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Abstract

3D (3 dimensional) Young diagram is a generalization of 2D Young diagram. In this paper, from the 
orthogonality of 3D Young diagrams and the properties in affine Yangian and its MacMahon representation, 
we obtain the Schur functions corresponding to 3D Young diagrams, which are called 3-Schur functions. 
3-Schur functions are a generalization of Schur functions in the sense that when h1 = 1, h2 = −1, h3 = 0, 
the 3-Schur functions of 3D Young diagrams become Schur functions of 2D Young diagrams, which is a 
special case of h1 = h, h2 = − 1

h
, h3 = 1

h
− h. When h1 = h, h2 = − 1

h
, h3 = 1

h
− h, the 3-Schur functions 

turn into the Jack symmetric polynomials of 2D Young diagrams by multiplying a coefficient. We will see 
that 3-Schur functions are symmetric about three coordinate axes.
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Let p = (p1, p2, · · · ). The operators hn(p) are determined by the generating function:

H(z) =
∞∑

n=0

hn(p)zn = eξ(p,z), ξ(p, z) =
∞∑

n=1

pn

n
zn (1)

and set hn(x) = 0 for n < 0. Note that hn(p) is the complete homogeneous symmetric function 
by the Miwa transform, i.e., replacing pi with the power sum 

∑
k xi

k . For 2D Young diagram λ =
(λ1, λ2, · · · , λl), the Schur function Sλ = Sλ(p) is a polynomial of variables p in C[p] defined 
by the Jacobi-Trudi formula [1–3]:
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Sλ(p) = det
(
hλi−i+j (p)

)
1≤i,j≤l

. (2)

2D Young diagrams and Schur functions are attractive research objects, which were used to 
determine irreducible characters of highest weight representations of the classical groups [1,2,4]. 
Recently they appear in mathematical physics, especially in integrable models. In [5], the group 
in the Kyoto school uses Schur functions in a remarkable way to understand the KP and KdV 
hierarchies. In [6,7], Tsilevich and Sułkowski, respectively, give the realization of the phase 
model in the algebra of Schur functions and build the relations between the q-boson model and 
Hall-Littlewood functions. In [8], we build the relations between the statistical models, such as 
phase model, and KP hierarchy by using 2D Young diagrams and Schur functions.

3D Young diagram (plane partition) is a generalization of 2D Young diagram, which arose nat-
urally in crystal melting model [9,10]. 3D Young diagrams also have many applications in many 
fields of mathematics and physics, such as statistical models, number theory, representations of 
some algebras (Ding-Iohara-Miki algebras, affine Yangian, etc). In this paper, we consider the 
relations between 3D Young diagrams and affine Yangian. The Yangian of a finite dimensional 
simple Lie algebra g is defined by Drinfeld [11,12] in order to obtain a solution of the Yang-
Baxter equation. The Yangian is a quantum group which is the deformation of the current algebra 
g[z]. In this paper, we will use the properties of affine Yangian and its MacMahon representation.

We know that the vector space of 2D Young diagrams is isomorphic to that of Schur functions. 
In many cases, we do not distinguish 2D Young diagram and its corresponding Schur function. 
For example, let λ, μ be 2D Young diagrams and Sλ, Sμ their corresponding Schur functions, the 
orthogonality of Schur functions [1,2]

〈Sλ|Sμ〉 = δλ,μ (3)

can also be written as the orthogonality of 2D Young diagrams

〈λ|μ〉 = δλ,μ. (4)

The 3D Young diagram is a generalization of 2D Young diagram, but 3D Young diagram does 
not have many structures which are clear on 2D Young diagram. There are some work about 
these [13,14] recently. In [15], we calculate the orthogonality of 3D Young diagrams accord-
ing to the properties of affine Yangian and its MacMahon representation. In this paper, we 
treat the orthogonality of 3D Young diagrams as that of 3-Schur functions corresponding to 
3D Young diagrams, then we calculate 3-Schur functions. We will see the 3-Schur functions 
are symmetric about h1, h2, h3 which are crucial parameters in affine Yangian. From [13], 
we know that the 3-Schur functions are functions depending on the triangular set of variables 
P1, P2,1, P2,2, P3,1, P3,2, P3,3, · · · , here we use capital P denoting the variables of 3-Schur func-
tions to distinguish that pn are the variables of Schur functions.

The paper is organized as follows. In section 2, we recall the definition of affine Yangian 
of gl(1) and its MacMahon representation first, then we recall the orthogonality of 3D Young 
diagrams we calculated. In section 3, we calculate the 3-Schur functions of 3D Young diagrams 
by the orthogonality of 3D Young diagram. In section 4, we show that the 3-Schur functions 
obtained in last section are already exist in affine Yangian and its MacMahon representation. In 
section 5, we show that 3-Schur functions of 3D Young diagrams with more than one layer in the 
z-axis direction vanish, and 3-Schur functions of 3D Young diagrams with one layer in the z-axis 
direction become the Schur functions of 2D Young diagrams when h1 = 1, h2 = −1, h3 = 0. 
In section 6, we show that 3-Schur functions of 3D Young diagrams are reduced to the Jack 
symmetric polynomials of 2D Young diagrams when h1 = h, h2 = − 1

h
, h3 = 1

h
− h, and the 

result in last section is the special case h = 1 of that in this section.
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2. Affine Yangian and the orthogonality of 3D Young diagrams

In this section, we recall the definition of the affine Yangian of gl(1) and its MacMahon 
representation as in papers [16,17] first. Then we recall the orthogonality we given in paper 
[15]. The affine Yangian Y of gl(1) is an associative algebra with generators ej , fj and ψj , 
j = 0, 1, . . . and the following relations [16,17][

ψj ,ψk

] = 0, (5)[
ej+3, ek

] − 3
[
ej+2, ek+1

] + 3
[
ej+1, ek+2

] − [
ej , ek+3

]
+ σ2

[
ej+1, ek

] − σ2
[
ej , ek+1

] − σ3
{
ej , ek

} = 0, (6)[
fj+3, fk

] − 3
[
fj+2, fk+1

] + 3
[
fj+1, fk+2

] − [
fj , fk+3

]
+ σ2

[
fj+1, fk

] − σ2
[
fj , fk+1

] + σ3
{
fj , fk

} = 0, (7)[
ej , fk

] = ψj+k, (8)[
ψj+3, ek

] − 3
[
ψj+2, ek+1

] + 3
[
ψj+1, ek+2

] − [
ψj , ek+3

]
+ σ2

[
ψj+1, ek

] − σ2
[
ψj , ek+1

] − σ3
{
ψj , ek

} = 0, (9)[
ψj+3, fk

] − 3
[
ψj+2, fk+1

] + 3
[
ψj+1, fk+2

] − [
ψj ,fk+3

]
+ σ2

[
ψj+1, fk

] − σ2
[
ψj ,fk+1

] + σ3
{
ψj ,fk

} = 0, (10)

together with boundary conditions[
ψ0, ej

] = 0,
[
ψ1, ej

] = 0,
[
ψ2, ej

] = 2ej , (11)[
ψ0, fj

] = 0,
[
ψ1, fj

] = 0,
[
ψ2, fj

] = −2fj , (12)

and a generalization of Serre relations

Sym(j1,j2,j3)

[
ej1,

[
ej2, ej3+1

]] = 0, (13)

Sym(j1,j2,j3)

[
fj1,

[
fj2, fj3+1

]] = 0, (14)

where Sym is the complete symmetrization over all indicated indices which include 6 terms. In 
this paper, we set ψ0 = 1 with no loss of generality.

The notations σ2, σ3 in the definition of affine Yangian are functions of three complex num-
bers h1, h2 and h3:

σ1 = h1 + h2 + h3 = 0,

σ2 = h1h2 + h1h3 + h2h3,

σ3 = h1h2h3.

The affine Yangian Y has a representation on the plane partitions. A plane partition π is a 
2D Young diagram in the first quadrant of plane xOy filled with non-negative integers that form 
nonincreasing rows and columns [18]. The number in the position (i, j) is denoted by πi,j⎛

⎝ π1,1 π1,2 · · ·
π2,1 π2,2 · · ·
· · · · · · · · ·

⎞
⎠ .

The integer πi,j satisfies
3
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Fig. 1. A 3D Young diagram.

πi,j ≥ πi+1,j , πi,j ≥ πi,j+1, lim
i→∞πi,j = lim

j→∞πi,j = 0

for all integers i, j ≥ 0.
Piling πi,j cubes over position (i, j) gives a three dimensional object in the first octant of 

space Cartesian coordinate system O − xyz. This three dimensional object is called 3D Young 
diagram. 3D Young diagrams arose naturally in the melting crystal model [9,10]. We always 
think that 3D Young diagrams and plane partitions are the same thing. For example, the 3D 
Young diagram in Fig. 1

can also be denoted by plane partition⎛
⎜⎜⎝

4 3 2 1
3 2 2 0
2 2 1 0
1 0 0 0

⎞
⎟⎟⎠ .

The total volume of the 3D Young diagram π is defined by

|π | =
∞∑

i,j=1

πi,j . (15)

If |π | = n, we say the 3D Young diagram π is a plane partition of integer n. Let p(n) denote the 
number of plane partitions π with |π | = n. The generating function of numbers p(n) was given 
by MacMahon function:

∞∑
n=0

p(n)qn =
∞∏

n=1

1

(1 − qn)n
(16)

For a 3D Young diagram π , the notation � ∈ π+ means that this box is not in π and can 
be added to π , here “can be added” means that when this box is added, it is still a 3D Young 
diagram. The notation � ∈ π− means that this box is in π and can be removed from π , here “can 
be removed” means that when this box is removed, it is still a 3D Young diagram. For a box �, 
we let

h� = h1y� + h2x� + h3z�, (17)

where (x�, y�, z�) is the coordinate of box � in coordinate system O − xyz. Here we use the 
order y�, x�, z� to match that in paper [16].
4
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Following [16,17], we introduce the generating functions as follows:

e(u) =
∞∑

j=0

ej

uj+1 ,

f (u) =
∞∑

j=0

fj

uj+1 , (18)

ψ(u) = 1 + σ3

∞∑
j=0

ψj

uj+1 ,

where u is a parameter. Introduce

ψ0(u) = u + σ3

u
(19)

and

ϕ(u) = (u + h1)(u + h2)(u + h3)

(u − h1)(u − h2)(u − h3)
. (20)

For a 3D Young diagram π , define ψπ(u) by

ψπ(u) = ψ0(u)
∏
�∈π

ϕ(u − h�). (21)

In the following, we recall the representation of affine Yangian on 3D Young diagrams as in paper 
[16] by making a slight change. The representation of affine Yangian on 3D Young diagrams is 
given by

ψ(u)|π〉 = ψπ(u)|π〉, (22)

e(u)|π〉 =
∑

�∈π+

E(π → π + �)

u − h� |π + �〉, (23)

f (u)|π〉 =
∑

�∈π−

F(π → π − �)

u − h� |π − �〉 (24)

where |π〉 means the state characterized by 3D Young diagram π and the coefficients

E(π → π + �) = −F(π + � → π) =
√

1

σ3
resu→h�

ψπ(u). (25)

In paper [16], the relations are

E(π → π + �) = F(π + � → π) =
√

− 1

σ3
resu→h�

ψπ(u),

this is the slight change we make. Equations (23) and (24) mean generators ej , fj acting on 3D 
Young diagram π by

ej |π〉 =
∑

�∈π+
h

j�E(π → π + �)|π + �〉, (26)

fj |π〉 =
∑

−
h

j�F(π → π − �)|π − �〉. (27)

�∈π

5
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The triangular decomposition of affine Yangian Y is

Y = Y+ ⊕B ⊕Y− (28)

where Y+ is the subalgebra generated by generators ej with relations (6) and (13), B is the 
commutative subalgebra with generators ψj , Y− is the subalgebra generated by generators fj

with relations (7) and (14).
Define the anti-automorphism ã by

ã(ej ) = −fj (29)

The quadratic form on Y+|0〉 is defined by

B̃(x|0〉, y|0〉) = 〈0|ã(y)x|0〉 (30)

where x, y ∈ Y+. Note that the quadratic form here is different from the Shapovalov form in [16]. 
For 3D Young diagrams π, π ′ and let π = x|0〉, π ′ = y|0〉 for x, y ∈ Y+, define the orthogonality

〈π ′|π〉 = 〈0|ã(y)x|0〉. (31)

For a 3D Young diagram π , let n denote its total volume |π |. We describe the orthogonality in 
the order of n. When n = 0, we set 〈0|0〉 = 1. When n = 1, there is only one 3D Young diagram 
(1), we have

〈(1)|(1)〉 = 1.

When n = 2, from MacMahon function, we know that there are 3 3D Young diagrams, which are 

(1, 1), (2), 
(

1
1

)
, we have

|(1,1)〉 = 1

(h1 − h2)(h1 − h3)
(e2 + h1e1 + h2h3e0) e0|0〉,

|
(

1
1

)
〉 = 1

(h2 − h1)(h2 − h3)
(e2 + h2e1 + h1h3e0) e0|0〉, (32)

|(2)〉 = 1

(h3 − h1)(h3 − h2)
(e2 + h3e1 + h1h2e0) e0|0〉.

From the relations in (8), we have

〈(1,1)|(1,1)〉 = 2(1 + h2h3)

(h1 − h2)(h1 − h3)
, 〈(1,1)|

(
1
1

)
〉 = 0,

〈
(

1
1

)
|
(

1
1

)
〉 = 2(1 + h1h3)

(h2 − h1)(h2 − h3)
, 〈(1,1)|(2)〉 = 0, (33)

〈(2)|(2)〉 = 2(1 + h1h2)

(h3 − h1)(h3 − h2)
, 〈

(
1
1

)
|(2)〉 = 0.

Here, we can see the symmetry of h1, h2, h3 corresponds to rotating 3D Young diagram, for ex-
ample, changing 3D Young diagram (1, 1) to (2) on the left hand of equations above corresponds 
to exchanging h1 and h3.

When n = 3, from MacMahon function, we know that there are 6 3D Young diagrams, which 

are (1, 1, 1), (2, 1), (3), 
(

2
1

)
, 
(

1 1
1

)
and 

⎛
⎝ 1

1
1

⎞
⎠. There are two ways to get 3D Young dia-

gram (2, 1), which are
6
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(1) → (1,1) → (2,1),

(1) → (2) → (2,1).

We denote the state corresponding to (2, 1) in the first equation of the two equations above by 
|(2, 1)〉h1,h3 , and that in the second equation above by |(2, 1)〉h3,h1 . We explain the subscripts: 
let h� = x�h2 + y�h1 + z�h3, we use h�-position to represent the position (x�, y�, z�). The 
notation “h1, h3” means adding one box to � in h1-position first, then adding one box in h3-
position. Even though h1-position is not unique, for example, h1-position can be the positions 
(1, 2, 1), (2, 3, 2), · · · since h1 + h2 + h3 = 0, but it is unique if we want to get a new 3D Young 

diagram after adding this box. Therefore, we can read the notation | 
(

1 1
1

)
〉h1,h2 , which means 

the 3D Young diagram | 
(

1 1
1

)
〉 is obtained from � by adding one box in h1-position first, 

then adding one box in h2-position. When there is no confusion, we will omit the subscripts.
From the MacMahon representation of affine Yangian, we know that

|(1,1,1)〉 = 1

(2h1 − h2)(2h1 − h3)
(e2 + h1e1 + h2h3e0)|(1,1)〉,

|
(

1 1
1

)
〉h1,h2 = 1

(h2 − 2h1)(h2 − h3)
(e2 + (h2 − h1)e1 + 2h1h3e0)|(1,1)〉, (34)

|(2,1)〉h1,h3 = 1

(h3 − 2h1)(h3 − h2)
(e2 + (h3 − h1)e1 + 2h1h2e0)|(1,1)〉.

From the relations in (8), we have

〈(1,1,1)|(1,1,1)〉 = 3(2 + h2h3ψ0)ψ0

(2h1 − h2)(2h1 − h3)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

h1,h2〈
(

1 1
1

)
|
(

1 1
1

)
〉h1,h2 = 2(1 + h1h3ψ0)(2h2 − h1)

(h2 − h1)(h2 − h3)(h2 − 2h1)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

h1,h3〈(2,1)|(2,1)〉h1,h3 = 2(1 + h1h2ψ0)(2h3 − h1)

(h3 − h1)(h3 − h2)(h3 − 2h1)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

and others equal zero. We can see that one changes into another of the last two equations by 
exchanging h2 and h3. By the symmetry of h1, h2, h3 or direct calculations, we can write that

〈
⎛
⎝ 1

1
1

⎞
⎠ |

⎛
⎝ 1

1
1

⎞
⎠〉 = 3(2 + h1h3ψ0)ψ0

(2h2 − h1)(2h2 − h3)

2(1 + h1h3ψ0)

(h2 − h1)(h2 − h3)
ψ0,

〈(3)|(3)〉 = 3(2 + h1h2ψ0)ψ0

(2h3 − h1)(2h3 − h2)

2(1 + h1h2ψ0)

(h3 − h1)(h3 − h2)
ψ0,

h2,h1〈
(

1 1
1

)
|
(

1 1
1

)
〉h2,h1 = 2(1 + h2h3ψ0)(2h1 − h2)

(h1 − h2)(h1 − h3)(h1 − 2h2)

2(1 + h1h3ψ0)

(h2 − h1)(h2 − h3)
ψ0,

h3,h1〈(2,1)|(2,1)〉h3,h1 = 2(1 + h2h3ψ0)(2h1 − h3)

(h1 − h3)(h1 − h2)(h1 − 2h3)

2(1 + h1h2ψ0)

(h3 − h1)(h3 − h2)
ψ0,

h2,h3〈
(

2
1

)
|
(

2
1

)
〉h2,h3 = 2(1 + h1h2ψ0)(2h3 − h2) 2(1 + h1h3ψ0)

ψ0,

(h3 − h1)(h3 − h2)(h3 − 2h2) (h2 − h1)(h2 − h3)

7
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h3,h2〈
(

2
1

)
|
(

2
1

)
〉h3,h2 = 2(1 + h1h3ψ0)(2h2 − h3)

(h2 − h3)(h2 − h1)(h2 − 2h3)

2(1 + h1h2ψ0)

(h3 − h1)(h3 − h2)
ψ0.

We can see that

h1,h2〈
(

1 1
1

)
|
(

1 1
1

)
〉h1,h2 �= h2,h1〈

(
1 1
1

)
|
(

1 1
1

)
〉h2,h1

we discuss the relations between them. We know that

|
(

1 1
1

)
〉h2,h1 = 1

(h1 − 2h2)(h1 − h3)
(e2 + (h1 − h2)e1 + 2h2h3e0)|

(
1
1

)
〉.

By calculation, we have

h1,h2〈
(

1 1
1

)
|
(

1 1
1

)
〉h2,h1 = 2(1 + h1h3ψ0)2(1 + h2h3ψ0)

(h1 − h2)2(h2 − h3)(h1 − h3)
ψ0,

which means that

h1,h2〈
(

1 1
1

)
|
(

1 1
1

)
〉h2,h1

=
√

h1,h2〈
(

1 1
1

)
|
(

1 1
1

)
〉h1,h2 · h2,h1〈

(
1 1
1

)
|
(

1 1
1

)
〉h2,h1 .

The result tells us that | 
(

1 1
1

)
〉h1,h2 and | 

(
1 1
1

)
〉h2,h1 are linearly dependent, actually, they 

have the following relation. For total volume 3, the relations between the same shaped 3D Young 
diagrams which are obtained from different steps are

|
(

1 1
1

)
〉h1,h2 = ϕ(h2 − h1)|

(
1 1
1

)
〉h2,h1 , (35)

|
(

2
1

)
〉h2,h3 = ϕ(h3 − h2)|

(
2
1

)
〉h3,h2 , (36)

|(2,1)〉h1,h3 = ϕ(h3 − h1)|(2,1)〉h3,h1 , (37)

where ϕ(u) is defined in (20).

3. 3-Schur functions

In this section, we calculate the 3-Schur functions of 3D Young diagrams by the orthogonality 
of 3D Young diagram. For a 3D Young diagram π , we denote the 3-Schur function corresponding 
to π by Sπ , which is a function of variables P1, P2,1, P2,2, P3,1, P3,2, P3,3, · · · . For 3D Young 
diagrams π, π ′, define

〈Sπ |Sπ ′ 〉 = 〈π |π ′〉. (38)

From the properties of 〈π |π ′〉, we have that 〈Sπ |Sπ ′ 〉 = 〈Sπ ′ |Sπ 〉, and if π and π ′ do not have 
the same shape, then 〈Sπ |S′

π 〉 = 0.
We set S0 = 1, which is the 3-Schur function corresponding to empty, and S� = S(1) = P1, 

which is the 3-Schur function corresponding to 3D Young diagram (1). We have 〈S�|S�〉 =
8



N. Wang Nuclear Physics B 960 (2020) 115173
〈P1|P1〉 = 1, which is the same as in Schur functions and 2D Young diagrams. Actually, we 
want to keep 〈·|·〉 of pn, where pn are variables of Schur functions corresponding to 2D Young 
diagrams.

Let

〈P 2
1 |P 2

1 〉 = 2, 〈P 2
1 |P2,1〉 = 0, 〈P 2

1 |P2,2〉 = 0,

〈P2,1|P2,1〉 = 2, 〈P2,1|P2,2〉 = 0, 〈P2,2|P2,2〉 = −2. (39)

We give a remark here to explain the values of these scalar products. I give them for the following 
reasons: firstly, I want to keep the values and properties of the scalar products corresponding to 
Schur functions of 2D Young diagram unchanged, for example, 〈P 2

1 |P 2
1 〉 = 2 is the same as that 

in the case of Schur functions of 2D Young diagrams; Secondly, I want the 3-Schur functions have 
good properties, for example, exchanging h1, h2, h3 corresponds to rotating 3D Young diagram; 
Thirdly, I want the values of these scalar products match the values of the scalar products of 
eie0|0〉, eiej e0|0〉 respectively which we will discuss in the following section. We will give the 
values of other scalar products in the same way.

We know that 3-Schur functions S(1,1), S(
1
1

), S(2) are functions of P 2
1 , P2,1, P2,2. Let

S(1,1) = a1P
2
1 + a2P2,1 + a3P2,2,

S(
1
1

) = b1P
2
1 + b2P2,1 + b3P2,2,

S(1,1) = a1P
2
1 + a2P2,1 + a3P2,2,

they satisfy the relations in (33) and

P 2
1 = S(1,1) + S(

1
1

) + S(2),

then we have

a2
1 + a2

2 − a2
3 = (1 + h2h3)

(h1 − h2)(h1 − h3)
,

b2
1 + b2

2 − b2
3 = (1 + h1h3)

(h2 − h1)(h2 − h3)
,

c2
1 + c2

2 − c2
3 = (1 + h1h2)

(h3 − h1)(h3 − h2)
,

a1b1 + a2b2 + a3b3 = 0,

a1c1 + a2c2 + a3c3 = 0,

b1c1 + b2c2 + b3c3 = 0,

a1 + b1 + c1 = 1,

a2 + b2 + c2 = 0,

a3 + b3 + c3 = 0.

Solve these equations, we get
9
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a1 = (1 + h2h3)

(h1 − h2)(h1 − h3)
, b1 = (1 + h1h3)

(h2 − h1)(h2 − h3)
, c1 = (1 + h1h2)

(h3 − h1)(h3 − h2)
,

a2 = (1 + h2h3)

(h1 − h2)(h1 − h3)
h1, b1 = (1 + h1h3)

(h2 − h1)(h2 − h3)
h2, c1 = (1 + h1h2)

(h3 − h1)(h3 − h2)
h3,

a3 =
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h1 − h2)(h1 − h3)
, b3 =

√
(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h2 − h1)(h2 − h3)
,

c3 =
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h3 − h1)(h3 − h2)
,

that is

S(1,1) = (1 + h2h3)

(h1 − h2)(h1 − h3)
P 2

1 + (1 + h2h3)

(h1 − h2)(h1 − h3)
h1P2,1

+
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h1 − h2)(h1 − h3)
P2,2, (40)

S(
1
1

) = (1 + h1h3)

(h2 − h1)(h2 − h3)
P 2

1 + (1 + h1h3)

(h2 − h1)(h2 − h3)
h2P2,1

+
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h2 − h1)(h2 − h3)
P2,2, (41)

S(2) = (1 + h1h2)

(h3 − h1)(h3 − h2)
P 2

1 + (1 + h1h2)

(h3 − h1)(h3 − h2)
h3P2,1

+
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h3 − h1)(h3 − h2)
P2,2. (42)

From the expression above, we can see these 3-Schur functions are symmetric about three coor-

dinate axes, i.e., changing 3D Young diagram (1, 1) to 
(

1
1

)
corresponds to exchanging h1 ↔ h2

in 3-Schur functions, changing 3D Young diagram (1, 1) to (2) corresponds to exchanging 

h1 ↔ h3 in 3-Schur functions, changing 3D Young diagram 
(

1
1

)
to (2) corresponds to ex-

changing h2 ↔ h3 in 3-Schur functions.
Let P 3

1 , P1P2,1, P1P2,2, P3,1, P3,2, P3,3 satisfy

〈P 3
1 |P 3

1 〉 = 6, 〈P 3
1 |P1P2,1〉 = 0, 〈P 3

1 |P1P2,2〉 = 0, 〈P 3
1 |P3,1〉 = 0, 〈P 3

1 |P3,2〉 = 0,

〈P 3
1 |P3,3〉 = 0, 〈P1P2,1|P1P2,1〉 = 2, 〈P1P2,1|P1P2,2〉 = 0, 〈P1P2,1|P3,1〉 = 0,

〈P1P2,1|P3,2〉 = 0, 〈P1P2,1|P3,3〉 = 0, 〈P1P2,2|P1P2,2〉 = −2, 〈P1P2,1|P3,1〉 = 0,

〈P1P2,2|P3,2〉 = 0, 〈P1P2,2|P3,3〉 = 0, 〈P3,1|P3,1〉 = 3, 〈P3,1|P3,2〉 = 0,

〈P3,1|P3,3〉 = 0, 〈P3,2|P3,2〉 = −2, 〈P3,2|P3,3〉 = 0, 〈P3,3|P3,3〉 = 6. (43)

We know that 3-Schur functions S(1,1,1), S(2,1), S(3), S(
2
1

), S(
1 1
1

) and S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠

are functions 

of P 3, P1P2,1, P1P2,2, P3,1, P3,2, P3,3. Let
1

10
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S(1,1,1) = a1P
3
1 + a2P1P2,1 + a3P1P2,2 + a4P3,1 + a5P3,2 + a6P3,3,

S(
1 1
1

)
h1,h2

= b1P
3
1 + b2P1P2,1 + b3P1P2,2 + b4P3,1 + b5P3,2 + b6P3,3,

S(2,1)h1,h3
= c1P

3
1 + c2P1P2,1 + c3P1P2,2 + c4P3,1 + c5P3,2 + c6P3,3,

S(3) = d1P
3
1 + d2P1P2,1 + d3P1P2,2 + d4P3,1 + d5P3,2 + d6P3,3,

S(
2
1

)
h2,h3

= g1P
3
1 + g2P1P2,1 + g3P1P2,2 + g4P3,1 + g5P3,2 + g6P3,3,

S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠

= h1P
3
1 + h2P1P2,1 + h3P1P2,2 + h4P3,1 + h5P3,2 + h6P3,3

and

S(
1 1
1

)
h1,h2

= ϕ(h2 − h1)S(
1 1
1

)
h2,h1

, (44)

S(2,1)h1,h3
= ϕ(h3 − h1)S(2,1)h3,h1

, (45)

S(
2
1

)
h2,h3

= ϕ(h3 − h2)S(
2
1

)
h3,h2

, (46)

they satisfy

〈S(1,1,1)|S(1,1,1)〉 = 3(2 + h2h3ψ0)ψ0

(2h1 − h2)(2h1 − h3)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

h1,h2〈S(
1 1
1

)|S(
1 1
1

)〉h1,h2 = 2(1 + h1h3ψ0)(2h2 − h1)

(h2 − h1)(h2 − h3)(h2 − 2h1)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

h1,h3〈S(2,1)|S(2,1)〉h1,h3 = 2(1 + h1h2ψ0)(2h3 − h1)

(h3 − h1)(h3 − h2)(h3 − 2h1)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

〈S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠
|S⎛

⎜⎜⎝
1
1
1

⎞
⎟⎟⎠
〉 = 3(2 + h1h3ψ0)ψ0

(2h2 − h1)(2h2 − h3)

2(1 + h1h3ψ0)

(h2 − h1)(h2 − h3)
ψ0,

〈S(3)|S(3)〉 = 3(2 + h1h2ψ0)ψ0

(2h3 − h1)(2h3 − h2)

2(1 + h1h2ψ0)

(h3 − h1)(h3 − h2)
ψ0,

h2,h3〈
(

2
1

)
|
(

2
1

)
〉h2,h3 = 2(1 + h1h2ψ0)(2h3 − h2)

(h3 − h1)(h3 − h2)(h3 − 2h2)

2(1 + h1h3ψ0)

(h2 − h1)(h2 − h3)
ψ0,

〈S(1,1,1)|S(2,1)〉 = 0, 〈S(1,1,1)|S(
1 1
1

)〉 = 0, 〈S(1,1,1)|S(
2
1

)〉 = 0,

〈S(1,1,1)|S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠
〉 = 0, 〈S(1,1,1)|S(3)〉 = 0, 〈S(2,1)|S(3)〉 = 0,
11
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〈S(2,1)|S(
1 1
1

)〉 = 0, 〈S(2,1)|S(
2
1

)〉 = 0, 〈S(2,1)|S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠
〉 = 0,

〈S(
2
1

)|S(
1 1
1

)〉 = 0, 〈S(
2
1

)|S(3)〉 = 0, 〈S(
2
1

)|S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠
〉 = 0,

〈S(
1 1
1

)|S(3)〉 = 0, 〈S(
1 1
1

)|S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠
〉 = 0, 〈S(3)|S⎛

⎜⎜⎝
1
1
1

⎞
⎟⎟⎠
〉 = 0,

and

P1S(1,1) = S(1,1,1) + S(
1 1
1

)
h1,h2

+ S(2,1)h1,h3
,

P1S(
1
1

) = S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠

+ S(
1 1
1

)
h2,h1

+ S(
2
1

)
h2,h3

,

P1S(2) = S(2,1)h3,h1
+ S(

2
1

)
h3,h2

+ S(3),

then we have

6a2
1 + 2a2

2 − 2a2
3 + 3a2

4 − 2a2
5 + 6a2

6 = 3(2 + h2h3ψ0)ψ0

(2h1 − h2)(2h1 − h3)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

6b2
1 + 2b2

2 − 2b2
3 + 3b2

4 − 2b2
5 + 6b2

6

= 2(1 + h1h3ψ0)(2h2 − h1)

(h2 − h1)(h2 − h3)(h2 − 2h1)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

6c2
1 + 2c2

2 − 2c2
3 + 3c2

4 − 2c2
5 + 6c2

6

= 2(1 + h1h2ψ0)(2h3 − h1)

(h3 − h1)(h3 − h2)(h3 − 2h1)

2(1 + h2h3ψ0)

(h1 − h2)(h1 − h3)
ψ0,

6d2
1 + 2d2

2 − 2d2
3 + 3d2

4 − 2d2
5 + 6d2

6 = 3(2 + h1h2ψ0)ψ0

(2h3 − h1)(2h3 − h2)

2(1 + h1h2ψ0)

(h3 − h1)(h3 − h2)
ψ0,

6g2
1 + 2g2

2 − 2g2
3 + 3g2

4 − 2g2
5 + 6g2

6

= 2(1 + h1h2ψ0)(2h3 − h2)

(h3 − h1)(h3 − h2)(h3 − 2h2)

2(1 + h1h3ψ0)

(h2 − h1)(h2 − h3)
ψ0,

6h2
1 + 2h2

2 − 2h2
3 + 3h2

4 − 2h2
5 + 6h2

6 = 3(2 + h1h3ψ0)ψ0

(2h2 − h1)(2h2 − h3)

2(1 + h1h3ψ0)

(h2 − h1)(h2 − h3)
ψ0,

6a1b1 + 2a2b2 − 2a3b3 + 3a4b4 − 2a5b5 + 6a6b6 = 0,

6a1c1 + 2a2c2 − 2a3c3 + 3a4c4 − 2a5c5 + 6a6c6 = 0,

6a1d1 + 2a2d2 − 2a3d3 + 3a4d4 − 2a5d5 + 6a6d6 = 0,

6a1g1 + 2a2g2 − 2a3g3 + 3a4g4 − 2a5g5 + 6a6g6 = 0,
12
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6a1h1 + 2a2h2 − 2a3h3 + 3a4h4 − 2a5h5 + 6a6h6 = 0,

6b1c1 + 2b2c2 − 2b3c3 + 3b4c4 − 2b5c5 + 6b6c6 = 0,

6b1d1 + 2b2d2 − 2b3d3 + 3b4d4 − 2b5d5 + 6b6d6 = 0,

6b1g1 + 2b2g2 − 2b3g3 + 3b4g4 − 2b5g5 + 6b6g6 = 0,

6b1h1 + 2b2h2 − 2b3h3 + 3b4h4 − 2b5h5 + 6b6h6 = 0,

6c1d1 + 2c2d2 − 2c3d3 + 3c4d4 − 2c5d5 + 6c6d6 = 0,

6c1g1 + 2c2g2 − 2c3g3 + 3c4g4 − 2c5g5 + 6c6g6 = 0,

6c1h1 + 2c2h2 − 2c3h3 + 3c4h4 − 2c5h5 + 6c6h6 = 0,

6d1g1 + 2d2g2 − 2d3g3 + 3d4g4 − 2d5g5 + 6d6g6 = 0,

6d1h1 + 2d2h2 − 2d3h3 + 3d4h4 − 2d5h5 + 6d6h6 = 0,

6g1h1 + 2g2h2 − 2g3h3 + 3g4h4 − 2g5h5 + 6g6h6 = 0,

and

a1 + b1 + c1 = (1 + h2h3)

(h1 − h2)(h1 − h3)
,

a2 + b2 + c2 = (1 + h2h3)h1

(h1 − h2)(h1 − h3)
,

a3 + b3 + c3 =
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h1 − h2)(h1 − h3)
,

a4 + b4 + c4 = 0, a5 + b5 + c5 = 0, a6 + b6 + c6 = 0,

ϕ(h1 − h2)b1 + g1 + h1 = (1 + h1h3)

(h2 − h1)(h2 − h3)
,

ϕ(h1 − h2)b2 + g2 + h2 = (1 + h1h3)h2

(h2 − h1)(h2 − h3)
,

ϕ(h1 − h2)b3 + g3 + h3 =
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h2 − h1)(h2 − h3)
,

ϕ(h1 − h2)b4 + g4 + h4 = 0, ϕ(h1 − h2)b5 + g5 + h5 = 0, ϕ(h1 − h2)b6 + g6 + h6 = 0,

ϕ(h1 − h3)c1 + ϕ(h2 − h3)g1 + d1 = (1 + h1h2)

(h3 − h1)(h3 − h2)
,

ϕ(h1 − h3)c2 + ϕ(h2 − h3)g2 + d2 = (1 + h1h2)h3

(h3 − h1)(h3 − h2)
,

ϕ(h1 − h3)c3 + ϕ(h2 − h3)g3 + d3 =
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h3 − h1)(h3 − h2)
,

ϕ(h1 − h3)c4 + ϕ(h2 − h3)g4 + d4 = 0, ϕ(h1 − h3)c5 + ϕ(h2 − h3)g5 + d5 = 0,

ϕ(h1 − h3)c6 + ϕ(h2 − h3)g6 + d6 = 0.

Solve these equations, we get

a1 = (1 + h2h3)(2 + h2h3)
,

(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)

13
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a2 = 3h1(1 + h2h3)(2 + h2h3)

(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)
,

a3 = 3(2 + h2h3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)
,

a4 = 2h2
1(1 + h2h3)(2 + h2h3)

(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)
,

a5 = 3h1(2 + h2h3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)

(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)
,

a6 =
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)(2 + h2h3)(2 + h1h3)(2 + h1h2)

(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)
,

that is,

S(1,1,1) = 1

(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)

(
(1 + h2h3)(2 + h2h3)P

3
1

+ 3h1(1 + h2h3)(2 + h2h3)P1P2,1

+ 3(2 + h2h3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P1P2,2

+ 2h2
1(1 + h2h3)(2 + h2h3)P3,1 (47)

+ 3h1(2 + h2h3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P3,2

+√
(1 + h2h3)(1 + h1h3)(1 + h1h2)(2 + h2h3)(2 + h1h3)(2 + h1h2)P3,3

)
.

We also get bi, ci, di, gi, hi by solving the equations above which we do not list, instead we list 
the following result:

S(
1 1
1

)
h1,h2

= 1

(h2 − 2h1)(h2 − h3)(h1 − h2)(h1 − h3)

(
2(1 + h1h3)(1 + h2h3)P 3

1

+ (−2h3)(1 + h2h3)(1 + h1h3)P1P2,1

+ (6 − 2h2
3)

√
(1 + h2h3)(1 + h1h3)(1 + h1h2)P1P2,2

+ 2h1h2(1 + h2h3)(1 + h1h3)P3,1

+ (−2h3 + 3σ3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P3,2

+√
(1 + h2h3)(1 + h1h3)(1 + h1h2)(2 + h2h3)(2 + h1h3)(2 + h1h2)P3,3

)
.

(48)

S(2,1)h1,h3
= 1

(h3 − 2h1)(h3 − h2)(h1 − h2)(h1 − h3)

(
2(1 + h1h2)(1 + h2h3)P

3
1

+ (−2h2)(1 + h2h3)(1 + h1h2)P1P2,1

+ (6 − 2h2
2)

√
(1 + h2h3)(1 + h1h3)(1 + h1h2)P1P2,2

+ 2h1h3(1 + h2h3)(1 + h1h2)P3,1 (49)

+ (−2h2 + 3σ3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P3,2

+√
(1 + h2h3)(1 + h1h3)(1 + h1h2)(2 + h2h3)(2 + h1h3)(2 + h1h2)P3,3

)
.

S(
2
1

)
h2,h3

= 1

(h3 − 2h2)(h3 − h1)(h2 − h1)(h2 − h3)

(
2(1 + h1h2)(1 + h1h3)P

3
1

+ (−2h1)(1 + h1h3)(1 + h1h2)P1P2,1
14
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+ (6 − 2h2
1)

√
(1 + h2h3)(1 + h1h3)(1 + h1h2)P1P2,2

+ 2h2h3(1 + h1h3)(1 + h1h2)P3,1 (50)

+ (−2h1 + 3σ3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P3,2

+√
(1 + h2h3)(1 + h1h3)(1 + h1h2)(2 + h2h3)(2 + h1h3)(2 + h1h2)P3,3

)
.

S(3) = 1

(h3 − h2)(h3 − h1)(2h3 − h2)(2h3 − h1)

(
(1 + h1h2)(2 + h1h2)P

3
1

+ 3h3(1 + h1h2)(2 + h1h2)P1P2,1

+ 3(2 + h1h2)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P1P2,2

+ 2h2
3(1 + h1h2)(2 + h1h2)P3,1 (51)

+ 3h3(2 + h1h2)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P3,2

+√
(1 + h2h3)(1 + h1h3)(1 + h1h2)(2 + h2h3)(2 + h1h3)(2 + h1h2)P3,3

)
,

and

S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠

= 1

(h2 − h1)(h2 − h3)(2h2 − h1)(2h2 − h3)

(
(1 + h1h3)(2 + h1h3)P

3
1

+ 3h2(1 + h1h3)(2 + h1h3)P1P2,1

+ 3(2 + h1h3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P1P2,2

+ 2h2
2(1 + h1h3)(2 + h1h3)P3,1 (52)

+ 3h2(2 + h1h3)
√

(1 + h2h3)(1 + h1h3)(1 + h1h2)P3,2

+√
(1 + h2h3)(1 + h1h3)(1 + h1h2)(2 + h2h3)(2 + h1h3)(2 + h1h2)P3,3

)
.

From the expressions above, we also can see these 3-Schur functions are also symmetric about 

three coordinate axes, for example, changing 3D Young diagram (1, 1, 1) to 

⎛
⎝ 1

1
1

⎞
⎠ corre-

sponds to exchanging h1 ↔ h2 in 3-Schur functions, changing 3D Young diagram (2, 1)h1,h3

to 
(

1 1
1

)
h1,h2

corresponds to exchanging h2 ↔ h3 in 3-Schur functions, and so on.

We can calculate 3-Schur functions corresponding to other 3D Young diagrams in the same 
way.

4. 3-Schur functions and MacMahon representation

In this section, we show that the 3-Schur functions obtained in last section are already exist in 
affine Yangian and its MacMahon representation.

From

〈0|ã(e0)e0|0〉 = 〈0|(−f0)e0|0〉 = 1

we set S(1) = P1 = e0|0〉.
15
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From the relation (8) in affine Yangian, we have

〈f0f0e0e0|0〉 = 2, 〈f0f0e1e0|0〉 = 0, 〈f0f1e1e0|0〉 = 2,

then we set P 2
1 = e0e0|0〉, P2,1 = e1e0|0〉. By calculation, we have

〈f0f0e2e0|0〉 = 2, 〈f0f1e2e0|0〉 = 2σ3,

then

〈f0f0(e2 − σ3e1 − e0)e0|0〉 = 0, 〈f0f1(e2 − σ3e1 − e0)e0|0〉 = 0,

and from

〈f0(f2 − σ3f1 − f0)(e2 − σ3e1 − e0)e0|0〉 = −2(1 + h1h2)(1 + h1h3)(1 + h2h3),

we set√
(1 + h1h2)(1 + h1h3)(1 + h2h3)P2,2 = (e2 − σ3e1 − e0)e0|0〉. (53)

We can see that equations ((40)-(42)) become

S(1,1) = 1

(h1 − h2)(h1 − h3)
((1 + h2h3)e0e0|0〉 + (1 + h2h3)h1e1e0|0〉

+ (e2 − σ3e1 − e0)e0|0〉) , (54)

S(
1
1

) = 1

(h2 − h1)(h2 − h3)
((1 + h1h3)e0e0|0〉 + (1 + h1h3)h2e1e0|0〉

+ (e2 − σ3e1 − e0)e0|0〉) , (55)

S(2) = 1

(h3 − h1)(h3 − h2)
((1 + h1h2)e0e0|0〉 + (1 + h1h2)h3e1e0|0〉

+ (e2 − σ3e1 − e0)e0|0〉) , (56)

which match the results in (32) by direct calculation.
From the relation (8) in affine Yangian, we calculate the following results

〈f0f0f0e0e0e0|0〉 = −6, 〈f0f0f0e0e1e0|0〉 = 0, 〈f0f0f0e0e2e0|0〉 = −6,

〈f0f0f0e1e0e0|0〉 = 0, 〈f0f0f0e2e0e0|0〉 = −12, 〈f0f0f0e1e1e0|0〉 = 0,

〈f0f0f0e2e1e0|0〉 = 0, 〈f0f0f0e1e2e0|0〉 = 0, 〈f0f0f0e2e2e0|0〉 = −12,

and

〈f0f1f0e0e0e0|0〉 = 0, 〈f0f1f0e0e1e0|0〉 = −2, 〈f0f1f0e0e2e0|0〉 = −2σ3,

〈f0f1f0e1e0e0|0〉 = −4, 〈f0f1f0e2e0e0|0〉 = −4σ3, 〈f0f1f0e1e1e0|0〉 = 0,

〈f0f1f0e2e1e0|0〉 = −8, 〈f0f1f0e1e2e0|0〉 = −4, 〈f0f1f0e2e2e0|0〉 = −12σ3,

and
16
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〈f0(f2 − σ3f1 − f0)f0e0e0e0|0〉 = 0, 〈f0(f2 − σ3f1 − f0)f0e0e1e0|0〉 = 0,

〈f0(f2 − σ3f1 − f0)f0e0e2e0|0〉 = 2(1 + h1h2)(1 + h1h3)(1 + h2h3),

〈f0(f2 − σ3f1 − f0)f0e1e0e0|0〉 = 0, 〈f0(f2 − σ3f1 − f0)f0e1e1e0|0〉 = 0,

〈f0(f2 − σ3f1 − f0)f0e2e0e0|0〉 = 4(1 + h1h2)(1 + h1h3)(1 + h2h3),

〈f0(f2 − σ3f1 − f0)f0e2e1e0|0〉 = 0, 〈f0(f2 − σ3f1 − f0)f0e1e2e0|0〉 = 0,

〈f0(f2 − σ3f1 − f0)f0e2e2e0|0〉 = 12(1 + h1h2)(1 + h1h3)(1 + h2h3).

From the equations above, we see that e0e0e0|0〉, e0e0e0|0〉, e0(e2 − σ3e1 − e0)e0|0〉, e1e1e0|0〉
are orthogonal to each other under the quadratic form we introduced in equations (30) and 
(31), in the following, we want to find other vectors who are orthogonal to every one in the 
set {e0e0e0|0〉, e0e0e0|0〉, e0(e2 − σ3e1 − e0)e0|0〉, e1e1e0|0〉}. We calculate

〈f0f1f1e0e0e0|0〉 = 0, 〈f0f1f1e0e1e0|0〉 = 0, 〈f0f1f1e0e2e0|0〉 = 0,

〈f0f1f1e1e0e0|0〉 = 0, 〈f0f1f1e2e0e0|0〉 = −12, 〈f0f1f1e1e1e0|0〉 = −12,

〈f0f1f1e2e1e0|0〉 = −24σ3, 〈f0f1f1e1e2e0|0〉 = −12σ3,

〈f0f1f1e2e2e0|0〉 = 12σ2 − 12σ 2
3 .

We want to find the basis of the vector space spanned by ejeke0|0〉 with the relations (6) and 
(13). In paper [15], we have proved that the following relations hold by Serre relations (13): let l
be an integer and l ≥ 0,

el+1ele0|0〉 = 2elel+1e0|0〉, (57)

el+m+1el−me0|0〉 = 2el−mel+m+1e0|0〉 + 3el−m+1el+me0|0〉 + 2 × 3el−m+2el+m−1e0|0〉
+ · · · + 2m−1 × 3elel+1e0|0〉, 0 < m ≤ l, (58)

and

el+2ele0|0〉 = 2elel+2e0|0〉 + el+1el+1e0|0〉, (59)

el+m+2el−me0|0〉 = 2el−mel+m+2e0|0〉 + 3el−m+1el+m+1e0|0〉 + 2 × 3el−m+2el+me0|0〉
+ · · · + 2m−1 × 3elel+2e0|0〉 + 2mel+1el+1e0|0〉, 0 < m ≤ l. (60)

From (6), if k = 3, we have

[e3, e0] − 3[e2, e1] + σ2[e1, e0] − σ3e0e0 = 0,

if k > 3, we have

[ek, e0] − 3[ek−1, e1] + 3[ek−2, e2] − [ek−3, e3]
+ σ2[ek−2, e0] − σ2[ek−3, e1] − σ3{ek−3, e0} = 0,

acting on |0〉, we obtain

eke0|0〉 = −σ2ek−2e0|0〉 + σ3ek−3e0|0〉 for k ≥ 3. (61)

From the results in ((57)-(60)) and (61), we get that the vector space spanned by ejeke0|0〉 with 
the relations (6) and (13) has a set of basis

{e2e2e0|0〉, e2e1e0|0〉, e2e0e0|0〉, e1e1e0|0〉, e1e0e0|0〉, e0e0e0|0〉}
17
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Suppose

a22e2e2 + a21e2e1 + a20e2e0 + a11e1e1 + a10e1e0 + a00e0e0)e0|0〉 (62)

is orthogonal to every vector in the set {e0e0e0|0〉, e0e0e0|0〉, e0(e2 −σ3e1 − e0)e0|0〉, e1e1e0|0〉}. 
If a22 = 0, by orthogonality, we get

2a20 + a00 = 0,

2a21 + σ3a20 + a10 = 0,

a20 = 0,

2a21σ3 + a20 + a11 = 0,

that is, a00 = 0, a10 = −2a21, a20 = 0, a11 = −2a21σ3, then we get the vector

(e2 − 2σ3e1 − 4e0)e1e0|0〉
and

〈0|f0f1(f2 −2σ3f1 −4f0)(e2 −2σ3e1 −4e0)e1e0|0〉 = 32(1+h1h2)(1+h1h3)(1+h2h3).

If a22 in (62) is not equal to zero, let a22 = 1 without loss of generality. That the vector in (62) is 
orthogonal to every one in the set {e0e0e0|0〉, e0e0e0|0〉, e0(e2 −σ3e1 −e0)e0|0〉, e1e1e0|0〉, (e2 −
2σ3e1 − 4e0)e1e0|0〉} tells us

a00 = 4, a10 = 3

2
σ3, a20 = −3, a11 = σ2 − σ 2

3 + 3

2
σ3 + 3, a21 = −3

4
σ3,

then we get the vector

e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1 + 3

2
σ3e1e0 + 4e0e0)e0|0〉.

By calculation, we have

〈0|f0(f2f2 − 3

4
σ3f2f1 − 3f2f0 + (σ2 + 1

2
σ 2

3 + 3)f1f1 + 3

2
σ3f1f0 + 4f0f0)

(e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1 + 3

2
σ3e1e0 + 4e0e0)e0|0〉

= 6(1 + h1h2)(1 + h1h3)(1 + h2h3)(2 + h1h2)(2 + h1h3)(2 + h2h3).

Therefore, the vector space spanned by ejeke0|0〉 with the relations (6) and (13) has a set of 
orthogonal basis

e0e0e0|0〉, e0e1e0|0〉, e0(e2 − σ3e1 − e0)e0|0〉, e1e1e0|0〉, (e2 − 2σ3e1 − 4e0)e1e0|0〉,
(e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1 + 3

2
σ3e1e0 + 4e0e0)e0|0〉.

The results in (34) can be rewritten by the set of orthogonal basis above:

|(1,1,1)〉 = 1

(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)
(e2 + h1e1 + h2h3e0)

(e2 + h1e1 + h2h3e0)e0|0〉
= 1

(
(1 + h2h3)(2 + h2h3)e0e0e0|0〉
(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)

18
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+ 3h1(1 + h2h3)(2 + h2h3)e0e1e0|0〉 + 3(2 + h2h3)e0(e2 − σ3e1 − e0)e0|0〉
+ h2

1(1 + h2h3)(2 + h2h3)e1e1e0|0〉 (63)

+ 3

4
h1(2 + h2h3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1

+3

2
σ3e1e0 + 4e0e0)e0|0〉

)
,

|
(

1 1
1

)
h1,h2

〉 = 1

(h2 − 2h1)(h2 − h3)(h1 − h2)(h1 − h3)
(e2 + (h2 − h1)e1 + 2h1h3e0)

(e2 + h1e1 + h2h3e0)e0|0〉
= 1

(h2 − 2h1)(h2 − h3)(h1 − h2)(h1 − h3)(
2(1 + h1h3)(1 + h2h3)e0e0e0|0〉

− 2h3(1 + h2h3)(1 + h1h3)e0e1e0|0〉
+ (6 − 2h2

3)e0(e2 − σ3e1 − e0)e0|0〉
+ h1h2(1 + h2h3)(1 + h1h3)e1e1e0|0〉 (64)

+ (
−h3

2
+ 3

4
σ3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1

+ 3

2
σ3e1e0 + 4e0e0)e0|0〉

)
,

|(2,1)h1,h3〉 = 1

(h3 − 2h1)(h3 − h2)(h1 − h2)(h1 − h3)
(e2 + (h3 − h1)e1 + 2h1h2e0)

(e2 + h1e1 + h2h3e0)e0|0〉
= 1

(h3 − 2h1)(h3 − h2)(h1 − h2)(h1 − h3)

(
2(1 + h1h2)(1 + h2h3)e0e0e0|0〉

− 2h2(1 + h2h3)(1 + h1h2)e0e1e0|0〉 + (6 − 2h2
2)e0(e2 − σ3e1 − e0)e0|0〉

+ h1h3(1 + h2h3)(1 + h1h2)e1e1e0|0〉 (65)

+ (
−h2

2
+ 3

4
σ3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1

+ 3

2
σ3e1e0 + 4e0e0)e0|0〉

)
,

|
(

1 1
1

)
h2,h1

〉 = 1

(h1 − 2h2)(h1 − h3)(h2 − h1)(h2 − h3)
(e2 + (h1 − h2)e1 + 2h2h3e0)

(e2 + h2e1 + h1h3e0)e0|0〉
= 1
(h1 − 2h2)(h1 − h3)(h2 − h1)(h2 − h3)
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(
2(1 + h1h3)(1 + h2h3)e0e0e0|0〉

− 2h3(1 + h2h3)(1 + h1h3)e0e1e0|0〉
+ (6 − 2h2

3)e0(e2 − σ3e1 − e0)e0|0〉 (66)

+ h1h2(1 + h2h3)(1 + h1h3)e1e1e0|0〉
+ (

−h3

2
+ 3

4
σ3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1

+3

2
σ3e1e0 + 4e0e0)e0|0〉

)
,

|
(

2
1

)
h2,h3

〉 = 1

(h3 − 2h2)(h3 − h1)(h2 − h1)(h2 − h3)
(e2 + (h3 − h2)e1 + 2h1h2e0)

(e2 + h2e1 + h1h3e0)e0|0〉
= 1

(h3 − 2h2)(h3 − h1)(h2 − h1)(h2 − h3)

(
2(1 + h1h3)(1 + h1h2)e0e0e0|0〉

− 2h1(1 + h1h2)(1 + h1h3)e0e1e0|0〉 + (6 − 2h2
1)e0(e2 − σ3e1 − e0)e0|0〉

+ h2h3(1 + h1h2)(1 + h1h3)e1e1e0|0〉 (67)

+ (
−h1

2
+ 3

4
σ3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1

+ 3

2
σ3e1e0 + 4e0e0)e0|0〉

)
,

|(3)〉 = 1

(h3 − h2)(h3 − h1)(2h3 − h2)(2h3 − h1)
(e2 + h3e1 + h1h2e0)

(e2 + h3e1 + h1h2e0)e0|0〉
= 1

(h3 − h2)(h3 − h1)(2h3 − h2)(2h3 − h1)

(
(1 + h1h2)(2 + h1h2)e0e0e0|0〉

+ 3h3(1 + h1h2)(2 + h1h2)e0e1e0|0〉 + 3(2 + h1h2)e0(e2 − σ3e1 − e0)e0|0〉
+ h2

3(1 + h1h2)(2 + h1h2)e1e1e0|0〉 (68)

+ (
3h3

2
+ 3

4
σ3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1 + 3

2
σ3e1e0 + 4e0e0)e0|0〉

)
,

|
⎛
⎝ 1

1
1

⎞
⎠〉 = 1

(h2 − h1)(h2 − h3)(2h2 − h1)(2h2 − h3)
(e2 + h2e1 + h1h3e0)

(e2 + h2e1 + h1h3e0)e0|0〉
= 1

(
(1 + h1h3)(2 + h1h3)e0e0e0|0〉
(h2 − h1)(h2 − h3)(2h2 − h1)(2h2 − h3)
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+ 3h2(1 + h1h3)(2 + h1h3)e0e1e0|0〉 + 3(2 + h1h3)e0(e2 − σ3e1 − e0)e0|0〉
+ h2

2(1 + h1h3)(2 + h1h3)e1e1e0|0〉 (69)

+ (
3h2

2
+ 3

4
σ3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1

+ 3

2
σ3e1e0 + 4e0e0)e0|0〉

)
,

|(2,1)h3,h1〉 = 1

(h1 − 2h3)(h1 − h2)(h3 − h2)(h3 − h1)
(e2 + (h1 − h3)e1 + 2h2h3e0)

(e2 + h3e1 + h1h2e0)e0|0〉
= 1

(h1 − 2h3)(h1 − h2)(h3 − h2)(h3 − h1)

(
2(1 + h1h2)(1 + h2h3)e0e0e0|0〉

− 2h2(1 + h2h3)(1 + h1h2)e0e1e0|0〉 + (6 − 2h2
2)e0(e2 − σ3e1 − e0)e0|0〉

+ h1h3(1 + h2h3)(1 + h1h2)e1e1e0|0〉 (70)

+ (
−h2

2
+ 3

4
σ3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1

+ 3

2
σ3e1e0 + 4e0e0)e0|0〉

)
,

and

|
(

2
1

)
h3,h2

〉 = 1

(h2 − 2h3)(h2 − h1)(h3 − h1)(h3 − h2)
(e2 + (h2 − h3)e1 + 2h1h3e0)

(e2 + h3e1 + h1h2e0)e0|0〉
= 1

(h2 − 2h3)(h2 − h1)(h3 − h1)(h3 − h2)

(
2(1 + h1h3)(1 + h1h2)e0e0e0|0〉

− 2h1(1 + h1h2)(1 + h1h3)e0e1e0|0〉 + (6 − 2h2
1)e0(e2 − σ3e1 − e0)e0|0〉

+ h2h3(1 + h1h2)(1 + h1h3)e1e1e0|0〉 (71)

+ (
−h1

2
+ 3

4
σ3)(e2 − 2σ3e1 − 4e0)e1e0|0〉

+ (e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1

+ 3

2
σ3e1e0 + 4e0e0)e0|0〉

)
.

From the expressions above, we clearly get the relations in equations ((35)-(37)) which match 
the relations in equation ((44)-(46)) of 3-Schur functions.

We set

P 3
1 = e0e0e0|0〉, P1P2,1 = e0e1e0|0〉, 2P3,1 = e1e1e0|0〉,√
(1 + h1h2)(1 + h1h3)(1 + h2h3)P1P2,2 = e0(e2 − σ3e1 − e0)e0|0〉,
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4
√

(1 + h1h2)(1 + h1h3)(1 + h2h3)P3,2 = (e2 − 2σ3e1 − 4e0)e1e0|0〉,√
(1 + h1h2)(1 + h1h3)(1 + h2h3)(2 + h1h2)(2 + h1h3)(2 + h2h3)P3,3 =

(e2e2 − 3

4
σ3e2e1 − 3e2e0 + (σ2 + 1

2
σ 2

3 + 3)e1e1 + 3

2
σ3e1e0 + 4e0e0)e0|0〉,

clearly, we get that the orthogonality (43) match the quadratic form (30) and (31), and the ex-
pressions in equations ((63)-(71)) match the expressions in equations ((47)-(52)).

5. Back to the Schur functions of 2D Young diagrams

Here, we consider 2D Young diagrams as a special case of 3D Young diagrams which has only 
one layer in the z-axis direction. We see that S� = P1. From ((40)-(42)), when (h1, h2, h3) =
(1, −1, 0),

S(1,1) = 1

2
P 2

1 + 1

2
P2,1, S(

1
1

) = 1

2
P 2

1 − 1

2
P2,1, S(2) = 0.

From the expressions in equations ((47)-(52)), when (h1, h2, h3) = (1, −1, 0), we have

S(1,1,1) = 1

12

(
2P 3

1 + 6P1P2,1 + 4P3,1

)
, S(

1 1
1

)
h1,h2

= 1

6

(
2P 3

1 − 2P3,1

)
,

S(2,1)h1,h3
= 0, S(

2
1

)
h2,h3

= 0, S(3) = 0,

S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠

= 1

12

(
2P 3

1 − 6P1P2,1 + 4P3,1

)
,

and

S(
1 1
1

)
h1,h2

= S(
1 1
1

)
h2,h1

, S(2,1)h1,h3
= S(2,1)h3,h1

, S(
2
1

)
h2,h3

= S(
2
1

)
h3,h2

,

We see that when (h1, h2, h3) = (1, −1, 0), 3-Schur functions of 3D Young diagrams with 
more than one layer in the z-axis direction vanish, and 3-Schur functions of 3D Young diagrams 
with one layer in the z-axis direction become the Schur functions of 2D Young diagrams if we 
let Pn,1 = pn, where pn are the variables of Schur functions in equations (1) and (2).

Note that the 3-Schur functions of 3D Young diagrams will become Schur functions of 2D 
Young diagrams which are in different plane if we take different value of h1, h2, h3. From above, 
we know that if (h1, h2, h3) = (1, −1, 0), 3-Schur functions of 3D Young diagrams become the 
Schur functions of 2D Young diagrams which are in plane xOy. We can see that if (h1, h2, h3) =
(1, 0, −1), 3-Schur functions of 3D Young diagrams become the Schur functions of 2D Young 
diagrams which are in plane yOz, and if (h1, h2, h3) = (0, 1, −1), 3-Schur functions of 3D 
Young diagrams become the Schur functions of 2D Young diagrams which are in plane xOy. 
The exchange of 1 and −1 corresponds to the transpose of 2D Young diagram. For example, if 
(h1, h2, h3) = (1, −1, 0),
22
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Fig. 2. Young diagram in plane xOy.

S(1,1,1) = 1

12

(
2P 3

1 + 6P1P2,1 + 4P3,1

)
,

S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠

= 1

12

(
2P 3

1 − 6P1P2,1 + 4P3,1

)
,

and if (h1, h2, h3) = (−1, 1, 0),

S(1,1,1) = 1

12

(
2P 3

1 − 6P1P2,1 + 4P3,1

)
,

S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠

= 1

12

(
2P 3

1 + 6P1P2,1 + 4P3,1

)
,

that is, if (h1, h2, h3) = (1, −1, 0), we look at the 2D Young diagrams in plane xOy from top 
downwards, as in (a) of Fig. 2, and if (h1, h2, h3) = (1, −1, 0), we look at the 2D Young dia-
grams in plane xOy from bottom up, as in (b) of Fig. 2. We can see that this is the transpose of 
2D Young diagrams.

6. The relations with the Jack symmetric polynomials

In this section, we give the relations between the 3-Schur functions we defined and the Jack 
symmetric polynomials. This section is given under the reviewer’s advice. We recall the Jack 
symmetric polynomial first [2]. Let λ and μ be 2D Young diagrams, for Jack symmetric func-
tions,

〈pλ,pμ〉α = δλμαl(λ)zλ, where zλ =
∏
i

imi mi !,

some examples are 〈pn
1 , pn

1 〉 = αnn!, 〈pn, pn〉 = αn. Let

b
(α)
λ =

∏
s∈λ

αa(s) + l(s) + 1

αa(s) + l(s) + α
,

where a(s) and l(s) are arm-length and leg-length of s respectively. The Jack symmetric poly-
nomials are denoted by P (α)

λ , Q(α)
λ , the relation between them is

Q
(α)
λ = b

(α)
λ P

(α)
λ .

The following are some examples.
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P
(α)
(1) = p1, Q

(α)
(1) = 1

α
p1,

P
(α)
(2) = 1

α + 1
p2

1 + α

α + 1
p2, Q

(α)
(2) = 1

2α2 p2
1 + 1

2α
p2,

P
(α)
(1,1)

= 1

2
p2

1 − 1

2
p2, Q

(α)
(1,1)

= 1

α(α + 1)
p2

1 − 1

α(α + 1)
p2,

P
(α)
(3) = 2α2

(2α + 1)(α + 1)
p3 + 3α

(2α + 1)(α + 1)
p1p2 + 1

(2α + 1)(α + 1)
p3

1,

Q
(α)
(3) = 1

3α
p3 + 1

2α2 p1p2 + 1

6α3 p3
1,

P
(α)
(2,1) = 1

α + 2
p3

1 + α − 1

α + 2
p1p2 − α

α + 2
p3,

Q
(α)
(2,1) = 1

α2(2α + 1)
p3

1 + α − 1

α2(2α + 1)
p1p2 − 1

α(2α + 1)
p3

1,

P
(α)
(1,1,1) = 1

6
p3

1 − 1

2
p1p2 + 1

3
p3,

Q
(α)
(1,1,1) = 1

α(α + 1)(α + 2)
p3

1 − 3

α(α + 1)(α + 2)
p1p2 + 2

α(α + 1)(α + 2)
p3

1.

In the following, we will show what the 3-Schur functions become when (h1, h2, h3) =
(h, − 1

h
, 1

h
− h). When (h1, h2, h3) = (h, − 1

h
, 1

h
− h), we get 1 + h1h2 = 0, then the 3-Schur 

functions corresponding to 3D Young diagrams which are more than one layer in z-axis direc-
tion vanish, and the 3-Schur functions corresponding to 3D Young diagrams which are one layer 
in z-axis direction become:

S(1) = p1, S(1,1) = 1

1 + h2 P 2
1 + h

1 + h2 P2,1, S(
1
1

) = h2

1 + h2 P 2
1 − h

1 + h2 P2,1,

S(1,1,1) = 1

(1 + h2)(1 + 2h2)
(P 3

1 + 3hP1P2,1 + 2h2P3,1),

S(
1 1
1

)
h1,h2

= 1

(1 + h2)(1 + 2h2)
(2h2P 3

1 + 2h(h2 − 1)P1P2,1 − 2h2P3,1),

S⎛
⎜⎜⎝

1
1
1

⎞
⎟⎟⎠

= 1

(1 + h2)(2 + h2)
(h4P 3

1 − 3h3P1P2,1 + 2h2P3,1).

We change pn to be 
√

αpn in Jack symmetric polynomials (this is because 〈pn, pn〉α = nα in 
Jack symmetric polynomials and 〈pn, pn〉 = n in Schur functions), let α = h2, we get

P
(α)
(1) = √

αS(1)|(h,− 1
h
, 1
h
−h)

, (72)

P
(α)
(2) = (

√
α)2S(1,1)|(h,− 1

h
, 1
h
−h)

, (73)

Q
(α)
(1,1)

= 1

(
√

α)2
S(

1
1

)|
(h,− 1

h
, 1
h
−h)

, (74)
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P
(α)
(3) = (

√
α)3S(1,1,1)|(h,− 1

h
, 1
h
−h)

, (75)

Q
(α)
(2,1) = 1 + α

2(
√

α)3
S(

1 1
1

)
h1,h2

|
(h,− 1

h
, 1
h
−h)

, (76)

Q
(α)
(1,1,1) = 1

(
√

α)3
S⎛

⎜⎜⎝
1
1
1

⎞
⎟⎟⎠
|
(h,− 1

h
, 1
h
−h)

, (77)

we can see some rule in them. Therefore, we get that the 3-Schur functions corresponding to 3D 
Young diagrams which are one layer in z-axis direction become Jack symmetric polynomials by 
multiplying a coefficient when (h1, h2, h3) = (h, − 1

h
, 1

h
− h). The results in last section is the 

special case h = 1 of that in this section, at this point, we should call 3-Schur function Sπ 3-Jack 
polynomial under the reviewer’s advice, where π is a 3D Young diagram. One can similarly 
discuss other results as in last section.

7. Concluding remarks

In this paper, we give the 3-Schur functions of 3D Young diagrams by the orthogonal-
ity we have calculated. 3-Schur functions are functions of variables P1, P2,1, P2,2, P3,1, P3,2, 
P3,3, · · · , whose coefficients are functions of h1, h2, h3 with relation h1 + h2 + h3 = 0. The ex-
pressions of 3-Schur functions are symmetric about three coordinate axes. We also show that 
3-Schur functions we given match that in affine Yangian and its MacMahon representation. 
When (h1, h2, h3) = (h, − 1

h
, 1

h
− h) 3-Schur functions of 3D Young diagrams become the Jack 

symmetric polynomials of 2D Young diagrams, specially, when h = 1, that is, (h1, h2, h3) =
(1, −1, 0), 3-Schur functions of 3D Young diagrams become the Schur functions of 2D Young 
diagrams.

Actually, we give a method to calculate the 3-Schur functions in this paper, next we want to 
give an expression of 3-Schur functions for all 3D Young diagrams, like the expression in (2) of 
Schur functions for all 2D Young diagrams.
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