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Abstract

3D (3 dimensional) Young diagram is a generalization of 2D Young diagram. In this paper, from the
orthogonality of 3D Young diagrams and the properties in affine Yangian and its MacMahon representation,
we obtain the Schur functions corresponding to 3D Young diagrams, which are called 3-Schur functions.
3-Schur functions are a generalization of Schur functions in the sense that when iy = 1,hy = —1,h3 =0,
the 3-Schur functions of 3D Young diagrams become Schur functions of 2D Young diagrams, which is a
special case of h|1 = h, hy = —%, hy = % —h.When hy=h,hy = —%, hy = % — h, the 3-Schur functions
turn into the Jack symmetric polynomials of 2D Young diagrams by multiplying a coefficient. We will see
that 3-Schur functions are symmetric about three coordinate axes.
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Let p= (p1, p2, - --). The operators h, (p) are determined by the generating function:

H@ =Y ha@" =P, gp=) 2o (1)
n=1

n=0

and set i, (x) =0 for n < 0. Note that 4, (p) is the complete homogeneous symmetric function
by the Miwa transform, i.e., replacing p; with the power sum ) x,i. For 2D Young diagram A =
(A1, A2, -+, A7), the Schur function S) = S, (p) is a polynomial of variables p in C[p] defined
by the Jacobi-Trudi formula [1-3]:
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Si(p) = det (h, i+ (p)) 1<i,j<l @

2D Young diagrams and Schur functions are attractive research objects, which were used to
determine irreducible characters of highest weight representations of the classical groups [1,2,4].
Recently they appear in mathematical physics, especially in integrable models. In [5], the group
in the Kyoto school uses Schur functions in a remarkable way to understand the KP and KdV
hierarchies. In [6,7], Tsilevich and Sutkowski, respectively, give the realization of the phase
model in the algebra of Schur functions and build the relations between the g-boson model and
Hall-Littlewood functions. In [8], we build the relations between the statistical models, such as
phase model, and KP hierarchy by using 2D Young diagrams and Schur functions.

3D Young diagram (plane partition) is a generalization of 2D Young diagram, which arose nat-
urally in crystal melting model [9,10]. 3D Young diagrams also have many applications in many
fields of mathematics and physics, such as statistical models, number theory, representations of
some algebras (Ding-Iohara-Miki algebras, affine Yangian, etc). In this paper, we consider the
relations between 3D Young diagrams and affine Yangian. The Yangian of a finite dimensional
simple Lie algebra g is defined by Drinfeld [11,12] in order to obtain a solution of the Yang-
Baxter equation. The Yangian is a quantum group which is the deformation of the current algebra
glz]. In this paper, we will use the properties of affine Yangian and its MacMahon representation.

We know that the vector space of 2D Young diagrams is isomorphic to that of Schur functions.
In many cases, we do not distinguish 2D Young diagram and its corresponding Schur function.
For example, let A, 1 be 2D Young diagrams and Sy, S, their corresponding Schur functions, the
orthogonality of Schur functions [1,2]

(SxlSu) =i 3
can also be written as the orthogonality of 2D Young diagrams
(M) =8 p- “

The 3D Young diagram is a generalization of 2D Young diagram, but 3D Young diagram does
not have many structures which are clear on 2D Young diagram. There are some work about
these [13,14] recently. In [15], we calculate the orthogonality of 3D Young diagrams accord-
ing to the properties of affine Yangian and its MacMahon representation. In this paper, we
treat the orthogonality of 3D Young diagrams as that of 3-Schur functions corresponding to
3D Young diagrams, then we calculate 3-Schur functions. We will see the 3-Schur functions
are symmetric about hy, h, h3 which are crucial parameters in affine Yangian. From [13],
we know that the 3-Schur functions are functions depending on the triangular set of variables
P, P21, P22, P31, P32, P33, -, here we use capital P denoting the variables of 3-Schur func-
tions to distinguish that p,, are the variables of Schur functions.

The paper is organized as follows. In section 2, we recall the definition of affine Yangian
of gl(1) and its MacMahon representation first, then we recall the orthogonality of 3D Young
diagrams we calculated. In section 3, we calculate the 3-Schur functions of 3D Young diagrams
by the orthogonality of 3D Young diagram. In section 4, we show that the 3-Schur functions
obtained in last section are already exist in affine Yangian and its MacMahon representation. In
section 5, we show that 3-Schur functions of 3D Young diagrams with more than one layer in the
z-axis direction vanish, and 3-Schur functions of 3D Young diagrams with one layer in the z-axis

direction become the Schur functions of 2D Young diagrams when h; = 1,h, = —1,h3 = 0.
In section 6, we show that 3-Schur functions of 3D Young diagrams are reduced to the Jack
symmetric polynomials of 2D Young diagrams when k) = h, hy = —%, hy = % — h, and the

result in last section is the special case & = 1 of that in this section.
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2. Affine Yangian and the orthogonality of 3D Young diagrams

In this section, we recall the definition of the affine Yangian of gl(1) and its MacMahon
representation as in papers [16,17] first. Then we recall the orthogonality we given in paper
[15]. The affine Yangian ) of gl(1) is an associative algebra with generators e;, f; and v},
j=0,1,... and the following relations [16,17]

[v). vx] =0, ()
[ej13.ex] —3[ejsa- exv1] +3[ejr1. enra] — e, exts]
+02[ej+1,ek]—Oz[ej,ek+1]—ag{ej,ek}zo, ©6)
[fi+3: fi] =3[ fi+2. fiwr] +3[Fis1. fraz] = [f5: fes3]
+ o2 [fir1, fi] =02 [ fis firt] +o3{f). fi} =0, (7
[ej. fie] = Witk ®)
[Vjt3.ex] =3 [Vjr2 e ] +3 [ W)t expa] — [V} exss]
+ o (Y. e] — o2 [V, exy1] — o3 {v). e} =0, )]
[Wi+3: fi] = 3[Vjs2, firr] +3[Wje1, fira] = [ fiss]
+ o2 [Vjs1, fil] o2 (W), fir] + 03 {¥). fi} =0, (10)
together with boundary conditions
[Vo. ;] =0.[v1. ;] =0.[v2. ;] =2e;, (an
[Vo. fi]=0.[v1. £;]=0.[v2. fi] = =2/ (12)
and a generalization of Serre relations
Symgj, j, iy [€i- [e-€s1]] =0, (13)
SYM Gy, jo. o it s Fist1]] =0, (14)

where Sym is the complete symmetrization over all indicated indices which include 6 terms. In
this paper, we set ¥ = 1 with no loss of generality.
The notations o2, o3 in the definition of affine Yangian are functions of three complex num-
bers hy, hy and hj:
o1=h1+hy+h3=0,
oy =hihy + hihs + hahs,
03 = hihah;3.
The affine Yangian ) has a representation on the plane partitions. A plane partition 7 is a

2D Young diagram in the first quadrant of plane x Oy filled with non-negative integers that form
nonincreasing rows and columns [18]. The number in the position (i, j) is denoted by 7; ;

Tl T2
2,1 2.2

The integer 7; ; satisfies



N. Wang Nuclear Physics B 960 (2020) 115173

Fig. 1. A 3D Young diagram.
Tij = Tiglj, Tij=Tij+1, lim = lim 7 ;=0
i—00 j—>o00

for all integers i, j > 0.

Piling 7; ; cubes over position (i, j) gives a three dimensional object in the first octant of
space Cartesian coordinate system O — xyz. This three dimensional object is called 3D Young
diagram. 3D Young diagrams arose naturally in the melting crystal model [9,10]. We always
think that 3D Young diagrams and plane partitions are the same thing. For example, the 3D
Young diagram in Fig. |

can also be denoted by plane partition

4 3 2 1
3220
2 210
1 0 0O

The total volume of the 3D Young diagram 7 is defined by

o]

=" mij. (15)
i,j=1

If || = n, we say the 3D Young diagram r is a plane partition of integer n. Let p(n) denote the

number of plane partitions & with |7 | = n. The generating function of numbers p(n) was given
by MacMahon function:

> png" =
n=0

For a 3D Young diagram 7, the notation O € #+ means that this box is not in 7 and can
be added to m, here “can be added” means that when this box is added, it is still a 3D Young
diagram. The notation O € 7~ means that this box is in 7 and can be removed from 7, here “can
be removed” means that when this box is removed, it is still a 3D Young diagram. For a box O,
we let

e 1

Ha=7 1o

n=1

ho =h1yo +haxg + hazg, (17

where (xg, yg, zo) is the coordinate of box O in coordinate system O — xyz. Here we use the
order yg, X, zo to match that in paper [16].
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Following [16,17], we introduce the generating functions as follows:

o e;
ew =) 5,
j=0
=311 (18)
— uitt’
j:

v =140y T
j=0

where u is a parameter. Introduce

ot = 12 (19)
and
(u+hy)(u+ h2)(u+ h3)
= ) 20
P = R — by — ) 20
For a 3D Young diagram 7, define ¥ (1) by
Y (u) = Yo (u) H @ — hp). (21

Oer
In the following, we recall the representation of affine Yangian on 3D Young diagrams as in paper
[16] by making a slight change. The representation of affine Yangian on 3D Young diagrams is
given by

Y@ lr) = e @), 22)
cwim) = Y E(”;_—Z;D)m +0), 23)
Oerxt
F _
Fwim = 3 Do 4
Oemr—

where |7) means the state characterized by 3D Young diagram 7 and the coefficients

E(rr—>71+D)=—F(71+D—>7r)=\/0iresu_>hm V(). 25)
3

In paper [16], the relations are

1
E(r >m7m+0)=F(@+0-—mn) =\/—U— resy—ng Y (),
3

this is the slight change we make. Equations (23) and (24) mean generators e, f; acting on 3D
Young diagram 7 by

ejlty= Y hLE(@—r+0)r +0), (26)
Oen™t

filmy=>" Wb Fr — 7 - o)r — o). 27
der—
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The triangular decomposition of affine Yangian ) is

y=Y"eBay~ (28)

where V' is the subalgebra generated by generators e; with relations (6) and (13), B is the
commutative subalgebra with generators v;, V™~ is the subalgebra generated by generators f;
with relations (7) and (14).

Define the anti-automorphism a by

a(ej) =—fj (29)
The quadratic form on Y *|0) is defined by
B(x0), y|0)) = (0la(y)x|0) (30)

where x, y € Y. Note that the quadratic form here is different from the Shapovalov form in [16].
For 3D Young diagrams 7z, 7’ and let 7 = x|0), #’ = y|0) for x, y € YT, define the orthogonality

(m'|7r) = (0l (y)x0). €19}

For a 3D Young diagram 7, let n denote its total volume | |. We describe the orthogonality in
the order of n. When n = 0, we set (0|0) = 1. When n = 1, there is only one 3D Young diagram
(1), we have

(D) =1.

When n = 2, from MacMahon function, we know that there are 3 3D Young diagrams, which are

(1, 1), ), ( : ) we have

1
[(1,1)) = TS YTS (e2 + hier + hahszegp) eol0),
1 1
| <1>) = U — ) — ) (e2 + haey + hi1h3ep) e0]0), (32)
1
(2)) = (e2 + h3er + hihaegp) e9]0).

"~ (h3—h1)(h3 — ha)
From the relations in (8), we have

2(1 + hahs) 1
1, D1, 1) = s 1,1 =0,
(1, DI, D) U =)y —h3) (( )|<1)>

1 1 2(1 + hih3)
= b 111 2’ =O7 33
(<1>|<1>) i — ) (s — 1) (1, DI2) (33)
2(1 4+ hihy) 1
2)((2)) = , 2)) =0.
(D)1(2)) s — ) s — 1) <<1>|( )

Here, we can see the symmetry of i1, h», h3 corresponds to rotating 3D Young diagram, for ex-

ample, changing 3D Young diagram (1, 1) to (2) on the left hand of equations above corresponds

to exchanging /1 and h3.

When n = 3, from MacMahon function, we know that there are 6 3D Young diagrams, which

1

are (1,1,1),(2,1),(3), (%) , (i 1) and | 1 |. There are two ways to get 3D Young dia-
1

gram (2, 1), which are
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-1, D) — (@21,

- 2)—2D.
We denote the state corresponding to (2, 1) in the first equation of the two equations above by
[(2, 1))n, k5, and that in the second equation above by [(2, 1))p,.4,. We explain the subscripts:
let hg = xghy + yghy + zohs, we use hg-position to represent the position (xg, yo, zo). The
notation “h1, h3” means adding one box to O in A1-position first, then adding one box in h3-

position. Even though %1-position is not unique, for example, %1-position can be the positions
(1,2,1),(2,3,2),--- since hy 4+ ho + h3 =0, but it is unique if we want to get a new 3D Young

diagram after adding this box. Therefore, we can read the notation | ( i ! >)h1 .hy» Which means

the 3D Young diagram | ( } ! )) is obtained from O by adding one box in k1-position first,

then adding one box in h,-position. When there is no confusion, we will omit the subscripts.
From the MacMahon representation of affine Yangian, we know that

1
[(1,1,1)) = 1 = o) (2 = h3)(€2 + hie1 + hahzep)|(1, 1)),
1 1 1
| <1 >>h|,h2 = U= 2h)(ns _hS)(ez + (ho — hy)e; + 2h1h3ep)| (1, 1)), (34)
1
(2, D)py iy = (e2 + (h3 — h1)er +2h1haeg)|(1, 1)).

(h3 —2h1)(h3 — h2)

From the relations in (8), we have

32 + hah3 o) Yo 2(1 4 hah3 o)
1,1, D|(,1,1)) = s
L DI = o @i = h) (= ha)(hy — hi) °

(<1 1) | (1 1)) _ 200+ hih3yo)(Zha — 1) 2(1 4 hahsvo)

ki 1 L) = G T (hy — b (hy — 2h1) (i — ho) (i — ha) '
2(1 + h1h2yr9)(2h3 — hy) 2(1 + hah3ro) .

(h3 — h1)(h3 — h2)(h3 — 2hy) (h1 — ha)(hy —h3) "~

and others equal zero. We can see that one changes into another of the last two equations by
exchanging h, and k3. By the symmetry of i1, k7, k3 or direct calculations, we can write that

hl,h3<(29 DI(2, 1))h1,h3 =

( } | } - 32 + hihsyo) o 2(1 + h1hzy) "
1 1 (hy — h1)(2hy — h3) (hy — hy)(hy — h3) '
(33 = SCFmhvove 21+ hihao)

(2h3 — hy)(2h3 — hy) (hs — hy)(hs —h)

(<1 1>|<1 1)) 20+ hohay)@hy —ha)  2(1+ hihs)
it 1 P2 = G = o) (hy — ha)(hy — 2h2) (ha — hy)(ha — h3)

Yo,

200+ hoh3yo)(2h1 —h3)  2(1 + hihayo)
A DI Doy = G 5 G )y = 2h3) G — ) s — )

<<2)|<2)) 200+ hihayo)(2h3 —ho)  2(1 + hih3syo)
P\ 1) T ) T G ) (s — ho) (B — 2h2) (hy — o) (ha — h3)

7

Yo,
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2 2 2(1 + h1h3yo)(2hy — h3) 2(1 + h1hayo)
h3,ho { | Vhzhy = Yo.

1 1 (hy — h3)(hy — hy)(hy — 2h3) (h3 — hy)(h3 — h2)

We can see that

hl,h2<(i 1)|(} 1)>h1,h2¢h2,hl<<} 1)|<} 1)>h2,h1

we discuss the relations between them. We know that

1 1 1 1
| (1 >)h2,h1 = Uy — 2, _hs)(ez + (h1 — ha)ey +2hoh3ep)| <1>).

By calculation, we have

( 11 | 11 _ 2(1 4 h1h30)2(1 + hah3 o)
i\ 1 L) T = (e = ha) (=)

which means that

hl,h2<<i 1>|(i 1>>h2,h1
=\/hl»h2(<i 1)'(1 1)>h1,h2'h2,h1<<} 1>|<} 1>>h2,h1~

The result tells us that | ( i ! >) hy,hy and | ( i ! )) hy,h, are linearly dependent, actually, they

have the following relation. For total volume 3, the relations between the same shaped 3D Young
diagrams which are obtained from different steps are

|<} 1>>h.,h2=<o(hz—h1>|<} 1>>h2,h1, (35)
| (f)m,m = (h3 — ) (f))m,hz, (36)
122 D)y = @Ch3 = ADIQ. D). (37

where ¢ (u) is defined in (20).
3. 3-Schur functions

In this section, we calculate the 3-Schur functions of 3D Young diagrams by the orthogonality
of 3D Young diagram. For a 3D Young diagram 7, we denote the 3-Schur function corresponding
to = by Sy, which is a function of variables Py, P> 1, P>, P3,1, P32, P33, --. For 3D Young
diagrams 7, 7/, define

(Sz|S7) = (mln). (38)

From the properties of (7|7}, we have that (S;|S;/) = (S;/|Sz), and if & and 7" do not have
the same shape, then (S;|S,) = 0.

We set So = 1, which is the 3-Schur function corresponding to empty, and Sp = S1) = Pi,
which is the 3-Schur function corresponding to 3D Young diagram (1). We have (Sg|Sp) =

8
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(P1|P1) = 1, which is the same as in Schur functions and 2D Young diagrams. Actually, we
want to keep (-|-) of p,, where p,, are variables of Schur functions corresponding to 2D Young
diagrams.

Let

(PPIP) =2, (P{|P21)=0, (P{|P22)=0,

(Pr1lP21) =2, (P21|P22) =0, (PaplPr2)=—2. (39)
We give a remark here to explain the values of these scalar products. I give them for the following
reasons: firstly, I want to keep the values and properties of the scalar products corresponding to
Schur functions of 2D Young diagram unchanged, for example, (P12| Plz) =2 is the same as that
in the case of Schur functions of 2D Young diagrams; Secondly, I want the 3-Schur functions have
good properties, for example, exchanging /1, h2, h3 corresponds to rotating 3D Young diagram;
Thirdly, I want the values of these scalar products match the values of the scalar products of
e;eq)0), e;ejeg|0) respectively which we will discuss in the following section. We will give the

values of other scalar products in the same way.
We know that 3-Schur functions S,1y, S< 1 ) S(2) are functions of P12, P>, Pyo. Let

1

Sa.n=aPl +ayPry +a3Pyy,
S =b1P12+b2P2,1 +b3Ps 2,
(1)
Sa,n=ai P12 +arPy1 +azPp,
they satisfy the relations in (33) and
Pf:&my%YI>+&%
1

then we have

2 2 2 (1+h2h3)
ay +a5 —as; = s
PER2 T (= ho)(hy — h3)
1+ h1h3)
b+ b2 — b2 = ,
P72 (hy — hy) (ha — h3)
2 1+ h1h2)

2, 2 2_
A= G Tt — )

airby +axby +azby; =0,
aijcy +axey +aze3 =0,
bic1 + bycy +b3e3 =0,

ay+by+c1=1,
ar)+by+cr=0,
a3 + b3+ c3=0.

Solve these equations, we get
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iy = (1 + hah3) by — (1+hih3) o= (1 +hihy) ’
(h1 — h2)(hy — h3) (h2 — h1)(ha — h3) (h3 — h1)(h3 — h2)
(1 4+ hoh3) (14 hih3) (1+hihy)
ay = hy,by = 2, €1 = 3,
(h1 —h2)(hy — h3) (ha — h1)(ha — h3) (h3 — h1)(h3 — h2)
= V(1 +hah3)(1+hihsz)(1 +h1h2),b _ VU +hah3)A +hih3)[d +h1h2)7
(h1 — h2)(hy — h3) (ha — h1)(ha — h3)
o= N+ hah3)(1+hihs)(1 +h1h2)’
(h3 — h1)(h3 — h2)
that is
S(1,1) _ (1 4+ hyh3) 2 (1 4+ hoh3) I Pzi]

U — o) —h3) Ly = )y — )
A+ hah3)(1 4+ hih3)(1+ hiho)
(h1 —ha)(h1 — h3)
(14 h1h3) ) (14 hih3)
<1> (ha — h)(hy — h3) (ha — ) (hy — h3)

P, (40)

Py

A+ hah3)(A + hih3)(1 4+ hihs)

, 41
(i — )iy — 113) 22 “h
(14 h1hy) 2 (14 h1ho)
So = h3 P
Ty Y7y S 7y o Y7y S UL
T RO ih) , )

(h3 —h1)(h3 — h2)
From the expression above, we can see these 3-Schur functions are symmetric about three coor-
i corresponds to exchanging i1 < hj
in 3-Schur functions, changing 3D Young diagram (1, 1) to (2) corresponds to exchanging

dinate axes, i.e., changing 3D Young diagram (1, 1) to

to (2) corresponds to ex-

hy1 <> h3 in 3-Schur functions, changing 3D Young diagram (i

changing > < h3 in 3-Schur functions.
Let P}, P\ P21, P P22, P31, P32, P33 satisfy

(PIPY) =6, (PPIP1Py1) =0, (P}|P1P22) =0, (P{|P31) =0, (P}|P32) =0,
(P|P33) =0, (P1Py1|P1Py1) =2, (PIP21|P1P22) =0, (P1P21|P51) =0,
(P1P21|P32) =0,{P1P21|P33) =0,(P1P22| P1P22) = =2, (P1 P21 P31) =0,
(P1P22|P32) =0,(P1P22|P33) =0, (P3,11P31) =3, (P3,11P3,2) =0,
(P311P33) =0,(P32|P32) = =2, (P32|P33) =0, (P33|P33) =6. (43)

We know that 3-Schur functions S(1,1,1y, S2,1), S3), S< b ), S( 11 ) and § /, \ are functions

1 1

of P}, Py Py, PiP23, P31, P32, P33. Let

10



N. Wang Nuclear Physics B 960 (2020) 115173

Sa,1,1) =611P13 +ayPiP1+a3P1Pay+asPs 1 +asP3p+aeP3 3,
S< L ) = b1 P} 4+ by P1 Py + b3 Pi Pyp+ by P31 + bsPs o+ bePs 3,
hy,hy

S@ Dy g = €1 P13 +caP1Pyi+ 3PPy +caPsy +cs5P3o+ceP3 3,

S@y=d\P{ +dyP1Pyy +d3Pi Py +dyPs) +ds P32 +de P33,

Sio =g1P} + g P1Py1+ 3P Pra+ gaPs 1+ 85P3 2 + g6 P33,
(i),

S 1\ = h1P13 +hy PPy +h3Pi P+ haP31+hsP3o+heP33
1
1
and
S(l 1) =‘P(h2_h1)5<1 1) ’ (44)
iy 1 ho,hy
S@py sy =3 —h1)S2, 10,0 (45)
S<2> =<P(h3—h2)5<2> , (46)
1 hy,h3 1 h3,hy

they satisfy

(SIS = 3(2 + hah3 o) o 2(1 + hah3o) .
” ” (2h1 — h2)2hy — h3) (hy — hp)(hy — h3)
(S s Vo = 2(1 + h1h3y)(2hy — hy) 2(1 + hah3yro) .
12 <i 1) (} 1) Y2 (hy = hy)(ha — h3)(ha — 2y) (I — ho) (hy — h3)

(S 10182 1)) 21+ h1hayo)(2h3 — hy) 2(1 4 hah3zo) "
M3 1@ D@D = G T (s — o) (s — 2hy) (hy — ho)(hy — )
3Q+hhsvo)o 21+ hihsyo)

1 ' = @y =)@ —h3) (s — )i =) 7™

(S, \1S

1

(S IS3) = 32+ hihoyo)Yo  2(1 + hihayo) Vo,
(2h3 — h1)(2h3 — ha) (h3 — h1)(h3 — h2)
2 2 _ 2(1 4+ hihayo)(2hs — hy)  2(1 + hih3io)
’””’3(( 1 ) | (1>>’””“ (s — h) (3 — ho)(hs — 2I3) (hy — hp)(hy — )
(Sa.1.pl82. 1) =0, (5(1,1,1)|S<1 1)) =0, (5(1,1,1)|S<2>) =0,
1 1

) =0,(51,1,1)183)) =0, (S2,1)1S3)) =0,

Yo,

(Sa.1nlS/q
1
1

11
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(5(2,1>|S( 11 )) =0, (5(2,1>|5<2>) =0,(Se,nlS ) =0,

1
1 1
1

(S o\ IS/ 1 (V) =0.(S/ 5\ 1S@) =0.(S/5\ 1S/ \) =0,
S B R O A ¥
1

(S<1 1>|S(3))=O,(S<1 1>|S =0, 1S/ ) =0,

1 1

and

PlS(1,1)=S(1,1,1)+S<1 1) + 8@ 0ny 0y
hy,hy

1 i 1 oy 1 o3

P1S@) =82 1y, T S( 2) +53),

h3,hy
then we have

2 2 2 2 2 2 32+ hahsyo)yo  2(1 + hahsio)
Oai 2y = 2a5 303 = 205 4 006 = (o ) @y — ha) Uy — o)y — )
6b7 +2b3 — 2b3 + 3bj — 2b3 + 6b7

_ 2(1+hih3yo)Rha —h1)  2(1 + haoh3o)
" (2 — ) (hy — h3)(ha — 2hy) (hy — ho)(hy — )
6¢3 +2¢3 — 2c§ +3¢3 — 2c§ + 6c§

_ 2(1 + hihoo)(2hs — hy) 2(1 + hah3o) o

(h3 — h1)(h3 — h2)(h3 — 2hy) (hy — ho)(hy —h3) "~
3@+ hihavo)yo  2(1 + hihavo)

6d? +2d? — 2d? 4 3d? — 2d? + 6d? = Vo,
PR AR TR TS TN T ks — ) (k3 — ho) (s — hi)(hs — h2)

687 + 283 — 283 + 385 — 285 + 685
_ 2(1+hihayo)2h3 —h2)  2(1 + hih3vo)
(h3 — h1)(h3 — h2)(hs — 2h2) (hy — h1)(hy — h3)
32+ hihzyro)vo 2(1 + h1h3yo)
6h2 + 2h% — 2h2% + 3h2 — 2h2 + 6h% = ,
12 2k 3 s A O = ) 2ha — 3) (hr — ) ia — B

6a1by + 2arby — 2a3bs + 3asbs — 2asbs + 6agbg = 0,

Yo,

6ajcy + 2axcy — 2a3c3 + 3agcqy — 2ascs + 6ageg =0,
6a1dy + 2ardy — 2a3ds + 3asds — 2asds + 6agde = 0,
6a1g1 + 2a2g> — 2a3g3 + 3asg4 — 2asgs5 + 6aege =0,

12
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6aihy + 2arhy — 2aszhs + 3ashg — 2ashs + 6aghg =0,
6b1c1 + 2bycyr — 2b3cs + 3bycy — 2bscs + 6bgeg = 0,
6b1dy + 2brds — 2b3yds + 3bads — 2bsds + 6bedg = 0,
6b181 + 2b2g2 — 2b3g3 + 3baga — 2bsgs + 6bege =0,
6b1h1 4+ 2byhy — 2b3h3 + 3bghy — 2bshs + 6bghe = 0,
6¢c1dy + 2cody — 2c3d3 + 3cady — 2¢5ds + 6¢gdg =0,
6c181 + 228> — 2c383 + 3cags — 2¢585 + 6¢686 =0,
6¢c1hy + 2cohy — 2¢3h3 4+ 3cqhg — 2¢5hs + 6¢ghe = 0,
6d1g1 + 2drg> — 2d3g3 + 3dags — 2dsgs + 6dsge = 0,
6d1h1 + 2dyhy — 2d3hs + 3dahg — 2dshs + 6dehe =0,
6g1h1 +2g2h2 —2g3h3 +3g4hg — 2g5hs + 6gche =0,

and
(1 + hah3)
a +b +C = ,
: : : (hl _h2)(l’l] —h3)
(1 + hah3)hy
a +b +C = ,
2T = G D)y — )
TF h3) (A T hihs) (L F hih
a3+b3+c3=“/( 2h3)(1+hih3)(1 + hih2)

(h1 — h2)(hy — h3) ’
as+by+c4=0,a5+bs+c5=0,a6+bs+c6 =0,
(1+ hyh3)
(hy — hy)(hy — h3)’
(1 + hih3)hy
(hy — hy)(hy —h3)’
VA + hah3)(I+hih3)(1 + hiho)
@(hy —h2)bs + g3+ h3 = Y ,
@(hy —h2)by + g4+ ha =0,0(hy — h2)bs + g5+ hs =0, 9(h1 — h2)be + g6 + he =0,
(14 hihy)
(hs —h1)(h3 — hy)’
(I + hiho)hs
(h3 —h1)(h3 —hy)’
VA + hah3)(I+hih3)(1 + hih))
(h3 — h1)(h3 — h2) ’
@(h1 —h3)ca +@(ha —h3)ga+ds =0, p(h1 — h3)cs + @(hy — h3)gs +ds =0,

@(h1 — h3)ce + @(hy — h3)ge +de =0.

@(ht —h)b1+g1+h1 =

@(ht —h2)by+ g2+ hy =

@(hy —h3)cr +(hy —h3)g +d) =

@(hy —h3)ca +@(hay —h3)ga +dr =

@(hy —h3)es +@(hay —h3)gs +dz =

Solve these equations, we get

_ (14 hah3)(2+ hoh3)
~ (h1 — h2)(hy — h3)(2hy — h)(2hy — h3)’

ai

13
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3h1(1 4+ hoh3)(2 + hyhs)

“= (hy — h2)(h1 — h3)(2h1 — h2)(2hy — h3)’
s = 32+ hoh3)/(1 + hoh3)(1 + hih3)(1 + hihy)
(hy — h2)(h1 — h3)(2hy — h2)(2hy — h3)
e 213 (1 + hah3) (2 + hah3)
(hy — h2)(hy — h3)(2hy — h2)(2hy — h3)’
as = 3h1 (2 + hoh3)/(1 + hoh3)(1 + h1h3)(1 + hihy) ’

(h1 — h2)(hy — h3)(2h1 — h2)(2hy — h3)
e — V(L + hah3)(L+ hih3)(L+ hih) 2 + hoh3)2 + hih3)2 + hih))
¥ (h1 — h2)(hy — h3)(2hy — h2)(2hy — h3)

’

that is,

1
(h1 —h2)(hy — h3)(2hy — h2)(2hy — h3)
+3h1(1 4+ hah3)(2 4 hoh3) P1 P> 3

+3Q2 + hoh3)y/ (1 + hah3)(1 + hih3)(1+ hiha) P1 Py s

+ 213 (1 + hah3)(2 4 hahs) Ps (47)
+ 31 (2 + haoh3)y/ (1 + hah3) (1 + hihs) (1 + hha) P

v/ (14 hah3) (1 + hih3) (1 + h1ha) (2 4 hah3) (2 + hih3) (2 +h1h2)P3,3) .

((1 + hoh3) (2 + hah3) P}

Sa, 1,y =

We also get b;, c;, d;, gi, h; by solving the equations above which we do not list, instead we list
the following result:
s _ 1
(1 l) = (hy = 2h1)(hy — h3)(hy — ho)(hy — h3)
hy.hy

(2(1 +hih3)(1+ hahs) P

+ (=2h3)(1 + hoh3)(1 +h1h3) P1 Py 1

+ (6 — Zh%)\/(l +hoh3)(1 +hih3)(1+h1h)P1 Py o
+2h1hy(1+ hoh3)(1 +h1h3) P34

+ (=2h3 +303)y/(1 + hoh3)(1 + h1h3)(1 + h1hy) P3 2
+v/ (1 + hah3)(1 +hih3)(1+ h1ha)(2 + hah3) (2 + h1h3) (2 + h1h2)P3,3) .
S _ 1
@Dnhs = (hy —2h1)(hy — ha)(hy — ho) () — h3) (
+ (=2h2)(1 + hoh3)(1 + hihy) P1 Py y

+ (6 = 2h$) /(1 + hah3)(1 + hih3)(1 + hihy) Py P2o
+2h1h3(1 + hah3)(1 + h1ho) P33 (49)
+ (=2h3 4 303)y/ (1 + hah3)(1 + h1h3)(1 + hihy) P3
+\/(1 + hoh3)(1+hih3)(1 4+ hi1hy) 24 hoh3)2 + h1h3)(2 + /’l]/’lz)P3’3) .
S _ 1
<2> (h3 — 2h2)(h3 — h1)(ha — h1)(ha — h3)
ho.h3

(48)

2(1 + hiho)(1 + hoh3) PP

(200 + hh2) (1 + i) P}

+ (=2h1)(1 +h1h3)(A + h1h2) P1 P 3

14
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+ (6 = 2hD)/(1 + hah3)(1 + hih3)(1 + hiho) Py Pa s

+2hoh3(1 + hih3)(1 4+ hiho) P3 g (50)

+ (=2h1 +303)y/ (1 + hoh3)(1 + h1h3)(1 + hiha) P32

+ (1 + hah3)(1 4+ h1h3)(1 + h1ho) (2 + hoh3) (2 + hih3) (2 + hlhz)Pw) )
1

(hz — h2)(h3 — h1)(2h3 — h2)(2h3 — hy)
+3h3(1 +h1h2)(2+ hihy) PLPay

+3Q2+ h1h2)y/(1 + hah3)(1 + hh3)(1+ hiho) Py Pas

+21m5(1+ hiha) 2+ hiho) Py g (51)
+3h3(2 4+ h1h2)y/(1 4+ hah3)(1 + hihs)(1+ hiha) P32

+v/ (1 + hah3)(1 + hih3)(1 4 hiha) (2 + hah3) (2 + hih3) (2 +h1h2)P3,3),

Se) = (A +mih2) @+ hiho) P}

and

1
S, = 1+ hih3) Q2+ hih3) P}
1\ ™ (ha — h1)(hy — h3)Rhy — h1)(2ha — h3) (( 1h3)@ k) Py

+3h2(1 +h1h3)2+hi1h3) PPy

+ 3@+ hh3)y/ (1 + hah3)(1+h1h3) (1 + hiha) Py Pa s

+2h5(1 +hih3)(2+ hih3) Py g (52)
+3ho(2 + h1h3)v/ (1 4 hoh3)(1 4 h1h3)(1 4 hihy) P32

+v/ (L + hoh3) (1 + hih3)(1 4+ hiho) 2 + hah3) (2 + hih3) (2 + h1hz)P3,3> .

From the expressions above, we also can see these 3-Schur functions are also symmetric about
1

three coordinate axes, for example, changing 3D Young diagram (1,1,1) to | 1 | corre-
1

sponds to exchanging h1 <> hy in 3-Schur functions, changing 3D Young diagram (2, 1)s, 1,

1

We can calculate 3-Schur functions corresponding to other 3D Young diagrams in the same
way.

to ( b ) corresponds to exchanging hy <> h3 in 3-Schur functions, and so on.
hiho

4. 3-Schur functions and MacMahon representation

In this section, we show that the 3-Schur functions obtained in last section are already exist in
affine Yangian and its MacMahon representation.
From

(Ola(eo)eol0) = (O1(— fo)eol0) = 1

we set S(1) = P1 = ¢9|0).

15
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From the relation (8) in affine Yangian, we have

(fofoeoeol0) =2, (fofoereol0) =0, (fofie1eol0) =2,

then we set P12 =epep|0), P21 = e1ep|0). By calculation, we have

(fo foeaeol0) =2, (fofieze0l0) =203,

then

(fofolea — o3e1 —eg)epl0) =0, (fofi(ex —o3e1 —ep)epl0) =0,

and from

(fo(f2 — 03 f1 — fo)(e2 — o3e1 —ep)ep|0) = —2(1 + h1ha)(1 + h1h3)(1 + hah3),

we set

V(L +hiho)(1+ hh3)(1 + hoh3) Pap = (e2 — 03€1 — eg)eo|0). (53)
We can see that equations ((40)-(42)) become

1

Sa,n = 14+ hoh 0 14+ hoh3)h 0
D = G Tyt = hs) (1 + hah3)eoeo|0) + (1 + hah3)hiereol0)
+ (e2 — 03¢ — €0)eo0)) , (54)
1

S< i) = s —hy) s — ha) ((1 4+ h1h3)egenl0) 4+ (1 4+ hih3)haereq|0)

+ (e2 — 03e1 — €)ep|0)) , (55)
1
Se) = Y (1 + h1h2)egeo|0) + (1 + hihz)hzereo|0)
+ (e2 —03e1 — €0)eo|0)), (56)

which match the results in (32) by direct calculation.
From the relation (8) in affine Yangian, we calculate the following results

(fo fo foeoeoeo|0) = —6, (fofofoeoerenl0) =0, (fofofoeoerepl0) =—6,
(fofofoereoenl0) =0, (fofofoezeoenl0) =—12, (fofofoereiepl0) =0,
(fofofoezerenl0) =0, (fofofoerezenl0) =0, (fofofoerezel0) =—12,

and

(fof1 foeoeoeol0) =0, (fof1foeoe1enl0) =—2, (fofifoeoeze|0) =—203,
(fof1foereoen|0) = —4, (fofi1foezeoeol0) = —403, (fof1foereien|0) =0,
(fof1foeze1en|0) = =8, (fofi1foereae0l0) =—4, (fof1f0e2e2e0|0) =—1203,

and

16
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(fo(f2 — 03 f1 — fo) foeoeoeol0) =0, (fo(f2 — 03 f1 — fo) foeoereo|0) =0,
(fo(f2 — o3 f1 — fo) foeoeze0]0) = 2(1 + h1ha)(1 + hih3)(1 + hoh3),
(fo(f2 — 03 f1 — fo) foereoeol0) =0, (fo(f2 — 03 f1 — fo) foereren|0) =0,
(fo(f2 — o3 f1 — fo) foezeoe|0) = 4(1 + h1h2)(1 + h1h3)(1 + hah3),
(fo(f2 — 03 f1 — fo) foeze1e0l0) =0, (fo(f2 — 03 f1 — fo) foere2e0|0) =0,
(fo(f2 — o3 f1 — fo) foezeae]0) = 12(1 + h1h2)(1 + hih3)(1 + hah3).

From the equations above, we see that egegep|0), egegen|0), eo(ex — a3e1 — ep)ep|0), e1e1e9]0)
are orthogonal to each other under the quadratic form we introduced in equations (30) and
(31), in the following, we want to find other vectors who are orthogonal to every one in the
set {egepep|0), egepen|0), eg(ex — o3e1 — eg)ep|0), ere1ep|0)}. We calculate

(fof1 freoeoeol0) =0, (fof1fieoe1enl0) =0, {fof1fieoezenl0) =0,
(fof1f1e1e0e0l0) =0, (fof1fiezepeol0) =—12, (fof1f1e1e1€0]0) =—12,
(fof1 fieze1e0|0) = —2403, (fof1fie1e2¢0|0) = —1203,

(

fofi fiezere|0) = 1207 — 12075

We want to find the basis of the vector space spanned by ejeeo|0) with the relations (6) and
(13). In paper [15], we have proved that the following relations hold by Serre relations (13): let /
be an integer and [ > 0,

ej+1€1e0|0) = 2eje;11€0]0), (57)
elimr1€l-meo|0) =2e;_merymi1€0l0) +3e;_mi1e11menl0) + 2 X 3ej—my2e11m—1€0/0)
4+ 42" 3ejer1e0l0), 0<m <, (58)
and
ej2e1e0|0) = 2ere;12e0]0) + ej11e1+1€0/0), (59

el rm+2e1-meol0) = 2e;_merm+2€010) + 3ei—mr1€14m+1€0/0) +2 X 3ej_py2e14meol0)
+ 42" % Bejery20010) + 2" e 1e111€0l0), 0 <m<I.  (60)

From (6), if k = 3, we have
le3, e0] — 3[ez, e1] + o2ler, eo] — o3e0e0 =0,
if k > 3, we have
lex, eo]l — 3lek—1,e1] + 3lex—2, e2] — [ek—3, e3]
+ o2lex—2, e0] — o2lex—3, e1] — o3{ex—3,e0} =0,
acting on |0), we obtain
exeo|0) = —oner—2e0|0) + o3ex—3e0|0) for k > 3. 61)

From the results in ((57)-(60)) and (61), we get that the vector space spanned by e jerep|0) with
the relations (6) and (13) has a set of basis

{e2e2e0]0), exe1e0]0), ezepep|0), ere1epl0), e1epen|0), epepeol0)}

17
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Suppose

axezer + ariexey + axpezep + aiieier + aipeieg + appepen)eol0) (62)
is orthogonal to every vector in the set {epegen|0), epepen|0), eg(ex — azer — ep)ep|0), ere1ep|0)}.
If ax» = 0, by orthogonality, we get

2az0 + ago =0,
2az1 + o3ax +ayo =0,
az =0,

2a103 +axy +ay; =0,
that is, ago =0, ajo = —2a»1, axo =0, aj1 = —2ay;03, then we get the vector

(e2 — 203e1 — 4ep)ejeg|0)

and

(Ol fo f1(f2—203 f1 —4 fo)(e2 —203e1 —4eg)erep|0) =32(1 +h1ho) (1 +h1h3)(1+hoh3).

If ax; in (62) is not equal to zero, let axy = 1 without loss of generality. That the vector in (62) is
orthogonal to every one in the set {epegeq|0), epepe|0), eg(ea —o3e1 —ep)ep|0), erere|0), (ex —
203e;] — 4eg)eren|0)} tells us

3 3 3
apo=4,a10= 5(73, ax=-3,a11 =02 _032 + 503 +3.an = _103’

then we get the vector

3 1 3
erey — 10'3626‘1 —3ereq + (02 + 50‘32 +3)eje + 5036160 + 4epep)ep|0).

By calculation, we have

3 1 3
Ol fo(f2f2 — ZU3f2f1 =3fafo+ (o2 + 5032 +3) A+ 503f1f0 +4 fo fo)

3 1 3
(e2ex — 7036261 — 3ezep + (02 + 5032 +3)ere; + 03€1€0 + 4epep)en|0)
=6(14+h1h2)(1 4+ hihz)(1 + hoh3)(2 4 h1h2) (2 + h1h3)(2 + hoh3).

Therefore, the vector space spanned by ejeregl0) with the relations (6) and (13) has a set of
orthogonal basis

epepen|0), epe1ep|0), eg(ex — o3e1 — ep)ep|0), e1e1ep]0), (e2 — 203e1 — 4eg)erep|0),
3 1 3
(erer — 1036261 —3epeg + (07 + 5032 +3)eje; + 50’36160 + 4epe)ep|0).

The results in (34) can be rewritten by the set of orthogonal basis above:

1
I1,1,1)) = (e2 + hye1 + hahseo)
(h1 — ha)(h1 — h3)(2hy — hy)(2h) — h3) e
(ea + hiey + hahsep)ep|0)
1

- (h1 — h2)(hy — h3)(2hy — h2)(2hy — h3)

((1 + hah3)(2 + hah3)epepep|0)

18
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12, Dy hs)

1 1
| < 1 )W,l) "~ (h = 2h)(hy — h3)(hy — hy) (hy — h3)

1
1

1 1
>h.,h2> " (hy = 2hy)(ha — h3)(hy — ha)(hy — h3)
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+3h1(1+ h2h3)(2 + hoh3)egerep]0) + 3(2 + hahs)eg(ex — o3e1 — ep)ep|0)
+ hi(1 4 hah3)(2 + hoh3)eiereo|0) (63)

3
+ Zhl(z + hoh3)(ey — 203e; — 4deg)eep|0)

3 1
+ (e2e2 — Jo3ee — 3ezep + (02 + 3 32 +3)erey

3
+§03€160 + 460€o)€0|0>),

(e2 + (ha — hy1)er + 2h1h3ep)

(e2 + hier + hahzep)ep|0)
1

(ho —2h1)(hy — h3)(hy — h2)(hy — h3)

(2(1 + h1h3)(1 + hah3)epepeo|0)

—2h3(1 + hah3)(1 + hih3)egerep|0)

+ (6 — 2h3)eg(e2 — a3e1 — €0)eo|0)

+ hiha(1+ hoh3)(1 + hih3)eiereo|0) (64)

—h;y 3
+ (= + 7o) (e2 = 203e1 —4eg)erel0)

3 1
+ (exey — 1036291 —3ereq + (00 + 5032 +3)ejeg

3
+ 03€1€0 + 46060)€0|0))7

1
= hy —h 2h1h
(i — 2713 — ha)(hy — )y — gy 2+ (13— er - 2hihaeo)
(e2 4+ hier 4 hahsep)ep|0)
1

= 2(1 + hyha)(1 + hah 0
(h3—2h1)(h3—h2)(h1—hg)(hl—h3)(( +hih2) (L hahs)eoeoeo]0)

— 2ha(1 + hah3)(1 + hiha)epereo|0) 4 (6 — 2h3)ep(e2 — a3er — ep)eo|0)
+ hih3(1 + hoh3)(1 + hiho)ejereg|0) (65)

—hy 3
+ (T + Z(73)(5'2 — 203e1 — 4ep)erep|0)

3 1
+ (epex — 1039261 — 3epeq + (02 + 5032 + 3)eje;

3
+ 03€1€0 + 46060)€0|0)),

1

(e2 4 (h1 — ho)ey + 2hoh3zeq)

(e2 + haer + h1hzep)eo|0)
1

- (h1 —2h2)(hy — h3)(hy — hy1)(hy — h3)
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(2(1 + h1h3)(1 + hah3)epepeo|0)

—2h3(1 + hoh3)(1 + hih3)egerep|0)
+ (6 — 2h3)eq(e2 — o3e1 — e0)e|0) (66)
+ hiho(1 + hoh3)(1 4+ hih3z)ererel0)

3
103)(62 —203e1 — 4ep)erep|0)

(B
2
3 1,
+ (exey — Zo3eze1 —3epeq + (0 + 503 +3)ejeg

3
+503€160 + 4eoeo)€0|0)),

2 1
- e + (hs — ha)er + 2h1hae
|<1>h2,h3) (h3—2h2)(l’l3_h])(h2_hl)(h2_h3)( 2+ (h3 2)eq 1haeo)
(ex + hoey + hihzep)epl0)
1
= 21+ hih3)(1 + hih 0
(h3—th)(hs—hl)(hz—hl)(hz—h3)< (14 hih3) (1 + hiha)eoeoeol0)

— 2k (1 + hiha)(1 + hih3)epereo|0) 4 (6 — 2h3)ep(e2 — o3er — ep)eo|0)

+ hoh3(1 + hih)(1 4 hih3)ererep|0) (67)
—h 3
+ (Tl +03)(e2 — 203¢1 — dep)ereol0)

3 1
+ (epep — 10'36261 —3ezep + (0 + 5032 + 3)eje

3
+ 503€1€0 + 4eoeo)eolo)),

1
3)) = h hih
O = s =) (s = h) @i — o) @y — iy (2 e+ iaco)
(e2 + hzey + hihaep)ep|0)
1
— 1+hih)Q2+hih 0
(ha—hz)(h3—hl)(2h3—h2)(2h3—h1)<( 1)@+ nha)eocoeol0)

+3h3(1 + h1h2)(2 + hiha)eoerepl0) + 3(2 + hih)eo(ex — o3e1 — eg)epl0)

+ h3(1 + h1h2) (2 + hiha)ererep|0) (68)
3h3 3
+ (7 + 203)(6’2 — 203e1 —4ep)erep|0)

3 1 3
+ (e2ex — 7 03€2€1 — 3ezeq + (02 + 5032 +3)erer + 5 03€1€0 + 46060)60|0)>,

1
 (ha — h1)(ha — h3)(2hy — h1)(2hy — h3)

(e2 + haey + hih3zep)ep|0)
1
— 14+hih3)2+hih 0
(s — ) (2 — h3)2ha — ) 2 — ) <( )@+ hihs)eocoeol0)

mtrp (e2 + haer + hih3zegp)
1
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+3h2(1+ h1h3)(2 + hih3)eperep]0) + 3(2 + hih3)eg(ez — o3e1 — eg)epl0)
+ h3(1 4+ h1h3)(2 + hyh3)ejereo|0) (69)

3hy 3
+ (7 + 263)(62 — 203e1 — 4ep)eiep|0)
3 1
+ (e2er — Zoge2el —3ereq + (00 + 5032 + 3)eje;

3
+ 503€1€0 + 46060)€0|0)),

1
~ (h1 = 2h3)(hi — ha)(h3 — hy)(h3 — hy)
(e2 + hzey + hihaep)epl0)
1
 (h1 = 2h3)(hy — ha)(h3 — ha)(h3 — hy)
—2ho (1 + hoh3)(1 + hihy)egeiepl0) + (6 — 2h%)€0(€2 —o3e1 — eg)epl0)
+ h1h3(1 + hoh3)(1 4 hih)ererepl0) (70)

12, Dz

(e2 + (h1 — h3)er + 2hzh3zep)

(2(1 + h1h2)(1 + hah3)epepeo|0)

—hy 3
+( > + Z03)(6'2 — 203e1 — 4ep)e;ep|0)

3 1
+ (e2er — Zogezel —3ezeq + (07 + 5032 + 3)eje;

3
+ 503€1€0 + 46060)€0|0)),

and

2 1
= hy—h 2h1h
'<1>h3,h2> (hy —2h3) (s — )y — k(s — gy 2 (12 7 )er - 2iaco)

(e2 + hze1 + hihaep)ep|0)
1
 (ha = 2h3)(hy — hy)(h3 — hy)(hs — h2)
— 20y (14 hiha)(1 + hih3)egeieo|0) + (6 — 2h7)eq(e2 — o3e1 — €g)eo|0)
+ hoh3(1 + h1ho)(1 + hihs)ererepl0) (71)

(2(1 + h1h3)(1 4+ hiha)epepep|0)

—h;y 3
+ (= + 5 03)(e2 — 203¢1 — deg)ereol0)

3 1
+ (epep — 1036261 —3ezeq + (07 + 5032 + 3)ereq
3
+503e1e0 + 4eoeo)€0|0)>-
From the expressions above, we clearly get the relations in equations ((35)-(37)) which match
the relations in equation ((44)-(46)) of 3-Schur functions.

We set

P} = egepepl0), PiPa1=eperenl0), 2P 1 = ejerepl0),

V(U +h1ha)(1 4 hih3)(1+ hah3) PPy a = egex — o3e1 — eg)eo|0),
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4/ (1 + hiho) (1 + hih3) (1 + hahs) P32 = (e2 — 2031 — 4eg)erenl0),
V(L4 hiho) (14 h1h3) (14 hahs)(2 4+ h1ho) (2 + h1hs) (2 + hohs) P 3 =

3 1 3
(e2e2 — J03e2e1 — 3ezeg + (02 + 5032 +3)erer + 503€1€0 + 4epeq)e|0),

clearly, we get that the orthogonality (43) match the quadratic form (30) and (31), and the ex-
pressions in equations ((63)-(71)) match the expressions in equations ((47)-(52)).

5. Back to the Schur functions of 2D Young diagrams
Here, we consider 2D Young diagrams as a special case of 3D Young diagrams which has only

one layer in the z-axis direction. We see that So = P;. From ((40)-(42)), when (h1, ho, h3) =
(13 _170)7
Sy =SP4 SPyy, S, = 2?2 Se)=0
(1,1)—2 1 ) 2,1, <1>—2 1 ) 2,1, 9(2) =Y.
1

From the expressions in equations ((47)-(52)), when (h1, hy, h3) = (1, —1, 0), we have

1 1
S(l,l,l):E<2P13+6P1P2,1+4P3,1)7 S(l 1) =g<2P]3—2P3,1)7
hy.hy

1
S@. 0y =0 S<2> =0,53 =0,
hy,h3y
1 3
S/, :E(zpl —6P1P2,1+4P3,1),
1
1

and

S(l 1) :S<1 1) ’S(z’])hl-%=S(2'1)113>h1’5<2> =S<2> :
1 hy.hy 1 ho.hy 1h2.h3 1h3.h2

We see that when (h1, ha, h3) = (1, —1,0), 3-Schur functions of 3D Young diagrams with
more than one layer in the z-axis direction vanish, and 3-Schur functions of 3D Young diagrams
with one layer in the z-axis direction become the Schur functions of 2D Young diagrams if we
let P,.1 = pn, where p, are the variables of Schur functions in equations (1) and (2).

Note that the 3-Schur functions of 3D Young diagrams will become Schur functions of 2D
Young diagrams which are in different plane if we take different value of %1, hy, h3. From above,
we know that if (h1, ho, h3) = (1, —1, 0), 3-Schur functions of 3D Young diagrams become the
Schur functions of 2D Young diagrams which are in plane x Oy. We can see that if (h1, ha, h3) =
(1,0, —1), 3-Schur functions of 3D Young diagrams become the Schur functions of 2D Young
diagrams which are in plane yOz, and if (hy, hp, h3) = (0,1, —1), 3-Schur functions of 3D
Young diagrams become the Schur functions of 2D Young diagrams which are in plane x Oy.
The exchange of 1 and —1 corresponds to the transpose of 2D Young diagram. For example, if
(h1,h2,h3) =(1,-1,0),
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T )
(a) (0)
Fig. 2. Young diagram in plane x Oy.
1 3
San = T (2P1 +6P Py +4P3,1) ,
1
S =—<2P13—6P1P21+4P31),
1 12 ’ ’
1
1

and if (/’ll,hz, /’l3) = (—1, 1,0),
1
Sa,1,n = T (21’13 — 6P Py +4P3,1) ,

1
S\ =73 (2P13 +6P Py +4P3,1) :

that is, if (1, ha, h3) = (1, —1,0), we look at the 2D Young diagrams in plane x Oy from top
downwards, as in (a) of Fig. 2, and if (h1, hy, h3) = (1, —1,0), we look at the 2D Young dia-
grams in plane x Oy from bottom up, as in (b) of Fig. 2. We can see that this is the transpose of
2D Young diagrams.

6. The relations with the Jack symmetric polynomials

In this section, we give the relations between the 3-Schur functions we defined and the Jack
symmetric polynomials. This section is given under the reviewer’s advice. We recall the Jack
symmetric polynomial first [2]. Let A and u be 2D Young diagrams, for Jack symmetric func-
tions,

=My

(Pr> Puda = S)L,Lal(’x)z;h, where z; = l_[z

i

m;!,

some examples are (p!, p}) =a"n!, (pn, pn) =an. Let

(@) aa(s)+1(s)+1
b =[] L+
aa(s)+1(s) +o
SEA
where a(s) and /(s) are arm-length and leg-length of s respectively. The Jack symmetric poly-
nomials are denoted by P,\(a), Q)(xa), the relation between them is
Qia) _ b;a) P)Ea).

The following are some examples.
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1 o 1 1
(@) 2 (@) 2
P = - . 9 = <5 e ’
@ o+ lp1 + o+ 1p2 Q(z) Zazpl + 2ap2
1 1 1 |
(@) 2 (@) 2
P == = - X ) = - ’
1,1 2]91 2]72 Q(l,l) ()t(ot-l—l)pl ()[(()t+1)p2
po 2 + o + 1 i
O T e+ D@+ Cat D+ PP e+ D@+
@ _ 1 !
Q(3) _£P3+2 2P1P2+6 3pl’
1 a—1 o
@ _ 3
2.1 a+2p1+a+2p1[?2 a+2P3,
1 o—1 1
(@) _ 3 - 3
Cen= a0 T 2@ 0" T a@arn’
| | 1
@ 3
Piip= P12t ps,
1 3 2
() _ 3 s 3
Con= st @+ " a@r D@+ aerne

In the following, we will show what the 3-Schur functions become when (A1, h2, h3) =
(h,—%,+ —h). When (hy, ha, h3) = (b, — %, + — h), we get 1 + hihy = 0, then the 3-Schur
functions corresponding to 3D Young diagrams which are more than one layer in z-axis direc-
tion vanish, and the 3-Schur functions corresponding to 3D Young diagrams which are one layer
in z-axis direction become:

S—S—1P2+hPS—h2P2hP

M= PL 2D = e Tt <1>_1+h2 YRR
1

S = ! (P} +3hP Pyy + 217 P3 )

G =0 mya12nd) ! ’ 1

1

S = 20%2P3 +2h(h: — )PPy — 2h%P5 1),
<1 1) (1+h2)(1+2h2)( T+ 2h( )PPy 3,1)
hy,hy

1
= m(k“})ﬁ — 31 P Py +2h% Py ).

We change p, to be \/a p, in Jack symmetric polynomials (this is because (p,, pn)e = na in
Jack symmetric polynomials and (p,, p,) = n in Schur functions), let & = h?, we get

@
Pay = VeSmlp, -1 1-ny (72)
P((zog) - (\/E)ZS(LM(h,—%,hl—h)’ (73)
1
(@) _
Quny = (\/_—a)25<1>|(h,—%,%—h)’ (74)
|
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P((3°§) = (x/E)SS(],l,l)I(h,_hl,%_h), (75)
l+a
(@) _
Q(z,l)—z(ﬁpS(] 1> =4,k =my» (76)
1 hy,hy
(0  _
Quin= (77)

1
War (1)l g
1
1

we can see some rule in them. Therefore, we get that the 3-Schur functions corresponding to 3D
Young diagrams which are one layer in z-axis direction become Jack symmetric polynomials by
multiplying a coefficient when (hy, k2, h3) = (h, —%, % — h). The results in last section is the
special case 1 = 1 of that in this section, at this point, we should call 3-Schur function S, 3-Jack
polynomial under the reviewer’s advice, where 7 is a 3D Young diagram. One can similarly

discuss other results as in last section.
7. Concluding remarks

In this paper, we give the 3-Schur functions of 3D Young diagrams by the orthogonal-
ity we have calculated. 3-Schur functions are functions of variables Py, P21, P22, P31, P32,
P33, - - -, whose coefficients are functions of 1, hy, h3 with relation i1 + ha 4+ h3 = 0. The ex-
pressions of 3-Schur functions are symmetric about three coordinate axes. We also show that
3-Schur functions we given match that in affine Yangian and its MacMahon representation.
When (hy, hy, h3) = (h, —%, % — h) 3-Schur functions of 3D Young diagrams become the Jack
symmetric polynomials of 2D Young diagrams, specially, when h = 1, that is, (h1, ho, h3) =
(1, —1,0), 3-Schur functions of 3D Young diagrams become the Schur functions of 2D Young
diagrams.

Actually, we give a method to calculate the 3-Schur functions in this paper, next we want to
give an expression of 3-Schur functions for all 3D Young diagrams, like the expression in (2) of
Schur functions for all 2D Young diagrams.
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