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Resumen

En esta tesis realizamos investigaciones sobre el comportamiento de la materia bajo
el régimen extremo del campo gravitacional de objetos compactos tales como estrellas de
neutrones, estrellas de bosones y núcleos galácticos compactos de materia oscura fermió-
nica, haciendo énfasis, particularmente, en las señales electromagnéticas producidas en
sus entornos.

Inicialmente, investigamos la emisión térmica de rayos X producida en púlsares de
milisegundo impulsados por rotación. Usualmente, se supone que esta radiación proviene
de regiones sobre la superficie estelar calentadas por el bombardeo de partículas relati-
vistas aceleradas en la magnetosfera. A partir de nuestras simulaciones force–free de la
magnetosfera, conectamos la estructura global de los campos y corrientes con la emisión
local sobre la superficie, a través de un modelo en que definimos las regiones de emisión
como aquellas donde la corriente es de tipo espacial, y determinamos la temperatura por
medio del balance entre la potencia depuesta por la corriente y la potencia radiada. Para
el cálculo de espectros y curvas de luz, que implica el transporte de la radiación emitida
sobre la geometría relativista alrededor de la estrella, desarrollamos un código numérico de
trazado de rayos y transporte radiativo en relatividad general, una herramienta común a
las investigaciones que componen esta tesis. Finalmente, comparando nuestro modelo con
observaciones altamente precisas de púlsares, obtenemos buenos ajustes. En particular,
para uno de estos púlsares, nuestro modelo ofrece una interpretación alternativa que evita
la necesidad de campos magnéticos significativamente no dipolares que fuera conjeturada
anteriormente en la literatura.

Posteriormente, en el marco de un modelo de materia oscura fermiónica compatible
con observaciones galácticas desde la escala del núcleo hasta la del halo, estudiamos la
radiación térmica de un disco alrededor de un núcleo compacto de materia oscura en
distintas configuraciones. Genéricamente, encontramos imágenes con depresiones centrales
de brillo y una estructura anular circundante, aún no existiendo un horizonte de eventos.
Además, verificamos la ausencia de anillos de luz, una característica distintiva de este
modelo respecto al caso de un agujero negro supermasivo, que podría ser contrastable
observacionalmente en el futuro cercano.

Finalmente, en otro proyecto, exploramos propiedades observacionales de estrellas de
bosones, tomando como fuente de emisión un modelo simple de disco de acreción geo-
métricamente delgado y ópticamente grueso. Analizamos la radiación térmica del disco y
el ensanchamiento de líneas de emisión en estrellas de bosones con autointeracciones de
cuarto y sexto orden, mostrando el potencial de algunos de estos modelos como imitadores
de agujeros negros.
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Abstract

In this thesis, we conducted research on the behavior of matter under the extreme
regime of the gravitational field of compact objects such as neutron stars, boson stars, and
galactic nuclei of fermionic dark matter, with particular emphasis on the electromagnetic
signals produced in their environments.

Initially, we investigated the thermal X-ray emission produced in rotation-powered
millisecond pulsars. It is usually assumed that this radiation comes from regions on the
stellar surface heated by the bombardment of relativistic particles accelerated in the mag-
netosphere. Using our force–free simulations of the magnetosphere, we connected the
global structure of the fields and currents to the local emission on the surface, through a
model in which we defined the emission regions as those where the current is spacelike,
and determined the temperature by balancing the power deposited by the current and the
radiated power. For calculating spectra and light curves, which involve the transport of
radiation emitted over the relativistic geometry around the star, we developed a numerical
code for ray tracing and radiative transport in general relativity, a common tool in the
research that composes this thesis. Finally, by comparing our model with highly accura-
te observations of pulsars, we achieved good fits. In particular, for one of these pulsars,
our model provides an alternative interpretation that avoids the need for significantly
non-dipolar magnetic fields that had been conjectured earlier in the literature.

Subsequently, within the framework of a fermionic dark matter model compatible with
galactic observations from the core to the halo scale, we studied the thermal radiation
of a disk around a compact dark matter core in various configurations. Generically, we
found ring-like featured images, even in the absence of an event horizon. Additionally, we
verified the absence of light rings, a distinctive feature of this model compared to the case
of a supermassive black hole, that might be observationally contrasted in the near future.

Finally, in another project, we explored the observational properties of boson stars,
using a simple model of a geometrically thin and optically thick accretion disk as a source
of emission. We analyzed the thermal radiation of the disk and the broadening of emission
lines in boson stars with quartic and sextic self-interactions, demonstrating the potential
of some of these models as black hole mimickers.
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Capítulo 1

Introducción

El objetivo general de esta tesis es investigar el comportamiento de la materia en
condiciones extremas como el régimen de campo fuerte de la gravedad. Esto permite poner
a prueba, por ejemplo, tanto la composición interna y la ecuación de estado de estrellas
de neutrones como, en última instancia, los aspectos fundamentales de la gravedad. La
descripción más avanzada de la gravedad disponible hasta el momento proviene de la
teoría de la relatividad general. Esta teoría ha sido experimentalmente verificada en una
amplia variedad de contextos, desde escalas terrestres hasta cosmológicas, en diversos
grados de no linealidad. Particularmente en el régimen de campo débil, la relatividad
general ha sido verificada con gran precisión, por ejemplo, a través del retardo de relojes y
corrimiento al rojo de fotones en el Sistema Solar [1]. Sin embargo, las pruebas en el campo
gravitacional fuerte son comparativamente más escasas y elusivas. La más significativa de
estas surgió a partir de GW150914 [2], el primer evento de ondas gravitacionales detectado,
de extraordinaria luminosidad, para el cual se confirmó la predicción de la relatividad
general sobre la emisión gravitacional de una fusión de agujeros negros con una precisión
del orden del 1 % [3].

Una de las predicciones fundamentales en el régimen de campo fuerte es la hipótesis
de Kerr, que postula que los agujeros negros astrofísicos, una vez asentados en un esta-
do estacionario, son descritos por la métrica de Kerr, determinada únicamente por dos
magnitudes físicas: su masa y su momento angular. Esta hipótesis subyace a una gran
proporción de modelos astrofísicos, y por ese motivo la métrica de Kerr es seguramente
la solución más relevante de las ecuaciones de Einstein. No obstante, si bien la evidencia
disponible hasta la fecha es compatible con esta hipótesis [1, 4], aún no se ha logrado
ningún test directo y preciso de ella. Por ello, es crucial progresar en esta dirección, ya sea
para proporcionar una base más sólida a los modelos astrofísicos estándar, o para abrir
nuevas avenidas de investigación.

Un hecho robustamente establecido en la astrofísica contemporánea es la existencia de
objetos altamente compactos en el universo. Esta certeza se basa en una abrumadora can-
tidad de observaciones astronómicas que indican la concentración de grandes cantidades
de masa en regiones muy pequeñas. Por ejemplo, se piensa que en el centro de la mayoría
de las galaxias existe un objeto compacto supermasivo, lo cual es apoyado por observacio-
nes tales como: (i) el movimiento de estrellas cercanas a SgrA* en la escala de 103rg [5–8],
donde rg = GM/c2 es el radio gravitacional, siendo M la masa del objeto central, (ii) el
movimiento de destellos infrarrojos alrededor de SgrA* en la escala de 10rg [9, 10], (iii)

1
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el gran ensanchamiento gravitacional de la líneas de Hierro Kα (6.4 keV) de SgrA* [11]
provenientes de la región en la escala de 10rg, (iv) el movimiento Kepleriano de máseres
de agua en el centro de otras galaxias [12–14], (v) la dispersión de velocidades estelares
en el núcleo de otras galaxias [15,16] y (vi) más recientemente, la radiointerferometría de
alta resolución que ha permitido capturar imágenes del entorno inmediato de M87* [17] y
SgrA* [18], revelando depresiones centrales de brillo consistentes con la existencia de un
pozo gravitacional profundo, posiblemente un agujero negro.

La ausencia de emisión desde una superficie en el centro de los núcleos galácticos
[19], que debería estar calentada por la acreción del gas circundante [20], indica que el
objeto supermasivo central no posee una superficie dura1 [23]. Además, estos objetos son
demasiado masivos, compactos y antiguos para ser cúmulos de objetos no luminosos de
masa estelar [24]. Por lo tanto, casi irónicamente, la explicación más mundana conocida
para estas observaciones es que se trata de agujeros negros supermasivos [25].

Alternativas posibles a la propuesta de agujeros negros son los llamados objetos com-
pactos exóticos, tales como estrellas de bosones [26], condensados de materia oscura fer-
miónica [27, 28], o incluso gravastars [29] (estrellas sostenidas por una presión de vacío
negativa) o agujeros de gusano [30]. Actualmente, se encuentran en marcha esfuerzos con-
siderables para poner a prueba la viabilidad de estos candidatos a través del modelado de
la acreción y la radiación electromagnética en sus entornos [31–40] (ver la Ref. [30] para
una revisión).

Una excelente oportunidad para investigar la naturaleza de los objetos compactos su-
permasivos es la ofrecida por la interferometría directa de su entorno. No obstante, el
entrelazamiento de los efectos de la geometría del espacio–tiempo con los detalles parti-
culares de la fuente de emisión plantea una gran dificultad. A primera vista, parecería
que las incertidumbres inherentes al modelo astrofísico de la fuente de emisión hacen im-
posible separar estos efectos para testear directamente la geometría del espacio–tiempo.
Afortunadamente, existen características geométricas prácticamente independientes de la
fuente de emisión que podrían ser detectables. Probablemente, la más prometedora de
estas características sea el “anillo de fotones” de los agujeros negros [41–45]. Dado que
la luz puede seguir órbitas cerradas inestables alrededor de ellos, para una fuente que
emite en todas direcciones una porción de los fotones debería circular alrededor del agu-
jero negro, incluso múltiples veces. Esto forma una sucesión de imágenes que convergen
a una “curva crítica”, delimitando la sombra2 del agujero negro [41]. Estos anillos son
insensibles a los detalles de la emisión [42] y son persistentes, por lo que deberían domi-
nar las observaciones promediadas en el tiempo en líneas de base adecuadas [43]. Esta
cuestión toma más relevancia con las mejoras esperadas en las observaciones, tanto desde
la Tierra, con el Event Horizon Telescope de próxima generación (ngEHT, por sus siglas
en inglés) [46, 47], como desde el espacio [48]. Sin embargo, es importante señalar que la
detectabilidad de los anillos de fotones sigue siendo objeto de debate debido a los entornos
altamente dinámicos, con opacidades cambiantes, de los objetos centrales en los núcleos

1Cabe destacar que esta conclusión ha sido disputada [21,22].
2Existe cierta ambigüedad en la literatura respecto a la definición de la sombra del agujero negro.

Mientras algunos usan el término para referirse a la región delimitada por la curva crítica a la cual
convergen los sucesivos anillos, otros se refieren simplemente a la depresión central de brillo observada en
las imágenes, que depende de la fuente de emisión, y cuyo límite es difuso y en general no coincide con
el concepto matemático anterior.
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galácticos [49].

Otro excelente laboratorio natural para investigar el comportamiento de la materia en
el régimen extremo son las estrellas de neutrones [50]. Estas se forman luego del colapso
gravitatorio del núcleo de Hierro de estrellas masivas, con varias veces la masa del Sol.
El rango de masas de las estrellas de neutrones es aproximadamente de 1.44M⊙ a 1.46-
2.48M⊙, donde el límite superior teórico es el llamado límite de Oppenheimer–Volkoff, por
encima del cual una estrella de neutrones colapsaría a un agujero negro. Este límite depen-
de de la ecuación de estado, que aún no es bien conocida [51]. La primera confirmación de
la existencia de estrellas de neutrones ocurrió con el descubrimiento de los púlsares [52].
Estos son estrellas de neutrones con campos magnéticos superficiales de 108−13 G que emi-
ten pulsaciones en radio con períodos que van entre 1ms y 30 s, con contadas excepciones
alcanzando cerca de los 80 s. Desde el primer descubrimiento, se han identificado más de
3000 púlsares [53,54]. Entre ellos, los que rotan más rápido son los púlsares de milisegundo
(MSPs), con períodos de unos pocos milisegundos, de los cuales se conocen alrededor de
300. Se considera que los MSPs son púlsares “reciclados”, formados a partir de púlsares
lentos en binarias de rayos X de baja masa y posteriormente acelerados por la acreción de
materia y momento angular de una estrella compañera [55, 56]. Tienen tasas de frenado
extremadamente pequeñas de Ṗ ∼ 10−20, por lo que su estabilidad en los mejores casos
es comparable a la de los relojes atómicos [57]. Los MSPs son relativamente antiguos,
con edades características de τc = P/2Ṗ ∼ 0.1 − 10 Gyr, y tienen campos magnéticos
superficiales en el rango inferior de los púlsares, alrededor de B ∼ 108−9 G.

Además, se piensa que emiten radiación, que ocasionalmente se detecta, a lo largo de
todo el espectro electromagnético [58,59]. Fuera de la banda de radio, la mayor actividad
de los MSPs se produce en el rango de rayos X suaves (0.1-10 keV) y es esencialmente
de origen térmico, aunque también existen componentes no térmicas [60]. Los rayos X
térmicos son emitidos en regiones calientes sobre la superficie de la estrella [60–69]. Debido
a la extrema estabilidad de los pulsos de rayos X de MSPs, la observación y el modelado
precisos de los mismos ofrecen una excelente vía para testear los aspectos fundamentales
de la física de estrellas de neutrones, especialmente bajo el régimen extremo de la gravedad
cerca de su superficie donde se produce la radiación [70–82].

Tal como permite anticipar la diversidad de temas abordados en los párrafos ante-
riores, en esta tesis realizamos investigaciones sobre la astrofísica de diversos tipos de
objetos compactos. Un ingrediente fundamental para este tipo de estudios es el transpor-
te radiativo relativista, que permite predecir lo detectado por un instrumento a partir
de la radiación que se emite y se propoga en el entorno de objetos compactos con fuer-
tes campos gravitacionales. Para este fin, también desarrollamos un código numérico de
transporte radiativo relativista en espacio–tiempos arbitrarios, que utilizamos en todas
las investigaciones presentadas en esta tesis y que se encuentra disponible públicamen-
te [83, 84].

La estructura de la tesis es la siguiente: en el Capítulo 2 describimos los aspectos esen-
ciales del código de transporte radiativo que desarrollamos. En el Capítulo 3, investigamos
la emisión térmica de rayos X de MSPs. Presentamos un modelo de emisión que integra
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simulaciones numéricas de la magnetósfera y establece una relación entre las corrientes
en la superficie estelar y la emisión de rayos X. Luego, comparamos este modelo con da-
tos precisos obtenidos por el telescopio NICER de cuatro MSPs, logrando buenos ajustes
simultáneos de las curvas de luz y espectros observados. Los capítulos subsiguientes se
dedican a explorar las propiedades observacionales de ciertos objetos compactos exóticos,
incluyendo la existencia de anillos de luz, buscando distinguirlos de agujeros negros. En
el Capítulo 4, analizamos núcleos galácticos de materia oscura fermiónica con discos de
acreción de tipo α, considerando diversas masas del fermión. Posteriormente, en el Capí-
tulo 5, nos centramos en ciertos modelos de estrellas de bosones, también con discos de
acreción geométricamente delgados y ópticamente gruesos. Finalmente, en el Capítulo 6,
realizamos algunos comentarios finales sobre conclusiones y perspectivas futuras.



Capítulo 2

Transporte radiativo relativista

En este capítulo, introducimos la ecuación covariante de transporte radiativo y descri-
bimos el código numérico de trazado de rayos y transporte radiativo en relatividad general
que desarrollamos, una herramienta común a las investigaciones que constituyen esta te-
sis. En primer lugar, describimos el algoritmo de trazado de rayos y, luego, los métodos
de transporte alternativos que el código posee: de emisor a observador y de observador a
emisor. La mayoría de lo expuesto en este capítulo se encuentra publicado en la Ref. [83],
y constituye una parte importante de mis aportes en esta tesis. El código se encuentra
disponible públicamente [84].

2.1. Ecuación de transporte

La propagación de la radiación electromagnética sobre un espacio–tiempo curvo está
descrita por la ecuación de transporte radiativo covariante. La distribución con la que
se representa el campo radiativo usualmente en astrofísica es la intensidad específica. En
términos de ésta, la ecuación de transporte toma la siguiente forma, donde cada término
es un invariante de Lorentz [85]:

d

dλ

(
Iν
ν3

)
=

jν
ν2

− ναν

(
Iν
ν3

)
, (2.1)

donde λ el parámetro afín de las geodésicas, ν es la frecuencia de la radiación, Iν es la
intensidad específica, y jν y αν son los coeficientes de emisividad y absorptividad del
medio, respectivamente. Nótese que, por ejemplo, ν y Iν no son invariantes de Lorentz
separadamente, sólo el cociente Iν/ν

3 lo es. La ecuación de transporte se resuelve a lo
largo de las geodésicas nulas del espacio–tiempo, pues los fotones siguen esas trayectorias
cuando se encuentran en caída libre. Las ecuaciones de las geodésicas son

dxα

dλ
= kα ,

dkα

dλ
= −Γα

µνk
µkν ,

(2.2)

donde xα es la posición, kα es el momento, y Γα
µν son los símbolos de Christoffel. En el caso

de geodésicas nulas, el momento satisface kµkµ = 0. Los símbolos de Christoffel pueden
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escribirse como

Γα
µν =

1

2
gαρ(∂µgνρ + ∂νgµρ − ∂ρgµν) , (2.3)

donde gµν es la métrica del espacio–tiempo.
En las aplicaciones astrofísicas de esta tesis, solo consideraremos escenarios donde

αν = 0 y donde el soporte de jν es una hipersuperficie espacialmente acotada. Esto
incluye, por ejemplo, discos de acreción geométricamente delgados y regiones calientes
sobre la superficie de una estrella de neutrones. Por este motivo, si bien el código numérico
descrito en este capítulo funciona con coeficientes de emisividad y absorptividad genéricos,
vale la pena examinar cómo se simplifica el tratamiento en el caso antes mencionado.
Cuando los términos del lado derecho de la ecuación (2.1) son nulos, se sigue que la
distribución ν−3Iν es constante a lo largo del flujo geodésico. De este modo, en el vacío,
el transporte radiativo se reduce simplemente a la conexión de la distribución invariante
entre el punto de observación y la superficie emisora por medio de geodésicas, utilizando su
doble invariancia, tanto geodésica como de Lorentz. Asimismo, cabe destacar que, así como
ν−3 e Iν no son invariantes de Lorentz separadamente, tampoco son constantes ante el
flujo geodésico por separado, sino que sufren el efecto de corrimiento al rojo gravitacional.

2.2. Descripción del código numérico

La integración precisa de la ecuación de transporte y de las geodésicas en un espacio–
tiempo curvo es fundamental para modelar las signaturas electromagnéticas de objetos
compactos. Los primeros esfuerzos en este campo corresponden a las Refs. [86–88], donde
se realizaron por primera vez cálculos de la apariencia de agujeros negros con discos de
acreción.

En las últimas décadas, se ha desarrollado una variedad de códigos para el trazado de
rayos y transporte radiativo en relatividad general, los cuales pueden agruparse en dos
grandes enfoques. Por un lado, los que siguen el método de osbervador a emisor, en el que
los rayos de luz se trazan hacia el pasado desde el observador hasta la fuente de emisión.
Ejemplos de códigos que emplean este enfoque incluyen las Refs. [89–107]. Por otro lado,
el enfoque basado en métodos Monte Carlo, en el cual el campo radiativo se muestrea
estadísticamente en la fuente de emisión en forma de paquetes de fotones que se propagan
hacia el observador, como las Refs. [108,109].

En el marco de esta tesis, desarrollamos un nuevo código de trazado de rayos y trans-
porte radiativo en relatividad general aplicable a una amplia variedad de escenarios astro-
físicos, llamado skylight [83]1. Este código implementa ambos métodos, de observador
a emisor y viceversa2, una característica solo compartida con la Ref. [109], lo que permite
realizar chequeos de consistencia interna y tratar distintos problemas utilizando el enfoque
que resulte más natural.

Muchos de los códigos existentes, como las Refs. [89, 90, 92, 93, 95–98, 103, 107, 109],
están diseñados para trabajar en espacio–tiempos con ciertas simetrías, como la métrica

1github.com/joaquinpelle/Skylight.jl
2Por el momento, el método de emisor a observador se encuentra solo parcialmente disponible en la

versión pública del código.

github.com/joaquinpelle/Skylight.jl
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de Kerr, lo que permite reducir la dimensionalidad del sistema de ecuaciones y acelerar
los cómputos. Sin embargo, esta simplificación limita la aplicabilidad a geometrías más
complejas, como por ejemplo las de sistemas binarios compactos. En contraste, skylight
admite espacio–tiempos arbitrarios, sin suposiciones sobre simetrías particulares, permi-
tiendo así trabajar en escenarios astrofísicos más diversos.

Otra aspecto común en muchos códigos [89, 90, 92–99, 104, 105, 107] es la hipótesis
implícita de un marco de observación lejano a la fuente de emisión y estático en un espacio–
tiempo asintóticamente plano. Si bien esto es adecuado para la mayoría de aplicaciones,
limita el uso del código en ciertos contextos donde el espacio–tiempo no es asintóticamente
plano, como en cosmología, o con marcos de referencia en movimiento, relativamente
cercanos a la fuente de emisión. skylight se distingue al no imponer tales restricciones,
otorgando mayor flexibilidad para aplicaciones cosmológicas y con marcos de referencia
arbitrarios, sin demandar un mayor costo computacional debido a esto (ver la Sec. 2.2.3
y el Ap. C).

El lenguaje de programación utilizado en el desarrollo de los códigos influye tanto
en su rendimiento como en su facilidad de uso y extensibilidad. Algunos de los prime-
ros códigos fueron escritos en Fortran [89, 92], mientras que otros más recientes utilizan
C o C++ [94, 96, 97, 99–101, 103], permitiendo un manejo más eficiente de memoria y
optimizaciones de bajo nivel. No obstante, estos lenguajes tienden a dar lugar a códi-
gos más rígidos y difíciles de extender. En contraste, skylight está escrito en Julia, un
lenguaje de programación moderno que combina alto rendimiento con flexibilidad y fa-
cilidad de desarrollo. Julia permite escribir código que, además de ser rápido, es fácil de
extender y adaptar a necesidades particulares de los usuarios. Luego de la publicación
de skylight, han aparecido otros códigos de alto rendimiento en lenguajes de alto nivel
como Python/JAX [104] y Julia [106,107].

Un requerimiento importante para el transporte radiativo es el cálculo de derivadas
de la métrica para la integración de las ecuaciones de las geodésica. La mayoría de los
códigos resuelven esto por medio de derivadas manuales o diferencias finitas, métodos que
pueden ser propensos a errores de implementación o ineficientes. Los lenguajes dinámicos
como Julia ofrecen un entorno propicio para la diferenciación automática, una técnica
moderna que provee derivadas con precisión de máquina y más eficientemente que las
diferencias finitas. Esta técnica, implementada en skylight y otros códigos recientes
[104, 107], facilita la extensión a métricas no convencionales y reduce la posibilidad de
errores de programación.

Otra ventaja significativa de Julia es su robusto ecosistema de paquetes, que ofre-
ce una amplia gama de funcionalidades especializadas. En el desarrollo de skylight,
incorporamos el paquete DifferentialEquations.jl, el cual proporciona una extensa colec-
ción de métodos para la integración de ecuaciones diferenciales ordinarias. Esta librería
supera en extensión a las tradicionales e incluye métodos de integración más recientes
y eficientes que utilizados comúnmente, como los métodos de Runge-Kutta de segundo
orden (Heun) o de cuarto orden, que son empleados por la mayoría de los códigos exis-
tentes [93,94,96–98,100–106] (ver Sec. 2.2.1).

Además, a diferencia de muchos códigos transporte radiativo que no están disponi-
bles públicamente, skylight es de acceso abierto. Otros códigos públicos incluyen las
Refs. [92–94,96–103,105–107].

Actualmente, skylight cuenta con diversos espacio–tiempos implementados: los pa-
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radigmáticos espacio–tiempos de Minkowski, Schwarzschild y Kerr; el espacio–tiempo de
Johannsen [110] de un agujero negro con parámetros de deformación respecto de Kerr;
el espacio–tiempo de un agujero negro rotante en una teoría f(R) de gravedad modifica-
da [111]; el espacio–tiempo de un agujero de gusano atravesable con carga eléctrica [112]; el
espacio–tiempo de un gas autogravitante de materia oscura fermiónica [113] (Capítulo 4);
y el espacio–tiempo de ciertas estrellas de bosones [114] (Capítulo 5). En particular, admite
espacio–tiempos numéricos tabulados, como se demuestra en la aplicación del Capítulo 4
a núcleos galácticos de materia oscura fermiónica, donde la métrica está determinada por
ecuaciones de equilibrio que deben resolverse numéricamente.

En cuanto a los modelos radiativos, en la versión pública están disponibles: los modelo
de disco de acreción de Shakura–Sunyaev [115] y Novikov–Thorne [116]; un modelo de
disco de acreción geométricamente delgado con perfil de temperatura provisto por el
usuario; el modelo de disco de acreción geométricamente grueso y ópticamente delgado,
llamado toro de iones o “dona polaca” [117], con emisión sincrotrón y bremsstrahlung ;
líneas de emisión de discos de acreción delgados con perfiles de emisividad provistos por
el usuario; y un modelo de corona de tipo “farol” sobre un objeto compacto [118]. Cabe
destacar que el código está modularizado de manera que los espacio–tiempos y modelos
radiativos son interoperables, siempre que sean mutuamente consistentes; por ejemplo, se
puede colocar un toro de iones tanto en el espacio–tiempo de Schwarzschild como en el
de un agujero negro en gravedad f(R) de manera autoconsistente.

En lo que sigue, proveemos una descripción más detallada de la estructura del código.
En la Sección 2.2.1 comenzamos describiendo el algoritmo de trazado de rayos, y más ade-
lante, en las Secciones 2.2.2 y 2.2.3, proporcionamos los detalles relativos a cada método
de transporte del código. En la Secs. 2.3, 2.4, 2.5, presentamos una validación extensiva
del código, incluyendo verificaciones del trazado de rayos, tests astrofísicos y tests de con-
vergencia, que además complementan los tests unitarios disponibles en el repositorio del
código.

2.2.1. Trazado de rayos

Métodos de integración

Para la integración de las ecuaciones recurrimos a los métodos estándar para la in-
tegración numérica de ecuaciones diferenciales ordinarias (EDOs) de primer orden. En
particular, utilizamos el paquete de Julia DifferentialEquations.jl [119], que ofrece una
amplia variedad de algoritmos para la solución numérica de EDOs, mucho más amplia
que las librerías tradicionales. Aparte de los algoritmos estándar, esta librería incluye
muchos algoritmos que son el resultado de investigaciones recientes y se sabe que son
más eficientes que las opciones tradicionales. Esto permite disponer de muchos métodos
diferentes para elegir según el tamaño del sistema, la precisión requerida, la memoria
disponible, la necesidad de paso adaptable, la presencia de stiffness, etc. Además, las
tolerancias relativas y absolutas pueden configurarse como parámetros del método, y el
paquete también cuenta con un seleccionador automático de método de integración. En
todas las aplicaciones de esta tesis utilizamos el método VCABM [120], un método de
Adams–Moulton de orden y paso adaptables, que es especialmente adecuado cuando se
requiere alta precisión en sistemas grandes. La adaptabilidad del paso también es útil,
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puesto que requerimos pasos pequeños cerca de la fuente del campo gravitatorio para ase-
gurar la precisión, pero lejos de la fuente donde la gravedad es muy débil y las geodésicas
son esencialmente rectas, conviene dar pasos grandes para reducir el costo computacional.

Paralelización

Por otro lado, DifferentialEquations.jl cuenta con una interfaz simple para la paraleli-
zación automática de los problemas de EDOs. Puesto que nuestro problema, en esencia,
consiste en resolver las ecuaciones de las geodésicas independientemente para una gran
cantidad de condiciones iniciales, aprovechamos esta interfaz ofrecida para paralelizar
fácilmente las integraciones en los múltiples hilos de CPUs que haya disponibles en la má-
quina. Además, se encuentra en desarrollo la aceleración en GPUs de nuestro código, que
permitirá reducir drásticamente los tiempos de cómputo, una capacidad que actualmente
tienen los códigos de las Refs. [95–97,101,104]. Julia ofrece un entorno propicio para ello,
enteramente nativo, sin necesidad de recurrir a librerías externas como CUDA.

Diferenciación automática

Otra característica distintiva de skylight es el uso de diferenciación automática, incor-
porando la librería ForwardDiff.jl, para calcular los símbolos de Christoffel a partir de una
función métrica dada. La diferenciación automática es una técnica moderna, que propor-
ciona derivadas rápidas de funciones programáticas generales con precisión de máquina.
Esto se logra, esencialmente, descomponiendo las funciones como un árbol, posiblemente
muy complejo, de operaciones elementales para las cuales se conocen las derivadas en for-
ma exacta, y aplicando la regla de la cadena sobre él. En general, el costo de evaluar una
derivada con esta técnica es el mismo que el de evaluar la propia función que se deriva. La
diferenciación automática supera a la técnica tradicional de diferencias finitas, utilizada
en otros códigos de trazado de rayos, tanto en velocidad como en precisión: lo primero
porque requiere menos evaluaciones, y lo segundo porque, al conocerse con exactitud las
derivadas de las operaciones elementales, provee precisión de máquina. También es mu-
cho más rápida que la diferenciación simbólica, ya que solo se calculan valores numéricos
de las derivadas y no sus expresiones algebraicas completas. La técnica se desarrolló y
estableció, esencialmente, en la última década, debido al gran impulso recibido por parte
de la comunidad de inteligencia artificial, donde se utiliza para optimizar funciones con
enorme cantidad de parámetros. En nuestro caso es muy útil, por ejemplo, para calcular
los símbolos de Christoffel de espacio–tiempos complejos como los que aproximan a sis-
temas binarios compactos cerca de la fusión [121–123], un escenario en el que pensamos
trabajar en el futuro para estudiar signaturas electromagnéticas en distintas bandas del
espectro.

2.2.2. Método de emisor a observador

Condiciones iniciales

En este método, el modelo de emisión entra en el código a través de la emisividad
jν , que depende de la posición, la frecuencia y la dirección de emisión. Esta distribución
codifica la información relevante sobre los procesos astrofísicos que ocurren en la región
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de interés. En términos de la emisividad, la densidad de número de fotones satisface

dn =
jν
hν

√−gd4xdνdΩ, , (2.4)

donde h es la constante de Planck, ν es la frecuencia del fotón, dΩ es el elemento de ángulo
sólido y

√−gd4x es el elemento de volumen. La frecuencia y la dirección de emisión se
refieren al marco de referencia donde se define la emisividad. En la mayoría de los casos,
existe una clase preferida de marcos, a saber, el marco ortonormal donde los fenómenos
locales que dan origen a los fotones se encuentran en reposo, al que llamamos marco de
reposo local. Estos marcos están dados por tétradas de la forma {eµ(a) : 0 ≤ a ≤ 3},
donde la letra griega es un índice vectorial contravariante y la letra latina es una etiqueta,
satisfaciendo

gµνe
µ
(a)e

ν
(b) = η(a)(b) , (2.5)

donde el lado derecho es la métrica plana en su forma diagonal. Para que la región de
emisión esté en reposo en este marco, el vector temporal debe ser igual a la cuadrivelocidad
uµ de la materia emisora, es decir, eµ(0) = uµ. Para los campos vectoriales espaciales hay
cierta libertad, siempre y cuando satisfagan la ortonormalidad de la Ec. (2.5). Cuando
los necesitamos, obtenemos los vectores espaciales mediante la ortogonalización de un
conjunto de prueba con el algoritmo de Gram–Schmidt.

Para representar la emisividad local, debemos muestrear una distribución de paquetes
de fotones siguiendo

dN =
dn

w
=

1

w

jν
hν

√−gd4xdνdΩ, , (2.6)

donde w es el peso del paquete, es decir, la cantidad relativa de fotones que lleva. Esto es
análogo a lo que se hace en simulaciones Monte Carlo. Asociar un peso a los paquetes no
es estrictamente necesario, pero puede ser muy conveniente en algunas situaciones.

Para comenzar, tomamos un conjunto de posiciones iniciales distribuidas según la ver-
sión integrada en momentos de la Ec. (2.6). En presencia de simetrías esto puede simpli-
ficarse. Por ejemplo, para un sistema estacionario, puede tomarse un único tiempo inicial
para todos los paquetes, digamos t = 0, defiriendo todas las consideraciones temporales
al postprocesamiento de los datos de salida, como describimos en la Sección 2.2.2.

Luego, en cada punto inicial hacemos un muestreo aleatorio de los cuadrimomentos
iniciales de los paquetes de fotones. El cuadrimomento de un paquete puede escribirse
como

kµ = k(a)eµ(a) , (2.7)

donde k(a) = ν(1,Ω) son las componentes del momento en el marco de reposo local, ν es
la frecuencia y Ω es la dirección de emisión. La frecuencia y las distribuciones angulares
se muestrean según la Ec. (2.6) evaluada en cada punto. En el caso en que αν = 0, puede
tomarse una sola frecuencia como representativa de todo el espectro, evitando el muestreo
espectral, ya que las trayectorias no dependen de la frecuencia, defiriendo, en ese caso, las
consideraciones espectrales al postprocesamiento.

Finalmente, convertimos los cuadrimomentos al marco de coordenadas según la Ec. (2.7),
utilizando los vectores eµ(a) calculados en cada punto inicial. Una vez que el conjunto ini-
cial de paquetes está listo, los propagamos como se describe en la Sección 2.2.1 hasta la
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distancia en que se desea calcular los flujos.

Cálculo de flujos

Estimamos el flujo monocromático a tiempo t y frecuencia ν a través de un pequeño
detector de área ∆A como

Fν =
1

∆A∆t∆ν

∑

i

(hν)iwi , (2.8)

donde la suma es sobre todos los paquetes de fotones que atraviesan el detector en un
intervalo temporal centrado en t de ancho ∆t, y un rango espectral centrado en ν de ancho
∆ν. En la práctica, tomaremos detectores virtuales correspondientes a una partición de
una esfera lejana en celdas de área ∆A ≈ R2 sin ξ∆ξ∆φ, donde R es el radio al que colo-
camos los detectores virtuales, y ξ y φ son los ángulos polar y azimutal, respectivamente,
en alguna elección de coordenadas sobre la esfera.

2.2.3. Método de observador a emisor

En este método, partimos del punto de observación y calculamos los flujos directamente
a través del tensor de energía–momento del campo de radiación3, que tiene la forma

T ab =

∫
kakb

(
Iν
ν3

)
dK, (2.9)

donde dK = νdνdΩ es el elemento de volumen invariante en el espacio de momentos de
tipo luz. Esto también puede escribirse como

T ab =

∫

S2

∫ ∞

0

nanbIνdνdΩ, (2.10)

donde na = ka/ν. El flujo radiativo de energía en la dirección de n̄a en un sistema de
referencia con cuadrivelocidad ua se obtiene como T abuan̄b. Para discretizar esta integral
en la posición xµ, construimos una tétrada ortonormal partiendo de los vectores

e0 = ∂t, e1 = −∂r, e2 = ∂ϕ, e3 = −∂θ, (2.11)

donde (r, θ, ϕ) son algunas coordenadas topológicamente esféricas en el espacio–tiempo4,
y los ortonormalizamos con respecto a la métrica en esa posición, gαβ(xµ), a través del
algoritmo de Gram–Schmidt siguiendo el orden de sus subíndices. En espacio–tiempo
plano con coordenadas esféricas usuales, la interpretación de esta terna es simple: e1
apunta hacia el origen, e2 es azimutal y e3 es polar. Cabe destacar que la elección de la
tétrada no es relevante, sólo es un artificio para parametrizar la integral de flujo, pero

3Esta construcción suele llamarse “cámara estenopeica”, en contraposición con la aproximación del
“plano imagen” también implementada en el código y descrita en el Apéndice C, en que se supone que el
punto de observación es lejano y los rayos de luz llegan mutuamente paralelos.

4Aquí media la hipótesis de que existen una coordenada temporal t y tres coordenadas espaciales de las
cuales hay una manera de transformar a coordenadas topológicamente esféricas. Esto parece restrictivo
en teoría, pero es genérico en la práctica.
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ésta no depende de la parametrización. Esta construcción es suficientemente general para
permitir posición y cuadrivelocidad arbitrarias, pero es particularmente conveniente para
grandes distancias en espacio–tiempos asintóticamente planos donde la fuente puede ser
cubierta por un pequeño sector esférico centrado en la dirección radial. A continuación,
para calcular la integral de flujo, tomamos coordenadas angulares (α, β) en S2 tales que
las componentes en la tétrada de un vector se pueden escribir como

k0 = ν , k1 = ν cosα cos β , k2 = ν sinα cos β , k3 = ν sin β .

Las coordenadas varían sobre −π ≤ α < π y −π/2 ≤ β ≤ π/2. En particular, (α, β) =
(0, 0) se mapea a la dirección de e1. Además, en estas coordenadas, dΩ = cos βdαdβ. En
la práctica, para la integración angular no necesitamos cubrir toda la esfera celeste del
punto de observación, sino que basta con tomar rangos de (α, β) que cubran la imagen de
la fuente emisora.

Luego, tomamos una grilla angular uniforme dada por

αi = −sα
2

+

(
i− 1

2

)
∆α, βj = −sβ

2
+

(
j − 1

2

)
∆β,

∆α =
sα
Nα

, ∆β =
sβ
Nβ

, 1 ≤ i ≤ Nα, 1 ≤ j ≤ Nβ,

donde sα, sβ son las aperturas angulares horizontal y vertical respectivamente, y Nα, Nβ

son los números de puntos por cada lado de la grilla. Tomamos una partición en sectores
esféricos Dij = [αi−∆α/2, αi+∆α/2]× [βj −∆β/2, βj +∆β/2] centrados en los (αi, βj),
cuyo ángulo sólido es

∆Ωij =

∫

Dij

cos βdαdβ = 2 cos(βj) sin

(
∆β

2

)
∆α, (2.12)

Finalmente, aproximamos numéricamente la integral de la ecuación (2.10) como
∫

S2

∫ ∞

0

nanbIνdνdΩ ≈
∑

ijk

Iijkn
a
ijn

b
ij∆Ωij∆ν, (2.13)

donde Iijk = Iνk(n
a
ij) y las componentes de los vectores na

ij en la tétrada son

(1, cosαi cos βj, sinαi cos βj, sin βj), (2.14)

que son transformadas al marco coordenado antes de la contracción con ua y n̄a.

2.3. Verificación del trazado de rayos

2.3.1. Conservación de las constantes de movimiento en el espacio–
tiempo de Kerr

Utilizamos las cuatro constantes de movimiento geodésico en el espacio–tiempo de
Kerr (ver Apéndice A) como un test de la precisión de nuestro algoritmo de trazado de
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rayos. Como ejemplo, tomamos 100 posiciones iniciales sobre un meridiano de la superficie
ρ2 = x2 + y2 + z2 = (5M)2 (en coordenadas de Kerr–Schild) con a/M = 0.99. En ca-
da punto inicial tomamos 103 momentos iniciales, con direcciones espaciales distribuidas
isotrópicamente sobre el hemisferio centrado en la dirección radial, lo que da un total de
N = 105 condiciones iniciales. Calculamos las geodésicas correspondientes hasta la su-
perficie r = 1000M utilizando el método de integración VCABM (ver Sección 2.2.1) con
una tolerancia relativa de 10−8. En la Figura 2.1 y la Figura 2.2 mostramos los resultados
obtenidos para los errores absolutos y relativos en la conservación de las constantes de
movimiento al cabo de la integración (no incluimos el error relativo en la masa porque
su valor exacto es cero). Las desviaciones de las constantes son muy pequeñas y, espe-
cialmente, la conformidad con la precisión esperada es excelente dada la tolerancia del
método.
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Figura 2.1: Errores absolutos en la conservación de las constantes de movimiento para
condiciones iniciales sobre un meridiano en ρ = 5M en el espacio–tiempo de Kerr con
a/M = 0.99.

10 9 8 7 6 5 4 3
log(|cf ci| / |ci|)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
um

be
r 

de
ns

ity

Energy
Angular momentum
Carter constant

Figura 2.2: Errores relativos en la conservación de las constantes de movimiento para
condiciones iniciales sobre un meridiano en ρ = 5M en el espacio–tiempo de Kerr con
a/M = 0.99.
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2.3.2. Comparación con la función de trazado de rayos

Algunos códigos que están restringidos al espacio–tiempo de Schwarzschild han utili-
zado lo que se llama la función de trazado de rayos para calcular el ángulo de deflexión de
las geodésicas de manera semianalítica [61, 124, 125]. Aquí utilizamos esta función como
verificación de nuestro algoritmo de trazado de rayos. En el espacio–tiempo de Schwarzs-
child, tomamos una posición inicial con radio r, y tomamos un momento espacial inicial
que forma un ángulo δ con el vector radial ∂r en el marco estático. El ángulo δ satisface

sin δ =
b

r

√
1− 2M

r
, (2.15)

donde b = L/E es el parámetro de impacto de la geodésica, E es su energía y L su
momento angular. Entonces, el ángulo de deflexión se puede escribir como

αδ =

∫ Rs
2r

0

du sin δ

[(
1− Rs

r

)(
Rs

2r

)2

− (1− 2u)u2 sin2 δ

]−1/2

− δ, (2.16)

donde Rs = 2M es el radio de Schwarzschild. Tomamos 104 condiciones iniciales en
(x, y, z) = (0, 0, 5M) con momentos iniciales distribuidos isotrópicamente sobre el hemis-
ferio centrado en la dirección radial. Calculamos las geodésicas correspondientes hasta
r = 1000M utilizando el método VCABM (Sección 2.2.1) con una tolerancia relativa de
10−8 tal como en el test anterior. En la Figura 2.3 mostramos la cantidad

√
∆θ2 +∆ϕ2,

una medida del error entre los ángulos finales obtenidos con nuestro código y los ángu-
los finales calculados a partir de la Ec. (2.16). Nuevamente, encontramos una excelente
concordancia entre los métodos.
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Figura 2.3: Diferencia entre los ángulos finales obtenidos con nuestro código y aquellos
obtenidos con la función de trazado de rayos de la Ec. (2.16) para un total de 104 fotones
inicialmente en (x, y, z) = (0, 0, 5M) en el espacio–tiempo de Schwarzschild y con direc-
ciones isotrópicamente distribuidas en el hemisferio orientado hacia afuera.
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2.3.3. Interpolación de una métrica numérica

El código también puede manipular métricas numéricas (al menos con ciertas simetrías
que alivianen el costo computacional de la interpolación). Para testear esta posibilidad
implementamos una métrica esféricamente simétrica

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2(dθ2 + sin2 θdφ2), (2.17)

donde α(r) y β(r) son funciones arbitrarias que pueden proporcionarse en forma de tablas.
Los símbolos de Christoffel se pueden calcular directamente a partir de la expresión ante-
rior, tabulando también una aproximación para las derivadas radiales de los coeficientes
de la métrica. A partir de ello, construimos funciones interpoladoras que aproximan la
métrica y los símbolos de Christoffel en un punto arbitrario del espacio–tiempo.

Con la parametrización elegida arriba, la métrica de Schwarzschild se obtiene tomando

α(r) =
1

2
log

(
1− 2M

r

)
, (2.18)

β(r) = −α(r) . (2.19)

Lo que hacemos es crear tablas simuladas de la métrica de Schwarzschild y sus símbolos de
Christoffel para testear nuestro método de interpolación en espacio–tiempos numéricos.
Para este test, aplicamos el mismo procedimiento que en la sección anterior: como condi-
ciones iniciales, tomamos 104 fotones en r = 5M con direcciones de emisión distribuidas
isotrópicamente en el hemisferio centrado en la dirección radial y propagamos esos fotones
hasta r = 1000M , comparando los resultados al usar la métrica de Schwarzschild analítica
y la métrica interpolada correspondiente. Usamos cuatro resoluciones distintas para las
tablas, con 500, 1000, 104 y 105 nodos espaciados logarítmicamente entre r = 2.1M (cerca
del horizonte de eventos) y r = 1000M . La tolerancia relativa del método de integración
es 10−8. En la Figura 2.4 mostramos el error

√
∆θ2 +∆ϕ2 entre los ángulos esféricos

finales en los cuatro casos. En todos los casos, la coincidencia es excelente y mejora con
el aumento de la resolución.

2.4. Tests astrofísicos

2.4.1. Ensanchamiento relativista de una línea de emisión en un
disco de acreción delgado

Aquí reproducimos los resultados de la Ref. [92] para el ensanchamiento de una línea de
emisión en un modelo simple de disco de acreción alrededor de un agujero negro de Kerr.
El disco es geométricamente delgado y ópticamente grueso y yace en el plano ecuatorial
del agujero negro. El radio interno del disco se define como el radio de la ISCO [86], y
el radio externo es rout = 15M . Las partículas del disco siguen órbitas circulares con una
velocidad angular dada por

ω± =
±
√
M

r3/2 ± a
√
M

, (2.20)
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Figura 2.4: Diferencia en los ángulos esféricos finales para la evolución de 104 geodésicas
con condición inicial en r = 5M con la métrica de Schwarzschild interpolada y la métrica
analítica. Cada panel corresponde a una resolución diferente de la métrica numérica, con
500, 1000, 104 y 105 nodos espaciados logarítmicamente, respectivamente.

donde ω+ y ω− corresponden a discos prógrados y retrógrados, respectivamente. La emi-
sividad se define en el marco de reposo local del disco, es monocromática, isotrópica y
está pesada por un factor r−2:

jν(x
µ) ∝ 1

r2
δ(z)δ(ν − ν0), (2.21)

donde ν0 es la frecuencia de emisión en el marco de reposo local del disco.

Calculamos el espectro para un observador a una distancia r = 103M y un ángulo
de inclinación de ξ = 30◦ tanto con rotación prógrada como retrógrada, usando ambos
métodos de transporte de skylight. El spin del agujero negro es a/M = 0.5. En el
método de observador a emisor, utilizamos un plano imagen cuadrado (ver Apéndice C)
de lado L = 2.1rout a una distancia d = 103M con N = 200 puntos por lado de la grilla.
En el método de emisor a observador, tomamos 5 × 103 puntos iniciales en el disco y
5 × 103 direcciones de emisión muestreadas uniformemente en el marco comóvil, con un
total de N = 2.5 × 107 fotones. Los detectores virtuales están ubicados en d = 103M .
En la Figura 2.5 y la Figura 2.6 comparamos los resultados de ambos métodos con los de
la Ref. [92], encontrando un excelente acuerdo en ambos casos. Además, en la Figura 2.7
mostramos una imagen del modelo de disco para un spin de agujero negro de a/M = 0.99
visto desde un ángulo de inclinación de ξ = 85◦ obtenido con el método de observador a
emisor de skylight usando el mismo tamaño de plano imagen que arriba pero aumentando
la resolución a N = 500 puntos por lado del plano imagen.
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Figura 2.5: Ensanchamiento relativista de una línea de emisión en un disco de acreción
delgado con el método de observador a emisor. El spin del agujero negro es a/M = 0.5 y
el ángulo de visión es ξ = 30◦.
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Figura 2.6: Ensanchamiento relativista de una línea de emisión en un disco de acreción
delgado con el método de emisor a observador. El spin del agujero negro es a/M = 0.5 y
el ángulo de visión es ξ = 30◦.
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Figura 2.7: Imagen del modelo simple de disco delgado con spin de agujero negro a/M =
0.99 con el método de observador a emisor en un ángulo de visión de θ = 85◦.

2.4.2. Círculo caliente orbitando un agujero negro de Schwarzs-
child

Dado que el disco de acreción del test anterior es estacionario y axialmente simétrico,
sirve principalmente como un test de la dependencia espectral de skylight pero no tanto
de la dependencia temporal. Para testear este aspecto en nuestro código, implementamos
el modelo de círculo caliente5 orbitante descrito en la Ref. [90]. La región de emisión es
un círculo pequeño orbitando un agujero negro de Schwarzschild en el plano ecuatorial.
El centro del círculo se mueve sobre la ISCO, de radio r = 6M , a una velocidad angular
ω = −

√
M/r3. La emisividad es monocromática e isotrópica en el marco de reposo del

centro del círculo, y está modulada por un perfil gaussiano

jν(x
µ) ∝ δ(z)δ(ν − ν0) exp{−|x− xspot(t)|2/2R2

spot}, (2.22)

donde x = (x, y, z), xspot(t) es la posición del centro del círculo, ν0 es la frecuencia de
emisión en el marco de reposo local del centro, y la desviación estándar del perfil gaussiano
es Rspot = 0.25M . Además, por simplicidad truncamos la emisividad a una distancia 4Rspot

desde el centro, donde está muy cerca de cero. La cuadrivelocidad de todos los puntos
dentro del círculo se toma igual a la de la trayectoria geodésica guía. Esto significa que la
energía en el marco de reposo local de una geodésica con cuadrimomento kµ en un punto
dentro del círculo se calcula como −kµv

µ(xspot), donde vµ(xspot) es la cuadrivelocidad de

5Originalmente punto caliente, del inglés hot spot. Aquí usamos “círculo” para no confundir con el otro
significado de la palabra “punto”, correspondiente al inglés point.
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la trayectoria geodésica guía del centro del círculo.
Para el método de observador a emisor, utilizamos un plano imagen de lado L =

20M a una distancia d = 103M con N = 800 puntos de cuadrícula por lado. En la
Figura 2.8 mostramos el espectrograma obtenido con este método para un ángulo de
visión de i = 60◦ y en la Figura 2.9 mostramos las curvas de luz bolométricas en varios
ángulos de observación. Cada curva de luz está normalizada escalada al valor máximo de
la curva de i = 80◦. A medida que aumenta la inclinación, las curvas de luz se vuelven
más puntiagudas porque el efecto Doppler se vuelve más notorio y el corrimiento al rojo
gravitacional se intensifica para las geodésicas que provienen de atrás del agujero negro.
Ambas figuras están en excelente acuerdo con los resultados de la Ref. [90].

Para el método de emisor a observador, realizamos una modificación al modelo que
lo dote de simetría helicoidal. Hacemos esto para poder tomar un único conjunto de
condiciones iniciales a un mismo tiempo. El problema en su planteo original no tiene
simetría helicoidal por la sutileza en cómo se extiende la cuadrivelocidad del punto central
al resto del círculo de manera uniforme, lo que no se corresponde con la situación física en
que suponemos que el círculo orbita manteniendo su forma. Por lo tanto, la modificación
que introducimos es tomar un círculo que orbita rígidamente con la velocidad angular de
la geodésica guía, pero con las cuadrivelocidades que se desprenden de esa hipótesis.6 Por
construcción, la cuadrivelocidad coincide en el punto central con el modelo original y la
diferencia se acentúa a mayor distancia del centro. Estas son las cuadrivelocidades que
utilizamos para establecer el marco de reposo local en cada punto. Además, reducimos el
radio del punto a Rspot = 0.05M para enfatizar la región donde se concentra la emisión y
el acuerdo entre los modelos es cercano.

Para verificar que esto tenga sentido, primero calculamos las curvas de luz con el
modelo modificado utilizando el método de observador a emisor (que no presenta esta
dificultad), sin encontrar diferencias respecto al modelo original. Luego, concluimos que
la modificación es físicamente insignificante, por lo que es válido hacerla con el fin de
utilizar la reducción helicoidal y aún así comparar con la Ref. [90]. Esto se debe a que,
al fin y al cabo, lo que más determina el resultado es lo que sucede realmente cerca del
centro del círculo, donde ambos modelos son aproximadamente iguales.

Finalmente, utilizamos el método de emisor a observador con el modelo modificado
con un total de N = 128 millones de fotones propagados desde la superficie del círculo
hasta los detectores virtuales a una distancia d = 1000M . En la Figura 2.10 mostramos las
curvas de luz de este modelo modificado para varios ángulos de observación. Las curvas
de luz están escaladas de la misma manera que en el método de observador a emisor.
Nuevamente, el acuerdo tanto con los resultados del otro método como con los de la
Ref. [90] es muy bueno. Aunque la curva de luz a i = 80◦ es algo más ancha que en el
otro método, consideramos que la similitud es aceptable, considerando que las relaciones
de las amplitudes de los pulsos y las fases de los picos son correctas. Otras diferencias
notables aparecen para las curvas de luz de menor inclinación. Esto se debe a que el área
colectora de fotones se reduce en un factor de sin i, por lo que la estadística de fotones a
inclinaciones más bajas es peor en comparación con inclinaciones más altas para el mismo
conjunto de datos.

6Como mostraré enseguida, esta modificación es insignificante a nivel físico pero, curiosamente, si
utilizamos el cálculo reducido con simetría helicoidal sin tener en cuenta esta sutileza los resultados son
malos y no coinciden con lo esperado.
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Figura 2.8: Espectrograma de un círculo caliente de radio R = 0.25M para un ángulo de
visión de i = 60◦ en el método de observador a emisor.
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Figura 2.9: Curvas de luz para un círculo caliente de radio R = 0.25M en varios ángulos
de visión utilizando el método de observador a emisor. Las curvas de luz están normali-
zadas a 1 y escaladas al valor máximo de la curva a i = 80◦.
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Figura 2.10: Curvas de luz para un punto caliente circular de radio R = 0.05M en varios
ángulos de visión utilizando el método de emisor a observador. Las curvas de luz están
normalizadas a 1 y escaladas al valor máximo de la curva a i = 80◦.

2.4.3. Emisión de rayos X de un círculo caliente sobre una estrella
de neutrones

En la Ref. [126] se proporcionó un conjunto de perfiles de pulsos de rayos X de estrellas
de neutrones sintéticos de alta precisión verificados, para que otros códigos sean evaluados
en comparación. Implementamos algunos de estos tests, implicando en este caso una
prueba simultánea de las dependencias temporal y espectral de skylight. Además, a
diferencia de los tests anteriores, los perfiles de referencia están en unidades físicas, por
lo que también sirven como un test de la normalización de nuestras curvas y nuestro
tratamiento de las unidades en general. Los múltiples códigos comparados en la Ref. [126]
utilizan las aproximaciones de Schwarzschild + Doppler (S+D) y Oblate-Schwarzschild
(OS), en las cuales el espacio–tiempo de la estrella se aproxima como Schwarzschild y la
superficie estelar se supone una esfera o un esferoide oblato, respectivamente.

Siguiendo la nomenclatura de la Ref. [126], hemos implementado la clase SD1 de
modelos en los que la estrella de neutrones se aproxima como una esfera rotante en
el espacio–tiempo de Schwarzschild, la masa y el radio de la estrella de neutrones son
M = 1.4M⊙ y R = 12 km respectivamente, y la emisión proviene de un único círculo
caliente sobre la superficie de la estrella. La intensidad específica se supone isotrópica y
planckiana con kBT = 0.35 keV (todo referido al marco de reposo local de la superficie
de la estrella). La distancia al observador es D = 200 pc. El resto de los parámetros
del modelo son la colatitud del centro del círculo θc, el radio angular del círculo ∆θ,
la colatitud de observación ξ, y la frecuencia de rotación de la estrella de neutrones ν.
Los valores de estos parámetros para los casos que reproducimos (SD1c–e) se listan en
la Tabla 2.1. En las Figuras 2.11–2.13 comparamos el flujo monocromático de partículas
observado a 1 keV obtenido con el método de observador a emisor de skylight contra los
perfiles de la Ref. [126], encontrando un muy buen acuerdo entre ellos.
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Tabla 2.1: Parámetros de los tests de referencia del círculo caliente en la estrella de
neutrones

Parámetro test SD1c test SD1d test SD1e
Colatitud del centro del círculo (◦) 90 90 60

Radio angular del círculo (rad) 0.01 1 1
Colatitud del observador (◦) 90 90 30
Frecuencia de rotación (Hz) 200 200 400
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Figura 2.11: Flujo de partículas monocromáticas a 1 keV para el modelo de círculo ca-
liente en la estrella de neutrones SD1c de la Ref. [126]. Los parámetros son θc = 90◦,
∆θ = 0.01, ξ = 90◦ y ν = 200Hz.
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Figura 2.12: Flujo de partículas monocromáticas a 1 keV para el modelo de círculo ca-
liente en la estrella de neutrones SD1d de la Ref. [126]. Los parámetros son θc = 90◦,
∆θ = 1, ξ = 90◦ y ν = 200Hz.
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Figura 2.13: Flujo de partículas monocromáticas a 1 keV para el modelo de círculo ca-
liente en la estrella de neutrones SD1e de la Ref. [126]. Los parámetros son θc = 60◦,
∆θ = 1, ξ = 60◦ y ν = 400Hz.

2.5. Tests de convergencia

2.5.1. Método de observador a emisor

Realizamos un test de convergencia para el método de observador a emisor con el mo-
delo de círculo caliente SD1d descrito en la Sección 2.4.3. Comparamos seis simulaciones
diferentes usando un plano imagen de lado L ≈ 2.75R y Ni = 25 × 2i puntos por lado
(0 ≤ i ≤ 5). En la Figura 2.14 mostramos los errores relativos L2 del flujo con respecto a
la simulación de más alta resolución, es decir

ei =
||fi(t)− f5(t)||L2

||f5(t)||L2

, 0 ≤ i ≤ 4 . (2.23)

Un ajuste lineal por mínimos cuadrados de los datos del error da la relación log10(ei) ≈
−1.65− 0.47i, lo que significa que el error sigue aproximadamente una ley de potencias

ei ≈ 8× 10−4

(
Ni

200

)−1.57

(2.24)

en términos del número de puntos por lado del plano imagen. En otras palabras, para esta
configuración encontramos que una resolución de N = 200 puntos por lado es suficiente
para obtener un error relativo aproximado del orden de 10−4, y que este error escala como
una ley de potencias de índice p ≈ −1.57 con respecto a N . La resolución requerida para
lograr el mismo error será mayor si la región de emisión tiene una mayor complejidad o
una estructura más detallada. Sin embargo, este ejemplo simple es útil como estimación
del rango donde nuestro código opera con precisión.
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Figura 2.14: Los puntos corresponden a los errores relativos L2 para el test de conver-
gencia utilizando el modelo SD1d de la Ref. [126] con Ni = 25 × 2i puntos por lado del
plano imagen. La línea sólida es el ajuste lineal por mínimos cuadrados de los datos. El
error sigue aproximadamente una ley de potencias con índice p = −1.57 en términos del
número de puntos por lado del plano imagen.

2.5.2. Método de emisor a observador

Para un test de convergencia del método de emisor a observador tomamos el modelo
de círculo caliente que orbita rígidamente (modificado) descrito en la Sección 2.4.2. Com-
paramos siete simulaciones diferentes muestreando Ni = 2 × 2i millones de paquetes de
fotones (0 ≤ i ≤ 6). En la Figura 2.15 mostramos los errores relativos bajo la norma L2

para las curvas de luz con respecto a la ejecución de más alta resolución, es decir

ei =
||Fi(t)− F6(t)||L2

||F6(t)||L2

, 0 ≤ i ≤ 5 . (2.25)

Un ajuste lineal por mínimos cuadrados de los datos del error da la relación log10(ei) ≈
−0.87− 0.18i, lo que significa que el error sigue aproximadamente una ley de potencias

ei ≈ 10−2

(
Ni

64× 106

)−0.6

(2.26)

en términos del número de paquetes de fotones en la muestra. Nótese que el índice de la
ley de potencias, 0.6, es consistente con la convergencia típica con

√
N de las simulaciones

Monte Carlo.



2.5. TESTS DE CONVERGENCIA 25

0 1 2 3 4 5

i

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

y ≈ −0.87− 0.18x

log10 ei

Linear fit

Figura 2.15: Los puntos corresponden a los errores relativos bajo la norma L2 para el
test de convergencia del método de emisor a observador en el modelo de círculo caliente
orbitante con un total de Ni = 2 × 2i millones de paquetes de fotones. La línea sólida es
el ajuste lineal por mínimos cuadrados de los datos. El error sigue aproximadamente una
ley de potencias con índice p = −0.6 respecto del número de paquetes de fotones.





Capítulo 3

Emisión térmica de rayos X en púlsares
de milisegundo

En este capítulo, presentamos investigaciones sobre la emisión térmica de rayos X
en MSPs. En primer lugar, introducimos nuestro nuevo modelo: el espacio–tiempo, la
magnetósfera force–free, el mapa de temperaturas sobre la superficie, y la intensidad es-
pecífica local de la radiación emergente. Para la intensidad específica consideramos dos
modelos distintos: un cuerpo negro local con anisotropía y un modelo de atmósfera estelar
de Hidrógeno. Luego, mostramos ajustes de observaciones de NICER de cuatro MSPs y
comentamos algunas limitaciones encontradas y cómo logramos superarlas.

Los resultados correspondientes al primer modelo de cuerpo negro anisotrópico se en-
cuentran publicados en la Ref. [127], mientras que los resultados posteriores con el modelo
de atmósfera se encuentran aún sin publicar. Mis contribuciones a este proyecto fueron:
la realización de simulaciones force–free con el código onion y su postprocesamiento; la
implementación del modelo radiativo en el código skylight, incluyendo un interpolador
de los datos de onion, el cuerpo negro anisotrópico, y el modelo de atmósfera de Hidró-
geno; el método de cálculo de las curvas de luz; y, salvo mención explícita, el desarrollo de
las figuras presentadas. Cabe destacar que los ajustes y las correspondientes figuras fueron
producidas por F. Carrasco.

3.1. Introducción
Como introdujimos en el Capítulo 1, los MSPs son una clase de púlsares extremada-

mente estables. Sus períodos están alrededor de 1−30ms, y sus tasas de frenado son del or-
den de Ṗ ∼ 10−20. Son púlsares antiguos, con edades características τc = P/2Ṗ ∼ 0.1−10
Gyr, y campos magnéticos superficiales de B ∼ 108−9 G. Su emisión de rayos X es esen-
cialmente de origen térmico y se produce en regiones calientes sobre la superficie de la
estrella [60–69]. Estas regiones son calentadas a temperaturas de hasta T ∼ 106 K por
el bombardeo constante de partículas que se aceleran a energías muy altas en brechas
magnetosféricas [128]. La hipótesis usual, que en este capítulo revisaremos, es que estas
regiones de emisión corresponden a la base de las líneas abiertas del campo magnético
sobre la superficie estelar, los llamados “casquetes polares”.

Un buen método para medir indirectamente las propiedades físicas de las estrellas de
neutrones es a través de la observación y el modelado precisos de las curvas de luz de

27
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rayos X de MSPs [70–82, 129]. Los MSPs son especialmente propicios para ello debido
a su alta estabilidad. Aún así, la tarea continúa siendo no trivial y es un problema con
bastante degeneración. Una aplicación importante de este método es para la restricción
de la relación masa–radio de las estrella de neutrones y, a través de ella, de su ecuación de
estado. Dado que los rayos X térmicos se emiten sobre la superficie de la estrella, la com-
pacidad estelar tiene un fuerte impacto en los pulsos emitidos a través de la influencia del
campo gravitacional. Muchos esfuerzos teóricos y observacionales recientes se han dirigido
en este sentido. En particular, el Explorador de la Composición Interior de Estrellas de
Neutrones (NICER, por sus siglas en inglés; [130]) que comenzó a operar en junio de 2017,
ha medido curvas de luz de rayos X de algunos MSPs cercanos con una sensibilidad sin
precedentes (e.g., [76, 131]). Uno de sus principales objetivos científicos es, precisamente,
obtener datos de alta calidad para inferir la masa y el radio de los MSPs observados, así
como la geometría de sus campos magnéticos superficiales, mediante el modelado de las
observaciones.

Un ejemplo notable de esta metodología son los modelados bayesianos de la curva de
luz de rayos X de PSR J0030+0451 de las Refs. [68,78,81,82,129]. Estos trabajos parten
de modelos analíticos con un par de regiones calientes sobre la superficie estelar, cada una
de forma circular o anular y de temperatura uniforme, permitiendo configuraciones anti-
podales y no antipodales. Ajustando la curvas de luz del púlsar a partir de esas regiones
de emisión, encontraron que al menos una de las regiones de PSR J0030+0451 tendría
una forma significativamente alargada y las configuraciones antipodales resultaron desfa-
vorecidas por su análisis estadístico [129]. A partir de estas inferencias, si se supone como
es usual que las regiones de emisión son los casquetes polares del campo magnético, esto
implicaría que el campo magnético de PSR J0030+0451 debe tener una fuerte componen-
te no dipolar, ya que un campo dipolar produce casquetes antipodales. En base a esto,
trabajos posteriores [79,80] encontraron configuraciones de campo magnético tales que los
casquetes polares se asemejaran a las regiones inferidas para PSR J0030+0451, incluyen-
do componentes dipolares y cuadrupolares descentradas, logrando reproducir hasta cierto
punto las observaciones de rayos X.

En este trabajo, optamos por un enfoque diferente. En vez de suponer la existencia
de multipolos magnéticos más altos para explicar las regiones de emisión alargadas y no
antipodales, modificamos la hipótesis que define las regiones de emisión, adoptando un
modelo alternativo. Para eso, partimos de simulaciones numéricas en relatividad general
de la magnetósfera de una estrella de neutrones rotante dotada de un campo magnético
dipolar. Luego, conectamos las corrientes eléctricas resultantes con la emisión térmica
superficial de la estrella, siguiendo esencialmente una propuesta realizada en la Ref. [67].
Finalmente, calculamos los espectros y curvas de luz con el código de transporte skylight
y ajustamos las observaciones de NICER de PSR J0030+0451, además de otros tres MSPs:
PSR J0437–4715, PSR J1231–1411 y PSR J2124–3358. Al final, encontramos que nuestro
enfoque permite reproducir las observaciones con sorprendente precisión. En particular,
para PSR J0030+0451 ofrecemos una interpretación alternativa de la curva de luz, que no
requiere más que un momento dipolar del campo magnético, sino un modelo de emisión
distinto.

El capítulo está organizado de la siguiente manera. En la Sección 3.2 introducimos
el modelo astrofísico propuesto. En la Sección 3.3 describimos nuestra metodología. En
la Sección 3.4, primero mostramos las regiones emisoras derivadas de las simulaciones
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force–free y luego presentamos nuestros mejores ajustes a los datos de rayos X de los
cuatro MSPs objetivo. Finalmente, en la Sección 3.5, resumimos algunas conclusiones y
perspectivas futuras.

3.2. Modelo astrofísico

3.2.1. Estrella de neutrones

Aproximamos el espacio–tiempo exterior de la estrella de neutrones por el espacio–
tiempo de Kerr, parametrizado por la masa M y el spin a. Esta es una aproximación
razonable para frecuencias de rotación de ν ≲ 300Hz [63, 132, 133], como las de los
MSPs observados por NICER que estudiamos en este trabajo. Suponemos que la masa
del espacio–tiempo está dada por la masa de la estrella, M = MNS. Para determinar
el spin a, suponemos que la estrella es una esfera de radio R, y fijamos el momento de
inercia adimensional I := I/(MR2) en 2/5, basándonos en estudios previos [134, 135].
Esto proporciona la siguiente relación entre la velocidad angular de la estrella Ω y el spin:

a

R
=

2

5
ΩR . (3.1)

Sintetizamos estas propiedades en los siguientes parámetros: la velocidad de rotación
superficial vs := R/RLC , donde RLC = c/Ω es el radio del cilindro de luz, y la compacidad
estelar

C :=
M

R

(
G

c2

)
. (3.2)

3.2.2. Magnetósfera del púlsar

Los púlsares están rodeados por un plasma tenue, la magnetósfera, donde se supone
que vale la condición force–free, según la cual la inercia del plasma es despreciable frente a
la energía del campo magnético. En ese caso, no hay intercambio de energía y los tensores
de energía–impulso del campo electromagnético y del plasma se conservan separadamente,
es decir:

∇µT
µν
EM = 0 , (3.3)

∇µT
µν
plasma = 0 . (3.4)

El tensor de energía–impulso electromagnético satisface idénticamente

∇µT
µν
EM = −Fµνj

µ , (3.5)

donde Fµν es el tensor de Maxwell, jµ la cuadridensidad de corriente, y el término del
lado derecho es la densidad de fuerza de Lorentz que el campo ejerce sobre el plasma.
Por lo tanto, en la aproximación force–free, la fuerza de Lorentz debe ser nula en todas
partes (de ahí el nombre de la aproximación). Las ecuaciones de Maxwell para el campo
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electromagnético pueden expresarse como

∇µF
∗µν = 0 , (3.6)

∇µF
µν = jν , (3.7)

de donde, aplicando la condición force–free, se obtienen las ecuaciones de la electrodiná-
mica force–free

∇µF
∗µν = 0 , (3.8)

Fµν∇ρF
ρν = 0 , (3.9)

que permiten evolucionar el campo electromagnético en forma autónoma, independien-
temente de las variables del plasma. La cuadricorriente puede obtenerse luego a partir
jν = ∇µF

µν .
Adicionalmente, suponemos que el púlsar es un sistema aislado, por lo que los campos

deben decaer a grandes distancias. Por otro lado, suponemos que la superficie estelar es
perfectamente conductora, y fijamos la componente normal del campo magnético sobre
la superficie en el marco de reposo local a un campo dipolar, posiblemente desalineado
respecto del eje de rotación estelar. Denotamos como χ el ángulo de desalineamiento del
dipolo. Estas hipótesis imponen condiciones de contorno para el campo electromagnético
sobre la superficie estelar12. Esta suposición de campo dipolar es mucho más simple que las
realizadas en trabajos anteriores, las cuales incluyen dipolos y cuadrupolos descentrados.

Bajo estas condiciones, las soluciones force–free en su régimen estacionario3 quedan
esencialmente determinadas por tres parámetros: (i) el ángulo de desalineamiento χ entre
el momento magnético y el eje de rotación estelar, (ii) la velocidad de rotación superficial,
que hemos fijado en vs = 0.05, y (iii) la compacidad estelar C. Nótese que las ecuaciones
force–free son invariantes respecto de la escala del campo electromagnético, por lo cual
esta puede modificarse a posteriori rescaleando, por ejemplo, el momento magnético o la
intensidad del campo en el polo magnético a partir de una solución dada.

3.2.3. Regiones de emisión sobre la superficie estelar

Se acepta comúnmente que la emisión térmica de rayos X en los MSPs proviene de
regiones calentadas por el bombardeo de partículas de alta energía que se aceleran en la
magnetósfera. El origen de la energía de estas partículas relativistas sería el enorme reser-
vorio de energía magnética que existe en el entorno de los MSPs. Sin embargo, recordemos
que la condición force–free implica la anulación de la fuerza de Lorentz, impidiendo en
principio la aceleración de partículas a altas energías por parte del campo electromagné-

1El sistema de ecuaciones force–free es hiperbólico [136] y admite soluciones estacionarias con las
condiciones de contorno supuestas [137].

2Estas hipótesis no determinan las cuadricorrientes sobre la superficie, un ingrediente esencial de
nuestro modelo como describimos más adelante, ya que aquellas dependen de las componentes tangenciales
del campo, que evolucionan dinámicamente.

3Las soluciones desarrollan genéricamente una estructura conocida como hojas de corriente, donde
el campo magnético es discontinuo y necesariamente se rompe la condición force–free. Las soluciones
numéricas dependen en cierta medida del tratamiento que se haga de estas hojas de corriente, lo que
típicamente incluye algún proceso disipativo.
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tico. Por lo tanto, para que este cuadro sea válido, la aceleración debe darse en regiones
donde la condición force–free se rompa. En nuestro modelo, adoptamos el argumento pre-
sentado en la Ref. [67], suponiendo que la aceleración de partículas ocurre en regiones
donde la cuadricorriente es de tipo espacial (es decir, jµjµ > 0). Esto se basa en que para
sustentar una cuadricorriente de tipo espacial debe existir un contraflujo de partículas
de carga opuesta que puede dar lugar a inestabilidades del plasma. En esas inestabilida-
des puede desarrollarse una componente de campo eléctrico paralela al campo magnético
capaz de acelerar partículas a altas energías [128,138].

Por último, en una segunda etapa de este proyecto que discutiremos luego, introdu-
jimos un parámetro de umbral, de modo que las regiones de emisión sobre la superficie
quedan determinadas por una condición más excluyente, jµj

µ > j2umbral, donde j2umbral
permite, esencialmente, reducir el área de la región emisora. Más adelante, mostraremos
resultados bajo ambas prescripciones, tanto sin umbral como con umbral y discutiremos
cómo la introducción del umbral contribuyó a superar limitaciones encontradas en la
primera etapa del proyecto.

3.2.4. Mapa de corrientes a temperaturas

Para determinar el mapa de temperaturas sobre las regiones de emisión a partir de las
corrientes, hacemos una suposición sencilla de balance entre la tasa de energía depuesta
por la corriente y la tasa de energía radiada como cuerpo negro. Específicamente, la tasa
de energía cinética depuesta por las partículas relativistas sobre la superficie estelar está
dada por

Pin = κ(γ̄ − 1)mec
2|j|/e , (3.10)

donde κ es la fracción de la corriente compuesta de partículas relativistas, γ̄ es el factor
de Lorentz medio de las partículas relativistas, j es la corriente espacial en el marco de
reposo local de la estrella de neutrones, y e, me representan la carga y la masa del electrón,
respectivamente. Luego, el balance de la potencia depuesta con la potencia radiada por
un cuerpo negro implica un mapa de temperaturas efectivas sobre la región de emisión
dado por

Teff =

(
c2meκ(γ̄ − 1)|j|

eσ

)1/4

(3.11)

donde σ es la constante de Stefan–Boltzmann (ver la Ref. [66] para una discusión detallada
de estas hipótesis). Dado que las partículas son altamente relativistas se cumple que
κ(γ̄ − 1) ≈ κγ̄, donde este producto actúa efectivamente como un único parámetro en
nuestro modelo.

3.2.5. Intensidad específica de la radiación emergente

Para obtener la intensidad específica del campo de radiación emergente a partir de
la temperatura efectiva, se debe tener en cuenta que la estrella de neutrones posee una
atmósfera que interactúa con la radiación. Para eso, en este proyecto consideramos, suce-
sivamente, dos alternativas, que explicamos a continuación.
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Cuerpo negro con anisotropía

En una primera etapa, supusimos que la intensidad corresponde a la de un cuerpo
negro a la temperatura local Teff con un factor de anisotropía (e.g., Ref. [67])

Iν =
ν3 B(Θ)

exp[ν/Teff]− 1
, (3.12)

donde el factor de anisotropía está dado por

B(Θ) = cosb(Θ) (3.13)

Atmósfera de Hidrógeno

En la segunda etapa de este proyecto, introdujimos un modelo detallado de atmós-
fera delgada de Hidrógeno alrededor de la estrella de neutrones, el mismo utilizado, por
ejemplo, en las Refs. [66, 69]. En este escenario, la radiación es redistribuida tanto an-
gular como energéticamente, resultando en un mapa de intensidades específicas modi-
ficado respecto al de cuerpo negro. Para incluir este modelo de atmósfera implementa-
mos una interfaz de nuestro código con el paquete X-ray Pulse Simulation and Inference
(https://github.com/xpsi-group/xpsi.git, [139]) que permite calcular la intensidad
específica emergente en función de la temperatura efectiva y la gravedad superficial sobre
la estrella de neutrones.

3.2.6. Espacio de parámetros

Resumimos aquí los parámetros de nuestro modelo. Fijamos valores de referencia como
el radio de la estrella de neutrones en 11.5 km, y el período en 4.8ms, cercano a los perío-
dos de los cuatro MSPs objetivo. Esto fija la velocidad de rotación superficial en vs = 0.05
(de modo que RLC = 20R). Esto lo hacemos para reducir el espacio de parámetros, espe-
cialmente los asociados a las simulaciones force–free que son las más computacionalmente
costosas. Además, en la Tabla 3.1 mostramos para cada púlsar objetivo los valores adop-
tados para sus distancias e intensidades del campo magnético en el polo, provenientes del
catálogo de púlsares de la Australia Telescope National Facility [53,54].

Los parámetros comunes a ambas etapas del trabajo son la compacidad estelar C,
el desalineamiento del momento magnético χ, el ángulo de observación respecto del eje
de rotación estelar ξ, el parámetro κγ̄ y, además, un posible desfasaje de las curvas,
∆ϕ. Adicionalmente, en la primera etapa con el modelo de cuerpo negro anisotrópico,
introducimos el índice de anisotropía b, y un posible factor de rescaleo λ = Fmax/F̄max,
donde Fmax es el flujo máximo predicho y F̄max el flujo máximo observado. Mientras tanto,
en la segunda etapa, además de los parámetros comunes, introducimos el parámetro de
umbral de las cuadricorrientes j2umbral.

3.3. Metodología
Nuestra metodología consiste, esencialmente, de cuatro instancias. En primer lugar,

resolvemos numéricamente la magnetósfera force–free del púlsar en relatividad general,

https://github.com/xpsi-group/xpsi.git
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Tabla 3.1: Parámetros de los cuatro MSPs objetivo. Datos tomados del catálogo de la
Australia Telescope National Facility [53,54].

PSR Período [ms] Bpolar [108 G]a Distancia [pc]
J0437–4715 5.75 5.80 157
J1231–1411 3.68 2.93 420
J2124–3358 4.93 3.22 410
J0030+0451 4.87 2.25 324

Notas:

a El campo magnético polar corresponde a la fórmula de frenado estándar para un dipolo en el
vacío [140].

dotado de un campo magnético dipolar, y extraemos los campos y densidades de corriente.
Luego, determinamos las regiones de emisión sobre la superficie y obtenemos los mapas
de temperatura e intensidades específicas, ya sea como un cuerpo negro con anisotropía o
con el modelo de atmósfera de Hidrógeno. Posteriormente, realizamos el transporte radia-
tivo relativista para calcular las correspondientes curvas de luz y espectros. Finalmente,
comparamos nuestro modelo con observaciones de NICER y XMM-Newton de los cuatro
MSPs objetivo, buscando las configuraciones que mejor ajustan los datos. A continua-
ción, en la Sección 3.3.1 damos algunos detalles de las simulaciones force–free, y en la
Sección 3.3.2 describimos el cálculo de las curvas de luz y espectros con el código de
transporte. En el Apéndice D discutimos brevemente el procedimiento de ajuste de las
osbervaciones de rayos X con nuestro modelo.

3.3.1. Simulaciones force–free

Para resolver las ecuaciones de la magnetósfera force–free de una estrella rotante en
relatividad general, utilizamos el código numérico tridimensional onion [141]. Este código
ha sido aplicado en diversos contextos astrofísicos, incluyendo agujeros negros [141, 142],
púlsares [143], magnetares [144] y sistemas binarios de agujero negro–estrella de neutrones
[121, 145]. Para más detalles técnicos sobre la implementación numérica, remitimos al
lector a las Refs. [141,143].

El dominio numérico cubre la región entre la superficie de la estrella de neutrones
de radio R y una superficie esférica exterior ubicada en 64R ≳ 3RLC. Las simulacio-
nes force–free conllevan un alto costo computacional, por lo que tenemos limitaciones
en la exhaustividad del muestreo del espacio de parámetros que podemos realizar. Pa-
ra este trabajo, tomamos una muestra discreta de 25 simulaciones, dada por cinco án-
gulos de desalineamiento χ = {15◦, 30◦, 45◦, 60◦, 75◦} y cinco compacidades estelares
C = {0.15, 0.18, 0.2, 0.22, 0.25}. Estas compacidades corresponden para una estrella de
11.5,km de radio a masas de M ∼ {1.2, 1.4, 1.6, 1.7, 1.9}M⊙ respectivamente.

Como ya hemos mencionado, las condiciones de contorno sobre la superficie estelar
son las de una superficie perfectamente conductora y un campo magnético dipolar. Por
otro lado, las condiciones sobre la frontera exterior son maximalmente disipativas, garan-
tizando que no ingresen señales al dominio, y que no haya reflexiones de ondas salientes.
Para encontrar las soluciones force–free estacionarias, partimos de un campo magnético
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inicialmente dipolar en todo el dominio numérico y evolucionamos el sistema por algo más
de dos rotaciones estelares, hasta que los campos convergen a un valor estable. Una vez
alcanzada la configuración estacionaria, extraemos el campo magnético y la densidad de
corriente sobre la superficie estelar que luego usamos para definir las regiones de emisión
y obtener el mapa local de temperaturas efectivas.

3.3.2. Cálculo de espectros y curvas de luz

Una vez halladas las regiones de emisión y calculado el mapa de intensidades espe-
cíficas, debemos transportar la radiación desde la superficie estelar hasta el sistema de
referencia de observación, considerando la influencia del intenso campo gravitacional de
la estrella de neutrones. Para esto, utilizamos el código skylight desarrollado en esta
tesis, y, en particular, el método de observador a emisor con la aproximación del plano
imagen (Apéndice C). Para todas las simulaciones de trazado de rayos tomamos puntos
de observación a r = 750rg, donde rg = GM/c2 es el radio gravitacional de la estrella, y
tomamos grillas de 600× 600 nodos sobre el plano imagen, habiendo comprobado que en
tales condiciones las curvas de luz y espectros se encuentran adecuadamente convergidos.
En esta instancia interviene otro parámetro del modelo, a saber, ξ, el ángulo de inclina-
ción del observador respecto al eje rotacional de la estrella. Para cada compacidad estelar
utilizada en las simulaciones force–free, realizamos simulaciones de trazado de rayos para
distintos ángulos de observación, con un refinamiento de hasta ∆ξ = 1◦. El resto de los
parámetros, como los listados en la Tabla 3.1, solo entran en el cálculo al final del mismo,
al recuperar las unidades físicas de los flujos calculados.

3.4. Resultados

A continuación mostramos los resultados de este capítulo. En la Sección 3.4.1 mos-
tramos algunas regiones de emisión ilustrativas obtenidas con las simulaciones force–free
(sin filtrar con el parámetro de umbral sobre las corrientes). En particular, discutimos la
existencia de una región de emisión adicional dentro de la zona cerrada del púlsar, es de-
cir, fuera de los casquetes polares tradicionales. Luego, en la Sección 3.4.2, mostramos los
mejores ajustes obtenidos para las curvas de luz y espectros en ambas etapas del trabajo:
primero utilizando el cuerpo negro con factor de anisotropía, sin umbral de corrientes
en las regiones de emisión; y, luego, incluyendo el modelo de la atmósfera estelar con el
umbral en las corrientes. Además, discutimos las limitaciones surgidas en la primera etapa
y cómo logramos superarlas después.

3.4.1. Regiones de emisión sobre la superficie estelar

En la Figura 3.1 mostramos las regiones de emisión sobre la superficie de una estrella
de neutrones de compacidad intermedia C = 0.2, para diferentes desalineamientos del eje
magnético χ. Obtenemos regiones complejas, incluyendo un par de regiones de emisión4

principal dentro de los casquetes polares, y además, notoriamente, una segunda región de

4Aunque no se vea en las figuras, recordar que las configuraciones tienen simetría antipodal, debido a
la simetría del campo magnético dipolar.
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emisión no estándar dentro de la zona cerrada del púlsar, que coincide con la intersección
de la superficie estelar con la superficie de carga nula de la magnetósfera [146].

Un aspecto sumamente interesante de las regiones de emisión no convencionales dentro
de la zona cerrada es que resultan ser un efecto de la gravedad de la estrella de neutro-
nes. Para demostrar esto, realizamos simulaciones force–free con la mismas condiciones
descritas en la Sección 3.3.1, excepto que sobre un espacio–tiempo plano, es decir, des-
preciando la gravedad de la estrella. En la Figura 3.2 mostramos las regiones de emisión
obtenidas, junto con la densidad de corriente paralela al campo magnético y la densi-
dad de carga eléctrica en un corte meridional, tanto sobre el espacio–tiempo plano como
sobre el espacio–tiempo de Kerr. La comparación muestra que las corrientes de tipo es-
pacial dentro de la zona cerrada están presentes en el espacio–tiempo de Kerr, pero no en
espacio–tiempo plano5. También realizamos una prueba análoga sobre el espacio–tiempo
de Schwarzschild (es decir, con spin a = 0), y encontramos las mismas corrientes de ti-
po espacial en la zona cerrada. Esto indica que no son un efecto del arrastre de marcos
de referencia del espacio–tiempo de Kerr, sino que se deben al orden monopolar de la
gravedad.

También es interesante notar la semejanza, a grandes rasgos, de las regiones de emisión
no estándar en la zona cerrada del púlsar con el tipo de regiones de emisión inferidas por
la colaboración NICER para el pulsar PSR J0030+0451 [129], dada su forma alargada.
Esto no es un hecho menor, ya que como discutiremos más adelante, la existencia de estas
regiones no estándar es crucial en nuestro modelo para poder lograr buenos ajustes de las
observaciones.

3.4.2. Curvas de luz y espectros

Modelo de cuerpo negro con anisotropía

En las Figuras 3.3 a 3.6, presentamos nuestros mejores ajustes a las curvas de luz
y espectros, y en la Tabla 3.2 resumimos la información relevante sobre los parámetros
de ajuste. Aunque nuestro muestreo del espacio de parámetros no es exhaustivo debido
a las limitaciones impuestas por el costo computacional de las simulaciones force–free,
logramos buenos ajustes tanto para las curvas de luz como para los espectros de todos
los púlsares objetivo bajo este modelo inicial. En particular, para PSR J0437–4715 y
PSR J2124–3358, los ajustes son excelentes. Considerando que el modelo no tiene muchos
parámetros (al menos en comparación con otros de la literatura que incluyen dipolos y
cuadrupolos magnéticos descentrados [79, 80]) y que las observaciones son muy precisas,
los resultados obtenidos aquí son especialmente alentadores.

Como se puede ver en la Tabla 3.2, existen degeneraciones entre los parámetros geomé-
tricos del sistema, como los ángulos χ y ξ (por ejemplo, en el caso de PSR J0437–4715), o C
(como el caso de PSR J2124–3358). Estas degeneraciones son comunes y podrían resolver-
se en principio considerando modelos de emisión multibanda, incluyendo radio y/o rayos
γ. Actualmente, estamos trabajando en incorporar también este tipo de fenomenología.

5Cabe mencionar que estas corrientes no son un efecto transitorio, lo que verificamos extendiendo
una simulación force–free representativa a escalas de tiempo más largas. Además, verificamos que tam-
poco dependen significativamente de la resolución numérica empleada, puesto que nuestras soluciones
se encuentran apropiadamente convergidas. Esto puede constatarse, adicionalmente, en la Fig. 2 de la
Ref. [143].
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Figura 3.1: Regiones de emisión para un púlsar con período P ∼ 4.8ms y compacidad
C = 0.2, para varios ángulos de desalineamiento χ = {15◦, 30◦, 45◦, 60◦, 75◦, 90◦} (de
izquierda a derecha y de izquierda abajo). Los mapas de color representan la temperatura
en la superficie de la estrella de neutrones dada por la Ecuación (3.11) normalizada por
su valor máximo.
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Figura 3.2: Región de emisión para un púlsar con período P ∼ 4.8ms y ángulo de des-
alineamiento χ = 30◦. Configuraciones force–free en espacio–tiempo plano (paneles supe-
riores) y en Kerr (paneles inferiores). Mapa de temperatura sobre las regiones de emisión
(izquierda); corriente eléctrica a lo largo del campo magnético J∥ (centro) y distribución
de carga ρ (derecha) en el plano meridional, normalizados respectivamente por ΩB/2π y
ΩB/2πc. Los paneles del centro y la derecha son figuras desarrolladas por F. Carrasco.
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Tabla 3.2: Parámetros de mejor ajuste con el modelo de cuerpo negro con anisotropía
para las señales de rayos X de los cuatro MSPs objetivo.

PSR C χ ξ b κγ̄ χ2
r

J0437–4715 0.25 20◦ 53◦ 0.94 7.0× 106 1.2
0.25 15◦ 61◦ 1.00 7.0× 106 1.2

J1231–1411 0.18 75◦ 12◦ 0.81 2.5× 107 3.0
0.22 43◦ 30◦ 0.60 2.5× 107 5.3

J2124–3358 0.22 60◦ 24◦ 0.67 1.3× 108 0.8
0.20 75◦ 17◦ 0.67 1.3× 108 0.9

J0030+0451 0.22 25◦ 85◦ 1.09 3.8× 107 10.0

En la curva de luz de PSR J1231–1411 hay un pequeño pico secundario, que resulta
difícil de capturar con precisión. Sin embargo, encontramos otras configuraciones con
ajustes cuantitativamente peores, pero que capturan cualitativamente esta estructura (ver
panel medio de la Fig. 3.4).

Relevancia de las regiones de emisión en la zona cerrada del púlsar Vale la pena
mencionar la importancia de las regiones de emisión no estándar dentro de la zona cerrada
para lograr los ajustes. Las contribuciones separadas de cada tipo de region de emisión
(en la zona abierta y en la zona cerrada) son pulsos altamente simétricos. Pero como
las contribuciones de cada par están mutuamente desfasadas, al combinarse se pueden
obtener interpulsos asimétricos, como en las curvas de luz de PSR J0437-4715 y PSR
J2124-3358, o se pueden reproducir las diferencias de altura entre los dos picos y los dos
valles de PSR J00451+0030. Además, confirmamos que no es posible encontrar ajustes
tan buenos si se descartan las regiones no estándar, con la excepción de PSR J1231–1411.
Esto es consistente con los resultados previos para PSR J0030+0451, según los cuales
no es posible reproducir la curva de luz con solo un par de regiones antipodales [78–80,
129]. Esos trabajos resuelven la tensión introduciendo multipolos magnéticos superiores
descentrados, dando lugar a casquetes polares no antipodales. Por el contrario, en nuestro
caso la solución es la aparición de un par adicional de regiones antipodales en la zona
cerrada, consecuencia de una distinta definición de las regiones de emisión.

Problemas de normalización La principal limitación de este modelo consiste en la
normalización de los flujos predichos, que, como se indica en las figuras, son de dos a cuatro
órdenes de magnitud mayores que lo observado. Aquí examinamos en detalle el caso de
PSR J0030+0451 para identificar el origen del problema y proponer posibles soluciones.
Para ello, tomamos su configuración de mejor ajuste de la Tabla 3.2 y estimamos las áreas
y las temperaturas efectivas promedio de ambos tipos de región de emisión, tanto en la
zona cerrada como en la zona abierta. Los valores resultantes se resumen en la Tabla 3.3,
junto con parámetros análogos de algunos ajustes espectrales de la Ref. [150] para modelos
de cuerpo negro y atmósfera de Hidrógeno, así como dos ajustes con modelos de atmósfera
de Hidrógeno de las Refs. [78] y [129]. Observamos que, mientras que las temperaturas
promedio de nuestro modelo son similares a las del ajuste de cuerpo negro de la Ref. [150],
nuestras áreas emisoras son un factor ≳ 100 más grandes, explicando así un exceso de
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Figura 3.3: Mejor ajuste a los datos de rayos X de NICER de PSR J0437–4715. Compa-
ración de nuestra configuración de mejor ajuste contra la curva de luz observada (izquier-
da) y el espectro (derecha). La curva de luz mostrada en negro, con sus barras de error,
corresponde a los datos de NICER tomados de la Ref. [76]. Nuestra curva de luz modelada
(en azul) fue integrada en la misma ventana de energía, como se indica en el gráfico. Los
datos espectrales, por otro lado, provienen de XMM-Newton X-ray EPIC MOS1/2, ajus-
tados con un modelo 2Hatm+BB+PL [147], y hemos trazado (en negro) la componente no
absorbida. Nuestro espectro modelado (en azul) fue reescalado por un factor de 8.2× 10−3

para la comparación.

aproximadamente dos órdenes de magnitud en nuestros flujos. Sin embargo, las áreas
emisoras inferidas para PSR J0030+0451 con los modelos de atmósfera de Hidrógeno
están mucho más cerca de las nuestras (aunque aún menores, por un factor ∼ 10).

De estas observaciones proviene la motivación para las mejoras propuestas en la segun-
da etapa de este proyecto: incluir el modelo de atmósfera utilizado en las Refs. [78, 129],
y reducir las áreas emisoras introduciendo un umbral en la definición de las regiones de
emisión, como jµj

µ > j2umbral. Con estas modificaciones, podemos esperar normalizaciones
de flujo consistentes para todos nuestros púlsares objetivo, manteniendo a la vez la cali-
dad de los ajustes de curvas de luz. Cabe destacar que esta modificación no implica un
mayor número de parámetros sino, por el contrario, uno menor: mientras que eliminamos
el índice de anisotropía b y el factor de rescaleo λ, agregamos un solo parámetro j2umbral.
A continuación, presentamos algunos resultados preliminares con estas actualizaciones.

Modelo de atmósfera de Hidrógeno

En las Figuras de 3.7 a 3.9 mostramos los resultados obtenidos para tres de los cuatro
MSPs objetivo, incluyendo las regiones de emisión definidas con el umbral, las curvas de
luz y los espectros. En la Tabla 3.4 disponemos los parámetros correspondientes a los
ajustes presentados. En los tres casos los ajustes son muy buenos, tanto de las curvas
de luz como de los espectros. Recordamos que, en este caso, la predicción del modelo
coincide con las observaciones en unidades absolutas. Notablemente, para PSR 1231–1411
logramos capturar incluso el pequeño interpulso que era tan difícil bajo el modelo anterior.
Por otro lado, excluimos aquí el caso de PSR J2124–3358 ya que, lamentablemente, no
logramos ningún ajuste simultáneo razonable con este modelo de atmósfera, al menos con
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Figura 3.4: Mejor ajuste a los datos de rayos X de NICER de PSR J1231–1411. Compa-
ración de nuestra configuración de mejor ajuste contra la curva de luz observada (izquierda
superior) y el espectro (derecha superior). La curva de luz mostrada en negro, con sus ba-
rras de error, corresponde a los datos de NICER tomados de la Ref. [76]. Nuestra curva
de luz modelada (en azul) fue integrada en la misma ventana de energía, como se indi-
ca en el gráfico. Los datos espectrales provienen de NICER, ajustados con un modelo de
atmósfera de Hidrógeno (nsatmos) [148], y hemos trazado (en negro) la componente no
absorbida. Nuestro espectro modelado (en azul) fue reescalado por un factor de 4.1× 10−3

para la comparación. El panel inferior corresponde a un ajuste alternativo de la curva de
luz (cuarta fila en la Tabla 3.2) que captura mejor las características cualitativas de la
señal.
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Figura 3.5: Mejor ajuste a los datos de rayos X de NICER de PSR J2124–3358. Com-
paración de nuestra configuración de mejor ajuste contra la curva de luz observada (iz-
quierda) y el espectro (derecha). La curva de luz mostrada en negro, con sus barras de
error, corresponde a los datos de NICER tomados de la Ref. [76]. Nuestra curva de luz
modelada (en azul) fue integrada en la misma ventana de energía, como se indica en el
gráfico. Los datos espectrales se toman de observaciones de XMM-Newton, ajustadas con
un modelo de atmósfera de Hidrógeno más una ley de potencias [149], y graficamos (en
nergro) la componente absorbida. Nuestro espectro modelado (en azul) fue reescalado por
un factor de 2.1× 10−4 para la comparación.

Figura 3.6: Mejor ajuste a los datos de rayos X de NICER de PSR J0030+0451. Com-
paración de nuestra configuración de mejor ajuste contra la curva de luz observada (iz-
quierda) y el espectro (derecha). La curva de luz mostrada en negro, con sus barras de
error, corresponde a los datos de NICER tomados de la Ref. [76]. Nuestra curva de luz
modelada (en azul) fue integrada en la misma ventana de energía, como se indica en el
gráfico. Los datos espectrales se toman del espectro promediado en fase deabsorbido con
un modelo de atmósfera de Hidrógeno [129], consistente con los datos de XMM-Newton
y NICER. Nuestro espectro modelado (en azul) fue reescalado por un factor de 5 × 10−3

para la comparación.
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Tabla 3.3: Temperaturas efectivas promedio y áreas estimadas de las regiones de emisión
de nuestro modelo, comparadas con parámetros análogos de diferentes ajustes espectrales
para PSR J0030+0451.

Modelo espectral Teff,1 Aeff,1 Teff,2 Aeff,2

[106 K] [km2] [106 K] [km2]

Este trabajo (cuerpo negro con anisotropíaa) 3.2 17.2 1.5 158.4

Cuerpo negro (doble temperatura) [150] 3.1 0.008 1.5 0.25
Atmósfera de Hidrógeno (doble temperatura) [150] 1.7 0.2 0.7 15.2
Atmósfera de Hidrógeno (una temperatura) [78] 1.38 3.4 1.38 8.7
Atmósfera de Hidrógeno (una temperatura) [129] 1.29 3.5 1.29 13.6

Notas:

a En este caso, Teff,1/2 representan las temperaturas efectivas promedio sobre las regiones de emisión
de la zona abierta (1) y la zona cerrada (2), mientras que Aeff,1/2 son sus correspondientes áreas.

Tabla 3.4: Parámetros de mejor ajuste con el modelo de atmósfera de Hidrógeno para las
señales de rayos X de los cuatro MSPs objetivo

PSR C χ ξ j2umbral κγ̄ χ2
tot

J0437–4715 0.22 30◦ 36◦ 14.4 4.7× 105 7.5
J1231–1411 0.15 60◦ 12◦ 78.8 6.2× 106 5.9
J0030+0451 0.18 45◦ 60◦ 220.7 8.1× 106 7.6

el muestreo del espacio de parámetros relativamente modesto del que disponemos.
Debemos mencionar que las regiones de emisión en los casos de PSR J0030+0451 y

PSR J1231+1411 poseen una estructura compleja, con múltiples subregiones mutuamente
disconexas, a una escala que queda apenas unas veces por encima de la resolución espacial
de las simulaciones force–free, poniendo en cuestión la fisicalidad de los resultados. Por el
momento, no tenemos certeza de en qué medida la bondad de nuestros ajustes depende
de esos detalles finos. Pero si suponemos que los resultados son relativamente robustos
respecto de esos detalles, la perspectiva de nuestro modelo es muy buena, al menos para
los MSPs incluidos en este estudio. En el futuro próximo analizaremos esta dependen-
cia, ya sea realizando simulaciones force–free de más alta resolución, o bien filtrando las
estructuras por medio de un modelado analítico que capture las características de las
simulaciones a grandes rasgos.

3.5. Conclusiones

En este capítulo, modelamos los pulsos de rayos X térmicos de MSPs y ajustamos
datos observacionales de cuatro púlsares objetivo: PSR J0437–4715, PSR J1231–1411,
PSR J2124–3358 y PSR J0030+0451. Nuestro enfoque se basa en simulaciones force–
free de la magnetósfera del púlsar, suponiendo un campo magnético dipolar sobre la
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Figura 3.7: Mejor ajuste a los datos de rayos X de NICER de PSR J0030+0451. Región
de emisión sobre la superficie estelar (izquierda), comparación de nuestra configuración de
mejor ajuste contra la curva de luz observada (centro) y el espectro (derecha). La curva de
luz mostrada en negro corresponde a los datos de NICER tomados de la Ref. [76]. Nuestra
curva de luz modelada (en azul) fue integrada en la misma ventana de energía, como se
indica en el gráfico. Los datos espectrales se toman del espectro promediado en fase no
absorbido para ST+PST de la Ref. [129], consistente con los datos de XMM-Newton y
NICER.

Figura 3.8: Mejor ajuste a los datos de rayos X de NICER de PSR J0437–4715. Región
de emisión sobre la superficie estelar (izquierda), comparación de nuestra configuración de
mejor ajuste contra la curva de luz observada (centro) y el espectro (derecha). La curva
de luz mostrada en negro corresponde a los datos de NICER tomados de la Ref. [76].
Nuestra curva de luz modelada (en azul) fue integrada en la misma ventana de energía,
como se indica en el gráfico. Los datos espectrales provienen de XMM-Newton X-ray EPIC
MOS1/2, ajustados con un modelo 2Hatm+BB+PL [147], y hemos trazado (en negro) la
componente no absorbida.

superficie estelar. Las soluciones se conectan a la emisión térmica a través de un modelo
de bombardeo por partículas relativistas, donde suponemos que ésta se da en las regiones
donde la corriente es de tipo espacial.

Encontramos regiones de emisión no convencionales sobre la superficie estelar en la
zona cerrada del púlsar, que sólo están presentes cuando se considera la gravedad de la
estrella de neutrones en la dinámica de la magnetósfera. Con estas regiones de emisión
dentro de la zona cerradas, logramos excelentes ajustes a las curvas de luz de los MSPs
considerados. Esto es notable, en particular, para PSR J0030+0451 dado que sus pulsos
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Figura 3.9: Mejor ajuste a los datos de rayos X de NICER de PSR J1231–1411. Región
de emisión sobre la superficie estelar (izquierda), comparación de nuestra configuración de
mejor ajuste contra la curva de luz observada (centro) y el espectro (derecha). La curva de
luz mostrada en negro corresponde a los datos de NICER tomados de la Ref. [76]. Nuestra
curva de luz modelada (en azul) fue integrada en la misma ventana de energía, como se
indica en el gráfico. Los datos espectrales provienen de NICER, ajustados con un modelo
de atmósfera de Hidrógeno (nsatmos) [148], y hemos trazado (en negro) la componente
no absorbida.

de rayos X se han asociado a la presencia de fuertes componentes no dipolares del campo
magnético [68, 79, 80]. Nuestros resultados ofrecen una interpretación alternativa intere-
sante a estas observaciones, ya que en vez de requerir multipolos magnéticos superiores,
modificamos el modelo de emisión.

En el futuro planeamos continuar trabajando en este proyecto, por un lado mejorando
nuestro tratamiento de los datos observacionales, realizando un procedimiento de ajuste
más riguroso que considere el espectrograma completo en sus dependencias temporal y
espectral, sin integrarlo en fase ni en la ventana de energía; y por otro lado, extendiendo
nuestro modelo a otras bandas del espectro electromagnético, incluyendo simultáneamente
emisión en ondas de radio y rayos γ.



Capítulo 4

Imágenes de núcleos de materia oscura
fermiónica en centros galácticos

En este capítulo, analizamos imágenes relativistas de núcleos galácticos de materia
oscura fermiónica bajo el supuesto de que la radiación proviene de discos α alrededor
de los mismos. Realizamos un análisis para diferentes masas del fermión y ángulos de
visión. Interesantemente, las imágenes muestran depresiones centrales de brillo. Además,
no presentan anillos de luz, una característica potencialmente observable que distingue
este modelo de un agujero negro.

Los resultados aquí presentados corresponden a la Ref. [151] que se encuentra en pre-
paración, pronta a ser enviada a publicar. Mis contribuciones en esta parte consistieron en
la implementación del espacio–tiempo RAR y el modelo de disco de acreción en el código
de transporte radiativo, la realización de las simulaciones y el desarrollo y producción de
las figuras mostradas.

4.1. Introducción
En este capítulo centramos nuestra atención en los núcleos de materia oscura fermió-

nica como candidato alternativo al objeto supermasivo en el centro de las galaxias. Este
candidato tiene varios aspectos particularmente interesantes. Por un lado, el modelo de
distribución de materia oscura fermiónica tal como se define en la Ref. [27] incorpora la
naturaleza cuántica de las partículas proveyendo así una fuente de presión cuántica, que
predomina hacia el centro de las configuraciones. Como consecuencia, el modelo predice
perfiles de densidad de materia oscura con una morfología de tipo núcleo denso–halo di-
luido que depende de la masa del fermión. Por otro lado, las distribuciones con masas del
fermión del orden de 10 − 100 keV, pueden explicar las curvas de rotación de diferentes
tipos de galaxias [113,152], mientras que el núcleo de fermiones degenerados puede ser un
imitador de agujero negro [39] o incluso eventualmente colapsar en uno [153–155].

En el contexto de galaxias de tipo activo, en la Ref. [156] recientemente se extendió la
solución de discos delgados de Shakura & Sunyaev al caso del modelo de materia oscura
fermiónica mencionado. Allí se mostró que para cada masa del núcleo fermiónico existe
una masa del fermión que produce un espectro de luminosidad esencialmente indistin-
guible del de un agujero negro no rotante con la misma masa que el núcleo. Además, se
mostró que el disco puede ingresar al núcleo, alcanzando eficiencias de acreción de hasta

45
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28%, comparables a las de un agujero negro de Kerr. En este capítulo, el objetivo es
extender este análisis considerando los efectos relativistas sobre la radiación. En particu-
lar, investigando las imágenes producidas por el disco alrededor del núcleo compacto de
materia oscura. De esta manera, completamos la secuencia análoga realizada para el caso
de estrellas de bosones, desde el modelo de disco [157] a las imágenes relativistas [158],
aunque en nuestro caso lo aplicamos a galaxias de tipo activo.

En este capítulo tomamos unidades geometrizadas tales que c = G = 1. El capítulo
está organizado de la siguiente manera: en la Sección 4.2 describimos brevemente las
soluciones RAR y las soluciones de disco de acreción alrededor del núcleo compacto de
fermiones. En la Sección 4.3 mostramos los resultados para diferentes ángulos de visión
y masas de partículas. Y finalmente, en la Sección 4.4 damos una discusión general y
perspectivas futuras.

4.2. Modelo astrofísico

4.2.1. Materia oscura fermiónica

Utilizamos el modelo RAR [27, 113] que considera la materia oscura como un fluido
perfecto autogravitante de fermiones neutros masivos de espín 1/2 en equilibrio hidrostá-
tico en relatividad general. A partir de un principio de máxima entropía, puede verse que
los fermiones en equilibrio siguen una distribución de tipo Fermi–Dirac truncada, dada
por

fc(ϵ ≤ ϵc, r) =
1− e(ϵ−ϵc)/kBT (r)

e(ϵ−µ)/kBT (r) + 1
; fc(ϵ > ϵc, r) = 0 (4.1)

donde ϵ =
√

p2 +m2−m2 es la energía cinética de la partícula, ϵc es una energía cinética
de truncamiento1, µ es el potencial químico con la energía en reposo sustraída, T (r) es
la temperatura del fluido y kB, m son la constante de Boltzmann y la masa del fermión,
respectivamente.

Además de estático, el sistema se supone esféricamente simétrico, por lo que la métrica
del espacio–tiempo puede escribirse como

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (4.2)

En este trabajo utilizamos dos familias de soluciones dentro del modelo RAR: la pri-
mera familia corresponde a halos típicos de galaxias de tipo activo con un objeto central
supermasivo de masa 107M⊙ y rodeado por un halo de masa total de 1012M⊙. En este
caso, consideramos masas del fermión de m = 48 keV, 155 keV y 200 keV, en orden cre-
ciente de la compacidad del núcleo. Para la otra solución, adoptamos una masa central de
3.5× 106M⊙ rodeada por un halo similar a la Vía Láctea, de manera similar a lo estudia-
do en [33]. En este caso, adoptamos una masa del fermión de 300 keV que conduce a un
núcleo de materia oscura relativamente cercano a la masa crítica de colapso gravitacional
a un agujero negro.

1El corte está relacionado al escape de partículas con energías cinéticas por encima de cierto umbral
en un sistema autogravitante.
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4.2.2. Disco de acreción

En la Ref. [156] se introdujo una extensión del modelo estándar de Shakura–Sunyaev
[115] de disco geométricamente delgado y ópticamente grueso al contexto de la distribución
de masa compacta de materia oscura RAR. En esta solución, las partículas del disco siguen
órbitas newtonianas2 con una velocidad angular

Ω =
dφ

dt
=

(
GM(r)

r3

)1/2

. (4.3)

La viscosidad cinemática ν del disco está dada por la prescripción α, según la cual ν =
αcsH, donde cs es la velocidad del sonido, H ≪ r es la escala de altura del disco, y α es
un parámetro adimensional menor que 1. Con esta hipótesis, el disco resulta ópticamente
grueso en la dirección vertical, por lo que se supone que cada elemento del disco radía
como un cuerpo negro. La temperatura local en el modelo RAR está dada por

T (r) =

{
3Ṁ

8πσ

GM(r)

r3

[
1−

(
Minrin

M(r)r

)1/2
]

(4.4)

×
[
1− r

3M(r)

dM(r)

dr

]}1/4

, (4.5)

donde Ṁ es la tasa de acreción, rin es el radio interno del disco. Para este estudio, fijamos
la tasa de acreción en 10% de la tasa de acreción de Eddington3, con una eficiencia de
conversión a luminosidad de 10% también. El último término en el lado derecho de la
Ec. (4.5), no tiene correlato en la solución estándar alrededor de un agujero negro, pues
resulta de la distribución extendida de masa. Para más detalles sobre la solución del disco,
remitimos al lector a la Ref. [156].

Dado que el espacio–tiempo RAR no posee una órbita circular estable más interna
(ISCO, por sus siglas en inglés), en este modelo adoptamos como radio interno del disco
el radio en el cual la eficiencia de acreción alcanza una diferencia relativa del 1 % respecto
de su valor de saturación [156]. Denotamos el radio donde esto ocurre como rsat. Esto
típicamente corresponde a rin ∼ 0.1rc, donde rin es el radio interno del disco y rc es el
radio del núcleo. En la Tabla 4.1 mostramos los valores de rsat para cada solución RAR
considerada. Además, con el fin de mostrar que nuestros resultados no son sensibles a
esta hipótesis sobre el radio interno, consideramos también escenarios en que el disco se

2La corrección relativista de la velocidad angular es de alrededor de 0, 1% o menos en todos los
escenarios considerados en este trabajo.

3La luminosidad de Eddington se define como la máxima luminosidad que puede alcanzar un sistema
en equilibrio hidrostático. Para un gas de hidrógeno ionizado, esta es

LEdd =
4πGMmpc

σT
≃ 1.26× 1038

(
M

M⊙

)
erg/s , (4.6)

donde mp es la masa del protón y σT es la sección eficaz de Thomson del electrón. En un sistema acretante,
donde la energía acretada se convierte en luminosidad con cierta eficiencia η, se define la tasa de acreción
de Eddington como ṀEdd = LEdd

ηc2 .
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Mc [M⊙] m [keV] rsat [cm] θsat = rsat/1pc (as)
107 48 1.16× 1014 7.71
107 155 4.56× 1012 0.3
107 200 1.98× 1012 0.13

3.5× 106 300 1.08× 1012 0.07

Tabla 4.1: Masa del núcleo Mc, masa del fermión m, radios de saturación rsat y radio
angular correspondiente medido por un observador ubicado en r = 1 pc para las diferentes
soluciones RAR utilizadas.

extiende hasta el origen, es decir rin = 0. El radio externo del disco de acreción se fija en
103rsat.

4.3. Resultados

Para este análisis utilizamos skylight, el código de transporte radiativo desarrollado
en esta tesis. Dado que las ecuaciones de equilibrio del sistema fermiónico con condiciones
de contorno deben resolverse numéricamente, los coeficientes de la métrica y sus derivadas
se obtienen tabulados sobre una grilla. Para manipular estos datos, implementamos en
skylight un método de interpolación para calcular los coeficientes métricos y los símbolos
de Christoffel utilizando los datos numéricos de las soluciones RAR.

Suponiendo que la distribución de materia oscura no ejerce una influencia significativa
sobre la radiación más allá de r = 1 pc (Apéndice E), tomamos los puntos de observación
para el código en r = 1 pc. Además, tomamos ángulos de inclinación con respecto al eje
de rotación del disco de acreción de ξ = 5◦, 45◦, 85◦, es decir, una vista casi de cara,
una intermedia y una casi de canto, respectivamente. Fijamos la apertura angular de las
cámaras en 60θsat, donde θsat := rsat/1 pc es una estimación del ángulo subtendido por el
radio rsat desde el punto de observación. Como referencia, en la Tabla 4.1 mostramos los
valores de θsat para cada configuración. Tomamos resoluciones de la cámara de 1200×1200
píxeles. Por último, medimos los flujos en el marco estático, uµ ∝ (∂t)

µ, y a lo largo de la
dirección radial, n̄µ ∝ (∂r)

µ.
A modo de comparación, también realizamos simulaciones en un escenario donde el

objeto compacto central es un agujero negro sin rotación con una masa de M = 107M⊙.
En este caso, empleamos el disco estándar de Shakura–Sunyaev, cuyo radio interno es el
de la ISCO (r = 6M), con la misma tasa de acreción que en el escenario RAR (10 % de
la tasa de acreción de Eddington al 10 % de eficiencia). Para la escala de las imágenes,
adoptamos el valor de θsat correspondiente a la solución RAR de 200 keV.

En la Fig. 4.2 mostramos imágenes bolométricas de las soluciones RAR para las gala-
xias de tipo activo (las primeras tres filas de la Tabla 4.1) con el radio interno del disco de
acreción puesto a cero. Lo mismo se muestra en la Fig. 4.3 para el caso del agujero negro.
En la Fig. 4.4 mostramos los diferentes tamaños de las soluciones correspondientes a 155
y 200 keV, para un ángulo de inclinación de ξ = 45◦. La solución de 48 keV, que es la
menos compacta, no se incluye en este figura dada su extensión mucho mayor. La Fig. 4.5
muestra la imagen de la solución RAR para una galaxia de tipo Vía Láctea, en este caso
tomando rin = rsat. Además, en este caso adoptamos una escala angular correspondiente
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Figura 4.1: Flujos específicos para un disco de acreción que se extiende hasta el origen.
El punto de observación está en r = 1 pc, y el flujo se mide en el marco estático, a lo
largo de la dirección radial.

a un observador en r = 8.277 kpc, aplicando una decaimiento efectivo de ángulos sólidos
como en espacio–tiempo plano desde el punto de observación del código en r = 1 pc.

Las imágenes muestran diferencias en el brillo máximo a diferentes inclinaciones de
observación debido al intenso efecto de beaming relativista especialmente en vistas de
canto. Como es de esperar, para distribuciones de materia oscura con núcleos menos
compactos, las imágenes de canto no presentan una fuerte deflexión de la luz, que sí
comienza a apreciarse en los núcleos más compactos como, por ejemplo, para m = 200, 300
keV. Sin embargo, incluso en estos casos más compactos hay una gran diferencia con el caso
de agujeros negros, que muestra una típica distorsión severa de la imagen de la porción
del disco detrás del agujero negro. Además, e independientemente del ángulo de visión,
el caso del agujero negro posee anillos de luz, mientras que este no sucede en los núcleos
RAR (ni siquiera en el caso de masa crítica del núcleo), donde el ángulo de deflexión de
la luz es siempre menor que π.

Además, todas las imágenes revelan depresiones centrales de brillo debidas a la caída
de la temperatura hacia el centro. Por otro lado, las configuraciones de disco con rin = 0 y
rin = rsat son casi indistinguibles visualmente. Esto se debe a que las temperaturas alcan-
zan su punto máximo en radios similares y descienden abruptamente hacia el centro en
ambos casos. Confirmamos esta similitud cuantitativamente, hallando diferencias relativas
de alrededor de 0.1% en promedio en píxeles donde r0(α, β) ≥ rsat, siendo r0(α, β) el radio
del elemento fluido observado en las coordenadas (α, β) de la imagen. Naturalmente, los
píxeles donde r0 < rsat tienen el mayor contraste. Además, entre las configuraciones con
rin = 0 y rin = rsat, las diferencias relativas bajo la norma L2 de los espectros observados
están por debajo de 0.1% en todos los escenarios que consideramos.

Finalmente, en la Fig.4.1 mostramos los espectros observados a diferentes ángulos de
inclinación, comparando los modelos RAR con rin = 0 con el escenario del agujero negro.
A partir de los espectros, se puede ver que cuanto más compacto es el núcleo de materia
oscura (es decir, mayor masa del fermión) las soluciones son más luminosas en general, de
modo que existe una compacidad del núcleo tal que el flujo emitido es similar a la del de



50 CAPÍTULO 4. NÚCLEOS DE MATERIA OSCURA FERMIÓNICA
m

c2
=

48
k
eV

m
c2

=
15

5
k
eV

−20 −10 0 10 20

m
c2

=
20

0
k
eV

𝛼/𝜃sat

−20 −10 0 10 20

−20

−10

0

10

20

𝛽
/𝜃

sa
t

−20

−10

0

10

20

−20 −10 0 10 20

−20

−10

0

10

20

0.0 0.1 0.2

𝜉 = 5 ∘

I/Imax
0.0 0.2 0.4 0.6

𝜉 = 45 ∘

0.0 0.5 1.0

𝜉 = 85 ∘

Figura 4.2: Intensidad bolométrica para un disco de acreción que se extiende hasta el
origen. Las columnas corresponden a las inclinaciones relativas al eje de rotación del
disco de ξ = 5◦, 45◦, 85◦. El punto de observación está en r = 1 pc, y la intensidad
se mide en el marco estático. Aquí, α y β denotan las coordenadas angulares en el cie-
lo centradas alrededor de la dirección radial, y θsat = rsat/r, es decir, el radio angular
correspondiente a rsat, que está tabulado en Table 4.1. La intensidad se ha escalado a
Imax = 9× 1015 erg cm−2 sr−1 s−1.
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Figura 4.3: Intensidad bolométrica para un disco de acreción alrededor de un agujero
negro. Las columnas corresponden a las inclinaciones relativas al eje de rotación del disco
de ξ = 5◦, 45◦, 85◦. El punto de observación está en r = 1 pc, y la intensidad se mide
en el marco estático. Aquí, α y β denotan las coordenadas angulares en el cielo centradas
alrededor de la dirección radial, y θsat = rsat/r, es decir, el radio angular correspondiente
a rsat = para la configuración RAR de 200 keV. La intensidad se ha escalado a Imax =
1, 8× 1016 erg cm−2 sr−1 s−1.
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Figura 4.4: Intensidad bolométrica para un disco de acreción que se extiende hasta el
origen con una inclinación de observación relativa al eje de rotación del disco de ξ =
45◦. El punto de observación está en r = 1 pc, y la intensidad se mide en el marco
estático. Aquí, α y β denotan las coordenadas angulares en el cielo centradas alrededor de
la dirección radial. La intensidad se ha escalado a Imax = 6× 1015 erg cm−2 sr−1 s−1.
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Figura 4.5: Intensidad bolométrica para un disco de acreción con radio interno rin =
rsat alrededor de una solución RAR para una galaxia de tipo Vía Láctea. Las columnas
corresponden a las inclinaciones de observación relativas al eje de rotación del disco de
ξ = 5◦, 45◦, 85◦. El punto de observación está en r = 1 pc, y la intensidad se mide
en el marco estático. Aquí, α y β denotan las coordenadas angulares en el cielo centradas
alrededor de la dirección radial correspondientes a un punto de observación a r = 8.277 kpc.
La intensidad se ha escalado a Imax = 5, 7× 1015 erg cm−2 sr−1 s−1.

un agujero negro para la misma masa del núcleo. Los flujos monocromáticos en los casos
RAR alcanzan su punto máximo a frecuencias más altas para masas de partículas más
grandes, correspondientes a las temperaturas más altas de sus discos (ver la Ref. [156]
para una discusión general sobre este punto).

4.4. Conclusiones

Hemos calculado las imágenes sintéticas producidas por un disco de acreción geométri-
camente delgado y ópticamente grueso sobre núcleos fermiónicos de materia oscura, desde
puntos de observación lejanos a diferentes ángulos de visión. Aplicamos nuestro modelo a
galaxias de tipo activo con masas centrales de 107M⊙, y usando tres masas diferentes del
fermión: 48, 155 y 200 keV. Además, estudiamos una galaxia hipotética similar a la Vía
Láctea que tiene un núcleo más pequeño de 3.6 × 106M⊙ para una masa del fermión de
300 keV.

Una diferencia notable entre las soluciones RAR con los agujeros negros es la no
existencia de una ISCO. Los núcleos fermiónicos poseen órbitas circulares estables a todo
radio. Por lo tanto, en nuestro modelo consideramos que la materia puede caer hacia
la región central mientras emite radiación observable. La depresión central de brillo en
las imágenes de las soluciones RAR surge de una combinación de dos efectos: el alto
corrimiento al rojo de los fotones provenientes de la región central dentro del núcleo y,
lo más importante, la caída de temperatura hacia el centro debido a la supresión de los
esfuerzos viscosos.
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Además, las soluciones RAR no poseen anillos de fotones, al contrario de los agujeros
negros, para los cuales los anillos de fotones son una predicción universal, como discutimos
en el Capítulo 1. La presencia de anillos de fotones cerca del objeto supermasivo central
de M87 y Sgr A* podría ser observable [41–44] luego de las mejoras planeadas en la
interferometría directa tanto desde la Tierra con el ngEHT [46,47], como desde el espacio
[48]. Sin embargo, esta posibilidad ha sido debatida, debido al entorno dinámico, con
opacidades cambiantes, de esos objetos [49].

Enfatizamos, además, que nuestro modelo de acreción no es adecuado para Sgr A*,
ya que las características espectrales observadas son compatibles con radiación sincrotrón
proveniente de un disco grueso y caliente, con una tasa de acreción baja, y no con radiación
de cuerpo negro en un disco de tasa de acreción alta. Dicho esto, es importante que
obtenemos estructuras globales que al menos son prometedoras para trabajos futuros,
como el tamaño de la sombra que es de unos pocos rg, similar al obtenido por el EHT
para Sgr A*.





Capítulo 5

Radiación de discos de acreción
alrededor de estrellas de bosones

En este capítulo, analizamos imágenes y espectros de estrellas de bosones rodeadas
por un disco de acreción relativista, geométricamente delgado y ópticamente grueso, con-
siderando la emisión del continuo térmico y el ensanchamiento relativista de líneas de
emisión. Consideramos estrellas de bosones con potenciales de autointeracción de cuarto
y sexto orden, y comparamos con el escenario de un agujero negro. En particular, encon-
tramos que bajo algunas circunstancias las estrellas más compactas pueden ser imitadoras
de agujeros negros.

Los resultados aquí presentados corresponden a la Ref. [114] y se encuentran enviados
para publicación. Mis contribuciones en esta parte de la tesis fueron la implementación
de los espacio–tiempos de estrellas de bosones, el modelo de disco de acreción, y el modelo
de corona en el código de transporte radiativo, la realización de las simulaciones y el
desarrollo y producción de las figuras.

5.1. Introducción
Entre los objetos compactos exóticos propuestos como alternativas a los agujeros ne-

gros, uno de los más populares son los condensados autogravitantes de campos bosónicos,
comúnmente conocidos como estrellas de bosones [159]. Una ventaja de estos modelos
en comparación con otras alternativas es que se conocen mecanismos dinámicos para su
formación [160–162]. Este marco admite una amplia variedad de modelos compuestos por
campos con diferentes espines y sujetos a diferentes potenciales de interacción [163, 164],
con implicancias en varios contextos fenomenológicos, tales como la espectroscopía de
rayos X [165,166], la materia oscura cosmológica [167] y las ondas gravitacionales [168].

Las dos herramientas principales para testear la geometría del espacio–tiempo alrede-
dor de los objetos compactos son el estudio de la emisión térmica de discos geométrica-
mente delgados y del ensanchamiento relativista de líneas de emisión, como la línea de
Hierro Kα [169,170]. Sin embargo, el espectro térmico suele ser bastante simple y presen-
tar degeneración, mientras que el perfil de las líneas es más complejo y permite distinguir
más detalladamente los efectos de la geometría [170].

Las investigaciones de este capítulo tienen como objetivo ampliar la literatura existen-
te acerca de las propiedades observacionales de una clase de estrellas de bosones escalar
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con potenciales de autointeracción de cuarto y sexto orden [35–37]. Estos potenciales cons-
tituyen ejemplos paradigmáticos contrastantes, pues el último posee soluciones estables
con curvas críticas y ISCOs, mientras que el primero no, siendo características importan-
tes que influencian las propiedades osbervacionales. En particular, utilizamos un modelo
de disco de acreción geométricamente delgado y ópticamente grueso basado en la cons-
trucción de Novikov–Thorne [116] para un agujero negro rotante, en vez de los perfiles
de intensidad ad-hoc que se han considerado anteriormente [35–37], introduciendo así un
modelo basado en principios físicos para el cálculo del perfil de temperaturas.

Además, calculamos el ensanchamiento relativista de líneas de emisión, como la línea
de Hierro. En este caso extendemos trabajos previos que han estudiado líneas de emisión
en estrellas de bosones [165, 166] donde se usaron perfiles de intensidad ad-hoc. En este
trabajo, en cambio, incorporamos un modelo de corona que tiene en cuenta los efectos
relativistas de deflexión de la luz y corrimiento al rojo en el perfil de iluminación del disco
bajo la corona, que determina el perfil de intensidad de la línea a lo largo del disco.

En este capítulo adoptamos un unidades geometrizadas tales que c = G = 1. El
capítulo está organizado de la siguiente manera. En la Sección 5.2 describimos brevemente
el espacio–tiempo y el modelo de disco de acreción alrededor de las estrellas de bosones.
En la Sección 5.3 mostramos los resultados para la emisión del continuo térmico y el
ensanchamiento de las líneas de emisión. Y finalmente, en la Sección 5.4 terminamos con
algunas conclusiones generales.

5.2. Modelo astrofísico

5.2.1. Estrella de bosones

La estrella de bosones se representa por un campo escalar complejo autogravitante.
Las ecuaciones dinámicas de este sistema son las ecuaciones de Einstein–Klein–Gordon:

Gµν = 8πTµν , (5.1)

(∇µ∇µ − V ′) Φ = 0, (5.2)

donde Gµν es el tensor de Einstein, Φ es el campo escalar, ∇µ es la derivada covariante,
V (|Φ|2) es el potencial de interacción, una prima denota la derivada de una función de un
único argumento, y Tµν es el tensor de energía–impulso del campo escalar dado por

Tµν = ∇(µΦ
∗∇ν)Φ− 1

2
gµν (∇σΦ

∗∇σΦ + V ) . (5.3)

Además, suponemos que el sistema estático y esféricamente simétrico, por lo que in-
troducimos el ansatz

ds2 = −A (r) dt2 +

(
1− 2m(r)

r

)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (5.4)

Φ = ϕ (r) e−iωt, (5.5)

donde m (r) es la función de masa, ϕ (r) es la función de onda radial, y ω es la frecuencia
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Modelo ϕc µM µR C ω/µ rISCO/M Tmax [K] rmax/M
ΛBS1 0.03045 1.6321 16.1577 0.10101 0.88124 - 3.58× 106 6.70
ΛBS2 0.03457 1.7356 14.9648 0.11597 0.86410 - 4.05× 106 5.84
ΛBS3 0.04582 1.8368 12.4524 0.14750 0.82786 - 5.14× 106 4.44
SBS1 0.0827 1.7531 11.5430 0.1518 0.25827 6.74968 1.67× 106 9.85
SBS2 0.0827 4.220 16.6520 0.25342 0.17255 6.00000 1.70× 106 9.72
SBS3 0.0850 5.655 17.6470 0.32045 0.13967 6.00000 1.71× 106 9.55

Tabla 5.1: Configuraciones de estrellas bosónicas consideradas en este estudio. Los pa-
rámetros son el campo escalar en el origen ϕc, la masa del campo escalar µ, el radio de
la estrella R, la masa M , la compacidad C ≡ M/R, y la frecuencia del campo escalar ω.
Además, se muestran otras propiedades físicas como el radio de la ISCO, la temperatura
máxima del disco Tmax, el radio de máxima temperatura rmax.

del campo escalar. Además suponemos que el sistema es aislado y regular (no existen
singularidades), lo que impone condiciones de contorno sobre el campo. Para los detalles
sobre las ecuaciones resultantes y su resolución numérica, remitimos al lector a la Sección
II de la Ref. [114]. Dado que el campo escalar típicamente decae exponencialmente con
r → ∞, definimos el radio de la estrella de bosones R como aquel que encierra el 98% de
la masa, es decir m(R) = 0.98M .

En este estudio, consideramos dos funciones potenciales alternativas: por un lado, un
potencial con autointeracción de cuarto orden, V = µ2|Φ|2 + Λ|Φ|4 [171], donde µ es la
masa del campo y Λ es una constante. A esta clase de modelos los denominamos ΛBS.
Estas estrellas pueden ser muy masivas, ya que la masa máxima escala según Mmax ∼ Λ1/2

para valores grandes de Λ. Sin embargo, no pueden alcanzar grandes compacidades, pues
la compacidad satura para valores altos de Λ con el radio R nunca siendo menor que
6M . En particular, esto asegura la estabilidad de las órbitas circulares a todo radio sin
importar el valor de Λ [172].

Por otro lado, también consideramos un potencial con autointeracción de sexto orden1,
V = µ2|Φ|2(1 + |Φ|2/α2)2 [173], donde α es una constante. Estos modelos se denominan
estrellas de bosones solitónicas (SBS). En este escenario, se pueden obtener soluciones
ultra-compactas cuando α → 0, con un radio mínimo de R ≈ 2.81M [164].

A modo de comparación, seleccionamos las mismas tres configuraciones consideradas
en la Ref. [37] para cada uno de los potenciales, ΛBS y SBS. Éstas adoptan valores de
Λ = 400 o α = 0.08, según corresponda. En la Tabla 5.1 listamos el resto de parámetros
que caracterizan las soluciones elegidas, junto con algunos parámetros relativos al modelo
de disco de acreción descrito en la sección siguiente. Para más detalles sobre los coeficientes
de la métrica, curvas de masa–radio, curvas críticas y órbitas circulares de estas soluciones
de estrellas bosónicas, remitimos al lector a la Ref. [37].

1En principio, podrían considerarse potenciales con autointeracciones de mayor orden, pero en trabajos
anteriores [35, 114] se ha mostrado que las características que más fuertemente influyen en las propie-
dades observacionales son las curvas críticas e ISCOs. Dado que las soluciones con autointeracciones de
cuarto orden no pueden simultáneamente ser estables y poseer curvas críticas e ISCOs, mientras que con
autointeracciones de sexto orden sí es posible, estos dos casos son ejemplos contrastantes suficientes para
este análisis.
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5.2.2. Disco de acreción

Suponemos que en el entorno de la estrella de bosones existe un flujo de acreción y
adoptamos el modelo de Novikov–Thorne [116] de un disco de acreción relativista geomé-
tricamente delgado y ópticamente grueso en un espacio–tiempo estacionario y axisimé-
trico. En este modelo las partículas del disco se mueven en órbitas geodésicas circulares
alrededor del objeto central y el calor radiado localmente en un punto del disco está dado
por

Q(r) = − Ṁ

4π
√−g

∂rΩ(
Ẽ − ΩL̃

)2

∫ r

rISCO

(
Ẽ − ΩL̃

)
∂rL̃dr, (5.6)

donde Ẽ, L̃, Ω son la energía específica, el momento angular específico y la velocidad
angular de las órbitas geodésicas, g es el determinante de la métrica, Ṁ es la tasa de acre-
ción, y rISCO denota el radio de la ISCO. En un espacio–tiempo estático y esféricamente
simétrico como el del presente estudio, las cantidades orbitales toman la forma

Ẽ = − gtt√
−gtt − gϕϕΩ2

, L̃ =
gϕϕΩ√

−gtt − gϕϕΩ2
, Ω =

√
−∂rgtt
∂rgϕϕ

. (5.7)

Una diferencia notable entre los modelos ΛBS y SBS radica en la existencia de una
ISCO. De hecho, en los modelos ΛBS las órbitas circulares son estables a todo radio, mien-
tras que los modelos SBS no. Esta característica de los modelos Λ presenta dificultades a
la hora de modelar discos de acreción alrededor de estos objetos. Debido a la ausencia de
un horizonte de eventos o de una superficie dura en estos modelos, la materia acretada
puede acumularse en el centro de la estrella, lo que podría conducir a la formación de
un “agujero negro bariónico”. Sin embargo, como se discute en la Ref. [174], debido a las
bajas tasas de acreción, incluso si se formase un agujero negro en una escala de tiempo
del orden de la edad del universo, la masa de dicho agujero negro sería varios órdenes de
magnitud menor que la masa inicial de la estrella de bosones. Por lo tanto, bajo ciertas
condiciones podemos ignorar esta dificultad.

En este estudio, adoptamos una masa de referencia de M = 14.8 M⊙. Esto corresponde
a la antigua medición de la masa del objeto compacto en Cygnus X-1 [175], una fuente
de rayos X galáctica2. La tasa de acreción de este objeto es Ṁ ≈ 0.3 × 10−8 M⊙/yr,
es decir, toma del orden de 108 años acumular 1 M⊙ en el centro de la estrella. Luego,
la influencia gravitacional de este “centro bariónico” sobre la materia acretada puede
suponerse despreciable en comparación con la influencia gravitacional de la estrella de
bosones. En vista de esto, consideramos aquí que los discos de acreción se extienden hasta
el centro de la estrella de bosones para los modelos ΛBS.

Finalmente, suponemos que cada elemento de superficie radía como un cuerpo negro
con una temperatura efectiva local T (r) = (Q(r)/σ)1/4. En la Fig. 5.1 mostramos los per-
files de temperatura en función del radio para los modelos ΛBS y SBS. Como referencia,
también hemos incluido el perfil de temperatura correspondiente al caso de un agujero
negro de Schwarzschild, que denominamos el modelo BH. Además, en la Tabla 5.1, especi-
ficamos la temperatura máxima del disco y el radio en el que se alcanza dicha temperatura.

2La masa de este objeto ha sido determinada más recientemente en 21.2± 2.2 M⊙ [176]
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Figura 5.1: Perfiles de temperatura para un disco de acreción relativista alrededor de
las estrellas ΛBS y SBS, con una masa de M = 14.8 M⊙. La línea negra representa los
resultados para el espacio–tiempo de un agujero negro con la misma masa como referencia.

Los resultados indican que las temperaturas más altas se alcanzan en los modelos ΛBS,
con las estrellas más compactas asociadas a discos de acreción más calientes. Esto es es-
perable dado que la integral en la Ecuación (5.6) se extiende hasta r = 0 en las estrellas
Λ. Por otro lado, los perfiles de temperatura de los modelos SBS son más similares a los
del agujero negro, dada la cercanía de sus correspondientes ISCOs. En particular, el perfil
de temperatura del modelo SBS3 imita cercanamente al del agujero negro.

5.3. Resultados

Calculamos observables correspondientes tanto al continuo térmico como a líneas de
emisión de los discos de acreción alrededor de las estrellas de bosones, recurriendo a
skylight, el código de transporte desarrollado como parte de esta tesis. Para esto, in-
corporamos la métrica del espacio–tiempo de la Ec. (5.4) y sus símbolos de Christoffel
asociados en skylight, a partir de expresiones analíticas que ajustan con precisión las
soluciones numéricas3. Aunque skylight es capaz de calcular los símbolos de Christoffel
de manera eficiente mediante la diferenciación automática de los coeficientes métricos, op-
tamos por proporcionar una forma explícita de estas cantidades. Esto mejora la velocidad
computacional aproximadamente cuatro veces en este escenario esféricamente simétrico,
en comparación con la versión agnóstica de diferenciación automática. El código para las

3Los errores relativos de las aproximaciones analíticas son menores que el 1% en todas partes, y del
orden de 0.01% en promedio.
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simulaciones de producción y visualizaciones de este capítulo está disponible públicamen-
te [177].

Los puntos de observación están ubicados en r = 1000M , y en varios ángulos de
inclinación con respecto al eje de rotación del disco, ξ = 5◦, 45◦, 85◦, con una resolución
de cámara de 1200 × 1200 píxeles para todas las simulaciones. Las aperturas angulares
de la cámara varían según el modelo, detalladas más adelante en cada caso, y los flujos
se miden en el marco estático, uµ ∝ (∂t)

µ, a lo largo de la dirección radial. Además,
en todos los casos fijamos el radio externo del disco en 80M . Como referencia, hemos
reproducido los análisis en el espacio–tiempo de Schwarzschild, denotado como modelo
BH. En este contexto, el radio interno del disco se establece en rISCO = 6M , con el perfil
de temperatura radial calculado igual que se describe en la Sección 5.2.2.

5.3.1. Emisión térmica

Las Figs. de 5.2 a 5.4 muestran imágenes bolométricas a varios ángulos de inclinación
(5◦, 45◦ y 85◦) para los modelos ΛBS, SBS y BH, respectivamente. Los espectros térmicos
correspondientes se muestran en la Fig. 5.5. Una característica notable de los modelos ΛBS
y SBS es la depresión central del brillo, a pesar de la ausencia de horizontes de eventos,
y aún habiendo un disco que se extiende hasta el origen en el primer caso. Esto se debe
tanto a la caída de la temperatura del disco como al alto corrimiento al rojo gravitacional
que sufre la radiación emitida desde la región central. Por otro lado, la intensidad varía
entre los diferentes modelos, ya que los discos en los modelos ΛBS son más calientes que
los discos en los modelos SBS y BH, lo cual también se traduce en un espectro térmico
más duro.

También vale la pena mencionar el efecto de beaming relativista que se observa es-
pecialmente a la inclinación de 85◦, exhibiendo intensidades máximas más altas debido
a las velocidades negativas más altas de las partículas del disco a lo largo de la visual.
Además, los modelos bosónicos presentan deflexión de la luz significativa, particularmen-
te notorio a inclinación de 85◦, similarmente al escenario BH. Además, los modelos SBS,
debido a su alta compacidad, muestran intrincadas estructuras de anillos de fotones, cuya
alta complejidad es posible gracias a la ausencia de un horizonte de eventos, que permite
que la radiación alcance al observador a través del interior de la estrella bosónica. En
particular, el modelo más compacto (SBS3) presenta cuatro anillos de fotones adiciona-
les en comparación con el agujero negro. Por el contrario, las distribuciones de masa de
los modelos ΛBS y SBS1 no son lo suficientemente compactas como para desviar la luz
suficientemente como para producir anillos de fotones.

5.3.2. Ensanchamiento relativista de líneas de emisión

Consideramos aquí la emisión monocromática del disco de acreción iluminado por
una corona. La corona, un gas más caliente que rodea al disco de acreción, contiene
electrones que dispersan los fotones térmicos del disco a energías más altas. Parte de estos
fotones iluminan el disco de acreción y estimulan emisiones monocromáticas, como líneas
de Hierro, según las abundancias de iones en el disco. En el marco local de reposo, las
líneas espectrales son delgadas, pero los efectos del corrimiento al rojo gravitacional y
Doppler desde distintas partes del disco ensanchan la línea observada en un marco de
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Figura 5.2: Imágenes bolométricas del disco de acreción alrededor de las estrellas de
bosones ΛBS, a inclinaciones ξ = 5◦, 45◦, 85◦ con respecto al eje de rotación de el disco.
La masa de la estrella es M = 14, 8M⊙. El punto de observación está en r = 1000M , y la
intensidad se mide en el marco estático. Aquí, α y β denotan las coordenadas angulares en
el cielo del observador. La intensidad bolométrica del campo de radiación se ha escalado
a Imax = 4, 26× 1022 erg cm−2 sr−1 s−1.
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Figura 5.3: Imágenes bolométricas del disco de acreción alrededor de las estrellas de
bosones SBS, a inclinaciones ξ = 5◦, 45◦, 85◦ con respecto al eje de rotación de el disco.
La masa de la estrella es M = 14, 8M⊙. El punto de observación está en r = 1000M , y la
intensidad se mide en el marco estático. Aquí, α y β denotan las coordenadas angulares en
el cielo del observador. La intensidad bolométrica del campo de radiación se ha escalado
a Imax = 4, 26× 1022 erg cm−2 sr−1 s−1.
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referencia lejano. El ensanchamiento depende también del perfil de emisividad de la línea
a lo largo del disco, denotado como Ie, que a su vez depende del patrón de iluminación.

La geometría de la corona, que determina el perfil de emisividad Ie, es esencialmente
desconocida, incluso en el caso estándar de un agujero negro, debido a la alta complejidad
de los procesos que deben modelarse, y a la sensibilidad de los resultados respecto de
estas hipótesis. Trabajos previos han considerado perfiles de emisividad ad-hoc, como el
llamado modelo de farol [165, 166], en que la corona se representa como un único punto
a una altura h sobre el eje rotacional del disco de acreción en espacio–tiempo plano. Un
cálculo sencillo muestra que el perfil de emisividad de este modelo es

Ie ∝
h

(h2 + r2)3/2
, (5.8)

Sin embargo, en presencia de gravedad, este perfil puede ser afectado por la deflexión de
la luz. En este trabajo, exploramos una mejora, incorporando los efectos relativistas de los
espacio–tiempos de las estrellas de bosones, siguiendo la metodología aplicada previamente
en el contexto de agujeros negros en la Ref. [118]. Suponemos que la corona puntual emite
radiación isotrópicamente, y modelamos esto tomando un conjunto de 5 × 106 fotones
comenzando en r = h a lo largo del eje polar, con momentos espaciales distribuidos
isotrópicamente en el marco estático. Trazamos las geodésicas nulas correspondientes con
skylight y recopilamos aquellas que intersectan el disco de acreción. Tomamos 50 radios,
ri, entre los radios interior y exterior del disco de acreción, y agrupamos las geodésicas en
pequeños anillos delimitados por ri. El área Ai de cada anillo en el marco coordenado es,
aproximadamente,

Ai ≈ 2π
√
grrgφφ∆ri , (5.9)

donde la métrica se evalúa en ri y ∆ri es la extensión radial del anillo. El área correspon-
diente en el marco en reposo se obtiene multiplicando la Ec. (5.9) por el factor de Lorentz
de las partículas del disco, γ = ut, donde uµ es la cuadrivelocidad de las partículas del
disco. La densidad numérica de los rayos entonces resulta

ni =
Ni

Aiγi
, (5.10)

donde Ni es el número de rayos por anillo.
Por otro lado, aproximamos el flujo de fotones en la corona como una ley de potencias

de la forma
dN = KE−Γ

0 dt0dE0 , (5.11)

donde K es una constante, Γ es el índice fotónico, E es la energía de la línea de emisión
y el subíndice cero se refiere a cantidades evaluadas en el marco estático de la corona.
Dado que el número de fotones se conserva a lo largo de cada rayo, en el disco de acreción
debemos tener

dN = KgΓE−ΓdtdE , (5.12)

donde g = E/E0 es el cociente de energías entre el disco y la corona, y hemos usado el
hecho de que dE/dE0 = dt0/dt = g. Por lo tanto, la densidad de energía que ilumina el
disco es

dE = EndN = KgΓE−Γ+1ndtdE , (5.13)
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y el perfil de emisividad radial puede escribirse como

ε ∝ dE
dtdE

= KgΓE−Γ+1n . (5.14)

Los perfiles de emisividad para los escenarios ΛBS, SBS y BH, correspondientes a tres
alturas diferentes de la corona, se presentan en la Fig. 5.6, junto con el perfil analítico
del espacio–tiempo plano de la Ec. (5.8). Curiosamente, los perfiles son similares en dife-
rentes escenarios y parecen alinearse con las prescripciones del espacio–tiempo plano. Sin
embargo, esta semejanza no debe conducir a la interpretación de que el espacio–tiempo
plano es una aproximación adecuada en este modelo. Para ilustrar esto, en la Fig. 5.6
proporcionamos una vista ampliada de los perfiles de emisividad para los escenarios SBS
y BH cerca del borde interior de los discos. Esta región interior, donde la emisividad es
más alta y la semejanza es menos precisa, es la que contribuye de manera más significativa
a las líneas observadas. Incluso diferencias moderadas en esta área crítica pueden influir
fuertemente en la línea resultante. Aclaramos estos puntos en el análisis que sigue.

En los modelos ΛBS, donde el radio interno del disco es cero, el perfil de emisividad
tiene una meseta en radios pequeños. Esta característica amplifica desproporcionadamente
la contribución de la región central en el espectro, dando lugar a líneas que están muy
concentradas en energías más bajas debido al fuerte corrimiento al rojo de los fotones
provenientes de esa región. Consideramos esta situación como no física por lo que hemos
optado por excluir los modelos ΛBS de las consideraciones que siguen.

Volviendo nuestra atención a los escenarios SBS y BH, las formas de las líneas ob-
servadas se presentan en la Fig. 5.7 para varios ángulos de inclinación del observador.
Observamos que, como se mencionó anteriormente, las formas pueden diferir significati-
vamente incluso si los perfiles de emisividad siguen patrones similares. Esto queda claro
en las líneas observadas para ξ = 5◦ y h = 2.5M , 5M . Sin embargo, algunas otras líneas
en las configuraciones SBS se parecen mucho al escenario BH, como h = 5M , 10M y
ξ = 45◦, 85◦. Esto sugiere que, bajo ciertas condiciones, i.e. valores relativamente grandes
de h y ξ, podría ser difícil distinguir una estrella de bosones compacta de un agujero
negro basándose en la espectroscopía de líneas de emisión. Estos resultados indican que
las estrellas SBS más compactas pueden tener características observacionales similares y
comportarse efectivamente como imitadores de agujeros negros en algunas circunstancias.

5.4. Conclusiones

Hemos analizado propiedades observacionales de modelos de estrellas de bosones esca-
lares con autointeracciones de cuarto orden (ΛBS) y sexto orden (SBS), rodeadas por un
disco de acreción relativista, ópticamente grueso y geométricamente delgado. Considera-
mos la radiación del continuo térmico del disco y el ensanchamiento relativista de líneas
de emisión, incluyendo un modelo de corona de farol con efectos de la gravedad.

Para las estrellas de bosones con autointeracciones cuárticas, denominadas modelos
ΛBS, hemos verificado que las propiedades observacionales de estas configuraciones di-
fieren fuertemente del caso de un agujero negro. De hecho, debido a que estos modelos
poseen órbitas estables a todo radio y, en consecuencia, los discos de acreción se extienden
hasta el origen, las perfiles de temperatura alcanzan valores mayores en comparación con
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los del agujero negro. Además, bajo el modelo de corona de farol, el amesetamiento de los
perfiles de emisividad en radios pequeños provoca una concentración desproporcionada de
las líneas de emisión a energías más bajas, una característica que consideramos no física.
Aún así, el corrimiento al rojo gravitacional y la caída de la temperatura en la región
central dan lugar a una depresión central del brillo en la imagen.

Los modelos SBS poseen una mayor similitud en las propiedades observadas con el
caso de un agujero negro. Los perfiles de temperatura son similares, siendo el de SBS3
prácticamente idéntico. Por otro lado, los modelos SBS presentan fuerte deflexión de la luz,
y una estructura de anillos de fotones significativamente distinta de la de un agujero negro.
El ensanchamiento de las líneas de emisión es cualitativamente comparable, especialmente
para grandes alturas de la corona. Estos resultados muestran que las estrellas de bosones
SBS podrían ser posibles imitadores de agujeros negros bajo algunas circunstancias.



Capítulo 6

Comentarios finales

En esta tesis hemos realizado investigaciones sobre la astrofísica de distintas clases
de objetos compactos, incluyendo púlsares de milisegundo, núcleos galácticos de materia
oscura fermiónica y estrellas de bosones. Con ese fin desarrollamos skylight [83, 84],
un código de transporte radiativo en relatividad general para espacio–tiempos arbitrarios,
una herramienta que hemos aplicado en todas las investigaciones que componen esta tesis.

El código desarrollado está escrito en Julia, un lenguaje de programación moderno,
de tipado dinámico y alto desempeño, y está disponible públicamente. Es una herra-
mienta flexible, fácilmente extensible a otros escenarios con nuevos espacio–tiempos y
modelos radiativos. Además, calcula los símbolos de Christoffel usando la técnica mo-
derna de diferenciación automática, que sobrepasa a las diferencias finitas tradicionales
tanto en velocidad como en precisión, lo cual es provechoso, por ejemplo, para problemas
de transporte en espacio–tiempos complejos como los que aproximan a sistemas binarios
compactos cerca de la fusión [121–123], un escenario en el que pensamos trabajar en el
futuro para estudiar signaturas electromagnéticas en distintas bandas del espectro.

En el Capítulo 3, introdujimos un nuevo modelo de emisión térmica de rayos X en
MSPs [127], basado en simulaciones numéricas de la magnetósfera y una relación entre
las corrientes magnetosféricas y la temperatura sobre la superficie estelar. Este modelo
modifica la hipótesis usual que define las regiones de emisión como la base de las líneas
abiertas de campo magnético sobre la superficie. En cambio, supone que las regiones
de emisión están definidas como aquellas donde la corriente es de tipo espacial. Esta
modificación da lugar a regiones de emisión adicionales en la zona de líneas magnéticas
cerradas, lo cual es un efecto de la gravedad y en sí es una novedad. Este modelo es
interesante, ya que al comparar con observaciones de NICER altamente precisas de cuatro
MSPs nos permite obtener buenos ajustes de las curvas de luz y espectros1. Notablemente,
las regiones de emisión en la zona cerrada son cruciales para lograr los ajustes en la mayoría
de los casos. De hecho, nuestros resultados ofrecen una interpretación alternativa a la curva
de luz de PSR J0030+0451: mientras que en la literatura se ha tomado como indicativa
de la presencia de un campo magnético significativamente no dipolar [79,80,129], nosotros
logramos reproducirla con un campo dipolar a partir de un modelo de emisión distinto,
gracias a las regiones de emisión no estándar que obtenemos en la zona cerrada. En el
futuro, continuaremos trabajando en este modelo en varias líneas: por un lado buscando

1Excepto para uno de los MSPs cuando consideramos el modelo de atmósfera estelar, logrando ajustar
la curva de luz solo cuando permitimos exceso de flujo con radiación de cuerpo negro con anisotropía
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ajustar la curva del MSP que no logramos reproducir con el modelo de atmósfera de
Hidrógeno, quizás con un refinamiento del espacio de parámetros. También queremos
comprender más profundamente la naturaleza de las regiones de emisión en la zona cerrada
y el rol del campo gravitacional, pues son ingredientes fundamentales del nuevo modelo.
Además, buscaremos complementar este modelo con otros en las bandas de radio y rayos
γ, que nos permitirían resolver degeneraciones y quizás aportar mayor certeza a nuestro
enfoque.

Luego, en los siguientes capítulos, nos dedicamos a las investigaciones sobre propieda-
des observacionales de objetos compactos exóticos con discos de acreción geométricamente
delgados y ópticamente gruesos. En el Capítulo 4 nos centramos en un gas autogravitante
de materia oscura fermiónica descrito por el modelo RAR [27,113], uno de los principales
candidatos alternativos a objeto supermasivo en el centro de las galaxias. Este modelo
es interesante porque aplica a diversos tipos de galaxias, y en el caso de la Vía Láctea
es consistente con observaciones desde la escala del halo, como la curva de rotación ga-
láctica, hasta la escala del objeto central, como el movimiento de las estrellas S. En esta
tesis, analizamos las imágenes y espectros de los núcleos fermiónicos, y comparamos con
el caso de un agujero negro. Aplicamos este enfoque a galaxias de tipo activo, con ma-
sas centrales de 107M⊙, y al caso de una galaxia similar a la Vía Láctea con un núcleo
de 3.6 × 106M⊙. Por un lado, obtuvimos características similares a los agujeros negros,
como una depresión central de brillo, aún cuando el disco de acreción se extiende hasta
el origen, debido a la caída de temperatura hacia el centro y al alto corrimiento al rojo
gravitacional de los fotones que provienen de la zona central. Si bien nuestro modelo de
acreción no es adecuado para Sgr A*, el tamaño de las depresiones centrales de brillo que
encontramos es cercano a lo observado por el EHT para Sgr A*, del orden de algunos
rg dependiendo de la masa del fermión. Por otro lado, obtuvimos algunas características
distintivas respecto de un agujero negro, como la ausencia de anillos de fotones. Esta es
una característica que podría ser contrastable en el futuro cercano con las mejoras a la
técnica de interferometría directa, tanto desde la Tierra con el ngEHT [46,47], como desde
el espacio [48], aunque la factibilidad de la medición es aún objeto de debate [41–44,49].

Por último, en el Capítulo 5, nos centramos en un modelo de estrellas de bosones
con interacciones de cuarto orden (ΛBS) y sexto orden (SBS) [114]. Analizamos tanto el
espectro del continuo térmico del disco como el ensanchamiento relativista de las líneas
de emisión. Calculamos imágenes y espectros comparando también con el caso de un
agujero negro. En el caso de las estrellas Λ en que el disco de acreción se extiende hasta
el origen, encontramos diferencias significativas con respecto al caso de un agujero negro,
como temperaturas más altas, y una exagerada concentración de las líneas de emisión a
energías bajas, que nos conducen a descartar este modelo como no físico. Los modelos SBS,
en cambio, tienen perfiles de temperatura y espectros térmicos similares a los de un agujero
negro. Por otro lado, presentan estructuras de anillos de fotones notoriamente distintas a
las de un agujero negro en que la sucesión infinita de anillos converge exponencialmente a
una curva crítica [41,42]. Las líneas de emisión bajo el modelo de corona de farol también
son similares a las de un agujero negro para ciertas configuraciones, por lo que puede
ser difícil distinguir los escenarios. Las estrellas SBS, especialmente las más compactas,
pueden actuar como buenos imitadores de agujeros negros.
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Apéndice A

Espacio–tiempo de Kerr en
coordenadas cartesianas de Kerr–Schild

El espacio–tiempo de Kerr es la única solución de agujero negro de vacío, estacionaria
y asintóticamente plana de las ecuaciones de Einstein. Es seguramente la solución más
importante por su extrema utilidad en astrofísica. Además de estacionaria, es axialmente
simétrica y está parametrizada por dos cantidades: la masa M y el spin a. En coordenadas
cartesianas de Kerr–Schild, la métrica de Kerr toma la forma

gµν = ηµν + 2Hlµlν , (A.1)

donde ηµν es la métrica plana y

H =
Mr3

r4 + a2z2
, lµ =

(
1,

rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

)
. (A.2)

La función radial r está definida implícitamente por

x2 + y2

r2 + a2
+

z2

r2
= 1. (A.3)

Se dice que una métrica en la forma de la ecuación A.1, para una función escalar
arbitraria H y una 1-forma nula arbitraria lµ, está en forma de Kerr–Schild. Para valores
de M > 0 y 0 ≤ a/M ≤ 1 hay un agujero negro en el espacio–tiempo. Otros valores de
a se consideran no físicos debido a la existencia de una singularidad desnuda. El vector
lµ es nulo tanto con respecto a gµν como a ηµν . Además, lµ es geodésico con respecto a
ambas métricas, es decir, lµ∂µlν = lµ∇µl

ν = 0.
En estas coordenadas, los coeficientes de la métrica permanecen regulares a través

del horizonte de eventos, lo cual es conveniente ya que evita problemas numéricos cerca
del mismo. Estas coordenadas, por ser cartesianas, también son regulares sobre el eje de
simetría axial, lo cual también es conveniente en la práctica. Además, tienen la propiedad
atractiva de que la métrica resulta unimodular, es decir

√−g ≡ 1. Esta propiedad es
especialmente útil en el método de emisor a observador del código de transporte, ya que
el elemento de volumen para el muestreo de paquetes de fotones es simplemente d4x, por
lo que basta con tomar una grilla rectangular uniforme para el dato inicial.
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86 APÉNDICE A. ESPACIO–TIEMPO DE KERR

La estacionariedad y la simetría axial del espacio–tiempo están asociadas a los vectores
de Killing K = ∂t, generador de traslaciones temporales, y R = −y∂x + x∂y, generador
de rotaciones azimutales. Estos vectores proporcionan dos constantes de movimiento geo-
désico: la energía E = −Kµk

µ y el momento angular L = Rµk
µ, donde kµ es el vector

tangente de la geodésica. La métrica misma, como tensor de Killing trivial, proporciona
otra constante de movimiento m2 = −gµνk

µkν , es decir, la masa de la partícula. Además,
notablemente, existe una cuarta constante de movimiento, la constante de Carter. Esta
constante proviene de un tensor de Killing independiente de la métrica y de productos
tensoriales de los vectores de Killing, y puede escribirse como

Cµν = −s(µlν)∆+ r2gµν , (A.4)

donde ∆ = r2 − 2Mr + a2, lµ es la 1-forma nula definida antes, y

sµ = lµ +
2a

∆
Rµ +

2(r2 + a2)

∆
Kµ . (A.5)

La constante de Carter resulta entonces

C = Cµνk
µkν = −∆(lµk

µ)2 − 2lµk
µ[aL− (r2 + a2)E]− r2m2 . (A.6)



Apéndice B

Método de emisor a observador en
simetría helicoidal

Dado que todas las aplicaciones de esta tesis poseen simetría helicoidal, tal que las
cantidades físicas dependen del tiempo t y del ángulo azimutal φ a lo sumo a través de
una fase ωt − φ, donde ω es la frecuencia del sistema, vale la pena examinar cómo se
reduce el cálculo de los flujos en este caso para el método de emisor a observador. Estas
consideraciones permiten reducir enormemente el costo con respecto a un problema sin
simetrías.

En primer lugar, es claro que solo es necesario calcular los flujos a un único ángulo
azimutal, digamos φ = 0. Esto es porque, dada la simetría helicoidal, el flujo a otro
ángulo azimutal podrá obtenerse simplemente como una traslación temporal del primero.
Luego, por simplicidad, en el resto de este apartado supondremos que los detectores están
ubicados a φobs = 0. Además, antes de proseguir, definimos la fase de observación como
ϕ = (ωt−φ)/2π, donde φ es el ángulo azimutal de observación. En el detector, la relación
entre tiempo y fase se reduce simplemente a t = ϕT , donde T = 2π/ω es el período del
sistema.

Por otro lado, la simetría helicoidal permite tomar un único tiempo inicial para todos
los paquetes de fotones, digamos t0 = 0, y deferir el resto de consideraciones temporales al
postprocesamiento. Esto funciona de la siguiente manera: los paquetes de fotones lanzados
a t0 = 0 arriban a los detectores a tiempos distintos porque siguen distintas trayectorias;
sin embargo, portan la información completa requerida para el cálculo de los flujos a
cualquier tiempo (provisto, claro, un muestreo razonable de la región de emisión a t0 = 0).
Si queremos calcular el flujo a través de un detector a un ángulo polar ξobs, recolectamos
los paquetes de fotones que, luego de la propagación, yazcan en una franja de la esfera
celeste dada por |ξ− ξobs| ≤ ∆ξ/2 y 0 ≤ φ < 2π, es decir, con aproximadamente el mismo
ángulo polar que el detector, pero a cualquier ángulo azimutal. El ángulo sólido que ocupa
esta franja es ∆Ω ≈ 2π sin ξ∆ξ. Cada paquete dentro de la franja anular corresponde a
una contribución al flujo en el detector a un tiempo distinto, según su ángulo y tiempo de
llegada a la esfera celeste. Para ver cuál es esa contribución, supongamos que un paquete
llega a la franja anular a un tiempo final tf y a un azimut final φf . Debido a la simetría
helicoidal, se corresponde con otro paquete, emitido a un tiempo inicial posiblemente

87



88APÉNDICE B. MÉTODO DE EMISOR A OBSERVADOR EN SIMETRÍA HELICOIDAL

distinto, que arriba al detector con la siguiente fase de observación:

ϕ =
tf
T

− φf

2π
. (B.1)

Luego, el flujo monocromático en el detector se puede calcular como

Fν =
1

2πD2 sin ξ∆ξT∆ϕ∆ν

∑

i

(hν)iwi , (B.2)

donde hemos utilizado que ∆t = T∆ϕ en el detector, y la suma es sobre todos los paquetes
de fotones que se encuentran en la franja anular y dentro de los correspondientes rangos
de fase y frecuencia.



Apéndice C

Aproximación de plano imagen

Para puntos de observación distantes en espacio–tiempos asintóticamente planos, se
puede realizar la aproximación de que los rayos de luz arriban esencialmente paralelos.
En este caso, se puede calcular el flujo de otra manera respecto de lo explicado en la
Sección 2.2.3, recurriendo a lo que se llama comúnmente el plano imagen. Este es el
enfoque con el que originalmente desarrollamos el esquema de observador a emisor del
código, y es el que está descrito en la Ref. [83]. Además, es el enfoque que adoptan la
mayoría de los códigos de trazado de rayos, especialmente aquellos con cuyos resultados
comparamos para realizar los tests astrofísicos descritos más adelante. El enfoque de la
cámara estenopeica, más riguroso, no depende de la condición de planitud asintótica, por
lo que permite puntos de observación arbitrarios (no necesariamente lejanos), y en estado
de movimiento arbitrario (no necesariamente estáticos). Si bien la aproximación del plano
imagen es razonablemente buena en la práctica para la mayoría de aplicaciones astrofísicas,
no necesariamente es menos computacionalmente demandante que la descripción rigurosa
de la cámara estenopeica, ya que la cantidad de condiciones iniciales al fin y al cabo es
la misma. Cabe destacar que la validez de la aproximación de plano imagen es delicada
en algunos casos especiales, sin importar la distancia, como vistas de canto de objetos
delgados como discos de acreción. No obstante, puesto que es el enfoque que utilizamos
para comparar con resultados previos de la literatura, describimos aquí su implementación,
que también se encuentra disponible en la versión pública del código.

Tomemos un sistema de coordenadas cartesianas (t, x, y, z) en que el punto de observa-
ción se encuentra sobre el plano x−z a una distancia D del origen, y la inclinación respecto

x
y

z

D
ξ

a

b

Figura C.1: El plano imagen con coordenadas rectangulares (a, b). ξ es la inclinación del
observador y D es su distancia.
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al eje z es ξ (ver Fig. C.1). En el marco estático, ua = (∂t)
a, tenemos que uana = 1, donde

na es el vector unitario en la dirección de propagación de un fotón. Además, dado que el
punto de observación es lejano, la imagen de la fuente emisora ocupa un pequeño sector
esférico centrado alrededor de cierta dirección. Si tomamos n̄a como esa dirección, tene-
mos que n̄ana ≈ 1 dentro de la imagen de la fuente. Finalmente, dado que los rayos son
aproximadamente paralelos, podemos aproximar el flujo como

Fν =
1

D2

∫

S
Iνdadb , (C.1)

donde S es el plano imagen y (a, b) son coordenadas rectangulares sobre S. Estas coorde-
nadas están relacionadas con las coordenadas cartesianas a través de

x = −b cos ξ +D sin ξ , (C.2)
y = a , (C.3)
z = b sin ξ +D cos ξ . (C.4)

Para calcular esta integral, la aproximamos numéricamente como una suma de Riemann
a partir de una grilla rectangular sobre el plano imagen. Luego, cada punto de la grilla se
toma como la posición inicial de una geodésica, mientras que el momento espacial inicial
es normal al plano imagen, y la componente temporal del momento se fija de modo que
el cuadrivector resultante sea nulo. La intensidad específica correspondiente a cada rayo
se calcula de la misma manera que en el caso de la cámara estenopeica.



Apéndice D

Procedimientos para ajustar las
observaciones de rayos X de MSPs

Para hallar el conjunto de parámetros de nuestro modelo que mejor ajusta los datos
observacionales de los MSPs, idealmente, se debería comparar el espectro resuelto en
fase con los datos observacionales. Sin embargo, dado que estos datos no son fácilmente
accesibles ni manipulables para nosotros, y que nuestro objetivo principal es reproducir
las curvas de luz, realizamos un procedimiento simplificado, haciendo un tratamiento
separado de los espectros y las curvas de luz.

En la primera etapa de nuestro trabajo, con el cuerpo negro anisotrópico, estimamos
inicialmente el parámetro κγ̄ para aproximar la forma del espectro promediado en fase
en la ventana de energía relevante para cada púlsar, y luego ajustamos los parámetros
restantes. Esto se justifica porque, esencialmente, el parámetro que determina la distribu-
ción espectral es κγ̄, pues controla directamente la temperatura efectiva, mientras que el
resto de parámetros sólo afectan el espectro débilmente. Luego, obtenemos una muestra
discreta en (C, χ, ξ), para la cual podemos calcular sus curvas de luz dado un índice de
anisotropía b.

Para encontrar los mejores ajustes de las curvas de luz, comparamos las curvas norma-
lizadas por sus valores máximos de flujo. Es decir, comparamos F/Fmax y F̄ /F̄max, siendo
F y F̄ los flujos predicho y observado, respectivamente. Además, incorporamos un posible
desfasaje ∆ϕ entre ambas curvas, así como un cambio de escala dado por un factor λ =
Fmax/F̄max. Así, lo que realmente comparamos es f(ϕ;λ,∆ϕ, b) := (λF/Fmax)(ϕ +∆ϕ; b)
contra f̄(ϕ) := (F̄ /F̄max)(ϕ) para los parámetros {λ, ϕ, b}.

El desempeño en esta comparación lo capturamos mediante el factor chi cuadrado
reducido,

χ2
r := χ2/ϖ =

1

ϖ

n∑

i=1

(
f(ϕi;λ,∆ϕ, b)− f̄(ϕi)

)2

ε2i
(D.1)

donde la suma se extiende sobre los n intervalos de fase en el conjunto de datos observacio-
nales, ϖ = n− k es el número de grados de libertad, con k = #{C, χ, ξ, b, κγ̄,∆ϕ, λ} = 7
siendo el número de parámetros del modelo, y con εi siendo los errores observacionales pa-
ra cada intervalo. Para la optimización, utilizamos un algoritmo L-BFGS-B de las librerías
de optimización de SciPy en Python [178].

Luego, en la segunda etapa de nuestro trabajo, con el modelo de atmósfera de Hi-
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drógeno, modificamos también el procedimiento de ajuste para incorporar información
del espectro directamente. En vez de fijar inicialmente el parámetro κγ̄ para obtener
una forma espectral adecuada, y luego minimizar sobre los datos observacionales de la
curva de luz, incluimos en la minimización tanto los datos de la curva de luz como del
espectro promediado en fase. Para esto, tomamos una suerte de factor chi cuadrado total,
χ2
tot = χ2

LC+αχ2
SP, donde χ2

LC y χ2
SP son las componentes de la curva de luz y el espectro,

respectivamente, y α es un peso relativo entre ambas. Esto es solo una heurística para
encontrar ajustes razonables, pero vale aclarar que se pierde la interpretación cuantita-
tiva usual del factor chi cuadrado, ya que combina valores y errores de observables de
distinta naturaleza, no habiendo una manera obvia de pesar uno respecto del otro. De
todos modos, este procedimiento conduce a ajustes visiblemente buenos de curvas de luz
y espectros, aún si no contamos con interpretación cuantitativa usual de la bondad de los
mismos. Además, como los errores asociados a los datos de espectros promediados en fase
no están informados en las publicaciones de las cuales los extrajimos, para el cálculo de
χ2
SP tomamos un error puesto a mano. En la misma línea, esto nubla aún más la inter-

pretación de χ2
tot, pero nuevamente, solo buscamos una heurística para encontrar buenos

ajustes, no pretendemos una medida cuantitativa de la bondad de los mismos.



Apéndice E

Distancia del punto de observación en
el modelo RAR

La naturaleza multiescala del modelo RAR, desde la escala subparsec del núcleo ga-
láctico hasta las decenas de kiloparsecs del halo, plantea un desafío para el cálculo del
transporte radiativo. Esto es así porque, en principio, demanda integrar la ecuación de
transporte a lo largo de enormes distancias, considerando al mismo tiempo variaciones
espaciales en escalas pequeñas, lo que fácilmente conduce a inestabilidades numéricas. No
obstante, si la influencia que ejerce el halo de materia oscura es insignificante más allá de
cierta distancia, este problema puede mitigarse tomando puntos de observación relativa-
mente cercanos a la fuente y corrigiendo la normalización de los flujos y escalas angulares
con un decaimiento con el cuadrado inverso de la distancia como en espacio–tiempo plano
para distancias mayores que la del punto de observación.

En este apéndice, justificamos la elección de r = 1 pc como punto de observación
realizada en el Capítulo 4, fundamentando que la distribución de materia oscura ejerce
una influencia insignificante sobre la radiación a distancias mayores que esa. Para ello,
consideramos los ángulos de deflexión en el límite newtoniano, que puede aplicarse a radios
mayores que 1 pc.

Una métrica estática en el límite newtoniano tiene la forma

ds2 = −(1 + 2ϕ)dt2 + (1− 2ϕ)dγ2 , (E.1)

donde ϕ se identifica como el potencial gravitacional newtoniano y dγ2 es la métrica
plana tridimensional. La métrica anterior puede descomponerse como un fondo plano
(cuadridimensional) más una pequeña perturbación newtoniana. De igual manera, las
geodésicas del espacio–tiempo se descomponen en

xµ(λ) = x(0)µ(λ) + x(1)µ(λ) , (E.2)

donde el primer término del lado derecho es la trayectoria de fondo y el segundo término
es una pequeña desviación. Además, definimos

kµ =
dx(0)µ

dλ
y lµ =

dx(1)µ

dλ
. (E.3)
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m (keV) Norma del vector de desviación
48 6, 2× 10−12

155 2.5× 10−13

200 1, 1× 10−13

300 2× 10−14

Tabla E.1: Norma del vector de desviación para una geodésica entrante en la aproxima-
ción newtoniana entre r = 8 kpc y r = 1 pc para las soluciones RAR que consideramos en
este trabajo.

Expandiendo perturbativamente las ecuaciones geodésicas en términos de esta descompo-
sición [179], se puede ver que la trayectoria de fondo resulta geodésica del espacio–tiempo
plano (una línea recta). Como estamos interesados en geodésicas nulas, kµ debe satisfacer
(kt)2 = k2 =: k2, donde denotamos vectores espaciales tridimensionales en negrita. Sin
pérdida de generalidad, suponemos k = 1. Además, se obtiene la siguiente relación de
primer orden para el vector de desviación:

dl

dλ
= −2[∇ϕ− (∇ϕ · k)k] , (E.4)

donde se entiende que las cantidades están evaluadas sobre la trayectoria de fondo.
Para aplicar esto al espacio–tiempo del modelo RAR, como paso previo se debe poner

la métrica de la Ec. (4.2) en la forma del límite newtoniano de la Ec. (E.1). Para eso, a
radios mayores que 1 pc podemos aproximar eν ≈ 1+ν, ya que ν es pequeño, identificando
ϕ = ν/2 como el potencial gravitacional. Finalmente, la métrica se convierte a la forma
del límite newtoniano escalando el radio como

r̃ = r exp

(
−1

2

∫ r

0

ν

r′
dr′

)
. (E.5)

El cociente r̃/r permanece por debajo de 3% para r > 1 pc.
Para evaluar en qué medida la distribución de materia oscura influye en la radiación

a grandes distancias, integramos la Ec. (E.4) para cada solución RAR considerada en el
Capítulo 4 a lo largo de una geodésica desde un punto en r = 8 kpc hasta la superficie
r = 1 pc. El momento espacial inicial de la geodésica no es radial, sino que lo tomamos
formando un ángulo δ = 50rsat/(8 kpc) con la dirección radial (del orden del radio angular
aparente de la imagen de la fuente a 8 kpc). Como es esperable, las desviaciones finales
de las geodésicas son insignificantes en todos los escenarios (en la Tabla E.1 mostramos
los valores). Esto significa que la gravedad de la distribución de materia oscura tiene un
efecto insignificante sobre la radiación de la fuente entre r = 1 pc y r = 8 kpc , por lo que
cualquier efecto sobre la misma debe ocurrir dentro de r ≤ 1 pc. En conclusión, mostramos
que es válido tomar los puntos de observación en 1 pc.
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