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Abstract: The thermodynamical quantities and response functions are useful to describe the particle

production in heavy-ion collisions as they reveal crucial information about the produced system.

While the study of isothermal compressibility provides an inference about the viscosity of the medium,

speed of sound helps in understanding the equation of state. With an aim towards understanding

the system produced in the heavy-ion collision, we have made an attempt to study isothermal

compressibility and speed of sound as function of charged particle multiplicity in heavy-ion collisions

at
√

sNN = 2.76 TeV, 5.02 TeV, and 5.44 TeV using unified formalism.

Keywords: relativistic heavy ion collision; QGP; unified statistical framework; isothermal

compressibility; speed of sound

1. Introduction

Among the main aim of heavy-ion collision program at present collider experiments
such as Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) is to
mimic the state that was created few microseconds after the Big Bang. This state of matter,
created at extremely high temperature and energy density, is called the Quark-Gluon
Plasma (QGP) and is also believed to be present at the core of massive neutron stars.
Interaction between quark and gluon, which leads to the formation of QGP, is governed
by the Quantum Chromo-dynamics (QCD). Asymptotic freedom, which is an important
pillar of QCD, suggests a confinement deconfinement phase transition, during which the
hadronic degree of freedom changes to partonic degree of freedom. Whether the phase
transition is first-order, second-order or a simple cross-over and the search for the critical
point are some of the important questions that are of immediate interest in the particle
physics community.

Since the formation of QGP occurs at a very short time scale, it is not possible to
directly probe in the experiment using current technologies. Therefore, we rely on the
information carried by the final state particles to the detectors to gain insight into the
medium created in the heavy-ion collision. Although we only measure the kinematic
quantities such as the pseudorapidity η, transverse momentum p

T
, energy E etc. of the

final state particles in the experiment, a breadth of information about the medium can be
extracted by studying these kinematic observables.

Another set of quantities that are not directly observable, however, play an important
role in understanding the nature of the medium and the equation of state are the thermody-
namical response functions. This includes quantities that express how a system responds
to change in some external parameters such as pressure, temperature etc. Isothermal
compressibility (κT), and speed of sound (cs) are some of the response function that are of
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interest in high-energy physics [1–3]. The isothermal compressibility, κT , which exhibits the
important property of the medium, tells us how much the volume of the medium changes
on the change in pressure at a fixed temperature. This quantity can be used to study how
close a medium is to be called perfect fluid. Perfect fluids are ideal fluids that do not possess
shear stress, viscosity and also do not conduct heat. The κT of perfect fluid is zero and the
zero value signifies that the fluid is incompressible. Although the incompressible fluids do
not exist in nature, the recent findings of the value of κT , as in Ref. [4], are almost close to
zero which suggests that the medium created is almost a perfect fluid. Estimation of κT

will tell us about how close the medium to be a perfect fluid which will lead us an approxi-
mation about the viscosity as viscosity describes a fluid’s resistance to flow, hence perfect
fluid has zero viscosity. Isothermal compressibility and viscosity of a liquid is related to
the low-shear viscosity of a liquid dispersion of solid particles [5]. Perfect fluid can also be
characterized by the ratio of shear viscosity to entropy density (η/s). Calculation based
on AdS/CFT correspondence has put up a universal lower bound of 1/4π for strongly
interacting quantum field theories [6]. On the other hand, the value of η/s has been found
to be close to the lower bound based on the flow harmonics calculation of the experimental
data, indicating the near-perfect behaviour of medium created in heavy-ion collision [7,8].

As explained in Ref. [9], the speed of sound can quantify the nature of the same as
it connects and explains the hydrodynamical evolution of the produced matter in the
heavy-ion collisions. Fundamentally the speed of sound also gives the information about
the equation of state, which relates pressure (P) and the energy density (ǫ). For a non-
interacting massless ideal gas, the value of the squared speed of sound c2

s is expected to
be 1/3 times speed of light squared [10]. Hence, the comparison with the massless ideal
gas will give crucial information about the system dynamics and reveals the nature of the
medium [11]. Different studies suggested that for the system created in heavy-ion collision
the value of c2

s is close to the ideal value [1,3,11–17].
As already discussed, these quantities are not directly observable in the experiment

and we extract them by utilizing the distribution of kinematic observables such as the
transverse momentum p

T
-spectra, rapidity, angle of emission etc. The p

T
-spectra carries

sufficient information to study such quantities as it is directly related to the energy of
the system. Understanding the distribution of p

T
is in itself a tedious task because in the

low-p
T

region, the QCD coupling strength is very high and hence we cannot apply the
perturbative QCD theories to explain the spectra. Several phenomenological models have
been developed to tackle this issue, and the most widely accepted are the statistical thermal
models. We can utilize the statistical thermal models to extract the thermodynamical
quantities such as temperature, number density, energy density etc.

If we assume the purely thermal origin of final state particles, the most natural choice
to explain the energy distribution of particles is Boltzmann-Gibbs (BG) statistics [18–20].
However, it has been discussed in many works [21,22] that the BG distribution function
deviates significantly from the experimental data because the spectra are more like a power-
law rather than the simple exponential. Also, the BG statistics fails to explain the strongly
correlated systems [23] in which the long-range correlations are present, and entropy
becomes non-additive and non-extensive [24]. The existence of long-range interaction in
high-energy heavy-ion collisions is discussed in Ref. [25] motivating to explore beyond the
extensive BG regime to study the spectra. In 1988, C. Tsallis proposed a statistics [26–28],
introducing an additional parameter q, which takes care of the non-extensivity in the
system. It is a thermodynamically consistent [29,30], generalized version of Boltzmann
distribution [31]. The power-law behavior of Tsallis distribution makes it a good choice
to study the p

T
-spectra and it is shown to nicely fit the spectra, particularly in the low-

p
T

region. Although Tsallis statistics nicely explain the data in the low-p
T

region, however,
it starts to deviate from the experimental data as we move toward the high-p

T
part of

the spectra.
Particle spectra in heavy-ion collisions can be divided into two distinct regions, low-

p
T

regime corresponds to the particle produced in soft processes whereas the hard processes
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dominate particle production in the high-p
T

region. The limitation of Tsallis statistics in
explaining the particle produced in hard processes demands a framework that can consider
the effect of both soft and hard processes in the particle spectra. Some modification in Tsallis
statistics [32–35] has been proposed to explain the high-p

T
part of spectra in the heavy-ion

collision, however, more work is required in this direction to get the full benefit from the
spectra. To explain both the hard and soft part of particle spectra in a consistent manner,
a unified theory using Pearson distribution is introduced in Ref. [21]. It is a generalized
form of the Tsallis distribution and is shown to be thermodynamically consistent and
backward compatible to the Tsallis statistics within some limit on its parameters [22].

In this work, we have calculated the isothermal compressibility and speed of sound for
charged hadrons produced in heavy-ion collisions using the unified statistical framework.
For this analysis, we have taken the experimental data of transverse momentum spectra
for charged hadrons produced in Pb − Pb collision at

√
sNN = 2.76 TeV [36], 5.02 TeV [37],

and Xe − Xe collision at 5.44 TeV [38] measured by the ALICE experiment.

2. Methodology

The basic thermodynamic quantities that are of interest to formulate the isothermal
compressibility and speed of sound include energy density ǫ, number density n and
pressure P. From the standard thermodynamics, the number of particles N in a system and
its total energy E can be calculated as:

N = ∑
i

fi (1)

E = ∑
i

Ei fi (2)

where Ei is the energy of ith state and fi is the corresponding distribution function. The stan-
dard replacement while going from summation to integration for small energy intervals is
given as [29]:

∑
i

→ V
∫

d3 p

(2π)3
(3)

Here, V is the volume and p represent the momentum. So, using the above transfor-
mation, the number density n will be of the form:

n =
∫

d3 p

(2π)3
× f (E) (4)

and the corresponding energy density ǫ will be given as:

ǫ =
∫

d3 p

(2π)3
E × f (E) (5)

Since the momentum distribution of the final state particles are fixed at kinetic
freeze-out [12], the pressure of the system could be estimated from the moments of energy
distribution. The pressure P is given as:

P =
∫

d3 p

(2π)3

p2

3E
× f (E) (6)

Among all the quantities discussed above, one common factor is the energy distribu-
tion of the particles ( f (E)). Energy is related to the transverse mass mT and pseudorapadity
y as E = mTcosh(y) and the transverse mass is defined in term of transverse momentum pT

and mass of particle m as mT =
√

p2
T + m2. So, the distribution of transverse momenta acts

as a proxy for the energy distribution. Hence, the proper parameterization of transverse
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momentum spectra is crucial to understand the thermodynamics of the system created in
high-energy collisions. In the present work, we have used the unified statistical framework
to explain the p

T
-spectra and extract the thermodynamical quantities such as temperature

T, non-extensive parameter q.
In the seminal work [39], Karl Pearson discussed a family of the curve, based on the

first four moments (mean, variance, skewness, and kurtosis), called Pearson distribution.
Before the introduction of Pearson formalism in 1895, all probability distribution was only
constructed based on mean and variance and did not take care of skewness and kurtosis.
Pearson introduced a new probability distribution function where skewness and kurtosis
can also be adjusted along with the mean and variance of a distribution. An important
characteristic of this distribution is that depending on the limit on its parameters, it reduces
to different distribution function such as Gaussian, normal, Student’s T, Gamma distribution
etc. The differential form of a Pearson distribution function, p(x), for a variable x is
expressed as [40]:

1

p(x)

dp(x)

dx
+

a + x

b0 + b1x + b2x2
= 0 (7)

where a, b0, b1, and b2 are related to first four moments of the distribution. By integrating
this differential equation, one can get,

p(x) = exp

(

−
∫

x + a

b2x2 + b1x + b0
dx

)

(8)

Solving above equation we get the general solution of the form:

p(x) = C(e + x) f (g + x)h (9)

p(x) = B

(

1 +
x

e

) f(

1 +
x

g

)h

(10)

upto some normalization constant B = Ce f gh. Here, C, e, f , g & h are the parameters
of the equation and can be related to the physical parameters such as temperature T,
non-extensivity parameter q etc.

Distribution function, in case of unified statistical framework, obtained from the above
Pearson distribution, is given as [22]:

fi = (B fE)
1/q fTa (11)

where

B =
C

(p0)n

(

T

q − 1

)

−q
q−1

(12)

fE =
1

E

(

1 +
E

p0

)−n

(13)

and

fTa =

[

1 + (q − 1)
pT

T

]
−1
q−1

(14)

In the above equation, p0 and n are the free parameters with parameter n is related to
the second order flow coefficient [21]. This formalism reduces to Tsallis statistics within
the limit n = −1 and p0 = 0. Therefore, it can be considered as a generalized version of
the Tsallis function and explains both soft and hard process contributions to p

T
-spectra.
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The equation for the average number of particles and energy, in the case of unified formal-
ism, remains the same as Tsallis [22]:

N = ∑
i

f
q
i (15)

and, the energy of the system will be:

E = ∑
i

Ei f
q
i (16)

Here, the additional power of q comes from the thermodynamic consistency. In case
of the unified formalism, the transverse momentum spectra is defined as:

1

2πpT

d2N

dpTdy
= B′

(

1 +
pT

p0

)−n[

1 + (q − 1)
pT

T

]

−q
q−1

(17)

where B′ = B × V
(2π)3 , T is temperature and q is non-extensive parameter. Here we

considered the chemical potential to be zero because at LHC energy, the net-baryonic
number is extremely small at the central rapidity region. Thermodynamic parameters
such as T, q and the other quantities can be obtained by fitting the measured transverse
momentum spectra with the unified distribution using the Equation (17). These quantities
extracted from the spectra can be used to calculate the response function as discussed below.

2.1. Isothermal Compressibility

In the high-energy collider experiment, we only consider a part of phase space because
of the limited η acceptance of the detectors. The overall number of particles in the collision
is conserved, but number of particles and energy in a particular phase space window may
vary. Hence, the system can be considered as a grand canonical ensemble for the estimation
of isothermal compressibility. Therefore, the variance of number of particles N, can be
written as [41]:

〈

(N − 〈N〉)2
〉

= VT
∂n

∂µ
(18)

And, the isothermal compressibility, κT , can be written as:

κT = − 1

V

(

∂V

∂P

)

T

(19)

Using the expression of variance of N and κT [41,42], we can write:

〈

(N − 〈N〉)2
〉

= var(N) = TVn2κT (20)

Equation (20) requires an event-by-event information of N to estimation κT . On con-
trary, we can compare Equations (18) and (20) to derive a fluctuation independent formula
for isothermal compressibility as:

κT =
∂n/∂µ

n2
(21)

As per Equation (21), the estimation of κT does not depend on the fluctuation of
N and it makes the estimation possible without having event-by-event information of
particle number.

Number density, n, in case of unified formalism, is of the form:

n =
∫

d3 p

(2π)3
× B

E

(

1 +
E

p0

)−n[

1 + (q − 1)
(E − µ)

T

]

−q
q−1

(22)
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and,

∂n

∂µ
=
∫

d3 p

(2π)3
× q

T
× B

E

(

1 +
E

p0

)−n[

1 + (q − 1)
(E − µ)

T

]

1−2q
q−1

(23)

By using the above equations, we have estimated the values of κT for heavy-ion
collisions at different energies.

2.2. Speed of Sound

For a thermodynamic system at temperature T and volume V, the squared speed of
sound is given by,

c2
s =

(

∂P

∂ǫ

)

s

(24)

where P is pressure and ǫ is energy density of the system. As discussed in Ref. [43], the prop-
agation of sound wave in a medium is an adiabatic process and entropy is constant in such
process, hence the squared speed of sound is estimated at constant entropy density (s).
Above equation can be further reduced to:

c2
s =

∂P
∂T
∂ǫ
∂T

(25)

where

P =
∫

d3 p

(2π)3
× B × p2

3E2

(

1 +
E

p0

)−n[

1 + (q − 1)
E

T

]

−q
q−1

(26)

and,

ǫ =
∫

d3 p

(2π)3
× B

(

1 +
E

p0

)−n[

1 + (q − 1)
E

T

]

−q
q−1

(27)

By using the above equations, the squared speed of sound c2
s reduces to

c2
s =

∫ p2d3 p

3E2

(

1 + E
p0

)−n[

T
q−1 + E

]

1−2q
q−1

∫

d3 p

(

1 + E
p0

)−n[

T
q−1 + E

]

1−2q
q−1

(28)

We have used the Equation (28) to estimate the squared speed of sound in the medium
created in heavy-ion collision at three different energies.

3. Results and Discussion

This study presents a formalism to calculate κT and c2
s using the non-extensive unified

statistical framework discussed in Ref. [22]. We have estimated the κT/V and c2
s in the

medium formed of charged hadrons as a function of charged particle multiplicity for differ-

ent collision systems. The data for charged particle multiplicity (
〈 dNch

dη

〉

) corresponding to

a particular centrality is taken from the experimental results Refs. [44–46].
For this analysis, we have considered the transverse momentum spectra of charged

hadrons produced in Pb − Pb collision at 2.76 [36] and 5.02 TeV [37] and Xe − Xe collision
at 5.44 TeV [38]. The pT range is restricted to pT < 5 GeV/c since we are trying to study
bulk properties and the majority of high pT particles are produced from hard processes.
The experimental data for the pT-spectra for all the energies used in the paper belongs to
the pseudorapidity range |η| < 0.8. The unified function fit to the pT-spectra at 2.76, 5.02
and 5.44 TeV is provided in the Refs. [21,47,48]. The numerical value of T, q and the other
fitting parameters are calculated by fitting the measured transverse momentum spectra
with the unified formalism as in Equation (17) and the best fit value of the parameters are
provided in Table 1.
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Table 1. Numerical values of the fit parameters T (GeV), q, p0 (GeV/c) and n obtained by fitting the

experimental data of pT-spectra fitted with the unified formalism Equation (17).

Centrality
2.76 TeV 5.02 TeV 5.44 TeV

T q p0 n T q p0 n T q p0 n

0–5%
0.393 1.048 0.105 0.749 0.407 1.048 0.0018 0.562 - - - -
±0.05 ±0.004 ±0.21 ±0.36 ±0.003 ±0.000 ±0.030 ±0.05

5–10%
0.386 1.053 0.0877 0.700 0.415 1.049 0.0167 0.604 - - - -
±0.04 ±0.041 ±0.191 ±0.32 ±0.004 ±0.000 ±0.033 ±0.05

10–20%
0.370 1.060 0.0600 0.619 0.422 1.052 0.0394 0.659 0.409 1.072 0.0977 0.720
±0.07 ±0.006 ±0.18 ±0.30 ±0.004 ±0.000 ±0.033 ±0.06 ±0.01 ±0.001 ±0.08 ±0.15

20–30%
0.351 1.070 0.0385 0.548 0.424 1.059 0.0812 0.744 0.460 1.067 0.225 1.101
±0.08 ±0.008 ±0.18 ±0.30 ±0.012 ±0.001 ±0.042 ±0.07 ±0.03 ±0.003 ±0.11 ±0.24

30–40%
0.331 1.081 0.0256 0.489 0.412 1.068 0.0824 0.749 0.447 1.079 0.2286 1.112
±0.07 ±0.008 ±0.20 ±0.34 ±0.013 ±0.001 ±0.038 ±0.07 ±0.04 ±0.004 ±0.10 ±0.24

40–50%
0.311 1.093 0.0341 0.474 0.369 1.085 0.05 0.614 0.455 1.091 0.2881 1.306
±0.08 ±0.008 ±0.25 ±0.46 ±0.018 ±0.002 ±0.042 ±0.08 ±0.05 ±0.005 ±0.13 ±0.36

50–60%
0.292 1.106 0.0457 0.468 0.34 1.101 0.0527 0.578 0.434 1.108 0.2904 1.317
±0.08 ±0.008 ±0.32 ±0.61 ±0.023 ±0.002 ±0.051 ±0.11 ±0.08 ±0.008 ±0.15 ±0.51

60–70%
0.273 1.121 0.0747 0.487 0.311 1.118 0.0658 0.557 0.357 1.123 0.1977 0.943
±0.11 ±0.012 ±0.49 ±1.03 ±0.025 ±0.002 ±0.071 ±0.17 ±0.07 ±0.006 ±0.17 ±0.53

70–80%
- - - - 0.329 1.131 0.1565 0.855 0.338 1.139 0.2060 0.974

±0.034 ±0.003 ±0.094 ±0.29 ±0.09 ±0.011 ±0.26 ±0.87

In Figure 1, we have plotted the isothermal compressibility over volume calculated
using the Equations (21)–(23). It is observed that there is a decline in the values of κT/V
with an increase in the multiplicity. At higher charged-particle multiplicity, κT/V becomes
the lowest, which suggests that the system move toward near-ideal behaviour with the
increase in multiplicity. This trend is in line with the expectation as higher multiplicity
class contains a larger number of particles and hence a higher pressure is required to attain
a small change in volume. Similar values of κT/V for different collision systems show
an indication of similar dynamics of the produced medium. It is worth mentioning here
that the ideal fluid is incompressible, hence κT = 0, implying that the volume cannot be
changed by applying pressure. For water, the corresponding value is several order of
magnitude higher than what is obtained in case of heavy-ion collision. The values for κT/V
obtained in the case of heavy-ion collision using the unified formalism is in the range from
10−3 to 10−5 GeV−1.

A proper estimation of volume is required to extract the value of κT (fm3/GeV).
Different techniques have been developed and tested on diverse datasets to extract the
volume parameter [32,49–55]. Although the numerical values vary greatly in different
models, all of them are in the order of 103 − 104 fm3 and hence utilizing the value of
volume from these models will give us the value of κT in the order of 1 − 10 fm3/GeV.
This range of the value of κT matches well with the values obtained by other techniques
in the Ref. [4,56]. The obtained value of κT is very low as compared to the water and
other materials, indicating that the compressibility of the system created in the heavy-ion
collision is very close to an ideal fluid. Proper estimation of volume is still an undergoing
field of research, hence, we did not select a particular model and instead, we presented the
value in terms of κT/V.
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210
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>η/dch<dN

6−10

5−10
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)
-1

/V
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G
e

V
T

K

 = 5.44 TeV
NN

s

 = 5.02 TeV
NN

s

 = 2.76 TeV
NN

s

Figure 1. (Color online) Variation of isothermal compressibility over volume (κT/V) with the average

charged particle multiplicity (
〈 dNch

dη

〉

) for Pb − Pb collision at
√

sNN = 2.76 TeV, Pb − Pb collision at√
sNN = 5.02 TeV and Xe−Xe collision at

√
sNN = 5.44 TeV using Unified formalism Equations (21)–(23).

We have also attempted to study the speed of sound for different collision systems
in order to explore the properties of matter. The speed of sound in a medium reveals
the properties of the medium via the equation of state. In Figure 2, we have plotted the
squared speed of sound with charged-particle multiplicity for three different energies
estimated using the Equation (28). It is observed that the value of the squared speed of
sound is very close to 1/3 times the speed of light squared, and there is an increase in

the value with increasing
〈 dNch

dη

〉

, suggesting that the system becomes more ideal at larger

multiplicity. This observation complements the near-ideal behaviour already indicated
from the measurement of isothermal compressibility.

2
10

3
10

>η/d
ch

<dN

0.2

0.25

0.3

0.35

0.4

2 s
c

 = 5.44 TeV
NN

s

 = 5.02 TeV
NN

s

 = 2.76 TeV
NN

s

Figure 2. (Color online) Variation of squared speed of sound (c2
s ) as a function of

〈 dNch
dη

〉

for Pb − Pb collision at
√

sNN = 2.76 TeV, Pb − Pb collision at
√

sNN = 5.02 TeV and Xe − Xe col-

lision at
√

sNN = 5.44 TeV using Unified formalism as Equation (28). The dotted line represents the

theoretical value for ideal gas system.
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4. Conclusions

With an aim towards understanding the system produced in the heavy-ion collision,
we have made an attempt to study some thermodynamic response functions such as
isothermal compressibility and speed of sound. Since transverse momentum spectra
carries information about the system, we have analyzed spectra of charged hadrons at
three different LHC energies using the unified formalism and used the extracted value of
thermodynamical parameters to study the isothermal compressibility and speed of sound.
The p

T
-spectra of charged hadrons produced in Pb − Pb collision at 2.76 TeV, 5.02 TeV and

Xe − Xe collision at 5.44 TeV are taken with p
T

range upto 5 GeV/c. We have estimated
the value of κT/V and c2

s and studied their variation as a function of charged particle
multiplicity. We observed that while the value of κT/V decreases with respect to increase
in multiplicity, the values of c2

s approaches to 1/3.
These estimations of κT/V and c2

s using unified formalism represent that the medium
tends to move toward a near-ideal behavior with an increase in charged particle multi-
plicity. In conclusion, we have presented the theoretical formalism to study some of the
thermodynamical response functions within the unified statistical framework discussed
in the Ref. [22]. The extracted values point toward the creation of a near-ideal medium
in high-energy collision and the system approach the ideal behavior as we move from
peripheral to the central collision.
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