
Escola Tècnica Superior d’Enginyeria

Departament d’Informàtica

Programa de Doctorat en Tecnologies de la Informació,

Comunicacions i Computació

Performance Improvements of EventIndex
Distributed System at CERN

TESIS DOCTORAL

Álvaro Fernández Casańı

Directores:

Juan Manuel Orduña Huertas y Santiago González de la Hoz

Diciembre 2022

C
E

R
N

-T
H

E
S

IS
-2

0
2

3
-0

1
6

0
7
/

0
3
/

2
0
2
3

D. Juan Manuel Orduña Huertas,
Profesor del Departamento de Informática de la Universidad de Valencia, y

D. Santiago González de la Hoz,
Investigador del Instituto de F́ısica Corpuscular (IFIC), y profesor del Departa-
mento de F́ısica Atómica, Molecular y Nuclear de la Universidad de Valencia.

CERTIFICAN:
Que la presente memoria que tiene por t́ıtulo Performance Improvements of

EventIndex Distributed System at CERN, ha sido realizada bajo su dirección
por D. Álvaro Fernández Casańı y constituye su trabajo de tesis doctoral en el
Departamento de Informática de la Universidad de Valencia para optar al t́ıtulo
de Doctor en Tecnoloǵıas de la Información, Comunicaciones y Computación.

Y para que conste, en cumplimiento de la legislación vigente, firman el
presente certificado.

Fdo. Juan Manuel Orduña Huertas Fdo. Santiago González de la Hoz

A Amanda,
mi kantele.

A mis padres,
por estar siempre.

Preface

The work described in this thesis is framed in the context of the EventIndex
project of the ATLAS experiment, a big particle detector of the LHC (Large
Hadron Collider) at CERN. When I was given the opportunity to be part
of it, I found it very interesting to continue the work on distributed systems
that we started many years ago with the development and deployment of grid
technologies within big data environments.

I would like to thank my PhD. supervisors Juan Manuel Orduña Huertas
and Santiago González de la Hoz, for the unwavering guidance and support
during this work in partial fulfillment of my doctoral degree.

As part of an international collaboration, many people have contributed to
the ATLAS EventIndex project success. I would like to acknowledge all the
members of the project, for these years of excellent work and helping me when
I needed it. I would also like to thank the CERN IT people, always available to
share their knowledge and skills.

A special thank you to my colleagues at IFIC (Instituto de F́ısica Corpus-
cular), joint centre of the University of Valencia and CSIC. The current and
past members of the ATLAS Tier-2 computing group have shared motivation
and challenges over these years, and I am grateful for all the things that I have
learned. I would like to particularly mention the emotional support that I have
received from leaders and colleagues to finish this work.

Finalmente, esto no seŕıa posible sin la ayuda y apoyo de mi familia. A mi
mujer Amanda, siempre a mi lado con amor incondicional. A mis padres, Toni
y Marisa, que me han hecho estar orgulloso de mi y de ellos, y me enseñan cada
d́ıa a valorar lo importante. A mi hermana Ana, soportándome desde siempre
y siendo una trabajadora incansable, junto a Ismael y a mis sobrinos Pablo y
Adrián. A Elvira por estar siempre a mi lado y a toda mi familia, gracias.

vii

Contents

Preface vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Thesis Outline . 2

2 The Large Hadron Collider and the ATLAS Experiment 5
2.1 Large Hadron Collider . 5
2.2 ATLAS Experiment . 8

2.2.1 Inner Detector . 10
2.2.2 Calorimeters . 12
2.2.3 Muon Spectrometer . 14
2.2.4 Trigger and Data Acquisition System 16

2.3 ATLAS Distributed Computing 20
2.4 ATLAS Computing and Data Challenges in Run 2 and Run 3 . 22

3 EventIndex Project 27
3.1 Introduction and Goals . 27
3.2 Use Cases . 29
3.3 Data Model . 30
3.4 Requirements . 31
3.5 Architecture . 32

3.5.1 Data Production . 32
3.5.2 Data Collection . 35
3.5.3 Data Storage . 35
3.5.4 Data Access . 36
3.5.5 Monitoring . 37

ix

Contents

4 Data Collection 39
4.1 Legacy Messaging Data Collection 40

4.1.1 Data ingestion . 42
4.1.2 Data Validator Controller 43
4.1.3 Shortcomings . 44

4.2 New Design of Distributed Data Collection 45
4.2.1 Object Store data staging 46
4.2.2 Push versus pull model data ingestion 47

4.3 Evaluation . 51
4.3.1 Single dataset indexing results 52
4.3.2 Complete results . 55

4.4 Conclusions . 65

5 Storage 69
5.1 HDFS . 70

5.1.1 Data organization . 71
5.1.2 File format and contents 73
5.1.3 Limitations . 76

5.2 Kudu . 77
5.2.1 Data organization . 77
5.2.2 Data ingestion . 80

5.3 HBase and Phoenix . 82
5.3.1 Data organization . 85
5.3.2 Data ingestion . 92

5.4 Conclusions . 106

6 Access 109
6.1 Requirements and use cases . 109
6.2 EventIndex Analytics Platform 110

6.2.1 Spark . 112
6.2.2 Data discovery . 113
6.2.3 Duplicate calculation . 114
6.2.4 Helper functions . 118
6.2.5 Overlaps calculation . 120

6.3 Conclusions . 126

7 Conclusions 129
7.1 Contributions . 129
7.2 Publications . 131

x

Contents

Resumen 135
Introducción . 136

CERN, LHC y el experimento ATLAS 136
Proyecto EventIndex . 140

Objetivos . 140
Metodoloǵıa . 141

Recolección distribuida de datos 142
Almacenamiento . 144
Acceso . 147

Conclusiones . 149

Bibliography 153

xi

1 Introduction

1.1 Motivation

Our knowledge of the Universe is limited, and one way to search for answers is
to look at the smallest things to understand the bigger ones.

The ATLAS experiment in the Large Hadron Collider (LHC) at CERN,
the European Organization for Nuclear Research, is devoted to studying the
tiniest entities in Nature. The temperature and energy density produced in the
particle colliders is very similar to that just a few moments after the Big Bang,
which means looking into the past to the very beginning of the Universe.

With the massive data production of the LHC experiments at CERN, a
distributed computing solution was required to access the data in a distributed
manner for hundreds of research institutions worldwide. The grid was developed
and has evolved within the WLCG (Worldwide LHC Computing Grid) to
provide computing and storage resources distributedly owned and managed,
but with central coordination.

The ATLAS EventIndex project aims to provide a complete catalogue of all
the particle collisions or events, real and simulated, produced in the experiment
over the different years of operation. To accomplish this objective, a small
quantity of metadata per event is collected in a distributed manner worldwide
on the grid, and then conveyed to a central database at CERN. Thus, use cases
related to selecting particular events based on constraints, or analytical studies
over large quantities of data can be solved in an easy and performant manner.

A number of challenges are foreseen for the next years with increasing
production rates. These are related to the storage, cataloging and access to
petabytes of data, and to the computing resources to analyze them. Also
thousands of physicist require friendly tools for locating and accessing the data
of their interest for their analyses.

A distributed data collection system is required to convey the indexed meta-

1

1. Introduction

data from the grid to a central catalogue at CERN. A previous implementation
based on a messaging system was developed and deployed previously to Run
2 (2015-2018), but faced scalability problems. The backend storage system to
host all the collected EventIndex data at CERN was first implemented with
a NoSQL approach using plain Hadoop HDFS files. A hybrid approach using
Oracle for faster access to a subset of the data was implemented and deployed
during Run 2. This implementation has performed correctly, at the cost of
duplicating data in both systems. Yet with the increasing ingestion rates and
the total volume of data expected on Run 3 (2022-2025) and the next Runs, a
more modern scalable and easily manageable solution to satisfy all use cases is
needed.

1.2 Objectives

The objectives of this thesis are related to the enhancements required for
indexing and cataloguing all produced ATLAS data in a large scale distributed
system, for the current and next Runs of the experiment.

A first objective is to find the shortcomings of the previous distributed
data collection approach and demonstrate that a new pull model design with
temporary data staging in an object store and with dynamic data selection
can scale for the production rates of the experiment. In addition the previous
approach can be improved, reducing the overall complexity and resource usage.

Collected metadata is stored at a central catalogue at CERN, and the current
approach is to provide a hybrid solution using Hadoop as main storage and an
Oracle database to provide faster access to a subset of the data. The second
objective is to study a Big Data data storage solution able to scale with the
data ingestion rates, without duplication and data coherence issues. Columnar-
storages like Kudu as a hybrid transactional and analytical processing tool, and
HBase for its fast random-access support are considered. A new SQL layer with
Phoenix is considered for schema definition and data ingestion standard access.

The selected backend storage must be able to support all required use cases.
The third and last objective is to prove that a schema enforcement provides
benefits for data model and access, and that HBase/Phoenix is versatile enough
to support our analytical workloads.

1.3 Thesis Outline

This thesis is divided into seven chapters.

2

1.3. Thesis Outline

Chapter 1 introduces the thesis, motivation, and objectives.
Chapter 2 introduces the LHC and the ATLAS experiment at CERN, with

the related data challenges in Run 2 (2015-2018). Long Shutdown 2 (2018-2022)
was devoted to preparing for the new conditions of the current Run 3 (2022-
2025), with the upgrades on the detector and the computing infrastructure
including EventIndex. The future requirements on the High Luminosity LHC
(HL-LHC) are also outlined in this chapter.

Chapter 3 presents the EventIndex project, its objectives and requirements
to solve the needed use cases, and the architecture of the different components,
including distributed data collection, storage, and access.

Chapter 4 discusses the challenges of distributed data collection. A producer-
consumer architecture based on an Object Store as a staging data repository is
presented, with a pull based model for data ingestion. Results on real production
scenarios are discussed.

Chapter 5 includes the studies on different data storage backends. First the
original HDFS implementation is discussed, showing its shortcomings. Studies
on columnar-based data storage are presented with the usage of Kudu. Chapter
ends with the HBase and Phoenix model, showing that it can support the
required data ingestion rates and that it can store a single copy of the data to
solve all use cases.

Chapter 6 shows the tools based on Spark for accessing the data based on
HBase and Phoenix. We show that our system can support our analytical use
cases. We discuss the tools for data discovery, duplicate detection and a new
algorithm for detecting overlaps among events.

Finally the conclusions for this work are discussed in the last Chapter 7.

3

2 The Large Hadron Collider and the

ATLAS Experiment

2.1 Large Hadron Collider

The Large Hadron Collider (LHC) [1] is the largest machine built, and the
highest energy particle collider of the world, designed to run at a maximum
energy in the center of mass of 14 TeV. It is built in a circular tunnel located
at an average of 100 metres underground, and with a total length of 26.7 km.
Charged particles (protons and heavy ions, which are hadrons) are accelerated
in beams in two rings in opposite directions until reaching the desired energy.

The journey of a particle in the LHC starts, in the case of the protons, in
a bottle of compressed hydrogen. The CERN accelerator complex, as can be
seen in figure 2.1, contains a chain of injectors working together to increase the
energy of the particles.

The starting point of the trip, at the bottom of the figure, is the LINAC4
(A Linear Accelerator), where negative Hydrogen ions are accelerated up to an
energy of 160 MeV. Before entering the next stage, electrons are stripped off
the ions and the bare protons are injected into the Proton Synchrotron Booster
(PSB). This is a small 25-metre circular accelerator, which makes it possible
to increase the energy to 2 GeV and up to 100 times the number of protons
accepted in the next stage. The Proton Synchrotron (PS) accepts protons from
the previous stage or heavy ions from the Low Energy Ion Ring (LEIR). It is
composed of a 628-metre circumference ring that increases the energy up to 25
GeV. Then a transfer line conveys the protons to the Super Proton Synchrotron
(SPS), housed in a circular tunnel of 6.9 km, currently capable of reaching up
to 450 GeV.

The LHC operates in cycles, each considered a fill of the accelerator composed
of different phases.

5

2. The Large Hadron Collider and the ATLAS Experiment

Figure 2.1: CERN Accelerator Complex, layout in 2022. Figure adapted
from [2].

The injection phase starts with the particles crossing over to the two beam
pipes of the LHC, in a process that lasts 4 minutes and 20 seconds per beam.
Instead of a continuous beam, the proton injection is done in bunches in all the
chain. The designed objective is 2,808 bunches when reaching the LHC.

In order to maintain the particles in their circular beamlines, 1,232 dipole
magnets, 15 metres long each, are used along the 26.9 kilometres track. Coils are
made of niobium-titanium (Nb-i) fibres, and a current of 11,850 amps is needed
to create the necessary 8.33 T magnetic field. Additionally 392 quadrupole
magnets, 5 to 7 metres each, are installed to maintain the beams focused and

6

2.1. Large Hadron Collider

the most powerful are located close to the interaction points where the particles
will collide.

Beamline pipes are kept at ultra high vacuum to avoid beams of particles
colliding with gas molecules. Ultra high vacuum is also used as an insulator
in the cryogenically cooled magnets, and in the helium distribution line. More
than 120 tonnes of superfluid helium-4 are needed in order to maintain the
superconducting properties of the magnets at 1.9 K (-271.3➦C).

During the ramp phase, the charged particles are accelerated in the LHC
by means of the electric fields in 16 radiofrequency (RF) cavities (8 per beam).
Cavities are equipped with a high-power klystron allocated in cryomodules
to work at superconducting state. These reach 2 megavolts (MV) per cavity,
corresponding to 16 MV per beam. The electric field oscillates at 400 MHz,
making the particles line up and keeping them in their bunches, accelerating or
decelerating the particles arriving at the cavity. They bring the original 450
GeV energy of the protons to 6.5 TeV in a 20 minutes cycle, when they have
crossed the cavities more than 10 million times.

During the squeeze and adjust phases, the beams are prepared in the
interaction points where the 2 opposite beams are directed by the quadrupole
magnets against each other to produce particle collisions.

At this point there are stable beams that fulfil the LHC conditions and
therefore collisions can be registered. There are 4 huge caverns underground,
where experiments place their detectors to record the details of the particle
collisions that are produced at a bunch crossing rate of 40 MHz or every 25 ns.
Several independent interactions can happen at almost the same time within
0.5 ns during the bunch crossings.

The signals left by the particles produced by these interactions are recorded
by the detectors as an event from a particular bunch-crossing. The number of
independent particle interactions per bunch-crossing is referred to as the pile-up,
and this varies with the parameters of the LHC. One of the most important
parameters is the luminosity, or the number of potential collisions per surface
unit over a given period of time. When we increase the luminosity we have
greater amount of data to better analyze physical processes, but we also increase
the pile-up making it more difficult to select the desired interactions.

When the number and energy of the particles have decreased to a certain
level, the final dump and ramp-down phases take place to absorb the excess
particle energy, and to decrease the magnetic fields.

The LHC has been in operation since 2009, and alternates long data-taking
periods with long shutdown times for maintenance and upgrades. Since Run
1 (2009-2013), and Run 2 (2015-2018) the luminosity was increased and the

7

2. The Large Hadron Collider and the ATLAS Experiment

pile-up reached up to 50-60. After the Long Shutdown 2, this is expected to be
further increased by the end of the Run 3 (2022-2025).

ATLAS and CMS are 2 big general purpose detectors devoted to a broad
range of physics studies, which can independently confirm their discoveries.
LHCb and ALICE are dedicated to specific phenomena, like physics of B and
D mesons [3], or the formation of quark–gluon plasma (QGP) [4].

2.2 ATLAS Experiment

The ATLAS detector [5] is a multi-purpose detector, in the form of a big cylinder
25 metres high, 46 metres long and 7,000 tonnes in weight that is situated in a
big cavern 100 metres underground, at point 1 of the LHC. As can be seen in
figure 2.2, it is composed of several subsystems, layered and concentric to the
interaction point of the accelerator beams. These include the inner detector,
the electromagnetic and hadronic calorimeters, the magnet system, and the
muon spectrometer. Each of these is designed with a single objective: either to
detect particular kinds of particles or measure individual characteristics such as
the trajectory, energy or momentum.

Heavy particles expected to be produced in the LHC, will decay into hundreds
of lighter particles, like photons, muons, and electrons, after the collisions.
Taking this into account, their tracks and characteristics can be reconstructed
and identified.

The trajectory of the particles is usually straight, but the big magnets
contribute to the identification bending the tracks, and make measuring the
momenta possible. High momentum particles will go in almost straight tracks,
while lower energy ones will travel in slower spirals around the inner subsystems.

The trackers measure the trajectory at different points to reconstruct the
charge and energy from the particle. The inner layers are the least dense to
avoid interacting. Calorimeters, on the other hand, are dense and absorb most
of the particles, making it possible to measure the energy. Electromagnetic
(EM) calorimeters measure the energy of particles like electrons or photons when
they interact with the charged matter of the detector. Hadronic calorimeters
measure hadrons (particles made of quarks) energy while they interact with
atomic nuclei.

In the trackers, a long enough trajectory must be measured to calculate the
curvature radius of particles with high kinetic energy. The calorimeters are
designed to be very large to absorb as much energy as possible. So these are
the reasons why the LHC detectors are so large.

8

2.2. ATLAS Experiment

Figure 2.2: Computer generated image of the whole ATLAS detector with
detailed subsystems [6].

A visualization of the different kinds of particles and their tracks along the
different ATLAS subsystems can be seen in figure 2.3. Dashed tracks mean that
part is invisible to the detector, while straight lines indicate that the detector
sees the particle. Electrons are light particles that lose their energy in the EM
calorimeter, while charged hadrons like protons go further up to the Hadronic
Calorimeter. Photons are not detected by the inner trackers but leave traces
measured in the EM Calorimeter when decaying into one electron and one
positron. Neutrons are measured indirectly when interacting in the Hadronic
calorimeter and converted into protons. The calorimeters do not stop particles
like muons, so additional tracking devices like muon chambers are placed above
them. Particles like neutrinos are the only known particles neither detected nor
stopped by the different layers.

From the billion (109) particle interactions that happen at the collision
point, only 1 in a million are flagged by the trigger subsystem as potentially of
interest.

9

2. The Large Hadron Collider and the ATLAS Experiment

Figure 2.3: Diagram of particle tracks on the ATLAS detector subsystems [7].

2.2.1 Inner Detector

The Inner Detector (ID), as it can be seen in figure 2.4, is a 6.2 by 2.1 metres
barrel situated just around the collision point of the beam lines. It is composed
of three sub-detectors with different technologies, including pixel detectors,
silicon strip detectors, and straw drift tubes. All of these are immersed in a high
2 T magnetic field parallel to the beams axis. They record the particles at the
interaction points, known as hits, so with different hits along the sub-detectors
the complete track can be reconstructed.

10

2.2. ATLAS Experiment

Figure 2.4: Diagram of the ATLAS Inner Detector showing the Pixel Detector,
Semiconductor Tracker, and Transition Radiation Tracker [8].

Pixel Detector

The Pixel Detector is the innermost part and is composed of a 4-layer barrel of
pixel sensor arrays arranged in 1,736 modules, and two end-caps of three-pixel
disks each with 288 modules. The first layer located just 33.2 mm from the
interaction point is the Insertable B-Layer (IBL) [9], which was added in 2014
prior to the start of the Run 2. The objective was to tolerate extreme radiation
and the higher luminosity following the shutdown, so new radiation-tolerant
sensor and electronic technologies were employed. The pixel size is 50 x 400
µm2 for the external layers and 50 x 250 µm2 for the innermost layer (IBL),
comprising a total of 92 million pixel and electronic channels. This allows
precise measurements of the decay vertex position, and to better distinguish
particles.

11

2. The Large Hadron Collider and the ATLAS Experiment

Semiconductor Tracker

The next part of the inner detector is the Semiconductor Tracker (SCT), located
in the range of 299 mm to 560 mm from the center of the detector. This is
composed of 4 double layers of silicon microstrips in the barrel, and nine disks
in each of the endcaps. With a total of 4,088 modules and 6 million readout
channels, it measures particle tracks with a precision of 17 µm in the transverse
direction of the modules, and 580 µm in the longitudinal plane (z or R).

Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is the last part of the ID, and this is
different since it uses 350,000 kapton straw tubes filled with a noble gas mixture
of Xe/CO2/O2, separated with polypropylene between each of them. Inside
the tubes there is a thin gold-plated tungsten wire, which is able to collect the
electrons produced by ionization of the mixture gas when the particles travel
through the straws. This is used for track reconstruction. The difference in
refraction indexes of the materials produce an amount of transition radiation
related to the mass of the particle, which allows electrons and positrons to be
distinguished from pions.

2.2.2 Calorimeters

ATLAS uses sampling calorimeters that are composed of layers of absorbing
materials to stop the particles as much as possible, and sensing materials that
measure the energy. As can be seen in figure 2.5, the calorimeters come after
the Inner Detector and the solenoid magnet. These are composed of the inner
Liquid Argon (LAr) calorimeters, and the Tile Calorimeter, which fill the barrel
and end cap sections.

Liquid Argon (LAr) Calorimeter

Liquid Argon is used as active material for several reasons, including linear
behaviour, stability response and radioactivity resistance. Lead, copper and
tungsten are used as passive materials.

The LAr Electromagnetic Calorimeter (ECAL) is a 6.4 m long barrel, 53
cm thick, with a carefully designed accordion structure to detect all the particle
showers and to specially identify electrons and photons. It is immersed in a
cryostat to maintain the temperature of the medium at -183 degrees Celsius.

12

2.2. ATLAS Experiment

Figure 2.5: ATLAS Calorimeters [10]

There are 110,000 read-out channel cables situated in a vacuum environment to
preserve them.

End-caps are contained in another cryostat and house the liquid-argon
hadronic end-cap calorimeter (HEC), electromagnetic end-cap (EMEC), and
the liquid-argon forward calorimeter (FCAL). The HEC is composed of two
wheels 0.8 m and 1 m thick each, with a radius of 2.09 m. FCAL is composed
of three modules of a radius of 0.455 m and thickness of 0.450 m each.

This calorimeter measures a wide range of particle energies, from 50 MeV
to 3 TeV, and plays a critical role in selecting only an interesting selection of
collision events, which is also known as the trigger.

During Run 3 (2022-2025) the luminosity, or number of interactions per
collision, will be increased and so the number of background and unidentified
processes by typically a factor of 5. During Long Shutdown 2, improvements
were made to the electronics [11], including the installation of new Super-Cells
which provide increased granularity for the calorimeter layers, and a 23.6 Tbps
read-out data rate. Also 1,524 Front-End readout boards were refurbished, 124

13

2. The Large Hadron Collider and the ATLAS Experiment

new LAr Trigger Digitizer readout Boards, and 5,000 fibres installed. Running
the new digital trigger will be done in parallel with the legacy trigger [12], until
it is fully validated, as it is a critical part of the system.

Tile Calorimeter

Particles that escape the LAr calorimeter are measured by the Tile Calorimeter
(TileCal), inducing hadronic showers via the ionization and strong interaction.
This is composed of alternating layers of steel producing the particle showers,
and plastic scintillating tiles that induce photons, whose electric current is
measured.

As can be seen in figure 2.5, the structure is divided into a 5.6 m central long
barrel, and 2 extended barrels which are 2.6 m in length. This is the heaviest
part of all the ATLAS detector, at 2,600 tons in weight.

The 420 k scintillating tiles are read-out with wavelength-shifting fibers,
grouped in bundles that are then read-out by 9,852 photomultiplier tubes.

Front-end electronics sum channels in trigger towers, which will be the L1
trigger basis.

2.2.3 Muon Spectrometer

As previously discussed, muons pass by unnoticed in inner parts of the detectors,
and it is specifically the task of the last parts to measure them. The Muon
spectrometer is divided into three parts, one in the central barrel and two in
the endcaps. The different sub-detectors can be seen in figure 2.6.

These are immersed in the iconic toroidal magnets that provide a magnetic
field of up to 3.5 T, in order to measure the momentum of the muons. At 25.3
m in length and weighting 830 tons, the central magnets are the biggest toroidal
magnets ever built. The parts in the end-cap are 10.7 m in diameter and weight
240 tonnes each.

To accomplish the muon tracking objectives two set of detectors are used,
the muon trigger system chambers and the muon tracking system chambers.

Muon trigger system chambers

The muon trigger system is composed of the Resistive Plate Chambers (RPCs)
and the Thin Gap Chambers (TGCs) as can be seen in figure 2.6, and the New
Small Wheels (NSW).

14

2.2. ATLAS Experiment

Figure 2.6: Computer generated image of the muon spectrometer and its
parts [13].

The Resistive Plate Chambers (RPC) are made of parallel metal strips filled
with a gas mixture that is ionized when a muon particles travels through them.
The electric current induced is detected providing high resolution (1 ns), which
is very efficient in rapid triggering. The Thin Gap Chambers (TGC) work
on the same principle, but their chambers are composed of graphite-coated
cathodes and a plane of high voltage wires along the chamber, providing a time
resolution of 25 ns.

The New Small Wheels (NSW) [14] were installed during the long shutdown
2, in order to be ready for Run 3. They consist of two wheels 5 metres in radius,
situated in each of the end-caps. They are built with two outer small strip thin
gap chambers (sTCG) for trigger, vertex and bunch crossing identification; and
two internal micromegas (MM) wedges for tracking with 100 microns space
resolution. The objective of the New Small Wheels is to work in conjunction

15

2. The Large Hadron Collider and the ATLAS Experiment

with the previous Big Wheels to discard ghost hits from muon not originating in
the bunch collisions, improving the previous Run 2 resolution and performance
in this matter.

Muon tracking system chambers

As can be seen in figure 2.6, the muon tracking system is composed of the Muon
Drift Tubes(MDTs) and the Cathode Strip Chambers (CSCs), which produce
higher resolution position information, but have slower read-out systems. Thus,
they are only used when a trigger decision is made by the trigger subsystem.

2.2.4 Trigger and Data Acquisition System

The rate of 40 MHz in bunch crossings and the luminosity affect the number of
particle interactions that can be potentially detected. Recording all of them
would mean storing 60 TB/s, which is unmanageable. Not all events are equally
interesting, so the Trigger and Data Acquisition System (TDAQ) [15] is in
charge of the online selection of the events according to the physics analysis
requirements at any particular moment, defined in the thus called trigger menu.

The TDAQ is made of a tiered structure, where the event rate is sequentially
reduced to acceptable levels. During Run 1 it was originally made of a 3-level
infrastructure: Level 1 (L1), Level 2 (L2) and Event Filter(EF), but starting
with Run 2, L2 and EF were combined in the High Level Trigger (HLT).

As can be seen in figure 2.7, the hardware based Level 1 (L1) trigger is the
first step in the event filtering that operates synchronously at 40 MHz, and
reduces the event rate to 100 kHz. This also reduces the original data rate of
the 100,000 read-output channels of the detector from 60 TB/s to roughly 160
GB/s. The next level is the High Level Trigger, which is a completely software
based selection that further reduces the event rate to the order of 1.5 kHz and
a corresponding data rate of 1.5 GB/s, taking a mean event size of 1 MB.

Level 1 (L1) trigger

The L1 trigger uses custom electronics to first decide events of interest. From
the 2.5 µs time slot available for the L1 trigger, only 0.5 µs is devoted to the
actual event selection due to the transfer times needed on the data acquisition
subsystem. It is internally composed of a Central Trigger Processor (CTP) that
interacts with the calorimeters and the muon detectors with three components:
the L1Calo, L1Muon and L1Topo.

16

2.2. ATLAS Experiment

Figure 2.7: ATLAS Trigger and Data Acquisition subsystems. Image Credit:
ATLAS.

The L1Calo reads lower granularity analogue signals from the calorimeters
(see section 2.2.2), digitizing and preprocessing them. It searches for high energy
regions above the programmable menu threshold, which are defined as regions of
Interest (RoI). The results are sent to the L1Topo and CTP modules, including
total and missing transverse energy values.

The L1Muon searches for hits coming from the RPCs and TGCs, including
the NSW presented in section 2.2.3. It sends the information to the L1Topo
and CTP modules in search of muon particles coming from the center of the
detector.

The FPGA-based L1 Topology (L1Topo) module calculates topological
information like angular distances and invariant masses from the trigger objects
calculated in the previous modules, and forwards this data to the CTP.

The Central Trigger Processor (CTP) makes a decision taking into account

17

2. The Large Hadron Collider and the ATLAS Experiment

the amount of energy of the event, but also the number of objects above the
defined thresholds and the topological information. It is also in charge of
honoring dead times to prevent overrunning of the Data Acquisition (DAQ)
buffers for consecutive L1 accepts, or for the number of L1 accepts accumulated
in a given number of bunch crossings.

When a L1 accept is signaled the data is read from the Front-End (FE)
electronics of the DAQ system first into the ReadOut Drivers (ROD) which
performs the first processing. Then it is sent to the ReadOut system (ROS),
that buffers the data for the next stage. From there it is transferred only
when requested by the High Level Trigger (HLT), in addition to the identified
Regions-of-Interest (RoIs).

High Level Trigger (HLT)

The High Level Trigger (HLT) is a pure software trigger approach with 40,000
Processing Units (PUs) running in commodity processors. A fast rejection
approach is followed using first information from the RoIs, and requesting
partial or full event data from the different subsystems stored in the ROS
buffers when necessary. This allows requests of event data to be made from
within RoIs and to apply algorithms to reconstruct features, applying the
decisions within a few hundreds of milliseconds. The software infrastructure is
based on Athena [16, 17] allowing multi-threading complex algorithms to be
applied and detector configuration information to be used if needed.

When the HLT accept is signaled, the event data is stored by the Sub-
Farm Output (SFO) data logger to permanent storage at CERN Tier-0 [18].
During Run 2, the rates during a typical physics data-taking run (see following
section 2.2.4) were on average about 1.2 kHz on the number of events, and 1.2
GB/s to permanent storage.

Trigger configuration

Event trigger decisions are done by means of trigger chains, where each chain
consists of a L1 trigger item and a list of HLT algorithms. The list of the trigger
chains is defined in the trigger menu.

Designing a good trigger menu is crucial to achieving the goals defined in the
physics program. This ideally means having events for all processes, including
rare ones. Some more common processes can be pre-scaled, randomly selecting
some of them according to defined values. A value of n for a particular pre-scale
means we want to select 1 in n events. There might be L1 and HLT defined

18

2.2. ATLAS Experiment

pre-scales for every value in the trigger menu, in order to reduce the bandwidth
consumed.

The trigger menu along with other configuration values are needed in order
to the correct interpretation and reproducibility of the trigger in the offline
analysis framework.

A relational database called TriggerDB [19] is used to maintain the L1 and
HLT configuration parameters and trigger menus which are fixed during a run.

Information that can be updated during physics data-taking, like condition
parameters, is stored in a dedicated database [20], but also referenced in the
TriggerDB. Other information stored are the pre-scales defined with each L1
item or HLT trigger chain, and the bunch group set key.

Data files record the trigger decisions per event in trigger bit masks, where
each bit refers to a particular trigger chain. Since the configuration can change,
the same bit can refer to a different trigger chain, and this relation is maintained
in the TriggerDB, in a table indexed by the trigger supermaster key (SMK).

Bunch identification

In the 25-ns bunch fill spacing scheme used during Run 2, there are a total
of 3,564 bunch spaces or crossings that can be defined in the LHC revolution.
These spaces can be emptied of protons, only with one bunch, or with the
two bunches colliding (up to the 2,808 designed). A Bunch Crossing Identifier
(BCID) is generated in the range from 0 to 3,563. BCIDs are merged in bunch
groups, which are used to be paired with L1 trigger accept decisions.

ATLAS run operational mode

An ATLAS run is defined as a data acquisition period of time at stable LHC
conditions, which usually lasts from a few hours to over a day. For the physics
data-taking this coincides with a typical LHC fill cycle (section 2.1) and is
ideally 10 to 15 hours in the stable beams for physics data-taking. Other kinds
of runs are possible beside physics, for example with cosmic ray data-taking
when there is no beam at the LHC, in order to do calibration or study detector
performance.

When a run starts, the Data Acquisition (DAQ) system assigns a consecutive
and unique run number. An event number unique identifier inside the run is
assigned to every recorded event, which is reset at 0 with each run start.

A run is divided into Luminosity Blocks (LB) with an approximate length
of one minute, although this can configured and changed online in the same run.

19

2. The Large Hadron Collider and the ATLAS Experiment

During a LB, luminosity is kept constant, and detector conditions and trigger
configuration are kept stable. This time period is considered the smallest period
of time that can be declared correct or incorrect for data quality purposes.

Main physics data is output from SFO in byte-oriented streams in raw
format [21], but also other streams are set up for calibration, express data
quality checking, debugging and other tasks. At Tier-0 facility first calibration
and express streams are processed, in order to provide detector calibration and
alignment configuration variables. Then bulk physics data is processed in 24-48
hours with this calculated time dependent information, in order to produce
reconstructed real event properties and physical quantities. The main output
of this reconstruction phase are the Analysis Object Data (AOD) files that are
stored at CERN but also distributed to other centers.

2.3 ATLAS Distributed Computing

ATLAS follows a distributed tiered model for the distribution, reprocessing
and analysis of the data. The Worldwide LHC Computing Grid (WLCG) [22],
or the grid for short, comprises a set of distributed computing technologies to
distribute and access data and computing resources. Tier-0 at CERN keep all
the raw data, and in the order of ten Tier-1 centers duplicates copies of this
data. Then around one hundred Tier-2/3 centers are mostly devoted for data
analysis. A visualization map of the WLCG centers can be seen in figure 2.8.

ATLAS currently uses in this distributed infrastructure over 700 k CPU
cores, 230 PB of online disk and 270 PB of tape storage.

It is common to have better knowledge of the conditions with improved
detector calibration and alignment constants, usually after long data taking
periods. Also new and improved algorithms might be produced, making the
reprocessing of the data possible. In this case, new additional versions of
the previous event AOD files are produced at the Tier-1 centres, and then
distributed.

AOD files are too big to be used directly, so more convenient formats
are produced to be distributed. Derived AOD (DAOD) files are produced
centrally according to the requirements of the physics analysis groups with
only the events and required contents. These derivation processes can be run
very frequently, producing in practice multiple versions of the same original
information distributed in different files, according to the requirements and
software releases used.

20

2.3. ATLAS Distributed Computing

Figure 2.8: Wordwide LHC Computing Grid (WLCG) sites in September 2022.
Tier-0 is at CERN (Geneva); Tier-1 centers are marked with a green star sign;
Tier-2/3 centers are marked with blue sign [23].

Simulated data is also produced in the grid with MonteCarlo probabilistic
methods [24, 25], in order to test the understanding of the performance of the
detector, calculating reconstruction efficiencies, and modelling other processes.
The first step is the event generation in a common EVNT file format. Then
the detector simulation is run to check which generated particles interact with
the detector materials, and the energy deposit within them. The digitization
process converts the simulated energy into a response in the detector, to look
like the real recorded raw data. After this step the procedure is the same as for
real data, generating AOD and DAOD files.

Real and simulated event data are stored in files that reside on disk or tape,
and that are identified in the grid by a Global Unique Identificator (GUID) [26].
Each of these files contain a number of events ranging from 1,000 to 10,000
records, depending on the format and the event size. This is controlled in order
to have output file sizes from 1 to 10 GB which are manageable in the grid, but
there are no limitations to producing smaller or bigger files.

Files are logically grouped into datasets, and datasets are grouped hierarchi-

21

2. The Large Hadron Collider and the ATLAS Experiment

cally into containers. These are named according to a defined nomenclature
standard [27].

These data identifiers for files, datasets and containers are registered in
the distributed data management Rucio [28] tool, which tracks the original
physical location but also the replicas along the grid. With this tool ATLAS
users can access over 100 million files on disk distributed in the grid, containing
more than 400 billion event records. A number of metadata attributes can be
assigned to files. Dataset and container attributes can be explicitly created or be
inferred from its constituents. These attributes include system defined data (file
size, creation and modification times, checksums), and physics data attributes
(number of events, campaign, project, datatype, run number, stream name,
prod step, version, campaign, lumiblock). Workflow management attributes can
help to identify which processes created the data. Data management attributes
can control how the replicas must be created, effectively ordering data placement
if necessary.

2.4 ATLAS Computing and Data Challenges in Run 2 and Run 3

Since its conception the LHC and its experiments have been planned to be
progressively upgraded to reach higher energies and increase the luminosity in
order to better study the physics processes, the fundamental components of the
matter and the forces among them.

The schedule of the LHC and the next High Luminosity LHC can be seen
in figure 2.9. When the LHC started in Run 1 in 2011, the energy at center
of masses reached 7 TeV. Energy has been increasing and when the Run 2
started in 2015, the energy at center-of-mass reached a much higher 13 TeV
with a integrated luminosity of 190 fb−1 (inverse femtobarn). The inverse
femtobarn is a measurement of particle collisions per unit of area (barn), which
represents a measure of both the number of collisions and the amount of data
collected. One inverse femtobarn corresponds to approximately 100 trillion
(1012) proton-proton collisions.

Currently we are on Run 3, which started in July 2022 with a collision
energy of 13.6 TeV, the highest energy reached by a particle accelerator. It will
collect approximately 450 fb−1 when it ends in 2025.

It is planned that the High Luminosity LHC will start at the end of the
decade, with an unprecedented record from 7 to 10 times the current data
taking. With an increase in luminosity, the pile-up will also increase from the
current 30-60 to a future 200. When the Run 5 ends it is expected to have

22

2.4. ATLAS Computing and Data Challenges in Run 2 and Run 3

5 to 7.5 x nominal Lumi

13 TeV

integrated
luminosity

2 x nominal Lumi2 x nominal Lumi
nominal Lumi

75% nominal Lumi

cryolimit
interaction
regions

inner triplet
radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMS
upgrade phase 1

ALICE - LHCb
upgrade

Diodes Consolidation

LIU Installation

Civil Eng. P1-P5

experiment

beam pipes

splice consolidation

button collimators

R2E project

13.6 TeV 13.6 - 14 TeV

7 TeV 8 TeV

LS1 EYETS EYETS LS3

ATLAS - CMS
HL upgrade

HL-LHC

installation

LS2

30 fb-1 190 fb-1 450 fb-1 3000 fb-1

4000 fb-1

BUILDINGS

20402027 20292028

pilot beam

Figure 2.9: LHC/ HL-LHC Plan (last update February 2022) [29].

recorded as much as ten times the data recorded than in the three first Runs of
the LHC.

Challenges arise with the LHC and ATLAS upgrades [30] as there is an
increasing number of events to be analyzed, and their complexity (due to higher
pile-up and track multiplicity) increases. This has been the case in the recent
past and will be of an order of magnitude higher in the next Runs. In addition
a number of simulated events has to be produced with higher fidelity. The
current flat budget compromises the success of the following runs, if there is no
aggressive research devoted to the computing and data challenges.

Estimated requirements on CPU usage (in Million HS06-years [31])for the
following years can be seen in figure 2.10. The blue dotted line, and red triangle
lines represent conservative and aggressive research and development as defined
in [30]. The black lines forecast a 10% and 20% increase in resources capacity
due to technologies or budget improvements for every year, with a factor 2 gap
if there are no improvements due to research advances.

An update of the ATLAS computing model was performed for Run 2 [32],
with a more distributed and not so strict hierarchical model where Tier-2 com-
puting nodes communicate with each other without the need for all data going
through their parent Tier-1. Additional non pledged opportunistic resources

23

2. The Large Hadron Collider and the ATLAS Experiment

2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

0

10

20

30

40

50

y
e
a
rs

]
⋅

A
n
n
u
a
l
C

P
U

 C
o
n
s
u
m

p
ti
o
n

[M

H
S

0
6

=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - CPU

Conservative R&D

Aggressive R&D

Sustained budget model
(+10% +20% capacity/year)

ATLAS Preliminary

Figure 2.10: LHC / HL-LHC projected evolution of compute usage from 2020
until 2036 [30].

on High Performance Computing (HPC) resources have been used in the last
years and may improve the situation.

The commercial computing capabilities are reaching the limits on single
core performance as can be seen in the microprocessors trends in last years [33].
In order to increase computing power, more cores are added which makes the
optimal usage challenging with a paradigm shift.

A multiprocessing version of Athena was produced, but the requirements
in terms of memory usage have not profited for all CPU cores. For Run 3 it
was clear that another approach was needed so it was completely redesigned to
produce AthenaMT [34], yielding dramatic improvements in memory utilisation.

Regarding storage, ATLAS Run 2 analysis model was very successful but
expensive on disk space usage.

We can see the storage requirement projections on figure 2.11, with disk usage
in 2.11a and tape usage in 2.11b. Like in the case with the CPU consumption,

24

2.4. ATLAS Computing and Data Challenges in Run 2 and Run 3

2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

0.5

1

1.5

2

2.5

3

3.5

D
is

k
 S

to
ra

g
e
 [
E

B
] =55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - Disk

Conservative R&D

Aggressive R&D

Sustained budget model
(+10% +20% capacity/year)

ATLAS Preliminary

(a) disk

2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

1

2

3

4

5

6

T
a
p
e
 S

to
ra

g
e
 [
E

B
] =55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - Tape

Tier-1 Conservative R&D

Tier-1 Aggressive R&D

Sustained budget model
(+10% +20% capacity/year)

ATLAS Preliminary

(b) tape

Figure 2.11: LHC / HL-LHC projected evolution of disk and tape usage from
2020 until 2036 [30].

we can see also the shortage of resources that justify the investment on research
programs.

During Run 2, a new Event Data Model (EDM) was implemented, called
xAOD [35]. The information is organized in a columnar way, which allows
accessing on-demand partial parts of objects. Also improves performance
increasing the locality of memory references. The xAOD format is ROOT
compatible, so the current production files are named AOD by extension,
although having this new internal format.

In Run 2 the centralized Derivation Framework [36] was introduced, in
order to produce specific derived data (DAOD) for analysis groups. The format
is derived from the output of the reconstruction (AOD) by removing non
required variables (slimming), defined internal objects (thinning) and complete
events (skimming). Also it was possible to include new variables or defined
objects as required by the analysis groups. All individual information per-
event of the maintained objects is included in order to perform calibration and
assessment of the instrumental uncertainties without explicit user intervention.
Overlaps among different derivations is however produced by the different
groups. Therefore many derivations which might duplicate information and
the file format are still occupying an amount of data per event that makes it
challenging to be able to continue with this model for the next runs.

A new analysis model is being implemented [37], to achieve a significant
reduction on disk usage with new formats like DAOD PHYS (with 50 kB/event)
and DAOD PHYSLITE (with 10 kB/event). The first DAOD PHYS format

25

2. The Large Hadron Collider and the ATLAS Experiment

contains all variables to apply calibration on reconstructed objects. It will
be introduced in Run 3 in order to halve the disk usage for all analysis data
formats. The DAOD PHYSLITE format contains precalibrated reconstructed
quantities, reducing the footprint by removing all the variables for explicit
calibration procedures. It will also be progressively introduced in preparation
for the next runs, which might require adaptations on the users. In addition,
lossy compression techniques are being applied, by reducing the precision on
some variables. With these techniques a reduction of 10% might be achieved
when applied to reconstructed objects.

There is also the need to improve metadata (data about data) in order
to quickly locate events and to assure data quality. There is a number of
constraints [38] regarding whether it is stored in-file or on external databases.
Metadata can refer to data provenance as to the origin, software versions and
procedure to generate the data. Also bookkeeping information for filtering
samples, or data quality for good or bad data list at event, dataset or run
granularity. Information about the calibration and time dependent data is also
needed to real data reprocessing, or parameters for Monte Carlo generators of
simulated data.

In-file metadata was recently redesigned in the Athena framework [39], in
order to support concurrent event processing in multi-threaded simulation and
reconstruction workflows. This is also the first step to support heterogeneous
architectures, like GPU.

Central catalogs have been developed in ATLAS for accessing metadata at
dataset level (AMI [40]) and run level (COMA [41]). In the following section
we will present EventIndex, our catalog for accessing event-level metadata.

26

3 EventIndex Project

3.1 Introduction and Goals

Physicists usually work through big quantities of data, but access to individual
events is also needed in order to check the details. This is done for example
for correctness checking during reconstruction phases, or just to produce event
displays for figures in publications.

We have seen that an event can be reconstructed with different conditions
and software releases, producing in practice multiple event versions. Also
production procedures create event records with different information in different
file formats, and thus having information on the event lineage is a plus.

Access at event record level is also convenient for data quality checking.
Duplicate records that might be produced during data acquisition temporary
failures or during data processing can be detected. Also the overlap calculation
of events across different files produced during derivation procedures is valuable
in order to optimize resource usage.

Studies on the trigger correlations and overlaps between data streams can
be also conducted at the event level if the data is available.

Tools like Rucio [28] provide access to data at file, dataset or container level.
They are not designed however to provide insights at the event granularity level.

Therefore an event catalogue that indexes all real and simulated events, at
all processing stages, is needed.

ATLAS was using a previous event-level catalog called TAG database [42]
during LHC Run 1 (2009-2013). The idea was to obtain event wise information
with a special kind of TAG files, produced at Tier-0 from the AOD files. These
TAG files were directly imported into an Oracle database, which was the only
proven technology at that time capable of sustaining the required amount of
data. The TAG DB information could be then used directly for selecting and

27

3. EventIndex Project

extracting some events (skimming) on the basis of physical variables for many
user analysis directly, before accessing the full AOD contents.

The concept was very promising but suffered from two main design and
operational issues.

First, it did not differentiate between immutable and mutable data. Im-
mutable data consist of system parameters taken during data acquisition phase
such as event number, run and other identifiers, and trigger decisions. Mutable
data refer to physics variables that are dependent on the accelerator and de-
tector conditions, and that might change in successive reprocessings. As the
reprocessings occur frequently and in the grid, the corresponding TAG files
were not always created, leading to outdated physics information in the TAG
DB.

Second, the implementation on the Oracle database was directed by the
structure of the TAG files. This requirement was established in order to be
capable to generate TAG files (to do event skimming), directly from the Oracle
tables. This approach actually grew into Oracle tables with hundreds of mixed
mutable and immutable columns, with indexes over all of them (in order to do
searches efficiently within the tables). The higher storage necessities for this
approach were not effectively of benefit to the users due to the outdated physics
information aforementioned.

The EventIndex was designed to catalog and access billions of event records
in an easy and efficient manner. Only a small quantity of metadata per event
was required to solve the envisaged use cases. Before starting this work, it
was decided to avoid mutable data, as starting with Run 2 there were other
mechanisms for applying event skimming with the new production data formats
and derivation framework [36]. Even storing only immutable information
translates into big amounts of data when indexing billions of events (in millions
of distributed files, occupying petabytes of storage).

EventIndex leverages the rise in the research on big data and NoSQL
databases in order to scale the increasingly higher amount of data to be stored
for the successive runs of the ATLAS experiment. This technology allows a
cluster of machines to be used, which can be increased to scale horizontally. In
addition, the usage of free open source products dramatically lowers the cost
over using a commercial database like Oracle.

Data is always updated thanks to a new indexing and data collection strategy,
which is able to extract the required information from any kind of produced
data format and not only AODs. We deploy our own EventIndex distributed
indexing jobs in the grid, collecting the metadata centrally and making this
immediately available to final users. Thus EventIndex can be considered a

28

3.2. Use Cases

representative real application collecting big data on large scale distributed
infrastructures.

3.2 Use Cases

The use cases that the EventIndex is currently solving can be grouped in OLTP-
like workloads, where only one or a few records are accessed, and OLAP-like
workloads for analytics over larger quantities of data.

The event peeking use case allow users to select single or few events depending
on provided constraints. The final objective is to check for data availability, and
to obtain location details on the full event information in a particular format.
With this location information the full event record can be retrieved with the
proper tool (Rucio) from the files in the different formats, up to the original
source (RAW).

A second group of use cases relates to data consistency and quality checks.
The duplicate event checkings looks for event records with the same identifiers
appearing at different storage granularities, from a file to within a dataset or
containers. This undesired situation might be caused by temporary problems
during the detector data acquisition, or by production issues during the re-
construction chains. For simulated data, it can detect software glitches for
generating unique identifiers, or when merging several sources of data. EventIn-
dex indexing jobs are usually the first ones to access the data, so they provide
additional checking about availability and correctness for further user analysis.
There are other cases where we need to check for data over multiple datasets.
For example the derivation framework can produce derived datasets from an
original one selecting only useful events for particular analyses. There are about
one hundred official derivations in ATLAS, and the same event can end in
multiple output derivation streams (in files, grouped in datasets). In this case it
is advisable to check what streams are that contain overlapping events, in order
to remove them and optimize the grid storage. With event overlap calculation
tools we can produce the overlapping matrix identifying common events across
different files.

The last group of use cases is related to the trigger decisions. We can apply
trigger checks counting events satisfying a particular trigger, or providing and
event list and details based on trigger selections. We can also apply similar
trigger overlap calculations on a particular real data run or stream, detecting
the events satisfying particular trigger pairs. In addition a number of trigger
statistics can be calculated with the available data.

29

3. EventIndex Project

3.3 Data Model

In order to solve the required use cases we need to index information for real
and simulated events. We can obtain all the required information from final
stored files, as they have common formats. Only immutable information is
stored, so there is no need to update information due to recalculation of physics
variables on the reprocessing procedures.

Bearing this in mind, we need to store the following information for each
event record:

❼ Event identifiers. Information for event identification of real and simulated
events. An event record is uniquely identified by its run number, event
number, the trigger stream, data format and version. Information about
LHC conditions is also included, like the luminosity block (LB) number
identifier and the bunch crossing identifier (BCID). Also information
about the date of the event at the nanosecond level, and other metadata
information about the stream that produced it including calibration,
testbeam, or simulation. For simulated Monte Carlo events, generation
information like the event weight and channel number is also stored, which
eases the identification in case of software issues.

❼ Trigger information. Information about the passed trigger masks for the
Level 1 (L1) trigger, the Level 2 (L2) trigger and event filter (EF) only
for Run 1 data, and the High Level Trigger (HLT) for data starting with
Run 2. Super master key (SMK) is needed to decode the trigger chains
associated with the particular bits of the trigger masks, so it is also stored.
In addition prescales keys for L1 and HLT are also included.

❼ Location information. Information where to find the full event record
information in final files stored in the grid, in order to access and analyze
the data for final users if necessary. The basic information is the GUID
of the file to be able to retrieve it from the distributed grid storage.
In order to access the specific event record inside the file, we need to
include information from the persistency framework that stores the events
in native format, which is currently based on Athena Pool/ROOT [43].
We want not only the current indexed record information, but also the
provenance (data lineage) of the event. With this functionality we can
obtain the information of the upstream files: for example indexing a
DAOD file to obtain information about the AOD that generated it, and
the RAW file before it.

30

3.4. Requirements

3.4 Requirements

The proposed use cases require the indexing of all ATLAS produced data, real
and simulated, during all the years of operation. In addition, all processing
stages have to be taken into account, so reprocessings have to be also indexed.
Indexing the data means accessing to the files to read them and extracting a
small quantity of metadata per event, that varies from 300 bytes to 1 kB.

The files are distributively stored worldwide in the datacenters belonging to
the ATLAS WLCG infrastructure, using grid technologies for computing and
data access.

The indexed metadata has to be always accessible for all the members and
processes of the experiment, so a central catalog is needed. A distributed data
collection procedure is required to convey the metadata from the grid centers
to a central catalog.

The metadata catalog has to be able to scale with the requirements of the
current and future runs of the ATLAS Experiment.

The production rates have been in the order of 1 kHz of real data events
from the detector during Run 2. To this number has to be added the production
of simulated data, which can be more than double of the real data. In addition
the reprocessing of the data that is done from time to time adds production
peaks that have to be absorbed. For Run 3 an increase is expected in the rates
of up to 3 kHz in real data and a similar simulated data proportion to previous
runs. For next runs however a factor 10 is expected in the rates, meaning the
production of 100 billion (109) real events, and 300 billion simulated events.

The query number and rates are much lower than the insertion rates. For
event picking use cases, requests that search for one single event is the common
case. Then there are other requests that search for a list of events, which might
be up to the order of thousands. Rates are low with those up to 1 Hz, but
users expect a fast response in the interactive service, in the order of a second.
Other analytical use cases, like duplicate or overlap checking, can be done with
specific requests or in the background for all the data. For many background
cases the response time need not be immediate but rather in the order of one
hour. In any case background jobs can be delayed if the system needs to be
prioritized for ingestion and interactive query tasks.

The command line interface is preferred by users and automatized processes.
The web interface is also very useful for data discovery and in general for first
time users.

31

3. EventIndex Project

3.5 Architecture

An overview of the architecture of the EventIndex can be seen in figure 3.1.

The Data Production component is in charge of selecting the data and
submitting the event metadata extraction jobs in the grid, in order to produce
the required metadata. The distributed Data Collection component sets up
the transport infrastructure to convey the metadata to the central catalog at
CERN, assuring its completeness and quality. It also ingests the data in the
final data storage backend in the correct format. The Data Storage is the core
component implementing the metadata catalog in scalable storage technologies.

The Data Access component provides the interfaces for users to access the
data. The Monitoring component checks the servers and services of the rest of
components, collecting metrics and running functional tests.

During the lifetime of the project several components have evolved in order
to fulfill the requirements and solve issues detected during the first runs of the
project. Thanks to the differentiation of the components and the evolution of
the technology it has been easier to evolve the system without compromising
the production level of the provided service.

This thesis is focused on the contributions to Data Collection (chapter 4,
Data Storage (chapter 5) and Access (chapter 6) components. In the following
sections we will detail the challenges and issues that motivated the changes and
the studies and solutions that were proposed.

3.5.1 Data Production

Extracting the metadata starts as soon as data coming from the ATLAS detector
is reconstructed in Tier-0 and the AOD files are produced. Only physics datasets
are indexed, excluding calibration, express and debug streams. This is the main
output and format used for successive derivations and user analysis. Indexing
RAW files is not necessary because the event location information will be in
the AOD file data provenance records, and therefore extracted.

Reprocessings and derivations are carried on the WLCG grid, with the
production of new releases on AOD and the derivation AOD (DAOD) datasets
which are also indexed. These also include the newer DAOD PHYS and the
DAOD PHYSLITE file formats [37].

Simulation data is also generated in the grid and other opportunistic re-
sources like HPC for all the production chain, including event generation and
detector simulation. For the simulated data, all EVNT files and all the produced

32

3.5. Architecture

PRODUCTION COLLECTION STORAGE ACCESS

MONITORING

Events metadata
extraction

Data transform
+ ingestion

Controler

temporary
store

Messaging

EventIndex
storage

Extraction
service

Analytical
service

WLCG CERN

Figure 3.1: High level view of the EventIndex architecture composed of 5 areas:
Data production, data collection, data storage, data access and monitoring.
Green hexagons correspond to temporary or permanent data, and pink rectangles
represents processes. Black arrows show the EventIndex data flow, and blue
arrows show the flow of information related to data processing.

AOD files are indexed. Selected derivations in DAOD are also indexed as per
explicit request in the physics user groups.

Selection of the datasets produced in the grid is done searching the registered
data with the AMI tool [40]. A number of variables is checked in this dataset
catalog, including that the datasets are part of the official production; that are
not for debug or test purposes; and that are complete for all its file constituents
and with a valid state.

This search and selection is done continuously and the list of datasets to be
indexed is processed by the grid Production and Distributed Analysis system
(PanDA) [44, 45]. The list of datasets is taken by the production system and a
number of computing jobs are generated that are submitted to the distributed
grid centers where the data is available.

Dataset naming

A dataset name follows the ATLAS nomenclature [27], and it is composed of
six fields separated by dots. For real data it has the form:

Project.runNumber.streamName.prodStep.dataType. ⌋

AMITag[_tidnnnnnn[_SS]→֒

33

3. EventIndex Project

Similarly for simulated data has the form:

Project.datasetNumber.physicsShort.prodStep.dataType. ⌋

AMITag[_tidnnnnnn[_SS]→֒

The list and description of the fields follows:

❼ Project represents a particular physics or computing context. For example
mc16 13TeV means simulation of data at 13 TeV during the Monte Carlo
campaign of 2016, and data22 13p6TeV corresponds to real data taken in
2022 at collision energy of 13.6 TeV.

❼ The second is a pure numeric field used to indicate the real data DAQ run
number or, in the case of Monte-Carlo simulatad data, the datasetNumber.

❼ The third field is the streamName in the case of real data, which identifies
the data stream (for example physics Main for the primary physics stream).
For simulated data the physicsShort is a text description of the event
generation and detector simulation in this dataset.

❼ prodStep gives the last production step which was used to create the data,
like for example recon (reconstruction), merge (after processing several
inputs), deriv (group production), and others.

❼ dataType field identifies the format of the files in a dataset, with the first
part (dataTypeFormat), for example: RAW, ESD, AOD. Some contain a
second optional part (dataTypeGroup) to describe the group for which
the given dataset was created: DAOD EGAM7, DAOD TOP4.

❼ The last field is the version, or AMITag chains (as defined in AMI). Each
processing step changes adds the related AMI tag used separated by a
underscore. For example: f476 m1223 describes Tier-0 bulk reconstruction
(f), and file merging (m) with a particular ATLAS release.

If the tidnnnnnn SS suffix is included, it is called a tid (task identifier)
dataset, that was created by the Panda production system task number nnnnnn
and subtask SS. The output of several tasks can be placed in a container, usually
with the same name without the tid suffix (called a dataset container in this
case).

34

3.5. Architecture

Events metadata extraction

The EventIndex computing jobs are based on an Athena transformation [46]
which defines a standard interface to access and process the data. The indexing
transformation is implemented in python [47], as only access to event headers
(EventInfo) is required to extract the event metadata. The python interfaces to
C++ Athena Classes rarely changes among software releases, giving additional
stability to the producer transformation.

3.5.2 Data Collection

Distributed data collection follows a producer-consumer architecture, where the
producers run the events metadata extraction procedures at the grid, and the
consumers run at CERN doing the ingestion to the backend data storage.

There is an infrastructure for conveying the metadata payload from the grid
sites where the producers are running. Originally this was based on a messaging
infrastructure in the first deployments, with several brokers to distribute the
payload to the consumers.

Although the performance was adequate during the first deployments, some
blockings were detected in situations with slow consumers that led to big
backlogs of data to be ingested. These situations compromised the scalability
of the system with the increased rates foreseen in the following Runs. The
work developed in this thesis resulted in part of the development of a new
system based on an object store for the payload staging, and which was put in
production during Run 2 [48, 49] as we will see in chapter 4.

3.5.3 Data Storage

Data Storage is the essential component that maintains the data, scaling to
the order of terabytes or even petabytes of event metadata information for the
future runs.

During the first years of the project a pure Hadoop [50] implementation
was designed and deployed. Hadoop Filesystem (HDFS) [51] has been used
to maintain all collected data, with an organized directory structure based
on ATLAS production system nomenclature, and with MapFiles [52] as data
containers.

This has served as a data lake without the need for schema enforcement,
although our data model has been defined since the beginning without much
change.

35

3. EventIndex Project

The performance of random access for use cases like event picking was
not satisfactory, so a part of the real data has been also stored in Oracle
database [53]. A hybrid approach was also implemented [54] with good results
but without storing some parts of the data (trigger) that occupy most of the
space and without the simulated events metadata, reducing the total data
volume.

Use cases also evolved in the meantime from event picking and production
completeness checks, to more analytical use cases studying trigger and event
overlaps, and duplicate event detection.

It was clear that a most general solution able to fulfil all use case requirements
was needed. Also without incurring in duplication of part of the data like and
the management burdens of having several data subsystems, consolidating all
the data on a single platform.

With the development of big data technologies newer options arose, and
studies on file formats and storage technologies [55] directed the exploration
of new storage systems like Kudu [56]. The use of an enforced schema data
model and columnar storage was promising for solving the EventIndex use
cases. A prototype was proposed and tested (section 5.2) with good results
but eventually its adoption was declined since Kudu was seen as a not mature
enough product and without long time support, as required for production
usage in the EventIndex service.

HBase [57] was also being used as a way to catalog the registered metadata
in HDFS, and to cache some of the information to speed up random searches.

During LS2 and in preparation for Run 3, the work developed in this thesis
has contributed in part of the redesign of the system to consolidate all the data
in HBase as a unique store, with Apache Phoenix [58] providing data schema
enforcement during data ingestion (section 5.3).

3.5.4 Data Access

With the original system with HDFS as main storage, two data access paths
were used. The first path is for direct access like the event-picking use case,
and this had to check what file to access (with the catalog) and then direct
random access to a MapFile through its built-in index. The second path was
data scanning over multiple MapFiles for the consistency checks and overlap
calculations involving more data. For this second case a MapReduce [59] job is
used for distributed data processing. After the first review and implementing
the hybrid storage in Oracle, a web frontend interface was provided to access it.

36

3.5. Architecture

With the redesign of the data backend system consolidating all data in
HBase, the inclusion of Apache Phoenix allows new data access paths with
low latency SQL-like access. The work developed in this thesis resulted in
part of the development of new data access methods (see chapter 6). Queries
are automatically transformed in a series of HBase scans instead of using
MapReduce, although this framework is still available. Also, the SQL interface
allows us to use JDBC protocol in order to connect the system with the web
frontends already available to access the relational backends, as well as any
other external tools. The analytic use cases are solved using Apache Spark [60],
a data processing framework with its own data abstractions and support to
higher level languages (Java, Scala) more suitable than plain SQL sentences.

3.5.5 Monitoring

The monitoring components track the servers and services availability for the
EventIndex components and also collect metrics of their performance. During
the lifetime of the project, these have gone through some upgrades to add
functionality and adapt to newer tools used at central CERN services.

The first version of the monitoring tools [61] was based on Kibana [62] for
collecting the metrics and showing the metrics for the developers and maintainers
of the service.

For the Data Collection part it collected the status messages for the producers
and the consumers, with details about the processing status at a particular
moment [63]. The messaging monitoring also helped to identify blockings and
message payload backlogs that were later solved in the new object store based
architecture (chapter 4).

The monitoring also has evolved within the project [64] and is now us-
ing InfluxDB [65] as a time-series database for the monitoring metrics, and
Grafana [66] for the visualization panels.

37

4 Data Collection

The indexing and extraction of the metadata in a distributed environment like
the WLCG grid requires a data collection mechanism in order to convey and
register the data in the central EventIndex catalog at CERN. From a functional
point of view the duties of the data collection task define an ETL (Extract-
Transform-Load) [67] pipeline, with the ATLAS data distributed worldwide as
source and the core EventIndex storage as destination.

Requirements for the design of the data collection framework were identified
as the following:

❼ Metadata extraction should be synchronized as much as possible with
ATLAS data production and reprocessing procedures. This will reduce
possible inconsistencies.

❼ The used resources should be as small as possible, in particular computing,
storage and networking.

❼ The volume of metadata extracted per event should be small and therefore
limited to the defined data model.

❼ The transport method should be independent of the common ATLAS
data flow and management with Rucio (see section 2.3), as EventIndex
metadata are temporary transient small files.

❼ Availability at central catalog should be fast, allowing users to locate and
access data as soon as possible.

The metadata extraction procedure runs at Tier-0 as soon as AOD (analysis
object data) files are produced, but also at the worldwide distributed grid
centers. The architecture of the data collection was conceived as a producer-
consumer distributed architecture. Producers are short-lived processes running

39

4. Data Collection

at Tier-0 and the grid centers, with potentially a high number of them indexing
data simultaneously. Consumers are long-lived processes that run constantly at
CERN, transforming the received data and ingesting in the EventIndex storage.

The data is conveyed reliably between producers and consumers with a
transport method originally implemented with a messaging system. During
the first deployment in production the performance was satisfactory, but also
blockings were detected in peak production moments, leading to backlogs of
data to be ingested. This was a risk for increasing data rates coming in the
following runs, particularly a factor 3 only taking into account real data starting
with Run 3 (2022-2025), and up to a factor 10 with Run 4. Thus a new design
and implementation of a new data collection was conducted in order to solve
these shortcomings.

4.1 Legacy Messaging Data Collection

The architecture of the original messaging data collection system [47] is shown
in figure 4.1. There are a number of short-lived producers running at Tier-
0 and grid sites that are launched by the data production task (as seen in
section 3.5.1) when there is data to index. The procedure extracts a small
quantity of metadata per event, in the order of 150 to 1,000 bytes per event
depending on the file format and the trigger contents, which are the larger
component of the metadata. After indexing procedure ends, the information is
conveyed using a messaging system to the consumers, which will transform and
ingest the data at the EventIndex storage, in this case the Hadoop core system
using HDFS.

The messaging infrastructure consists of ActiveMQ (Red Hat JBoss A-
MQ) [68] brokers that are managed by CERN, and receive the data in a
dedicated message queue. The communication is based on the Streaming Text
Oriented Messaging Protocol (STOMP) [69], which is a text based protocol
chosen for its reliability and efficiency. The broker setup included a redundancy
deployment with 5 brokers under a DNS round robin configuration, physically
located at CERN Meyrin (Switzerland) and Wigner (Hungary) centers. The
objective of the brokers is to decouple the data production from the data
reception, effectively increasing the reliability in case of temporary issues on
the consumers or the data backend systems.

The payload from the producers varies from 100 kilobytes up to several
megabytes and is divided into small messages around 10 kB each, in order
to maintain the brokers reliable and agile. Each message contains from 20 to

40

4.1. Legacy Messaging Data Collection

Figure 4.1: Data collection legacy messaging architecture. Producers communi-
cate with consumers through messaging brokers. Color-coded numbered frames
represents the messages from a particular payload, until stored in final Hadoop
HDFS backend.

60 events depending on the aforementioned trigger information. Messages are
encoded in JSON (ECMA-404 standard) [70] format, compatible with the text
based requirements of the transport protocol. Standard protocols allow this to
be language agnostic and use different programming languages for the entities
of the system.

Messaging brokers do not ensure by default messaging ordering or atomic
processing of all messages from a particular sender. This is necessary in our
application since all messages from a sender are related and need to be consumed
in order and by a single receiver, to ingest the data into HDFS. To overcome this
shortcoming, messages are tagged at the source with a message group identifier
(using the standard JMSXGroupID header), ensuring that all messages from
a producer will be sent to one consumer allowing correct decoding and data

41

4. Data Collection

ingestion. This is shown in figure 4.1 with the color code and numbering of
the message frames. Also transactions are used to group all related messages,
assuring atomic processing.

4.1.1 Data ingestion

Consumers are in charge of the data reception and ingestion of the data with
the correct format in the Hadoop HDFS storage. The duties of the messaging
implementation architecture are the reception of the messages, the reordering
and transformation of the data if necessary, and writing the files with a defined
structure. Consumers are implemented as Java multi-threaded applications. A
consumer connects to a single broker, so at least one instance should be started
per each of the brokers. A consumer instance will have a unique identifier, and
more instances can be started per broker to increase the throughput if necessary
and scale up.

When connected to the broker messages start flowing to the consumer, and
when the first message of a particular message group is received, then the
broker assures the distribution of all the messages from that group to the same
consumer. Each message JSON payload is decoded and control information
about the production (Panda job id, dataset name, GUID of the file being
indexed) is followed by the actual metadata. Data is internally organized in
memory by GUID, so when successive messages related to a file arrive, they are
appended in a queue until the last message from that file arrives. At this point,
the memory queue is ready to be taken by the writer thread, which orders the
received data by run number and event number (data might not be sorted in
the original file or when processed by the producer) to be written in HDFS.
Ordering is needed when writing HDFS MapFiles, which are internally sorted
by a key composed of the run number and event number (see section 5.1).

Files in HDFS are grouped in directories named after the dataset name,
and each directory contains a Mapfile per each one of the original GUID files
that form the dataset. The MapFiles are named with a conjunction of the
GUID, the consumer identifier, the panda job identifier, and the message group
(JMSXGroupID) identifier, so they are unique file names in the dataset directory.
These files are small (order of 10 MBytes) when compared to HDFS designed
file size (order of GBytes). In addition files can contain duplicated data due
to the production, so validation steps and consolidation into bigger files are
needed.

Consumers send control messages to the broker to signal its state. A control
message is sent when a MapFile is written with variables like the GUID of the

42

4.1. Legacy Messaging Data Collection

original file, the number of events, number of messages processed for that file,
total size, job id, and processing. These messages are used by the data validator
controller to ensure correct process. In addition a heartbeat message is send
periodically (every 60 seconds) to inform about the consumer instance liveness,
including the statistics (number of events, number of messages, etcetera.) of
the process during that period. These messages are used by the monitoring
tasks to assure the correctness of the data ingestion service.

4.1.2 Data Validator Controller

There are scenarios when the data is not completely received, or it is received
more than once. Extraction jobs at the grid sites can fail without providing the
output. What can also happen is that the output has been produced, but is
incorrectly detected as not. Grid jobs can restart automatically up to a number
or retries, but will maybe produce duplicated information. Messaging brokers
can be in maintenance, consumers can crash or HDFS service can be restarted.
Although not common, these failures can happen and therefore a fail tolerant
system requires validation of the process and the data received. Data validation
is done at dataset granularity, in several steps:

❼ Use the control messages to match produced with consumed metadata:
number of events, number of GUID files, etc.

❼ All written HDFS files of a dataset are available and correct in format.

❼ If there are several candidate files for the same data (GUID) then apply
a selection policy.

❼ A selection policy chooses best candidate using heuristics based on file
name (formed of the identifiers aforementioned) and date. For example,
use modification time only if there are no highest producer panda job
identifier found.

After data is validated, some consolidation steps are needed. Extra files are
removed, and a Hadoop core task is signaled so the dataset can be imported.
The signal is done creating a small file in a shared directory (in AFS [71]),
containing the details of the dataset. At this moment all the files from a dataset
directory will be merged into a single bigger MapFile, which is ready to be
usable.

43

4. Data Collection

4.1.3 Shortcomings

This system handled more than 109 messages, at an average rate of 100 mes-
sages/second produced, and peaks of more than 3,500 messages/second. It
performed well most of the time, but we detected that the consumption rates
were degraded in situations related to production peaks or when there was a
backlog of messages at the brokers to be consumed [72].

Data collection was designed to be fault tolerant within the components
of the infrastructure. Messaging brokers are configured in a high availability
setup, so should any of them fail, others can take over the production load.
Producers try to contact any of these in round-robin fashion, so a successful
communication is achieved. In addition, producers themselves can be restarted
by the data production system if a failure occurs. Regarding consumers, they
can stop consuming messages if there is a scheduled shutdown on the backend
HDFS Hadoop filesystem, or any other failure occurs. In this case the system is
designed to continue working, with the brokers temporarily keeping a backlog
of messages until they are consumed. Similar backlogs can be produced if the
consumption rate does not keep up with the production rate.

Usually messages are processed in real time keeping up the production rates,
and also when recovering from the failure scenarios aforementioned. We have
seen however situations when messages are not being consumed, even when
there are idle consumers attached.

This problem is related to the usage of messaging group tagging (JMSX-
GroupID). Brokers restrict the number of messages to be handled at a time,
loading a reference into memory. When using message groups, this refuses to
serve more messages until all message from particular group are consumed. This
leads to Head-of-line (HOL) [73] blockings, with consumers starving without
processing any other messages. Results are that brokers do not distribute the
workload correctly to consumers, reducing the consumption throughput to 10
messages/second in some situations. This situation is specially detected when
there is a slow consumer, which seems to block others. Adding more consumers
does not solve the problem due to the blockings [72]. Adding more brokers
could alleviate the situation, as we observed during the lifetime of the messaging
implementation increasing the brokers progressively from 2 to 6. This did not
solve however the issues with individual instances when backlogs reached few
thousand messages. In addition brokers are expensive resources in terms of
hardware, so could not be added indefinitely.

It was clear that a new transport method was needed in order to solve
these issues, and to support the next Runs of the ATLAS experiment with

44

4.2. New Design of Distributed Data Collection

increased data rates. In addition other design decisions that were imposed by
the messaging system could be reformulated to improve the general outcome of
the project.

4.2 New Design of Distributed Data Collection

With the detection of aforementioned shortcomings, there was a need for a
redesign in the distributed data collection architecture. In addition, during the
experience of the first deployment in production, a series of weaknesses that
should be addressed in the following areas were collected:

❼ Complexity The current messaging segmentation approach is complex
and needs grouping and transaction mechanisms that impose limits on
throughput. A simpler approach is required.

❼ Scalability The messaging architecture and implementation would not
scale for the increasing rates of the coming years. We need a system
that can scale even with slow consumers or with backlogs of data to be
ingested.

❼ Performance and resource consumption The inherent complexity
supposes a performance cost in the payload segmentation in production,
transport and consumption in terms of CPU and memory. The usage
of a transport text protocol, although simpler, imposes limits on the
encoding and compression on the payload. Ingested data could have
duplicate HDFS files be removed during validation steps. Also the data
ingestion at GUID file level requires extra data consolidation steps, to
reduce the number of HDFS files. A resource-consumption aware and
better performing approach is needed for data consolidation.

❼ User Experience Traversal time is defined as the time since a particular
data is started to be indexed until it is available for users. Aforementioned
issues impose limits on total traversal time that can be improved.

Messaging systems are designed to efficiently handle a large number of
small messages, and our use case faces increasingly higher payloads. Although
newer systems can handle large messages, there is performance degradation
over time specially when slow consumers arise. These also impose immediate
and in order consumption, thus, other messaging system were discarded. The
grid production data movement mechanisms with Rucio and grid storage were

45

4. Data Collection

originally discarded due to the temporary and small size character of the
EventIndex data. We therefore explored other possibilities.

4.2.1 Object Store data staging

A completely different approach was considered using an object-based storage
(OBS) [74] for temporal data staging. Instead of payload segmentation in
multiple frames, the complete payload is stored in an object in the OBS, and a
reference to it is submitted for later data ingestion in the final data backend.
Thus, we avoid the congestion problems found with the messaging systems.
In addition we open the possibility of data selection before data ingestion,
which is convenient to simplify later data validation and consolidation steps.
Therefore the new architecture implies a change in the data collection model,
moving from a push-based to a pull-based approach. In the previous model the
data flows through the producer-broker-consumer chain without discrimination
storing all data in HDFS, requiring later data validation and consolidations
steps. With the pull model, consumers can be signaled which data retrieve,
without duplicates due to production issues and avoiding extra cleaning steps.
In addition there are other advantages like the consumption of the same data
several times. This feature is useful for overcoming spurious consumer crashes,
which was not possible with the previous messaging push model.

The new architecture is represented in figure 4.2. The distributed producer-
consumer is maintained, but now the EventIndex data is directed into an object
store that acts as a data staging area until it is ingested into the Hadoop data
backend. This data flow is represented with black solid arrows. Producers send
a small control message when the indexing procedure ends, with a reference to
the created object and statistics about the process. Therefore, the messaging
infrastructure and the brokers are maintained, but with a considerably less
amount of messages and payload distributed. The control messages and statistics
are represented in the figure by the blue dashed arrows, which are distributed
to the new supervisor control entity. This entity substitutes the data validator
controller of the previous architecture, checking online which data has been
produced and its status. When a desired granularity is achieved, the supervisor
signals this with a new control message. This message is received by one of the
consumers, which will access the indicated objects in the object store. A black
arrow starting from the consumers retrieving selected data from the object store
represents the pull model approach.

The object store itself is implemented with CEPH [75], managed by CERN
with a total of 2 PB temporary storage provided, shared with multiple projects.

46

4.2. New Design of Distributed Data Collection

OBJECT

STORE

STOMP

ACTIVEMQ

BROKERS

PRODUCER

@GRID

SITE_1

PRODUCER

@GRID

SITE_2

PRODUCERS

@TIER 0

CONSUMER#1

CONSUMER#2

PRODUCER

@GRID SITEN SUPERVISOR

HADOOP

Figure 4.2: Data collection object store architecture. Black solid arrows repre-
sent the EventIndex data flow. Blue dashed arrows represent data processing
information and control messages. Color-coded frames represent the payload
stored by producers as objects in the object store. Consumers retrieve objects
when signaled by a supervisor controller.

An S3 [76] interface is provided and the associated transport method allows
binary payloads, so we are not attached to text only data like in the messaging
approach. This allows us to select other encoding methods and we are using
Google Protocol Buffers (protobuf) [77] to encode and potentially compress
(gzip) our data.

4.2.2 Push versus pull model data ingestion

UML (Unified Modelling Language) [78] sequence diagrams comparing both
messaging and object store scenarios can be seen in figure 4.3. In the messaging
scenario (figure 4.3a) the producer initiates a messaging transaction submitting

47

4. Data Collection

:Producer Queue:Broker :Validator:Consumer

startTransaction()

endTransaction()

QueueStats:Broker

sendMessage(Stats)

sendMessage(Data)

sendMessage(Stats)

loop

loop

sendMessage(Data)

(a) Messaging scenario.

:Producer :ObjectStore :Supervisor :Consumer

createObject(Data)

QueueStats:Broker

sendMessage(Stats)

sendMessage(Stats)

start()

retrieveObject()

(b) Object store scenario.

Figure 4.3: UML sequence diagram comparison for messaging and object store
scenarios.

48

4.2. New Design of Distributed Data Collection

the payload divided into multiple messages into the broker data queue. When
this ends it closes the transactions and sends a small control message to another
statistics queue, ending the process. The consumer is connected to the broker
data queue and receives all the messages as soon as the producer transaction
was closed. It also signals when it ends the data ingestion procedure in Hadoop
with a small control message in the statistics queue. The validator receives the
statistics messages from both producers and consumers, and will trigger the
data validation and consolidation procedures at regular intervals. In the object
store scenario (figure 4.3b) the producer creates an object without dividing the
payload into multiple chunks. When this ends it sends the control message to
the statistics queue, which is received by the supervisor. This process is repeated
continuously, as containers and datasets can be formed of hundreds of files
indexed by multiple producers. When reaching the desired validation granularity,
currently at dataset level, it constructs a new small message directed to the
consumer through another broker queue. This validation message contains,
among others, a validation identifier (validationId) field and the URL [79] of the
validation object that contains all the references to the objects to be consumed.
The consumer contacts the object store for the validation and the rest of the
required objects, and again sends a small control message signaling the end to
the supervisor.

Table 4.1 shows a summary of the concepts related to data and workload
distribution in the messaging push-model and the new object store pull-based
model. There are two key differences regarding the new object store approach.
First, the payload from a given producer can be potentially written in a single
object. This avoids the complex payload segmentation and reconstructions
procedures, avoiding the inherent previously detected issues. Transport protocol
is no longer required to be textual only, so new encoding and compression
schemes can be applied. Second, the pull model approach allows more versatile
data workload distribution. Now the payload can be distributed to several
consumers, instead of the single consumption imposed by messaging groups
and transactions. In addition, selective and out-of-order object retrieval is
possible, accessing only actual validated data. This avoids the validation and
consolidation steps at the data backend, creating from the beginning bigger
and validated HDFS files. The lifetime of the objects is definable, clearing the
data staging area at desired intervals.

49

4. Data Collection

Table 4.1: Summary of concepts of the messaging push model versus object
store pull model.

Messaging push-model Object Store pull-model

Data

Payload many messages per in-
put file

single object per input
file

Segmentation transactions group mes-
sages

not needed

Reconstruction complex not needed
Encoding textual binary
Compression low high

Workload distribution

Producer to Consumer 1-to-1 1-to-many
Production a transaction is recon-

structed by a single con-
sumer

multiple produced ob-
jects can be retrieved by
different consumers

Consumption FIFO (message queues
abstraction) assure all
data is consumed com-
plete and in order

arbitrary, consumption
out of order possible

Blockings slow consumers can
block others.

no blockings, more scal-
able

Lifetime short (messages re-
moved when consumed)

definable (object can be
retrieved multiple times
in case of failure)

50

4.3. Evaluation

4.3 Evaluation

With the implementation of the new design of the Distributed Data Collection,
several tests were done prior to deploying it in production [72]. These tests
indicated that the implementation was solving previous issues with the messaging
system, and that the performance baseline was correct for the requirements of
the project.

After the first synthetic experiments, the next objective was to check the
performance in real production scenarios. We therefore carried out a rolling
deployment in production, having both the previous messaging and the new
object store systems working in parallel.

We can see the details of this deployment setup on the figure 4.4, where we
can see both messaging and object store data paths running in parallel. It must
be noted that only required parts are duplicated, with single instances where
possible.

Figure 4.4: Evaluation setup with messaging and object store in parallel [80].

51

4. Data Collection

In the left part of the figure we see the single set of producer processes.
These index the information just once, but send the index data to both paths.
In this way the procedure saves a lot of CPU and I/O from the distributed grid
centers as the indexing part is the most demanding one in terms of resource
consumption. Then starting from the center of the figure we see both data paths,
where we have duplicated instances of the elements of the architecture. In the
lower part we see the legacy messaging only data path, where we use the brokers
to distribute the indexed data to a set of consumers. These consumers perform
the data ingestion continuously to the data backend, in this case with the legacy
data format strategy in HDFS. The messaging supervisor (the original data
validator controller) just signals in the data backend when the information is
ready for next stage.

In the upper part of the figure we see the new object store data path, which
serves as a temporary data staging entity. In this case the consumers ingest the
information to the data backend only when signaled by the supervisor.

In the following subsections we will review the results of the experiment.
First we analyze the results of indexing a single dataset, reviewing the concepts
aforementioned with the experimental data obtained. Later we review the
results of the complete experiment over the 3 months that it lasted.

4.3.1 Single dataset indexing results

Indexing a dataset is a typical EventIndex step that is done continuously as
directed by the Data Production component. In this case we are analyzing
the process and results of indexing a complete dataset within the previously
presented evaluation scenario. A summary of the process and results can be
seen in table 4.2. In this table we have 3 columns detailing the analyzed concept,
and then the results in both the messaging and the object store approaches.
Concepts are divided into the indexed input data, the Data production with
producers processes, the data ingestion with consumer processes, and the result
output in the final backend.

Input data

A real ATLAS AOD dataset produced during June 2017 was used in this example.
Its name is data17 13TeV.00327636.physics Main.merge.AOD.f838 m1824. It
contains a bit over 21 million events, distributed in 1,160 files. The total input
data comes to 6.229 TB, which will be indexed by our producer processes.

52

4.3. Evaluation

Table 4.2: Results of indexing a single dataset comparing both messaging and
object store approaches.

Messaging Object Store

Input Data

Total Files 1,160
Total Events 21,103,653
Total Size 6.229 TB

Producers

Instances (short-lived) 1,447
Index results 1,447 (287 duplicated)
Events indexed 262,87,826 (5,184,173 duplicated)
Time spent 55.5 hours
Transport method 1,515,131 messages

(text)
1,447 objects (binary)

Index size 15 GB 3.3 GB (Compressed)

Consumers

Instances (long-lived) 6 6
Files received (Duplicated) 1,447 (287) 1,160 (0)
Events received (Duplicated) 26,287,826 (5,184,173) 21,103,653 (0)
Receiving method 1,515,131 messages 1,160 objects
Produced data used all messsages 287 objects not accessed
Data received 15 GB 2.5 GB (Compressed)
Time spent 244 min 34 min
Reading rate (kB/s) 1,098 kB/s 1,302 kB/s
Throughput (events/s) 1,793 events/s 10,344 events/s
Output data (HDFS) 1,447 HDFS files / 11.2

GB
1 HDFS file / 9 GB

Writing rate (kB/s) 627 kB/s 4,464 kB/s

Output Index Data

Validation Method check and remove dupli-
cates

not needed

Traversal Time 69 hours 56.1 hours
Consolidated Events 21,103,653 events 21,103,653 events
Consolidated Data (HDFS) 1,160 HDFS Files / 9

GB
1 HDFS File / 9 GB

53

4. Data Collection

Data production

The data production procedure on this kind of dataset should have launched a
producer per input file (1,160), but we see that a total of 1,447 instances were
spawned and the indexing procedure lasted 55.5 hours. This means that some
processes failed or were identified as failed at some point and were relaunched.
There were produced 1,447 index results, 287 of them with probably duplicated
information (5,184,173 event records extra). In the aforementioned scenario,
the index data is sent with both messaging and object store systems. The
index results payload was segmented into more than 1.5 million text messages,
compared with the 1,447 objects without segmentation. The transient space
was came to a total of 15 GB for messages, compared to 3.3 GB for the object
store. The binary encoding using protobuf format allows us to compress the
data much more in the object store, compared to the textual JSON encoding of
the messaging approach.

Data ingestion

The pull model object store approach allows our system to avoid accessing
the objects that contain duplicate data, effectively reducing the amount of
data received a 25% in this example (2.5 GB received compared with 3.3 GB
produced). Push model messaging consumers receive the 100% of data, including
duplicates. The reading rate represents the amount of data received, divided by
time spent. Similarly, the writing rate is the output data (in HDFS), divided by
time spent. In both cases we obtain better numbers in the object store scenario.
Each set of consumers writes in its own HDFS area; object store consumers
write a unique consolidated file compared to 1,447 files by messaging consumers.
Throughput in events processed per seconds is the most representative metric,
which is almost 6 times higher in object store consumers.

Output results

After writing the data in HDFS, a validation method is needed in the messaging
approach for cleaning the duplicated data. After the validation step, a total
of 1,160 HDFS files will be ready. An extra consolidation step will be done by
the core Hadoop system (after Data Collection) to create a single file. This is
not the case in the object store approach, which has previously selected which
data to write in HDFS. A single HDFS file is written from the beginning per
dataset. The total size and collected events is the same in both approaches, as
the HDFS file format is the same. The traversal time (from the beginning of

54

4.3. Evaluation

the process until all data is validated and available in HDFS) is shorter in the
object store approach. We have seen that producers take the same time, but
the data ingestion process with object store consumers is shorter. Also, the
validation step is removed with the pull model, using less resources and with
faster results with the object store approach.

4.3.2 Complete results

We analyze now the complete experiment lasting 3 months in the same described
scenario, comparing both messaging and object store approaches. We will
characterize and review in detail every component of the system and the results
obtained.

Table 4.3 shows a summary of the results of the experiment, divided into
input data, producer processes, consumer processes, and output index data.

Input data

A total of 26,367 datasets were indexed, with more than 60 billion (109) events
distributed in more than 10 million files. Total volume sums up 17 PB of input
data, with 10% stored at CERN and the remaining 90% stored at grid ATLAS
sites in the WLCG.

Data production

A total of 587,967 producers were launched over the duration of the experiment
at CERN and around the tens of sites that form the ATLAS part of the WLCG
grid. The following figures represent the real workload that was submitted to
the production system.

In figure 4.5 a histogram shows the duration of the producer event metadata
extraction process. The x-axis represents the time (in Hours), and the y-axis
the number of appearances (frequency) of each case on logarithmic scale. The
indexing time depends on the number of input files and type of data, but also
on the hardware and configuration of machine where the producer executes.
The majority of the jobs finish in less than 1 hour, with a mean of 0.61 hours.
There is a lot of variance in the duration time, with the longest job taking 71
hours. In total all the producers sum up 360 k hours of duration time during
the 3 months of the experiment.

Figure 4.6 shows the results of the event metadata extraction phase, the
EventIndex data. This is represented as the number of events indexed per

55

4. Data Collection

Table 4.3: Complete results of the experiment comparing messaging and object
store approaches

Messaging Object Store

Input Data

Experiment Duration 3 months
Total Input Datasets 26,367
Total Files 10 million
Total Events 60 billion
Total Size ˜17 PB

Producers

Instances (short-lived) 587,967
Index results 12,311,330
Events indexed 70,549,949,057
Time spent 3 months (361k CPU hours)
Transport method 994,796,792 messages

(text)
587,967 objects (binary)

Index size 10 TB 2.2 TB (Compressed)

Consumers

Instances (long-lived) 6 6
Files received (Duplicated) 12,311,330 (2,379,720) 8,663,430 (0)
Receiving method 994,796,792 messages

(text)
538,442 objects (binary)

Data received 10 TB 2 TB
Time spent 16,728.6 hours 1,005.38 hours
Reading rate (kB/s) 173.6 kB/s 571 kB/s
Throughput (events/s) 1,171 events/s 14,877 events/s
Output data (HDFS) 12,311,330 HDFS files /

17.7 TB
26,367 HDFS files / 14.3
TB

Writing rate (kB/s) 282 kB/s 3,950 kB/s

Output Index Data

Validation Method Check and remove dupli-
cates

Not needed

Traversal Time (typical) >10h (94% of datasets) <10h (85% of datasets)
Consolidated Events 60 B events 60 B events
Consolidated Data (HDFS) 9,931,610 Files / 14.3

TB
26,367 Files / 14.3 TB

56

4.3. Evaluation

time_hist

Entries 587967

Mean 0.6141

Std Dev 1.431

0 10 20 30 40 50 60 70

Time(Hours)

1

10

210

310

410

510

F
re

q
u
e
n
c
y

time_hist

Entries 587967

Mean 0.6141

Std Dev 1.431

Producer Indexing Time

Figure 4.5: Producer Indexing Time histogram. The x-axis represents the time
(hours); y-axis represents the number of appearances (frequency) [80].

producer. The x-axis represents the number of events, and the y-axis the
frequency of the producers. The mean is to index around 100 k events per
producer. Then we have variability with the biggest production of more than
30 million events for a single producer. The total number produced event index
records is more than the original 60 billion events. This is again because some
files are indexed more than once due to some job failure and restart. This will
create duplicate data that needs to be detected in later phases.

In the following figures we show a characterization and comparison on the
data volume produced, differentiating between messaging and object store
approaches.

Figure 4.7 shows a histogram on the EventIndex data volume created per
producer, comparing the two approaches. Messaging, in red, is based on JSON
textual encoding. Object store, in blue, is based on binary protobuf compressed
encoding. The x-axis represents the EventIndex data volume size (in megabytes),
and the y-axis represents the frequency or number of occurrences, in logarithmic

57

4. Data Collection

h_pd_events
Entries 587967

Mean 1.03e+05

Std Dev 3.462e+05

0 5 10 15 20 25 30

6
10×

Events

1

10

210

310

410

510

610

F
re

q
u
e
n
c
y

h_pd_events
Entries 587967

Mean 1.03e+05

Std Dev 3.462e+05

Producer Events

Figure 4.6: Number of events indexed per producer. The x-axis represents the
number of events; The y-axis the frequency of the producers. [80].

scale. Regarding messaging approach (in red), the number of entries correspond
to the 12 million (12,311,330) index results as seen in table 4.3. These index
results are small, with a mean index size of 0.8 MB. 99% of the results are less
than 12 MB, and the biggest index result is 64 MB. We have to remember that
these results will be divided into smaller 10 kB messages when transmitted.
The total integrated volume index data size is 10 TB. With the object store
approach (in blue) we find less entries, as every producer stores a single object
in this scenario we have 587,967 objects as index results. The mean object size
is 3.6 MB. 90% of the objects are less than 8MB, but we have a great variance
with objects up to 670 MB.

As a conclusion we can see that the workload is concentrated in fewer index
results (∼ 587 k objects against ∼ 12 million index files), with greater volume
of data (3.6 MB mean object size, against 0.8 MB mean index data file with
the messaging approach). This is due to the fact that with objects we group
the information for several input files, with a binary encoding that in addition

58

4.3. Evaluation

0 100 200 300 400 500 600 700

Size(MB)

1

10

210

310

410

510

610

710

F
re

q
u
e
n
c
y

Produced Data Size Histogram

Messaging

ObjectStore

Figure 4.7: Comparison of produced index data (messaging vs. object store).
The x-axis represents the data volume size; the y-axis represents the fre-
quency. [80].

allows better compression.

In the following figures we can see the produced index data produced and sent
with both methods, depending on time over all the duration of the experiment.

Figure 4.8 shows the volume of data produced per hour, for messaging (red)
and object store (blue) approaches. The x-axis represents the number of elapsed
hours since the beginning of the experiment until 2,270 hours corresponding to
3 months of the experiment. The y-axis represents the data volume produced
in megabytes. The peak in messaging (in red) is produced at hour 1,880, with
60 GB of index data (sent with approximately 6 million messages). The object
store (in blue) data production peak is about 14.25 GB (in 3,538 objects).

In the following figure 4.9 we observe the produced index data sent accu-
mulated until a particular moment since the beginning of the experiment. The
total volume of the produced and transmitted data with messaging (in red) is
10 TB at the end of the experiment, which corresponds to 102 GB per day.

59

4. Data Collection

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

 Time(Hours)

0

10

20

30

40

50

60

3
10×

 S
iz

e
(M

B
)

Messaging

ObjectStore

Produced Data Size

Figure 4.8: Produced index data along the duration of the experiment. Red
graph corresponds to messaging; blue graph corresponds to object store. The x-
axis represents time since the beginning of the experiment; The y-axis represents
the data volume of index data. [80].

The same variable for the object store approach (in blue) adds up to 2.2 TB of
index data, corresponding to 22.2 GB per day. Comparing both approaches, we
achieve transmitting 4.5 times less data with the object store approach.

Data ingestion

Differences in consuming and data ingestion procedures are represented in the
following representations, where we show produced against consumed data
depending on the approach.

In the figure 4.10 we show the produced (red line) versus consumed (green
line) messages, over the duration of the experiment. The total number of
consumed messages reaches almost the billion messages (994,796,792), which
corresponds to the volume of data of 10 TB aforementioned. It has to be noted

60

4.3. Evaluation

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time(Hours)

0

2

4

6

8

10

6
10×

C
u
m

u
la

ti
v
e
 S

iz
e
(M

B
)

Messaging

ObjectStore

Produced Data Size (Cumulative)

Figure 4.9: Cumulative produced data for the duration of the experiment.
Red graph corresponds to messaging; blue graph corresponds to object store.
The x-axis represents time from the beginning of the experiment; The y-axis
represents cumulative data volume of index data [80].

that both lines superpose during most of the time of the experiment, showing the
real-time consumption of the produced data. There are however time periods
where the corresponding red line is visible, indicating an issue in the consumption
rates. This is the case for hour x ∈ [1087, 1162], [1189, 1254], [1611, 1748] and
[1879, 1912]. In this case the brokers create a backlog of messages that are
not consumed in line with production. Eventually the backlog is reduced and
messages are consumed, with both green and red lines of the graph converging.
In these situations slower consumption is detected, due to head-of-line blocking
issues, potentially worsening the situation. Other situations that can cause
backlogs are disconnection of consumers due to maintenance, or problems in
the backend HDFS system. Should messages not be consumed at production
rate over larger periods, the backlog would increase, exhausting the brokers
memory, and rejecting new produced messages. Another issue is that a problem

61

4. Data Collection

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time(Hours)

0

200

400

600

800

1000

6
10×

M
e
s
s
a
g
e
s

Produced

Consumed

Messages Produced/Consumed

Figure 4.10: Produced versus consumed messages for the duration of the
experiment. Red line represents produced messages; green line represents
consumed messages [80].

handling one single message of a message group, invalidates all the group. This
means indexing again the original data, with the corresponding submission of
new data production jobs.

Figure 4.11 shows the number of produced versus consumed objects. Pro-
duced and stored data in the object store (in red) reach a total of 587,967
objects. In contrast to the messaging approach, objects are not inserted into a
queue and are not needed to be consumed in order. In addition, as the produced
object might contain duplicate information, not all of them need to be accessed.
There are validation steps that select the correct objects. This is shown in
green, representing the 538,442 accessed objects. Thus, 49,525 of the originally
produced objects are not accessed.

The consumed objects sum up a total of 2 TB index data. There are 200
GB from the original volume produced (2.2 TB) that are not accessed at all,
representing a 10% of the total.

62

4.3. Evaluation

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time(Hours)

0

100

200

300

400

500

600

3
10×

O
b
je

c
ts

(c
u
m

u
la

ti
v
e
)

Produced

Consumed

Objects Produced/Consumed

Figure 4.11: Produced versus consumed objects for the duration of the experi-
ment. Red line represents produced objects; green line represents consumed
objects [80].

Compared with the 10 TB of the messaging approach, with the new object
store approach we consume overall 5 times less data. These improvements result
in less resources used, and faster data ingestion rates.

Finally, an overall picture of the data ingestion process is shown in figure 4.12.
The consumers throughput is represented in terms of processed events per second,
comparing the messaging approach (in red) with the object store approach (in
blue). The histogram x-axis shows the rate (events/s), and the y-axis shows the
relative frequency of appearances in the consumption. The messaging consumers
yield a mean rate of 1 k events processed per second, with a maximum of 5 k
events per second. The object store consumers yield a mean rate of 15 k events
processed per second, with a maximum of 28 k events per second. Therefore,
we observe a factor 15 improvement in the object store performance, compared
with the messaging consumers. With head-of-line blockings detected in the
messaging brokers, we could not effectively scale the system. On the other hand,

63

4. Data Collection

0 5000 10000 15000 20000 25000 30000

Events/s

0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u
e
n
c
y
(n

o
rm

)

Messaging

ObjectStore

Consumer Bandwidth

Figure 4.12: Comparison of consumer throughput in events processed per second.
Messaging consumers are shown in red, and object store consumers are shown
in blue. The x-axis represents the events processed per second; y-axis represents
the frequency normalized [80].

with the new approach we don’t observe such limitations and we can scale up
adding new object store consumers.

Another set of benefits are achieved with the pull model of the new object
store approach. Only validated and unique data is consumed and ingested
into HDFS, and therefore can be done in a single step, writing a unique file
per dataset. Therefore later validation and consolidation steps are avoided,
compared with the messaging approach.

Objects are not removed when accessed. There is a defined data staging
lifetime policy, which directs when to get rid of non needed objects, usually
after some data production campaign.

Thus, objects can be accessed again in case of a problem with consumers
or with the backend filesystem. This is an improvement with respect to the
previous messaging approach.

64

4.4. Conclusions

Traversal time

A valuable metric for users on the overall performance on the system is traversal
time. We have defined traversal time for a particular dataset, as the period
of time starting with the indexing of the first input data file, until the last
EventIndex data is consumed and is available in the final backend.

We show in figure 4.13 a histogram of the traversal time for the analyzed
datasets, comparing both messaging (in red) and object store (in blue) ap-
proaches. The x-axis represents the traversal time in hours, and the y-axis
represents the relative frequency on the number of dataset occurrences (normal-
ized to 1, in logarithmic scale).

Traversal time for datasets ingested with the object store path are mostly
(85% of them) available in less than 10 hours. The mean is x̄ = 12 hours, with
Var[x] = 47.

In contrast, traversal time for the same datasets ingested with the messaging
path take longer. Only 6% of them are available in less than 10 hours. We
observe much more variance with Var[x] = 247.

Few datasets take much longer to be indexed and validated. In some cases
part of the input data is not available online (because the grid storage has
problems, or because it is on long-term storage tape systems). In other cases
some input has to be re-indexed again because of problems in the collection.
We observe that with messaging a larger number of datasets takes longer to be
available, increasing the total traversal time for these datasets by over 1,000
hours. Overall, we observe lower time traversal values with the object store
approach, meaning they are sooner available for final users.

4.4 Conclusions

The work described in this thesis has resulted in several contributions on real
production grid distributed systems collecting big data.

We contributed to the design and part of the implementation of a big data
distributed collection system for our application. We characterized the short-
comings of messaging systems to convey our production data. The segmentation
of data payload and reassembly is complex and produces head-of-line (HoL)
blockings at the messaging brokers, limiting scalability and imposing limits on
the data ingestion rates.

We contributed to a new pull model data ingestion design for the distributed
data collection of grid produced metadata of the EventIndex project. Its

65

4. Data Collection

0 200 400 600 800 1000

Time(Hours)

4−10

3−10

2−10

1−10

1

F
re

q
u
e
n
c
y
(n

o
rm

)

Messaging

ObjectStore

Dataset Traversal Time

Figure 4.13: Comparison of typical traversal times for complete datasets for
messaging (in red) and object store (in blue) approaches. The x-axis represents
the traversal time in hours, and the y-axis represents the relative frequency
(normalized to 1, in logarithmic scale) [80].

implementation is supported by the usage of an object store for temporary data
staging, and a dynamic data selection mechanism.

In order to experimentally prove the validity of the approach, we set up a
evaluation deployment in real scenarios with both the previous messaging push
model, and the new object store pull model in parallel. We ran an experiment
over 3 months in a real distributed environment, indexing more than 60 billion
events, distributed in 10 million files worldwide, with a total volume of 17 PB
of data.

Results show that the new design improves the performance in several areas.
With the new design we can avoid payload segmentation, storing the index
information from a producer in a single object. Better data compression ratios
are achieved with larger payloads and binary data encoding. Thus a factor
4.5 reduction in the total volume of conveyed and ingested data is achieved.

66

4.4. Conclusions

Blockings are not observed with the new object store implementation, and
the workload distribution is improved, potentially achieving better scalability.
Throughput during data ingestion is improved 15 times compared with the
messaging approach. In addition, the pull model approach allows the dynamic
selection of data, avoiding the ingestion of duplicated information that in our
experiment is a 10% of the produced data.

Data validation and consolidation steps have been improved, reducing the
number of backend written data to a single HDFS file per dataset. This supposes
a factor 300 reduction in the number of files written during data ingestion.

Reduction in the complexity of the system, and resource consumption during
transport, data ingestion and validation phases have improved the reliability and
overall performance of the system. These changes have shortened the traversal
times of the EventIndex data, eventually improving the user experience.

After successful validation of the new object store implementation, a rolling
deployment was carried out during Run 2 and has been running in production
ever since.

67

5 Storage

Data storage is one of the most important components because it maintains all
the EventIndex data and has to scale for the current and future Runs of the
experiment. The first design for the project implemented in 2014 was based on
the available Hadoop Big Data technologies at that time. It was conceived to
use HDFS as the main storage with MapFiles as the file format used. HBase was
also used, but only to maintain a catalog of the data. Limitations were found
in the data ingestion and data access performance. Random access required
for event-picking use case was not well suited to this model, and therefore not
performant enough.

A first advance was made with a hybrid system indexing the most relevant
data (only real data, without trigger information) in Oracle [54], and having the
main backend with all data in HDFS. In addition, included a general lookup
method by event number and run number in a small HBase database, for
faster access to a GUID (event picking use case) and including pointers to the
complete records stored on HDFS. The implementation was run successfully
in production during Run 2 (2015-2018) [48] as shown in figure 5.1, at the
cost of duplicated data, with an increase in volume size used. Overall system
architecture complexity supposed higher maintenance costs and data coherence
concerns.

New use cases have appeared since the beginning of the project. They have
been extended from event picking and production completeness checks to trigger
overlap studies, duplicate event detection and derivation streams overlaps. The
event rate steadily increased in Run 2, and now in Run 3 it is expected to be a
factor 3 of the previous Run. For Run 4, a factor 10 increase in the event rate
is expected. New Big Data technologies suitable to support bigger ingestion
rates, and the required transactional and analytical workloads of our project,
have appeared. Previous studies [55, 81] concluded that columnar storages like
Kudu could be suitable for our application. Also HBase was found to be an

69

5. Storage

PRODUCTION COLLECTION STORAGE ACCESS

MONITORING

Events
metadata
extraction
(Producer)

(Consumer)

Controler
(Supervisor)

Object
Store

Messaging

temp.
Hadoop
HDFS

Oracle
Web Service

GUI

Hadoop
Web Service

GUI

WLCG CERN

Oracle

Data
Consolidation+
Augmentation

(Trigger)

Oracle
Importer

Hadoop
HDFS Mapfiles

HBase
Hadoop CLI

Figure 5.1: EventIndex architecture as implemented at the end of the LHC
Run 2. Green hexagons correspond to temporary or permanent data, and pink
rectangles represents processes. Black arrows show the EventIndex data flow,
and blue arrows show the flow of information related to data processing. Data
collection uses a pull-model based on an object store. Data storage uses a
temporary HDFS store, from where data is consolidated and augmented into
the final storage using HDFS MapFiles and HBase for the catalog. A subset of
the information is copied to Oracle tables for fast data retrieval.

option to host now all the EventIndex data and not only pointers, due to the
improvements in the platform.

In this chapter we review the storage technologies suitable for our project
that have been or are suitable for use in the following Runs. First, we review
the HDFS storage and how it has been used in the project focusing on the data
ingestion parts. Next, we present Kudu’s main advantages, along with the data
model and prototype that was setup to evaluate it. Finally, we show HBase
as candidate to host all the data with an interface called Phoenix to provide
SQL capabilities for data ingestion and access. An evaluation is carried out,
finishing with some conclusions.

5.1 HDFS

The Hadoop Distributed File System (HDFS) [51] is designed for storing very
large files (hundreds of megabytes up to terabytes in size) and streaming data
access patterns (write-once, read many times; and accessing a large proportion
or all the dataset) into commodity hardware clusters. It is not designed for
low-latency data access, storing lots of small files, or having multiple writers or
arbitrary data modifications. HDFS files are organized into big blocks replicated
in 3 data nodes by default. With this feature it achieves fault tolerance on

70

5.1. HDFS

hardware failures, and increases data availability. It is specially well suited to
data processing with the MapReduce [59] framework. A MapReduce job splits
the input into chunks (usually at the block level), which are processed by the
map tasks in a completely parallel manner. The framework orders the outputs
of the map tasks and distribute them to the reduce tasks. Tasks are usually
executed where data is stored, yielding a broad aggregate bandwidth.

5.1.1 Data organization

The EventIndex data collection consumers are in charge of data ingestion
procedures into the data backend. Upon receiving a validation message, the
consumer creates the required HDFS directory and HDFS files at the defined
granularity.

EventIndex data is organized into HDFS directories named after the dataset
container name, and will include one HDFS file per dataset. The HDFS file
name is composed of the dataset name (see subsection 3.5.1) and the validation
identifier separated by a dot (datasetname.validationId).

A representation of an HDFS directory of a dataset container can be seen
next:

datasetContainer/datasetname_tid1.validationId_a

/datasetname_tid2.validationId_b

/datasetname_tidN.validationId_c

The datasetContainer corresponds to the datasetname without the tid suffix.

A dataset can represent a container itself (datasetContainer = datasetname)
if it is composed of a unique dataset (no tid datasets). This is the case for
Tier-0 datasets. As an example for a 2022 Tier-0 dataset, an HDFS directory is
created with a single HDFS file:

data22_13p6TeV.00429026.physics_Main.merge.AOD.f1249_m2112/ ⌋

data22_13p6TeV.00429026.physics_Main.merge.AOD.f1249_m2112. ⌋

9f7087f2ec9d46f986da4f69d9ecc1f5

→֒

→֒

In general a dataset container is composed of several (tid) datasets, so an
HDFS file will be created per each of them. In the following example a verbatim
listing on an HDFS directory of a 2020 Monte-Carlo dataset container composed
of 3 tid datasets is shown:

71

5. Storage

-rw-r--r-- 3 atlevind atlas-db-eventindex-access 243.0 M 2022-06-28

15:31 mc20_13TeV.700335.Sh_2211_Znunu_pTV2_BFilter.merge.AOD. ⌋

e8351_s3681_r13144_r13146/mc20_13TeV.700335. ⌋

Sh_2211_Znunu_pTV2_BFilter.merge.AOD. ⌋

e8351_s3681_r13144_r13146_tid27230884_00. ⌋

1b35faccaaed4039862631caece3efd6

→֒

→֒

→֒

→֒

→֒

-rw-r--r-- 3 atlevind atlas-db-eventindex-access 361.3 M 2022-06-28

14:36 mc20_13TeV.700335.Sh_2211_Znunu_pTV2_BFilter.merge.AOD. ⌋

e8351_s3681_r13144_r13146/mc20_13TeV.700335. ⌋

Sh_2211_Znunu_pTV2_BFilter.merge.AOD. ⌋

e8351_s3681_r13144_r13146_tid27230909_00. ⌋

86514c7bb05742828bfc4794e1de3ebc

→֒

→֒

→֒

→֒

→֒

-rw-r--r-- 3 atlevind atlas-db-eventindex-access 3.1 G 2022-06-29

01:10 mc20_13TeV.700335.Sh_2211_Znunu_pTV2_BFilter.merge.AOD. ⌋

e8351_s3681_r13144_r13146/mc20_13TeV.700335. ⌋

Sh_2211_Znunu_pTV2_BFilter.merge.AOD. ⌋

e8351_s3681_r13144_r13146_tid27230936_00. ⌋

0511bd49377c4572b6ed955fec557c2c

→֒

→֒

→֒

→֒

→֒

The listing is shown with the following format: permissions number of replicas
userid groupid filesize modification date modification time filename. Several
things have to be noted:

❼ number of replicas is equal to 3, the usual HDFS replication factor to
increase reliability.

❼ filesize varies from 243 MB, 361.3 MB and 3.1 GB.

❼ All files share the parent directory (dataset container name), and the
file name (datasetname) until the tid suffix. Every file has different tid
number and validationId:

..._tid27230884_00.1b35faccaaed4039862631caece3efd6

..._tid27230909_00.86514c7bb05742828bfc4794e1de3ebc

..._tid27230936_00.0511bd49377c4572b6ed955fec557c2c

Having the validationId included in the HDFS filename is done for tracking
purposes related to the data collection task. This also adds versatility to
change the granularity of HDFS file writing. We could potentially have
several HDFS files per (tid) dataset, sharing the datasetname, and with
several validationId suffix.

72

5.1. HDFS

5.1.2 File format and contents

To store the EventIndex information in HDFS, we use SequenceFiles and
MapFiles per different part in the system. SequenceFiles are produced during
data ingestion. They are binary flatfiles that require a key and a value per
record, but do not require key ordering. MapFiles are ordered binary files, that
are in fact composed of two ordered SequenceFiles, one for the data and one
for an index on the keys. This index allows faster retrieval. They are produced
after data consolidation procedures to be used by final users.

Data ingestion

Every record in the files represents an event record in EventIndex. The key
is a zero-padded string composed of ”RunNumber-EventNumber”, with 8
digits for the RunNumber, and 11 digits for the EventNumber (ie. ”00429026-
00424949126”). With this key approach we can index the records in a lexico-
graphical order. It has to be noted that although the records for a particular
file are written by a single writer, a complete order is not guaranteed, as was
not the case in the transient input EventIndex protobuf encoded objects (sec
subsection 4.2.1).

The value is a string composed of the comma separated values (CSV) of
the fields of an event record. It contains 40 fields for event identification, the
trigger information, and location information.

A visualization of a record is shown here:

00429026-00424949126 293,5,1658545466,418836785,0.0,0,872532 ⌋

710,0,0,0,Bn!!!!!!!B!!!!!!!!!!!!!!!!!!!!!!!!!!K!!!D!!O!!!!! ⌋

!!!!!!!F!B!C!E!D!!!!!!!!!B!!!!!!!!!H!!!!!!!C!D!D!!!b!!!!!!! ⌋

!!!!!J!!!!B!!!D!!!E!!!!!!BT!G!F!!!B!H!F!B!!u!DQ!G!B!C!E!BP! ⌋

F!GY!G!B!C!E!BP!F!Dl,;;,UI!!Bd!CD!M!B!H!Gd;;,3096,1628,1647 ⌋

,StreamAOD,DDFC6B19-66ED-E442-AA50-82E57B2CB79F,POOLContain ⌋

er(DataHeader),4DDBD295-EFCE-472A-9EC8-15CD35A9EB8D,0000020 ⌋

3,00000270-00000000,StreamRAW,20008429-340A-ED11-8810-3CECE ⌋

F0D9A38,,00000000-0000-0000-0000-000000000000,00001000,0000 ⌋

0000-00000120,,,,,,,,,,,,

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

The list of record fields in order of appearance is shown below. We have
divided them into blocks regarding their nature: event identification, trigger
information, and location information. Internal name of the field is followed
by the original Protocol Buffers Type (C++ like), and a description of the

73

5. Storage

field. When writing the HDFS file record the types are converted to the string
representation.

The key of the record is composed by the following fields:

❼ RunNumber (uint32) Event run number.

❼ EventNumber (uint64) Event number.

Value of the records follows with information on the event identification,
composed of the following fields (1-10):

❼ LumiBlock (uint32) Luminosity block number identifier.

❼ BunchId (uint32) Bunch crossing identifier.

❼ TimeStamp (uint32) Event POSIX time in seconds since the epoch
(1970-01-01 UTC).

❼ TimeStampNSOffset (uint32) Nanoseconds offset with respect to the
event time (TimeStamp).

❼ McEventWeight (uint32) MonteCarlo generator event weight.

❼ McChannelNumber (uint32) MonteCarlo generator channel number.

❼ ExtendedLevel1ID (uint32) Extended Level-1 trigger identifier [21].

❼ IsSimulation (bool) true: simulation, false: data.

❼ IsCalibration (bool) true: calibration, false: full detector.

❼ IsTestBeam (bool) true: testbeam, false: physics.

The trigger related information is in the following records (11-16):

❼ L1PassedTrigMask (string) Level 1 (L1) trigger mask in compressed
text format.

❼ L2PassedTrigMask (string) Level 2 (L2) trigger mask in compressed
text format.

❼ EFPassedTrigMask (string) EventFilter (EF) trigger mask in com-
pressed text format.

❼ SMK (uint32) Trigger supermaster key.

74

5.1. HDFS

❼ HLTPSK (uint32) High Level Trigger (HLT) prescale set identifier.

❼ L1PSK (uint32) Level 1 Trigger (L1) prescale set identifier.

The trigger compressed text format has been used by the Data Collection
task since the first EventIndex release [47, 82]. Originally it was driven by the
text only payload requirement on the messaging platform (section 4.1), but has
been maintained on the new platform (section 4.2). The format is using a run
length encoding (RLE) approach where the trigger mask bits equal to 1 are
substituted by ’ !’ character, and consecutive bits equal to ’0’ are substituted
by its repetition count encoded in the corresponding character from the Base64
alphabet [83].

The next set of fields relate to the provenance (data lineage) information of
the event. A set of these fields represents a Token in the Athena persistency
POOL/ROOT framework [43], which allows navigation capabilities to access
particular event data within a file.

In the EventIndex record we store 4 sets of these Tokens. The first Token
(fields 17-22) represents the current event as found in the indexed file. The
following ones (fields 23-28, 29-34, and 35-40) represent the lineage of the data
in files from earlier upstream processing stages. The fields of a Token set are
the following:

❼ Name (string) Token container Name (Stream data type)

❼ DB (string) Database identifier where to find the event. The GUID string
representation is stored for files.

❼ CNT (string) Container identifier.

❼ CLID (string) Class identifier UUID.

❼ TECH (string) Token technology identifier.

❼ OID (string) Object identifier. Represented as string ”OID1-OID2”.

The field naming is following the persistency framework naming. Token
Name field represents in EventIndex the stream data type (StreamAOD, Stream-
RAW...); DB contains the GUID as file identifiers where we can find the full
event data; CNT is a container identifier and CLID is a UUID that can refer
to a internal C++ object useful in the persistency framework. It must be
noted that RAW data files are written in ByteStream format [21] and not
accessible by POOL, thus CNT and CLID are not meaningful. TECH is the

75

5. Storage

token technology identifier, and OID is composed of two offsets and represented
as the ”OID1-OID2” string. OID1 is an offset in a file container list, and OID2
is an offset of the event inside the file container.

Data augmentation

After data ingestion, data augmentation (like trigger decoding) and consolidation
procedures are done by the Hadoop core tasks [48]. The internal CSV format is
maintained, effectively appending 14 more fields. The first fields include the
dataset naming fields (already available in the file name) decomposed (fields
41-45) including project, streamName, prodStep, dataType, and version.

Next fields include the decoded trigger chains decomposed in their compo-
nents:

❼ L1 trigger (fields 46-48) : L1trigChainsTAV, L1trigChainsTAP, L1trig-
ChainsTBP.

❼ L2 trigger (fields 49-51) : L2trigChainsPH, L2trigChainsPT, L2trig-
ChainsRS.

❼ EF/HLT trigger (fields 52-54) : EFtrigChainsPH, EFtrigChainsPT, EF-
trigChainsRS.

These are long string fields with all the trigger names decoded, which makes
the file contents much larger.

The file records are lexicographical ordered by the key (RunNumber -
EventNumber), and this process makes the final Map Files available for users
in the production area.

5.1.3 Limitations

The procedure requires several stage areas that contain temporary replicated
data in HDFS (ingestion and production areas). Several steps have to be done
until data is consolidated and finally available, complicating the procedure
and increasing the points of failure. The data ingestion and consolidation into
MapFiles is complex and requires sorting the contents by key when writing
them in HDFS. The average ingestion speed into MapFile format is 6.4 kHz
per dataset [55]. Thus overall performance is reduced, in the end increasing
traversal time. Therefore, the implementation of a new technology was needed to
overcome these limitations. The following sections describe possible technologies
and the implementation of the chosen solution.

76

5.2. Kudu

5.2 Kudu

Apache Kudu [56] is a distributed table-based storage designed for Hybrid
Transactional and Analytical Processing (HTAP) systems. Instead of providing
a file format on top of HDFS, it provides its own technology for column-based
storage and indexing of the data. A columnar storage groups logically and
physically similar data together, allowing efficient encoding and compression.
A relational data model is followed in the design with tables with a defined
schema based on named columns, types and a primary index.

Kudu partitions tables based on hashing, range partitioning, or a combination
of these. Partitions are replicated allowing fault tolerance and availability. Kudu
employs the Raft [84] consensus algorithm to replicate all operations for a given
partition.

Other features and limitations define the usage:

❼ Each table has only one (clustered) index and it is built on a primary key.

❼ The unit of table scan parallelism is a table partition.

❼ There is no automatic splitting on the key range. A partition range has
to be known during creation and cannot be modified.

Benefits come also in the data access capabilities, as multiple frameworks for
parallel data processing and computation like Apache Spark [60] and Apache
Impala [85] can be used.

5.2.1 Data organization

We contributed to the development of a new data model based on Kudu tables
and resembling a relational schema [86]. The idea is to have the events stored
in big tables (one for real and another for simulated Monte-Carlo data), with
typed columns representing the fields in the EventIndex data model.

The EventIndex events schema that was used for validation of the model
and used for the ingestion tests in the next subsection 5.2.2 is represented in
table 5.1 with an entry per column. For every column we specify a column
name, a column type, encoding based on the type of the column, and if it is
part of the Primary Key (PK). In the last column of the table we also include
comments on the meaning of the entry.

The key of the Kudu events table is composed of the first eight entries
(signaled with PK). The fields that represent the dataset are project, streamname,

77

5. Storage

Table 5.1: Kudu Events table schema

Column name Column type Encoding Primary Key (PK) / Comment

epoch int32 rle (PK) partition
project string dict (PK) dataset project
streamname string dict (PK) dataset data stream
prodstep string dict (PK) dataset production step
datatype string dict (PK) dataset format
version string dict (PK) dataset version (AMITag)
runnumber int32 rle (PK) dataset run number
eventnumber int64 bs (PK) event number
lumiblockn int32 rle lumiblock number
bunchid int32 bs bunch crossing identifier
eventtime int32 bs event timestamp
eventtimens int32 bs nanoseconds offset
lvl1id int32 bs L1 trigger identifier
hltpsk int32 rle HLT trigger prescaler key
l1psk int32 rle L1 trigger prescaler key
l1trigmask string plain L1 trigger mask (json)
l1trigmask bytes binary plain L1 trigger mask (binary)
eftrigmask string plain EF/HLT trigger mask (json)
eftrigmask bytes binary plain EF/HLT trigger mask (binary)
tbp0-7 int64 bs L1 TBP component (binary)
tap0-7 int64 bs L1 TAP component (binary)
tav0-7 int64 bs L1 TAV component (binary)
hltph0-63 int64 bs HLT PH component (binary)
htlrs0-63 int64 bs HLT RS component (binary)
hltpt0-63 int64 bs HLT PT component (binary)
db string dict GUID of file
oid1 int32 rle object identifier offset 1
oid2 int32 bs object identifier offset 2
provenance string plain provenance (json)

78

5.2. Kudu

prodstep, datatype, version, runnumber as defined in subsection 3.5.1. A
refinement to this approach was done within the project by grouping these
fields in a generated dspid or dataset primary id as presented in [86] as there
was no need to search for individual rows based on this, and dspid results in
a more compact key. These columns were moved to another datasets table,
referring to the generated dspid and include other cataloguing and bookkeeping
fields. Eventnumber type of bigint (int64) allows referring to 264 events for any
dataset. Column epoch (rgid in [86]) is included for range partitioning and is
assigned applying a function over a column which can be runnumber or dspid.

Regarding encoding, run-lengh encoding (rle) is effective for compressing
consecutive repeated values, because it stores only the value and the count.
The dictionary (dict) encoding is effective for columns with low cardinality, as
a dictionary of unique values is constructed, and each column value is stored
as its corresponding index in the dictionary. Bitshuffle (bs) encoding [87]
rearranges values by blocks storing the most significant bit of every value, then
the second most sisginificant bit, and so on. The block is compressed with the
LZ4 compression algorithm. This encoding shows the best compression ratios
for numeric values that change very little when sorted by primary key. The last
plain encoding is stored in the natural format, for example UTF-8 format for
strings.

Then other fields are included for event identification, like the lumiblock
number (lumiblockn), the bunch identifier (bunchid), and the timestamp of the
event (eventtime) including the offset in nanoseconds resolution (eventtimens).

Trigger related values are included in the following fields: the extended
Level-1 trigger identifier (lvl1id), the High Level Trigger prescaler (hltpsk), and
the Level 1 trigger prescaler (l1psk).

Regarding trigger masks, several options were tested in the prototype: A
unique binary column, multiple binary columns encoded as int64 values (allowing
us to push down query predicates with Impala), and JSON encoding.

Complete trigger masks are reflected in the columns l1trigmask, eftrigmask
encoded as JSON strings, corresponding to Level 1, and Event Filter/ High
Level Trigger. As level 2 trigger only exists in Run 1, the related fields allowed
us to test previous data, but will not be included in the model. In Run 2, level
2 and EF were merged into the High Level Trigger (HLT) and contained the
same information.

JSON encoding allows versatile operations and can be directly used by
higher level tools accessing this information. On the other hand, all the trigger
information has to be accessed, and there are use cases when we need only

79

5. Storage

access some triggers. For this reason, the same information is exploded in
several binary columns, which allows the selection on individual triggers.

Level 1 trigger is divided into trigger before prescaler (TBP), trigger after
prescaler (TAP), and trigger after veto (TAV). Each component is composed of
up to 512 bits so this is reflected in the schema with 8 columnns of int64 type (8
x 64 = 512 bits), which can be individually selected, making up a total of 1,536
bits. In this way, this can be directly mapped to Impala bitwise operations
(limited to 64 bit operands).

Event filter (EF) or High Level Trigger (HLT) are internally divided into
three components: physics (PH), passthrough (PT), and resurrected (RS). It is
represented with 192 columns of int64 type, so 192 x 64 = 12,288 bits in total.
Therefore 64 columns are used for physics (PH) (lhltph0-63), 64 columns for
passthrough (PT) (hltpt0-63), and 64 columns for resurrected (RS) (htlrs0-63).

Decoded augmented trigger chains (l1trigchainstav, l1trigchainstap, l1trig-
chainstbp, eftrigmask, eftrigchainsph, eftrigchainspt, eftrigchainsrs) as in the
original augmented HDFS schema (section 5.1) are not included, due to their
big size and that this can be decoded from the already included fields.

Event location information is available in columns named with db prefix,
which represents the GUID of the file that stores these particular events,
and columns oid1, oid2 which are the object identifiers inside that file. The
provenance is also a JSON encoded field that represents the origin of this events
from previous processing versions.

5.2.2 Data ingestion

We developed a new plugin inside the Data Collection framework for the
ingestion into the Kudu storage backend [88]. In this way we can benefit from
the available methods of accessing the input data and report the results in the
framework, completing the ingestion workflow.

The KuduWriter is in charge of transforming the data into the new schema,
and uses the available Kudu client API to store the data.

For our tests a local IFIC cluster was used with the specifications defined in
the table 5.2.

The ingestion tests consisted of a typical data collection scenario, with
input data stored in the object store corresponding to Tier-0 and grid produced
datasets during 1 month (May 2018). In this scenario a consumer receives data
at dataset (tid) granularity, which can be processed in a multithreaded way.
This process involves reading all the objects from the object store corresponding

80

5.2. Kudu

Table 5.2: IFIC Kudu cluster specifications

Hardware (5 x machines) Software/Configuration

2 x Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60GHz (14 cores/CPU)

Kudu 1.7

16 x 16 GB RAM DDR4 @ 2400 MHz (256 GB) Impala 2.11
8 x data disks SATA SEAGATE ST6000NM0034
(6TB)

RAID 10 (22TB)

1 x OS disk SSD SAMSUNG MZ7KM240
(240GB)

Spark 1.6 (cdh5.14.2)

1 x Intel SSD DC P3700 (1.5 TB) pci nvme WAL on Intel SSD
2 x 10 Gpbs ethernet controller

to a particular dataset, transforming the data into the Kudu schema, and
writing the data into the backend storage.

The schema transformations involve decoding the trigger bits packed in the
original format with B64 encoded strings, as written in the HDFS files and the
Object Store.

L1 trigger mask field contains the numerical indexes of the trigger bits fired,
with the components TBP, TAP and TAV sequentially packed. Decoding can
be done directly in a byte array, which is stored in the l1trigmask bytes column.
The length of each component (L1 COMPLEN) is 256 bits for RUN1, or 512
bits for RUN2. So the first L1 COMPLEN bits of the byte array can be directly
mapped to the tbp0-7 columns, next L1 COMPLEN bits to the tap0-7, and the
final L1 COMPLEN bits to the tav0-7 columns.

High level trigger (HLT) mask is stored in three B64 encoded strings, sepa-
rated by a ’;’. Each of these strings represent the physics (PH), passthrough (PT)
and resurrected (RS) components with a length of 4096 bits (HLT COMPLEN).
Similarly to the L1 trigger mask, the three HLT components can be decoded in
the eftrigmask bytes byte array, and directly mapped in order to the (lhltph0-63),
(hltpt0-63), and (htlrs0-63) columns.

Several tables and configuration were tested:

❼ Base: base schema.

❼ Base-t1: partitioning on HASH (eventnumber)=8 and RANGE (runnum-
ber).

81

5. Storage

❼ Base-t2: same partitioning as t1 and key ending on <...,runnumber,
eventnumber>.

❼ Epoch-t1: partitioning on HASH(eventnumber)=4 and RANGE(epoch)=4
with epoch=runnumber%4.

❼ Epoch-t2: partitioning on HASH(eventnumber)=8 and RANGE(epoch)=4
with epoch=runnumber%4.

The Base class of table configurations refers to the original schema used and
some variations. The base tests use no partitioning, and then on Base-t1 we
include RANGE partitioning over the runnumber and HASH partitioning on
the eventnumber. On Base-t2 we use the same partitioning and the key ending
as in the final schema presented.

The Epoch class of table configurations includes range partitioning based
on the epoch field, which is calculated during ingestion as the runnumber
modulus the number of partitions. In addition HASH partitioning based on
the eventnumber is used, with configurations using 4 (Epoch-t1) and 8 buckets
(Epoch-t2).

Results on the ingestion can be seen on figure 5.2. There is a small queue of
lower rates with mixed configurations, while the common ingestion rate is 5-6
kHz (events per second) per thread. A bit higher rates of up to 7 kHz can be
reached with Epoch configurations. As we can see, schemas that distribute the
load evenly over the key space produce better ingestion results.

An analysis of the time per stage during ingestion can be seen on figure
5.3. A writer thread spends less than 1% of the time on waiting for data from
the Object store. Then parsing and data transformations takes 4% of the time.
Inserting on Kudu client buffers takes about 23% of the time, and the final
stage on flushing the buffers to the server takes most of the time (72%). Only
the first base schema configuration produces different results, as it tests the
ingestion when there is duplicate data (same key). By comparison the flush
time is reduced considerably as the duplicates are not sent over the network.

5.3 HBase and Phoenix

HBase is a distributed highly scalable key-value database, designed for real-time
read and write random access. HBase sits on top of HDFS where the data
resides, but it uses transient in-memory storage to provide these features.

Data is organized in columns, and one or more columns can form a row.
Rows are addresses by a unique row key, which are always lexicographically

82

5.3. HBase and Phoenix

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/s

0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u
e
n
c
y
(n

o
rm

) Base-t1

Base-t2

Epoch

Epoch-t2

Kudu Ingestion

Figure 5.2: Kudu ingestion

sorted. A number of rows form a table, and there can be many of them. Key
and values are stored using raw byte arrays, there are no defined types. Columns
are grouped in columns families, which denote semantically but also physical
relations. These are stored together (affecting compression for example) in an
HFile in HDFS. Access to row data is atomic including any column read or
written, but the guarantee does not span to other rows or tables.

The basic unit of scalability and load balancing is a region. Regions are
continuous ranges on the key space, and are dynamically created. Each region is
served by exactly one region server, that in fact can host many of them. Initially
there is only one region, but when data is added and reaches a maximum size,
the region will be split in two automatically (autosharding). Regions can be
moved among regions servers when the load is under pressure, achieving load
balancing.

When data is written it is first written to a commit log called a Write-Ahead
Log (WAL) in HBase, and then stored in the in-memory memstore. When data
reaches a limit it flushes to a HFile, discarding the commit logs. Data can

83

5. Storage

Figure 5.3: Kudu ingestion time per stage

be served meanwhile to readers and writers rolling the memstore in memory.
Data is sorted from the beginning, so no sorting of other data consolidation
procedures has to be performed. Flushing can cause more and more HFiles to
be created, so HBase has a compaction mechanism running in the background
merging files into larger ones.

Apache Phoenix [58] provides an SQL access layer on top of HBase. It also
provides flexibility of late-bound, schema-on-read capabilities with dynamic type
binding. A relational model can be defined with tables with defined column
types, and a composite primary key. Internally Phoenix will map columns
and serialize the data types to bytes stored in HBase. The SQL planner and
optimizer is in charge of taking the SQL queries, and compile them in a series
of HBase scans. This uses directly the HBase API, along with co-processors
and custom filters that can run server-side. The access is done with standard
JDBC, making the integration with other relational tools very easily. A number
of optimizations are available to be supported at server side. Using a salting
prefix to the key is automatically supported, and guarantees spread of all rows
across regions. Statistics are collected of selected keys called guideposts, that
act as guides to improve the parallelization of queries on a given region.

The EventIndex architecture using HBase and Phoenix in the storage com-
ponent is shown in figure 5.4.

84

5.3. HBase and Phoenix

PRODUCTION COLLECTION STORAGE ACCESS

MONITORING

Events metadata
extraction

Data transform
+ ingestion

Controler

Object
store

Messaging

HBase
+ Phoenix

Extraction
Service

(Phoenix API)

Analytical
Service

(SPARK)

WLCG CERN

Figure 5.4: EventIndex architecture with HBase as unique data storage with a
Phoenix layer to provide SQL capabilities.

5.3.1 Data organization

The EventIndex data structures using HBase Storage and a Phoenix schema
were developed within the project to include a big events table that stores all
the real and simulated event records [89]. Other auxiliary tables are defined
with values referred in the main events table, like datatypes.

The contributions in this work are related to the data ingestion and book-
keeping of the data. We have defined other meta-information tables to maintain
basic hierarchical relations of datasets and dataset containers. In addition,
we need to import the previous consolidated data from HDFS into the new
HBase/Phoenix data structures. Some other temporary auxiliary tables are
defined to help in this task.

Events table

In HBase, the best performance is obtained when searching for data using row
keys. Random access by the complete key is translated into an HBase get
operation, with excellent performance. A range scan over a prefix of the key is
also a common operation that yields best performance. The EventIndex schema
is designed to include the most accessed information to solve the required use
cases in the key, leaving extra information in the value. Searching by value
is internally transformed into full HBase scan operations, which has a lower
performance. Having billions of entries means that keeping the key length to

85

5. Storage

a minimum is important both for performance and for total occupied volume
reasons.

A representation of the events schema can be found in table 5.3. Phoenix
allows us to specify the tables with a DDL (data definition language), which
will map Phoenix types (second column in the table) to HBase native types. In
this schema every entry is defined by a composite row key, seen in the table in
the first four rows. The values of every entry are grouped in four families (a, b,
c, and d) as seen in the prefix used in the column names.

Row Key is a 16-byte binary HBase value, composed internally of four
parts in order to be used for range prefix searches: dspid.dstype.eventno.seq.

❼ dspid (Integer : 4 bytes) is an identifier generated at ingestion time. It
takes into account internally the dataset name, except the datatype. Thus,
datasets with the same Project.runNumber.StreamName.prodStep.AMITag
will share the same dspid. This is intended to allow range scan by dspid
in HBase.

❼ dstypeid (smallint: 2 bytes) is an identifier for the datype extracted from
the key. All the different datatype of a dataset will sit close in the backend
storage, making the search very performant and useful for solving the
dataset overlaps computation use case. This is internally computed into
dataTypeFormat (5 bits = 32 values) and dataTypeGroup (11 bits =
2048 values) as defined in the dataset nomenclature (see subsection 3.5.1),
and its actual values are defined in the Data Types table (5.3.1).

❼ eventno (Long: 8 bytes) is the event number.

❼ seq (Short: 2 bytes): sequence used to deduplicate event entries when
the EventNumber collides. This makes the row key unique in case of
datasetName and EventNumber duplication, and is computed as the crc16
value of (GUID:OID1-OID2) which is unique. GUID is the identifier of the
file containing the event, and OID1-OID2 are the internal pointers within
that file. With this approach using hash values, there is a small possibility
of key clashing but this is estimated low enough in our production system
to not cause problems.

Column families. The values of every entry are grouped in 4 families,
with the following configuration:

❼ Family A. Event Location information (and Monte-Carlo information for
simulated data).

86

5.3. HBase and Phoenix

Table 5.3: HBase/Phoenix Events table schema as defined in [89].

Column name Column type Primary Key (PK) / Comment

dspid integer (PK) dataset primary id
dstypeid smallint (PK) dataset type id
eventno biging (PK) event number
seq smallint (PK) event sequence

a.tid integer dataset tid
a.sr binary(24) self reference (guid, oid1, oid2)
a.mcc integer monteCarlo channel number
a.mcw integer monteCarlo event weight

b.pv binary(26) array provenance

c.lb integer lumiblock number
c.bcid integer bunch crossing identifier
c.lpsk integer L1 trigger prescaler key
c.etime timestamp event time (nanoseconds)
c.id bigint L1 trigger identifier
c.tbp smallint array L1 trigger before prescaler (TBP)
c.tap smallint array L1 trigger after prescaler (TAP)
c.tav smallint array L1 trigger after prescaler (TAV)

d.lb1 integer lumiblock number
d.bcid1 integer bunch crossing identifier
d.hpsk integer HLT prescaler ley
d.lph smallint array L2 trigger physics (PH)
d.lpt smallint array L2 trigger passthrough (PT)
d.lrs smallint array L2 trigger resurrected (RS)
d.ph smallint array HLT trigger physics (PH)
d.pt smallint array HLT trigger passthrough (PT)
d.rs smallint array HLT trigger resurrected (RS)

87

5. Storage

– tid (Integer : 4 bytes) production task identifier: the numeric value
found in the dataset name suffix ” tidNNNNNNNN X” for this kind
of tid datasets, or 0 otherwise. This further identifies the part of the
dataset that it belongs to, for data bookeping purposes.

– sr (binary: 24 bytes) self-reference: a binary composed of the GUID
(16 bytes) file identifier where the event is found, OID1 (4 bytes)
and OID2 (4 bytes) representing pointers inside the file to locate the
actual event.

– mcc (Integer : 4 bytes) Monte-Carlo channel number: in case of
simulated events, not used otherwise.

– mcw (float: 4 bytes) Monte-Carlo weight: in case of simulated events,
not used otherwise.

❼ Family B. Event Provenance. Provides information about data lineage.

– pv (binary array: 26 bytes per entry) provenance: a binary array
with one entry per element of the data lineage in the production
chain of the event as found in the analyzed file. Every entry is 26
bytes binary composed of the dstype (2 bytes) and the self-reference
(24 bytes) as previously presented.

❼ Family C. Level 1 (L1) Trigger information.

– lb (Integer : 4 bytes) lumiblock.

– bcid (Integer : 4 bytes) bunch crossing identifier.

– lpsk (Integer : 4 bytes) L1 trigger prescaler key.

– etime (timestamp: 16 bytes) using the java Timestamp type with
an internal representation of the number of nanoseconds from the
epoch.

– id (bigint : 8 bytes) L1 trigger id

– tpb (smallint array) trigger before prescaler: a variable length array
of smallint (2 bytes) entries.

– tap (smallint array) trigger after prescaler: a variable length array
of smallint (2 bytes) entries.

– tav (smallint array) trigger after veto: a variable length array of
smallint (2 bytes) entries.

88

5.3. HBase and Phoenix

❼ Family D. Level 2 (L2) and Event Filter (EF) Trigger information for
Run1 / High Level Trigger (HLT) information for Run2 onwards.

– lb1, bcid1. Contains same values as the counterpart in family C,
named with a suffix due to a limitation in apache phoenix spark to
access the same field names in different families.

– hpsk (Integer : 4 bytes) HLT trigger prescaler key

– lph, lpt, lrs (smallint array): Level 2 (L2) physics, passthrough and
resurrected variable length of arrays.

– ph, pt, rs (smallint array): HLT physics, passthrough and resurrected
variable length of arrays.

Datasets table

We have defined a new table schema to keep information about which events are
stored in what (tid) datasets. This is needed for data discovery by any field on
the dataset name, or by the included summary data. The schema also provides
bookkeeping information on the dataset states, starting with data ingestion.
In addition, this stores calculated information during the analytic procedures
calculated over the related events data (see section 6.2).

A representation of the datasets schema can be seen in table 5.4.
Row key is defined to reflect information at (tid) dataset granularity. It

includes the dataset identification fields, and fields that act as foreign keys
on the events table (although Phoenix and HBase do no support foreign key
constaints):

❼ project, runnumber, streamname, prodstep, datatype, and version (AMItag
without tid suffix). These represent the string fields that compose a
dataset name. Note that runnumber is located first in order to be able to
prefix search by run number. Although this table is orders of magnitude
smaller than the events table, it is still desirable to optimize the key for
searches.

❼ tid for those datasets that include them in the ” tidNNNNNNNN X”
suffix is the numerical value of the NNNNNNNN string, or 0 in other
cases.

❼ Dspid and dstypeid refer to the values stored in the events table, and
is the way to link these two tables. As a useful side effect, it defines

89

5. Storage

Table 5.4: HBase/Phoenix Datasets table schema.

Column name Column type Primary Key (PK) / Comment

runnumber integer (PK) dataset / run number
project varchar(200) (PK) dataset project
streamname varchar(200) (PK) dataset streamName
prodstep varchar(200) (PK) dataset production step
datatype varchar(200) (PK) dataset format
version varchar(200) (PK) dataset version (AMITag)
tid integer (PK) dataset tid
dspid integer (PK) dataset primary id
dstypeid smallint (PK) dataset type id

smk integer trigger supermaster key
events rucio bigint number of events by rucio
rucio at timestamp last request to rucio time
files integer number of files (GUIDs)
events bigint number of event records
events uniq bigint number of unique events
events dup bigint number of duplicated events
files dup integer number of files with duplicate events

state varchar(200) dataset state
state modification timestamp last modification of state
state details varchar(20000) state details
insert start timestamp insertion start time
insert end timestamp insertion end time
source path varchar(20000) original input data path

updated at timestamp updated time
dups at timestamp duplicates calculation time
trigger at timestamp trigger calculation time
is open boolean dataset is open/closed
has raw boolean dataset has raw data
has trigger boolean dataset has trigger data
prov seen smallint array dataset provenance

90

5.3. HBase and Phoenix

a canonical container [90] (see subsection 5.3.1), which includes all the
events that share the same dspid.dstypeid, grouping all dataset fields but
the tid.

Values. Rest of the rows are listed in three groups of metatadata about
the dataset:

❼ Caching or computed values: smk, events, events uniq, events dup, files dup,
prov seen.

❼ Booleans identifying characteristics of the dataset: is open, has raw,
has trigger.

❼ Information and timestamps about bookkeeping of this dataset: state,
state details, state modification, source path, insert start, insert end, up-
dated at, dups at, trigger at.

We will detail the usage of these fields in the next subsections.

Datasets containers table

In this table we define a representation of a particular kind of container, a
canonical dataset container that groups all the information about entries in the
datasets table that share the same dspid.dstypeid. The structure of the table
is basically the same as the datasets table, but the key does not include the
tid. Therefore, an entry in this table represents a canonical dataset container,
which might reflect one or more entries in the datasets table. The fields of an
entry represent the sum of the fields of the related entries in the datasets table,
or the calculated values at the (canonical dataset) container granularity.

Table 5.5: HBase/Phoenix dstypes (data types) table schema [89].

Column name Column type Primary Key (PK)/ Comment

type tynyint (PK) type class
name varchar(20) (PK) type name
id smallint type numerical identifier

91

5. Storage

Table 5.6: HBase/Phoenix dsguids (dataset GUIDs) table schema [89].

Column name Column type Primary Key (PK) / Comment

dsname varchar(255) (PK) dataset name
id integer (PK) dataset identifier
tid integer (PK) dataset task identifier
guid varchar(127) (PK) file (GUID) identifier

Auxiliary tables

Other auxiliary tables help in the process of data identification, or during the
ingestion and importing procedures.

❼ Data types table (dstypes). As can be seen in table 5.5, this stores the
relation about the type name and numerical identifiers about the data type
(dstypeid in events and datasets tables). Internally type class distinguishes
between data type formats (type=0) and data type groups (type=1). For
every entry we can find its name, and its numerical id. The id values will
be used for building the dstype id field in the row key, and other fields in
the data location and provenance families.

❼ Files table (dsguids) as can be seen in table 5.6. This schema reflects
information about the dataset name, the contained files (guid), and their
tid production task identifier. This is needed because during the data
ingestion procedure (see subsection 5.3.2) this guid data might not be
available in the source, and we need to consult it in this table to fill in
the proper events (location and provenance fields) and datasets (tid field)
tables.

5.3.2 Data ingestion

We carried out several developments to support the data ingestion on the HBase
and Phoenix backend [89].

Figure 5.5 shows the part of the EventIndex architecture related to the
data ingestion on the new HBase/Phoenix storage. A new PhoenixWriter
plugin for the consumer of the distributed data collection task was implemented
and evaluated for performance. With it the complete data ingestion chain
was complete and we could easily exchange the previous data backend in our

92

5.3. HBase and Phoenix

framework. In addition, an import procedure (PhoenixImporter) was developed
to move the massive amount of data already consolidated in the production
HDFS backend, to the new HBase/Phoenix one.

Several experiments were done to evaluate importing individual and massive
amounts of datasets. Experiments were conducted in parallel to evaluate the
best schema and table configuration parameters for our data model, taking into
account different possibilities.

PhoenixWriter consumer

The PhoenixWriter internally uses the JDBC driver provided by Apache Phoenix
in order to interact with the backend HBase/Phoenix storage implementation.
The data consumption and ingestion uses the same logic within the production
data collection system, reading the input data in Object Store in protobuf
format, transforming the data to the new data schema, and effectively ingesting
the data in HBase/Phoenix backend system.

The used data model schema has been previously explained, and it contains
several destination tables. Several data transformation classes were implemented
(eventindex.lang.phoenix package) in order to facilitate the data transformation
and augmentation.

The first ingestion tests were done loading 48 Tier-0 datasets sequentially.
The consumer was configured with a single writer thread. Figure 5.6 shows a
histogram of the results of the ingestion tests. The x-axis shows throughput in
number of events ingested per second by a single thread. The y-axis shows the
normalized frequency, or number of appearances of each case. We observe that
the mean is around 3 kHz per thread, with some datasets reaching up to 5 kHz.
Lower performance can be seen in around 18% of the datasets due to small
dataset size, as in this case the JDBC driver initialization and in particular the
HBase data streams setup can dominate most part of the ingestion time.

We can observe the distribution in phases during ingestion time in figure 5.7.
The first one is the Wait phase, 1.5% of the time is waiting for input data.
The actual reading of the input data is done within the consumer by another
thread, in order to decouple input data access from processing. In this case the
consumer is accessing the Object store and retrieving the objects that contain
the input data. The second Parse phase is devoted to data conversion from the
input protobuf format, to the output HBase/Phoenix types and schema. This
phase takes 8.5% of the time. Next phase is the Insert phase of the transformed
data into the JDBC client buffers, which takes 41% of the time. And the last
phase is the Flush phase, which commits the buffers to HBase/Phoenix on a

93

5. Storage

COLLECTION STORAGE

Data transform
+ ingestion

(PhoenixWriter)

Controler

Object
store

Messaging

HBase
+ Phoenix

CERN

HDFS
Consolidated

data

Data transform
+ ingestion

(PhoenixImporter)

Figure 5.5: Close-up view of the EventIndex architecture with HBase/Phoenix
storage on the data ingestion and import methods. The PhoenixWriter is inte-
grated in the Data Collection component to ingest data in line with production.
The PhoenixImporter is a transient component in charge of importing previous
consolidaded data (LHC Run 2) from HDFS into the new HBase/Phoenix
storage.

regular basis (in this experiment tested every 100 inserts). This last phase takes
the rest 48% of the time.

As we can see, most of the time is dedicated to the setup and communication
with the HBase servers, with a small amount of time required for data access
and transformation.

Consolidated data import method

We developed an import procedure using MapReduce [59] jobs to read input
production data, transform to the Phoenix Schema, and store in HBase/Phoenix
tables. These PhoenixImporters share code and use the same data mangling
methods as the PhoenixWriter Consumer.

The input data resides in HDFS file system within the production CERN
Hadoop Cluster used by EventIndex. As we have seen, format of the input data
is MapFiles or SequenceFiles, which might be ordered or not, compressed or

94

5.3. HBase and Phoenix

Figure 5.6: Hbase/Phoenix ingestion throughput.

not, using the EventIndex Hadoop Core CSV schema with an event entry per
line.

The output data will be in the proposed HBase/Phoenix schema, using
the events and rest of the meta-information tables which serve also for the
bookkeeping purposes of the ingestion procedure.

The procedure itself consists of the submission of MapReduce jobs to the
Hadoop cluster, with the input data path’s desired granularity (individual
dataset, entire project, etc.). The map-only tasks transform each event from the
original format to the HBase/Phoenix schema, writing it in the events tables.
The additional metadata that is not available in the original format and is
needed for the event keys (dspid, dstypeid) is read from the meta-information
tables. This is also what happens for the tid and guids relations, which might
not be available in HDFS consolidated data. This metadata will be provided
by the Data Collection task when the import process is done in production,
but for these tests the data can be pre-filled or generated dynamically by this
import procedure. The procedure looks for the needed metadata entry and if

95

5. Storage

Figure 5.7: Hbase/Phoenix ingestion time per stage.

not available uses an internal sequence (a standard SQL feature supported by
Phoenix for generating monotonically increasing identifiers) to generate it.

The rest of the fields can be transposed directly with the new format, or
computed on the flight from the original input data.

We have implemented a check pointing mechanism at dataset level, this
being able to stop and restart the procedure. This procedure avoids restarting
successful jobs, unless an overwrite option is configured explicitly. We are
writing the bookkeeping data in the setup() and cleanup() map-reduce phases.
They update the datasets tables with information about what data is imported
(logical datasets, but also referring to the physical HDFS files), the date, the
status, and dataset metadata (number of events, etc.).

The import procedure fills the following fields on the dataset tables:

❼ state: with values indicating the procedure phase like INSERTING, DONE,
or FAIL.

❼ state details: is written with details of the state phase like in case of
failure.

❼ source path: with the actual HDFS path of input data.

96

5.3. HBase and Phoenix

❼ state modification, insert start, insert end : These timestamps are written
when changes are produced in the related fields.

❼ events: with the number of events inserted.

Schema configuration evaluation

We did some experiments in order to decide about final configuration parameters
on the Phoenix events table like : salting, pre-spliting, storage format and
column encoding bytes. This was also conducted to determine the capabilities
on the backend system during ingestion and query.

We defined several Phoenix event tables with different options, and we
imported a substantial amount of data into the Hadoop Cluster at CERN
supporting HBase/Phoenix, to see performance and differences.

The configuration parameters that are part of the experiment can be grouped
in the following categories:

❼ Salting : to automatically include a prefix byte hashed to distribute load
among regions and avoid hot-spotting when using same or monotonically
increasing keys. Tested in Phoenix with SALT BUCKETS configuration
parameter equal to 0, 4, and 10 buckets.

❼ Region pre-splitting : A pre-split table can be created with different regions,
in order to distribute the load and avoid creating and moving many regions
with the first loads. Phoenix supports it with the DDL clause SPLIT ON
and providing ranges on the row key space.

❼ Column mapping : column names are encoded in every row, so it is
recommended to keep them short to reduce store space used. Column
mapping can be used to record a short identifier as indirection to the real
column name. We tested 0 (no encoding) and 1 byte encoding.

❼ Immutable rows : encoding all column data from a family in a single cell.
This is supposed to reduce total space used and improve writing and
reading performance, at the cost of accessing individual cells from HBase
not possible without Phoenix layer.

❼ WAL (Write Ahead Log): avoiding writing a WAL can improve writing
performance, at the cost of losing data if a server crashes during writing.
This is not a high risk if the main source of data is on HDFS or Object
Store as it can be replayed.

97

5. Storage

❼ Encoding and compression: as previously tested the best option is to use
default diff encoding and Snappy compression [90].

Several experiment cases were designed in order to test data ingestion with
several different configuration parameters:

❼ Case a (base): select basic options, with no salting, no limit on encoded
column bytes, fast diff encoding and snappy compression, and without
initial region splits. The events table Phoenix DDL syntax applied was
the following:

DATA_BLOCK_ENCODING='FAST_DIFF', COMPRESSION='SNAPPY',

COLUMN_ENCODED_BYTES=0;→֒

❼ Case b (split): use base options and pre-split with 15 initial regions.

❼ Case c (inm): use pre-split, and immutable and coded columns. The
applied DDL syntax was the following:

IMMUTABLE_STORAGE_SCHEME =

SINGLE_CELL_ARRAY_WITH_OFFSETS, COLUMN_ENCODED_BYTES

= 1, DATA_BLOCK_ENCODING = 'FAST_DIFF', COMPRESSION

= 'SNAPPY', SPLIT ON (...15 SPLITS);

→֒

→֒

→֒

❼ Case d (salt): use pre-split, and salting on 4 buckets. The applied DDL
syntax was the following:

IMMUTABLE_STORAGE_SCHEME =

SINGLE_CELL_ARRAY_WITH_OFFSETS, COLUMN_ENCODED_BYTES

= 1, DATA_BLOCK_ENCODING='FAST_DIFF',

COMPRESSION='SNAPPY', SALT_BUCKETS = 4 SPLIT ON (

...15 SPLITS);

→֒

→֒

→֒

→֒

❼ Case e (wal): use pre-split, and disable write aheal log (WAL). The
applied DDL syntax was the following:

IMMUTABLE_STORAGE_SCHEME =

SINGLE_CELL_ARRAY_WITH_OFFSETS, COLUMN_ENCODED_BYTES

= 1, DISABLE_WAL = true,

DATA_BLOCK_ENCODING='FAST_DIFF',

COMPRESSION='SNAPPY', SPLIT ON (... 15 SPLITS);

→֒

→֒

→֒

→֒

98

5.3. HBase and Phoenix

Table 5.7: Results of the experiments with several Phoenix schema configuration
cases.

Input (HDFS) Output (HBase) Throughput
Case Datasets Events Size Regions Time Max (WO)

a (base) 580 5.2× 109 - - 1 days 44 kHz
b (split) 20460 5.8× 109 1.31 TB 227 10 days 55 kHz
c (inm) 20460 5.8× 109 1.33 TB 239 10 days 85 (110) kHz
d (salt) 20458 5.8× 109 1.35 TB 300 10 days 75 (262) kHz
e (wal) 16635 5.4× 109 - - 2 days 96 (119) kHz

All the cases were tested submitting 10 writing threads per tested case. A
special experiment was run reading and transforming the data only once, and
writing in the three output tables simultaneously for cases c, d and e (write-only
parts of the experiment). Results of the import experiments according to
different schema configuration cases can be seen in table 5.7. Input data resides
in HDFS, detailed with the number of datasets and the number of events that
have been read. Output data is written in HBase with parameters defined in each
case; the result table specifies the occupied disk (Size) and the number of HBase
regions (Regions) used. Time of the experiment is included, which was run
for 10 days for all, except special, cases. The throughput measures processing
rates per thread in Hz. This represents the number of events processed (read,
transformed, and written) per second. Enclosed in parentheses, this shows the
maximum writing-only (WO) rate per thread, when taking into account only
writing procedures (leaving out data read and transformation procedures).

Results on case a (base) show the baseline configuration and performance.
The experiment was run for 1 day, importing 580 big datasets. Output results
in terms of volume size and regions occupied were not available at that time.
Experiments on case b, c, and d were run for 10 days each, adding in the order
of 20,000 more smaller datasets. The results eventually showing similar occupied
space and HBase regions used. Only case d (salt) shows higher numbers on the
regions affected. During the experiment with case e (wal) some datasets were
removed in production, so only throughput values are meaningful.

Results on case a (base) show the baseline performance, which yields a
maximum rate of 44 kHz (events per seconds). Throughput is improved a bit in
case b (split) with up to 55 kHz when using a pre-splitted table configuration.
The next cases case c, d, and e add options, effectively increasing rates over the
base and split cases. The best regular performance is achieved when avoiding a

99

5. Storage

WAL as shown in case e (wal), at the cost of increasing the risk on data loss
during ingestion. Using a 4 bucket salting configuration in case d(salt) yields
the best performance in the write-only experiment.

Salting configuration increases writing performance, but it also affects
reading as it has to collect several region’s data [91]. Column mapping was tested
without encoding, and with 1 byte encoding, and the observed occupied space
is similar. We therefore recommend not using this feature, so defining a table
configuration with COLUMN ENCODED BYTES=0. Regarding immutable
rows, in our tests we did not see space reduction compared with mutable rows,
although we saw small increases in writing performance. On the other hand,
using immutable rows makes reading from HBase directly more difficult, as it
imposes a custom encoding done by Phoenix. Removing the Write Ahead Log
(WAL) allows an increment in writing performance. Our main source of data is
on the Object Store (or HDFS during import/conversion phase), so in case of
machine crash during data ingestion there is no real risk of losing data as it
can be always replayed (this was not the case with the messaging approach as
seen in section 4.1). We could avoid the WAL if we need to increase writing
performance during bulk loading on import phases. This feature can always be
altered later.

Although there are options that might be interesting for both writing
and reading performance, all these options depend on Phoenix functionalities
that introduce a dependency on this. We have decided to maintain HBase
compatibility without using extra features that cannot be used if we remove
the Phoenix layer.

Individual dataset performance

In this experiment we are testing the importing of individual datasets from HDFS
into the HBase/Phoenix backend. We want to check the baseline performance
that we obtain using minimal resources, namely one map-reduce job with a single
mapper task, and a single file split. The job is launched within a single YARN
container with 1 vcore (virtual core). With this configuration we avoid dividing
the task in multiple threads, to measure single thread baseline performance.

During the experiment we sequentially launch a job for indexing a single
dataset of different size. In this case we are using real data datasets in the order
of 1 MB, 100 MB, 1 GB and 10 GB.

Results of the experiment are shown in table 5.8. Due to the nature of the
real data, there is variability on the actual size of the datasets (second column),
but also on the number of events contained (third column) and the event size

100

5.3. HBase and Phoenix

Table 5.8: Results of single dataset ingestion into HBase/Phoenix.

Size Events Evt size Time Throughput
Dataset (bytes) count (bytes) (s) (evt/s) (bytes/s)

1 MB 1,873,145 11,486 163.08 22 529.00 85,142
100 MB 120,861,878 81,134 1489.65 50 1,639.70 2,417,237

1 GB 1,556,266,245 18,151,016 85.73 4,332 4,199.38 359,248
10 GB 11,867,886,730 38,863,293 305.37 12,521 3,103.68 947,838

(fourth column). We find small events (order of 100 bytes/event) in the dataset
samples of 1 MB and 1 GB. The largest dataset in number of events and total
size is as expected the 10 GB dataset, but on the contrary, this has medium
size records with 305 bytes per event. The biggest events can be found in the
100 MB dataset, with 1.5 kB per event.

Throughput in events/s vary from 500 Hz (1 MB dataset) up to 4.2 kHz
(1 GB dataset). The 10 GB dataset has a slightly lower rate of 3.1 kHz. The
highest rates in events/s are reached on the 1GB dataset, where the event size
is the smallest. On the other hand, we can see that with bigger events we can
reach higher rates in bytes/s as we can see in the 100 MB dataset.

The lowest numbers on the 1 MB dataset are probably due to the time
it takes for the preparation of the jobs, and the establishment of the reading
channels (HDFS) and the writing channels (HBase). In case of small datasets
this setup might dominate the total time, reducing the rates for small data
payloads like this one.

After writing, we check the validity of the written data in the events table,
counting the records. This operation takes 1 second for the 1 MB (11,486
events) dataset, up to 42 seconds counting the 10 GB (38 M events) dataset.

Massive ingestion performance

One of requirements to adopt in the new storage backend is to import all the
EventIndex data consolidated in the production HDFS backend. We analyze
now a massive ingestion experiment that we run in order to check the response
of the system under high loads. In addition this ingestion campaign will allow
us to have data in the new system for the query access developments and
experiments (see chapter 6).

As experimental platform we utilized the CERN Hadoop clusters. The input
production data resides in HDFS (lxhadoop.cern.ch cluster). The destination

101

5. Storage

data will be the newer analytix cluster (analytyx.cern.ch). At the time of
experiment it was composed of 39 nodes (32 HBase region servers), with a total
memory of 18 TB, and 1,658 vcores (virtual cores). It has to be noted that
this is a shared cluster by multiple projects at CERN, including EventIndex.
The configuration includes the following software distributions: Hadoop 3.2.1,
HBase 2.2.4, and Apache Phoenix 5.0.

The input data corresponds to several HDFS directories organized at dataset
container level. Our importing tool makes a mapping with a MapReduce job
sent per dataset container, so eventually a number of tasks are submitted. The
experiment ran for 1 week in total, with several invocations of our tool:

❼ A first batch to index real data from 2018 (data 18 project prefix),
launched 6,254 tasks.

❼ Second batch to index data from 2017 (data 17 project prefix), launched
6,796 tasks.

❼ Other jobs were sent to index a variety of datasets, including Monte-Carlo
and real data from other years.

The output data will be in HBase according to the defined Phoenix schema
(see subsection 5.3.1). The events table configuration was defined with the
following options:

DATA_BLOCK_ENCODING=’FAST_DIFF’, COMPRESSION=’SNAPPY’,

SALT_BUCKETS=10→֒

These configuration options specify using the diff encoding and Snappy
compression, and a salting key prefix strategy. In these tests we are using a
SQL sequence to generate needed identifiers not available in the input data (for
example dspid) so there is the risk of using monotonically increasing keys. To
overcome possible issues, we use 10 salt buckets to distribute the load among
regions and avoid hot-spotting.

We started the experiment with a shared cluster configured to allow fair
use up to 1,000 shared vcores and 3 TB of memory, depending on the load on
the system. We observed several metrics over the duration of the experiment.
Figure 5.8 shows the number of HBase write operations on the upper panel,
and the volume of data transmitted to the server. Each line represents one of
the HBase region servers, and the metrics are stacked so the aggregated values
at a particular temporal point can be observed.

102

5.3. HBase and Phoenix

Figure 5.8: HBase region servers metrics over the duration of the experiment.
The upper panel shows write operations; the lower panel shows volume of
received data.

103

5. Storage

We submit the first batch of 2018 datasets (data 18) and we observe that
when the importing processes starts at point 1 (date 6/06), the write operations
are evenly distributed to only 10 Region server machines (initial 10 region split),
reaching a maximum rate of 300 Kwrites/s (corresponding to 500 MB/s). Later
that day (point 2, midday 6/06) we manually triggered a distribution of the
regions to other unoccupied regions server machines. At this moment we see
the performance rise due to the distribution load, reaching up to 550 Kwrites/s
and a rate of 1 GB/s.

This leads us to think about a pre-splitting of the tables to better accom-
modate the writing load from the beginning. It seems there is no optimal
selection for the adequate number of regions for a given load. The accepted
recommendation is to start with a number of splits as a multiple of the number
of region servers. Then HBase automated splitting will do the next splits by
itself, but in our case we can accommodate higher loads from the beginning,
with no slow start.

During the next day the number of write operations starts to decrease
progressively, as the number of batch jobs related with the first batch of 2018
data are ending, although the bigger datasets are still running.

At point 3 (date 09/06) we start to submit the second batch of jobs, now
related to data 17 datasets, and we observe the metrics start to rise again.

At point 4 (midday 10/06), we killed all the tasks, so we see a steep decline.
We relaunched the second batch of jobs to check the check-pointing mechanisms
and that the process was restarted correctly. After restart the number of writes
was reduced to 200 Kwrites/s, but maintaining the performance of 500 MB/s.
At point 5 (afternoon 12/06) there was no change on job side, but the queue
configuration was changed by the CERN cluster managers. A dedicated YARN
queue was created for EventIndex with complete access to a maximum of 1k
vcores, an using up to 4TB of memory. At this point the performance was
raised to 300 Kwrites/s and 750 MB/s.

We can see that we don’t reach the performance that we have seen at
previous point 2.

After the experiment we checked that the vast majority of datasets were
imported correctly. There were no failures with corrupted data or bad records.
We compared the output data with original HDFS for selected datasets. The
data transformation method for converting the previous data format to the new
Phoenix schema was proven correct.

There were, however, some issues related to the job management inside
the cluster. Some tasks were killed by YARN (Container preempted by the
scheduler), due to the priorities configured in the cluster. Our import procedure

104

5.3. HBase and Phoenix

takes into account processing issues like this with bookkeeping procedures.
Already correctly finished tasks (all dataset events are written correctly in
HBase) will not be started again. There is no data integrity problem writing
the same data in the events table, as the event keys are the same and the
results will be idempotent. Yet this restarting means many CPU hours lost for
processing the same data. To solve these issues, a dedicated YARN queue was
created devoted to our project, as previously mentioned, so this preemption
over running jobs should not happen again.

An issue for tasks running over 24 hours was discovered. In fact, tasks
can run much longer without problem, writing all data, but when closing the
connection, the internal JDBC driver loses the last batch of data (order of 100
events). During the experiment we tested changing the relevant configuration
option (set phoenix.client.connection.max.duration ≥ 24H) without improving
the situation. Our analysis discovered an issue in the JDBC usage in the
Phoenix implementation, which was reported to the developers.

The measured resource usage on the cluster finally accounted for 2,347
HBase regions opened (using the 10 buckets splits as configured). The originally
configured shares resources supposed a maximum of 1,000 vcores and 3 TB
of memory. Our jobs were running at some points with up to 977 concurrent
containers, saturating the memory. The cluster was configured to increase
resources to 1,000 exclusive vcores and 4 TB of memory, supposing 20% of the
cluster.

A compilation of the results can be seen on table 5.9. We have inserted a
total of 7,941 datasets, containing over 70 billion (109) events. The occupied
space goes up 21.95 TB in the events table (distributed into 2,347 regions in 32
HBase region servers as we have seen before).

The total volume size is divided into the four families of our data schema:

❼ family A. Event location: 1.89 TB.

❼ family B. Event provenance: 2.38 TB

Table 5.9: Results of complete experiment ingestion into HBase/Phoenix.

Size Events Evt size Time Mean Throughput
Datasets (TB) count (bytes) (days) (evt/s) (MB/s)

7,941 21.95 70.77× 109 310.19 7 117,027 36.30

105

5. Storage

❼ family C. L1 trigger: 9.25 TB

❼ family E. L2 and HLT physics trigger: 8.41 TB

The mean event size is 310.19 bytes. The rest of tables (datasets, containers
and auxiliary tables) contain the auxiliary and bookkeeping data but this is
negligible in terms of volume occupied.

During the experiment we have seen high rates reached of up to 550 Kwrites/s
and 1 GB/s. in the servers. We have to take into account that submitting the
information related from one event can be translated into multiple writes to
the HBase servers, due to the schema division into families and the payload per
write. In addition, the amount of data transmitted to the servers will be later
compacted by the standard HBase compaction procedures. The throughput
values in the table represent mean values for all the experiment and refer to the
actual event rates (event count divided by the time of the experiment) and data
rates (Size divided by the time of the experiment). Therefore this represents
the real value of the imported event rate, which is 117 kHz (117,027 events
imported per second).

5.4 Conclusions

We have presented several contributions regarding storage for metadata appli-
cations like the EventIndex. A study on different NoSQL storage technologies
suitable for the EventIndex has been carried out and presented. The partic-
ularities of the implementations of our data model were discussed for HDFS,
Kudu and HBase/Phoenix, focusing on data ingestion into these backends. We
developed the data collection system required parts to substitute these backends
and evaluate them. We contributed to the development of a new data model
based on Kudu tables resembling a relational schema. The contributions on
HBase/Phoenix in this work are related to the data ingestion and bookkeeping
of the data, both for the data collection system from the grid and for importing
the massive amount of consolidated data in the previous HDFS backend. Several
experiments involving up to billions of events characterized in terabytes of data
were performed.

Some conclusions can be drawn regarding throughput, data organization
and complexity of the system. Although the throughput per single thread is
higher with HDFS, we can achieve overall better performance in our application
with HBase/Phoenix and Kudu. This is due to two main reasons. First, the
writing mode and granularity of our data is more parallelizable with HBase and

106

5.4. Conclusions

Kudu. One HDFS file has to be written by a single writer due to the Hadoop
design (single-writer, multiple-reader model). Currently our system writes at the
dataset level to have big enough files. Kudu and HBase/Phoenix allow writing
at the record level, so we can have multiple writers per dataset, increasing
overall throughput of the system. Second, with Kudu and HBase/Phoenix we
do not require extra augmentation and consolidation steps. These have built-in
global ordered key space by design, and the data is ordered at ingestion without
needing extra steps. An analysis of the time spent at different ingestion phases
show that less than 10% of the time is dedicated to data transformations needed
to accommodate the data schema, with the bulk of the time dedicated to the
data transmission to the backend servers. Therefore, the decoding of all fields
into these schemas can be done online during data ingestion, without needing
extra procedures.

Other improvements are related to the use of a fixed data schema for all
data and use cases. With HDFS we had to replicate part of the data in Oracle
to solve some use cases, effectively having a complex hybrid system. Now we
can maintain all the data into HBase avoiding complex management steps,
data coherence issues, and reducing the total volume of used space. Compared
with a schema-less system in HDFS, we can benefit from a schema enforced
model in HBase/Phoenix or Kudu. This approach allows us to group related
information into columns, define its types and have better compression ratios.
In addition we don’t store decoded trigger chain names as literal strings, saving
a considerable amount of space compared with the previous implementation.

Kudu did not get large support in the open-source community, so HBase
was finally selected for its good performance and better support in production.
The study on different parameters on the HBase/Phoenix schema shown the
best options for our application. An initial pre-splitting on the events table
reduces the slow-start and increases data ingestion rates from the beginning. A
key distribution strategy is needed to avoid hot-spotting on particular region
servers due to monotonically increasing keys. A salting strategy was proven
useful starting with 4 buckets. Avoiding a Write Ahead Log (WAL) is possible
without risk of losing data because our data collection model has temporary
data staging in the Object Store. The performance gain is not needed now, but
can be switched on in case of necessity. Column mapping does not provide any
improvement on reducing the volume occupied, since our schema already has
compact column names. Immutable rows neither suppose an improvement in
our application, and they impose a dependency on this Phoenix feature. We
have avoided strict dependencies so we can have direct access to HBase data
without Phoenix layer, in the case its support is not maintained, at the cost of

107

5. Storage

losing SQL access capabilities.
Overall with the new HBase approach, we observe that it can maintain

the ingestion rates required by the current and future Runs of the EventIndex
project. In addition, it can serve as the unique storage for all use cases.
Therefore, we improve on the previous hybrid model avoiding duplicate data
and coherence issues, and reducing the complexity of the system.

In the next chapter 6 we discuss the data access features and capabilities on
the HBase/Phoenix backend.

108

6 Access

New tools are required for solving the required access cases within the new
storage. The work developed in this thesis resulted in the development of
new tools [92] for accessing the big data quantities of the EventIndex project
stored in HBase/Phoenix using Spark [93] and implemented in Scala [94]. We
provide data discovery capabilities at different granularities, producing Spark
Dataframes that can be used or refined within the same framework. Data
analytical cases of the EventIndex project are implemented, like the search for
duplicates of events from the same or different datasets. An algorithm and
implementation for the calculation of overlap matrices of events across different
datasets is presented.

These tools can be used by other higher-level tools of the EventIndex
project, to ease access to the data in a performant and standard way using
Spark abstractions. They decouple the data access from the actual data schema,
which makes it convenient to hide complexity and possible changes on the
backed storage.

6.1 Requirements and use cases

The EventIndex main use case was event picking, or selection of particular event
records based on criteria applied on a large metadata catalog.

Use cases have evolved over the duration of the project and more analytical
cases have been considered. The requirements of these cases are related to
pattern detection over large quantities of data.

Data consistency checks are the first group of use cases considered. ATLAS
production processes during real data taking can temporarily fail, producing
duplicate events with the same identifiers. In addition, Monte-Carlo procedures
for simulating events are also vulnerable to generating incorrect data. Detection

109

6. Access

of duplicate event data is required at different levels, from files to complete
dataset containers.

The ATLAS derivation framework outputs the selected events that are
requested by physics analysis groups from already available AOD files, acting
as an offline trigger. It would be useful to be able to detect the event overlaps
among the derived datasets, identifying them to optimize the procedures and
used resources. This can be solved with the EventIndex stored metadata.

Other use cases requiring analysis over large quantities of data may arise in
the future, so general access methods must be supported.

A new data access layer is required to leverage the backend data storage
improvements being developed in HBase/Phoenix (see section 5.3). To support
data retrieval and extraction, a new SQL interface opens the possibility of inte-
gration with JDBC [95]. Previous web front-ends designed to access relational
data back-ends can be rapidly adopted. In addition, a new low-latency access
framework is needed to support the analytic use cases with semantics expressed
in higher level languages, instead of the restricted SQL syntax.

6.2 EventIndex Analytics Platform

The EventIndex analytics platform provides services for solving OLAP (online
analytical processing) use cases and obtaining insights from the data. Figure 6.1
shows the proposed architecture which is based on Apache Spark [93], an engine
for large-scale data analytics that provides abstractions for data modelling
and in-memory efficient operations. This can be accessed interactively with
command line consoles or web interfaces like notebooks. A programmatic
interface is also available, making it easy to run background processes on
the provided resources. Spark interfaces natively with resource management
tools, as in our case, YARN [96] to provide access to the CERN cluster, which
comprises dozens of machines that host data and computing servers.

Data storage for the next generation EventIndex has selected HBase to
provide a unique and unified backend for all data and use cases (see section 5.3).

Regarding data access, HBase works best for random access, which is perfect
for the event picking case where we want to use low latency access to a particular
event to get its location information. Use cases when we need information
retrieval (trigger information, provenance) for particular events are served with
fast HBase gets, with good performance.

In addition, analytical use cases where we need to access a range of event
information for one or several datasets (derivation or trigger overlap calculation),

110

6.2. EventIndex Analytics Platform

EventIndex Data

Collection

CPUs

Data Access
- interactive
- batch

Data Ingestion

Resource Management
Data Backends

Analytics Results
- In-memory Spark Dataframes
- Data Backend stored

Figure 6.1: Architecture of the EventIndex analytics platform based on Apache
Spark.

can be solved with scans on these data. They can be optimized with a careful
table and key design to maintain related data near the storage, reducing access
time. HBase is a column-family grouped key-value store, so we can benefit
from dividing the event information into different families according to the data
accessed in separated use cases. Further analytic use cases with larger amounts
of data are not foreseen, but still can be achieved running MapReduce/Spark
jobs on the HBase files (HFile), as they are stored in HDFS.

We have seen that Apache Phoenix is the layer over HBase that enables
SQL access and provides an easy entry point for users and other applications.
Although HBase is schema-less storage, Phoenix requires a schema and data
typing to provide its SQL functionality. Schema versioning and dynamic late
binding for the same tables are supported. In EventIndex, our data rarely varies
its schema, so we can benefit from Phoenix designing the required schema and
tables accordingly (see subsection 5.3.1).

111

6. Access

We use Apache Spark as a framework for dealing with data in a distributed
manner that provides some abstractions that are very useful and performant.

Scala is the language that Spark was written in and is the most supported
programming language to access all Spark APIs. Its compiled bytecode is
running in the JVM (Java Virtual Machine), so Java classes can be called from
Scala, with the benefits of a concise and high level language.

Spark and Scala are used in this work to access the backend HBase/Phoenix
storage data with the defined EventIndex data model.

In the following sections, we discuss the Spark functionalities that are
key for our work. Analytical tools for data discovery, duplicates and overlap
calculations, and helper functions are also presented.

The referenced data model implemented on HBase/Phoenix and the data
ingested that we presented on section 5.3.2 supported the development and
evaluation of these data access analytical tools.

6.2.1 Spark

Spark is a distributed data processing framework that provides a series of
abstractions and services, effectively acting as an analytics operating system.

One of the most important abstractions is the Spark DataFrame, which
represents a set of data that might be physically residing on several physical
nodes. This data abstraction allows us to apply and chain operations to produce
other DataFrames that are maintained in memory, or that can be stored in
the backend storage. Data is described in columns and rows, like traditional
relational schemas; but new columns can be easily added or removed, and there
are no constraints, index, restrictions on primary or foreign keys or triggers.

When connecting to our EventIndex schema and data mode, we use the
Apache Phoenix Spark Plugin to load Phoenix tables as DataFrames.

As data is distributed, operations can be applied in parallel by Spark
executors in several partitions and nodes. One important characteristic is that
operations are applied lazily in memory, only when needed. Thus, optimizations
are applied dynamically on chained operations called transformations. Actions,
like collecting data in a particular node or writing in the backend storage,
trigger the execution of the chained transformations and effectively materialize
output data. Spark framework and the DataFrames are failure resilient, and
the computations can be reapplied automatically in case of node failure.

112

6.2. EventIndex Analytics Platform

6.2.2 Data discovery

As we have seen in the data model, the EventIndex data resides in a big table
linked to the dataset and container tables by means of a constructed composite
key.

We need a set of tools to quickly find event data using the meta data
information at dataset and dataset container level. After locating data we
could access the events tables with the provided Spark abstractions to solve the
required use cases.

Data searching can be potentially done with any value on the dataset
model (see subsection 5.3.1). These can be the identification fields (Project,
runNumber, streamName, prodStep, dataType, version, tid). Access can also
be done by any other field that represents summary data for every dataset and
container, including:

❼ Total, unique, and duplicate number of events.

❼ Number of total files (guids) and number of files containing duplicates
(as dataset or container granularity, depending what table accessed).

❼ Data Collection bookkeeping information: status of the dataset and date
of updated information.

❼ Metadata about contained events: if this contains raw data, trigger, and
provenance details.

We have produced the tools to look for data of interest that can be used
later for further use cases. In particular, first entry functions are findDatasets()
and findCanonical() (canonical dataset container), which access the related
tables. They produce a Spark DataFrame representing a dataset or container
with results that can be consulted and refined by Spark operations.

DataFrames are defined on the schema with named columns of the backend
HBase/Phoenix tables aforementioned. The incarnation of the data is done
with a lazy evaluation policy, so the results are only available when actions are
called. Another advantage when modelling the data with Spark DataFrames is
the possibility of applying Spark SQL functions, which allows the usage of SQL
queries.

Some examples of the functionality are shown next.
In the figure 6.2 we show an interactive Spark shell session where we use our

data discovery tools to find all containers available and count them by project.

113

6. Access

Figure 6.2: Data discovery functions to find all canonical dataset containers
and count them grouping by project.

We first import our tool with the eventindex.analitycs.spark package.
With the findCanonical() function we will produce the Spark DataFrame that
represents the canonical datasets table in the HBase/Phoenix backend. The
first action with the count function will give us the number of entries which
corresponds to 1,132 container datasets. Then we use the groupBy() spark
transformation by the “PROJECT” named column, and then count and show
how many datasets are available per project.

6.2.3 Duplicate calculation

There is a need to detect event duplication at different granularities, starting
from files (GUID) containing duplicates, but also at a higher level so we

114

6.2. EventIndex Analytics Platform

developed analytic tools to check for event duplicates.
Our tool provides a set of functions to detect duplicates at several granu-

larities. It also expands the functionality of the Spark DataFrames containing
events, providing custom transformation functions related to the calculation of
duplicates.

The following functions are provided and can be used to calculate the missing
values in the dataset and container tables. The function names match those of
the fields in the data model (see subsection 5.3.1):

❼ events() : number of event records.

❼ events dup() : number of events with duplication.

❼ events uniq() : number of unique events (identifiers).

❼ files() : number of files (GUIDs) seen.

❼ files dup() : number of files with duplicates.

In the following example we apply the previous functions to a particular
mc16 13TeV Monte-Carlo canonical container dataset :

scala> val canonicalDF = findCanonical("mc16_13TeV.451926. ⌋

MadGraphPythia8EvtGen_A14NNPDF23LO_X280tohh_bbtautau_hadhad.deriv. ⌋

DAOD_HIGG4D3.e8353_e5984_a875_r9364_r9315_p3978")

→֒

→֒

canonicalDF: org.apache.spark.sql.DataFrame = [RUNNO: int, PROJECT:

string ... 24 more fields]→֒

scala> val eventsDF = canonicalDF.findEvents

eventsDF: org.apache.spark.sql.DataFrame = [DSPID: int, DSTYPEID:

smallint ... 24 more fields]→֒

scala> eventsDF.events

res0: BigInt = 128077

scala> eventsDF.events_dup

res1: BigInt = 27805

scala> eventsDF.events_uniq

res2: BigInt = 94256

scala> eventsDF.files

res3: BigInt = 5

115

6. Access

scala> eventsDF.files_dup

res4: BigInt = 4

First we apply data discovery functions to represent this container within a
DataFrame named canonicalDF.

Then we refine it into a new eventsDF that represents the events from that
container. The subsequent functions are applied in that DataFrame to obtain
the number of total events (128,077), the number of events with duplication
(27,805), the number of unique event identifiers (94,256), the total number of
files (5), and the number of files affected by duplicates (4).

These calculated values can be stored in the relevant fields of datasets and
container tables by the user, or by an automated higher-level tool.

The same functions could be applied at any granularity as a DataFrame can
contain a single event, events from a file (GUID), a dataset or a container.

Evaluation

A Spark application using these functions was implemented to be submitted au-
tomatically to the production system. Granularity can be selected at submission
time with some parameters.

This application calculates all the aforementioned values: events, events dup,
events uniq, files, files dup.

In addition, it obtains the list of files (GUIDs) with duplicated event identi-
fiers, and the number of that event records within that file.

The program produces a DataFrame that can be used to update the tables
online, or be written in another backend to be later used. The output of this
program is a summary JSON file with these variables, with the final object
of filling the missing values in the datasets and canonical dataset container
meta-tables.

We measured the performance of this application with a set of examples
of a size in the order of 200 k, 1 M, 20 M, and 100 M event. These samples
contain groups of datasets with up to 7 derivations (identified by its datatypes).
We have chosen a representative set of examples that are known to contain
duplicates, although we have also tested the base cases for samples when there
are no duplicates.

The procedure measures only real data access and computation time, from
the start of the main Scala process to the end of the calculations. It does not
include the interactive or background setup times, in case the application is sent

116

6.2. EventIndex Analytics Platform

to be executed in a YARN cluster. We submitted the same application for the
same samples several times, to measure variability in cluster utilization. The
cluster configuration makes it possible to distribute the load among 4 Spark
executors initially, but can automatically scale up to 32 executors.

Results in figure 6.3 shows the duplication calculation rates of the application
when submitted to the CERN cluster. The horizontal axis represents the size of
the dataset in events in log scale. The vertical axis shows the rate in processed
events per second (or Hz) in log scale.

In the figure we can see the mean rate for 200k event datasets is a rate
of 1.5 k events/s. Observing the raw results in detail we observe that when
applying to a 200 k dataset without any duplicates, the procedure time takes
150 seconds as a median (ranges from 117 to 216 s). When finding duplicates,
a 200 k dataset takes 150 seconds as a median as well. Time ranges from 112
to 171 seconds, detecting from hundreds to 24 k duplicates in 54 files.

1 M event datasets take from 171 to 314 seconds (yields 3 to 6 k events/s).
20 M event datasets take from 347 to 564 seconds (yields 35 to 57 k events/s).
In all of these samples, the number of detected duplicates and files containing
duplicates varies without determining a clear weight on the resulting processing
times. Samples of the same size with more duplicated events and number

Size (events)

R
at

e
(e

ve
nt

/s
)

100

1000

10000

100000

5,0
0E

+5

1,0
0E

+6

5,0
0E

+6

1,0
0E

+7

5,0
0E

+7

1,0
0E

+8

events/s 0,187x^0,731

Duplicates calculation rate

Figure 6.3: Duplicates calculation rate. The horizontal axis shows the size of
the dataset in events; the vertical axis shows the rate in processed events per
second (log scale).

117

6. Access

of affected files can yield better results, making the size of the sample the
determinant variable for predicting the processing time.

Bigger datasets with their derivations comprising about 100 M events take
869-884 seconds (yields 120k events/s). Again without much difference to the
processing time attributable to the number of duplicates detected (8 to 23
million) and affected files (500 to 200 files).

The load is distributed initially among 4 executors initially for every sub-
mission, but the cluster configuration is configured with auto-scaling up to 32
executors.

It has to be noted that in the case of a high number of files affected by
duplicates, the detailed list of GUIDs might occupy a non-negligible amount
of space (530 MB JSON files with details of about 4M events duplicated on
422 files). Time to produce the output summary file is not shown here. In
particular, in this sample it was about 60 seconds for collecting the output of
the driver process and writing the file. This time can be decreased if the output
is written directly by the Spark executors in a distributed manner in the meta
tables, instead of collecting the output in the driver.

6.2.4 Helper functions

Our tool also provides some addition helper functions:

❼ withColumnGUID() : adds a new column to the DataFrame with decoded
GUID file (from SelfReference field).

❼ groupByGuid() : groups the entries by file (GUID), effectively calculating
the number of event entries per file.

❼ groupByEventno() : number of records per event number identifier.

In the next example listing, we observe that we can obtain the list of event
ids (event number or eventno) and the number of entries of that event id in the
dataframe (representing the same mc16 13TeV container from the example in
subsection 6.2.3 :

scala> eventsDF.groupByEventno.show

+-------+-----+

|EVENTNO|count|

+-------+-----+

| 3506| 1|

| 5385| 1|

118

6.2. EventIndex Analytics Platform

| 5409| 1|

| 7279| 1|

| 8440| 1|

| 8484| 1|

| 9233| 1|

| 11190| 1|

| 11619| 2|

| 12044| 2|

| 13248| 1|

| 13401| 1|

| 13638| 2|

| 14117| 2|

| 14719| 1|

| 15057| 1|

| 15322| 1|

| 15375| 2|

| 17043| 1|

| 18147| 2|

+-------+-----+

only showing top 20 rows

This example shows the first 20 rows, and we can observe that some event id
has a count of 2, so they are duplicated events. We could refine even more
this result DataFrame, for example, applying a “where(count => 2)” clause to
obtain only the event ids that have duplicates.

In this next example we show the usage of groupByGuid function to show
the files identified by GUID and the number of event entries that contain:

scala> eventsDF.groupByGuid.show

+--------------------+-----+

| GUID|count|

+--------------------+-----+

|F539A8C4-9D16-974...|30406|

|99F2E92C-048F-DC4...|30285|

|416D28E9-0DC8-0C4...| 6390|

|7ABEE196-3CCE-964...|30395|

|4821F1F3-F214-994...|30601|

+--------------------+-----+

Function groupByGuid() internally uses withColumnGUID() to decode the
GUID fields that are not directly available in the backend tables, and have to be
decoded from the sr (self-reference) field. This latter function is also publicly
open for users, as it is convenient for decoding and accessing the GUIDs.

119

6. Access

Other fields can be accessed directly from the DataFrame with the column
name. Trigger is encoded with fields in the events table as an Array of shorts
(see families C and D in the events table in subsection 5.3.1). The Apache
Phoenix Spark connector was incorrectly interpreting this data type, making
access impossible from Spark and therefore from our tool. Modifications to the
Phoenix source code and integration tests were developed to solve this issue in
the Phoenix Spark connector, and these were submitted to the Apache Phoenix
project and finally adopted [97]. With this we managed to correctly access
these types of fields from Spark, which was not possible before.

6.2.5 Overlaps calculation

Calculation of event overlap matrices among the derivations of a dataset is one
the use cases of the ATLAS EventIndex. This is because an event is reprocessed
and stored in several formats (several output files over time). In particular, for
the derivation framework, currently there are n streams being produced which
will be spread among several trains (processing jobs) and will end in n files.
Therefore 1 input file, n output files: The event overlap between these needs to
be monitored. We wish to determine how many and which events end up in
each stream, for a number of datasets.

The provided function calculateOverlaps() calculates the values needed to
build the matrix for all derivations of a given dataset with its identifier.

In the following example we will calculate the overlaps for all the derived
datasets from the following original AOD dataset:

data18_13TeV.00350144.physics_Main.merge.AOD.f933_m1960

For reference the DAOD (Derived AOD) datasets to apply the algorithm have
the following names:

data18_13TeV.00350144.physics_Main.deriv.DAOD_BPHY1.f933_m1960_p3553

data18_13TeV.00350144.physics_Main.deriv.DAOD_BPHY4.f933_m1960_p3553

data18_13TeV.00350144.physics_Main.deriv.DAOD_BPHY5.f933_m1960_p3553

...

They comprise 83 datasets summing up around 500 M events.
Figure 6.4 shows the results of our algorithm in the form of a Spark

DataFrame, which can be shown in the spark-shell as in the figure.
The first two columns stream1, stream2 represent the pairs of derived

streams that are considered in every row. Their names correspond to the
dataTypeGroup that are part of the dataType of the dataset. For example, the

120

6.2. EventIndex Analytics Platform

Figure 6.4: Overlap event calculation for a set of 83 datasets with 500 M events.

corresponding stream from DAOD BPHY1, would be named BPHY1. Next
column events stream1 only contains the number of event records only found
in stream1 and therefore unique. Similarly with stream2 in the next column
events stream2 only. Column events bothstreams contain the number of records
found in both streams, therefore overlapped events or the intersection. Last
column ratio is calculated as the intersection (events bothstreams) divided by
the union (events stream1 only + events stream2 only + events bothstreams).

The output DataFrame with these results contains an entry for every pair of
derived streams that contain overlapped events. Therefore for S derived streams
we would have S×S entries (representing a matrix), but we have to bear in mind
that the events overlapping in a pair of streams (i,j) will hold the same results
as the pair of streams (j,i), so we will have a symmetric matrix. In addition,
the elements of the leading diagonal (i,i) that contains the values of one stream
against itself will be always the same (ratio=1 as all events are by definition the
same events stream1 only = events stream2 only = 0, and events bothstreams
will equal the total number of events in the stream). Therefore instead of S×S

elements, we will have to explicitly calculate only the S(S−1)
2 elements in the

upper right (or lower left), which are the independent entries of the matrix.

In this example, the results on the screen show the first 20 rows or entries

of the result overlapsDF DataFrame, which in fact contains 83(83−1)
2 = 3, 403

121

6. Access

entries.
As an example, if we take the first entry, the (EXOT2, TAUP1) streams

will produce the same results as (TAUP1, EXOT2), as the overlapped events in
both streams are the same, and so the rest of the values. In this case, we see
that there are 13,349,380 events that are only in EXOT2 (events stream1 only),
and 3,320,739 events in TAUP1 (events stream2 only). Then there are 99,177
events that are in both streams, so this is the number of overlapped events or
the intersection of both streams. We calculate the ratio (0.005914...) which
represents the events that are in both streams, divided by the sum of total
events (intersection over the union).

This DataFrame can as well be stored in an output file, or in another Phoenix
Table, like in the following example. We have stored the results in another
new table DATASETS OVERLAPS with the same schema as the overlaps
DataFrame and with an identifier of the calculation.

We have previously seen in our data model that millions of events reside in
a big events table, with a row per event entry. We will apply the algorithm only
to the needed data, namely, the event entries stored for every derived dataset
that we are taking into account.

Algorithm

The overlap calculation algorithm has 4 main steps:

1. For every event record, select the event identifier (eventnumber), and the
stream (datatype). The result of this step is a set of (EventId, Stream).
This set might contain several entries with the same EventId.

2. Group the streams by the event identifier. The result of this step is a
Set of (EventId, EventStreams), where EventStreams is a set (Stream1,
Stream2, . . . StreamN). The number of elements of this set of streams
corresponds to the number of event entries of a particular event identifier.

3. For every event identifier, build all pairs of streams (i,j) that might contain
this particular event, signaling where it is found. The result of this step is
a set of tuples [(StreamI, StreamJ) , (is in I, is in J)], where is in X is a
boolean that signals that this event entry is found in that stream. Values
emitted might be:

❼ (false, false) : not found in any, so this value is not emitted at all
and will not be found in the set of tuples.

122

6.2. EventIndex Analytics Platform

❼ (true, false) : the event entry is found in StreamI, but not in StreamJ.

❼ (false, true) : the event entry is found in StreamJ, but not in StreamI.

❼ (true, true) : the event entry is found both in StreamI and StreamJ,
so this is an overlap.

It has to be noted that we have to build pairs of streams not only from
the EventStreams set in step 2 (as will contain only the overlaps), but
to travel all possible pairs of streams (i,j). With s streams, this means
as much as (s*(s-1))/2 entries. This counts the events that might be
in one but not in the other stream. As stated, if both i and j streams
are not found in the EventStreams set considered in this step, then the
(false,false) value is not emitted, reducing the potential (s*(s-1))/2 values
emitted per entry generated from the previous step.

4. Group the tuples by pairs of streams, counting the number of previ-
ously generated values. Result is a set of Tuples [(StreamI, StreamJ) ,
(events stream1 only, events stream2 only, events bothstreams, ratio)]
The set contains an entry per (StreamI, StreamJ) pair possibility, with as
many as (s*(s-1))/2 entries. When grouping by pair (StreamI, StreamJ),
the values (is in I, is in J) previously emitted are counted in the mentioned
variables:

❼ (true, false) : sum 1 to events stream1 only.

❼ (false, true) : sum 1 to events stream2 only.

❼ (true, true) : sum 1 to events both streams.

ratio is calculated as the intersection over the union, so

ratio =
events bothstreams

(events stream1 only + events stream2 only + events bothstreams)

The result of Step 4 is what we find in the output of the example shown
before, the set of unique entries of the matrix that represents the possible N×N

overlaps of the N derived streams of the analyzed dataset.

Implementation

The implementation of the algorithm was done in Scala language and using
Spark abstractions and functions.

123

6. Access

First, we are reading the events from the source (Events HBase/Phoenix
table in subsection 5.3.1), which are from the streams of interest, in this case
all streams (dstypeid) found in the canonical container table for a particular
dataset by its dataset identifier (dspid).

Since all data share the dspid which is the key prefix, we assure the locality
of the data. In addition, all events from a stream datatype will share the
dstypeid, that is, the next data in the key prefix, so they will be together in
disk and not spread, assuring also the locality of the data.

Step 1 of the algorithm is achieved with a map() transformation, retrieving
only the fields of interest of every event entry, namely, the event identifier
(eventnumber or eventno), and the stream (dstypeid).

In Step 2, we apply the aggregateByKey() transformation which is much
more efficient as it can be applied in parallel in different partitions where the
data is, instead of moving the data as in groupByKey(). We want the result
of the aggregation to be a set of values, which is a different type to the values
that are strings (the sum of strings is a concatenation of the string), so we use
this function instead of reduceByKey().

The backend data is organised into all streams (dstypeid) of a dataset (dspid)
to be consecutive in the HBase row key space, and therefore in the storage
(disks). We can therefore benefit from most of these calculations being done in
the same machine and in memory in particular, without too much data shuffling
across the Region Servers of the cluster. It is however possible that for big
datasets and lots of derivation streams, their data expands along several Region
Servers. In this case, the aggregateByKey() transformation will shuffle the
data to aggregate by the event identifier.

In Step 3, we use the flatMap() transformation to the DataFrame result
of step 2, which has an entry per event identifier, into the set of tuples that
identify pairs of streams, and where in that pair the event entry is found (
as boolean pairs described in the algorithm). This flatMap() transformation
applies a custom eventsStreamsPairMapper() function to every original entry
(event identifier) for that purpose.

The last Step 4 applies again an aggregateByKey() transformation to reduce
the previous results by pairs of streams. The first parameter of aggregateByKey()
will be the combiner function for merging values within a partition, tak-
ing the boolean pairs, and converting them to tuples (events stream1 only,
events stream2 only, events both streams, ratio). Ratio is not computed in
this combiner function, yet is emitted as 0. Yet the summing of the events are
done at the partition level. The second parameter of aggregateByKey() will
be the reducer function, grouping a pair of tuples produced by the previous

124

6.2. EventIndex Analytics Platform

function, and applied when merging values between partitions. In this case, the
output is another tuple, summing the 3 first values, and computing the ratio as
the intersection over the union (events both streams / (events stream1 only
+ events stream2 only + events both streams)). It has to be noted that this
reducer function is not applied when all data is in a single partition, so the
ratio will not be computed correctly. In this case, there will be another step to
explicitly compute the ratio when producing the final results.

The last part of the implementation deals with showing user-friendly values in
the result DataFrame, which implies converting the dstypeid to the user-friendly
stream names stored in the dstypes tables.

Evaluation

We have tested the algorithm on several datasets and derivation streams. The
most common data currently has few stream derivations (s < 10), with some
up to the order of 100 (s) streams. Datasets of size n range from thousands to
millions of events.

The sizes of the problem (n) of the dataset the samples tested are: 200 k, 1
M, 20 M, 100 M, and 500 M events. These events are divided into a number (s)
of streams, which is: 1, 2, 5, 6, 7, and 83 (unique case).

Figure 6.5 shows the overlap calculation time depending on the size of the
dataset on the x-axis and the number of streams (in lines with different colours).

For dataset samples up to 200 k events, the overlap procedure took from
15 seconds for a dataset with just 1 stream. Therefore this is the baseline as
no matrix elements are calculated. It takes 27 seconds for 2 streams, and 40
seconds for 6 streams.

For dataset samples of 1 M events it takes from 43 to 67 seconds. A 6 stream
sample takes 43 seconds , the same as a 200k dataset, so in this case this might
be an issue in the former calculations.

The number of computations performed is n s(s−1)
2 , where n is the number of

events, and s is the number of streams. As we can see also in the figure 6.5, the
cost is dominated by the size of the problem n, while the cost of computing the
s(s−1)

2 pairs per entry takes less time compared to the n term. The dominant
term is n, so the temporal cost is O(n). The intermediate data produced is at

most the number of computations n s(s−1)
2 in Step 3 of the algorithm presented.

However, this data is constantly reduced per spark partition at Step 4. Thus,
the final space cost is O(s2).

Figure 6.6 shows the overlap calculation rate. For datasets of 20 M events,
processing takes 368 to 483 seconds and yields a processing rate of about 50 k

125

6. Access

Size (events)

Ti
m

e
(s

)

50

100

500

1000

5000

5,0
0E

+5

1,0
0E

+6

5,0
0E

+6

1,0
0E

+7

5,0
0E

+7

1,0
0E

+8

5,0
0E

+8

1

2

5

6

7

83

Overlaps calculation time

Figure 6.5: Overlaps calculation time. Every line represents the number of
streams (s) of the problem. Horizontal axis represents the size of the problem
in events, in logarithmic scale; the vertical axis represents the time in seconds
(log scale).

events/s. 100 M event baseline dataset with just 1 stream takes 445 seconds
and yields a performance of 240 k events/s processed. Then datasets with more
streams and overlap processing takes 579 to 643 seconds, with a mean 160 k
events/s processed. The biggest 500 million events sample yields a performance
of 380 k events/s.

Datasets with higher number of streams might yield better results, revealing
again the preponderance of the size (number of events) factor.

6.3 Conclusions

We have presented the contributions on data access and analytics on big data
applications like the EventIndex. We have developed tools and algorithms for
data access, duplicate and overlap detection over big amounts of data. We
have shown the usage over the HBase/Phoenix data storage proposed on the

126

6.3. Conclusions

Size (events)

R
at

e
(e

ve
nt

s/
s)

5000

10000

50000

100000

500000

5,0
0E

+5

1,0
0E

+6

5,0
0E

+6

1,0
0E

+7

5,0
0E

+7

1,0
0E

+8

5,0
0E

+8

Overlaps calculation rate

Figure 6.6: Overlaps calculation rate. Horizontal axis represents the size of the
dataset in events; the vertical axis represents the rate of events processed per
second (log scale).

previous section. With the new contributed interactive capabilities the users
have new data access paths not available before.

We have presented an analytics platform based on Spark and a set of
analytical tools using Spark abstractions and implemented in a Scala package
(eventindex.analitycs.spark). With this, we can access the billions (109) of
event records of the EventIndex project stored in the HBase data backend. An
Apache Phoenix layer provides schema enforcement and SQL capabilities to
access the data.

With our tools, we abstract the backend data model, decoupling the data
access from the actual data schema and used technologies. This approach is
very convenient to hide model complexity with an accessible defined interface.
It also masks changes in the data model, which are invisible to the user as the
defined interfaces have not changed.

The package can be used interactively within a command line spark-shell
session. It also can be used with batch standalone Spark jobs, as we have shown

127

6. Access

when evaluating our tool algorithms.
We have previously shown in section 5.3 that our data model is defined in a

big events table with data organised in 4 families, and other meta-tables for
data discovery and bookkeeping. For the evaluation of our data access tools, we
have used the 21.95 TB dataset samples of EventIndex production data that
were imported into our HBase/Phoenix system (see subsection 5.3.2).

The tool and algorithms presented solve data access for our application use
cases in areas like data discovery, duplicate detection, and overlap calculation.
Data discovery capabilities produce Spark DataFrames usable by the rest of the
tools. They also use custom helper functions to access the encoded fields of the
data model. During the process of development, some limitations in the Apache
Phoenix Spark connector were solved and contributed back to the community.

An overlap calculation algorithm was presented with computational cost
O(n) with the number of events and spatial cost O(s2) with the number of
streams. Implemented in Scala and using Spark abstractions, it translates
automatically to scans over the HBase key, which are fast and performant. All
data for the derivation of a dataset are adjacent in the key space, and therefore
storage, reducing input/output operations. The algorithm scales automatically
within the Spark cluster up to 32 processes, yielding a performance of 380 k
events processed per second for a 500 M event dataset.

The duplication detection case accesses the event table key and family A
(event location) data. It is slower compared with the overlap case due to the
accessing of different values in a data family and not only the HBase key. It
yields a performance of 120 k events per second for 100 M events, compared
with 150 k events/second for the same size overlap calculation.

The processing rates show a penalization for smaller datasets that are due to
the set-up of HBase data streams, dominating the accounted time. We obtain
better rates for bigger dataset sizes, so one possibility to apply in the future
is to increment spark job granularity when possible, for example, calculating
features at the container level, instead of its constituent datasets.

The presented framework approach solves the analytic use cases of the
ATLAS EventIndex project in a performant manner, providing convenient data
access paths which will be exploited starting with the LHC Run 3 (2022-2025).

128

7 Conclusions

In this last chapter we summarize the contributions and conclusions of this
work. A list of publications related with the work in this thesis and within the
ATLAS EventIndex project is included.

7.1 Contributions

Several contributions have been made in the EventIndex project in the areas
of distributed data collection, big data storage backends and data access and
analytics.

We have shown the improvements on the distributed data collection system
on large distributed infrastructures like the grid. The previous messaging
data collection system was found complex and limited the scalability for our
EventIndex payloads. We contributed to a new pull model design with an
object store for temporary data staging and dynamic data selection for data
ingestion. Results show that the new design improves the performance in several
areas. With the new design we can avoid payload segmentation, storing the
index information from each metadata extraction process in a single object. We
achieve better data compression ratios with larger payloads and binary data
encoding. Thus a factor 4.5 reduction in the total volume of conveyed and
ingested data is achieved. We have got rid of blockings with the new object store
implementation and the workload distribution is improved, potentially achieving
better scalability. Throughput during data ingestion is improved 15 times
compared to the messaging approach. In addition, the pull model approach
allows the dynamic selection of data, avoiding the ingestion of duplicated
information that in our experiment is 10% of the produced data. The pull
model object store implementation was deployed in production already during
Run 2 (2015-2018) and has shown excellent performance in production and is
able to scale to the required rates of the next Runs.

129

7. Conclusions

Regarding data storage, HBase was selected because of its good performance
and better support in production. The flexibility of our architecture allows us to
change the data backend storage while maintaining the pull-model distributed
data collection approach. With HBase as the main and unique storage for all our
data we simplify storage, avoiding duplicating data with complex procedures,
potential data coherence issues and reducing total volume of data. In this
manner we move from a hybrid system that maintained data in HDFS and
Oracle, to a unique system based on HBase. With a Phoenix layer over HBase
we allow schema enforcement with defined types, also providing SQL capabilities
for later data access, which was not available before. In addition we assure the
schema application with defined types, which was not available with HDFS,
that led to improvements applied at column level reducing total volume of data.
Data augmentation procedures are not needed anymore as all the procedures
can be done online during data ingestion. Regarding performance and the data
model schema parameters, we have shown that a pre-splitting on the events
table and a salting distribution strategy can improve throughput during data
ingestion. HBase/Phoenix includes built-in global ordered key space by design,
avoiding data consolidation procedures for ordering data, as we had in HDFS.
HBase also allows writing at the record level, so we can have multiple writers
per dataset compared with only one in the previous approach and therefore
improving the data ingestion performance. We have contributed to reduce
the complexity on the storage system and the resource usage, optimizing the
data volume used while improving the throughput on data ingestion. These
improvements have increased the reliability and overall performance of the
system required for the LHC Run 3 (2022-2025) and beyond.

With our contributions in the data access area, now is possible interactive
data access and analysis, which was not possible with the previous model.
We have improved analytical use cases with the EventIndex data stored in
HBase/Phoenix, and accessing with a platform based on Spark, using its
abstractions and a set of analytical tools implemented in Scala. The new tool
and algorithms presented solve data access for our application use cases in
areas like data discovery, duplicate detection, and overlap calculation among
datasets, that are now integrated. Data discovery capabilities produce Spark
DataFrames usable by the rest of the tools. In addition data and results might be
maintained in cache, which was not possible before, allowing algorithm chaining
and improving overall resource usage. The overlap calculation algorithm has
computational cost O(n) with the number of events, and spatial cost O(s2)
with the number of streams. Its performance is improved as it only has to
access the key of the event, instead of all the event register like in HDFS. In

130

7.2. Publications

addition the columnar organization allows to reduce the number of input/output
operations, improving the performance. With our tools, we abstract the backend
data model, decoupling the data access from the actual data schema and used
technologies. This approach is very convenient to hide model complexity with
an accessible defined interface for tools and users. It also masks possible changes
in the data model, which are invisible for the user as the defined interfaces do
not change. The presented framework approach solves the analytic use cases of
the ATLAS EventIndex project in a performant manner, providing convenient
data access paths which were not available before and which will be exploited
starting with the LHC Run 3 (2022-2025).

7.2 Publications

The contributions described in this work have resulted in the following publica-
tions:

❼ D Barberis, J Cranshaw, G Dimitrov, A Favareto, Á Fernández Casańı,
S González de la Hoz, J Hřivnáč, D Malon, M Nowak, J Salt Cairols,
J Sánchez, R Sorokoletov, and Q Zhang and. The ATLAS Eventindex:
an event catalogue for experiments collecting large amounts of data. In:
Journal of Physics: Conference Series 513.4 (June 2014), p. 042002. doi:
10.1088/1742-6596/513/4/042002

❼ D. Barberis, S.E. Cárdenas Zárate, J. Cranshaw, A. Favareto, Á. Fernández
Casańı, E.J. Gallas, C. Glasman, S. González de la Hoz, J. Hřivnáč, D.
Malon, F. Prokoshin, J. Salt Cairols, J. Sánchez, R. Többicke, and R.
Yuan. The ATLAS EventIndex: architecture, design choices, deployment
and first operation experience. In: Journal of Physics: Conference Series
664.4 (Dec. 2015), p. 042003. doi: 10.1088/1742-6596/664/4/042003

❼ J Sánchez, A Fernández Casańı, and S González de la Hoz. Distributed
Data Collection for the ATLAS EventIndex. In: Journal of Physics:
Conference Series 664.4 (Dec. 2015), p. 042046. doi: 10.1088/1742-

6596/664/4/042046

❼ D. Barberis, J. Cranshaw, A. Favareto, A. Fernández Casańı, E. Gallas,
S. González de la Hoz, J. Hřivnáč, D. Malon, M. Nowak, F. Prokoshin,
J. Salt, J. Sánchez Mart́ınez, R. Többicke, and R. Yuan. The ATLAS
EventIndex: Full chain deployment and first operation. In: Nuclear and
Particle Physics Proceedings 273-275 (Apr. 2016). Q3. Corresponding

131

https://doi.org/10.1088/1742-6596/513/4/042002
https://doi.org/10.1088/1742-6596/664/4/042003
https://doi.org/10.1088/1742-6596/664/4/042046
https://doi.org/10.1088/1742-6596/664/4/042046

7. Conclusions

author A. Fernández Casańı, pp. 913–918. doi: 10.1016/j.nuclphysbps.
2015.09.141

❼ D. Barberis, S.E. Cárdenas Zárate, A. Favareto, A. Fernandez Casani,
E.J. Gallas, C. Garcia Montoro, S. Gonzalez de la Hoz, J. Hrivnac, D.
Malon, F. Prokoshin, J. Salt, J. Sanchez, R. Toebbicke, and R. Yuan and.
ATLAS Eventlndex monitoring system using the Kibana analytics and
visualization platform. In: Journal of Physics: Conference Series 762
(Oct. 2016), p. 012004. doi: 10.1088/1742-6596/762/1/012004

❼ A Fernandez Casani, D Barberis, A Favareto, C Garcia Montoro, S
González de la Hoz, J Hřivnáč, F Prokoshin, J Salt, J Sanchez, Többicke,
R Yuan, and ATLAS Collaboration. ATLAS EventIndex general dataflow
and monitoring infrastructure. In: Journal of Physics: Conference Series
898.6 (2017), p. 062010. doi: 10.1088/1742-6596/898/6/062010

❼ Álvaro Fernández Casańı, Juan Orduña, and Santiago González de la
Hoz. Performance Improvements of an Event Index Distributed System.
In: ICPP 2018: Proceedings of the 47th International Conference on
Parallel Processing. Extended abstract. Eugene, OR, USA: Association
for Computing Machinery, 2018. isbn: 9781450365109. url: http:

//oaciss.uoregon.edu/icpp18/publications/pos110s2-file1.pdf

❼ Zbigniew Baranowski, Luca Canali, Alvaro Fernandez Casani, Elizabeth
J Gallas, Carlos Garcia Montoro, Santiago González de la Hoz, Julius
Hrivnac, Fedor Prokoshin, Grigori Rybkine, Jose Salt, Javier Sanchez,
and Dario Barberis. A prototype for the evolution of ATLAS EventIndex
based on Apache Kudu storage. In: EPJ Web of Conferences 214 (2019).
Ed. by A. Forti, L. Betev, M. Litmaath, O. Smirnova, and P. Hristov,
p. 04057. doi: 10.1051/epjconf/201921404057

❼ Álvaro Fernández Casańı, Dario Barberis, Javier Sánchez, Carlos Garćıa
Montoro, Santiago González de la Hoz, and José Salt. Distributed Data
Collection for the Next Generation ATLAS EventIndex Project. In: EPJ
Web of Conferences 214 (2019), p. 04010. doi: 10.1051/epjconf/

201921404010

❼ Santiago González de la Hoz, Carlos Acosta-Silva, Javier Aparisi Pozo,
Manuel Delfino, Jose del Peso, Álvaro Fernández Casani, José Flix Molina,
Esteban Fullana Torregrosa, Carlos Garćıa Montoro, Julio Lozano Bahilo,
Almudena del Rocio Montiel, Andreu Pacheco Pages, Javier Sánchez

132

https://doi.org/10.1016/j.nuclphysbps.2015.09.141
https://doi.org/10.1016/j.nuclphysbps.2015.09.141
https://doi.org/10.1088/1742-6596/762/1/012004
https://doi.org/10.1088/1742-6596/898/6/062010
http://oaciss.uoregon.edu/icpp18/publications/pos110s2-file1.pdf
http://oaciss.uoregon.edu/icpp18/publications/pos110s2-file1.pdf
https://doi.org/10.1051/epjconf/201921404057
https://doi.org/10.1051/epjconf/201921404010
https://doi.org/10.1051/epjconf/201921404010

7.2. Publications

Mart́ınez, José Salt, and Aresh Vedaee. Spanish ATLAS Tier-1 & Tier-2
perspective on computing over the next years. In: EPJ Web of Conferences
214 (2019). Ed. by A. Forti, L. Betev, M. Litmaath, O. Smirnova, and
P. Hristov, p. 03013. doi: 10.1051/epjconf/201921403013

❼ González de la Hoz, Santiago, Acosta-Silva, Carles, Aparisi Pozo, Javier,
del Peso, Jose, Fernández Casani, Álvaro, Flix Molina, José, Fullana
Torregrosa, Esteban, Garćıa Montoro, Carlos, Lozano Bahilo, Julio, Mon-
tiel, Almudena, Pacheco Pages, Andrés, Sánchez Mart́ınez, Javier, Salt
Cairols, José, and Vedaee, Aresh. Computing activities at the Spanish
Tier-1 and Tier-2s for the ATLAS experiment towards the LHC Run3
and High-Luminosity periods. In: EPJ Web of Conferences 245 (2020).
Ed. by C. Doglioni, D. Kim, G.A. Stewart, L. Silvestris, P. Jackson, and
W. Kamleh, p. 07027. doi: 10.1051/epjconf/202024507027

❼ M Villaplana Perez, E Alexandrov, I Aleksandrov, Z Baranowski, D
Barberis, G Dimitrov, A Fernandez Casani, E Gallas, C Garcia Montoro,
S Gonzalez de la Hoz, J Hrivnac, I Alexander, A Kazymov, M Mineev,
F Prokoshin, G Rybkin, J Sanchez, J Salt, and P T Vasileva. The ATLAS
EventIndex and its evolution towards Run 3. In: Journal of Physics:
Conference Series 1525.1 (Apr. 2020), p. 012056. doi: 10.1088/1742-

6596/1525/1/012056

❼ Álvaro Fernández Casańı, Juan M. Orduña, Javier Sánchez, and Santiago
González de la Hoz. A Reliable Large Distributed Object Store Based
Platform for Collecting Event Metadata. In: Journal of Grid Computing
19.3 (Aug. 2021). Q1, p. 39. issn: 1572-9184. doi: 10.1007/s10723-

021-09580-0

❼ Elizaveta Cherepanova, Evgeny Alexandrov, Igor Alexandrov, Dario Bar-
beris, Luca Canali, Alvaro Fernandez Casani, Elizabeth Gallas, Carlos
Garcia Montoro, Santiago Gonzalez De La Hoz, Julius Hrivnac, Andrei
Kazymov, Mikhail Mineev, Fedor Prokoshin, Grigori Rybkin, Francisco
Javier Sanchez Martinez, Jose Salt, Miguel Villaplana, and Alexander
Iakovlev. The ATLAS EventIndex Using the HBase/Phoenix Storage
Solution. In: 9th International Conference on Distributed Computing
and Grid Technologies in Science and Education. 2021, pp. 17–25. doi:
10.54546/mlit.2021.68.25.001

❼ Dario Barberis, Igor Aleksandrov, Evgeny Alexandrov, Zbigniew Bara-
nowski, Luca Canali, Elizaveta Cherepanova, Gancho Dimitrov, Andrea

133

https://doi.org/10.1051/epjconf/201921403013
https://doi.org/10.1051/epjconf/202024507027
https://doi.org/10.1088/1742-6596/1525/1/012056
https://doi.org/10.1088/1742-6596/1525/1/012056
https://doi.org/10.1007/s10723-021-09580-0
https://doi.org/10.1007/s10723-021-09580-0
https://doi.org/10.54546/mlit.2021.68.25.001

7. Conclusions

Favareto, Alvaro Fernandez Casani, Elizabeth J. Gallas, Carlos Gar-
cia Montoro, Santiago Gonzalez de la Hoz, Julius Hrivnac, Alexander
Iakovlev, Andrei Kazymov, Mikhail Mineev, Fedor Prokoshin, Grigori
Rybkin, Jose Salt, Javier Sanchez, Roman Sorokoletov, Rainer Toebbicke,
Petya Vasileva, Miguel Villaplana Perez, and Ruijun Yuan. The ATLAS
EventIndex: a BigData catalogue for all ATLAS experiment events. For
publication in Computing and Software for Big Science. Q1. 2022. doi:
10.48550/ARXIV.2211.08293

❼ Álvaro Fernández Casańı, Carlos Garćıa Montoro, Santiago González
de la Hoz, Jose Salt, Javier Sánchez, and Miguel Villaplana Pérez. Big
Data analytics for the ATLAS EventIndex project with Apache Spark. In:
[Manuscript submitted for publication] Computational and Mathematical
Methods (2022). Presented at 2022 International CMMSE conference
and the Second conference on high performance computing (CHPC).
Awarded ”Best computational applications on line presentation”. issn:
2577-7408

134

https://doi.org/10.48550/ARXIV.2211.08293

Resumen

El trabajo de esta tesis se enmarca dentro del proyecto EventIndex del expe-
rimento ATLAS, un gran detector de part́ıculas del LHC (Gran Colisionador
de Hadrones) en el CERN. El objetivo del proyecto es catalogar todas las
colisiones de part́ıculas, o eventos, registrados en el detector ATLAS y también
simulados a lo largo de sus años de funcionamiento. Con este catálogo se pueden
caracterizar los datos a nivel de evento para su búsqueda y localización por
parte de los usuarios finales. También se pueden realizar comprobaciones en la
cadena de registro y reprocesado de los datos, para comprobar su corrección
y optimizar futuros procesos. Debido al incremento en las tasas y volumen de
datos esperados en el Run 3 (2022-2025) y el HL-LHC (finales de la década
del 2020), se requiere un sistema escalable y que simplifique implementaciones
anteriores.

En esta tesis se presentan las contribuciones al proyecto en las áreas de
recolección de datos distribuida, almacenamiento de cantidades masivas de datos
y acceso a los mismos. Una pequeña cantidad de información (metadatos) por
evento es indexada en el CERN (Tier-0), y de forma distribuida en el grid en
todos los centros de computación que forman parte del experimento ATLAS (10
Tier-1, y del orden de 70 Tier-2). En esta tesis se presenta un nuevo modelo de
recolección de datos en el grid basado en un object store como almacenamiento
temporal, y con selección dinámica de datos para su ingestión en el almacén
de datos final. También se presentan las contribuciones a una nueva solución
en un único y gran almacén de datos basado en tecnoloǵıas de macrodatos
(Big Data) como HBase/Phoenix, capaz de sostener las tasas y volumen de
ingestión de datos requeridos, y que simplifica y soluciona los problemas de las
anteriores soluciones h́ıbridas. Finalmente, se presenta un marco de computación
y herramientas basadas en Spark para el acceso a los datos y la resolución de
cargas de trabajo anaĺıticas que acceden a grandes cantidades de datos, como el
cálculo del solapado (overlaps) entre eventos de distintos datasets, o el cálculo

135

Resumen

de eventos duplicados.

Introducción

CERN, LHC y el experimento ATLAS

El Gran Colisionador de Hadrones (LHC) [1] es la máquina más grande cons-
truida, y el colisionador de part́ıculas de mayor enerǵıa, diseñado para correr
a una enerǵıa máxima en el centro de masas de 14 TeV. Está situado en el
CERN, la Organización Europea para la Investigación Nuclear, en la frontera
entre Suiza y Francia. Se localiza en un túnel circular con una longitud total de
26.7 km, y enterrado bajo tierra a una media de 100 metros de profundidad.
Part́ıculas con carga (protones e iones pesados, es decir hadrones) son aceleradas
en haces dentro de dos anillos en sentidos opuestos, hasta que alcanzan la enerǵıa
deseada.

Cuando los haces de part́ıculas que han sido acelerados alcanzan la enerǵıa y
condiciones deseables se hacen colisionar en puntos determinados del LHC. Hay
4 enormes cavernas bajo tierra que alojan los detectores de los experimentos
para grabar los detalles de las colisiones que son producidas a una tasa de 40
MHz en cruce de paquetes part́ıculas (bunch-crossing), o cada 25 ns. Las señales
dejadas por las part́ıculas producidas por estas interacciones son grabadas por
los detectores como un evento de un bunch-crossing determinado.

El detector ATLAS [5] es un gran detector multi-propósito, en la forma de
un gran cilindro de 46 metros de alto, 25 metros de largo y 7,000 toneladas
de peso, situado en la caverna del punto 1 del LHC. Como se puede ver en
la figura 1, el detector está compuesto de varios subsistemas dispuestos en
forma de capas concéntricas al punto de interacción de los haces del acelerador.
Estos subsistemas son el detector interno, los caloŕımetros electromagnéticos y
hadrónicos, el sistema de imanes y el espectrómetro de muones. Cada uno de
ellos está diseñado con un único objetivo, detectar tipos espećıficos de part́ıculas
o medir caracteŕısticas individuales como la trayectoria, la enerǵıa o el momento.

Trigger y Sistema de Adquisición de Datos

Las tasas de 40 Mhz en el cruce de paquetes part́ıculas (bunch-crossing) y la
luminosidad afectan al número de interacciones entre part́ıculas que pueden ser
potencialmente detectadas. Grabar todas ellas significaŕıa almacenar 60 TB/s,
lo que es inmanejable. No todos los eventos son igualmente interesantes, aśı que
el Sistema de Trigger (disparo) y Adquisición de datos (TDAQ) [15] se encarga

136

Introducción

Figura 1: Imagen generada por ordenador del detector ATLAS con sus subsiste-
mas detallados [6].

de la selección en ĺınea de los eventos en función de los requerimientos de análisis
de f́ısica establecidos en cada momento, definidos en lo que se llama el trigger
menu. El TDAQ está compuesto de una estructura en niveles, donde la tasa de
eventos se reduce secuencialmente a niveles aceptables. Durante el Run 1, el
trigger estuvo originalmente compuesto por 3 niveles: L1, L2 y EventFilter (EF),
pero empezando con el Run 2, el L2 y EF fueron combinados en el HLT (trigger
de alto nivel). El primer nivel (L1) está implementado en hardware (FPGAs)
y reduce la tasa de 40 MHz a 100 kHz, lo que significa bajar de los 60 TB/s
originales a 160 GB/s aproximadamente. El HLT es un nivel implementado
completamente en software, corriendo en una granja de unas 40,000 unidades de
proceso. En este nivel se reduce a 1.5 kHz la tasa de eventos, lo que corresponde
a 1.5 GB/s producidos con un tamaño de evento medio de 1 MB.

137

Resumen

Computación distribuida

El experimento ATLAS sigue un modelo de computación distribuida para la
compartición, reprocesado y análisis de los datos. La infraestructura de compu-
tación distribuida grid del LHC (Wordwide LHC Computing Grid o WLCG) [22]
está formada por un conjunto de tecnoloǵıas y recursos de computación y alma-
cenamiento en los centros que forman parte del experimento, organizados por
niveles (tiers). El Tier-0 en el CERN mantiene todos los datos en crudo (raw
data). Del orden de 10 centros Tier-1 distribuidos por regiones mantienen copias
de estos datos y hacen reprocesados de los mismos. En el nivel inferior, del
orden de 100 centros Tier-2/3 (70 para ATLAS) están dedicados al análisis de
los datos y dar facilidades de acceso a los usuarios finales. Una visualización del
mapa de los centros del WLCG puede verse en la figura 2. ATLAS actualmente
usa en esta infraestructura distribuida más de 700 k CPU cores de computación,
230 PB de almacenamiento en disco y 270 PB de almacenamiento en cinta.

Figura 2: Centros del grid del LHC (WLCG) en septiembre de 2022. El Tier-0
está en el CERN (Ginebra); los centros Tier-1 están marcados con una estrella
dentro de un icono de ubicación verde; los centros Tier-2/3 están marcados con
un icono de ubicación azul [23].

Los datos principales de f́ısica son registrados desde el detector en flujos de

138

Introducción

datos en crudo [21], pero también otros flujos son establecidos para la calibración,
las comprobaciones rápidas de calidad (express streams), el depurado y otras
tareas. En el Tier-0 los primeros flujos de datos de calibración y los flujos
express son procesados para proveer variables de calibración y de alineamiento
del detector. Luego, el grueso de datos de f́ısica es procesado en 24-48 horas
con esta información dependiente del tiempo, para aśı producir eventos reales
reconstruidos y sus propiedades y cantidades f́ısicas. El resultado principal de
esta fase de reconstrucción son los ficheros de tipo Analysis Object Data (AOD),
que son guardados en el CERN y distribuidos a otros centros.

Es común realizar reprocesados de los datos cuando se tiene mejor conoci-
miento de las condiciones en las que se registraron los eventos (tras el cálculo
mejorado de constantes de calibración y alineamiento). También, algoritmos
nuevos y mejorados pueden ser producidos haciendo necesario el reprocesado
de los datos. En este caso, nuevas versiones de los ficheros AOD son producidos
en los centros Tier-1, para luego ser distribuidos.

Operación y retos

El LHC está en operación desde el año 2009, y alterna largos periodos de toma de
datos (conocidos como Runs), con paradas programadas para su mantenimiento
y actualización (conocidos como Long Shutdowns). Cuando empezó el Run 1
en 2011, la enerǵıa fue de 7 TeV en el centro de masas. Durante el Run 2 en
2015, la enerǵıa alcanzó los 13 TeV en el centro de masas, con una luminosidad
integrada de 190 fb−1 (femtobarn inverso). El femtobarn inverso es una medida
de colisiones de part́ıculas por unidad de área (barn), lo que representa ambos el
número de colisiones y la cantidad de datos recolectados. Un femtobarn inverso
corresponde aproximadamente a 100 trillones (1012) de colisiones protón-protón.
Actualmente está en proceso el Run 3, que empezó en julio de 2022 con una
enerǵıa de colisión en el centro de masas de 13.6 TeV, la más alta alcanzada
en un acelerador de part́ıculas. Se recolectarán del orden de aproximadamente
450 fb−1 cuando acabe el Run 3 en 2025. Está planeado que el HL-LHC (LHC
de Alta Luminosidad) [29] empiece al final de la década, con un récord sin
precedente en la toma de datos del orden de 7 a 10 veces más que las actuales.
Con un incremento en la luminosidad también se incrementará el apilado de
colisiones (pile-up) o número de colisiones simultáneas, desde el actual 30-60
hasta un futuro 200, incrementando el volumen total de datos.

139

Resumen

Proyecto EventIndex

Los f́ısicos usualmente trabajan sobre grandes cantidades de datos, pero también
necesitan el acceso a eventos individuales para comprobar sus detalles. Esto se
hace por ejemplo, durante las fases de reconstrucción o para producir visualiza-
ciones de eventos. Como hemos visto, los eventos pueden ser reconstruidos con
diferentes condiciones y algoritmos produciendo en la práctica múltiples versio-
nes de los mismos. Los procesos de producción crean registros de los eventos
con distina información en tipos diferentes de ficheros. Por lo tanto, es muy útil
tener información sobre el historial o linaje de un evento. El acceso a nivel de
evento es conveniente para comprobaciones de la calidad de la producción. De
esta manera se pueden detectar eventos duplicados que podŕıan ser producidos
debido a fallos temporales del sistema de adquisición o derivados de los procesos
de reconstrucción. También el cálculo de solapes de eventos entre diferentes
ficheros producidos por los procesos de derivación es muy útil, para optimizar
futuras derivaciones con menos solapes y por lo tanto menos recursos gastados.
Estudios en la correlación del trigger y solapes del mismo entre flujos de datos
también pueden ser realizados a nivel de evento si los datos están disponibles.

En el grid los eventos se guardan en ficheros de distintos formatos, iden-
tificados por un GUID (identificador único global). Los ficheros se agrupan
lógicamente en conjuntos de datos (datasets), y éstos se agrupan en contene-
dores. Una pequeña cantidad de información (metadatos) por evento se debe
extraer de forma distribuida en el grid, donde residen los datos en ficheros en
los diferentes centros. Estos metadatos extraidos deben ser transportados a
un catálogo central en el CERN, donde estarán disponibles para resolver los
distintos casos de uso planteados.

Objetivos

Los objetivos que aborda esta tesis están relacionados con las mejoras requeridas
para indexar y catalogar los billones de datos producidos en el experimento
ATLAS en un sistema distribuido a gran escala, para la actual y siguientes
ejecuciones (Runs) del mismo.

El primer objetivo persigue encontrar las deficiencias del sistema de reco-
lección de datos distribuido en el grid basado en un sistema de mensajeŕıa
(modelo push) y proponer un nuevo sistema que mejore el rendimiento y escale
mejor, reduciendo además, la complejidad y el uso de recursos. De esta forma,
se trata de demostrar que un nuevo modelo pull basado en un almacenamiento
de objetos (object store) como área de preparación de datos temporal, y con

140

Metodoloǵıa

selección dinámica para ser guardados en el almacenamiento final, satisface los
requerimientos del proyecto mejorando en todas las áreas mencionadas.

Los metadatos recolectados han sido hasta ahora guardados en un catálogo
central en el CERN, con un modelo h́ıbrido basado en Hadoop HDFS como
almacenamiento general, y con un subconjunto de los datos copiados a una
base de datos Oracle para facilitar accesos más rápidos. El segundo objetivo
es estudiar y proponer un nuevo almacenamiento final basado en tecnoloǵıas
big data capaz de soportar las tasas de ingestión de datos requeridas, y que
solucione los problemas anteriores relacionados con la complejidad de mantener
un sistema h́ıbrido y la coherencia de datos entre los subsistemas. Se estudia
Kudu, basado en almacenamiento columnar y con soporte a cargas de trabajo
h́ıbridas, transaccionales y anaĺıticas. También se estudia HBase por su soporte
a accesos aleatorios de forma eficiente, y su versatilidad para soportar otras
cargas de trabajo. Se analiza una capa sobre HBase denominada Phoenix que
provee capacidades de modelado del esquema de datos y una interfaz SQL para
el acceso a los datos.

El almacenamiento final seleccionado debe poder soportar todos los casos
de uso. El tercer y último objetivo es probar que un esquema estricto en el
modelado de los datos también provee beneficios en el acceso a los mismos, y
que cargas de trabajo anaĺıticas como en nuestros casos de uso también pueden
ser satisfechas de forma eficiente con un sistema basado en HBase/Phoenix.

Metodoloǵıa

La metodoloǵıa seguida en este trabajo se basó en el estudio y caracterización de
las necesidades para escalar y mejorar el sistema EventIndex para las siguientes
ejecuciones del proyecto, incluyendo el Run 2 (2015-2018) y el Run 3 (2022-
2025), y en preparación de los sucesivos Runs. Se realizó la implementación y
evaluación de propuestas en entornos a gran escala y con datos reales.

En la figura 3 puede verse una representación de alto nivel de la arquitectura
del proyecto EventIndex. Esta arquitectura flexible nos permite cambiar los
componentes de un área modificando mı́nimamente las interfaces con el resto.

La producción de datos del EventIndex se basa en el indexado y extracción
de metadatos de los ficheros guardados alrededor del mundo en el grid. Después
de la indexación, los metadatos son recolectados y enviados al CERN. Durante el
proceso de recolección puede haber procesos de transformación y consolidación
de los datos para ser ingeridos en el sistema de almacenamiento final. El área de
almacenamiento guarda los metadatos en un sistema big data escalable, y provee

141

Resumen

PRODUCTION COLLECTION STORAGE ACCESS

MONITORING

Events metadata
extraction

Data transform
+ ingestion

Controler

temporary
store

Messaging

EventIndex
storage

Extraction
service

Analytical
service

WLCG CERN

Figura 3: representación de alto nivel de la arquitectura del EventIndex com-
puesta por 5 áreas: producción de datos, recolección de datos, almacenamiento,
acceso y monitorización. Los hexágonos verdes corresponden con almacenes
temporales o permanentes de datos, y los rectángulos rosados representan pro-
cesos. Las flechas negras muestran el flujo de datos del EventIndex, y las flechas
azules representan el flujo de información relacionada con el procesado.

de las interfaces necesarias para resolver los casos de uso requeridos. El área de
acceso a los datos provee los servicios para resolver los casos de uso, englobados
por clases en un sistema de extracción de datos (acceso aleatorio principalmente)
y en el servicio de anaĺıtica de datos (acceso a grandes cantidades).

Las contribuciones de esta tesis se centran en las áreas de recolección
distribuida de datos, almacenamiento final, y acceso a los mismos.

Recolección distribuida de datos

Se realizó primeramente un análisis de la arquitectura productor-consumidor
para la recolección de datos desde el grid, usando un sistema de mensajeŕıa
como transporte. Se detectaron una serie de problemas de rendimiento, ya
que se produćıan bloqueos debido a la segmentación de la carga en múltiples
mensajes impuesta por el sistema, y esto limitaba en la práctica la escalabilidad
del sistema.

Se propuso un nuevo modelo pull para el transporte e ingestión de los datos
en el almacenamiento final (backend). La nueva arquitectura se representa en
la figura 4. En esta arquitectura se usa un almacenamiento de objetos (object
store) para guardar de forma temporal la carga producida en el grid en un único

142

Metodoloǵıa

objeto por productor, de tal forma que no se segmenta la carga. Estos objetos
son seleccionados y consumidos de forma dinámica para ser consolidados en
el sistema de almacenamiento final (puede ser HDFS como originalmente o
cualquiera que implementemos en el área de almacenamiento). De esta forma,
pasamos de un sistema de mensajeŕıa con un modelo push, en el que toda la
información se transmite hasta el backend, a un sistema con un modelo pull, en
el que solo la información válida es guardada y finalmente consolidada en el
backend.

Después de las primeras pruebas satisfactorias, se evaluó el sistema en el
entorno de producción real. Se realizó un despliegue en paralelo de ambos
sistemas, duplicando solo las partes necesarias. Por ejemplo, solo se desplegó
un proceso de indexación y producción de datos, ahorrando tiempo de CPU
consumida, pero enviando los metadatos indexados a ambos sistemas, a través
de mensajeŕıa y del object store. El consumo e ingestión de datos se realizó
en dos áreas diferentes dentro del sistema de almacenamiento final del CERN.
El experimento para validar este modelo se llevó a cabo durante 3 meses,
indexando más de 60 billones (109) de eventos distribuidos en 10 millones de
ficheros alrededor del mundo, sumando un volumen total de 17 PB de datos de
entrada léıdos.

Los resultados demostraron que se mejoró el rendimiento en varias áreas.
Con el nuevo diseño, evitamos la segmentación de la carga, almacenando los
metadatos en un único objeto por proceso. Además, se consiguieron mejores
tasas de compresión con objetos más grandes, agrupando información similar
y de forma binaria (en vez de segmentar la carga en miles de mensajes y
con codificación textual). De esta forma, logramos reducir en un factor 4.5 el
volumen total de datos transmitidos y finalmente, guardados en el backend final.
No se observan bloqueos en la nueva implementación usando el object store, de
tal forma que se puede lograr mejor escalabilidad. El rendimiento durante la
ingestión de datos mejora 15 veces comparado con el sistema anterior basado
en mensajeŕıa. Además, el modelo pull permite la selección dinámica sobre los
datos a consumir, evitando la ingestión de datos duplicados que en nuestro
experimento alcanzó el 10% de los datos producidos.

Después de la validación de la nueva implementación basada en el object
store, se desplegó como único método de recolección de datos durante el Run 2
(2015-2018) y ha estado corriendo en producción desde entonces.

143

Resumen

OBJECT

STORE

STOMP

ACTIVEMQ

BROKERS

PRODUCER

@GRID

SITE_1

PRODUCER

@GRID

SITE_2

PRODUCERS

@TIER 0

CONSUMER#1

CONSUMER#2

PRODUCER

@GRID SITEN SUPERVISOR

HADOOP

Figura 4: arquitectura de la recolección distribuida de datos basada en un object
store. Las flechas negras representan el flujo de datos del EventIndex. Las flechas
azules a lineas discontinuas representan la información de monitorización del
procesado y mensajes de control. Los rectángulos coloreados representan la
carga de datos guardada por los productores como objectos en el object store.
Los consumidores acceden a los objetos con un modelo pull cuando es señalado
por un proceso supervisor.

Almacenamiento

En este área se analizaron las tecnoloǵıas de almacenamiento adecuadas para
nuestro proyecto y que pudieran escalar para las siguientes ejecuciones a partir
del Run 3 (2022-2025).

Primero, se realizó una revisión de HDFS como almacenamiento principal
que ha sido usado en producción desde el principio del proyecto. El trabajo se
centró en el método de ingestión de datos y la organización de los mismos. El
procedimiento de ingestión requiere de varias áreas de almacenamiento temporal

144

Metodoloǵıa

diferentes hasta consolidar los datos en el área final de producción. Primero,
los datos son guardados de forma no necesariamente ordenada en un fichero
SeqFile por dataset. En un paso posterior que realizan otras áreas del proyecto,
se requiere de un proceso de aumentado de los datos (por ejemplo decodificando
el trigger) y de ordenación y consolidación de los mismos para guardarlos
finalmente en un MapFile por contenedor. Estos procesos son complicados
y reducen la tasa efectiva de ingestión de datos, a la vez que aumentan el
tiempo hasta que los datos son accesibles por el usuario final (definido como
traversal time o tiempo de recorrido de los datos). Además, durante el Run 2
la implementación no pudo satisfacer los casos de uso de acceso aleatorio (por
ejemplo selección de eventos particulares) debido al diseño inherente de HDFS,
por lo que dentro del proyecto EventIndex se implementaron soluciones h́ıbridas
copiando un subconjunto de los datos a tablas de una base de datos Oracle
o HBase. Esto complicó los procedimientos de copia, replicando de nuevo los
datos en distintas plataformas y con posibles problemas de coherencia entre
ellos.

Se buscaron otras soluciones para resolver las cuestiones de rendimiento y
escalabilidad, de simplificación de procesos y de duplicidad y coherencia de los
datos. La idea principal era mantener todos los datos en un almacenamiento
único, para resolver todos los casos de forma eficiente, y que pudiera escalar con
el volumen y tasas de ingestión esperadas. Primero se evaluó Kudu debido a su
orientación como sistema h́ıbrido para resolver cargas de trabajo transaccionales
(acceso aleatorio) y anaĺıticas (acceso secuencial a grandes cantidades de datos).
Este sistema se basa en la definición de un modelo de datos con un esquema y
tipos fijos (en vez de sin forzado de esquema como es HDFS) y almacenado f́ısico
de forma columnar. Se colaboró en el desarrollo de un modelo de datos basado
en tablas similares al modelo relacional de bases de datos. En este modelo dos
tablas guardan todos los eventos (una para los eventos reales y otra para los
eventos simulados por métodos de Montecarlo).

Se desarrolló un nuevo complemento (plugin) dentro de nuestro sistema
de recolección de datos para la ingestión en un backend basado en Kudu. Se
realizaron experimentos de ingestión de datos reales en un cluster local, probando
varios esquemas diferentes de organización interna de los datos. Las pruebas
consistieron en un escenario t́ıpico en el que se van procesando datasets, lo que
implica leer todos los objetos a consumir pertenecientes al mismo, se transforman
los datos al esquema en Kudu, y se escriben los datos en el almacén final. Las
transformaciones para el esquema implican decodificar los bits de los triggers
empaquetados en los datos intermedios en object store (reduciendo el volumen
de datos durante el env́ıo). Una diferencia con respecto a la implementación

145

Resumen

anterior basada en HDFS es que no hace falta que sea un solo hilo (thread)
por dataset el que escriba (debido al diseño de HDFS con un único-escritor
y multiples-lectores). Durante nuestras pruebas se comprobó que en el nuevo
sistema, gracias a la implementación multi-hilo, menos del 1% del tiempo es
invertido en esperar datos del object store. Además, solo el 4% del tiempo
es invertido en la transformación de los datos al esquema en Kudu, siendo el
resto del tiempo ocupado en la comunicación y transmisión de los datos. El
rendimiento por hilo escritor en Kudu es de 5-6 kHz, y ahora se pueden emplear
múltiples hilos de escritura por dataset para incrementar el rendimiento global.
El mejor rendimiento se obtiene con esquemas que distribuyen los eventos de
forma equitativa entre particiones. Además, el sistema dispone de un espacio de
claves ordenado por diseño desde la primera ingestión, evitando otros procesos
de consolidado de datos.

Aunque Kudu satisfaćıa los requerimientos de nuestra aplicación en cuanto
a capacidades y rendimiento, la falta de un soporte claro en producción hizo
buscar otras alternativas.

Estudiamos HBase como candidato a mantener todos los datos (anterior-
mente hab́ıa sido usado para un subconjunto pequeño), junto con una capa
implementada por Phoenix para proveer de tipado y esquemas fijos al modelo
de datos, aśı como interfaces SQL para la ingestión y el acceso a los mismos. El
esquema de datos con una gran tabla para los eventos fue desarrollado dentro
del proyecto, y las contribuciones principales de este trabajo están relacionadas
con la ingestión de datos y el registro de los mismos. Hemos definido una serie
de tablas con meta-información y para mantener las relaciones jerárquicas de
los datasets y contenedores tras la ingestión. Además, se necesitaba importar los
datos previamente consolidados en HDFS para Runs anteriores en las nuevas
estructuras de HBase/Phoenix, por lo que otras tablas auxiliares adicionales
fueron definidas. Llevamos a cabo varios desarrollos para soportar la inges-
tión de datos en el backend de HBase/Phoenix. Un nuevo complemento fue
desarrollado para soportar la ingestión en el sistema de colección de datos,
para aśı completar la cadena de ingestión de datos desde el object store hasta
el nuevo almacén final. Además, se desarrolló un procedimiento basado en
MapReduce para importar la ingente cantidad de datos ya consolidados en
HDFS hasta HBase/Phoenix. Se condujeron varios experimentos para evaluar
el rendimiento y la mejor configuración de las tablas en el esquema de datos
final. Se probaron varias técnicas con varias configuraciones: distribuir la carga
entre regiones (funciones hash o salting añadiendo un prefijo a la clave); dividir
con anterioridad la tabla en regiones (region pre-splitting); mapear nombres
de columnas (column mapping) con un nivel de indirección para reducir su

146

Metodoloǵıa

tamaño (los nombres de las columnas se guardan en HBase en cada registro);
codificar todas las columnas de una familia en una única celda (immutable rows);
y deshabilitar el registro anticipado de transacciones o WAL (Write Ahead
Log). Se usó el cluster de computación del CERN compuesto por 39 nodos (32
servidores de regiones de HBase) con un total de 18 TB de memoria y 1,658
vcores. Es un cluster compartido por varios proyectos, inclúıdo EventIndex. La
configuración inclúıa las siguientes distribuciones de software: Hadoop 3.2.1,
HBase 2.2.4 y Apache Phoenix 5.0. Se llevaron a cabo experimentos con varias
tablas y configuraciones, y una ingestión masiva de aproximadamente 8,000
datasets, con 70 billones de eventos y ocupando finalmente un volumen de 22
TB en HBase. Se obtuvieron rendimientos de 117 kHz de media durante la
ingestión. Los mejores rendimientos individuales se obtienen con datasets más
grandes y con configuraciones que distribuyen la carga en el espacio de claves. La
pre-división en regiones evita los rendimientos lentos al comienzo, lo que puede
ser beneficioso cuando se pone en producción por primera vez. Deshabilitar el
WAL mejora el rendimiento de la escritura y es factible en nuestro caso, al poder
reproducirse los datos desde el object store en caso de fallo. Otras caracteŕısticas
como el mapeo de columnas o la codificación en celdas inmutables no proveen de
mejoras sustanciales en nuestra aplicación y modelo, y en cambio imponen una
dependencia sobre Phoenix innecesaria. El tiempo invertido para la conversión
de los datos a nuestro modelo en HBase está en el 8.5%, siendo el resto ocupado
por el env́ıo efectivo de los datos a los servidores de regiones de HBase. Los
resultados mostraron que gracias al modelo en HBase se pueden utilizar varios
hilos por dataset escalando convenientemente y obtener valores de rendimiento
suficientes para el Run 3 y siguientes.

Acceso

Se incorporó un entorno basado en Spark para acceder a los datos guardados
en nuestro modelo en HBase/Phoenix, y resolver casos de uso anaĺıticos que
requieren acceso a grandes cantidades de datos. En la figura 5 se muestra la
arquitectura propuesta donde Spark es la herramienta principal que provee las
abstracciones y el modelado de datos orientado particularmente para operaciones
eficientes en memoria. Spark tiene interfaz nativa con los gestores de recursos
como en nuestro caso YARN para proveer los recursos computacionales. La
interfaz con el almacenamiento es versátil y puede acceder a varios tipos de
almacenamiento, en nuestro caso HBase/Phoenix. El acceso por parte de los
usuarios o herramientas de alto nivel puede ser tanto interactivo desde la ĺınea
de comandos o notebooks, como en segundo plano (batch) a través de interfaces

147

Resumen

EventIndex Data

Collection

CPUs

Data Access
- interactive
- batch

Data Ingestion

Resource Management
Data Backends

Analytics Results
- In-memory Spark Dataframes
- Data Backend stored

Figura 5: arquitectura de la plataforma anaĺıtica de EventIndex basada en
Apache Spark.

de programación (API). Los resultados calculados son modelados como Spark
DataFrames que pueden ser utilizados para otras computaciones o almacenados
de nuevo con los modelos adecuados en HBase/Phoenix.

Se desarrollaron herramientas para acceder a los datos y en particular para
la resolución de casos de uso anaĺıticos en forma de un paquete de Spark usando
Scala como lenguaje de programación. Se proveen abstracciones sobre el modelo
propuesto para la localización de los datos a nivel de contenedor, dataset o
evento. Además, se modelan como DataFrames que pueden ser usadas por
el resto de herramientas. Se resolvieron casos de uso como la detección de
duplicados o de solapes (overlaps) de eventos entre distintos datasets. Para la
evaluación se utilizaron tanto datos reales guardados en HBase/Phoenix como
el cluster del CERN mencionado en la sección anterior, disponiendo de Spark
2.4.8 y 3.3.0.

En el caso de detección de overlaps se presentó un algoritmo con coste

148

Conclusiones

computacional O(n) con el número de eventos y con coste espacial O(s2) con
el número de flujos (streams). El algoritmo escala automáticamente hasta 32
procesos gracias a la configuración del cluster, obteniendo un rendimiento de 380
kHz (eventos procesados por segundo) para 500 M de eventos. Solo es necesario
acceder a la clave de la tabla y no a ninguna familia de datos de HBase, con lo
que se obtiene un rendimiento óptimo en cuanto a la cantidad de datos accedidos.
La detección de duplicados accede a más datos por evento (en nuestro modelo
los metadatos sobre localización están en una familia especifica de HBase), por
lo que se obtiene un rendimiento de 120 kHz para 100 M de eventos, comparado
con los 150 kHz que se obtienen para el mismo número de eventos en el algoritmo
de overlaps. Las tasas de procesado muestran una penalización para datasets
pequeños debido a que la inicialización y establecimiento de los flujos de datos
a los servidores de regiones de HBase dominan el tiempo total.

Conclusiones

En este trabajo hemos hecho varias contribuciones al proyecto EventIndex
en las áreas de recolección de datos distribuidos, almacenamiento de grandes
cantidades de datos y acceso a los mismos.

Hemos mejorado el sistema de recolección de datos en grandes infraestruc-
turas distribuidas como el grid. El anterior sistema basado en mensajeŕıa era
complejo y limitaba la escalabilidad de nuestra aplicación para los siguientes
Runs. Con un nuevo diseño basado en un almacenamiento de objetos (object
store) temporal, y con un modelo pull de selección de datos dinámica para
su ingestión en el almacenamiento final, mejoramos el rendimiento en varias
áreas. Con el nuevo modelo evitamos la segmentación de la carga, almacenando
toda la información de cada proceso de extracción de metadatos en un único
objeto. De esta manera conseguimos mejores tasas de compresión al aplicar
codificación binaria a datos relacionados y agrupados con mayor granularidad.
Se logra por lo tanto, una reducción de un factor 4.5 en el volumen de datos
totales enviados por la red a través del sistema de recolección, e ingeridos en el
almacenamiento final. Desde que hemos aplicado esta mejora basada en el object
store, no se han observado bloqueos y la distribución de la carga de trabajo se
ha optimizado consiguiendo mayor escalabilidad. Aśı mismo el rendimiento ha
mejorado 15 veces comparado con la implementación anterior basada en mensa-
jeŕıa. Además, la aproximación del modelo pull permite la selección dinámica de
datos a consumir, evitando ingerir datos duplicados generados en el grid, que en
nuestro experimento es del orden del 10% de los datos producidos. El modelo

149

Resumen

pull basado en un object store fue desplegado en producción durante el Run
2 (2015-2018) resolviendo las limitaciones anteriores y muestra un excelente
desempeño en producción desde entonces, siendo capaz de escalar para las tasas
requeridas en los siguientes años.

En el área de almacenamiento de datos, se seleccionó HBase por su buen
rendimiento y por su soporte superior en producción. La flexibilidad de nuestra
arquitectura permite cambiar el almacenamiento final manteniendo el modelo
pull de ingestión de datos. Con HBase como principal y único almacenamiento
final para todos nuestros datos logramos simplificar el almacenamiento, evitar
duplicidades entre subsistemas y posibles problemas de coherencia entre los
mismos, y reducir el volumen total de datos. De esta forma pasamos de un
sistema h́ıbrido que manteńıa los datos en HDFS y Oracle, a un sistema único
basado en HBase. Con una una capa de acceso basada en SQL que no estaba
disponible anteriormente, logramos dotar de una interfaz única a terceros, y
además nos aseguramos del cumplimiento del esquema de datos con tipos
definidos. Esto no estaba disponible anteriormente en el modelo sin esquema de
HDFS, de tal forma que con la nueva aproximación se pueden aplicar mejoras
en el almacenamiento de datos a nivel columnar, reduciendo el volumen total de
datos ocupados. Aśı mismo con este esquema ya no se necesitan procedimientos
añadidos de aumento de datos, ya que todos los necesarios pueden hacerse en
ĺınea durante el proceso de ingestión. En cuanto a rendimiento y relacionado con
los parámetros del esquema de nuestro modelo de datos, hemos mostrado que
una división de regiones previa en HBase y una distribución de la carga entre
regiones basada en hashes sobre la clave (salting) mejora las tasas de ingestión
de datos. HBase/Phoenix incluye por diseño una ordenación global basada
en la clave, con lo cual evitamos los procesos de ordenación y consolidación
que teńıamos anteriormente en la implementación con HDFS. HBase permite
escribir a nivel de celda (registro de evento en EventIndex), con lo que se pueden
tener múltiples hilos escritores por dataset. De esta manera, aumentamos el
rendimiento comparado con el único hilo escritor por dataset que teńıamos en la
implementación anterior con HDFS. Hemos contribuido a reducir la complejidad
en el sistema de almacenamiento y el uso de recursos, optimizando el volumen
de datos a la vez que se mejora el rendimiento durante la ingestión de datos.
Estas mejoras incrementan la fiabilidad y el rendimiento global del sistema de
almacenamiento requerido para el Run 3 (2022-2025) y sucesivos.

Con nuestras contribuciones en el área de acceso a los datos, ahora es posible
el acceso y análisis interactivo, cosa que no era posible con el modelo anterior.
Hemos mejorado los casos de uso anaĺıticos en el nuevo sistema almacenando los
datos con un modelo en HBase/Phoenix y accediendo mediante una plataforma

150

Conclusiones

basada en Spark, usando sus abstracciones y un conjunto de herramientas
implementadas en Scala. La nueva herramienta y algoritmos resuelven el acceso
a los datos y los casos de uso anaĺıticos en áreas como el descubrimiento de datos,
detección de duplicados y cálculo de solapes (overlaps) entre datasets, que ahora
son utilizables de forma integrada. Las herramientas producen DataFrames
que son usadas por el resto de funcionalidades, en particular para el cálculo de
duplicados y overlaps. Además los datos y resultados analizados se mantienen
en caché, cosa que no era posible anteriormente, facilitando el encadenamiento
de algoritmos, y la mejora global en la utilización de recursos. El algoritmo
de cálculo de overlaps tiene un coste computacional O(n) con el número de
eventos, y coste espacial O(s2) con el número de flujos (streams) de datasets.
Su desempeño en HBase/Phoenix es óptimo, ya que solo requiere acceder a
la clave de cada evento. El rendimiento mejora con respecto a la anterior
aproximación ya que ahora el acceso a datos espećıficos de un registro de evento
se puede hacer de forma individual, en vez de acceder a todo el registro como
en HDFS. También la nueva organización columnar permite reducir el número
de operaciones de entrada/salida, contribuyendo a la mejora del rendimiento.
Con nuestras herramientas abstraemos el modelo de datos final, desacoplando
el acceso a los datos del esquema y tecnoloǵıas reales usadas. Esta aproximación
simplifica las complejidades del sistema con unas interfaces definidas e intuitivas
para herramientas y usuarios. También enmascara posibles cambios en el modelo
de datos, que son invisibles para el usuario ya que las interfaces que usa no
cambian. Con esta aproximación logramos resolver los casos de uso anaĺıticos
del proyecto EventIndex de una manera eficiente, dando caminos de acceso
que no exist́ıan anteriormente. De esta forma hemos contribuido a lograr el
objetivo de construir un catálogo de todos los eventos reales y simulados del
proyecto ATLAS durante todos sus años de ejecución, y en particular para los
retos previstos para el Run 3 (2022-2025) y en adelante.

151

Bibliography

[1] Lyndon Evans and Philip Bryant. LHC Machine. In: Journal of In-
strumentation 3.08 (Aug. 2008), S08001–S08001. doi: 10.1088/1748-
0221/3/08/s08001 (cit. on pp. 5, 136).

[2] Ewa Lopienska. The CERN accelerator complex, layout in 2022. Com-
plexe des accélérateurs du CERN en janvier 2022. In: (Feb. 2022). General
Photo. url: https://cds.cern.ch/record/2800984 (cit. on p. 6).

[3] Letter of Intent for the LHCb Upgrade. Tech. rep. Geneva: CERN, 2011.
url: https://cds.cern.ch/record/1333091 (cit. on p. 8).

[4] The ALICE Collaboration. Transverse-momentum and event-shape de-
pendence of D-meson flow harmonics in Pb–Pb collisions at sNN=5.02TeV.
In: Physics Letters B 813 (2021), p. 136054. issn: 0370-2693. doi: https:
//doi.org/10.1016/j.physletb.2020.136054 (cit. on p. 8).

[5] G. Aad et al. The ATLAS Experiment at the CERN Large Hadron
Collider. In: JINST 3 (2008), S08003. doi: 10.1088/1748-0221/3/08/
S08003 (cit. on pp. 8, 136).

[6] Joao Pequenao. Computer generated image of the whole ATLAS detector.
Mar. 2008. url: https://cds.cern.ch/record/1095924 (cit. on pp. 9,
137).

[7] Joao Pequenao and Paul Schaffner. How ATLAS detects particles: di-
agram of particle paths in the detector. Jan. 2013. url: https://cds.
cern.ch/record/1505342 (cit. on p. 10).

[8] Joao Pequenao. Computer generated image of the ATLAS inner detector.
Mar. 2008. url: https://cds.cern.ch/record/1095926 (cit. on
p. 11).

153

https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/s08001
https://cds.cern.ch/record/2800984
https://cds.cern.ch/record/1333091
https://doi.org/https://doi.org/10.1016/j.physletb.2020.136054
https://doi.org/https://doi.org/10.1016/j.physletb.2020.136054
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://cds.cern.ch/record/1095924
https://cds.cern.ch/record/1505342
https://cds.cern.ch/record/1505342
https://cds.cern.ch/record/1095926

Bibliography

[9] Brad Abbott, Justin Albert, Fabrizio Alberti, Markus Alex, Gianluca
Alimonti, Steven Alkire, P Allport, Silke Altenheiner, Lucian Stefan
Ancu, E Anderssen, et al. Production and integration of the ATLAS
Insertable B-Layer. In: Journal of instrumentation 13.05 (2018), T05008
(cit. on p. 11).

[10] Joao Pequenao. Computer Generated image of the ATLAS calorimeter.
Mar. 2008. url: https://cds.cern.ch/record/1095927 (cit. on
p. 13).

[11] M (CERN) Aleksa, W (Pittsburgh) Cleland, Y (Tokyo) Enari, M (Vic-
toria) Fincke-Keeler, L (CERN) Hervas, F (BNL) Lanni, S (Oregon)
Majewski, C (Victoria) Marino, and I (LAPP) Wingerter-Seez. ATLAS
Liquid Argon Calorimeter Phase-I Upgrade: Technical Design Report.
Tech. rep. Final version presented to December 2013 LHCC. Sept. 2013.
url: https://cds.cern.ch/record/1602230 (cit. on p. 13).

[12] Ellis Kay. Commissioning the Phase-1 LAr Upgrade. Tech. rep. Geneva:
CERN, Aug. 2021. url: https://cds.cern.ch/record/2779554 (cit.
on p. 14).

[13] Joao Pequenao. Computer generated image of the ATLAS Muons subsys-
tem. Mar. 2008. url: https://cds.cern.ch/record/1095929 (cit. on
p. 15).

[14] Bernd Stelzer. The New Small Wheel Upgrade Project of the AT-
LAS Experiment. In: Nuclear and Particle Physics Proceedings 273-275
(2016). 37th International Conference on High Energy Physics (ICHEP),
pp. 1160–1165. issn: 2405-6014. doi: https://doi.org/10.1016/j.
nuclphysbps.2015.09.182 (cit. on p. 15).

[15] The ATLAS collaboration. Operation of the ATLAS trigger system in
Run 2. In: Journal of Instrumentation 15.10 (Oct. 2020), P10004–P10004.
doi: 10.1088/1748-0221/15/10/p10004 (cit. on pp. 16, 136).

[16] ATLAS Collaboration. Athena. Version 21.0.127. May 2021. doi: 10.
5281/zenodo.4772550 (cit. on p. 18).

[17] Rafal Bielski. ATLAS High Level Trigger within the multi-threaded
software framework AthenaMT. In: Journal of Physics: Conference
Series 1525.1 (Apr. 2020), p. 012031. doi: 10.1088/1742-6596/1525/
1/012031 (cit. on p. 18).

154

https://cds.cern.ch/record/1095927
https://cds.cern.ch/record/1602230
https://cds.cern.ch/record/2779554
https://cds.cern.ch/record/1095929
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2015.09.182
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2015.09.182
https://doi.org/10.1088/1748-0221/15/10/p10004
https://doi.org/10.5281/zenodo.4772550
https://doi.org/10.5281/zenodo.4772550
https://doi.org/10.1088/1742-6596/1525/1/012031
https://doi.org/10.1088/1742-6596/1525/1/012031

Bibliography

[18] Markus Elsing, Luc Goossens, Armin Nairz, and Guido Negri. The
ATLAS Tier-0: Overview and operational experience. In: Journal of
Physics: Conference Series 219.7 (Apr. 2010), p. 072011. doi: 10.1088/
1742-6596/219/7/072011 (cit. on p. 18).

[19] Carlos Chavez, Michele Gianelli, Alex Martyniuk, Joerg Stelzer, Mark
Stockton, and Will Vazquez. The Database Driven ATLAS Trigger
Configuration System. In: Journal of Physics: Conference Series 664.8
(Dec. 2015), p. 082030. doi: 10.1088/1742-6596/664/8/082030 (cit. on
p. 19).

[20] E J Gallas, S Albrand, M Borodin, and A Formica and. Utility of
collecting metadata to manage a large scale conditions database in
ATLAS. In: Journal of Physics: Conference Series 513.4 (June 2014),
p. 042020. doi: 10.1088/1742-6596/513/4/042020 (cit. on p. 19).

[21] C P Bee, D Francis, L Mapelli, R McLaren, Giuseppe Mornacchi, J
Petersen, and F J Wickens. The raw event format in the ATLAS Trigger
& DAQ. Tech. rep. Revised version number 5 submitted on 2016-11-03
11:47. Geneva: CERN, Feb. 2016. url: https://cds.cern.ch/record/
683741 (cit. on pp. 20, 74, 75, 139).

[22] K. Bos, N. Brook, D. Duellmann, C. Eck, I. Fisk, D. Foster, B. Gibbard,
C. Grandi, F. Grey, J. Harvey, A. Heiss, F. Hemmer, S. Jarp, R. Jones,
D. Kelsey, J. Knobloch, M. Lamanna, H. Marten, P. Mato Vila, F.
Ould-Saada, B. Panzer-Steindel, L. Perini, L. Robertson, Y. Schutz, U.
Schwickerath, J. Shiers, and T. Wenaus. LHC computing Grid: Technical
Design Report. Version 1.06 (20 Jun 2005). Technical design report. LCG.
Geneva: CERN, 2005. url: https://cds.cern.ch/record/840543
(cit. on pp. 20, 138).

[23] Worldwide LHC Computing Grid (WLCG) Map. September 2022. https:
/ / wlcg . web . cern . ch / using - wlcg / monitoring - visualisation.
(Visited on 09/01/2022) (cit. on pp. 21, 138).

[24] The ATLAS Collaboration, Georges Aad, B Abbott, J Abdallah, AA
Abdelalim, Abdelmalek Abdesselam, B Abi, M Abolins, H Abramowicz,
H Abreu, BS Acharya, et al. The ATLAS simulation infrastructure.
In: The European Physical Journal C 70.3 (2010), pp. 823–874. doi:
10.1140/epjc/s10052-010-1429-9 (cit. on p. 21).

155

https://doi.org/10.1088/1742-6596/219/7/072011
https://doi.org/10.1088/1742-6596/219/7/072011
https://doi.org/10.1088/1742-6596/664/8/082030
https://doi.org/10.1088/1742-6596/513/4/042020
https://cds.cern.ch/record/683741
https://cds.cern.ch/record/683741
https://cds.cern.ch/record/840543
https://wlcg.web.cern.ch/using-wlcg/monitoring-visualisation
https://wlcg.web.cern.ch/using-wlcg/monitoring-visualisation
https://doi.org/10.1140/epjc/s10052-010-1429-9

Bibliography

[25] Andrea Valassi, Efe Yazgan, Josh McFayden, Simone Amoroso, Joshua
Bendavid, Andy Buckley, Matteo Cacciari, Taylor Childers, Vitaliano
Ciulli, Rikkert Frederix, et al. Challenges in Monte Carlo event generator
software for High-Luminosity LHC. In: Computing and Software for Big
Science 5.1 (May 2021), p. 12. issn: 2510-2044. doi: 10.1007/s41781-
021-00055-1 (cit. on p. 21).

[26] Paul J. Leach, Rich Salz, and Michael H. Mealling. A Universally Unique
IDentifier (UUID) URN Namespace. RFC 4122. July 2005. doi: 10.
17487/RFC4122 (cit. on p. 21).

[27] S Albrand, J Chapman, D Cote, L Fiorini, EJ Gallas, V Garonne, C
Gwenlan, P Laycock, A Klimentov, D Malon, E Torrence, G Unal, T
Wenaus, J Catmore, D Charlton, L Gossens, A Nairz, D Barberis, F
Gianotti, C Guyot, R Hawkings, I Hinchliffe, B Heinemann, A Höcker,
G Lehmann, P Nevski, and H von der Schmitt. ATLAS Dataset Nomen-
clature. Tech. rep. Geneva: CERN, Nov. 2007. url: https://cds.cern.
ch/record/1070318 (cit. on pp. 22, 33).

[28] Martin Barisits, Thomas Beermann, Frank Berghaus, Brian Bockelman,
Joaquin Bogado, David Cameron, Dimitrios Christidis, Diego Ciangot-
tini, Gancho Dimitrov, Markus Elsing, Vincent Garonne, Alessandro di
Girolamo, Luc Goossens, Wen Guan, Jaroslav Guenther, Tomas Javurek,
Dietmar Kuhn, Mario Lassnig, Fernando Lopez, Nicolo Magini, Angelos
Molfetas, Armin Nairz, Farid Ould-Saada, Stefan Prenner, Cedric Serfon,
Graeme Stewart, Eric Vaandering, Petya Vasileva, Ralph Vigne, and
Tobias Wegner. Rucio: Scientific Data Management. In: Computing and
Software for Big Science 3.1 (Aug. 2019), p. 11. issn: 2510-2044. doi:
10.1007/s41781-019-0026-3 (cit. on pp. 22, 27).

[29] High Luminosity LHC. https://hilumilhc.web.cern.ch/content/
hl-lhc-project. (Visited on 09/01/2022) (cit. on pp. 23, 139).

[30] ATLAS Collaboration. ATLAS Software and Computing HL-LHC Roadmap.
Tech. rep. Geneva: CERN, 2022. url: https://cds.cern.ch/record/
2802918 (cit. on pp. 23–25).

[31] HepSpec06. https://w3.hepix.org/benchmarking.htm. (Visited on
09/01/2022) (cit. on p. 23).

[32] I Bird, P Buncic, F Carminati, M Cattaneo, P Clarke, I Fisk, M Girone,
J Harvey, B Kersevan, P Mato, R Mount, and B Panzer-Steindel. Update
of the Computing Models of the WLCG and the LHC Experiments. Tech.

156

https://doi.org/10.1007/s41781-021-00055-1
https://doi.org/10.1007/s41781-021-00055-1
https://doi.org/10.17487/RFC4122
https://doi.org/10.17487/RFC4122
https://cds.cern.ch/record/1070318
https://cds.cern.ch/record/1070318
https://doi.org/10.1007/s41781-019-0026-3
https://hilumilhc.web.cern.ch/content/hl-lhc-project
https://hilumilhc.web.cern.ch/content/hl-lhc-project
https://cds.cern.ch/record/2802918
https://cds.cern.ch/record/2802918
https://w3.hepix.org/benchmarking.htm

Bibliography

rep. Apr. 2014. url: https://cds.cern.ch/record/1695401 (cit. on
p. 23).

[33] Karl Rupp. 48 Years of Microprocessor Trend Data. Version 2020.0. July
2020. doi: 10.5281/zenodo.3947824 (cit. on p. 24).

[34] Charles Leggett, John Baines, Tomasz Bold, Paolo Calafiura, Steven
Farrell, Peter van Gemmeren, David Malon, Elmar Ritsch, Graeme
Stewart, Scott Snyder, Vakhtang Tsulaia, and Benjamin Wynne and.
AthenaMT: upgrading the ATLAS software framework for the many-core
world with multi-threading. In: Journal of Physics: Conference Series
898 (Oct. 2017), p. 042009. doi: 10.1088/1742-6596/898/4/042009
(cit. on p. 24).

[35] A Buckley, T Eifert, M Elsing, D Gillberg, K Koeneke, A Krasznahorkay,
E Moyse, M Nowak, S Snyder, and P van Gemmeren. Implementation of
the ATLAS Run 2 event data model. In: Journal of Physics: Conference
Series 664.7 (Dec. 2015), p. 072045. doi: 10.1088/1742-6596/664/7/
072045 (cit. on p. 25).

[36] James Catmore, Jack Cranshaw, Thomas Gillam, Eirik Gramstad, Paul
Laycock, Nurcan Ozturk, and Graeme Andrew Stewart. A new petabyte-
scale data derivation framework for ATLAS. In: Journal of Physics:
Conference Series 664.7 (Dec. 2015), p. 072007. doi: 10.1088/1742-
6596/664/7/072007 (cit. on pp. 25, 28).

[37] Elmsheuser, Johannes, Anastopoulos, Christos, Boyd, Jamie, Catmore,
James, Gray, Heather, Krasznahorkay, Attila, McFayden, Josh, Meyer,
Christopher John, Sfyrla, Anna, Strandberg, Jonas, Suruliz, Kerim, and
Theveneaux-Pelzer, Timothee. Evolution of the ATLAS analysis model
for Run-3 and prospects for HL-LHC. In: EPJ Web Conf. 245 (2020),
p. 06014. doi: 10.1051/epjconf/202024506014 (cit. on pp. 25, 32).

[38] TJ Khoo, A Reinsvold Hall, N Skidmore, S Alderweireldt, J Anders,
C Burr, W Buttinger, P David, L Gouskos, L Gray, et al. Constraints on
future analysis metadata systems in High Energy Physics. In: Computing
and Software for Big Science 6.1 (2022), pp. 1–9. issn: 2510-2044. doi:
10.1007/s41781-022-00086-2 (cit. on p. 26).

[39] Berghaus, Frank, Krasznahorkay, Attila, Martin, Tim, Novak, Tadej,
Nowak, Marcin, Schaffer, A.C., Tsulaia, Vakho, and van Gemmeren,
Peter. ATLAS in-file metadata and multi-threaded processing. In: EPJ
Web Conf. 251 (2021), p. 03006. doi: 10.1051/epjconf/202125103006
(cit. on p. 26).

157

https://cds.cern.ch/record/1695401
https://doi.org/10.5281/zenodo.3947824
https://doi.org/10.1088/1742-6596/898/4/042009
https://doi.org/10.1088/1742-6596/664/7/072045
https://doi.org/10.1088/1742-6596/664/7/072045
https://doi.org/10.1088/1742-6596/664/7/072007
https://doi.org/10.1088/1742-6596/664/7/072007
https://doi.org/10.1051/epjconf/202024506014
https://doi.org/10.1007/s41781-022-00086-2
https://doi.org/10.1051/epjconf/202125103006

Bibliography

[40] Jerome Fulachier, J Odier, F Lambert, ATLAS Collaboration, et al.
ATLAS Metadata Interface (AMI), a generic metadata framework. In:
Journal of Physics: Conference Series. Vol. 898. 6. IOP Publishing. 2017,
p. 062001 (cit. on pp. 26, 33).

[41] EJ Gallas, Solveig Albrand, Mikhail Borodin, Andrea Formica, Atlas
Collaboration, et al. Utility of collecting metadata to manage a large
scale conditions database in ATLAS. In: Journal of Physics: Conference
Series. Vol. 513. 4. IOP Publishing. 2014, p. 042020 (cit. on p. 26).

[42] D Malon, J Cranshaw, and Q Zhang. An extensible infrastructure for
querying and mining event-level metadata in ATLAS. In: Journal of
Physics: Conference Series 396.5 (Dec. 2012), p. 052053. doi: 10.1088/
1742-6596/396/5/052053 (cit. on p. 27).

[43] P van Gemmeren, D Malon, and M Nowak and. Next-Generation Naviga-
tional Infrastructure and the ATLAS Event Store. In: Journal of Physics:
Conference Series 513.5 (June 2014), p. 052036. doi: 10.1088/1742-
6596/513/5/052036 (cit. on pp. 30, 75).

[44] F H Barreiro Megino, K De, A Klimentov, T Maeno, P Nilsson, D
Oleynik, S Padolski, S Panitkin, and T Wenaus and. PanDA for AT-
LAS distributed computing in the next decade. In: Journal of Physics:
Conference Series 898 (Oct. 2017), p. 052002. doi: 10.1088/1742-
6596/898/5/052002 (cit. on p. 33).

[45] F H Barreiro, M Borodin, K De, D Golubkov, A Klimentov, T Maeno,
R Mashinistov, S Padolski, and T Wenaus and. The ATLAS Production
System Evolution: New Data Processing and Analysis Paradigm for the
LHC Run2 and High-Luminosity. In: Journal of Physics: Conference
Series 898 (Oct. 2017), p. 052016. doi: 10.1088/1742-6596/898/5/
052016 (cit. on p. 33).

[46] G A Stewart, W B Breaden-Madden, H J Maddocks, T Harenberg,
M Sandhoff, and B Sarrazin. ATLAS Job Transforms: A Data Driven
Workflow Engine. In: Journal of Physics: Conference Series 513.3 (June
2014), p. 032094. doi: 10.1088/1742-6596/513/3/032094 (cit. on
p. 35).

[47] J Sánchez, A Fernández Casańı, and S González de la Hoz. Distributed
Data Collection for the ATLAS EventIndex. In: Journal of Physics:
Conference Series 664.4 (Dec. 2015), p. 042046. doi: 10.1088/1742-
6596/664/4/042046 (cit. on pp. 35, 40, 75, 131).

158

https://doi.org/10.1088/1742-6596/396/5/052053
https://doi.org/10.1088/1742-6596/396/5/052053
https://doi.org/10.1088/1742-6596/513/5/052036
https://doi.org/10.1088/1742-6596/513/5/052036
https://doi.org/10.1088/1742-6596/898/5/052002
https://doi.org/10.1088/1742-6596/898/5/052002
https://doi.org/10.1088/1742-6596/898/5/052016
https://doi.org/10.1088/1742-6596/898/5/052016
https://doi.org/10.1088/1742-6596/513/3/032094
https://doi.org/10.1088/1742-6596/664/4/042046
https://doi.org/10.1088/1742-6596/664/4/042046

Bibliography

[48] Dario Barberis, Igor Aleksandrov, Evgeny Alexandrov, Zbigniew Bara-
nowski, Luca Canali, Elizaveta Cherepanova, Gancho Dimitrov, Andrea
Favareto, Alvaro Fernandez Casani, Elizabeth J. Gallas, Carlos Gar-
cia Montoro, Santiago Gonzalez de la Hoz, Julius Hrivnac, Alexander
Iakovlev, Andrei Kazymov, Mikhail Mineev, Fedor Prokoshin, Grigori
Rybkin, Jose Salt, Javier Sanchez, Roman Sorokoletov, Rainer Toebbicke,
Petya Vasileva, Miguel Villaplana Perez, and Ruijun Yuan. The ATLAS
EventIndex: a BigData catalogue for all ATLAS experiment events. For
publication in Computing and Software for Big Science. Q1. 2022. doi:
10.48550/ARXIV.2211.08293 (cit. on pp. 35, 69, 76, 133).

[49] Santiago González de la Hoz, Carlos Acosta-Silva, Javier Aparisi Pozo,
Manuel Delfino, Jose del Peso, Álvaro Fernández Casani, José Flix Molina,
Esteban Fullana Torregrosa, Carlos Garćıa Montoro, Julio Lozano Bahilo,
Almudena del Rocio Montiel, Andreu Pacheco Pages, Javier Sánchez
Mart́ınez, José Salt, and Aresh Vedaee. Spanish ATLAS Tier-1 & Tier-2
perspective on computing over the next years. In: EPJ Web of Confer-
ences 214 (2019). Ed. by A. Forti, L. Betev, M. Litmaath, O. Smirnova,
and P. Hristov, p. 03013. doi: 10.1051/epjconf/201921403013 (cit. on
pp. 35, 132).

[50] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.
isbn: 9781449311520 (cit. on p. 35).

[51] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop dis-
tributed file system. In: 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies, MSST2010. 2010, pp. 1–10. doi: 10.1109/
MSST.2010.5496972 (cit. on pp. 35, 70).

[52] Hadoop MapFile. https://hadoop.apache.org/docs/r3.3.0/api/
org/apache/hadoop/io/MapFile.html. (Visited on 09/01/2022) (cit.
on p. 35).

[53] Oracle DB. https://www.oracle.com/database/technologies/.
(Visited on 09/01/2022) (cit. on p. 36).

[54] E J Gallas, G Dimitrov, P Vasileva, Z Baranowski, L Canali, A Dumitru,
and A Formica and. An Oracle-based event index for ATLAS. In: Journal
of Physics: Conference Series 898 (Oct. 2017), p. 042033. doi: 10.1088/
1742-6596/898/4/042033 (cit. on pp. 36, 69).

159

https://doi.org/10.48550/ARXIV.2211.08293
https://doi.org/10.1051/epjconf/201921403013
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://hadoop.apache.org/docs/r3.3.0/api/org/apache/hadoop/io/MapFile.html
https://hadoop.apache.org/docs/r3.3.0/api/org/apache/hadoop/io/MapFile.html
https://www.oracle.com/database/technologies/
https://doi.org/10.1088/1742-6596/898/4/042033
https://doi.org/10.1088/1742-6596/898/4/042033

Bibliography

[55] Z. Baranowski, L. Canali, R. Toebbicke, J. Hrivnac, and D. Barberis. A
study of data representation in Hadoop to optimize data storage and
search performance for the ATLAS EventIndex. In: Journal of Physics:
Conference Series 898 (Oct. 2017), p. 062020. doi: 10.1088/1742-
6596/898/6/062020 (cit. on pp. 36, 69, 76).

[56] Todd Lipcon, David Alves, Dan Burkert, Jean-Daniel Cryans, Adar
Dembo, Mike Percy, Silvius Rus, Dave Wang, Matteo Bertozzi, Colin
Patrick McCabe, et al. Kudu: Storage for fast analytics on fast data. In:
Cloudera, inc 28 (2015) (cit. on pp. 36, 77).

[57] Lars George. HBase: the definitive guide: random access to your planet-
size data. ” O’Reilly Media, Inc.”, 2011 (cit. on p. 36).

[58] Apache Phoenix. https://phoenix.apache.org/. (Visited on 09/01/2022)
(cit. on pp. 36, 84).

[59] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. In: Communications of the ACM 51.1 (2008),
pp. 107–113 (cit. on pp. 36, 71, 94).

[60] Apache Spark. https://spark.apache.org/. (Visited on 09/01/2022)
(cit. on pp. 37, 77).

[61] D. Barberis, S.E. Cárdenas Zárate, A. Favareto, A. Fernandez Casani,
E.J. Gallas, C. Garcia Montoro, S. Gonzalez de la Hoz, J. Hrivnac, D.
Malon, F. Prokoshin, J. Salt, J. Sanchez, R. Toebbicke, and R. Yuan
and. ATLAS Eventlndex monitoring system using the Kibana analytics
and visualization platform. In: Journal of Physics: Conference Series
762 (Oct. 2016), p. 012004. doi: 10.1088/1742-6596/762/1/012004
(cit. on pp. 37, 132).

[62] Vishal Sharma. Getting Started with Kibana. In: Beginning Elastic Stack.
Berkeley, CA: Apress, 2016, pp. 29–44. isbn: 978-1-4842-1694-1. doi:
10.1007/978-1-4842-1694-1_3 (cit. on p. 37).

[63] A Fernandez Casani, D Barberis, A Favareto, C Garcia Montoro, S
González de la Hoz, J Hřivnáč, F Prokoshin, J Salt, J Sanchez, Többicke,
R Yuan, and ATLAS Collaboration. ATLAS EventIndex general dataflow
and monitoring infrastructure. In: Journal of Physics: Conference Series
898.6 (2017), p. 062010. doi: 10.1088/1742- 6596/898/6/062010
(cit. on pp. 37, 132).

160

https://doi.org/10.1088/1742-6596/898/6/062020
https://doi.org/10.1088/1742-6596/898/6/062020
https://phoenix.apache.org/
https://spark.apache.org/
https://doi.org/10.1088/1742-6596/762/1/012004
https://doi.org/10.1007/978-1-4842-1694-1_3
https://doi.org/10.1088/1742-6596/898/6/062010

Bibliography

[64] E Alexandrov, A Kazymov, and F Prokoshin. BigData Tools for the
Monitoring of the ATLAS EventIndex. In: CEUR Workshop Proceedings.
Proceedings of the VIII International Conference ”Distributed Com-
puting and Grid-technologies in Science and Education” (GRID 2018),
Dubna (Russia). 2018, pp. 91–94. url: http://ceur-ws.org/Vol-
2267/91-94-paper-15.pdf (cit. on p. 37).

[65] InfluxDB. https : / / www . influxdata . com / products / influxdb -

overview/. (Visited on 09/01/2022) (cit. on p. 37).

[66] Mainak Chakraborty and Ajit Pratap Kundan. Grafana. In: Monitoring
Cloud-Native Applications. Springer, 2021, pp. 187–240 (cit. on p. 37).

[67] Ralph Kimball and Joe Caserta. The data warehouse ETL toolkit. John
Wiley & Sons, 2004 (cit. on p. 39).

[68] ActiveMQ. http://activemq.apache.org/. (Visited on 09/01/2022)
(cit. on p. 40).

[69] Stomp protocol. https://stomp.github.io/. (Visited on 09/01/2022)
(cit. on p. 40).

[70] ECMA International. Standard ECMA-404. The JSON Data Interchange
Format. 2017 (cit. on p. 41).

[71] Andrew File System (AFS). https://www.openafs.org/. (Visited on
09/01/2022) (cit. on p. 43).

[72] Alvaro Fernandez Casani, Javier Sanchez, Santiago Gonzalez de la Hoz,
and Juan M. Orduña. Designing Alternative Transport Methods for the
Distributed Data Collection of ATLAS EventIndex Project. In: (Nov.
2016). url: http://cds.cern.ch/record/2235644/files/ATL-SOFT-
SLIDE-2016-869.pdf (cit. on pp. 44, 51).

[73] M. Karol, M. Hluchyj, and S. Morgan. Input Versus Output Queueing
on a Space-Division Packet Switch. In: IEEE Transactions on Communi-
cations 35.12 (1987), pp. 1347–1356. doi: 10.1109/TCOM.1987.1096719
(cit. on p. 44).

[74] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based storage. In: IEEE
Communications Magazine 41.8 (Aug. 2003), pp. 84–90. issn: 0163-6804.
doi: 10.1109/MCOM.2003.1222722 (cit. on p. 46).

161

http://ceur-ws.org/Vol-2267/91-94-paper-15.pdf
http://ceur-ws.org/Vol-2267/91-94-paper-15.pdf
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
http://activemq.apache.org/
https://stomp.github.io/
https://www.openafs.org/
http://cds.cern.ch/record/2235644/files/ATL-SOFT-SLIDE-2016-869.pdf
http://cds.cern.ch/record/2235644/files/ATL-SOFT-SLIDE-2016-869.pdf
https://doi.org/10.1109/TCOM.1987.1096719
https://doi.org/10.1109/MCOM.2003.1222722

Bibliography

[75] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A Scalable, High-performance Distributed File
System. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation. OSDI ’06. Seattle, Washington: USENIX
Association, 2006, pp. 307–320. isbn: 1-931971-47-1 (cit. on p. 46).

[76] Amazon S3, Cloud Computing Storage for Files, Images, Videos. http:
//aws.amazon.com. (Visited on 09/01/2022) (cit. on p. 47).

[77] Google Protocol Buffers: Google’s Data Interchange Format. https://
developers.google.com/protocol-buffers/. (Visited on 07/15/2021)
(cit. on p. 47).

[78] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Model-
ing Language Reference Manual, The (2nd Edition). Pearson Higher
Education, 2004. isbn: 0321245628 (cit. on p. 47).

[79] Tim Berners-Lee, Roy T. Fielding, and Larry M Masinter. Uniform
Resource Identifier (URI): Generic Syntax. RFC 3986. Jan. 2005. doi:
10.17487/RFC3986 (cit. on p. 49).

[80] Álvaro Fernández Casańı, Juan M. Orduña, Javier Sánchez, and Santiago
González de la Hoz. A Reliable Large Distributed Object Store Based
Platform for Collecting Event Metadata. In: Journal of Grid Computing
19.3 (Aug. 2021). Q1, p. 39. issn: 1572-9184. doi: 10.1007/s10723-
021-09580-0 (cit. on pp. 51, 57–64, 66, 133).

[81] Álvaro Fernández Casańı, Juan Orduña, and Santiago González de la
Hoz. Performance Improvements of an Event Index Distributed System.
In: ICPP 2018: Proceedings of the 47th International Conference on
Parallel Processing. Extended abstract. Eugene, OR, USA: Association
for Computing Machinery, 2018. isbn: 9781450365109. url: http://
oaciss.uoregon.edu/icpp18/publications/pos110s2-file1.pdf

(cit. on pp. 69, 132).

[82] D. Barberis, J. Cranshaw, A. Favareto, A. Fernández Casańı, E. Gallas,
S. González de la Hoz, J. Hřivnáč, D. Malon, M. Nowak, F. Prokoshin,
J. Salt, J. Sánchez Mart́ınez, R. Többicke, and R. Yuan. The ATLAS
EventIndex: Full chain deployment and first operation. In: Nuclear and
Particle Physics Proceedings 273-275 (Apr. 2016). Q3. Corresponding
author A. Fernández Casańı, pp. 913–918. doi: 10.1016/j.nuclphysbps.
2015.09.141 (cit. on pp. 75, 131).

[83] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC
4648. Oct. 2006. doi: 10.17487/RFC4648 (cit. on p. 75).

162

http://aws.amazon.com
http://aws.amazon.com
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://doi.org/10.17487/RFC3986
https://doi.org/10.1007/s10723-021-09580-0
https://doi.org/10.1007/s10723-021-09580-0
http://oaciss.uoregon.edu/icpp18/publications/pos110s2-file1.pdf
http://oaciss.uoregon.edu/icpp18/publications/pos110s2-file1.pdf
https://doi.org/10.1016/j.nuclphysbps.2015.09.141
https://doi.org/10.1016/j.nuclphysbps.2015.09.141
https://doi.org/10.17487/RFC4648

Bibliography

[84] Diego Ongaro and John Ousterhout. In Search of an Understandable
Consensus Algorithm. In: Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference. USENIX ATC’14. Philadelphia,
PA: USENIX Association, 2014, pp. 305–320. isbn: 9781931971102 (cit.
on p. 77).

[85] Butch Quinto. High Performance Data Analysis with Impala and Kudu.
In: Next-Generation Big Data: A Practical Guide to Apache Kudu,
Impala, and Spark. Berkeley, CA: Apress, 2018, pp. 101–111. isbn: 978-
1-4842-3147-0. doi: 10.1007/978-1-4842-3147-0_4 (cit. on p. 77).

[86] Zbigniew Baranowski, Luca Canali, Alvaro Fernandez Casani, Elizabeth
J Gallas, Carlos Garcia Montoro, Santiago González de la Hoz, Julius
Hrivnac, Fedor Prokoshin, Grigori Rybkine, Jose Salt, Javier Sanchez,
and Dario Barberis. A prototype for the evolution of ATLAS EventIndex
based on Apache Kudu storage. In: EPJ Web of Conferences 214 (2019).
Ed. by A. Forti, L. Betev, M. Litmaath, O. Smirnova, and P. Hristov,
p. 04057. doi: 10.1051/epjconf/201921404057 (cit. on pp. 77, 79,
132).

[87] K. Masui, M. Amiri, L. Connor, M. Deng, M. Fandino, C. Höfer, M.
Halpern, D. Hanna, A.D. Hincks, G. Hinshaw, J.M. Parra, L.B. New-
burgh, J.R. Shaw, and K. Vanderlinde. A compression scheme for radio
data in high performance computing. In: Astronomy and Computing 12
(2015), pp. 181–190. issn: 2213-1337. doi: https://doi.org/10.1016/
j.ascom.2015.07.002 (cit. on p. 79).

[88] Álvaro Fernández Casańı, Dario Barberis, Javier Sánchez, Carlos Garćıa
Montoro, Santiago González de la Hoz, and José Salt. Distributed Data
Collection for the Next Generation ATLAS EventIndex Project. In:
EPJ Web of Conferences 214 (2019), p. 04010. doi: 10.1051/epjconf/
201921404010 (cit. on pp. 80, 132).

[89] Elizaveta Cherepanova, Evgeny Alexandrov, Igor Alexandrov, Dario
Barberis, Luca Canali, Alvaro Fernandez Casani, Elizabeth Gallas, Carlos
Garcia Montoro, Santiago Gonzalez De La Hoz, Julius Hrivnac, Andrei
Kazymov, Mikhail Mineev, Fedor Prokoshin, Grigori Rybkin, Francisco
Javier Sanchez Martinez, Jose Salt, Miguel Villaplana, and Alexander
Iakovlev. The ATLAS EventIndex Using the HBase/Phoenix Storage
Solution. In: 9th International Conference on Distributed Computing
and Grid Technologies in Science and Education. 2021, pp. 17–25. doi:
10.54546/mlit.2021.68.25.001 (cit. on pp. 85, 87, 91, 92, 133).

163

https://doi.org/10.1007/978-1-4842-3147-0_4
https://doi.org/10.1051/epjconf/201921404057
https://doi.org/https://doi.org/10.1016/j.ascom.2015.07.002
https://doi.org/https://doi.org/10.1016/j.ascom.2015.07.002
https://doi.org/10.1051/epjconf/201921404010
https://doi.org/10.1051/epjconf/201921404010
https://doi.org/10.54546/mlit.2021.68.25.001

Bibliography

[90] M Villaplana Perez, E Alexandrov, I Aleksandrov, Z Baranowski, D
Barberis, G Dimitrov, A Fernandez Casani, E Gallas, C Garcia Montoro,
S Gonzalez de la Hoz, J Hrivnac, I Alexander, A Kazymov, M Mineev, F
Prokoshin, G Rybkin, J Sanchez, J Salt, and P T Vasileva. The ATLAS
EventIndex and its evolution towards Run 3. In: Journal of Physics:
Conference Series 1525.1 (Apr. 2020), p. 012056. doi: 10.1088/1742-
6596/1525/1/012056 (cit. on pp. 91, 98, 133).

[91] Apache Phoenix. Apache Phoenix Tuning Guide. Sept. 2022. url: https:
//phoenix.apache.org/tuning_guide.html (visited on 09/01/2022)
(cit. on p. 100).

[92] Álvaro Fernández Casańı, Carlos Garćıa Montoro, Santiago González
de la Hoz, Jose Salt, Javier Sánchez, and Miguel Villaplana Pérez. Big
Data analytics for the ATLAS EventIndex project with Apache Spark. In:
[Manuscript submitted for publication] Computational and Mathematical
Methods (2022). Presented at 2022 International CMMSE conference
and the Second conference on high performance computing (CHPC).
Awarded ”Best computational applications on line presentation”. issn:
2577-7408 (cit. on pp. 109, 134).

[93] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-
man, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache Spark: A Unified Engine for Big Data Processing.
In: Commun. ACM 59.11 (Oct. 2016), pp. 56–65. issn: 0001-0782. doi:
10.1145/2934664 (cit. on pp. 109, 110).

[94] Dean Wampler. Programming Scala. O’Reilly Media, Inc., 2021 (cit. on
p. 109).

[95] Sun Microsystems. The JDBC Database Access API. http://java.
sun.com/products/jdbc/index.html. 2022. (Visited on 09/01/2022)
(cit. on p. 110).

[96] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agar-
wal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh
Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay
Radia, Benjamin Reed, and Eric Baldeschwieler. Apache Hadoop YARN:
Yet Another Resource Negotiator. In: Proceedings of the 4th Annual
Symposium on Cloud Computing. SOCC ’13. Santa Clara, California:
Association for Computing Machinery, 2013. isbn: 9781450324281. doi:
10.1145/2523616.2523633 (cit. on p. 110).

164

https://doi.org/10.1088/1742-6596/1525/1/012056
https://doi.org/10.1088/1742-6596/1525/1/012056
https://phoenix.apache.org/tuning_guide.html
https://phoenix.apache.org/tuning_guide.html
https://doi.org/10.1145/2934664
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/jdbc/index.html
https://doi.org/10.1145/2523616.2523633

Bibliography

[97] Apache Phoenix ticket 6559: Spark connector access to SmallintArray /
UnsignedSmallintArray columns. https://issues.apache.org/jira/
browse/PHOENIX-6559. (Visited on 09/01/2022) (cit. on p. 120).

[98] D Barberis, J Cranshaw, G Dimitrov, A Favareto, Á Fernández Casańı,
S González de la Hoz, J Hřivnáč, D Malon, M Nowak, J Salt Cairols,
J Sánchez, R Sorokoletov, and Q Zhang and. The ATLAS Eventindex:
an event catalogue for experiments collecting large amounts of data. In:
Journal of Physics: Conference Series 513.4 (June 2014), p. 042002. doi:
10.1088/1742-6596/513/4/042002 (cit. on p. 131).

[99] D. Barberis, S.E. Cárdenas Zárate, J. Cranshaw, A. Favareto, Á. Fernández
Casańı, E.J. Gallas, C. Glasman, S. González de la Hoz, J. Hřivnáč,
D. Malon, F. Prokoshin, J. Salt Cairols, J. Sánchez, R. Többicke, and R.
Yuan. The ATLAS EventIndex: architecture, design choices, deployment
and first operation experience. In: Journal of Physics: Conference Series
664.4 (Dec. 2015), p. 042003. doi: 10.1088/1742-6596/664/4/042003
(cit. on p. 131).

[100] González de la Hoz, Santiago, Acosta-Silva, Carles, Aparisi Pozo, Javier,
del Peso, Jose, Fernández Casani, Álvaro, Flix Molina, José, Fullana
Torregrosa, Esteban, Garćıa Montoro, Carlos, Lozano Bahilo, Julio,
Montiel, Almudena, Pacheco Pages, Andrés, Sánchez Mart́ınez, Javier,
Salt Cairols, José, and Vedaee, Aresh. Computing activities at the
Spanish Tier-1 and Tier-2s for the ATLAS experiment towards the LHC
Run3 and High-Luminosity periods. In: EPJ Web of Conferences 245
(2020). Ed. by C. Doglioni, D. Kim, G.A. Stewart, L. Silvestris, P. Jackson,
and W. Kamleh, p. 07027. doi: 10.1051/epjconf/202024507027 (cit.
on p. 133).

165

https://issues.apache.org/jira/browse/PHOENIX-6559
https://issues.apache.org/jira/browse/PHOENIX-6559
https://doi.org/10.1088/1742-6596/513/4/042002
https://doi.org/10.1088/1742-6596/664/4/042003
https://doi.org/10.1051/epjconf/202024507027

	Preface
	Introduction
	Motivation
	Objectives
	Thesis Outline

	The Large Hadron Collider and the ATLAS Experiment
	Large Hadron Collider
	ATLAS Experiment
	Inner Detector
	Calorimeters
	Muon Spectrometer
	Trigger and Data Acquisition System

	ATLAS Distributed Computing
	ATLAS Computing and Data Challenges in Run 2 and Run 3

	EventIndex Project
	Introduction and Goals
	Use Cases
	Data Model
	Requirements
	Architecture
	Data Production
	Data Collection
	Data Storage
	Data Access
	Monitoring

	Data Collection
	Legacy Messaging Data Collection
	Data ingestion
	Data Validator Controller
	Shortcomings

	New Design of Distributed Data Collection
	Object Store data staging
	Push versus pull model data ingestion

	Evaluation
	Single dataset indexing results
	Complete results

	Conclusions

	Storage
	HDFS
	Data organization
	File format and contents
	Limitations

	Kudu
	Data organization
	Data ingestion

	HBase and Phoenix
	Data organization
	Data ingestion

	Conclusions

	Access
	Requirements and use cases
	EventIndex Analytics Platform
	Spark
	Data discovery
	Duplicate calculation
	Helper functions
	Overlaps calculation

	Conclusions

	Conclusions
	Contributions
	Publications

	Resumen
	Introducción
	CERN, LHC y el experimento ATLAS
	Proyecto EventIndex

	Objetivos
	Metodología
	Recolección distribuida de datos
	Almacenamiento
	Acceso

	Conclusiones

	Bibliography

