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ABSTRACT

We formulate a functional approach to scalar quantum field theory in n+1
dimensional de Sitter spacetime and solve the functional Schrddinger equation
for the conformally and minimally coupled scalar fields in both the k=0 and
k=1 gauges. We show that there is a natural initial condition, the requirement
that the field energy remain finite as the scale factor a becomes small, which
specifies a unique, time-dependent, de Sitter vacuum state. This initial condition
is closely related to Hawking’s prescription of including in the functional integral
only those field configurations which are regular on the Euclidean section. The
Green’s functions constructed using this initial condition are explicitly shown to
be the analytic continuation of those derived using the Euclidean path integral
formalism and the regularity (boundary) condition. These Green’s functions are
used to study the Hawking effect and the restoration of continuous symmetries. In
particular we study the restoration of a broken O(2) symmetry of a ®* theory. We
argue that spontaneously broken continuous symmetries are always dynamically

restored in de Sitter spacetime.
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1. Introduction

Quantum field theory in nontrivial backgrounds has served as a particularly
useful semiclassical approximation to the quantum theory of gravity. Scalar field
theory in de Sitter
i)ééausé dé Sitter space is a space of high symmetry, and hence exact solutions
for the free field theory can be written down — but also because it is a space
of constant nonzero curvature, and thus field theory in a de Sitter background
is not a trivial rewriting of Minkowski field theory. In this paper we will study

scalar quantum field theory in a de Sitter background in some detail. We shall

be particularly interested in the vacuum state.

It has been suggested that the vacuum of field theory in de Sitter space de-
pends on a parameter whose value is determined by an “extra” requirernent.1 We
will show that this is the case, for each mode of the vacuum, in both de Sitter
and Minkowskiv space only if no boundary/initial condition is used to specify the
- state. If an initial condition is used then the vacuum states are completely deter-
mined up to an arbitrary, unphysical phase. We will also suggest a particularly

natural initial condition.

A recurring theme in attempts to study the quantization of gravity (partic-
ularly at the semiclassical level) has been the connection between quantum field
theory in certain nontrivial gravitational backgrounds and at finite temperature.
This connection is suggested by the periodicity in imaginary time of the Green’s
function in the gravitational background, or by; the relation, usually ascribed to
systems in thermal equilibrium, satisfied by the Bogoliubov coefficients between

basis states at different times. The archetypical example of this phenomenon is

the thermal spectrum of Hawlfing radiation found when scalar quantum field the-
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ory is studied in the background of a Schwarzschild black hole.? Field theory in
de Sitter space is another system which exhibits similar behavior.? Of course, any
semiclassical theory—i.e., a quantum field interacting with a classical source—
will have inconsistencies, and the ultimate explanatien ef this effect will proba-
“bly require some understanding of the quantum theory of gravity. However, its
importance should not be understated, as this has led Hawking to suggest that
quantum mechanics might need to be modified if we want to quantize gravi'cy."5
We shall analyze the Hawking effect in de Sitter space and extend the DeWitt-
Unruh construct of a particle detector. Motivated by the analogy between non-
trivial backgrounds and finite temperature, we study symmetry restoration in de
Sitter space. Surprisingly, we find that spontaneously broken continuous symme-
tries are dynamically restored —in any number of spacetime dimensions, leading

us to believe that this analogy may not be quite complete.

De Sitter space has recently figured prominently in the application of field
theory to the early universe.® Banks, Fischler and Susskind’ have perturbatively
solved the Wheeler-DeWitt equation for the inflationary universe. They have
found that to the lowest order in which the matter (scalar) field enters the cal-
-culation, the wavefunction of the universe factorizes into a part that describes
the gravitational dynamics, and a part that describes the matter dynamics; the
matter part is ekactly the same as the wavefunction of a scalar field propagating
in a de Sitter background. So, at least to this order, the semiclassical approxi-
mation of quantum field theory in a nontrivial background seems to be a good

approximation to the complete theory.

In Section 2, we review the de Sitter solution of the n+1 dimensional Ein-

stein equations. In Section 3, we develop the functional Schrédinger approach
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to field theory by analyzing the conformally coupled scalar field in spatially flat
(k=0) coordinates; our analysis is semiclassical in that the dynamics of the back-
ground metric are predetermined. We calculate the Feynman Green’s function
and use it in Section 4 to analyze the Hawking effect in n+1 dimensional de Sit-

ter spacetime by considering a conformally coupled écalar field interacting with
a comoving detector. We establish a criterion by which one can decide if a given
transition probability is thermal. In Section 5, we discuss the minimally cou-
pled scalar field in k=0 de Sitter spacetime. We solve the functional Schrodinger
equation in n+1 dimensions for the vacuum wavefunctional and calculate the
Green’s function. We analyze the 3+1 dimensional case in some detail. We note
that the equal time Green’s function is time dependent; in particular, the coinci-
dence limit of the massless Green’s function depends linearly on time. We show
that the massless Green’s fﬁnction ——in any number of dimensions—depends log-
arithmically on the separation (for large physical separation). This behavior is
analogous to that of the scalar field Green’s function in flat spacetime in 1+1
dimensions;8 thus it suggests that it is impossible to break a continuous sym-
metry globally in n+1 dimensional de Sitter spacetime. In Sections 6 and 7, we
repeat the above analysis for a scalar field in k=+1 de Sitter coordinates. In
Section 8, we evaluate the Green’s functions using the path integral formalism
with the boundary condition of Hawking, t.e., integrating over those field con-
figurations which are regular on the Euclidean section of n+1 dimensional de
Sitter space (in k=41 coordinates), an n+1 dimensional sphere. In Section 9 we
discuss how the requirements of finiteness of the field energy as the scale factor

&= 0 and that of regularity on the Euclidean section might be considered to be

different aspects of the same “boundary” condition that uniquely specifies the



vacuum wavefunctional, in k=+1 coordinates. We analyze ;ymmetry restoration
in more detail in Section 10, where we compute the Gaussian fluctuations about
a state of broken U(1) symmetry and show that these fluctuations restore the
symmetry. However, the correlations die out very slowly, as an inverse power of
proper distance ra(t), where r is coordinate distance. Physically, this calculation
suggests that the scalar field expectation value wanders slowly as a function of
position on a scale set by the scale factor. A local observer would always claim
to be in a broken symmetry phase of the theory. Although we only exhibit ex-
plicit solutions in k=+1 and k=0 coordinates, we expect this phenomenon to be

coordinate independent.

The Appendices contain technical details of the calculation. In Appendix E
we examine the behavior of the equal time Green’s function of the minimally
coupled scalar field for large and small spatial separation. We see that as the
mass of the field goes to zero, there is an infinite contribution which appears both
in the infrared and the ultraviolet and can be interpreted as being the zero mode

on the n-sphere.

2. Technical Preliminaries

De Sitter spacetime is the unique, maximally symmetric, negative spacetime
curvature (s.e. positive Ricci scalar) solution to Einstein’s equations with a cos-
mological constant and without matter. To solve Einstein’s equations we need to
make a choice of gauge. The conventional choice is the synchronous gauge where

the metric is taken to be of the form:

B (1 0 ) 21)
=0 —a2(t)g, () o '
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(Greek indices assume values from O to n, Latin indices V-from 1 ton). The
requirements of spatial homogeneity and isotropy restrict Z]’;_,(x‘) to be the metric
for an n-dimensional maximally symmetric space. We can then reduce Einstein’s
equations to an equation of evolution for the scale factor a(t), which for an

empty, spatially homogeneous and isotropic universe with a cosmological constant

becomes:

(6)? = =k — ka? (2.2)

where k is the sign of the spatial curvature, which can assume the values +1
or 0, and « is the constant spacetime curvature, to which we might assign the
values +h? or 0; h is a real constant. x is related to the Ricci scalar by k =
—R/n(n+1). De Sitter spacetime is the (essentially unique) k = —h? solution of
this evolution equ:«m:ion.9 It is conventionally viewed as being an n+1 dimensional
hyperboloid embedded in n+2 dimensional Minkowski space.10 As is well-known,
there is still some “gauge” freedom —i.e. different ways of aligning the de Sitter
time axis with the embedding Minkowski space time axis. This exhibits itself in
three different “de Sitter” solutions which correspond to three different ways of
laying a coordinate system on the hyperboloid (i.e., three different wéys of slicing
spacetime into space and time).g'lo These form one parameter families. There
is also a static de Sitter coordinate system. We list the solutions of (2.2) which

have real Lorentzian sections.



k= —h? k=0 Kk = +h?

k=0 etht 1 —
de Sitter Minkowski
k=41 cosh(ht)/h — —

de Sitter — Lanczos

k=-1 sinh(ht) /h t sin(ht)/h

de Sitter — hyperbolic Minkowski — hyperbolic  Anti de Sitter

We first consider the mathematically simplest case: the solution correspond-
ing to k=0 in which the spatial hypersurfaces are flat. This allows us to use
a Fourier expansion as opposed to an expansion in spherical harmonics. The
scale factor is then of the form a(t) = e*?. We examine the expanding solution;
some remarks about the contracting solution will be made later on. In these

coordinates, the metric becomes
diag (1, —e2*6;;) . (2.3)
which is not static; also, the coordinate system has a horizon and only covers

half the hyperbolc')id.g’10 The Hubble constant H = a/a = h. We can introduce

a new time variable, conformal time

t=—-——=- (2.4)

which puts the metric in a conformally flat form: g, = (1/h* ?)n,, (¢ runs from
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—oo in the far past to O in the far future). For the contractihg solution we define

-~ ht 1
t. =

h ha(t)

(2.5)

sot, € [0,00] and H = a/a = —h.

When the metric is of the form (2.3), the embedding space coordinates are:

__sinh(ht)  h 4 4
z0= T+ 2 oMz
2y = ehta:,- (2'6)

cosh(ht h .
Z2n41 ——h—(—z - 5 eht|xlz.

The distance between two points on the hyperboloid is the square root of:

h(t+t') ,
ot = ¢ - [(e—ht —eht)2 K (E ~ 5:)2]
. (2.7)
= o [T - - 27

The geodesics in de Sitter spacetime are the intersections of the hyperboloid
with planes through the origin. The de Sitter group in n+1 dimensions is just the
homogeneous Lorentz group in n+2 dimensions SO(n+1,1), .e., those Lorentz
transformations in the n+2 dimensional Minkowski embedding space which do
not move the hyperboloid around. The group SO(n+1,1) has (n+2)(n+1)/2
generators which correspond to the following symmetries of the‘lir'le element: n

spatial translations, 1 dilatation, n(n-1)/2 spatial rotations and n boosts.

— We then consider the de Sitter solution in the gauge corresponding to k=+1

(Lanczos). The spatial hypersurfaces are now n-spheres; hence we will have



to expand in generalized spherical harmonics. The scale factor is of the form
a(t) = cosh(ht)/h, so de Sitter space is an n-sphere, of radius a(t), that first
contracts and then expands; the Hubble “constant” H = a/a = htanh(ht). In

these coordinates the metric is:

- T, ( _coshz(ht)

_ (1. sin?8
9 h2 \

a
9 Ol

{9 )
n (4:9)

(1 «in2 g _(H,\\\\
\L, Dilil n.—l\ l},}

where 6, € [0,27),0; € [0,7)¢ # 1. This coordinate system covers the hyper-

boloid.*® Conformal time can be defined by:
sec’t = cosh®(ht) = h2a?; (2.9)

it assumes values from —7/2 to n/2. The metric is then in the conformally flat

form

sec?t . . 2 . 9
?——dxag (1, —(1, sin® 0, (1, sin® 1 (- +)))) - (2.10)

When the metric is of the form (2.8), the embedding space coordinates are

given by:
2 = = sinh(ht)
0= sin
1
2= cosh(ht) cos(6y)

(2.11)

1 .
%=y cosh(ht) sin(0y) sin(6p—1) - - - sin(fp42—¢) cos(0ni1-4)

1
i1 = 7 cosh(ht) sin(8y) sin(8,—1) - - -sin(f;) sin(6,) .
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The distance between two points 1, )’ is the square root of:

~ 1 /1 2\ 1 /1. T - (RS A YR A N AY a
2 _ 2cosh(ht) cosh(ht') [ 1+ sinh(ht)sinh(ht’)
7= h? l .cosh(ht) cosh{ht’) +cos 'YJ
(2.12)
2 A~ ~ -
= ~ ~ [— cos(t —t') + cos
h?cos(t) cos(t') [ ( ) ]

where 7 is the angle between Q2 and (¥, given in 2+1 dimensions (for example)

by the familiar formula

cos~y = cos 3 cos 05 + sin By sin b1 cos(f; — 0). (2.13)

In this (k=+1) gauge, de Sitter space has a Euclidean extension in which
the metric is definite. It is convenient to implement this analytic continuation

by introducing the periodic real coordinate 6,41, with period = (see Figure 3),

defined by

Opi1 =tp = iht + g + mm, (2.14)

where tg is Euclidean “time” and m an integer. In these coordinates the metric

is:

—7;15 diag (1, sin? 0,41(1, sin® 0,(1, sin® 6,1 (---)))) = ‘,;15 s (2.15)

where S,(,ZH) is the metric on §("*1) the n+1 dimensional unit sphere. The

embedding space coordinates z,g are given by (2.11) with (sinh(ht),cosh(ht))

replaced by (¢cosfp41,5in6,41) and zp = 1zpg. The square of the distance be-
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tween two points (g, %, becomes:

' 2
ok = Y [1 — cosYn+1] (2.16)

where:

COSYn41 = €08 Onyycosfy, 1 +sinbpiysind),; cosy. (2.17)

An implicit assumption of all of our calculations is that the scalar field’s
contribution to the stress energy can be" neglected as compared to the contribution
from the .cosmological constant. In other words, we assume that the addition of
a scalar field (to de Sitter spacetime) does not radically modify the background

geometry.

3. The Spatially Flat Metric: A. The Conformally Coupled Field

De Sitter spacetime is conformally flat, so a suitably rescaled, conformally
coupled scalar field does not recognize as special the length scale set by the cur-
vature of the épacetime in which it lives (this rescaling symmetry is actually
broken by the conformal anomaly but this is not relevant at the level to which
we calculate). It is thus a trivial matter of rescaling variables to get the de Sit-
ter two-point functions from the corresponding Minkowski two-point functions.
Because this case is simple, though, it is instructive to use it as a first example
of our more generally applicable methods. In this section we will solve the func-
tional Schrodinger equation for the evolution of a conformally coupled field; the

resulting wavefunction will provide the Green’s function of this field.

" We shall deal with the massless scalar field so that the equation of motion is

conformally invariant. The solution of the massive conformally coupled case can
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be obtained from that of the massive minimally coupled case, solved in Section
5, by means of a suitable redefinition of the mass. The action for the massless

case is:
S = / dt d"s L(z) = / dt d" \/m% s 8,6* 6.4 —¢rp?| (D)

where [(z) is the Lagrangian density, ¢(z) is a complex scalar field, g,, =

diag(1, —a?(t)é;;), a(t) = e, and

¢ (n=1)

o (3.2)

to make the resulting Klein-Gordon equation conformally invariant. In de Sitter

space we have R = n(n + 1)h%. Then the action becomes:

a® . ah—? a®
S = /dt d"z [_2-|¢12 - _2_1v¢|2 -5 -1+ 1)h2|¢12] : (3.3)

We can rewrite this in terms of a dimensionless field x = o ¢:

(2 2 "
S =/dtd":z: [algl - lv;il } (3.4)

where we have integrated by parts once and dropped a surface term (this affects
only the phase of the resulting Schrédinger wavefunction). Let us now introduce

conformal time t (see (2.4)), by df = a~1(t) dt; then:

S = /d?d"z [LXZE - WX'Z] (3.5)

2

where the dot now means a derivative with respect to conformal time.
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Fourier expanding,

X(@ = [ g x(Bes, (3.6)

we can rewrite the action as: - - -

o [ d% 7 % [ XEX(=F) _ K x(k)x(=F)
= /dt e / [ X ) } (3.7)

or in terms of the real and imaginary parts of x (= x1 + ¢x2),

S = /dt 'k ["“(ﬂ)"“(q) —kzx"(g)x‘(d)] (3.8)

(2m)n 2 2
where ¢ runs over 1,2.

In the following development we will treat the real and imaginary parts of x

as independent real variables, which we denote generically as x. The action for

X is:
~ d% ~ d% [(x)? kix?
S=[dt = [dt - . 3.9
/ (2m)n ~* / (2m)" [ 2 2 (39)
We recognize that x is a quantum mechanical variable with the Hamiltonian
density
~ p k2X2
= — 4 — 3.10
}(k 2 + 9 ( )
where p is conjugéte to x. The functional Schrédinger equation
~ ~ .0 N _
)(k\l/k[x,t] = zgg\I’k[x,t] (3.11)
becomes:
.0 1 8% k2?2
- 25Xy, o, (3.12)

at 2 9dx? 2
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We will look for solutions of the form
Welx, 7] = g(B)e 3 /X, (3.13)

Equating coefficients of x° and x2 to 0, we see that we need solve the pair of

equations:
g  f
—t-+= =0 3.14
zg + 2 ( )
if—fP+k*=o. (3.15)
The first equation determines g in terms of f. To find f, substitute f = —%
into the second equation to reduce it to:
R+K'R=0 (3.16)
- which has as solution:
R(t) = c1e'* + cae ¥, (3.17)

Hence f is given by

fE) =k {cleiﬂ— czeﬂﬂ (3.18)

1€kt 4 cge—ikt
so the vacuum wavefunctional depends on infinitely many undetermined con-
stants, one for each mode (demanding de Sitter invariance effectively makes these
constants mode independent). This is the same as what we would have found
itrflat spacetime. This problem is not noticed in the conventional method for

determining f (separation of variables) because separating variables (even at one
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time) effectively imposes an initial condition by requiring that f vanish at a par--
ticular time. One can then show that all higher temporal derivatives of f need
vanish at this point; hence f is a constant. The requirement of normalizability

of the wavefunction then fixes the sign. .- -

" If this wavefunction is to describe a harmonic oscillator with a time indepen-
dent frequency, as it must, and is to be normalizable, then we need to choose
c2 = 0. We may impose an initial condition by requiring that far in the past
(f = —oo or a — 0) the wavefunction be in the harmonic oscillator (Gaussian)
ground state (we cannot determine the constant for the zero mode since f van-
ishes; however we may choose it to have the same value as for the other modes;
this will also be done for the other examples we consider). Then we have for the

vacuum wavefunction for mode k:
~ k) 1/4 -
Wi (x58) = (x|Ok) = (;) e3kema X, (3.19)

This is normalized so (0|0x) = [ ¥;¥; dx = 1. The complete vacuum wave-

functional is given by:
Wo = (x|0) = [ ] (xlox) = [T .. (3-20)
k k

We can easily evaluate the equal time Green’s function in momentum space:

, (O X} (6,F) 0) = 57 @

This is time independent, so the wavefunctional does not spread in field space
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(in fact,

O e (822)

where k is an ultraviolet proper momentum cutoff). Returning to position space

(0] 4% [0) =

we have: -
» 0 = 2" 10 1 d%k ig‘(i—i')
(0| ¢(E)¢(x )IO) = ( lX(J:;)yz)i(lx )l > = a1 (27r)" : 2k
RGO

T e a@)E-z T (3.23)

Here a(t) |Z — Z'| is just the broper distance, so we have found the Minkowskian
Green’s function suitably modified to take account of the conformal factor relat-
ing the de Sitter and Minkowski line elements (the 1+1 dimensional massless case
needs to be treated more carefully since it is logarithmically infrared divergent,
as in flat spacetime8 ). To find the Green’s function for “nonequal” times, we

need the propagator of the functional Schrodinger equation. We can write:

(Tx(t, k)x(t',k)) /dxdx xx' ¥, (1) GE(x x s tt)‘I'ko(x, t') (3.24)

where G{£ is the Schrédinger propagator. The Schrodinger equation is just that

of a harmonic oscillator; hence the propagator is: !

1/2 .
GE(x,x";t,t") = [-———k—-——.,] / exp [ k ~{cos kT (x? '2) —2xx'}
2misin kT 2sin kT
(3.25)

~ ~

where T =t — t'. Performing the Gaussian integrals in (3.24) we find

(k| Tx(E, k)x(t', k) [05) = 2k et (3.26)

which again shows that the system is conformally trivial. We can now Fourier
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transform to recover:

~ ~ 1 &% (z—z ~ ~
TéE, D)o, %)) = ——— / e R E=Z) Ty (k) x(E, k
(T8C.D80,2)) = e | oy (Tx(ERxE,R)
(3.27)
~vy B—1 I‘ n-l . - -
—wmye O L
4ar 7 [|Z-Z'|" = (T —1e)?| 7
or in our original coordinates (2.3):
r(n—l )
T t, t" z! = 1 n-—1 T n—-1 "
(To(t, 2)8(t",27) an*F (eht+0) 5 |12 - 2! - b (et — emht! — 4e)2]*F
(3.28)
In the flat space limit (A — 0) we recover the usual Green’s function:
(el = L)
(To(t, DB(t', 7)) = —z (3.29)

(12— 2" = (t —to — 1€)2]"F

For the exponentially contracting case, f is again given by (3.18). We can require
~ that the wavefunction approach a harmonic oscillator as a — 0 (or t. — oo, which

is in the far future); then it is given by (3.19).

4. The Spatially Flat Metric: B. The Hawking
Effect for the Conformally Coupled Scalar Field

Now that we have the Green’s functions for a conformally coupled scalar field
in a de Sitter background we can analyze what an idealized, comoving DeWitt-

Unruh detec’cor,12 interacting with this field, will see. - Following DeWitt,12 we

assume a coupling of the form Lin; = m(r)$(z(r)) between the detector and the

scalar field along the detector’s trajectory, where m(r) is the monopole moment
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operator of the detector and z(7) is the detector’s trajectory. First order pertur-
bation theory then gives the transition probability per unit time for the detector

to go from an energy level E; to an energy level E; as:

+o0
Py = Im(@)il* [ de - ) BB 0] 4(z()pl=(t) o), (41)
“oo
where (0] ¢(z(t))#(z(t')) |0) = (0| T¢(¢t,Z)p(t',Z) |0) for t > t'. To be able to
talk about equilibrium thermodynamics we need to work in a coordinate system
in which ggo is time independent (so we have a time independent scale of energy);

hence we use the coordinates (2.3). Defining AE = E; — E;, 7 =t —t', we have:

P, = |m(0),i|2A"HIT (22 1)/ {smh(-.(AE)r )

2ﬂ+1 _-L ( 1 3n~3 T — 16)}7»—1 .

To evaluate

s e—i(AE)r

I(AE) = _/ dr{smh( T (4.3)

we note that the integrand has poles on the imaginary 7 axis at 7 = %’F’- + te,

where n is an integer. So we can choose a contour C, as illustrated in Figure 1,
and use the method of residues to get:
27r(__1)n(i)n+l(AE)n—Ze—AEZw/h

I(AE) = T (CT)re-AETE ; (4.4)

(AE)n—Ze—AE21r/h

P;_,; = P(AE) = c(n)1 = t_l)ne—AEzw/hlm(O)J’ilz’

(4.5)
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where

h"'HP(";l)
= —t 4.6
elrn) = =t (46)

~ We would now like to shovs} that this transition probability is exactly the same
as would have been gotten if the scalar field were in equilibrium with a thermal
bath at some temperature T in flat spacetime. In the usual examples treated, e.g.,
the massless scalar field in Rindler coordinates (or interacting with a uniformly
accelerated detector) in 3+1 dirnensions,13 the appearance of a “Planck factor”
in the transition probability is taken to mean that the detector is in thermal
equilibrium at some temperature T. This argument is, however, incomplete, as
can easily be seen either by looking at the massive scalar field (in an arbitrary
number of dimensions ), whére the transition probability is a Bessel function, or
by looking at the massless case in some other number of dimensions. For both
of these cases one can show that the transition probability is thermal. We now
establish a criterion by which one can decide whether a transition probability
is thermal or not. The states of a system in thermal equilibrium satisfy the
principle of detailed balance, i.e., if the probability of being in the ith state is
n,:, then %’;—' = 0V:. Now we can relate % to the transition probability per unit
time between states by %i = E; Pj_in; — E; P;_,jn;. A thermally populated
set of states also satisfies n; = n;e P(Ei—Ei) where 8 is the inverse temperature.

Hence a system in thermal equilibrium with a heat bath will satisfy

!

- » Z (PJ'_.,,' — eﬂ(Ej—E-')P‘.__’j) =0, (4_7)
J

and vice versa.
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In the conformally coupled case we had P(AE) given by (4.5) and it is easy to
see that this form satisfies P(—AE) = P(AE)e2E*"/h 0 8 = 2r/h or T = h/2n.
So it seems that a conformally éoupled scalar field in the n+1 dimensional de
Sitter spacetime vacuum behaves like a scalar field in Minkowski spacetime at a

temperature T = h/27 where h=H is the Hubble constant, in these coordinates.

5. The Spatially Flat Metric: C. The Minimally Coupled Field

We repeat the analysis of the prévious section for the minimally coupled,

massive scalar field in n+1 dimensional de Sitter spacetime. We have:

S = /dt d"z L(z) = /dt d"z \/|g| %[g”"a,‘qs*am - m?|8|%]. (5.1)

Following the manipulations of the previous section, we can put this in the form:

frd% s [ ~d% [(X)?  1(n?-1 m? 2] 2
S—/dt(Zﬂ)“Bk—/dtW[T +'2-{ 2 _h2'£ﬁ—k}x , (5.2)

where the dot now means a derivative with respect to conformal time. From this

equation, we see that the Hamiltonian for x is:

2 2 . 2 2
Jo=P X [pa 1 (m” n—1
k—2+2[k +?§(h2 , )] (5.3)

Notice that the Hamiltonian is explicitly time dependent; hence, the Schrédinger

é?i’uation will not separate; also, far in the past it reduces to that of a harmonic

oscillator.
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The Schrédinger equation is:

Again we look for solutions of the form

Wil T] = g3 X (535)

Equating coefficients of x° and x? to 0, we see that we need solve the pair of

equations:
—ig + g =0 (5.6)
if — 2 - ["Zgl-};‘;—kz] =0. (5.7)
As before, we substitute f = —%.2 into the second equation to reduce it to:
R+ [k2+,::; —"24;2 1]R:o. (5.8)

This is just a form of Bessel’s equation; defining v = (";— - %:—)5 we get

R(E) = 173 HV(kE) + ¢y5 HD (kT) (5.9)

where H ,(,1) and H,(,z) are Hankel functions, and hence we can solve for f and g.

In general,
. - HY (k) + o HD, (kT
f(t) — _i 1 3” kcl U-ll( ~) + 62 U2—1(~ ) (5.10)
2t ey HD(KE) + e HE ()
and
7
o) = oz = Cexp |5 [ Fas (5.11)
) R1/2 2 )

where C is a normalization constant. As in the conformally coupled case we see
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that the wavefunction for each mode k depends on an undetermined parameter.
If we impose as our boundary condition the requirement that the vacuum wave-
functional tend to the harmonic oscillator (Gaussian) ground state in the far past

(t = —oo or a — 0), then it can be written as:

= -

~

t
(xl0%) = W] = Cexp |~5 [ 1(0d1 - 3 16 (5.12)
R 1/4 R 1/2 L2
=(_7_re£) (LR_') e"3/x (5.13)
where
- f1-2v  kHY,(KD)
f(t)——z[ T G (5.14)
and
R(}) = 73 HV (k7). (5.15)

~ C was chosen by requiring (0x|0;) = 1. Of course, if we did not make use of
an initial condition, any R satisfying (5.8) would be allowed and the vacuum
wavefunctional, of each mode, would form a one-parameter family. Requiring that
t}_le wavefunctional be de Sitter invariant is not enough to remove this degeneracy,
although it does reduce it tremendously by effectively making the constants mode
independent. (5.14) is also the wavefunction in the exponentially contracting

coordinates if a boundary condition is used in the far future.

The equal time Green’s function in momentum space is just:

(P (k,E)) = ——

_ = Rer ) %—[J,?(k?) + Y2(kD)] (5.16)

where J, and Y, are Bessel functions. Hefe, unlike the conformally coupled case,
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the Green'’s function is time dependent.

If we restrict ourselves to 3+1 dimensions and look at the massless scalar

field, we see that the wavefunctional is:

n i+ kt 1+ k2t

N\ Y 1 i RS
o <X|0k>=\Pk[X’a=<—> ( ) exp -—%kt—;(' )x2 (5.17)

up to a (formally infinite) phase in the exponent. So, we see that a minimally
coupled scalar field in de Sitter spacetime looks like a collection of harmonic
oscillators with time dependent frequencies. The flat spacetime limit of this
wavefunctional is just the harmonic oscillator wavefunctional we found for the

conformal field, times an infinite phase which cancels the phase alluded to above.

This wavefunction gives:

2/, 7\ _ 1 1) 1 h?a?

which differs from the conformally coupled Green’s function by a piece which
grows in time (remember that conformal time ¢ — O corresponds to the far

future). This expression is also valid in the exponentially contracting coordinates.

Brandenberger“ has also derived this expression for the real part of the
coefficient of x2 in the exponent. There are, however, differences between our
wavefunctions; pﬁmarily the time dependent normalization, which is of some
importance, and the imaginary part of the coefficient of x2. These do not affect
the two point function in momentum space (xé(k,?)>. It should be pointed out .
that Brandenberger has exactly the same <x2(k,'tv)> as we have obtained for de
Ei-tter spaée; not, as he claims, something that is valid only in a de Sitter phase of

a FRW cosmology. The resul.t he attributes to Hawking ¥ s applicable only for
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very long wavelengths—much outside the horizon—where the k=2 term in (5.18)

dominates the k~! term.

To study the spreading of the wavefunctional in field space we need to look

at this Green’s function in position space:

2\ _ 1
<¢ ) T 212q2

kidk (x*(k,t)) . (5.19)

This integral is logarithmically infrared divergent in 3+1 dimensions; in fact,
it is in any number of dimensions. The infrared structure of the scalar field
propagator in de Sitter space is very similar to that of the propagator in 1+1
dimensional flat spacetime (see Ma and Rajaraman’ ). As we will discuss in
detail in Section 10, the logarithmic infrared divergence in the de Sitter scalar
field propagator leads one to the same conclusion about symmetry restoration as

in the low dimensional flat spacetime examples.

Evaluating this integral with suitable infrared and ultraviolet fixed proper

- momentum cutoffs, we find in 3+1 dimensions

(¢?) = [h3 t —t;) + h?ln (i—"‘—)], ' (5.20)

and in an odd number (n) of spatial dimensions:

<¢2>= (%) [h"(t~t)+h" 'In (K'>]. (5.21)

Here we have retained some of the cutoff dependent terms (all terms discarded
etther depend on the ultraviolet cutoff or disappear when the infrared cutoff is

removed (k; = 0 or ¢t; = —0)); Ky and &, are the ultraviolet and infrared proper
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momentum cutoffs and ¢ and t; are the times at which the momentum scales
Ky and k; were the size of the horizon. The 141 de Sitter propagator exactly
reproduces the flat spacetime result in the limit A = 0. The extra piece (for
h # 0) arises from the redshifting of the proper momentum Eutoff in de Sitter

space.

We could view (5.21) as describing field theory in a universe which at time

t; went from a Minkowski to a de Sitter phase; the infrared cﬁtoff would then
correspond to eliminating all information outside the initial de Sitter horizon
which could not influence the scalar field’s evolution. The symmetry group of
such a spacetime would not be as big as the de Sitter group; equivalently we
may say that the momentum cutoffs do not preserve the de Sitter symmetry.
This is the reason that the form of <¢2> seems to be inconsistent with the fact
that de Sitter spacetime is a maximally symmetric space. This expression is
probably also valid for even n. The time dependence may be interpreted as the
wavefunction spreading linearly with time in field space. Massive scalar field
theory in 1+1 dimensioﬁal flat spacetime with a time dependent mass that goes
from a constant nonzero value to zero abruptly also has a time dependent <¢2>.
The 3+1 dimensional result has been noted previously by Linde.® Hawking and
Moss'® have noticed that the propagator is logarithmically infrared divergent
in 3+1 dimensions. Their result is of interest particularly because they use the
Euclidean version of the coordinate system which covers the whole de Sitter
hyperboloid, t.e., the coordinate system in which de Sitter space is a contracting
and then expanding compact 3-sphere (we shall look at scalar field theory in this
eeordinate system in more detail in the next three sections). This checks that

the infrared properties of the propagator are independent of the coordinatization
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of the hyperboloid. Field theory in the contracting metric will also be infrared

divergent.

We make a short digression to discuss how to recover the massive confor-
mally coupled case from the massive minimally coupled case. Looking at the
Schrodinger equation for the minimally coupled case we see that for a particular

——"24_ 1  we recover the conformally coupled Schrodinger

value of the mass, %:— =
equation; for this value of the mass, v = -;- and f (?) = k; thus we have the
conformally coupled wavefunctional (up to an unimportant phase). In fact, if we
had an arbitrary coupling to the curvature of the background geometry—i.e., a
term of the form —% \/|_g}—| £R$? in the Lagrangian with ¢ arbitrary —we would
just need to make the replacement m? — m? + ¢R (i.e., m? —» m? 4 én(n+1)h?)
to obtain the wavefunctional.

Let us now compute the full equal time Green’s function, taking some care as
regards the divergences. To remove the trivial ultraviolet divergence we evaluate

the two-point function at finite separation; to handle the infrared divergence we

study the case of a non-zero mass. Then:

(#(2)a( *'))———fa,r / ¢k eFED ) + VIR (5.22)
= o W%_jan_lr% dk k% Jazs (kr) [Jz(kt”) + Y,?(k’t”)] (5.23)

where § = ;‘”{;, r = |Z — Z'| and F is a hypergeometric function. The integral in
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(5.23) has been evaluated in Appendix A. The massless limit of this two pé)int
function, in 341 dimensions, is exhibited in Figure 2 (we have suppressed the zero
mode). We will consider the case § << 1. To study the infrared properties of the
integrand in (5.23) we need to look at its behavior at low momenta; consequently
we can use the limiting form of the Bessel function for small arguments, J,(2) ~
(;)“r-(ﬁ and Y,(2) ~ —1T(u)(2)# . Clearly the infrared djxvergence comes
from the second term in the integrand. At low momenta the momentum integral

goes like
/dk k—2ll+n-—l — /dk k—(n°—4%;—)1/2+n—1 — /% k25+0(62). (5.26)

This is logarithmically infrared divergent for the massless case. For fixed n an
infinitesimal positive mass cures this divergence (even with a fixed positive mass

the integral is still divergent in the limit n — oo).

In spite of a claim to the contrary,17 this infrared divergence is a real physical
divergence—it is not an artifact of a wrong choice of initial condition but is
present in the de Sitter invariant vacuum state (we will elaborate on this later).
It is easy to see that even if we start out with a state which has no infrared
divergences initially, time evolution will generate them, provided the state is
allowed to evolve for a sufficiently long (formally infinite) period of time. Consider
the following initial condition—let the (3+1 dimensional massless) wavefunction
go to that of a harmonic oscillator at some finite time %o in the past (not at —oo

as before). Then we obtain

e _ cos(kto) + [thto — (kio)?] exp(—ikio) (5.27)
¢z sin(kto) + t[ikto — (kto)?] exp(—ikto) '
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(the coefficient of x? approaches that in (5.17) in the limit o — —o0), and

1 . o
Ref@)  k(kio) (kD)2 (o) ()7 + 1)

+ ((RBo)H(KD)? — (Eo)? + 2(kfo) () ) (sin? kT — cos? kT)

| (5.28)
‘ + sin® kT + (kt)? cos® kT
+ (40k0)2 (T) + 2(kto) — 2(kfo) (kF)? — 2kf) cos kT sin kf]
where T =1 — to. Clearly
Ref(to) = k (5.29)

and so this state describes a harmonic oscillator with a time independent fre-
quency. There are no infrared divergences. Consider a much later time, T — 00;
then sin? kT ~ cos? kT ~ % and sin kT ~ cos kT ~ 0 we obtain:

1 1+ (kf)? 1+ (kt)?
Ref(t) k312 2k(kt)?(kto)*

(5.30)

The first term is what was present when we imposed the initial condition at
to = —oo; it has a logarithmic infrared divergence. The second term has an
even more infrared divergent structure, but we need not consider it if we are
interested in finite %, i.e., to — —oo. One can check explicitly, from (5.28), that

for T << k!, these infrared divergences disappear.

In the coordinate system (2.3), the equal time two point function is:

Rt T(3-v)T(53+v) _[n n n+1 | rihZelht
Fl-— —-v,— +v;(—);1— . (531
(47l')"i21 r(n;—l) [2 V’2 Vs( 2 )! ( )

The flat spacetime limit may be obtained by letting A — 0 in (5.23). In this limit

v becomes imaginary. We make use of the asymptotic formula valid for large real
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b and z:

2

Ji(z) +Yi(z) » ——————
3a)+ Yi0) ~ ey

; (5.32)

which gives us , . -

1 d™% eiic'-(i'—i") - dk® d™ eil-c"(i—j")

“2) G @i S @ E )
c+

(5.33)

(where C* is a contour in the complex k, plane enclosing the positive pole), the

Minkowskian result.

At this point we could repeat the analysis of the previous section by finding
the path integral of the Schrédinger equation and the “nonequal” times Green’s
function for the minimally coupled scalar field. However, we do not have to.go
through this exercise as there is an easy way to obtain the Feynman Green’s
function; looking at the conformally coupled case we see that we just need to

make the substitution:
' ]_ ! . .
2yl _, Ghlt+t )[rz . (e — e ht' _; 6)2] o (5.34)

(notice that in the equal time limit the right hand side reduces to the left hand

side). In conformal coordinates we are making the replacement

a?r? o W)_I(fT’) [ = (T4 7 —iep?] (5.35)

which is the unique object, up to a multiplicative factor in front, that is de Sitter

invariant, and that reduces to [r? — (¢ — t')?] in the flat spacetime limit. So we
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have:

n—1 n —v n y
(To(t, D)o(t',2)) = (4’;)%_1 r(® 1«1(2 +1)

(5.36)

The Minkowskian limit may be obtained as before by letting h — 0.

6. The Lanczos Metric: A. The Conformally Coupled Field

In this section we again consider the massless conformally coupled scalar field,
but in the k=+1 background. The action is given by equations (3.1) and (3.2).
Using equation (2.8) and integrating, spatially by parts, it becomes:
|62

1 * 2
T + 2?45 £(n)¢—'

(n—1)(n+ 1)A?
8

S:/dtd"xa"|g¢j|l/2

¢*¢] (6.1)

where E%n) is the Laplacian on the unit sphere S™ (see Appendix B). As before,

n-—1

we rewrite this in terms of a dimensionless field x = a2 ¢ :

.12 2 2
nd X X n—1 1,
5= [ di ava gy ['2' - (22 +§x£?n)x], (62

where the dot now means a derivative with respect to conformal time (we have

integrated by parts and dropped a surface term).

- == The eigenfunctions of £fn) are generalized spherical harmonics Y w with n

indices (W represents the n-1 magnetic indices), which we shall generically denote
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by k; these are discussed in Appendix B. Now

Ll Yaw = —A(A +n —1)Yaw, (6.3)

SO

s=2/dt”[@—'l‘;—lz<,4+";l)2}, (6.4)
k

or, treating the real and imaginary parts of x; as independent real variables,

which we generically denote as x, we have:

S=Z/df[i§-—x;<A+n;1>2}, (6.5)

or

o 2 2 ~1\?
;(A=5’2—+3‘2—<A+” ) (6.6)

An analysis similar to that performed in Section 3 then allows us to write the

functions R and f as:
R(t) = PG ¥ 4 cpe i (BF3 ¥ (6.7)

and

FE)=(u+

i(p+1/2)t _ . —i(u+1/2)F
c1e cae ] (6.8)

1
2 crei(u+1/2)t 4 cqe—i(ut1/2)t |’

wll_gre b= A+n/2—1. As we are considering a conformally coupled scalar

field we need to have a time-independent f which means that we need to choose
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¢z = 0 (the choice ¢; = 0 gives us a unnormalizable wavefunction). This choice

will be discussed in detail later on. So the vacuum wavefunction for mode A is:

5 1/4 3
on(x,t)=<x|oA>=(2"2:‘) exp(-;mgnufv)). (6.9)

“The equal time two point function in momentum space is:

1
2) = ; 6.10
) = 2re f(t) T 2Atn-1 (6.10)
it is time independent. Transforming back to position space we have,
Yy (MYi()
(s(@)e()) = — IZ 2Ain 1) (6.11)
The addition formula (B13) simplifies this to:
, (=1 :
(@) = —ppr 1) (6.12)

4r" [——cﬂ]"T_l '

This is the same as the expression we had for the k=0 metric (3.28).

7. The Lanczos Metric: B. The Minimally Coupled Field

We extend the analysis of the previous section to the minimally coupled scalar
field, where the action is given by equation (5.1). We can write the conformal
Hamiltonian as:

2

" 2 2
7 p X n—1 2~ m n°—1

= — —r— —_— 7-
Xa 7 T3 [(A+ 5 )? + sec’t <h2 1 )] (7.1)

where

sec’t = h%q?. (7.2)

Unlike the Hamiltonian for field theory in the k=0 background, this Hamiltonian

does not have a classically allowed asymptotic region in which it approaches
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that of a harmonic oscillator with a time independent frequency. The formal
similarity to (5.3) should, however, be noted. Also, at t=0, b} 4 has no explicit
time dependence and hence the t = 0 hypersurface might be a good surface on
which an initial condition can be prescribed (this is not what we do). Notice that

as a — O (this limit does not lie on the Lorentzian section of de Sitter space) this

Hamiltonian approaches the conformally coupled Hamiltonian; this fact shall be

used to impose a boundary condition on the Schrédinger equation.

The functions R and f appearing in the wavefunctional have the form:

R(F) = cos? T [e1 RV (sin?) + ea R (sin )] (7.3)

clR(l):_l(sin7) + czR(2):_l(sin t)
et R (sint) + e R (sint)
(7.4)

where p = A+ 5 — 1L, v = (1‘;13 -~ %:—)1/2; and R(l)z, R(z)g are related to the

ft) =1 (1 _22V ) tant—i(u+v)(p—v+1)

Legendre functions Pf , Qg, by:
Y] 12
RY¢(2) = F{(2) = —Q4(2). | (7.5)

This is similar to the relation between the Hankel and Bessel functions. The
asymptotic analysis is more easily understood if one uses the R(")g instead of the
Pf and Qg. Although these functions do not seem to have been studied before,

the formulae that we shall use may be derived using the Legendre functions.

Burges1 has attempted to use de Sitter invariance to obtain an expression
for f(0). He has considered a massless scalar field with, presumably, no coupling

to the background geometry. Our results, when restricted to £ = 0 and m = 0
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(and assuming that the ratio ¢;/c; is the same for each mode) only agree with

his expressions in 1+1 dimensions. We shall elaborate on this discrepancy later.

First we present a heuristic argument for the “correct” initial condition. This

is more of a self consistency requirement, that the minimally. coupled solution

- should reproduce the conformally coupled solution for some particular value of v,
rather than the stronger requirement concerning the behavior of the wavefunction
as a — 0, which probably depends to some extent on the quantum theory of

gravity. For v = % we have:

. . 1)\? clR(l)—% (sint) + czR(z)—% (sint)
ft) = —i (u+—2—> s e (7.6)
¢t RW2 (sint) + ¢;R(®)3 (sint)
Using the following relations,
RO} (6ing) = (2 e [.(0 y +1)]
w SO = eos g 2u+1 xP it g T3
(7.7)

ncos

R(l)j (sin§) = ( )1/2 exp [i(ﬂ - g)(u + %)],

and
[RW} ()] = B} (), (7.8)

we obtain:

. E=5)+3) - cpe—iE-5)u+s)
1) = (p 4 1 ) [cle cae b (7.9)

2 c1ei-5)w+3) 4 cpe— (- 5)(u+})

So if this f is to describe the conformally coupled scalar field, then we need to
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choose ¢z = 0. With this choice we have:

and
R 16 =+ 3), (7.11)

as in the conformally coupled case. A more general argument will be presented
later on to show that this is indeed the correct initial condition. We can tem-

porarily accept this as an ansatz.

This ansatz then gives us:

-2 1 I(1+p+v)
Ref(t) = Tcost [P,'j(sin’tv)]2 + %[Qﬁ(Sin?)]z Fl+u-v)

(7.12)

The coincidence limit of the massless scalar (rescaled) field’s two point function

in 3+1 dimensions is then given by:

1 hlq?
) = 2Ref 5 24+ [l " A(A+2)} ’ (7.13)

where the prefactor is the conformally coupled scalar’s two point function. This
is very similar to (5.18), the expression in k=0 coordinates. As before, the second

term will lead to an infrared divergence in the propagator.

The position space two point function can be expressed as:

D) = o Dy HOB@) (g
— _ T(%)  cost a1 n—1\ T(A+% —v)
e Z)Gn__ 5 EA:CA )(cosv) (A+ 5 ) P(A+§ T7)
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[[p;+% L))+ 5 [ _l(sin?)]é] , (7.15)

where C4(*7) is a Gegenbauer polynomial, and we have used (B12).

For the massless conformal case v = 1/2 and so using (B8), the expression

above reduces to:

($(2)g(Z")) = a," —a T Z ("—l) (cosq) = ("— ) (7.16)

= 4r 5 [——02] 2

which is exactly what we had before.

We can evaluate the general expression (see Appendix C) to obtain:

h"‘1 L(F -v)I(3+v)_(n n n+1 hio?
! LR (2 4 —n o1 ),
(7.17)
which is the same as (5.24) and also agrees with the earlier analysis of reference

18.

8. Euclidean Green’s Functions

In this section we use the Euclidean path integral representation of the gen-
erating functional to evaluate the Green’s function. The generating functional,
for any of the theories we have considered, in the presence of an external source

J, is given by:
2[J] = N/ DS+ [Tz d(ht) \/IglTg, (8.1)
Here S could be any of the actions which we have considered, N is a normalization

constant chosen in such a manner that Z [0] = 1, and we have chosen to work

with the variable ht instead of t.
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As discussed in Section 2, the analytic continuation of de Sitter space is an

n+1 dimensional sphere embedded in n+2 dimensional Euclidean space. Then

1 : 1
lg|? d"z d(ht) = ‘W’S("H)" d"Hzp, (8.2)
where
n+1
d"tzg = [] de;, . (8.3)
=1
and
g 8,4' ¢ = —hts( M gEL E (8.4)
where
3
E _
0 = =i (8.5)

We first discuss the conformally coupled case. In Euclidean space, using the

Euclideanized version of (3.1) we may write the exponent in (8.1) as:

1 . |S(n+1)‘%
4 featnt

(n+1)(n—-1)
4

J*¢ J¢*
RT  RT |°

st al4calg + I$1* - (8.6)

Integrating by parts, using the generalized spherical harmonics defined in Ap-

pendix B and

LYy Yaw = —A(A + n)Yaw, (8.7)
where
2 = 1 E 1)1 g(n+1)uv 4E
- Llar) = T O 180 ST, (8.9)

we obtain for the momentum space representation of the exponent in the func-
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tional integral:

1 '
2[4

1>(A+"+1)¢ - ’;:f"-ﬂ;lif; . (8.9)

By using an expansion in spherical harmonics, we effectively exclude from the
‘functional integral those field configurations which are not regular on the Eu-

clidean section. We may introduce a shifted field

Ji

%= AT Ly Ty

(8.10)

The path integral measure does not change under this transformation, so we

obtain

zZlJ) = Z[O]exp[ = 1Zh2 T )1(“+ )Z:} (8.11)

or rewriting the Green’s function in the position representation:

1 S(n+1) 3 S(n+1) 3
Z[J] = exp[5 /dn+le|——}7szl_/dn+l IE'I—hT-f-—ll_

x n—1 Yk(n Yk (ﬂ’) .'l:’ .
J()Zh PERYIERY J(2). (8.12)

So the Euclidean Feynman Green’s function is:

(o100 = - PIiow E)Y;(f i - (8.13)

Using the equivalent of (B12) in n+1 dimensions, we find:

_ ny _ B"TIT(E) (24 + n) (2)
(To(N) (N Ng= L A+ 250 ) (4 + 531 C,2 (cosyn41), (8.14)



which, from Appendix D, is

po ) 1 Ted)

~2(2n)*F (1-cosyms1)"T anF i

(8.15)

This is the Euclidean extension of the Feynman Green’s function that we had

“calculated in Sections 3 and 6.

The minimally coupled case is analyzed in exactly the same way. An ap-
propriate definition of the shifted field ¢} allows us to express the generating

functional as:

1 J; 1 Ji
Z|J] = — ) Ik . 8.16
U] =exp | 2t AT +)(A+] -1 (8.16)
We can therefore write the Euclidean Green’s function as:
R"IT(2) (24 + n) (2)
To(M) (Y = 2 cl's 1),
< ¢( )¢( )>E 47['%2 ZA: (A+% +V)(A+% ‘—V) A (COS’Y +1)
(8.17)
which is (see Appendix D)
R* 1 T(3 —v)I(} +v 11 :
= o (3 n+1(7 )F[ﬁ +u,ﬁ—u;n+ : +C°S7"+1], (8.18)
(47) ™3 (=) 2 2 2 2 .

the Euclidean continuation of (5.36).
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9. The Initial/ Boundary Condition and De Sitter Invariance

There is a widespread belief that the de Sitter vacuum state belongs to a one
parameter family and that some extra criterion must be used to pick a suitable
vacuum state." We have shown that if the wavefunction for eich mode is taken

"{o be the general solution of the functional Schrédinger equation without impos-
ing an initial condition (on the Lorentzian section, or, equivalently a boundary
(regularity) condition on the Euclidean section), then each wavefunction forms
a one parameter family. We now elaborate on this statement and exhibit what
the correc.t initial/boundary condition is, and how it is closely related to Hawk-
ing’s prescription for quantum gravity. ® We may rephrase the initial condition
which we have been using in the following manner: instead of requiring that the
wavefunctional (as a functional of the dimensionless field x) approach that of a
harmonic oscillator ground state in some limit, we may equivalently require that

the energy of this state not diverge in the same limit.

The expectation value of the scalar field (¢y) Hamiltonian, Xy, for the mode

p, is related to that of )7,, as follows:

1, = ;.9 ‘
Ep = (0p] ¥p [05) = 7 (051 % [05) = — (05| ==10) (9.1)
=P if 0.2

We have used the standard form for the wavefunction (3.13) and e.liminated g by
using the equation of motion (3.14). We may now eliminate f2 —if by using the
other equation of motion; this will result in a different expression for each of the
é-;ses we consider. As we will be working with the wavefunctional for a particular

mode, we will refer to c1 and ¢z as constants; in reality, they could be different
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for different modes. We first consider the k=0 conformally coupled scalar field.

Using (3.15) we obtain:

E (K + £ 7). (9:3)

: 1
* T 2+ 1)
Then from (3.18) we find
k ¢+ cl

i Y Y
2a,cl 5

Ey (9.4)

We have assumed that the ratio ¢; /c; is real; in general it could be complex. How-
ever, the independent argument concerning regularity on the Euclidean section

justifies this choice. So, if E} is to remain finite as a — 0 we require

2 2
G¥% _ 1 or =0 (9.5)
Gi—¢

which means that Ej is just é’%, or all excited states of the harmonic oscillator are
unoccupied. The ground state energy just leads to a shift in the zero of energy
and may be taken care of by appropriately normal ordering the Hamiltonian.
- Similarly, for the minimally coupled scalar field in the same coordinate system
we may use {5.7) to rewrite (9.2) as:

1

_ 1 i YT
Eu= gy [0 RG] (9.6)

Using (5.10) and the relevant asymptotic forms of the Hankel functions, we see
that in the limit a — 0 this becomes:

_k g+

= 2 _ 2
2ac1 ¢

(9.7)

exactly as in the previous case (again we assume c;/c; is real). This should

not come as a surprise as this Hamiltonian approaches the conformally coupled
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scalar field’s Hamiltonian in the limit @ — 0. So finiteness of energy as a — 0
again requires c; = 0. Notice that de Sitter space in k=0 coordinates has no real

Euclidean section.

For the conformally coupled scalar field in k=+1 coordinates, we obtain:

E4 (v + %)2 + ff*] : (9.8)

- =7 |

In these coordinates it is not clear, a priort, what the a — 0 limit means. In fact,
a = 0 does not lie in the Lorentzian section of de Sitter space. It is easy to show
that a = 0 corresponds to two points, the North and South Poles of the Euclidean
sphere in this coordinate system (actually the Euclidean section consists of an
infinite number of spheres, one on top of the other, with the contiguous North

and South Poles identified, see Figure 3). From (2.9) we can write:

- (h2a2 _ 1)1/2

int = .
sin T (9.9)

So the a — 0 limit is clearly equivalent to ¢ — %00, one limit corresponding to
the North Pole and the other to the South Pole of the Euclidean section. We
need satisfy the condition of finiteness of energy at only one of these points, and
it will be automatically satisfied at the other because these points are identified
on contiguous spheres (so, effectively we use only one boundary condition). Let
us write t = iT, this places us on the Euclidean section; then (9.8) becomes:

3 (# + %) c%e—(2u+1)T- + cge(2p+l)T
T 2g c%e—(2p+l)T - cge(2u+1)T'

E4 (9.10) |

Now % (n+ %) is the harmonic oscillator ground state energy, so to satisfy the

requirement that the energy remain finite at either T = 400 or —oo we need
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to choose ¢; = 0 (as before, we have chosen ¢; /c2 to be real). Alternatively, we
could have evaluated the energy on the Lorentzian section and then required it

be finite as a — 0. The energy on the Lorentzian section is:

1 2 2
(u+2)cl+c§, - (9.11)

Ea =
A 2a -l

and so, as before, we need ¢; = 0.

The minimally coupled case in k=+1 coordinates can be analyzed in a similar
manner. The expressions for the R, need to be analytically continued from
(—1,1) to (—o0,00). Evaluating the energy on the Lorentzian section, we see
that cs = 0 keeps the field energy finite as a — 0. Equivalently, with ¢; =0, f (?)
given by (7.4) approaches the conformally coupled scalar field’s f() = (u + 3
in this limit.

We now argue that the initial condition we have described above reduces
to the boundary condition of regularity on the Euclidean section proposed by

Hawking. The analytic continuation (2.14) leads to what may be considered to
| be an infinite set of n+1 dimensional Euclidean de Sitter spheres with contiguous
North and South Poles identified; see Figure 3 (it should also be possible to
identify the spheres and hence replace the infinite set by one sphere; this is not
important). The waist of the hyperboloid is the equator of the sphere.

Consider a trajectory which comes in from t = 7 (a = oo) on the hyperboloid
and goes to £ = 0 (a = })—this point, t = 0, will be at the intersection of a real
and the Euclidean time axis in the complex time plane. If we now analytically
continue to Euclidean time, this is equivalent to the trajectory moving off the
equator on the Euclidean sphere towards either the North or South Pole, de-

pending on which way we move along the Euclidean time axis. The requirement
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that the energy be finite as a — 0 then corresponds to including in the functional
integral only those field configurations which are regular on the Euclidean section

(in particular we discard field configurations which are singular at the Poles).

It is instructive to discuss the approaches of references 1 to_field theory in de
Sitter spacetime. Chernikov and Tagirov have studied the conformally coupled
scalar field in k=+1 coordinates. They use the Heisenberg representation and
exhibit normal mode expansions for the field operators. Since they have not
used an initial condition when solving the equation of motion, they find a one
parameter set of vacuums, which they show are invariant under the de Sitter
group. They then use the correspondence principle to argue that particles with
large momenta must travel on geodesics and so choose a particular vacuum in

which particles behave appropriately in this limit.

Burges, on the other hand, argues that the massless minimally coupled scalar

field’s vacuum wavefunctional must be de Sitter invariant and proceeds to con-

~ struct generators which should annihilate it. His arguments seem incomplete, for

reasons which we now discuss. We can write:

- _ 2122 A
}(Mcz)(cc—xha <V2—1>, (9.12)

2

so we see that the minimally coupled Hamiltonian ¥, Mc, for a particular mode,
describes the quahtum mechanics of a particle in a time-dependent potential. In
fact, as the expansion proceeds, the s?:ale factor a grows and the time-dependent
term soon dominates the x? term in )700; because of the relative minus sign, the
time-dependent term corresponds to an inverted harmonic oscillator potential.
-’Fhe time evolution of this system is easily visualized; the equivalent quantum

mechanical particle oscillates in a harmonic oscillator well which starts flattening
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out. Eventually the potential turns over and the particle is- now in a position of
unstable equilibrium. In a time-dependent potential like this, the wavefunction
does not factorize into a part thé.t depends only on time and a part that depends
only on the field—clearly the frequency of the equiyalgnt harmonic oscillator

ground .state is time-dependent.

Burges requires that the symmetry generators annihilate the vacuum state
wavefunctional on the ¢ = 0 hypersurface. If the wavefunction describes a system
of harmonic oscillators, with a time-independent frequency, this assumes the
existence of a normal ordering prescription. For example, consider the total
Hamiltonian on y; using the Schrédinger equation, we may reduce this to a time-
independent problem by replacing ig—t with the total ground state energy (which
is infinite). We may then consider this equivalent to requiring that the normal
ordered Hamiltonian annihilate the time-independent part of the wavefunction.
However, if the wavefunction describes a system of harmonic oscillators with a
time-dependent frequency, we cannot reduce the problem to a time-independent
one and therefore do not have a normal ordering prescription. Even if we only
consider the equations at £ = 0 we need to be able to normal order. Notice that
in 1+1 dimensions the massless minimally coupled case has exactly the same
Hamiltonian as the conformally coupled case, 1.e., v = % ; hence the wavefunction
describes a system of harmonic oscillators with a time-independent frequency and

so it can be separated.
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10. The Restoration of Continuous Symmetries

We study the restoration of continuous symmetry in de Sitter spacetime by
considering an interacting scalar field theory which has a broken symmetry phase;
Goldstone’s original example,lg a complex scalar field ® in a ®* potential, lends

itself readily to analysis. The Lagrangian density is
£=0,80"0" - V(20"), (10.1)

where the potential V($®*) = 1‘23 (29*) + % (®9*)? has an O(2) symmetry. For
Ao > 0, u2 < 0 we find the conventional symmetry breaking potential. The

Euler-Lagrange equation

(8,0" + u2)® + X0®% =0 (10.2)

2
18] =p = ‘/_;69' (10.3)

The Goldstone modes of this theory are the massless excitations along the circle

then has stable minima at

|®] = p. These are spin wave excitations which do not cost energy (which is
proportional to gradients) since only the direction, and not the magnitude, of the
field ® changes. If we are interested in the low energy behavior of this theory we
need only consider these modes. We can, hence, approximate &(z) = p(z) (=)
by ®(z) = pe®(®), where § € (—o0,0). From the previous Lagrangian we get
the new Lagrangian that determines the equation of motion of the real field 6(z)

which lives on the circle:

?
- £ =" a,00". (10.4)
Thus the field ¢(z) = pf(z), which is essentially the field on the circle, satisfies
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a minimally coupled Klein-Gordon equation, as it must; anhy other term would
break the U(1) symmetry (translational invariance in @ space). To study sym-

metry restoration we need to look at correlation functions such as:
. - . _"
(8(2)9*(z")) = o <exp (‘—d:()—f)-) exp (ip(n:_)>> . (10.5)

If this correlation function asymptotically tends to zero for very large physical
separation the theory is in a symmetric phase; if it asymptotically tends to a

constant (>0) then the theory is in a Goldstone phase.

Now:

(0010 (@1) = 27 exp [LEAED_ GOSN
where we have regulated the object (¢? (0)) by point splitting at equal time.
This expression is ultraviolet singular; hence we need renormalize it: Z is a
renormalization constant chosen in such a manner that the correlation function
(®(Z)®*(Z')) = 1 at a physical separation |Z — Z'|a(t) = | where ! is much less
than a Hubble radius. With this definition

(8(2)8*(2")) = exp | LEEED _ (#(@E))

P B

To study symmetry restoration, we would like to evaluate this expression in the
limit |Z— Z'|a(t) — oo. Now from equations (E6) and (E12) we see that the part

of the exponent which depends on X = (har/ 2)2 in the appropriate limit is just:

In X. (10.8)



Therefore

. NN 2 @ -
|i’—£'1|lar([})—too (e(z)2*(z")) ~ [hlf_ i:"|a,(t)] (10.9)
where
hn~1r n - - -
a= —~—+,(—72 (10.10)
- 2r~% p?

So, the correlation function asymptotically approaches zero (as a power) for very

large physical separations.

A related indication of symmetry restoration is:®

@@) = (exp (D)) = exp(- 51 (@)

- o[- 2B (2],

or (®(Z)) — O as k; — 0,s0 as we remove the infrared cutoff, the expectation

(10.11)

value of the field vanishes. For n=1 and h = 0 we recover the massless 1+1
dimensional flat spacetime result®

(®(Z)) = exp [- #ln (fﬁ)] . . (10.12)

Ky

The restoration of continuous global symmetries by anomalously large cor-
relations in the infrared is a well known phenomena in lower dimensional field
theories and spin systems in flat spacetime. For a nice discussion of the physics
involved, see Ma and Rajara.ma.n.8 We briefly review some of the-points discussed
in their paper. It is clear that symmetry restoration is a quantum mechanical
Phenomena. Quantum fluctuations (zero point motion) usually lead to spread-

ing of the wavefunction about a classically allowed trajectory; if they are large
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enough then no trace of the cl‘assical trajectory remains. Clearly this is what
happens to the field § which lives on the circle; a logarithmic infrared divergence
in its two point function just means that there are many paths in the space of 8's
connecting two points; some of these will subtend an angle that is equal to the

difference between the two points plus an integral multiple (which could even be

infinite) of 27r. These correlations wipe out the classical minimum, which is at

some fixed value of # on the circle.

It must be stressed that the zero mode on the n-sphere, which is present both
in the infrared and the ultraviolet (see Appendix E), is not responsible for the
spreading of the wavefunctional in field space. Symmetry restoration is a direct

consequence of the infrared logarithm in the propagator.

A few comments are in order; as we go up in dimension « decreases (for fixed
h—;;—l). This means that (<I>>(:E‘)<I>*(:'E ")) for large separations dies more slowly in
higher dimensions; which is what we expect. The logarithmic divergences present
in scalar field theory in n+1 dimensional de Sitter spacetime are very similar to
those in 241 flat space finite temperature field theory or 1+1 zero temperature
field theory. However, these divergences do not seem to be like finite temperature
divergences, because field theory at finite temperature can effectively be identified
v(rith zero temperature field theory in the same total number of dimensions but
with the time dimension curled up. So, as far as the infrared divergences of the

theory are concerned, the number of dimensions has been effectively reduced by

one, and not by n-2 as seems to be the case in de Sitter space.
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11. Discussion

The functional Schrédinger approach to field theory has_ proved to be both
intuitively and technically useful for analyzing quantum field theory in curved
spacetime. Although we have only considered scalar field theory, our results may
éasily be extended to allow analysis of nonzero spin fields in de Sitter space.
Similar analysis may also prove useful for understanding field theory in other
backgrounds of cosmological and astrophysical interest. We are now investigating
scalar field theory in matter and radiation dominated FRW cosmologies using

these methods.

We have seen that spontaneously broken symmetries are dynamically restored
in de Sitter space. Although it is clear that this is caused by an infrared diver-
gence in the propagator, it is not obvious why the propagator diverges logarith-
mically for large physical separation—independent of the number of dimensions.

It is tempting to try to identify the Hawking effect as the cause for this sym-

- metry restoration, but this identification does not seem to be correct. This is

primarily because from finite temperature field theory, we know that the infrared
properties of an n+1 dimensional finite temperature field theory are the same as
the n dimensional zero temperature version of the theory. Here it seems that
the n+1 dimensional field theory in a gravitational background is very similar
to 1+1 dimensiohal Minkowski space zero temperature field theory. Further-
more, we know, from the analysis of Shore,26 that discrete symmetries in de
Sitter space do not seem to be as drastically affected. Finally,l similar analysis
in other metrics, in particular the Schwarzschild metric, do not seem to rein-
force this interpretation; in fact, this phenomena may be peculiar to de Sitter

spacetime. Alternatively, this could be interpreted as being inconsistent with the
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conventional identification of field theory in nontrivial backgrounds and at finite.

temperature.

Whether this effect has any consequences for the inflationary scenario remains
to be seen. In the inflationary scenario one can conceive of an earlier FRW phase
“effectively acting as an infrared cutoff. However, as we have seen, the de Sitter
evolution will generate infrared divergences, on a characteristic time scale of the
order of the Hubble time. It would be interesting to see if familons?’ would
be affected by this phenomena and if so, whether these effects would survive

reheating.

To show that a broken continuous symmetry is restored we have considered
the simplest possible case, a broken U(1) symmetry. In flat spacetime (241
dimensions, finite temperature) McBryan and Spencer28 have shown that the
two point correlation function for the field ® (with a U(1) symmetry) can be
used as a bound for two point functions of O(N) nonlinear o0 models, and so if
a U(1) symmetry is restored so will an O(N) symmetry. We expect that the
behaviour of the U(1) will also bound the O(N) case here.

The functional Schrédinger formalism readily permits an analysis of the
uniqueness of the vacuum wavefunctional. We have shown that the coefficient
f (?) of x2, in the exponent of the wavefunctional, satisfies a first order non-
linear differential equation which can be transformed into a second order linear
differential equation. This has two linearly independent solutions, but the trans-
formation connecting f to the general solution is such that only the ratio of the
constants is important; hence f depends on one constant (this is because the

Bchrédinger equation is first order in time) whose value we must determine.

We find no substantial difference between the uniqueness of this wavefunc-
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tional and the equivalent one in Minkowski spacetime. The main difference ‘be-
tween these two wavefunctionals lies in the interpretation of the initial conditions
imposed. In Minkowski space one can but does not have to invoke regularity on
the Euclidean section. In de Sitter space, in k=0 coordinates, a real Euclidean
section does not exist; however, we may impose as tﬁé i;itia; condition the re-
quirement that the field energy remain finite as a — 0 (f — —o00). When we
try to do a similar thing in k=+1 coordinates, we find that we end up with
Hawking’s>® prescription because a — 0 (in fact all a < ) lies in the Euclidean
section of the manifold. Thus Hawking’s prescription for the semiclassical case
may be interpreted, physically, as a special case of the requirement that the field
energy remain finite as a — 0. This interpretation could, perhaps, be extended
to the fully quantum mechanical case; certainly it is correct if we consider the
metric fluctuation as just ahother quantum field propagating in the background

metric.

It seems conceivable that this formalism (along with the initial/boundary
condition prescription) ‘can be used to resolve the problem of the correct vac-
uum state (mode expansion) % for those spacetimes to which it is applicable.
Particle production manifests itself in the time dependence of theiunique vac-
uum wavefunctional. Perhaps the major advantage of such an approach is that
it allows one to utilize physical intuition developed solving quantum mechanical
problems. Also one need solve a first order (in time) differential equation instead

of the Klein-Gordon equation; hence we require only one initial condition.

We have also succeeded in finding a creation operator that allows us to ex-

plicitly construct the excited state wavefunctionals from the ground state wave-

functional. We hope to discuss this and some other topics, in particular the
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behavior of nonlinear ¢ models and discrete symmetries in de Sitter spacetime,

in the future.
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Appendix A: Evaluation of the Integral (5.23)

We use

2 Td k2
J2(kt) + Y2 (ki) = — 3’1 exp (-2;— + ?2y) K, (t%y) (A1)
1)

(ref. 21, p. 94), to rewrite the integral in (5.23) as a double integral and inter-

change orders of integration (all integrals are convergent) to obtain:
o0 d ©0
2 g ~
Z / —qetz”K,,(t 2y)/dklc:”/2 e k[ Jnza (kr). (A2)
0 Y 0
We can do the second integral, using eqn. (5.9) of ref. 22; we find

2 n_ - > e r’
AT Wy ) exp (P - ). (43)

ON~—~—3

Then eqn. (3.31) of ref. 22 gives us:

1 1—n
2 i n n ~y rZ\ 4 (izn) [ r?
—— 1} T(= —V)T(= t2_ P'? ——1]. A4
(7r3t2r) (2 v) (2 +”)( 4) v=3 (227 (44)

So

. 1 (3 —v)I(% +v) _(izn :
: <¢(:i:')¢(x’)) N 4r "5 gn-1p% (}£4’t§ —)7'2()2'":_1 ) P'Ej% ) (Zr? - 1) - (49)

Or using eqn. (6) on p. 143 of ref. 23 we find

(@0() = oy TE I Y

(4 F r(%1)

n

2
xF[—u+;,u+§, n+1).1 T ]

k-]
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Appendix B: Generalized Spherical Harmonics

The n-dimensional spherical harmonics are the eigenfunctions of E%n), the

Laplacian on the unit sphere S* (for coordinatization and metric see (2.15)):

! (m)(3 g(n)is 1 9 an-10..9
£(") = |S( )l 9| |’S 9; = san-1g. a0, sin 0“60,,
| 1 3 s n—2 0
B,
smibsmmTo, d6na T g T | (B1)
1 02

+

sin? 0, sin® 0,y - - -sin® 0, 06%’

where 0; stands for the derivative with respect to the coordinate 6;. The n-
indexed Yw (Q2) (W stands for the collection of “magnetic” indices B, C,... which
run over the integers [— A, A],[— B, B,...respectively) are defined by the following

equations:
ﬂ%n)YAw(ﬂ) = AaYaw (ﬂ) (BZ)

where the O(n+1) symmetry makes the eigenvalues independent of all but A;

- and

/ dQ |Yaw (Q))? = 1. (B3)
We can find A4 by studying the case where W = 0. (B2) gives us:

1 8 . a1, O
— 1Y = .
[sinn_l 0n 69,., s 0,. 60,,] Ao(ﬂ) AAYAO(Q) (B4)

The substitution z = cos 8, reduces this to:

[(1 - 22) % —nx aa ] YAo(.’B) = AAYA()(:E) (B5)

which is just the Gegenbauer equation (eqn. (22.6. 5) of ref. 20 ). So A4 =

—A(A+n-— 1) and Yo(z) = cICA 7 )(:c) To determine the constant ¢; we make
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use of the orthonormality of the Y’s; using eqn. (22.2.3) of ref. 20 we find:

_ A!(2A+n 1)[ 22 r(3) (%) (con
Ya0(0) = [ P T (At n-1) ] C4* '(cosfy). (BS)
Using eqn.(22.3.12) of ref. 20 we obtain: o
- n+1 1/2
Yoo(0) = {1; (W_;;)] . (B7)

Explicit forms for the C )(:z:) may be obtained from the generating function
(ref. 20 eqn. (22.9.3))

(1-2z2+ )%= Y 2"Ci)(2). (BS)
m=0

The addition formula is:
O™ eos) = &2 3 Vi ()Vaw (), (B9)

where ~ is the angle between ) and )’ and ¢z is a constant which we must
- determine. The right hand side is invariant under rotations, so we can rotate 9y

to the North Pole

1/2
Al(2A+n—1) [I‘("'1 )]2 (%) (1)
Yaw (01 = North Pole) = 2 c,? (1).
.AW( orth Pole) = w0 AT A n ) 4 (1)

(B10)
Using
(22 qy - (A+n—2)!

Ca” Q) Al(n—2)1"° (B11)

we eventua.lly obtain:

=) 4r"s x !

C,? = Y iw ()Y aw (). B12
_ a4’ (cos9) (2A+n—1)I‘(1§l); aw () Yaw (1) (B12)

We are now in a position to expand |Z — 17]'(""1) in spherical harmonics. Let
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|Z] = |§]; then

o= 2 () o

A=0
(B13)
_ 4t 3 v Yiw(Q)Yaw (D)
T T(2P) & AT T 24+ - 1)

Appendix C: Evaluation of the Sum (7.14)

Using eqns. (18) p. 144, (13) p. 141 and (2) p. 143 of ref. 23 we can write:

[P,:1l+n/2—1(sin'tv)]2 + -:—2 [Qi+n/2_1(sin?)] f

2 n 2 —A—(n-1)/2 —A-(n-1)/2, ., _~
WCOS?[I‘(A +3 +u)] P A tan®) PIAT (Citand).  (c)
Now eqn. (10) on p. 140 of ref. 23 allows us to replace P ‘41/2(" l)/2(—ita,n t)

with a linear combination of P__ Al/z(n 1)/2(z tant) and Q, A]/(zn 1)/2(1' tan?). Then

using equations on p. 179 of ref. 21 (the expansion for Q% = D¥, has an extra

factor of e¥™# and of e 2"#_ dropping both of these corrects it) reduces (7.15)

to:

(@) = Err (5 ) r (3 -0) (B2) 7

h2 2 . 1=n hio 2
Le —i(v—1/2)r p(52) no- (C2)
< (145 ) [e P (1450

gty o m sy (L Ko
+22( 2 )‘l’ sm'll’(; —V) QV——% (1+ 2 )},

1—n
_ where the sign of the phase of the coefficient of P‘E_—’;) is determined by the
2

fact that this is the equal-time limit of the Feynman propagator (Im[1 + E—z"—z] =
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Limy 7, Im[;m_;!(t—,j(rz — (=t +1" — i¢)?] < 0). Then eqn. (10) on p. 140 of ref.

23 allows us to write this as :

o= oo (52T (22)

Appendix D

In this appendix we establish equations (8.15) and (8.18). Let

I = COS Yn+1 (D1)

J - BTITMAE _RTT(G) @A+n) 4,

F“)_(Mf#rw;)" 4n"F %%A+§+WMA+§—U)Q4()
(D2)

and
Falz) = h"‘tI‘—il(n)fzif) _ hn_lr(%n_; V)I‘EL%I +v)
(4m)7 I'(%3) (4m)= T("F)

(D3)

n n n+1 14z
xF| = — —v; ; .
(2 thy Vit )

We shall now establish that F;(z) and Fy(z) satisfy the same linear second
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order differential equation, and the same boundary conditions:

Fi(zo) = Fy(z) and “F(z)) = LR . (D)

d.’B T=Z, dz Zo

It then follows that Fi(z) = Fy(z) (see, for instance, Whittaker and Watson **

Section 10.21).

Clearly, F3(z) satisfies the hypergeometric equation,

HF,(z)=0 (D5)
where
d? d n n
HE(1+x)(1—z)d—x—2——(n+1) zt—i;_(E +u)(§—u). (D6)
Now
HF(z) = - ﬁ;?_é%—) 3 (24 +1n) ¢§(a), (D7)
m3 "

where we have made use of Gegenbauer’s equation. We may use relations between

Gegenbauer polynomials (ref. 23, p. 178) to express (D7) as:

n h*10(2 nt2 nt2
HFy(z) = -—4—7r_-+_—(7—) €5z + el )] (Ds)

It is easy to show that Gegenbauer functions with negative integral subscripts

vanish and hence:
H Fy(z) =0. (D9)

Now using eqn. (15.2.1) of ref. 20 we have:

d 2
E—Fz (z)p = ﬁFz(z)n.i,g, - (D10)

Where the second subscript on F indicates the value of n wherever it appears in

the expression for F3(z), except in the cos yn4+1 term, which remains unchanged.
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Similarly (eqn. (30) on p. 178 of ref. 23) we find:

d

F1(2)n = SR (2)nse- (D11)

h2

We shall now show that the two functions satisfy the sameé bounidary conditions.
It is convenient to work with fi(z) and fy(z). The series representation of fi(z)
(see (D2)) becomes relatively simple at z = +1 and 0; we consider the case

z = —1. Then eqn. (22.4.2) of ref. 20 allows us to rewrite this as:

1 1 1 T(A+n) |

and from eqn. (15.3.1) of ref. 20 we find:

T - u)r(-;f +v). (D13)

A1) = 5T G

Using the integral representation of I'(A + n), and interchanging the order of
~ integration and summation (the integral and sum are convergent) we may rewrite

(D12) as

o0

1 yn1 1 1 (_y)A
T(n) /d }%[A-F +u+A+"—V Al (D14)
0

Now, both of the series in (D14) are related to incomplete gamma functions (see

ref. 20, eqn. (6.5.29)), so we find:

fi(-1) = %&7 /dy e Vyil [y""’y(% + u,'y) + y'ffy(g - u,y)] . (D15)
0

Using the integral representation of the incomplete gamma function we then
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obtain:

[o o] y :
1 n n _
H(-1) = o) / dy / dte Ve tys "Ltz [tVy™V + ¢yt (D16)
n
0 0
"The integrand of this double integral is symmetric in y and t; hence we can extend

the upper limit on the second integral to oo while simultaneously dividing by 2

o]

— =r—(1;1——/dy /dte Ve~tya —vlpz -1
"0

I(3 +v)T(3 —v)

= T() = fa(-1). (D17)

So, we have established Fj(—1) = F3(—1). Then from (D10} and (D11) we see:

d d
E;Fl(z) = Za—:Fz(:c) ey’ (D18)

Thus we have established
Fi(z) = Fy(z). - (D19)

The sum that we need to evaluate in the conformal case (8.15) may be obtained
from the general result by considering the value v = % and simplifying the

hypergeometric function.
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Appendix E: Approximate Green’s Functions
In this appendix we develop two power series expansions of the minimally
coupled scalar field’s equal time Green’s function, one valid for large, the other
for small, separations. For large separations we would find a power series in (1/r)
helpful. Using eqn. (15.3.8) of ref. 20 we have: |

I'(a)L'(d) I'(a) s
I'(c) (c—a)T(1-b+a)sinm(b— a)

Fla,bjc;1 — 2] = T

X 27 %Fla,c—bja—b+1;27"]

T'(b) n
T Tc—Br(l—a+b) smrla—b)

X z—bF[b,c —a;b—a+1;271.

Defining X = "2‘;2'2, we can convert equation (5.24) to the form

o AL I(Z —v)X”
(¢(@e(#)) = (4m)*F X3 [1‘(% +u)1‘2(1 — 2v) sin(27v)
L S Y Lz +1)X™
XFL T22 1o X ] I'(3 —v)I(1 + 2v)sin(27v)

X F u+%,% +u;1+2u;X'1H.
' (E2)

We then use the power series expansion for the hypergeometric function to write

this as:
_ k! 1 [X"i T(A —v+p)T(E —v+p)X?
(4)™F 2sin(m) X3 L & T(1-2v+p)p!
TR +v+p)T (2 +v+p)XP |
_ YV 2 2 . ‘ 3
- X pg) I'(1+2v+p)p! ] (E3)

Now if we are interested in the X — oo limit, the leading term will be the p=0
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contribution from the first power series, which is

_ A1 () -3 (™ _
T @) T +y) [x Iz ) (£4)

or for a very small mass

. =N\ h1 I'(n) -6 A

Jim (4(2)¢(2")) ~ TPEES [X~°T(6)] (E5)
_ k"' T(n) 1o
~@ﬂ#fw%)h 14' (E6)

For small separations a power series in r would be helpful; eqn. (15.3.6) of ref.

20 gives:
T'(a)T'(b) el ol n
I'(c) Fla,bje;1 - 2] T'{c—a)T(c—b)sinm(c —a—b)
T'(a)T'(b) : :
[P(a+b—c+1) Fla,bja+b—c+1;2] -
T(e-a)T(e—8) ..y
IF(c—a—-b+1)
X F[c—a,c—b;c—-b—a+1;z]]
so that
) hn—-lﬂ.
<¢(f)¢(z )= (4m)*F X7 L(3 —v)T(; +v)sinn(252)
I'(3 —v)T(3 +v) 1 1  3-n
x | —2 1-\(3%; F[§ —v3 +u,.—2-,X] (E8)
_ xo I‘(g—+ul££? _U)F[ﬁ n V§1+n’XH



Using the power series expansion for the hypergeometric function this becomes:

— (SO0 v TG 0
(47)°% sm7r(—2—)1‘(% +V)T(3 ~v)X*T p=0 I'(35% + p)p!
1._;_1°°1‘(ﬁ +v+p)T(3 —v+p)XP
-X > 2 T S ] (E9)

We notice that the Green’s function has an X independent piece which comes

from the p=0 term in the second series and is given by:

TN TG+ TG ) (10)
(@) F TG+ ) r(%*)
In the limit of small mass, we can write this as
A"l T n) 1
(4m)F T(35) 6 1Y

- However, if we keep all terms which contain negative powers of X we get a power

p kT T() 1
lim <¢ 5)43 )) (47r)"Tl [F(%__l)a‘l'
P(5®) -2y, TCE®) yoimpey | D) yo(oge)
(_22_) x5+ T (n_;;)z!x +] (E12)

Notice that the first term is the only term that diverges as we let the mass go to
zero (this can be interpreted as the zero mode on the n-sphere, ‘see below). The
terms with negative powers of X presumably are the ultraviolet divergences of
the theory; in fact in 3+1 dimensions, the second term is just G’%’?’ which is

the standard ultraviolet divergence in three dimensions.
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The contribution of the zero mode on the n-sphere to the propagator is (from

(7.14) and (B7)):

F("+1) 1

a1 Ref Ol ane (B13)

($(2)p(Z *’)>o

For a small mass we have (from (7.12) and (C1))

1 = 2p-(n=1)/2(.0 Fyp-(n1)/2,
lRef(?)1A=o‘mst L) PR (Ftan ) BT P (<itant). (E149)

Then using eqn. (14) on p. 150 of ref. 23 we can rewrite (E13) (for a small mass)

as:

(@SN, = oy L)

1
CERCan )

which is exactly the same as the first term in either (E6) or (E12). From (8.17)
we see that this is also the zero mode on the n+1 sphere that is the Euclidean

section of de Sitter spacetime.
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Figure Captions
Figure 1. The contour C for integral (4.3)

Figure 2. The massless limit of the two-point function, in 3+1 dimen-
sions (with the zero mode removed) [(¢(Z)¢(z")) — h?/8r26] 7h?; as a function
of ‘prop_er distance y = ha|Z — 7|, in Hubble units. All contributions in the

ultraviolet, from scattering off of the background have been suppressed.

Figure 3. The Lorentzian and Euclidean sections of de Sitter spacetime. The
set of axes represent the complex time plane; the vertical axis is imaginary “time”

tE, the horizontal axes are real time.
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