’s equations are,

(—k? + 3K)® — 3n (<I) + n\IJ) = 4nGa’sp
) . _ d+n¥ = 47Ga®[(p+ p)v/k|
®—K®+n(¥+20)+ (27 +9°)¥ — 1 k*(@ - T¥) = 4rGa?dp,
kE2(® — ) = 8wGa?pll.
(46)
On small scales the second term on the left hand side of first equation above
becomes negligible compared to the first one. Similarly we can also neglect

K relative to k2, since curvature scale, if present, is of the order of the Hub-
ble length. The result is a Poisson equation in an expanding universe. This
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means that we can identify metric perturbation ® with the perturbed New-
tonian potential on small scales. From the last of equations above we find
® = V¥ in the absence of anisotropic stress, which is a good approximation
in the matter era where ideal fluids dominate the energy density. We know
that for astrophysical sources gravitational potential is roughly ® ~ v? (in
units where ¢ = 1), where v is a typical velocity (rotation, dispersion etc.)
of the object. This implies ® ~ ¥ <« 1 almost everywhere in the universe,
except near a black hole. So in this gauge the linear perturbation theory
is almost always valid and one can use these equations also to describe the
late time nonlinear evolution in the density field, as long as the gravitational
potential remains small.

The conservation equations are

(Z +3n) dp+ 3ndp = —(p+ p) (kv — 30)

8 _ 2 K _— (47)
(& +4n) (p+p)v/K] = op = 3(1 = 35)pTT + (5 + p) T.

2.5.3 Comoving gauge

This gauge is convenient because it introduces the curvature perturbation,
which is useful when one wants to describe the evolution of perturbations,
generated by say inflation, outside the horizon. It turns out that this quan-
tity is conserved for adiabatic perturbations (see more on this below) and so
evolution is particularly simple in this case. On the other hand, this gauge is
not particularly intuitive inside the horizon, so one is better off to transform
into the Newtonian gauge in this limit.

The gauge is defined so that the momentum density Tio vanishes. From
equation (26) this implies B = v. The second constraint can be set to
Hp = 0. The remaining two scalar perturbations are renamed as A = ¢ and
H; = (. Gauge transformation from a general gauge into comoving gauge
gives

t—-B = 0—T=(w-B)/k
Hr = 0 — L=—Hr/k. (48)

The gauge is entirely fixed, since these are just algebraic relations between
the quantities.
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Einstein’s equations are

(k2 — 3K) (¢ + nu/k) = 4nGa’dp

né—¢—%Xv=0

(22 — 20 +n — §82) € — (& + 1) ((+ bv) = 4nGa?(dp + 4op)
kz(f +{)+ ([% + 277) kv = 8w Ga’pll.

(49)

Corresponding energy-momentum tensor conservation equations are

(& +30) 0p+ 3ndp = —(p + p) (kv + 3¢) (50)
(p+p) = —0p+ 3(1 — 355)plL

2.5.4 Spatially flat gauge

While comoving gauge is a useful gauge to describe evolution of perturba-
tions after they cross the horizon, it has the shortcoming that the scalar
field perturbations vanish in this gauge. It thus cannot be used to calcu-
late scalar fluctuations from inflation, for example. One way to solve this
is to calculate them in another gauge and use the gauge transformation to
calculate curvature perturbation in comoving gauge. The simplest gauge to
choose is the spatially flat gauge, where Hy, = Hp = 0,

(1 - 3K/k?)nkB = 4rGa? [6p + 3n(p + p)(v — B) /K]
nA - £B =4rGa*(p + p)(v — B)/k

(2% —2n? + 776% - %kZ) A- (% + 77) %B = 47Ga?(5p + %5p)
k2A + ([% + 277) kB = 8nGa’pll.

(51)

Corresponding energy-momentum tensor conservation equations are

(% + 377) dp+ 3nép = —(p+ p)kv

fil - = 2 K = = (52)
(2 +4n) (5 +P)(v = B)/k] = dp — 3(1 = 35)pIl + (5 + ) A.

Scalar field equation is

6¢ + 2060 + (k* + a®V")o¢ = (A — kB)d — 2%V A. (53)
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3 Evolution of perturbations

In previous section we have described several gauge choices encountered
in the literature and presented Einstein’s equations, which relate metric
perturbations to the energy-momentum tensor, which receives contributions
from radiation and matter. In this section we derive evolution equations for
all the ingredients that contribute to the energy-momentum tensor. Together
with the Einstein’s equations they form a closed set of equations that can
be evolved forward in time from some given initial conditions. We will
restrict ourselves to the Newtonian gauge, since the equations are easiest to
interpret and the solutions do not suffer from gauge modes or breakdown in
the nonlinear regime.

3.1 Fluid equations for scalar perturbations

Matter content of the universe can be divided into two classes. In the first
class are matter components, which can be described within the fluid approx-
imation. This class includes cold dark matter, baryons and scalar fields. To
specify their evolution one only needs the equations for overdensity § = dp/p
and velocity v, both of which can be obtained from the energy-momentum
conservation equations (47). In this section we present the system of evo-
lution equations for the matter. We restrict the application to the scalar
fluctuations, given that only these can lead to growth of perturbations by
self-gravity and thus to structure formation in the universe.
From equations (47) one obtains the following set of equations,

Cold dark matter —
b= —kv,+3%, .= —-nu.+kT. (54)

By assumption cold dark matter (CDM) is cold and its pressure and anisotropic
stress are zero.

For baryons one must also include pressure and Thomson scattering be-
tween photons and electrons. Thomson scattering has a well specified angu-
lar dependence in the rest frame of the electron and rapid scattering leads
to isotropic photon distribution in this frame. The change in photon veloc-
ity is proportional to the difference between photon and baryon velocities
times the scattering probability and so leads to the exchange of momentum
between the photons and baryons (see below). Momentum conservation re-
quires an opposite term in the baryon momentum conservation equation,
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Baryons—

(-Sb = —kvp+ 3<i),

4
oy = —nuy+c2kdy + 3—?anexeaT(U7 —vp) + kT, (55)

b
where n. is the electron density, z. the ionization fraction and o Thomson
cross section. We also included the pressure term, relating it to density
gradients via adiabatic sound speed c¢2 = (0p/8p)s and neglecting entropy
gradients.
The evolution equation for scalar field perturbations in Newtonian gauge
follows from equation (29)

Scalar field—
8¢+ 206 + [K* + a®V"0¢ = (¥ + 38)d — 24>V . (56)

We will show below that for w = —1 both ¢ and V' vanish. In this limit
we have no gravitational source for §¢ and there are no perturbations in the
scalar field assuming none existed initially. Cosmological constant and scalar
field with w = —1 are thus indistinguishable. To solve for perturbations we
must specify ¢, V' and V”. It is often more convenient to express these in
terms of mean scalar field density at present 04 and equation of state w as
a function of time.

3.2 Boltzmann equation

In the second class are components for which the full phase space distribution
function f(Z,p, ) is required. This class includes neutrinos (both massless
and massive) and photons. The distribution function describes phase space
density,

dN = f(Z,p,7)d*Td>p, (57)

where dN is number of particles inside this volume.
The evolution of distribution function is governed by the Boltzmann
equation

df(Z,5,m) of _Of do

dr T Or 8zt dr  Opdr  Onidr

ofdp , Of dn’ (df(f,ﬁ,7)>
Ton = (R )
dr C

where p = pil is the momentum of the particles and the term on the right
hand side is the collision term (absent in the case of collisionless neutrinos).
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The distribution function f can be expanded to the first order,

f(jaﬁa T) = fO(p) + 5f(faﬁa T)' (59)

The zero-order phase space distribution is the solution to the Boltzmann
equation in the absence of perturbations. There is no spatial or momentum
direction dependence in this case and it is given by Planck distribution for
photons (bosons) or Fermi-Dirac distribution for neutrinos (fermions)

folg) o [4n®(e/FTo 4 1)), (60)

where + is for fermions and - for bosons and T is the temperature today.
We have introduced comoving momentum ¢ = ap, which accounts for the
redshifting of temperature. Similarly we can also introduce comoving energy
¢ = aF = (¢> + m*a?)'/2. In principle chemical potential term x should be
subtracted from hg, but in standard cosmological model it is not generated
and can be set to zero.

Let us now look at the perturbed Boltzmann equation, keeping only the

first order terms. Since zero order solution does not depend on momentum

of
ont
of first order, since it involves a change in direction. So the product of the

two is second order and one may drop this term from perturbed Boltzmann

direction the term in equation (58) is of first order. Similarly, % is also

equation. The remaining terms are

9f | 4,i9f %ﬂ_(ﬁ)
or +en 6$i+dqd7_ dr ) o’ (61)

where we used ) ) )
de®  dx’ dX ¢ ;
dr d\xdr p% €

in the lowest order and we used the fact that 4-momentum p’ is proportional

to 4-velocity u* (with mass being the proportionality constant in the case of

massive particles).

We are left to evaluate dg/dr. For this we will use geodesic equation
already introduced in equation 41. It is a straightforward algebraic exercise
to show that applied to the perturbed metric in Newtonian gauge the zero
component of the geodesic gives

dgq

pa P — en'd; 0, (63)
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where only scalar perturbations have been included. The resulting Boltz-
mann equation in Fourier space for K = 0 case is

O i sy 0 <<i>— % \1;> (%)C, (64)

where 4 = k-# is cosine of the angle between the wavevector and the particle
direction.

To compute components of energy-momentum tensor we must integrate
the distribution function over the momentum d3j times the components
of appropriate 4-momenta. This is however not Lorentz invariant or GR
covariant and the appropriate generalization is

By
T, = / SO (65)

where g is the determinant of the metric and we inserted this term to make
it valid in general relativity, although in the lowest order that we work in it
does not affect the results. For individual components of energy-momentum
tensor this gives

oT% = —a_4/q2dqu ef,

oT% = a / dqdQqni6f(q), (66)
. 20 0.

5T = o / Pdgdo L™ ”Z"J 5£(q).

3.2.1 Massive neutrinos

For massive neutrinos the collision term on the right hand side of equation
(58) is zero. It is useful to expand the perturbed distribution function in a
generalized Legendre series,

=Y (2 +1)5fi(— ik) ' Q. P, (67)
1=0

where 7 is the direction of the photon and Plzj is defined recursively as

; ik.. 2041 k... I i ke
Py =1, P = ', B = S Enpgtem) - g (6s)
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The brackets denote symmetrization with respect to all the indices. In
the flat space this reduces to the usual Legendre expansion 6f = >;(21 +
1)(—4)'0 f;P,(11), where P, are the Legendre polynomials of order I.

After integration over p one obtains the following hierarchy of coupled
evolution equations,
Massive neutrinos—

: k . d
5y = ~Pop 190
€ dlng
i 9B s ek dfo
ofi = 36(5fo 26 f2) 3q‘IJd1nq’ (69)
. qk
= 7 — > 9.
§f, (2z+1)e[l‘5fl‘1 I+ 1)6f141], [>2

Because of ¢ dependence one must discretize these equations and solve
the hierarchy for each value of q. In the end one must integrate over all
values of ¢ to obtain the perturbed energy-momentum tensor,

§p = 47m‘4/q2dqefo(q)5fo,

4 2
op = Sa 4/q2dqq?5fo,

(p+pv = 4ma? / a*dqafo(q)dfr

2
o = a_4/q2dq %5]”2. (70)

3.2.2 Massless neutrinos

When the particles are massless it is useful to introduce temperature per-
turbation A, such that T'= Tp(1 + A). One can easily show that

5f = _qfliqu, (71)

which together with ¢ = ¢ allows one to eliminate q dependence. We can
again expand A in a generalized Legendre series,

w . .
A, ) =Y (2 + 1) A(—ik) 7 Qy.. ;P . (72)
1=0
As before in the flat space this reduces to the usual Legendre expansion
A =3(20+ 1) (=0) A Pi(p).
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After angular integration the Boltzmann equation for massless neutrinos

becomes,

A, + kud, = & — ikpl.

From this one obtains the following hierarchy of coupled evolution equations,

Massless neutrinos—

(73)

b, =40, = —gkv,,+4<i>,
K
’[),,E3A,/’1 = k[AV’O_2<1_3k)—2> Au,2+‘l’:|
. k2 3 8K
Ao = —|zv,—=-(1—-5)A3],
2 5[3” 5( kQ) ’3]
. k (l+1)K
A, = — 1A, 1 — D(1-22227 ) A (74
wl 2z+1[l wtm U )< K ) ] (74

3.2.3 Photons

Photons interact with electrons and one needs to add the collision term in
equation (58). The collision term depends on the angular distribution of
incoming photons and on their polarization. Since photons are not the main
topic of these lectures we will not present the details of Thomson scattering
calculation. Instead we refer the reader to [14] for more details.

The hierarchy is

Photons—

57 =4A,9 = —%km + 49,

by =30, = k [A%o — 204, (1 - 1—12{
A, = 21’% [mw —(+1) (1 -

) A’y,3] - aneUT[A'y,2 - H/lO] )
I+ 1)K

k?

) + \IJ:| + aneoT(vb — ’U,y) y

(75)

) A%l+1:| — aneaTA%l.

Here II = A, 9 — 12E,, where Ej is the [ = 2 multipole moment of polariza-
tion expansion [15]. It can be neglected if a few percent accuracy suffices.

4 Initial conditions: inflation

Inflation is our primary mechanism to produce fluctuations. Historically, in-
flation was proposed to explain flatness of the universe and horizon problem.



54 U. Seljak

Flatness problem can be explained by revisiting Friedmann’s equation (8),
which can be rewritten as Q—1 = K/n?, where (2 is now time dependent. We
know it is not far from unity today. However, since n oc 77! in both matter
and radiation epochs we see that 2 was extremely close to unity in the past.
The flatness problem states that such initial conditions are unlikely, unless
there is a mechanism that drives the universe to 2 = 1, in which case it
stays there.

Horizon problem involves CMB in directions in the sky separated by
more than a few degrees. These should not be in causal contact in the
past if one uses standard cosmological expansion, either matter or radiation
domination. However, the uniformity of CMB suggests either something
drove the CMB to the same temperature or it was part of initial conditions.
In the former case these regions must have been in causal contact in the
past.

Inflation suggests a solution by postulating a period of rapid expansion
during which the universe is accelerating. The goal is to make comoving
Hubble length 7! to decrease in time, dp~'/dt < 0. In this case the size of
observable universe decreases with time and after the end of this period the
observable size is in fact much smaller than the size of the causally connected
region. Since

dn~t a

this indeed implies accelerating universe with ¢ > 0. From Friedmann’s
equations (8) we find that this condition gives p+ 3p < 0 or p < —p/3.
So only exotic matter with negative large pressure can lead to inflation.
Fortunately there is no shortage of such matter in the early universe. The
simplest example is a scalar field, which was introduced in §2. One can see
from equations (28) that both energy and pressure have contributions from
kinetic and potential energy, with opposite sign for the latter. So to achieve
P < —p/3 one must have a scalar field with a small kinetic term compared
to the potential term. In other words, the field must be slowly moving in an
external potential, which cannot be close to its zero value.

4.1 Slow-roll parameters

To further describe inflation it is useful to introduce two slow-roll parameters,
e and ¢ (note that here € no longer describes comoving energy as when we
discussed Boltzmann equation). First parameter simply describes deviations
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from the w = —1 case,

ezgﬂ+wL (77)

where w = p/p. Second parameter quantifies the requirement that the field
is slowly rolling, d2¢/dt?> ~ 0. Note that this requirement is in terms of
proper time. When expressed in terms of conformal time it becomes qS ~ nc;'S
and second slow-roll parameter is defined as
s=2 1. (78)
ng

The condition for successful inflation is that both parameters are small com-
pared to unity. When this condition breaks down inflation stops.

We may relate both parameters to the local shape of potential. Small e
means we can Taylor expand w = p/p to obtain w = —1 + ¢2/(a2V) this
leads to

12 47712
. 3¢ _ 3a |4 ’ (79)
202V 18n%a?V
where we used )
g = —a®V' (80)

obtained in the lowest order combining second slow-roll condition (equation
78) and evolution equation 13. In addition, since the energy is dominated
by potential term we can write Friedmann’s equation in the lowest order as

n* = 81Ga*V/3 (81)

(we are ignoring curvature here since inflation will make it negligible). This

gives
1 (V2
=160 () - (%)

To relate § to the potential we take time derivative of equation (80) to
obtain

. 1
¢ = g[—2aQV' +a?V'(1 —€) — a?n V"]
_aQV'(l +¢€) N a*v'v’
3 9n2

(83)

where in the first line we used d(n~!)/dT = n?(1 — ¢) following from second
Friedmann’s equation (8) and w = 2¢/3 — 1. In second line we again used
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equation (80). From the definition of § follows

VII
- 87GV’

d=c¢€ (84)
The two parameters are thus related to the first and second derivative of
V. Since the definition of Planck mass is M EZZ = 87 one can see that the
scale in ¢ over which potential changes must be large in Planck mass units
for inflation to work. Note that this says nothing about the overall energy
scale of inflation potential, which can be well below the Planck scale (in fact
observationally it is required to be small in the simplest inflationary models).

4.2 Perturbations

Perhaps even more important than solution to the flatness and horizon prob-
lem is the ability of inflation to generate perturbations, which could act as
seeds for the structure formation in our universe. The perturbations have
a quantum mechanical origin, but because of the rapid expansion they be-
come classical as they cross the horizon. Once they are outside horizon their
amplitude does not change if appropriate gauge is used.

To demonstrate the statements above one must proceed in several steps.
First one must demonstrate that the curvature perturbation in comoving
gauge indeed remains unchanged outside the horizon regardless of the under-
lying equation of state. Second, one must compute perturbations generated
by quantum fluctuations and evaluate their time evolution. The approach
here is to write the perturbation equation in a harmonic oscillator form,
which we know how to quantize, and then use the solution to the classi-
cal evolution equation to evolve the quantum fluctuations forward in time.
These perturbations actually vanish in comoving gauge, making it inappro-
priate for this purpose, so instead we will calculate them in a spatially flat
gauge and use gauge transformation to obtain curvature perturbation in
comoving gauge. Finally, long after inflation we can make another gauge
transformation and evaluate potential fluctuations in either synchronous or
Newtonian gauge for computational purposes.

4.3 Curvature perturbation

Curvature perturbation  defined in comoving gauge (section 2.5.3) is a
useful quantity because, as shown below, it is constant outside the horizon.
It also relates simply to the Newtonian perturbation ®, which allows one
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to use ¢ to evaluate ® outside the horizon even if the underlying equation
of state changes. To relate the two we first use the gauge transformation
between the Newtonian and comoving density,

5ﬂcom = (SPN - ﬁIUN/k = 6PN + 377(ﬁ + ﬁ)IUN/ka (85)

where the quantities on the left are in comoving gauge and those on the right
in Newtonian gauge. Poisson’s equation in Newtonian gauge gives

(k* — 3K)® = 41Ga*5peom. (86)
Inserting this into Poisson’s equation in comoving gauge leads to
¢ + Nveom/k = P. (87)

But since Hr = 0 in Newtonian gauge veom = vy, which follows from the
gauge transformation in equations (39) and (48). The curvature perturbation
is thus related to @ as
2 n_la(i) + v
k=-————+9® 88

where the latter relation follows from velocity equation (46). As we will show
later outside the horizon ® does not change in adiabatic case in matter and
radiation epochs. In the absence of anisotropic stress we have ® = ¥. Then

¢:3+3w
5+ 3w

¢, (89)

This shows that assuming ( is constant we can evaluate ® for any w. For
example, changing from w = 1/3 to w = 0 from radiation to matter domina-
tion produces a 10% decrease in ® as can easily be verified using the above
equation.
Curvature perturbation ( obeys the evolution equation (49), which in

the absence of curvature and anisotropic stress becomes

: nip

¢=n¢ 517 (90)
where the latter relation follows from Euler’s equation (50) in comoving
gauge. To show that this quantity is constant outside horizon one must
show ¢ < n¢. In the absence of entropy perturbations we can relate pressure
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perturbations to density perturbations through the speed of sound, which is
less than unity. Then

41 _ _népcom _ _an(spcom
(p+p) (p+p)
C R 3 (eky e ek
ArGa?(p+p) 3\ n /) 14w n/) 5+3w’

which is indeed much smaller than n{ outside the horizon, i.e. in the limit
k/n— 0.
As noted above and evident from equation 28 in comoving gauge v —
B = 0 and so d¢ = 0. We must thus use a different gauge to evaluate
d0¢ and then use a gauge transform into the comoving gauge to evaluate
¢. Gauge transformation of scalar field in equation (40) gives T' = d¢/¢,
where §¢ is evaluated in a general (different from comoving) gauge. Gauge
transformation of metric component Hy, (equation 38) gives
Hy 44
=H,+—/— —n—. 92
¢ L+ 3 " p (92)
One can see that the simplest gauge choice to evaluate d¢ is spatially flat
gauge with Hy, = Hp = 0, in which case
o

— %% 93
¢ 77€ZS (93)

where 0¢ is evaluated in spatially flat gauge.

4.4 Quantum fluctuations of scalar field

Equation (53) describes evolution of d¢ in a spatially flat gauge. This equa-
tion can be further simplified in the slow-roll approximation by noting that
all the terms on the right hand side as well as the last term on the left
hand side are of order en?d¢ or dn%d¢ and so small compared to the other
terms on the left hand side. This is because from Einstein’s equations and
the energy-momentum tensor for a scalar field metric perturbations scale as
$6¢, which combined with another ¢ or V' gives rise to en?d¢. Similarly
a’V" term gives rise to en? and én? terms, which again justify neglecting
it in comparison to the other terms on the left hand side. The resulting
equation is

8¢ + 200 + k26¢ = 0. (94)
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This equation can be further simplified by introducing a new variable u =
ad ¢, so that
i+ (k% — 2n%)u = 0. (95)

It is convenient at this point to introduce conformal time relative to the end

T a
F= / ar= [ (96)
Te Qe "7@

Since in the lowest order of slow-roll approximation 7? = 87Ga?V/3 with V

of inflation,

being approximately constant it follows that n/a is approximately constant
and can be taken out of the integral above, so that

-yt (97)

where we ignored the comoving Hubble length at the end of inflation assum-
ing it is small. This leads to

i+ (k2—3)u:0, (98)

7"—2

where the derivative can now be taken with respect to 7, since it differs from
7 only by a constant.

On small scales (k7 > 1) we can drop the last term in equation (98)
giving an equation for a simple harmonic oscillator. We know how to solve
this equation: we first solve the equation classically,

u = wi(7)ag + wi(7)ag, (99)

where on small scales wy, = (2k)~'/2exp(ik+). The full solution is

) 1 _—
— 1 o - 7Z/€’T. 1
we= (1-55) N (100

Quantization changes aj, and a; into d}; and ay, creation and annihilation
operators, which obey the following commutation relations

[a,a)s] = Sk, (. aw] = [af.al.] =0. (101)

Creation and annihilation operators create or destroy a particle in a
given state. The state can be described with the number of particles for
each wavevector k. Annihilation operator acting on the ground state is zero,

ax|0 >=< 0la} = 0. (102)
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As is well known the ground state of the harmonic oscillator system also
has fluctuations. The expectation value for these is

<Olagaf|o > = < 0||wg()ak +wi(7)ag[?|0 >
= Jwg|? < 0laral|0 >= |we|? < O|[ag, a}] + aLax|0 >= |wy|?,
(103)
while if k # k' the expectation value vanishes,
< Olagal, |0 >= 0. (104)
In the limit —k7 ~ k/n — 0 the solution is
B 1 _an
Wk = T 2K3) 127 T (2k3)1/2 (105)
and so from equation (93)
2
__—n
¢ = ) ag (106)

Despite the apparent time dependence we have shown in equation (91) that
¢ does not change in time for k£/n — 0. The spectrum of fluctuations is

13 % < Olagal|o >

3112
BIP = o
4 2
n 2nGn
= < = 1
2a2¢? ea? (107)

where we used 47G¢% = en?.

Variance in curvature is defined as A% = k3|¢|?/2n%. Since H = n/a is
approximately constant during inflation the variance of curvature perturba-
tions is nearly scale invariant. To quantify the departures from the scale
invariance we need to evaluate logarithmic derivative of the amplitude of
perturbations outside the horizon. To do this we use the fact that curvature
perturbation is frozen to a constant value outside horizon. We may thus

evaluate all the quantities at the time of horizon crossing k/n = —k7 = 1.
Logarithmic derivative with respect to wavevector is
d d7 d 1d ¢d
:k<_7> d_14d_+éd (108)
dlnk dk ) jr—_1d7  kdit k¢
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Using relations (80) and (81) this leads to

d V' d
= — —. 1
dlnk 8TGV d¢ (109)
Applying equation (109) to equation (107) and using
2 3
2 7N 4
gives
dIn AZ V'3V av”
¢ —

=ng—1=— _— — = —4e — 24. 111
dink 8rGV ( Vv V’) ‘ (1)

So the deviations from the scale invariance can be expressed in the lowest
order of slow-roll parameters as ns = 1 — 4¢ — 2.

4.5 Gravity wave fluctuations

The calculation for gravity waves (tensor modes) follows the same procedure
as for the scalar modes. Since tensor modes are gauge invariant there are
no gauge ambiguities and one must simply quantize equation (34) in the
absence of a source and curvature. This equation is in fact the same as
equation (94), for which we already know the solution given in equation
(100). The resulting spectrum of fluctuations is
2
A2 = 4G (112)

ma? ’
where we inserted normalization factor (167G)~'/? in the amplitude of tensor
modes to make it consistent with the Einstein-Hilbert action formulation.

Since A,ZL o V the slope of tensor fluctuation spectrum is

dlnA,QL _

VI VI
dink T -

C8tGVV

—2e. (113)

Here again the spectrum is nearly scale invariant if slow-roll conditions are
satisfied.
Finally, the ratio of tensor to scalar amplitude is

A2

—2 = 4e = —2n7. (114)
2

A7
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This is called the consistency relation of inflation and is in principle testable
with CMB if tensor modes are of comparable amplitude to the scalar modes.
We may pursue departures from scale invariance one step further and
investigate deviations from a power law. This will be even smaller, being of
second order in the slow-roll approximation. We need to introduce another
slow-roll parameter &
Vlvlll
S, (115)
(87GV)
which is of the same order as the other two parameters. In terms of these
we find

dns 9 9

Tk — —8¢* — 16ed — 2¢

d'n/T o 2

Tk —4e” — 4ed, (116)

where we used € oc (V//V)? and e—6 o< V"' /V. While the first relation can at
least in principle be tested the second relation is unlikely to be accessible to
observational test given the existing constraints on the amplitude of tensor
modes.

The resulting predictions from the simplest models of inflation are very
simple: inflation predicts nearly scale-free spectrum of initial fluctuations
for both scalar and tensor modes. Because the Fourier modes are indepen-
dent the distribution is gaussian by central limit theorem regardless of the
distribution for each Fourier mode (which is in fact also gaussian). Finally,
since only inflation carries the energy density only curvature perturbations
are generated (there will be no entropy perturbations). After the end of in-
flation other particles will be generated through the process of reheating and
their perturbations will remain adiabatic. This provides a very specific set of
initial conditions, such that all the modes of a given wavelength amplitude
start with the same value. This is a remarkable prediction and leads to the
coherent evolution of structure: all modes with the same amplitude of the
wavevector evolve in the same way while in the linear regime.

5 Solutions for density perturbations

In previous section we derived initial conditions for matter perturbations,
which determine the initial power spectrum. This is however not what is
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observed, because subsequent evolution modifies the mode amplitude as a
function of scale.

To obtain solutions for dark matter evolution we can combine the conti-
nuity and Euler’s equations (47) to obtain

e +nbe = KU — 3nd — 3. (117)

If we further assume anisotropic stress is negligible, which is almost always a
valid approximation except on very large scales where neutrinos make a non-
negligible contribution, we have ¥ = ®, which takes the role of Newtonian
potential. This equation can be solved analytically for two cases of interest,
matter domination and radiation domination. In the first case the source
of potential are CDM fluctuations themselves, while in the second case the
source of potential is coming from photons and can be treated as external if
matter evolution is studied. We discuss both cases next.

5.1 Solutions inside horizon: matter domination

On scales smaller than the Hubble length we can ignore time derivatives of
potential relative to the spatial derivatives. This only works if the solution is
not oscillating and must be justified aposteriori from the obtained solution.
Under this assumption we drop @ and & terms in equation (117). To relate
potential to density perturbation we use Poisson’s equation (46), ignoring
n¥ and K terms in addition to ®. We thus obtain a second order differential
equation,

6m + nd.m = 4GPy a® . (118)

While equation (118) was derived for CDM it can also be used to describe
baryons on large scales and after the recombination, where the pressure
term from baryons and the coupling between baryons and photons can be
neglected. We will denote with §,,, matter perturbation when it applies both
to CDM and baryons.

The general solution to equation (117) consists of a growing and decaying
solutions. It is instructive to look at the solutions in some limits. In matter
domination for Q,,, = 1 we have a oc 72 from equations (8) and so 47Gp,,a? =
6/72. Setting the solution as a power law § = 7* one finds a = 2, —3. This
means that the growing mode solution grows as a scale factor,

bmoxm?oxa Q=1 (119)
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From Poisson’s equation (46) one finds that gravitational potential remains
constant on small scales, ® = const.

In a universe filled with a cosmological constant, curvature or dark en-
ergy the growth will be slowed down relative to 2,,, = 1. The effect is only
important at late times when the additional component can be dynamically
important. No analytic solutions exist in this case, but a very good approx-
imation to the growth suppression relative to Q,, = 1 case is [16]

5Q) 50
5(Q2=1) 2[3,{7—QA+1+%Qm]'

(120)

This and other solutions such as the one for dark energy with varying equa-
tion of state can be obtained numerically from CMBFAST code.

5.2 Solutions inside horizon: radiation domination

In radiation era the photons (and neutrinos, which we ignore here) are the
dominant component to the energy density. We show first that because of
pressure effects photon perturbations do not grow. To show this one takes
pressure equation of Einstein’s equations (46) and subtracts it from one third
of the density equation. Since dp = dpp/p = dp/3 this gives the following
equation,

k)2

b+ and + 2+ 297°] @ = 5 0. (121)

We have again ignored the curvature terms. In radiation epoch one has
a « 7, from which follows n = 1/7 and so the last term on the left hand side
vanishes. Then the equation is

. 4. k2
d+-d=-"129 (122)
T 3
and has the growing solution
sinz cosz
@:3@,-( e ) (123)

where z = k7/4/3 and the solution was normalized to the initial potential
value ®;. As expected the photon pressure causes the potential to oscillate
and decay away as (kc,7)~2 inside the horizon, with ¢; = 3~'/2. While
the inclusion of baryons prior to recombination complicates the equations
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and changes the sound speed somewhat this conclusion does not change
significantly.

To solve for CDM we take equation (117) and evaluate it in radiation
epoch,

.. 1. . .
S + =0 = k2T — 3nd — 30. (124)
T

The full solution consists of a homogeneous solution (i.e. solution to the
above equation without the source) and a particular solution, which can be
written as an integral of Green’s function over the source term. The latter
decays away on small scales and so we can ignore the particular solution.
One is left with the homogeneous solution, which has the growing mode

de = C + In(7), (125)

where C is a constant. So the CDM density grows only logarithmically inside
the horizon in radiation era. This has a simple physical interpretation. Prior
to horizon crossing both radiation and CDM evolve similarly and acquire a
velocity term as they cross the horizon. After that CDM decouples from
radiation and its velocity decays as 7! due to the Hubble drag (damping
term). This gives rise to the logarithmic growth of density perturbation.

5.3 Solutions outside horizon

Prior to horizon crossing the solutions depend on the adopted gauge. As
above we will use equations in Newtonian gauge, but we emphasize that the
solutions can differ drastically if a different gauge is adopted. For example,
while in Newtonian gauge adopted here density perturbations do not grow
outside horizon, they in fact do grow in synchronous and conformal gauge.
If we ignore anisotropic stress (making ® = V), spatial derivatives and
curvature K then we again combine first and third of Einstein’s equations
(46) to obtain

B+ [3n(1+ )|+ [20+ 02 (1 + 3e2)] = 2772 (69 = 2 urp] , (126)

where effective matter-radiation sound speed is
1
2
= ) 127
Comr = 371 + 3y/4] (127)

Here

B . Q 1/2
y = P__m = =2+ 2z, x = = Hyr, (128)
r Geq daeq
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and a4 is expansion factor when matter and radiation densities are equal.
The right-hand side of equation (126) is proportional to specific entropy
fluctuation o = %(57« — O,

dp — cimrép = ﬁcimra. (129)

If we restrict ourselves to the adiabatic initial conditions where entropy fluc-
tuations vanish initially they cannot be generated on scales outside the hori-
zon. In that case we can solve equation (126) analytically obtaining the
growing and decaying solution [12]

2 8 16z 14z
y=1l+—gstaog @ = .

9y 9y* 9y’
In the radiation era (y < 1) the solution is &, = 10/9(1 — y/16) = &;,
where ®; is the initial perturbation, while in the matter era &, = 1. In

. (130)

general thus
9

D= E(I)+(I>Z~. (131)
One can see that on scales outside horizon the gravitational potential ® does
not change both in radiation and in matter epochs, but between the two it
changes the amplitude by 10% (this gives rise to so called early integrated
Sachs-Wolfe effect in CMB). This is the same result we obtained from the
constancy of curvature (, but here we also solved for how @ is changing in
time from radiation to matter domination.
Density perturbations are related to potential ® through equation Pois-
son’s equation (46). On large scales one can ignore spatial derivatives and
curvature terms to obtain

§=—2(d+ d/n). (132)
In the matter and radiation domination limits this gives § = —2®. Since
0~ + Y
§=-1L—2° 133
1+y (133)
one finds . = —3®/2 in radiation era and 6. = —2® in the matter era.

Deunsity perturbations are therefore also constant on large scales. We stress
again that this is a gauge dependent statement. For example, in synchronous
and conformal gauge density perturbations grow even outside horizon. Of
course, for any quantity that is directly observable such as CMB anisotropies
the predictions are independent of the gauge choice.
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5.4 Transfer functions

Any initial power spectrum of density perturbations gets modified because
of the different growth of perturbations in different regimes. This can be
conveniently expressed in terms of the transfer function, which is defined as
how much ¢ of a given mode grows (or decays) relative to initial value. For
convenience this is divided by k? and normalized relative to k& = k; mode,
where k;7p < 1,

_ k26(k,70)0(k = ki, ;)
- k26(k,7i)0(k = kiyTo)’
so that the transfer function on large scales is unity, T'(k = k;) = 1. Today ¢

is dominated by CDM, § ~ ., but it also has contributions from baryons and
massive neutrinos, so one should view is as an average over all the species

T (k)

(134)

weighted by their mean density as in equation 133. To obtain the processed
power spectrum one multiplies the square of the transfer function with the
primordial power spectrum P(k) = P;(k)T?(k).

Outside the horizon the modes do not grow in both matter and radiation
era and ¢, is constant. When the modes enter horizon in radiation era the
density only grows logarithmically until the matter era as discussed above.
If they enter in the matter era they begin to grow immediately as 72. By
definition the modes enter the horizon when k ~ 771, so the growth is just
proportional to k? as long as the mode entered in the matter era. Since
in our definition of transfer function we divide by k? the transfer function
remains unity for all the modes entering horizon after the matter-radiation
equality. The transfer function for modes entering prior to that will suffer
suppression in the transfer function which scales as (k7eq) ~2[In(k7eq) + 1] on
small scales, where 7, is the conformal time at matter-radiation equality.

The most important parameter that determines the transfer function
shape is 7¢4, which depends on ),,,h when the power spectrum is expressed
against k/h. For CDM models the asymptotic slope of the transfer function
is the same regardless of the value of cosmological parameters. Below we
discuss some of the other parameters which can affect the transfer function.

5.5 Massive neutrinos: mixed dark matter

So far we have ignored neutrinos in our discussion. The corresponding equa-
tions for massless neutrinos have been presented above. They contribute to
the relativistic energy density and create anisotropic stress on large scales,
but do not qualitatively change the results. Massive neutrinos however can
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have a more important effect on the transfer function. Their mass is related
to the density parameter via

Qp2_ M 10.75 gx

— 135
94eV g, 1.5’ (135)

where g, is effective number of relativistic species at decoupling and gx the
number of spin degrees of freedom, which is 1.5 for 2-component fermions.
At the time of decoupling such neutrinos are still relativistic and become
nonrelativistic around the epoch of matter-radiation equality for Q, ~ 1,
assuming standard value of g.. Free streaming neutrinos can erase pertur-
bations on scales below the free-streaming distance, defined as the distance
at which a neutrino of a given rms velocity vy, can still escape against gravity.
The velocity is ¢ when neutrinos are relativistic and drops as 1/a afterwards
because of momentum conservation,

kT

v

Vgh ~ = 50(1 + 2)(m, /eV) ™ 'km/s. (136)
Since the Hubble time is proportional to ty ~ [(1 + 2)Qm] Y2H, ' the
product of the two gives an estimate of the free-streaming length. The
resulting comoving free-streaming wavevector is

kips = 0.4(Qmh2)/2(1 + z)—1/2$—{’/Mpc*1. (137)

For a given k neutrino perturbations J, are suppressed while k& > ky4(a).
After that they can grow again and catch up with cold dark matter pertur-
bations d.. This happens on large scales and as a consequence the transfer
function is the same as in CDM models. When neutrinos are dynamically
important the damping also affects §., decreasing its amplitude on small
scales compared to pure CDM models.

Recent Super-Kamionkande results find p — 7 neutrino mass squared
difference of 3 x 1072eV? [10]. In the most conservative scenario this gives
one neutrino family with m, ~ 0.06eV or Q, ~ 0.15%. Since only the mass
difference is measured it is in principle possible that the total density of
neutrinos is larger than that.

While small, this neutrino mass nevertheless leaves potentially observable
effects on the dark matter power spectrum. It changes the transfer function
by suppressing the power below the free-streaming length. Because of small
masses this suppression is on relatively large scales, where complicating is-
sues of bias are potentially less problematic. There is hope one can measure
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this directly from the galaxy clustering data in surveys such as SDSS with an
accuracy of 0.1eV [9]. The signature imprinted by neutrinos is quite unique
and it is unlikely to be mimicked by other cosmological parameters.

Second possibility to detect massive neutrinos is through their suppres-
sion of the growth rate below the free-streaming length. If one normalizes
the fluctuations from CMB (at z ~ 1000) one finds that the small scale nor-
malization of the dark matter power spectrum is affected by neutrinos. This
is often parametrized with og, denoting rms mass fluctuations in spheres
of 8~ 'Mpc radius. In principle og can be a well measured number: the
abundance of clusters is very sensitive to this number and can change ex-
ponentially with it. Current estimates give 0g€2 %% ~ 0.5 + 0.1, where the
errors are dominated by systematics, but a significant improvement could
be possible in the future. Second possibility to measure og is by measur-
ing mass fluctuations directly using weak gravitational lensing and there are
significant observational efforts underway to measure this. The effect on og
is rather small and addition of 0.06eV neutrino changes its value by 1.5% if
normalized to COBE. Moreover, this effect is degenerate with many other
effects that also change the growth rate, such as a change in equation of
state. They can only be distinguished if additional information is used, such
as one from supernovae or CMB. It remains to be seen how accurately can
one ultimately extract neutrino mass from such observations, but it is clear
that dark matter clustering provides one of the most stringent observational
tests of neutrino mass.

5.6 Warm dark matter

The scenario above applies to the neutrinos with standard decoupling tem-
perature T ~ MeV, where g, = 10.75. Recently there has been a lot of
attention devoted to warm dark matter, in which the decoupling occurs at
a higher energy when g, > 100. It is in fact not clear how many degrees of
freedom exist at higher temperatures. Standard model predicts g, ~ 100,
while the supersymmetric extension doubles that to g, ~ 200. This is how-
ever still not sufficient for currently popular models, which require mass of
WDM candidate around 1keV, implying g, ~ 800 for ©,h? ~ 0.3. Additional
degrees of freedom must therefore be postulated. Alternative possibility is
that entropy is released after the decoupling of warm dark matter and before
the nucleosynthesis epoch. Another interesting option is that ordinary neu-
trinos could have a lower density because of low reheating temperature after
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inflation. Whatever the mechanism, one would like to have a suppression
of power on scales below 1Mpc. If one assumes the particle mass of order
1keV one has the free-streaming wavevector of k20 ~ hMpc~!. On large
scales the transfer functions are the same as CDM, while on small scales
they lead to complete suppression of power below the free-streaming length,
just like in the case of ordinary massive neutrinos, except that in this case
the free-streaming length is significantly shorter.

5.7 Baryons

Prior to decoupling baryons are tightly coupled with photons and oscillate
for modes inside the horizon. After decoupling their sound speed drops sig-
nificantly and the Thomson scattering term in equation 55 can be dropped.
If one combines continuity and Euler’s equations into a single second order
equation and subtracts it from the same equation for CDM one finds,

Abc + 2"’/Abc =0, (138)

where Ay, = 0, — d.. This equation is valid on large scales, where baryons
pressure can be neglected. The growing mode solution for this equation is a
constant, so the difference between baryon and CDM density perturbation
does not change in time. However, the CDM density perturbation grows as
8 oc 72 in the matter domination, so the relative difference between baryon
and CDM density contrast decreases as 7~ 2. So 8 catches up with J, after
decoupling and then continues to grow at an equal rate.

We have assumed that CDM grows following the solution to equation 118.
This is valid if CDM is the dominant component in the matter epoch. If
baryon density is not negligible compared to CDM density then baryons will
also contribute to the gravitational potential from Poisson’s equation (46).
But baryons after decoupling still reflects acoustic oscillations from the epoch
before decoupling, when they follow photon oscillations (equation 123). As
a result the total potential will reflect these oscillations and CDM evolution
will be modified because of this. An increase in baryon density leads to
acoustic oscillations in the transfer function. Second effect of baryons is that
they suppress the transfer function on small scales. This is again expected,
since baryons are damped prior to decoupling on small scales and if they
are dynamically important they lead to a suppression of the gravitational
potential. The latter is the source for CDM density fluctuations, which are
thus suppressed as well.



Lectures on Dark Matter 71

6 Nonlinear evolution and bias

Determining the linear power spectrum of dark matter is one of the main
goals of modern cosmology. There are several complications that may pre-
vent us at present from reaching this goal. First, on small scales the linear
power spectrum is modified by nonlinear evolution which enhances its am-
plitude over the linear spectrum. It is important to understand this process,
so that one can predict the relation between the two. This is necessary both
to reconstruct the linear spectrum from a measured nonlinear one and to
verify whether there are other mechanisms besides gravity that modify the
clustering of dark matter on small scales. Second, it is difficult to observe
correlations in dark matter directly. Direct tracers such as peculiar velocity
flows or weak lensing still suffer from low statistics and poorly understood
systematics. Instead it is much easier to observe correlations between galax-
ies or correlations between galaxies and dark matter. While these are related
to the dark matter correlations, the relation may not be simple.

A simple picture which incorporates both of these effects has been de-
veloped recently [17]. It sheds some light on what is or is not possible to
extract from galaxy and dark matter clustering in the nonlinear regime. The
picture is based on the Press & Schechter model [18], which assumes that at
any given time all the matter in the universe is divided into virialized ha-
los. These halos are correlated and have some internal density profile, which
can be a function of halo mass. By specifying the halo mass function, their
clustering strength and the halo profile one can determine the dark matter
correlation function. By additionally modelling the number of galaxies in-
side the dark matter halo as a function of halo mass one can extend this
picture to the galaxy clustering. It provides a natural explanation for why
is galaxy correlation function a power law over a wide range of scales and
how this ties with the other observations of large scale structure.

The correlation function consists of two terms. On large scales the halos
are correlated with each other. One can assume the halo-halo correlation
function follows the linear correlation function. Its amplitude depends on
the bias for each halo. Halos more massive than the nonlinear mass scale
M, are more strongly clustered than the matter, while those with masses
below M, are less strongly clustered than the matter. Since halos are not
pointlike one needs to convolve the halo-halo correlation function with the
halo profiles of both halos to obtain the correlation function.

In addition to the halo-halo correlation term there are also correlations
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between dark matter particles within the same halo. These are also de-
termined by mass function and dark matter profile and are expected to
dominate on small scales. The main difference between these two terms is
that there is an additional mass weighting for the latter. This makes the
dominant contribution to this term to come from the higher mass halos rel-
ative to the halo-halo term. The total power spectrum is the sum of the
two contributions. Figure 1 shows the individual contributions and the sum
in comparison to the linear power spectrum and the nonlinear predictions,
which are in agreement with N-body simulations. The model is in excellent
agreement with simulation results, indicating that despite its simplicity it
includes most of the physics relevant for nonlinear clustering of dark matter.

One can extend this model to include galaxy clustering. Here again one
assumes all the galaxies form in halos, which is a reasonable assumption given
that only very dense environments, which have undergone nonlinear collapse,
allow the gas to cool and to form stars. The key new parameters that need
to be introduced are the mean number of galaxies per halo as a function of
halo mass and the mean pair weighted number of galaxies per halo. One
must further assume that each halo has one galaxy at its center, which was
a result of the gas cooling in this halo, while the rest of the galaxies in the
halos are distributed in the same way as the dark matter. This is only the
simplest assumption and one can easily generalize it to profiles that differ
from the dark matter. If only galaxies brighter than a certain luminosity
are counted then galaxies in small halos will not be included in the sample.
This is in fact one of the reasons why galaxy clustering differs from that
of the dark matter on small scales. Second comes from the fact that there
is one galaxy which is at the center of the halo and the pair-weighting is
enhanced because of that, leading to stronger correlations. Third reason is
that number of galaxies inside the halo does not scale linearly with halo
mass. Larger halos have higher temperatures and gas takes longer to cool.
Thus on average there will be fewer galaxies of a given luminosity formed in
such a halo. This also enhances the correlations on small scales, since there
will be more galaxies in small halos relative to dark matter. The resulting
predictions are shown in figure 2, showing that the predicted model is in
good agreement with the data and shows significant differences from the
dark matter power spectrum on small scales.
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Figure 1: Comparison between the power spectrum predicted from the halo model
(P” 4 P"" solid) and the nonlinear power spectrum for ACDM model (P™, dash-dotted).
Also shown are the linear power spectrum (P“", thin solid) and the two individual contri-
butions, single halo P¥ and halo-halo P*. Top plot is for dark matter profile with inner
slope @ = —1, while bottom is for « = —1.5. Both profiles give an excellent fit to the
nonlinear power spectrum.
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Figure 2: Comparison between galaxy and dark matter power spectrum predictions for
galaxies selected by absolute magnitude Mp < —19.5. Also shown is the measured power
spectrum of galaxies. On large scales dark matter and galaxy spectra agree, while on
small scales galaxy power spectrum exceeds that of dark matter, in agreement with the
observations.
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7 Conclusions

In these lectures we have reviewed the physics of dark matter, with the
emphasis on their clustering properties. We have limited the discussion
to the simplest class of models produced by inflation, for which the initial
fluctuations are gaussian. In this case the linear power spectrum contains all
the information on the underlying cosmology and its determination becomes
the main goal of observational studies.

In general there are two ways to extract the cosmological information
from the dark matter clustering properties. One is to obtain the time de-
pendence of the amplitude of the power spectrum. This can be related to the
growth factor, which as discussed above is a function of €2,,, Q), curvature,
dark energy, massive neutrinos etc. There are several probes of the dark
matter clustering at high redshift, which combined with the local clustering
amplitude provide constraints on the clustering evolution. Among these are
CMB, providing constraints at z ~ 1100, Ly-a forest providing constraints
at z ~ 3, weak lensing, which probes structure around z ~ 0.5 — 1.5, galaxy
clustering, which can be observed for z < 4 and quasar clustering spanning
a similar range in z. Other probes such as X-ray, Sunyaev-Zeldovich or far
infra-red background are also sensitive to the high redshift clustering.

Second method is through the shape of the power spectrum, which is also
affected by a number of cosmological parameters, such as matter-radiation
equality, massive neutrinos, baryon to CDM ratio, primordial spectrum of
fluctuations etc. The shape can be obtained from the same probes as men-
tioned above. Even more important in this case are galaxy surveys, both
existing such as PSCz and upcoming such as 2dF and SDSS. They probe
mostly local universe and so are not very sensitive to the evolution of the
growth factor. On the other hand, because of the large number of galaxies
measured, they achieve a much more accurate determination of the galaxy
power spectrum than probes at a higher redshift. An important issue we
briefly discussed in §6 is bias, which relates galaxy clustering to that of dark
matter. Although biasing can be complicated on small scales it is likely to
be constant on large scales, where many of the most important cosmolog-
ical parameter constraints are coming from. Alternative approach, which
does not require knowledge of bias, is weak lensing. While this approach
will not achieve sensitivities of galaxy surveys it can provide an independent
measurement of the dark matter power spectrum and should serve as an
important check of the different systematics for the two approaches.
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Although we only discussed dark matter clustering here the constraints
that can be obtained from it can be significantly enhanced if additional ob-
servations are included. Most important among these is CMB, which probes
much of the same physics at discussed here, but measures it at z ~ 1100.
Other important constraints will come from supernovae, measuring redshift-
luminosity distance relation and from direct Hubble constant determination
using a variety of techniques. This should enable one to extract neutrino
mass with an accuracy of 0.1eV, equation of state with an accuracy of a few
percent, determine primordial slope and amplitude of the spectrum to a few
percent, test deviations from the primordial power law, place very accurate
limits on dark matter density, test nucleosynthesis predictions for baryon
density etc. Dark matter clustering measurements are entering high preci-
sion era and theoretical understanding of the physics behind it is needed if
we are to extract all the information from it. These lectures should hopefully
provide, with sufficient detail, the current theoretical understanding of the
physics behind the dark matter clustering, which should help one achieve
this goal.
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