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Abstract

Gravitational lensing is the study of the bending of light by gravity. In such a
scenario, light rays from a background star are deflected as they pass by a foreground
galaxy (the “lens”). If the lens is massive enough, then multiple copies of the light
source, called “lensed images,” are produced. These are magnified or demagnified
relative to the light source that gave rise to them. Under certain conditions their
sum is an invariant: it does not depend on where these lensed images are in the sky
or even the details of the lens mass producing them. One of the main results of this
thesis is the discovery of a new, infinite family of such invariants, going well beyond
the previously known class of two. The application of this result to the search for
dark matter in galaxies is also discussed.

The second main result of this thesis is a new general lens equation and magnifi-
cation formula governing lensing by Kerr black holes, for source and observer lying
in the asymptotically flat region of the spacetime. The reason for deriving these
quantities is because the standard gravitational lensing framework assumes that the
gravitational field of the lens is weak, so that a Newtonian potential can be applied
to model it. This assumption obviously breaks down in the vicinity of a black hole,
where the gravity is immense. As a result, one has to go directly to the Kerr metric
and its associated geometric quantities, and derive an equation for light bending
from first principles. This equation is then solved perturbatively to obtain lensing

observables (image position, magnification, time delay) beyond leading order.
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1

Introduction

Gravitational lensing is the study of the bending of light by gravity. In such a
scenario, light rays from a background star are deflected as they pass by a foreground
galaxy (the “lens”). This effect was predicted by Einstein in 1911 as a consequence of
his general theory of relativity, and first observed by Eddington in 1919. The field is
now a vibrant area of research in astronomy, physics, and mathematical physics (see,
e.g., Schneider et al. (1992); Petters et al. (2001); Petters (2010)). The phenomenon
of light bending is an extraordinary one: if the lens is massive enough, then multiple
copies of the light source, called “lensed images,” are produced; see Fig. 1.1 for

examples.
1.1 Magnification Relations

Chapters 2 and 3 of this dissertation focus on an important aspect of this phe-
nomenon: lensed images are magnified or demagnified relative to the light source
that gave rise to them. Formally, the magnification is a ratio of solid angles, sub-
tended by the lensed image and source. Surprisingly, under certain conditions the

sum of the magnifications of lensed images is an invariant: it does not depend on
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Schechter et al. (1997)

FIGURE 1.1: Two observations of four lensed images of a background source by a foreground
galaxy (central bulge in each panel). In each panel the source is a quasar, though it is not visible.
The letter “I” indicates that the images are being observed in the near-infrared I-band. Courtesy
of the CASTLES lens sample (http://www.cfa.harvard.edu/castles).

where these lensed images are in the sky or even the details of the lens mass pro-
ducing them. These invariants are known as “magnification relations,” and they are
used by astronomers to infer the presence of dark matter in galaxies, among other
things (see Keeton et al. (2003, 2005) and references therein). But they are also

mathematically noteworthy because they are geometric invariants.
A Brief Introduction to Gravitational Lensing

Due to the large distances traversed by light rays in a typical lensing scenario (much
larger than the spatial extent of the lens mass), we work under the assumption that
the lens is essentially two-dimensional and lies on a plane perpendicular to our line
of sight, known as the lens plane L < R?. When we speak of the “location of a lensed
image in the sky,” we mean its vector position x € L. The position x is where a light
ray gets deflected (geometrically, light rays are modeled as null geodesics in general
relativity). Likewise, we can think of the source as lying at a particular (fixed) vector

position y in the source plane S = R? (far behind L but parallel to it); see Fig. 1.2.
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FIGURE 1.2: Schematic of gravitational lensing. A light ray emitted from a source at y € S is
deflected by an angle & at the lens plane at x € L. An observer thus sees (one copy of) the source
at x € L. Courtesy of Petters (2010).

With these quantities in hand, one can then ask: “If a light ray is deflected by the
lens and then reaches us, how much longer is its arrival time compared to a light ray
that would have directly reached us in the absence of a lens?” We quantify this “time
delay” by the time delay function, a smooth real-valued function 7y : L — R. This
function actually contains within it the core of gravitational lensing theory. We now
apply Fermat’s principle of “least time,” which says that light rays emitted from a
source that reach us are realized as critical points of the time delay function (and so
the mathematical origins of gravitational lensing theory ultimately lie in symplectic
geometry). In other words, a lensed image of a light source at y is a critical point
of Ty, i.e., a solution x € L of the equation (grad7y)(x) = 0, where the gradient is
taken with respect to x. With this information in hand, we can now geometrically
define the notion of magnification: the signed magnification of a lensed image x € L

of a light source at y € S is

1
pw(xy) = Gauss(x, Ty (x))

where Gauss(x,7y(x)) is the Gaussian curvature of the graph of 7y at the criti-
cal point (x,7y(x)). This definition makes clear why magnification relations are
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geometric invariants. (Though not obvious, it is equivalent to the definition given
in terms of solid angles above.) But it also begs the question: What happens if
Gauss(x, Ty (x)) = 07 Any y € S giving rise to such an x is called a caustic point.
The set of all caustic points typically forms smooth curves, but could also include
isolated points. Since we do not expect to see lensed images with infinite magnifica-
tion in the sky (mathematically, caustics form a set of measure zero), the important
question then becomes whether a source lies near a caustic. If it does, then very in-
teresting things happen, as we shall see below. Indeed, in Fig. 1.1 above, the source
in each case lies near a caustic, and this accounts for the particular configuration the
four lensed images assume (in the left panel, notice that two images lie very close
together, while in the right panel there is a triplet of images positioned away from
the fourth). To better understand this relation between caustics and the observed
positions of lensed images, one must delve into the mathematical subject known as
singularity theory, which is the systematic analysis of the critical point and caustic

structure of families of smooth functions.
A Brief Introduction to Singularity Theory

In one of the major achievements in singularity theory, Vladimir Arnold in 1973
classified the possible types of stable caustics that can occur (Arnold’s classifica-
tion incorporated and went beyond an earlier classification by René Thom in the
1960s). Specifically, Arnold classified all stable simple Lagrangian map-germs of
n-dimensional Lagrangian submanifolds by their generating family F¢, (these are
analogous to the time delay function 7y); see Arnold (1973). In the process, he
found a remarkable connection between his classification and the Coxeter-Dynkin
diagrams of the simple Lie algebras of types A, (n = 2), D,, (n = 4), Eg, E7, Es. This
is now known as Arnold’s A, D, E classification of caustic singularities; see Table 2.2

of Chapter 2.



The time delay function 7y (x) can be viewed as a two-parameter family of func-
tions with parameter the light source position y € S. In this two-dimensional setting,
it can be shown that a “generic” time delay function will give rise to only two types
of “generic” caustic points: folds and cusps (“generic” is here used in a well-defined
sense; ultimately, we are living in the Whitney C'*-topology in a given space of map-
pings). Folds are arcs on the source plane that abut isolated cusp points. These
are the simplest examples of caustic singularities in Arnold’s classification. Now,
let T, ,(x) denote a family of time delay functions parametrized by the source po-
sition y and ¢ € R. (In the context of gravitational lensing, the parameter ¢ may
denote the core radius of the galaxy acting as lens, or the redshift of the source,
or some other physical input.) The three-parameter family 7, ,(x) gives rise to a
more sophisticated and higher-order caustic structure. Varying c¢ causes the caustic
curves in the light source plane S to evolve with c. This traces out a caustic surface
in the three-dimensional space R x R? = {(¢,y)}. The source plane S would then
be a particular “c-slice” of this caustic surface. Beyond folds and cusps, these sur-
faces are classified into three generic types, namely, swallowtails, elliptic umbilics,
and hyperbolic umbilics. And so on; more and more parameters give rise to higher-
and higher-order caustic surfaces, with ever-more beautiful (and strange) shapes. In
Arnold’s classification, it turns out that the fold, cusp, swallowtail, and umbilics are
classified by the Dynkin diagrams As, A3, A4, and Dy, respectively.

Having said this, there is no reason to restrict the notion of magnification to time-
delay functions alone. Indeed, consider a smooth n-parameter generating family
F.y(x) of functions on an open subset of R? that exhibits a caustic singularity
classified by Arnold’s A, D, E classification. We can then define the magnification

of F.y(x) at a critical point x in exactly the same way as we did for time-delay



functions, namely, as

1
m(xu Y) = GauSS(X, Fc,y(x)) 7

where we use the symbol 9 to distinguish magnification in the generic sense from
its use in gravitational lensing. Armed with this definition, we can now inquire
whether we can uncover “magnification relations” for any of the caustic singularities
in Arnold’s family. The surprising answer is that all of them exhibit a magnification

relation of the following form:
Y Mxiy) =0, (1.1)
i=1

where x; are the n critical points of a particular generating family F,(x) with y
fixed (in fact its number of critical points is equal to its index as a Dynkin diagram;
i.e., of type A, (n = 2),D,, (n = 4), Es, F7, Es). The key result in Chapters 2 and 3 is
Theorem 1, which establishes eqn. (1.1) and provides a geometric explanation for its
existence. We will see that this geometric explanation relies upon multi-dimensional

residue techniques and the geometry of orbifolds.
1.2 Lensing by Kerr Black Holes

Chapters 4 and 5 develop a unified, analytic framework for gravitational lensing
by Kerr black holes. These are rotating black holes, the metrics for which were
discovered by Roy Kerr in 1963. Chapter 4 presents a new, general lens equation
and magnification formula governing lensing by an arbitrary thin deflector. Our lens
equation assumes that the source and observer are in the asymptotically flat region.
Furthermore, whereas in all lensing scenarios it is assumed that the bending of the
light ray takes place on the plane perpendicular to the line of sight containing the
lens (as in Fig. 1.2 above), that assumption is not made here. Thus the lens equation
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presented in Chapter 4 takes into account the displacement that occurs when the
light ray’s tangent lines at the source and observer do not meet on the lens plane.
Next, restricting to the case when the thin deflector is a Kerr black hole, an explicit
expression is given for the displacement when the observer is in the equatorial plane
of the Kerr black hole, as well as for the case of spherical symmetry. The reason
for deriving these quantities is because the standard gravitational lensing framework
assumes that the gravitational field of the lens is weak, so that a Newtonian potential
can be applied to model it. This assumption obviously breaks down in the vicinity
of a black hole, where the gravity is immense. As a result, one has to go directly to
the Kerr metric and its associated geometric invariants, and derive an equation for
light bending from first principles. This is the goal of Chapter 4.

Chapter 5 then explores this lens equation; specifically, it develops an analytical
theory of quasi-equatorial lensing by Kerr black holes. In this setting the general lens
equation (with displacement) is solved perturbatively, going beyond weak-deflection
Kerr lensing to second order in the expansion parameter e, which is the ratio of
the angular gravitational radius to the angular Einstein radius. New formulas and
results are obtained for the bending angle, image positions, image magnifications,
total unsigned magnification, centroid, and time delay, all to second order in ¢ and
including the displacement. For all lensing observables it is shown that the displace-
ment begins to appear only at second order in . When there is no spin, new results

are obtained on the lensing observables for Schwarzschild lensing with displacement.
1.3 Declaration

This dissertation is the result of my work under the guidance of my adviser Prof. Arlie
Petters and two collaborators, Prof. Jeffrey Rabin and Prof. Charles Keeton. The
following chapters are based on, or have been excerpted/reproduced from, articles

that have either been published or are currently under review for publication:
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2

Magnification Theorem for Higher-Order Caustic
Singularities

2.1 Introduction

One of the key signatures of gravitational lensing is the occurrence of multiple im-
ages of lensed sources. The magnifications of the images in turn are also known to
obey certain relations. One of the simplest examples of a magnification relation is
that due to a single point-mass lens, where the two images of the source have signed
magnifications that sum to unity: g3 + ps = 1 (e.g., Petters et al. (2001), p. 191).
Witt and Mao (1995) generalized this result to a two point-mass lens. They showed
that when the source lies inside the caustic curve, a region which gives rise to five
lensed images, the sum of the signed magnifications of these images is also unity:
> i = 1, where p; is the signed magnification of image ¢. This result holds indepen-
dently of the lens’s configuration (in this case, the mass of the point-masses and their
positions); it is also true for any source position, so long as the source lies inside the
caustic (the region that gives rise to the largest number of images). Further examples

of magnification relations, involving other families of lens models (/N point-masses, el-
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liptical power-law galaxies, etc.), subsequently followed in Rhie (1997), Dalal (1998),
Witt and Mao (2000), Dalal and Rabin (2001), and Hunter and Evans (2001). More
recently, Werner (2007, 2009) has proposed the application of Lefschetz fixed point
theory to a subset of these magnification relations.

Although the above relations are “global” in that they involve all the images of a
given source, they are not universal because the relations depend on the specific class
of lens model used. However, it is well-known that for a source near a fold or cusp
caustic, the resulting images close to the critical curve are close doublets and triplets
whose signed magnifications always sum to zero (e.g., Blandford and Narayan (1986),

Schneider and Weiss (1992), Zakharov (1995)):

p1 + pe = 0 (fold) ,

i+ pig +pz = 0 (cusp) .

These magnification relations (also known as magnification invariants) are “local”
and universal. Their locality means that they apply to a subset of the total number
of images produced, namely, a close doublet for the fold and close triplet for the
cusp, which requires the source to be near the fold and cusp caustics, respectively.
Their universality follows from the fact that the relations hold for a generic family
of lens models. In addition, the magnification relations for folds and cusps have
been shown to provide powerful diagnostic tools for detecting dark substructure on
galactic scales using quadruple lensed images of quasars (e.g., Mao and Schneider
(1997), Keeton et al. (2003, 2005)).

The aim of this chapter and the next is to show that invariants of the following
form also hold universally for lensing maps and general mappings with higher-order

caustic singularities:

ZMZO-
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In particular, it is shown that such invariants occur not only for folds and cusps,
but also for lensing maps with elliptic umbilic and hyperbolic umbilic caustics, and
for general mappings exhibiting any caustic appearing in Vladimir Arnold’s A, D, E
classification of caustic singularities. As an application, we use the hyperbolic umbilic
to show how such magnification relations can be used for substructure studies of
four-image lens galaxies. Before stating and proving the main theorem (Theorem 1
in Section 2.3), we begin by reviewing the necessary lensing and singular-theoretic

terminologies.

2.2 Basic Concepts

2.2.1 Lensing Theory

The spacetime geometry for gravitational lensing is treated as a perturbation of a
Friedmann universe by a “weak field” spacetime. To that end, we regard a grav-
itational lens as being localized in a very small portion of the sky. Furthermore,
we assume that gravity is “weak”, so that near the lens it can be described by a
Newtonian potential. We also suppose that the lens is static. Respecting these
assumptions, the spacetime metric is given by

2% 2\ [ dR2 .
ou = (1427 dart s ale (1) (725 + B (00w s0ag?))

where 7 is cosmic time, ¢ the time-independent Newtonian potential of the perturba-
tion caused by the lens, k is the curvature constant, and (R, 0, ¢) are the coordinates
in space. Here terms of order greater than 1/c? are ignored in any calculation involv-
ing ¢.

The above metric is used to derive the time delay function 7y : L — R, which

for a single lens plane is given by

Ty(x) = 5~y — ()
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where y = (s1, s2) € S is the position of the source on the light source plane S = R?,
x = (u,v) € L is the impact position of a light ray on the lens plane L < R?  and
1 : L —> R is the gravitational lens potential. As its name suggests, the time
delay function gives the time delay of a lensed light ray emitted from a source in
S, relative to the arrival time of a light ray emitted from the same source in the
absence of lensing. Fermat’s principle yields that light rays emitted from a source
that reach an observer are realized as critical points of the time delay function. In
other words, a lensed image of a light source at y is a solution x € L of the equation
(gradTy)(x) = 0, where the gradient is taken with respect to x. When there is no
confusion with the mathematical image of a point, we shall follow common practice
and sometimes call a lensed image simply an image.

The time delay function also induces a lensing map n : L — S, which is defined
by

X — 1(x) = x — (grad ¥)(x) .

We call n(x) =y the lens equation. Note that x € L is a solution of the lens equation
if and only if it is a lensed image because (grad7y)(x) = m(x) — y. Critical points
of the lensing map n are those x € L for which det(Jacn)(x) = 0. Generically, the
locus of critical points of the lensing map form curves called critical curves. The
value n(x) of a critical point x under n is called a caustic point. These typically
form curves, but could be isolated points. Examples of caustics can be found in
Petters et al. (2001). For a generic lensing scenario, the number of lensed images
of a given source can change (by +2 for generic crossings) if and only if the source
crosses a caustic. The signed magnification of a lensed image x € L of a light source
at y = n(x) € S is given by

1

plx) = det(Jacn)(x) (2.1)

13



Considering the graph of the time delay function, its principal curvatures coincide
with the eigenvalues of Hess Ty (x). In addition, its Gaussian curvature at (x, 7y (x))
equals det(HessTy)(x). In other words, the magnification of an image x can be

expressed as

1
~ Gauss(x, Ty(x)) ’

1(x) (2.2)

where y = n(x), Gauss(x, T (x)) is the Gaussian curvature of the graph of Ty at the
point (x,7y(x)), and where we have used the fact that det(Jacn) = det(HessTy)
for single plane lensing. Therefore, the magnification relations are also geometric
invariants involving the Gaussian curvature of the graph of T} at its critical points.
Readers are referred to Petters et al. (2001), Chapter 6, for a full treatment of these

aspects of lensing.
2.2.2  Higher-Order Caustic Singularities in Lensing

This section briefly reviews those aspects of the theory of singularities that will be
needed for our main theorem. It is also worth noting that the terms “universal” and
“generic” will be used often. Formally, a property is called generic or universal if it
holds for an open, dense subset of mappings in the given space of mappings. Elements
of the open, dense subset are then referred to as being generic (or universal). See
Petters et al. (2001), Chapter 8 for a discussion of genericity.

We saw in the previous section that the time delay function Ty (x), which can be
viewed as a two-parameter family of functions with parameter y, gives rise to the
lensing map 1 : L — S. The set of critical points of 1) consists of all x € L such that
det(Jacm)(x) = 0. In this two-dimensional setting, a generic lensing map will have
only two types of generic critical points: folds and cusps (see Petters et al. (2001),
Chapter 8). The fold critical points map over to caustic arcs that abut isolated cusp
caustic points.

14



Table 2.1: For the two caustic singularities listed, the second column shows the corresponding
universal local forms of the smooth three-parameter family of time delay functions 7, g, along with
their one-parameter family of lensing maps 7.. The parameter ¢ will represent some physical input,
such as the source redshift. For a derivation, see Schueider et al. (1992), Chapter 6.

Tes(z1, x2) = %52 —x-s+ %w? - zlzg + 2cz§
Elliptic umbilic (D)
Ne(z1, z2) = (I% - 13% , —2z1x90 + 4cz2)

2

Tes(z1,22) = %s —x-s+ %(z? +cvg) + 2cxzixo

Hyperbolic umbilic (DI)

ne(zy, v2) = (wf + 2cxy , 23 +2611)

Now, let Ti.y(x) denote a family of time delay functions parametrized by the
source position y and ¢ € R. In the context of gravitational lensing, the parameter ¢
may denote external shear, core radius, redshift, or some other physical input. The
three-parameter family 7., (x) gives rise to a one parameter family of lensing maps
Ne. Varying c causes the caustic curves in the light source plane S to evolve with c.
This traces out a caustic surface, called a big caustic, in the three-dimensional space
R x R? = {(c,y)}; see Schneider et al. (1992), Chapter 6. Beyond folds and cusps,
these surfaces form higher-order caustics that are classified into three universal or
generic types for locally stable families 7., namely, swallowtails, elliptic umbilics,
and hyperbolic umbilics (e.g., Petters et al. (2001), Chapter 9). Generic c-slices of
these big caustics also yield caustic metamorphoses.

For the three-parameter family 7.,(x) of time delay functions, the universal
quantitative form of the lensing map can be derived locally using rigid coordinate
transformations and Taylor expansions, along appropriate constraint equations for
the caustics (see Schneider et al. (1992), Chapter 6). Table 2.1 summarizes the
quantitative forms of n. for the elliptic umbilic and hyperbolic umbilic critical points.
Observe that the elliptic and hyperbolic umbilics for 7, (or m.) do not depend on

the lens potential, apart perhaps from ¢ in the event that ¢ is a lens parameter.
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2.2.3 Caustic Singularities of the A, D, E family

We can also consider general mappings. Consider a smooth k-parameter family
F,.s(x) of functions on an open subset of R? that induces a smooth (k —2)-parameter
family of mappings f.(x) between planes (k > 2). One uses F¢¢ to construct a La-
grangian submanifold that is projected into the space {c,s} = R¥"2xR2. The caustics
of f. will then be the critical values of the projection (e.g., Golubitsky and Guillemin
(1973), Majthay (1985), Castrigiano and Hayes (2004), and Petters et al. (2001),
pp. 276-286). These projections are called Lagrangian maps, and they are differ-
entiably equivalent to f.. As mentioned in Chapter 1, Arnold classified all sta-
ble simple Lagrangian map-germs of n-dimensional Lagrangian submanifolds by
their generating family F.s (Arnold (1973), Arnold et al. (1985), pp. 330-331, and
Petters et al. (2001), p. 282). In the process he found a connection between his
classification and the Coxeter-Dynkin diagrams of the simple Lie algebras of types
A, (n =2 2),D, (n>4), Es, E7, Es. This classification is shown in Table 2.2. (The
classification of the elementary catastrophes, for codimension less than 5, was deter-
mined by René Thom in the 1960s.)

The f. shown in Table 2.2 are obtained from their corresponding F¢ s by taking
its gradient with respect to x and setting it equal to zero: grad(F.s)(x) = 0. This
equation is then rewritten in the form f.(x) = s. We call x € R? a pre-image of the
target point s € R? if f.(x) = s. Equivalently, this will be the case if and only if x is a
critical point of F, s (relative to a gradient in x). Next, we define the magnification
M(x;s) at a critical point x of the family F.gs by the reciprocal of the Gaussian
curvature at the point (x, Fis(x;)) in the graph of Feg:

1
~ Gauss(x, Feg(x))

M(x;s)

Again, this makes it clear that magnification invariants are geometric invariants. In
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Table 2.2: For each type of Coxeter-Dynkin diagram listed, indexed by n, the second column
shows the corresponding universal local forms of the smooth (n — 1)-parameter family of general
functions F s, along with their (n—3)-parameter family of induced general maps f. between planes.
This classification is due to Arnold (1973).

Fes(m,y) = 2"t £ 9% 4 cp_q2™ 71 4o+ c32® + s22% — s10 £ 50y

An (n=2)

fo(@,y) = (£(n + Da™ + (n = Dep_1a™ 2 + - + 3032 —dyz , T 2y)

Fes(m,y) =22y £yt ep oy 24+ cay? — sy — s1m

fe(z,y) = (wa s et (= Dy 4 (0= 2)en_ay" TP 4+ 2c2y)

Fes(z,y) = 3 + y4 + cgzy2 + c2y2 +ecixzy —s2y —s1x

fe(z,y) = (3:02 +ezy? +ery, T4y + 2c3zy + 200y + 611)

Fes(x,y) = x5+ CL‘ZJS + 04114 + C3y3 + C2ZJ2 +ecizy —s2y —s1T

fe(z,y) = (3602 + % +ery , 3zy? + 4eqy® + 3ezy? + 2c0y + cw)

Fes(@,y) = 2% + 45 + csay® + camy® + cay® + coy® + croy — soy —s1@
E.

fo(z,y) = (3962 +e5y® + cay? + cry s 5yt + 3cszy® + 2cq2y + 3eay? + 2c0y + clac)

addition, since the Gaussian curvature at the point (x;, Fi.s(x;)) in the graph of F g

is given by

det(Hess F..¢)(x;)
Gauss(x;, I 5(x;)) = 1+ |grad F.s(x;)]?

and since (x;, F.s(x;)) is a critical point of the graph, we have that
Gauss(x;, Fes(x;)) = det(Hess Fe)(x;) -
Furthermore, a computation shows that for all the F, ¢ shown in Table 2.2,
det(Jacf.) = det(Hess F.5) .

Hence we can express the magnification in terms of f:

1

M) = ot Tacf) ()
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If s has a total of n pre-images x;, then the total signed magnification of s is defined

to be

Mot (5) = >, M(xi:s). (2.4)

i=1

Finally, we define the notions of critical points, caustic points, and big caustics anal-
ogously to the lensing case.

In the theorem, the p-magnification (resp., 9t-magnification) relations are uni-
versal or generic in the sense that they hold for an open, dense set of three-parameter
families T, y (resp., general families F. 5) in the space of such families; see Petters et al.

(2001), Chapters 7 and 8.

2.3 The Magnification Theorem

The discovery of this theorem grew out of the four published papers cited:

Theorem 1. [Aazami and Petters (2009a,b, 2010); Aazami et al. (2011b)] For any
of the universal, smooth (n — 1)-parameter families of general functions F.s (or
induced general mappings f.) in Table 2.2, and for any non-caustic target point s in

the indicated region, the following results hold for the magnification 9; = M(x;;s):
1. A, (n = 2) obeys the mag. relation in the n-image region: Y  9M; = 0,
2. D, (n=4) obeys the mag. relation in the n-image region: Y. M; = 0,
3. Eg obeys the magnification relation in the siz-image region: Zle m; =0,
4. FEr obeys the magnification relation in the seven-image region: Zzzl M, =0,

5. Eg obeys the magnification relation in the eight-image region: Zle M; = 0.
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In addition, for the two smooth generic three-parameter families of time delay func-
tions T,y (or induced lensing maps m.) in Table 2.3, and for any non-caustic tar-

get point s in the indicated region, the following results hold for the magnification
pi = (1(X4;8):

1. Dy (Elliptic Umbilic) obeys the magnification relation in four-image region:

P+ po + pg + pa = 0.

2. Dy (Hyperbolic Umbilic) obeys the magnification relation in four-image region:

P+ po + pg + pa = 0.

Remarks. The results of Theorem 1 actually apply even when the non-caustic point
s is not in the maximum number of pre-images region. However, complex pre-images
will appear, which are unphysical in gravitational lensing. Note that for n > 6 there
are Lagrangian maps that cannot be approximated by stable Lagrangian map-germs
Arnold (1973). As mentioned in Section 2.1, the fold (Ay) and cusp (Aj) magni-
fication relations are known (Blandford and Narayan (1986), Schneider and Weiss

(1992), Zakharov (1995)), but we restate them in the theorem for completeness.
2.4 Applications

Before discussing the applications, we recall that the magnification u; of a lensed
image is the flux F; of the image divided by the flux Fg of the unlensed source (e.g.,
Petters et al. (2001), pp. 82-85):

where the “+” choice is for even index images (minima and maxima) and the “—”

choice is for odd index images (saddles). Though F; is an observable, the source’s
flux Fg is generally unknown. Consequently, the magnification p; is not directly
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observable and so magnification sums », u; are also not observable. However, we

can construct an observable by introducing the following quantity:

R= 2 i _ 2i(H)E ’ (2.5)

where the + choice is the same as above. This quantity is in terms of the observ-
able image fluxes F; and image signs, which can be determined for real systems
Keeton et al. (2005, 2003).

Now, aside from their natural theoretical interest, the importance of magnifica-
tion relations in gravitational lensing arises in their applications to detecting dark
substructure in galaxies using “anomalous” flux ratios of multiply imaged quasars.
The setting consists typically of four images of a quasar lensed by a foreground
galaxy. The smooth mass density models used for the galaxy lens usually accurately
reproduce the number and relative positions of the images, but fail to reproduce
the image flux ratios. For the case of a cusp, where a close image triplet appears,
Mao and Schneider (1997) showed that the cusp pu-magnification relation fails (i.e.,
deviates from zero) and argued that it does so since the smoothness assumption
about the galaxy lens breaks down on the scale of the fold image doublet (this is
not the only interpretation; see also Evans and Witt (2003); Congdon and Keeton
(2005)). In other words, a violation of the cusp magnification relation in a real lens
system may imply a violation of smoothness in the lens, which in turn invokes the
presence of substructure or graininess in the galaxy lens on the scale of the image
separation. Soon thereafter Metcalf and Madau (2001) and Chiba (2002) showed
that dark matter was a plausible candidate for this substructure.

Keeton et al. (2003, 2005) then developed a rigorous theoretical framework show-
ing how the fold and cusp p-magnification relations provide a diagnostic for detecting

substructure on galactic scales. Their analysis employs the R-quantity (2.5) for folds
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and cusps:

pr+pe =By

_ R = _Mitie s -+ Iy
] + pel P+ Fy

P |+ e+ ps| i+ B+ Fy

Rioa =

where F; is the observable flux of image ¢ and image 2 has negative parity. For
a source sufficiently close to a fold (resp., cusp) caustic, the images will have a
close image pair (resp., close image triplet); see the close doublets and triplets in
Figure 2.1(a,b,d,e). Theoretically, these images should have vanishing Rg)q and
Reusp due to the fold and cusp magnification relations and so nontrivial deviations
from zero would signal the presence of substructure. In Keeton et al. (2003, 2005),
it was shown that 5 of the 12 fold-image systems and 3 of the 4 cusp-image ones
showed evidence for substructure.

The study above would look at a multiple-image system and consider subsets of
two and three images to analyze Rpyq and Re.sp, respectively. Such analyses are
then “local” when more than three images occur since only two or three images are
studied at a time. Theorem 1 generalizes the above R-quantities from folds and
cusps to generic smooth lens systems that exhibit swallowtail, elliptic umbilic, and
hyperbolic umbilic singularities. The R-quantities resulting from these higher-order
singularities allow one to consider four images at a time and so are more global
than the fold and cusp relations in terms of how many images are incorporated.
The singularity that is most applicable to observed quadruple-images produced by
the lensing of quasars is the hyperbolic umbilic (cf. Figure 2.1). The associated
R-quantity is

Mttt _h -+ -5
U ]+ |+ sl + ) Fu+ Fo+ Fy+ Fy

R

where images 2 and 4 have negative parity.
We now illustrate the hyperbolic umbilic quantity Ry, . using a well-known model
for a galaxy lens, namely, a singular isothermal ellipsoid (SIE) lens. The SIE lens
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potential and surface mass density are given respectively as follows:

G(e)
2r

blrg) =rF(p) = Jr'cos2p,  A(rp) =

where F(¢) and G(p) satisfy G(p) = F(¢) + F"(¢) by Poisson’s equation, and are

given explicitly by

Rein
V1 —cecos2p’

Rein B \/ﬁcosap . _ \/isingo
F(p) = Wor lcosgptan ! (\/Tm) + sin ¢ tanh ™" (\/Tm ,

G(p) =

where R, is the angular Einstein ring radius. The parameter ¢ is related to the
axis ratio ¢ by € = (1 —¢?)/(1 + ¢?), and should not be confused with the ellipticity

e =1—¢q. The cusp at ¢ = 0 is given by

"
o = (ZEQE L0 g) 06

Using the Gravlens software by Keeton (2001), we now solve the SIE lens equa-
tion for sources on the positive horizontal axis in the four-image region of the light
source plane, and compute R} .. Let the SIE have ellipticity e = 0.35 and shear
~v = 0.05 oriented along the horizontal axis; both of these values are observationally
motivated Keeton et al. (2005, 2003). Figure 2.1(a,b,c) shows three important im-
age configurations for the SIE: the fold, when the source lies close to a fold arc and
produces a close pair of images about a critical curve; the cusp, when the source lies
close to a cusp caustic and produces a close triplet of images about a critical curve;
the cross-like configuration of four images, when the source sits nearer to the center
of the astroid-shaped inner caustic curve. Figure 2.1(d,e,f) illustrates how the SIE
image configurations are similar to those of the hyperbolic umbilic lensing map 7,

given in Table 2.2.
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We now look at the behavior of Riqq, Reusp, and Ry, for an SIE. Table 2.3
compares Rgq and Ry, for a source approaching a fold arc diagonally from the
center of the astroid-shaped inner caustic; see Figure 2.1(a). The fold point where

the diagonal intersects the fold arc is at
Viold & (0.14055 Rein, 0.14055R.iy) -

As the source at y approaches yg,1q along the diagonal, the values in Table 2.3 show
that Rgq and Ry, each approach the ideal value of 0, and that Ry, approaches
Riog from above. The reason for this is as follows: From Figure 2.1(a) we see that
there are two pairs of images in a hyperbolic umbilic configuration: the fold image
doublet straddling the critical curve, and whose two images we denote by d;, ds, and
the pair consisting of the outer two images, which we denote by 01, 05. The quantity
Ry then becomes

_ |:ud1| - |:ud2| + |:u01| - |:u02| .

Rh.u. -
|:ud1| + |:ud2| + |:u01| + |:u02|

As the source approaches yi,1q along the diagonal, Table 2.3 shows that the quantities
|ftay | — |thay| and |io, | = |fto, | stay roughly constant, though the individual magnifica-
tions vary. In addition, near the fold, we see that g, | + |pa,| dominates |io, | + |10, ],
causing the denominator of Ry, to approach |4, |+ |1, |, which is the denominator

of Rgyq. This leads to

o Ha] = aaa| Jpog| = |pon] 1| = [Haa| _
T | e (e ] T | [,

Ry fold -

The net effect is that Ry, approaches Ry,q from above (at least for the path along
the diagonal). Furthermore, since the quantity |ug,| + |pa,| diverges, we see that
both Ry .. and Rg,q approach the magnification relation value of 0.

Table 2.4 compares Ry, . with R, for a source approaching a cusp along the hor-
izontal axis from the center of the astroid-shaped caustic curve; see Figure 2.1(b,c).
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Table 2.3: The quantities Ry, ... and Ryoq for an SIE with e = 0.35 and v = 0.05 oriented along the
horizontal axis. The source approaches the fold point y¢o1q & (0.14055 Rein, 0.14055R.iy,) diagonally
from the center of the astroid-shaped inner caustic. The quantity |pa, | — |pd,| is the difference in
the magnifications of the images in the close doublet, while || — |to,| is the difference for the
remaining two outer images; cf. Figure 2.1(a).

Source Reola Ry . [ay | = Tpa, | [oy | — lrog | [ay |+ [pay [0y | + Ko |
(0.10Rein , 0. 10 Roin) 0.14 0.19 1.22 T.21 851 1.35
(0.11 Rgip 5 0.11 Rejy) 0.13 0.18 1.22 1.22 9.64 4.28
(0.12Rgip » 0.12Reiy) 0.11 0.15 1.22 1.22 11.55 4.21
(0.13Rgip » 0.13Rein) 0.08 0.12 1.22 1.22 15.83 4.15
(0.14Rgip, , 0.14Rejy ) 0.02 0.04 1.21 1.23 65.17 4.081

(0.1405 Rgiy, , 0.1405 Ry ) 0.008 0.015 1.21 1.23 156.80 4.078

For these values of the ellipticity and shear, we see from (2.6) that the two cusps on

the horizontal axis are located at

Vi ~ (£0.48 Ry, 0) . (2.7)

The table shows that as the source approaches yJ ., along the horizontal axis, the
quantity Ry .. approaches Rg,q from below. In other words, Ry, . is smaller than Rgyq.
To see why this happens, consider the triplet of sub-images in Figure 2.1(b), which

we denote by t1, 19,13, and the extra outer image, denote by o. With this notation,

R [ty | — bty =+ ey | — |1t
hou. — :
[ty |+ ey =+ [poes| =+ 1o

As the source approaches yg., along the horizontal axis, the values in Table 2.4 of
the cusp relation |, | — |, | + | e, | ave positive. The inclusion of the outer, negative

parity magnification p, then subtracts from that positive value, yielding

(|/~Lt1| - |/~"t2| + |:ut3|) - |/~"0| < |/~"t1| - |/~"t2| + |:ut3| )

which implies that
Rh.u. < Rcusp .
Furthermore, Table 2.4 shows that |u,| grows fainter faster than the value of the

signed magnification of the triplet, which yields

ey |+ Nty | 4 5] > |t -
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Table 2.4: The quantities Ry, y. and Reysp for an SIE with e = 0.35 and v = 0.05 oriented along
the horizontal axis. The source approaches the cusp point yjusp ~ (0.48 Rein, 0) along the horizontal
axis from the center of the astroid-shaped inner caustic. The quantity |we, | — |pe,| + |p5] is the
signed magnification sum of the cusp triplet, while |u,| is the magnification of the outer image; see
Figure 2.1(b).

Source Recusp Ry . [ty |+ [ty |+ [ptg] [ty | — lptg |+ [ptgl [toq |
(0,0) (center) 0.52 0.23 8.49 1.46 2.02
(0.10 R, ,0) 0.41 0.22 9.58 3.94 1.49
(0.15Rgiy, , 0) 0.36 0.21 10.57 3.76 1.29
(0.20 Ry, ,0) 0.30 0.19 12.02 3.61 1.12
(0.25Rei, ,0) 0.25 0.17 14.20 3.48 0.98
(0.30 R, ,0) 0.19 0.14 17.71 3.38 0.85
(0.35Reiy, ,0) 0.14 0.10 24.10 3.30 0.74
(0.40Rgiy, ,0) 0.08 0.07 39.02 3.23 0.64
(0.45Riy, ,0) 0.03 0.02 111.5 3.18 0.55

In other words, as the source approaches y(, along the horizontal axis, the contri-
bution of the outer image |u,| to the numerator and denominator of Ry, becomes
negligible. The net effect, at least for the given horizontal axis approach, is that Ry, ..
and R..sp converge, with Ry, approaching R, from below as they both approach
the magnification relation value of 0.

Finally, though R}, .. can approximate Rs,q and Rsp for fold image doublets and
cusp image triplets, resp., the hyperbolic umbilic magnification relation has a more
global reach in terms of the number of images included. This is because Ry .. also
applies directly to image configurations that are neither close doublets nor triplets;
e.g., to cross-like configurations as in Figure 2.1(c). For instance, it was determined

in Keeton et al. (2003) that to satisfy the relation |Reusp| < 0.1 at 99% confidence,

the opening angle must be § < 30°. By opening angle we mean the angle of the
polygon spanned by the three images in the cusp triplet, measured from the position
of the lens galaxy, which in our case, is centered at the origin in the lens plane.
For the SIE cross-like configuration shown in Figure 2.1(c), the opening angle is
0 ~ 140°; a perfect cross, which would be the case if the source were centered inside
the astroid-shaped inner caustic, has § = 180°. In other words, to satisfy the cusp
relation reasonably well, the cusp triplet must be quite tight as, for example, in
the SIE cusp triplet shown in Figure 2.1(b). By contrast, the quantity Ry, applies

even for values 6 » 30°. (In Table 2.4 note how R}, is smaller than R, for source
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positions closer to the center (0, 0), which yield more cross-like image configurations.)

A more detailed study of the properties of Ry, would involve a Monte Carlo
analysis similar to that employed in Keeton et al. (2005, 2003) to study Re.s, and
Riola-
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SIE for e = 0.35 , v = 0.05

Hyperbolic Umbilic n. for ¢ = 0.2

(a) fold (d) fold
|

[

Y |
|
(b) cusp (e) cusp

N +

[} + u
. —

(C) cross (f) cross

&

FIGURE 2.1: The first column shows fold, cusp, and cross-like configurations due to an SIE with
ellipticity e = 0.35 and shear v = 0.05 oriented along the horizontal axis (Panels a,b,c). The second
column shows the same configurations due to the hyperbolic umbilic lensing map 7. in Table 2.2
with parameter value ¢ = 0.2 (Panels d,e,f). In each panel, the sub-figure on the left depicts the
caustic curves with source position (solid box) in the light source plane, while the sub-figure on
the right shows the critical curves with image positions (solid boxes) in the lens plane. For the
hyperbolic umbilic, image parities have been indicated through + in the given regions. Note that
the cross-like configuration shown for the SIE is not a perfect cross, which would be the case if
the source were centered inside the astroid-shaped inner caustic. Also, for the SIE fold and cusp
configurations, the source is actually located inside (rather than over) the cusped curve of the

astroid.
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3

Proof of Magnification Theorem

3.1 An Algebraic Proposition

3.1.1 A Recursive Relation for Coefficients of Coset Polynomials

We will make repeated use of the Euler trace formula to prove Theorem 1, by first
establishing a proposition about polynomials that will yield the Euler trace formula
as a corollary.

We begin with some notation. Let C[z] be the ring of polynomials over C and

consider a polynomial

o(x) = apx™ + -+ a1z + ap € Clz] .
Suppose that the n zeros x1,...,x, pf p(z) are distinct (generically, the roots of a
polynomial are distinct) and let ¢'(z) be the derivative of p(z). Also, let R < C(xz)
denote the subring of rational functions that are defined at the roots x; of ¢(x):

= {% . p(x),q(z) € Clz] and ¢(x;) # 0 for all roots z; } :

Let (p(z)) be the ideal in R generated by ¢(z) and denote the cosets of the quo-
tient ring R/(p(x)) using an overbar. Below are two basic results that we prove in
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Section 3.1.2 below for the convenience of the reader:

e Members of the same coset in R/(p(z)) agree on the roots z; of ¢(x), that is,

if hi(z) and hy(x) belong to the same coset, then hy(z;) = ho(z;).

e Every rational function h(x) € R has in its coset h(z) € R/(¢(x)) a unique

polynomial representative h,(x) of degree less than n.

Proposition 2. Consider any polynomial ¢(x) = a,z"™ + - - - + ayx + ag € Clx]| with
distinct roots and any rational function h(x) € R. Let

1

h* (LU) = Cn_lflfni +- -+ Cx+ Co

be the unique polynomial representative of the coset h(x) € R/(¢(x)) and let

1

r(z) = by, 12" + - + bz + by

be the unique polynomial representative of the coset @' (x)h(x) € R/(p(x)). Then the
coefficients of r(x) are given in terms of the coefficients of hy(x) and o(x) through

the following recursive relation:

by—i = Cn1bp_in_1+ -+ crby_i1 + cobp_ip t=1,...,n, (3.1)
with
bn,LQ = (n—(z’—l))an,(i,l) s i= 1,...,7’L s
@ . (3.2)
bnfi,k = - bnfl,kfl +bn—(i+1),k—1 ) i=1,...,n, k=1,...,n—-1,

n

where b_y ;1 = 0.

By Proposition 2, if r,(z) is the unique polynomial representative of the coset

¢'(z)z* € R/(p(x)), then
(@) = by_y g 4+ b+ bog k=0,1,....n—1, (3.3)

where its coefficients are given in terms of the coefficients of ¢(z) through (3.2).
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Corollary 3. Assume the hypotheses and notation of Proposition 2. Given the

distinct roots x1, ..., x, of p(x), the Newton sums Ny = Y. (z;)* satisfy:

Nkzb"*l*’“, k=0,1,....n—1. (3.4)

In other words, the quantity a, N, equals the (n — 1)st coefficient of the unique

polynomial representative (3.3) of the coset ¢(z)x* in R/(¢(x)).
Proof. Note that for £ = 0, eqn. (3.2) in Proposition 2 yields
bn—l,O = na, = Noan .

For 1 < k < n—1, there is a known recursive relation for N, in terms of Ny, ..., Ny_1;

see, e.g., Barbeau (2003), p. 203. It is given by
ka,_ + CLn_k+1N1 + CLn_k+2N2 + -+ a,_1Ny_1 +a,N, =0 . (35)

We proceed by induction on k for 1 < k < n—1. For k = 1, eqn. (3.5) implies

Ny = —*= while eqn. (3.2) gives b,_11 = —a,_1 = a,, N1, which agrees with eqn.

an ’

(3.4). Now assume that b, 1 ; = a,N; for j = 1,...,k — 1. To establish the result
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for j = k, we shall repeatedly apply Proposition 2:

Ap—1
bp1py = — by1k—1+ bp_2k 1

n

(p—1 (p—2
= — b1 k-1 + [— b1 k-2 + bn3,k2]

n n

Ap—1 Ap—2 Ap—3

= — bp—1k-1— b1 -2+ | — b1 k-3 + bp_ap—3
a/’fl aTL n

Ap—1 Ap—2 Ap—3

= - bn—l,k—l - a bn—l,k—2 - a bn—l,k—3
n n n
Ap—(k—1) Ap—k
— e by — bn—1,0 + bn—(k41),0 -
79 79

= - (an—lNk—l + apn—oNr—2 + @pn_3Np_3 + -+ + ap_(r—1) N1 + kan—k)

= anA@a

where b,_19 = na, and b, _(x11)0 = (n — k)a,—, follow from eqn. (3.2) in Proposi-

tion 2, and the last equality is due to (3.5). O

Corollary 4 (Euler Trace Formula). Assume the hypotheses and notation of Propo-

sition 2. For any rational function h(x) € R, the following holds:

Zh(azi) _ o : (3.6)

where by, 1 is the (n — 1)st coefficient of the unique polynomial representative r(z) of

the coset ¢'(x) h(z) € R/(¢(x)) and a, the nth coefficient of p(z).

Proof. Let h.(xz) be the unique polynomial representative of the coset h(z) €
R/(¢(x)). First note that, since h(x) and h,(x) belong to the same coset, we have

h(x;) = hy(z;). The Euler trace formula now proceeds from a simple application of
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Propositon 2 and Corollary 3:

n n n—1
St = S =35 e
i=1 =1 1=1j=0

= Cn—an—l + -+ 01N1 + CoNO

br—1n—
= ¢, 1 (M) N
n

Cn—1bp—1—1 + -+ c1by_11 + cobp_1

Qn

= : (by Proposition 2) O

n

. (anl) o (b .
an, a

1,0

n

: ) (by Cor. 3)

Remark. Dalal and Rabin (2001) gave a different proof of the Euler trace formula,

one employing residues.

3.1.2  Proof of Proposition 2

We begin with some preliminaries about quotient rings to make the proof more

self-contained. Let C|[z] be the ring of polynomials over C and let C(z) be the

field of rational functions formed from quotients of polynomials in C[z].

The n

Zeros I, ..., &, of p(x) = apx™ + -+ + a1x + ap € C|z] are assumed to be distinct

(generically, the roots of a polynomial are distinct). Let (p(z)) denote the ideal in

C|z] generated by ¢(x), and consider the quotient ring Clx]|/(¢(x)), whose cosets

we denote by g(z). This quotient ring has two important properties:

e Property 1: If g1(x) = go(zx), then by definition ¢;(x) — go(z) = h(x)p(x) for

some h(x) € C|z], from which it follows that ¢;(x;) = g2(x;) for all n roots x;

of ¢(x). Thus members of the same coset must agree on the roots of ¢(x), so

that, in particular, > " | g1(z;) = D0, g2(2).
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e Property 2: Each coset g(z) has a unique representative of degree at most n—1,
as follows: by the division algorithm in C[z], there exist polynomials ¢(z) and

r(x) such that
9(x) = q(@)p(x) +r(z) ,

where deg < deg ¢ = n. Passing to the quotient ring Clx|/(¢(x)), we see

that g(x) = r(x). Suppose now that there exists another polynomial p(z) of

degree less than n with g(x) = p(x). Then p(z) = r(z), so that

p(z) —r(x) = h(z)p(x)

for some h(z) € C[z]. If h(z) # 0, then deg h ¢ = n, while the degree of the
left-hand side is less than n. We must therefore have h(z) = 0 and p(x) = r(z).
We may thus represent every coset by its unique polynomial representative of

degree less than n, which in turn implies that C[x]/(¢(x)) is a vector space of

dimension n, with basis {T, T, a2, .. ,x"*l}.

The next result will be used to show that Properties 1 and 2 also hold for a

certain subset of rational functions in C(x) (see Claim 2 below).

Claim 1. Let xq,...,z, € C be distinct. Let cq,...,c, € C, not necessarily distinct.
Then there exists a unique polynomial H(z) € C|z| with deg h < n such that

Proof (Claim 1). Induction on n. For n = 1, define H(x) = ¢;. Now assume that the
result is true for n — 1, and consider a set of n distinct complex numbers x4, ..., z,.
By the induction hypothesis, there exists a polynomial h(x) € C|z] with deg h < n—1

such that h(x;) = ¢; fori =1,...,n — 1. Now define

(x — @) (@ —x2) -+ (¥ — @n )
(Tn — 21) (20 — 22) -+ (T — Tpa)
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It follows that H (z) € C|x| has degree less than n, and H(z;) = ¢; foralli =1,... n.
(As a simple example to show that H(x) need not be unique if the z4, ..., x, are not
distinct, consider the numbers 2, 2, 3, 3 all being mapped to 0. Then the polynomials
Hi(z) = (x — 2)*(x — 3), Ha(z) = (z — 2)(x — 3)?, and H3(x) = (x —2)(z — 3) all
satisfy the assumptions of the lemma.) Suppose that there exist two polynomials
Hy(xz) and Hy(x) with Hy(x;) = ¢; = Hs(x;). By the division algorithm in Cl[x],

there are unique polynomials ¢(z) and r(z) such that
Hy(z) = Hy(x) = q(z) [(z = 21)(w — 22) -+ (2 = w) ] +7()

where deg r < n. If g(x) # 0, then the degree of the polynomial on the right-hand
side is at least n, whereas H;(x) — Hy(z) has degree less than n. We must therefore
have ¢(z) = 0. Moreover, if r(z) # 0, then H(x;) = Ha(x;) gives that r(z;) = 0
for all #4,...,x,. This implies, however, that r(z) has n distinct zeros and so must

have degree n, a contradiction. Thus Hy(x) = Hy(x). O (Claim 1)

Let R < C(x) denote the subring of rational functions that are defined at the

roots z; of p(z),

~—

R = {Z)E_i . p(x),q(z) € Clz] and ¢(x;) # 0 for all roots z; } ;

~—

and consider the quotient ring R/(p(z)). The next claim states that the ring
R/(p(x)) satisfies Properties 1 and 2.

Claim 2. Members of the same coset in R/(p(z)) agree on the roots z; of p(z),
that is, if g;(z) and gs(x) belong to the same coset, then g;(z;) = g2(x;), and so
S igi(z) =" ga(w;). In addition, any rational function h(z) € R will have in

its coset h(x) € R/(p(x)) a unique polynomial representative r(z) of degree less than

n.
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Proof (Claim 2). Notice that, if hi(z) = ho(z) € R/(¢(x)), then by definition there

exists a rational function h(x) € R such that

hi(z) = ha(z) = h(z)p(2)

so that hy(x;) = ha(x;) for all the zeros z; of p(x). In other words, R/(p(z)) also
satisfies Property 1. It turns out that when the zeros 1, ..., z, of p(z) are distinct,
as we are assuming they are, then R/(¢(x)) also satisfies Property 2 (in fact R/(p(z))
and C[z]/(¢(x)) will be isomorphic as rings). For given a coset h(z) € R/(¢(z)),
Claim 1 shows that there is a unique polynomial g(z) € C[z] of degree less than n
whose values at the n roots x; are h(z;). Then the rational function g(z) — h(x) € R
vanishes at every x;, and a simple application of the division algorithm applied

to the numerator of g(x) — h(z) shows that g(x) = h(x) € R/(p(z)). Thus any

rational function h(z) € R will have in its coset h(x) € R/(¢(x)) a unique polynomial

representative r(z) of degree less than n. O (Claim 2)
We now begin the proof of the Proposition by establishing the following Lemma:

Lemma. Let ¢(z) = a,2"™ + - -+ a1 + ap and consider the quotient ring R/(¢(z)).

Forany 1 <k <n—1, let
’l“k(l’) = bnfl,k L bl,k T+ bO,k

be the unique polynomial representative in the coset ¢’(x)z*. Then the following

recursive relation holds:

bp—io=(n—(i—1)an 1y, 1=1,...,n,

Qp—j

bnfi,k = - bnfl,kfl + bnf(iJrl),kfl ) 1= ]-7 e, N, k= 1a cee, = 1 )

n

where b_; ;1 = 0.
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Proof of Lemma. The existence and uniqueness of the polynomial

Tk(LL’) = bn—l,k LL’n_l +---+ bn—i,k Z’n_i +---+ bl,k xr + bO,k 1 y

QOI(LL’) ok = Tk(LL’) = bn—l,k a4 4 bn—i,k AL S bl’kf + b(]’kT s (38)

were established in Claim 2. Also, note that since p(z) = 0 € R/(p(x)), we have

L e S Sy o (3.9)

Qn Qn Qn

Case k = 0: By (3.8), we get

()0,(213').1’0 = 7’0(1’) = bn—l,(] gn—1 + -+ bn—i,O =t + -+ bl,OE + b070T .

However,

¢'(x)2’ = (@) =naya™ '+ -+ (n— (i —1))ap_z" "+ +20T+ar 1.
Consequently;,
bn_@() = (n - (Z - 1)) an,(i,l) y 1= 1, Lo (310)

Case k =1,...,n — 1: Equations (3.8) and (3.9) yield

(@) ar = boapa™ e bpp ™+ DT Do 1
= zg'(x) !

= T [bnfl,kfl a4 by g 12" 24+ b1 T4 by g T]

= byp1g 12" +bpop 1t + by 122+ bk T

Ap—1 ar _ Qo +
= bnl,kl[— il — - —7 - —1

an Qn Qn

+ bn,27k,1 L S bl,k—l x2 + bo,k,1 x

n
i :
= Z [— o b1 k-1 + bn—(i+1),k—1:| AL
i=1 a

n
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The coefficients of (3.8) are then related to the coefficients of a; of p(z) as follows:

Ap—;

bnfi,k = — bnkafl + bn—(i+1),k—1 , 1=1,...,n , k= 1,...,.n—1,

n

where the coeffiencients b,,_; o are given by (3.10). Note that b, ; = 0 since the unique
polynomial goes up to degree n — 1. [ (Lemma)
We now complete the proof of the Proposition. If hy ,(x) and hso.(x) are the

unique polynomial representatives of the cosets hi(x) and ho(z), respectively, then

by uniqueness, the sum hy ,(x) + he () is the unique polynomial representative of

the coset hy(x) + ho(z). With that said, we note that, since h(z) = hy(z), it follows

that r(z) = ¢'(xz)h(x) = ¢'(z)h.(z). We thus have

r(z) = @' (x)h(z)

= @@+t g (@) + oy (2)

= Cparn1(x) + -+ cri(z) + coro(2)

n n n
= Cp_1 Z by—in1@"" + -y 2 bp—i 12" + co 2 bp—iox™ ™"

i=1 i=1 i=1

n
= Z (Cn—1bn—in—1+ -+ Cc1by_i1 + coby_ig) "1
i1
n —_—
= an_ix“—i : O (Proposition)
i=1

3.2 Algebraic Proof of Magnification Theorem

We are now ready to prove our Main Theorem. We begin by establishing some
preliminaries before starting the computational part of the proof.

Recall from Section 2.2.3 that given a family of functions F¢ 5, a parameter vector
(co, Sp) is called a caustic point of the family if there is at least one critical point xg
of Feys, (i€, Xo satifies grad(Fe,s,)(X0) = 0) such that the Gaussian curvature at
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(x0, Fes(x0)) in the graph of F.¢ vanishes. Equivalently, (cg,sp) will be a caustic

point if det(Jacf.)(xg) vanishes, since
Gauss(Xo, Fes(x0)) = det(Jacf:)(xo) -

Now, given an induced mapping f. and a target point s = (s1, s2), we can use the

pair of equations
(51, 82) = folw,y) = (P (), [ (2,9))

to solve for (x,y) in terms of (s1,ss2), which will give the pre-images x; = (z;, y;)
of s under f.. For the singularities in Table 2.2, we shall see that the pre-images
can be determined from solutions of a polynomial in one variable, which is obtained
by eliminating one of the pre-image coordinates, say y. In doing so we obtain a
polynomial ¢(z) € C[z] whose roots will be the z-coordinates x; of the different
pre-images under f:

o) = a2 + -+ @+ ap .

Generically, we can assume that the roots of ¢(x) are distinct, an assumption made
throughout the paper.
We would then be able to express the magnification 9t(z, y;s) at a general pre-

image point (z,y) as a function of one variable, in this case x, so that

M. y(2)8) = Jrms = Jo = Ma)

where J = det(Jacf.) and the explicit notational dependence on s is dropped for
simplicity (recall eqn. (2.3) in Section 2.2.3). Since we shall consider only non-
caustic target points s giving rise to pre-images (z;, y(x;)), we know that J(x;) # 0.
Furthermore, we shall only consider non-caustic points that yield the maximum
number of pre-images. In addition, for the singularities in Table 2.2, the rational
function M(x) is defined at the roots of p(z), i.e., M(z) € R. Now, denote by m(z)
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the unique polynomial representative in the coset ¢'(z) M (z) € R/(p(z)), and let
bn—1 beits (n—1)st coefficient. In the notation of Proposition 2, we have h(x) = 9(z)
and r(z) = m(z). Euler’s trace formula (Corollary 3.6) then tells us immediately

that the total signed magnification satisfies

bnfl
- . A1
Som =7 .11

It therefore remains to determine the coefficient b, ; for each caustic singularity in
Table 2.2. Next to each singularity below we indicate the value of n — 1, which is
the codimension of the singularity.

Finally, we mention that the full theorem is not a direct consequence of the Euler-
Jacobi formula, of multi-dimensional residue integral methods, or of Lefschetz fixed
point theory, because some of the singularities have fixed points at infinity. We will
address these issues in greater detail in our geometric proof of Main Theorem in
Section 3.3 below. We now begin the proof of Theorem 1.

Consider first the singularities of type A,,. Since the cases n = 2,3 are known,
we will consider n > 4 here. The (n — 1)-parameter family of general functions F4»

is given in Arnold (1973) by

2

Fén (x,y) = +2" M+ 2 F o2 o™ R - 32 + 2 4 ez (3.12)

To convert this into the form shown in Table 2.2, we use the following coordinate

transformation on the domain {(z,y)} = R*

(2,y) — (xy + %) : (3.13)

This transforms eqn. (3.12) to

2

Fé‘; (z,y) = +2" " P+ a™ e d s —sim sy, (3.14)
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where ¢; = —s; and ¢; = s9. The parameters si, s, are to be interpreted in the
context of gravitational lensing as the rectangular coordinates on the source plane
S = R% Note that we omitted the constant term from eqn. (3.14) since it will not

affect any of our results below. Note also that
det (Hess F A") = det (Hess F, :};) ,

so that the magnification (as defined in eqn. (2.3)) is unaltered. We will work with
the form of F, :}S” in eqn. (3.14). The corresponding (n—3)-parameter family of general

mappings f4»: R? — R? is
£ (2,y) = (£(n+ 2" + (n — 1)epq2™ 2 + - + 3es2® Fdyz , F2y) = (s1,52).

Here s = (s1, s9) is a non-caustic target point lying in the region with the maximum
number of lensed images. Since sy = +2y, we can eliminate y to obtain a polynomial

in the variable x:

2

oa, (@) =+m+Da" + (n— Dep_rz™ 2 + -+ 3c3x® + 2800 — 51, (3.15)

whose n roots are the x-coordinates of the lensed images x; of s. The Jacobian

determinant of f/» expressed in the single variable x is

det (Jac ") = F2[£n(n + 1)z" ' + (n —2)(n — 1)cyq2”™ ® + -+ + 6esx + 255 .

(3.16)

A comparison of eqns. (3.15) and (3.16) then shows that

+2¢, (z) = det (Jac ") (z) =

We thus have



Thus the unique polynomial representative of the coset ¢/, (2)9(x) is the polynomial
m(z) = +1/2, whose (n — 1)st coefficient is b,_; = 0 for all n > 4. Euler’s trace

formula in the form of eqn. (3.11) then tells us that the total signed magnification is
D=0, (A, n>2).

i=1
For type D,,, n = 4, the corresponding (n—3)-parameter family of induced general
maps fé)% : R? — R? is shown in Table 2.2:
fCD;—r (z,y) = (Qoy, 2+ (n—1y" >+ +(n— )en sy D 4t 202y
= (81, 82). (317)
Once again the point s = (s1, s2) is a non-caustic target point lying in the region
with the maximum number of lensed images. This time, however, we eliminate z to
obtain a polynomial in the variable y:
ppr(y) = 4 —1y" +4(n —2)caoy™ "+ -
+4(n —i)en "0 4o 4 8eyy® — dsyy® + 57,
whose n roots are the y-coordinates of the n lensed images x; of s. The derivative
of p D (y) is
Phely) = En(n—Dy" " +4(n —1)(n — 2)cpoy" (3.18)

oo dn = (i = 1)) (0 —d)Cuiy™ " F -+ 24coy® — 8sqy

while the Jacobian determinant of ch:Tr is

det (Jac fe ) N det[ 20 +(n—2)(n—1)y" >+ (n—3)(n — 2)cumay" ™ + - + 202

= 22(n—2)(n—1)y" > +2(n—3)(n—2)c,ay” P+ -
o 2(n = (i 1)) (=) oy Y 4 deyy — 42
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We can use eqn. (3.17) to eliminate x as follows:

= £2(n—2)(n— 1)y 2 +2(n—3)(n —2)c,_oy"?
Fo 2= (i +1)(n— i)y D 4 4 ey

+4((n—1)y" 7+ (n—2)coy" >+ + (n— 1) ey Y o 200y — $2)

- -7

=—x2 (b;(eqn. (3.17))
= £2n(n—1)y" ? +2(n—1)(n —2)c, 2y"*
fo 2= (i — 1) — ) en iy Y 4o 1200y — 4sy

= det (Jac f,?'%r) (y) = M(y) "

A comparison with eqn. (3.18) then shows that

The unique polynomial representative of the coset ¢’ . (y)9(y) is therefore the poly-

nomial m(y) = 2y, whose (n — 1)st coefficient is b,_; = 0 for all n > 7. Eqn. (3.11)

then tells us that the total signed magnification is
DM =0, (Dn, n=4).

The proofs for types Egs, E7, Eg, as well as for the quantitative forms for the elliptic
and hyperbolic umbilics, are identical to the proofs presented here, and can be found

in Aazami and Petters (2009b, 2010). O

3.3 Orbifolds and Multi-Dimensional Residues

The proof just given was algebraic, making repeated use of the Euler trace for-
mula. We now give a geometric explanation for the existence of such relations.

We do so by generalizing the multi-dimensional residue technique developed by
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Dalal and Rabin (2001). Their procedure was as follows. Each caustic singular-
ity appearing in Arnold’s classification gives rise (through its gradient) to a mapping
between planes. Complexifying, and using homogeneous coordinates, one can extend
these mappings to the complex projective plane CP?. Next, the magnifications 9;
are realized as residues of a certain meromorphic two-form. By the Global Residue
Theorem (Griffiths and Harris, 1978, p. 656), the sum of these residues, which reside
in affine space, is precisely equal to minus the sum of the residues at infinity. A
magnification relation is thus transformed into a statement about the behavior of
these (extended) mappings at infinity in CP?.

Ideally, if the right-hand side of a magnification relation is identically zero, one
would like for there to be no residues at infinity. For the A, (n = 2),D, (n >
4), Eg, E7, Eg family of caustic singularities, however, this is not always the case. The
way around this is to consider extensions into spaces other than CP?, namely, the so-
called weighted projective spaces WP(ag, a1, as). These are compact orbifolds which
have recently come into prominence in string theory (see, e.g., Adem et al. (2007)).
We show that one can extend each mapping associated to a caustic singularity to a
particular weighted projective space such that there will be no residues at infinity.

Magnification relations are then immediately explained.
3.3.1 Weighted Projective Space as a Compact Orbifold

In this section we provide a brief overview of orbifolds and of weighted projective
space in particular, for the benefit of readers who may be unfamiliar with them.
Complex projective n-space CP" is the set of 1-dimensional complex-linear subspaces
of C"*! with smooth quotient map 7: C"*!\ {0} — CP". It is compact because
the restriction of 7 to the compact embedded submanifold S < C"*! is surjective.

We can also view CP" as being obtained by the following smooth action of S' < C
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on S2n+1:
z - (wo, ..., wy) = (2w, ..., 2wy,). (3.19)

This action is proper. This means by definition that the map p: S! x §**1 —
S#Ht x §2+t defined by z - (wo, . .., w,) = ((zwo, . .., 2w,), (wo, . .. ,w,)) is proper;
i.e., for any compact set K < S**1 x §2*! its pre-image p '(K) < St x §**! is
compact. Smooth actions are automatically proper if the Lie group is compact, as

with S'. The action in eqn. (3.19) is also free, because the stabilizer group
St ={zeS': z-w=w}={1}

for every w € S*"*!. Being smooth, proper, and free guarantees that the resulting
quotient space S*"*1/S! is a smooth manifold, which is clearly diffeomorphic to CP"
(see, e.g., Lee (2003), Chapter 9).

Now consider generalizing the action defined by eqn. (3.19), as follows:
z - (wo, ..., w,) = (2%wo, ..., 2" w,), (3.20)

where the a; are coprime positive integers. This action is still smooth and proper, but
it is no longer free: elements in S***1 of the form (0, ..., 0,w;, 0, ...,0) have stabilizer
groups isomorphic to Z/a;Z, because they are fixed by a;th roots of unity. Thus the
action defined by eqn. (3.20) is almost free: although the stabilizer group S} is not
necessarily trivial for every w € §?"*1 it is always finite. The resulting quotient
space S?"1 /St = WP(ay, . . ., a,) is known as weighted projective space, and it is not
in general a manifold. It is an example of an orbifold, which we now define. Consult
Satake (1956), Moerdijk and Pronk (1997), and Adem et al. (2007), Chapter 1, for
a more detailed discussion of the material presented here.

Let X be a paracompact Hausdorff space, and define the following:
1. An n-dimensional orbifold chart is a connected open subset U < R" and a
continuous mapping ¢: U —> ¢(U) = U < X, together with a finite group
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G of smooth automorphisms of U that satisfies the following condition: ¢ is
G-invariant (¢og = ¢ for all g € G) and induces a homeomorphism U/G = U.

Let us clarify two points about this definition:

(a) Here U /G is the quotient space defined by the usual quotient map 7: U—>
U /G (which is an open map because each g: U —> U is a diffeomor-
phism). Because ¢ is G-invariant, it is constant on the fibers of 7, so by
the universal property of quotient maps it induces a unique continuous
map : U /G — U satisfying ¢ om = ¢. In the definition of an orbifold

chart we are therefore assuming that this map is a homeomorphism.

(b) Any finite group is a compact zero-dimensional Lie group. G acts smoothly
on U by hypothesis, and the action is proper because G is compact. If
the action were also free, which we are not assuming, then the quotient
space U /G would be a smooth manifold and the quotient map 7 a smooth

submersion.

We write an orbifold chart as ((7 LG, 0).

2. Given two such charts (5', G, ¢) and (‘N/, H, 1), an embedding between them is

a smooth embedding A: UV satisfying 1) o A\ = ¢.

3. Two orbifold charts (ﬁ, G, ¢) and (IN/, H, ) are locally compatible if every point
x e UnV < X has an open neighborhood W < U n V and an orbifold
chart (f/[v/, K, u) with embeddings (f/[v/, K, 1) — (U,G, ) and (f/[v/, K, pu) —
(V, H, ).

We say that X is an n-dimensional orbifold if it has a maximal atlas of locally

compatible n-dimensional orbifold charts. Thus we see that an orbifold is locally
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modeled on quotients of open subsets of R™ by finite group actions, and not sim-
ply open subsets of R" as with manifolds. In general, therefore, orbifolds are not
manifolds, though of course all manifolds are orbifolds. However, if the finite group
actions on the orbifold charts are all free, then X is a smooth manifold by (1) and
(3).

Now let X be an orbifold. For any z € X, pick an orbifold chart (17 G, )
containing it and pick a point y in the fiber ¢~!(z) U = R™. Define the local group
of x at y to be

Gy ={9eG:g(y) =y}

If we instead choose another point 3’ € ¢~'(z), then by (1a) above there is a (not
necessarily unique) g € G such that g(y) = ¢/, and thus G, = gG,g~*. If (‘N/, H, )
is another orbifold chart containing x, and if § € ¥ '(x) < Vs any point in its
fiber, then in fact H; and G, are also conjugate to each other (this fact is not trivial;
it follows from the fact that an orbifold embedding (17 ,G,p) —> (XN/, H, ) induces
an injective group homomorphism G — H; see Moerdijk and Pronk (1997)). Thus
the local group of x, which we now denote simply by G, is uniquely determined up
to conjugacy. If G, =1, then x is said to be regular; if G, # 1, then it is singular.
If X has no singular points, then the local actions are all free, so X is a smooth
manifold.

The most common types of orbifolds are those that arise as quotient of manifolds
by compact Lie groups. In particular, if a compact Lie group G acts smoothly,
effectively (an action is effective if g - p = p for all p € M implies that g = 1),
and almost freely on a smooth manifold M, then it can be shown that the resulting
quotient space M /G will be an orbifold; see Moerdijk and Pronk (1997); Adem et al.
(2007) for the details. In particular, weighted projective space WP(ay, ..., a,) =

S?+1/S!, with the action defined by eqn. (3.20), is a 2n-dimensional orbifold.

46



3.3.2  Multi-Dimensional Residue Theorem on Compact Orbifolds

The essence of the residue method developed in Dalal and Rabin (2001) is to express
the magnification (x;s) in eqn. (2.3) as the residue of a meromorphic two-form
defined on compact projective space CP?. We summarize the procedure here, in
the context of the general mappings f. shown in Table 2.2; consult Dalal and Rabin
(2001) for a detailed treatment, including applications to realistic lens models in
gravitational lensing.

Let f. be any mapping shown in Table 2.2, with a given pre-image x = (x,y) of
a non-caustic target point s = (s1,$2). Let fél)(x,y) and f§2)(x,y) denote the two
components of f., with degrees d; and ds, respectively. We can then express the

pre-image x as a common root of the following two polynomials:

Pl(x7y)5fc(l)(x7y)_81 ) P2(x7y)5fc(2)(x7y)_s2' (321>
Note that
_ P o,P | o1
J(x) = detl o.Py 0P ] = M(x;s)".

In particular, J(x) # 0 because s is a non-caustic target point. Now treat the pre-
image coordinates x = (z,y) as complex variables, so that x € C? and f.: C* — C?,

and consider the following meromorphic two-form defined on C?:

Y dx dy
Pl(zvy)P2($7y)

At points where J # 0, the residue of w is given by

Resw = = M(x;s). (3.22)

Thus we have expressed the magnification 9t(x;s) as the residue of a meromorphic

two-form defined on C2. Next, since C? can be viewed as the affine piece of CP?,
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changing to homogeneous coordinates [X : Y : U] with 2 = X/U and y = Y /U ex-
tends the mapping f, to CPP?, so that f,: CP? — CP?. In homogeneous coordinates

the two polynomials P;(x,y) are now expressed as follows:

{ Pi(X, Y, U)pom = U (0 (XU, Y JU) — 51U (3.23)

Poy(X,Y,U)pom = U fO (X /U, Y JU) — s,U% .

Homogeneous coordinates express the local form of a mapping on CP? both in affine
space (U = 1) and at infinity (U = 0). We can similarly extend w to a form on CP?,
still denoted w, that is homogeneous of degree zero:

L d(X/U)d(Y JU) _ Uht R (UdXdY — XdUdY — YdXdU)
T P(X/UY U P(X/UYJU) Pu XY, D)om Pa(X, Y, U) pom

(3.24)

Since CP? is a compact smooth manifold, the Global Residue Theorem states that
the sum of the residues of any meromorphic form, such as w, on CP?, is identically
zero. Since all the poles of w in affine space correspond to pre-images of f, and vice-
versa, the sum of their residues is the total signed magnification M. (s) given by
eqn. (2.4). The Global Residue Theorem thus states that 9. (s) is precisely equal
to minus the sum of the residues of w at infinity (U = 0). This is the fundamental
explanation of magnification relations established in Dalal and Rabin (2001): the
total signed magnification corresponding to a non-caustic target point of a mapping
f. reflects the behavior of £, at infinity when it is extended to CP?. So in particular, if
the homogeneous polynomials in eqn. (3.23) have no common roots at infinity, then
w has no poles at infinity and thus no residues at infinity, and we can immediately
conclude that M (s) = 0. If there are common roots at infinity, then w will have
poles at infinity and their residues will have to be computed. In Dalal and Rabin

(2001) a procedure for doing this was outlined and used to uncover magnification
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relations corresponding to a variety of lens models in gravitational lensing. Such
residues in general cannot be computed via eqn. (3.22), because zeros at infinity
may not satisfy J # 0. Instead they are computed using the Leray residue formula,
details of which can be found in Dalal and Rabin (2001). Note in any case that the
mappings are always extended to the compact smooth manifold CP?. It is precisely
this extension that we generalize here.

Given the simple form of the magnification relations
Mot (s) = D M; =0,
i=1

one would expect there to be no common roots at infinity and thus no residue to
calculate. This, however, is not the case for some of the induced general mappings
f. shown in Table 2.2. Take for example the Ds caustic singularity (the parabolic

umbilic), whose mapping is
fo(z,y) = (2zy , 2° £ 4y° + 3c3y” + 2c2y) = (51, 52), (3.25)

where once again (s1, s9) is a non-caustic target point. Extending this mapping via
homogeneous coordinates into CP? leads to the following two polynomials, as in

eqn. (3.23):

f. homog. in CP? — (3.26)

2XY — 81U2
XU + 4Y3 + 303Y2U + 202YU2 — $2U3.

In affine space (U = 1) we recover eqn. (3.25). At infinity (U = 0), however, there is
one nonzero common root, namely the point [1: 0 : 0] (recall that in homogeneous
coordinates [X : YV : U] = [X' : Y' : U] <= there is a nonzero A € C with
X =MX'", Y =Y, U = AU’; recall also that [0:0: 0] ¢ CP?). The residue of w at
this point will therefore have to be computed. This is not difficult, and the residue

will be zero (as expected). Nevertheless, this leads to the following question: can
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we find an extension of eqn. (3.25) to a compact space other than CP? that ensures
there will be mo common roots at infinity? The answer is yes: consider the weighted
projective space WP(3,2,1) (see Section 3.3.1). In homogeneous coordinates, the
difference between WP(3,2,1) and CP? is the following: because of the action given
by eqn. (3.20),

z - (wo, wi, wy) = (2Pwy, 2% wy, 2 wsy),
the variables wg,w; in WP(3,2,1) now have weights associated with them. As a
result, the relationship between homogeneous and affine coordinates is now given by

X Y

T

Extending eqn. (3.25) to WIP(3,2, 1) thus gives the following two polynomials, which
are different from those in eqn. (3.26):

2XY — 81U5

X2 + 4Y3 + 303Y2U2 + 202YU4 — 82U6. (327>

f. homog. in WP(3,2,1) = {

Once again in affine space (U = 1) we recover eqn. (3.25). The situation at in-
finity (U = 0), however, is now decidedly better, because the only common root
of eqn. (3.27) at infinity is the point [0 : 0 : 0], which of course is not a point in
WP(3,2,1). We have therefore found an extension in which there are no roots at
infinity. Moreover, the only singularities of the orbifold WIP(3,2, 1) occur at infinity,
because U has weight 1. In other words, the only z € S that satisfies 2z wy = w, for
wy # 01is z = 1. In fact the only singular points of WP(3,2,1) are [1: 0 : 0] and
[0:1:0], with local groups isomorphic to Z/3Z and Z/27, respectively. Thus there
are no singular points in affine space, where the pre-images reside.

As we will see in Appendix 3.4, an extension such as that in eqn. (3.27), in
which there are no common roots at infinity, can be obtained for all the caustic
singularities of the A, D, E family. Each such weighted projective space will be of
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the form WP(ay, ay, 1), so it will have no singular points in affine space. The common
roots lie in the affine subset U = 1 which is nonsingular and simply C?. The vanishing
of the total magnification in C? then follows from the orbifold version of the Global
Residue Theorem.

The Global Residue Theorem as presented in Griffiths and Harris (1978) applies
to compact smooth manifolds only. The extension to compact orbifolds is Remark
4.10 of Cattani et al. (1997b). However, Cattani et al. (1997a) give a useful state-
ment adapted to our context of weighted projective spaces (Corollary 1.18). Consider
a generalization of the form w in C?,

_ h(z,y)drdy
F)l(xvy)P2(xuy)7

(3.28)

w

where h(z,y) is a polynomial. Such a form can occur in the computation of total
magnification when x, y are non-rectangular coordinates for the pre-images, or more
generally in computing moments of the magnification. Then w has no residue at

infinity in WP(ag, a1, 1) whenever it has negative degree, that is, when
deg h < deg P, + deg P, — ag — ay. (3.29)

In this statement it is understood that all degrees are weighted, so that degx = ag
and degy = a;. When the degree of w is nonnegative, a simple algorithm is given in

Cattani et al. (1997a) to compute the residue at infinity.
3.4  Geometric Proof of Magnification Theorem
3.4.1 Singularities of Type A,

From Table 2.2 we have

£l (v,y) = (En+Da"+ (n—1)c,q2™ >+ + 3eza” — day , —2y)

— (s1,50) (3.30)
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whose pre-images (x;, y;) have magnification
A —1 A \—1
(det (Jacl™)) ™ (i, 4;) = det(Hess FL2) ™ (s, y3) = M;

The simple form of the leading order terms in eqn. (3.30) suggests that we extend
fAn to WP(1,1,1) = CP?. Indeed, in homogeneous coordinates [X : Y : U], the
solutions of eqn. (3.30) are the common roots in affine space (U = 1) of the following

two homogeneous polynomials in WP(1, 1, 1):

f4" homog. in WP(1,1,1) — (3.31)

+(n 4+ DX+ (n— 1)y 1 X" 2U2 + -+ + 363 X2U2 — AXY U2 — 5,U"
-2 — SQU.

The common roots at infinity are obtained by setting U = 0, which yields only
the root [0: 0 : 0] ¢ WP(1,1,1). Moreover, since WP(1,1,1) = CP? is a (compact)
smooth manifold, it has no singular points. The Global Residue Theorem then tells us
that the sum of the residues in affine space is minus the sum of the residues at infinity.

Since there are no residues at infinity, the magnification theorem immediately follows.
3.4.2  Singularities of Type D,
For type D,,, n = 4, the corresponding (n — 3)-parameter family of induced general

maps £P7 is shown in Table 2.2:

+ B e
£07 (2,y) = (2559 , 22t =1y 4 (n—2)cn oy P+ + 202y) = (51, 52).

(3.32)

We now extend eqn. (3.32) to the weighted projective space WP(n — 2,2, 1), so that
the affine coordinates x,y are related to the homogeneous coordinates [X : Y : U]

by

y=—- (3.33)



The solutions of eqn. (3.32) are the common roots in affine space (U = 1) of the

following two homogeneous polynomials in WP(n — 2,2, 1):

fCD'JTr homogenized in WP(n —2,2,1) = (3.34)
2XY — SlUn
X2+ (n—=1)Y" 24 (n—2)c, oV 3U? + - 4+ 20YU? 5 — 5, U4,

(Note that these polynomials are homogeneous, since X and Y now have weights n—2
and 2, respectively; the degree of the term 2XY, for example, is (n — 2) + 2 = n.)
At infinity (U = 0), the only common root is [0:0: 0] ¢ WP(n — 2,2,1). Note that

the singular points of WP(n — 2,2, 1) occur at infinity.
3.4.8 Singularities of Type E,

The 5-parameter family of induced general maps £ corresponding to type Eg is

shown in Table 2.2:
£ (2, y) = (327 + c3y” + c1y . +4y° + 2c30y + 202y + 1) = (s1,52).  (3.35)

As with A,, we can extend eqn. (3.35) to WP(1,1,1) = CP? with corresponding

homogeneous polynomials

5 homogenized in WP(1,1,1) —

3X2 + 03Y2 + 01YU — 81[]2
i4y3 + 203XYU + 202YU2 + Cl)((j2 - SgUg.

The only common root at infinity (U =0) is [0:0: 0] ¢ WP(1,1, 1).
For type E;, Table 2.2 gives the corresponding 4-parameter family of induced general
maps f7:

£77 (2, y) = (32" + y* + a1y, 3xy” + deay® + 3esy® + 200y + c12) = (s, 52). (3.36)
We extend eqn. (3.36) to WP(3,2,1), with homogeneous coordinates

X Y
$=ﬁ ) y=ﬁ
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and corresponding homogeneous polynomials

£57 homogenized in WP(3,2,1) = (3.37)
3X2 + Y3 + 01YU4 — SlUG
3XY? +4c,Y3U 4 3¢3Y2U3 + 2¢,YU® + 1 XU* — 5,U7,

whose common roots in affine space (U = 1) are precisely the solutions to eqn. (3.36).
The only common root at infinity (U = 0) is [0:0: 0] ¢ WP(3,2, 1).

The polynomials in this case have weighted degrees 6 and 7. As an example of
the vanishing criterion quoted in eqn. (3.29), a form w as in eqn. (3.28) would have

vanishing sum of residues in C?> when degh <6 +7—3 —2 = 8.

Finally, Table 2.2 gives the 5-parameter family of induced general mappings fZ*

corresponding to type Fjg:
£55 (1, y) = (3x2 + sy + eyt + ey, Byt + 3eszy® 4 24wy + 3esy® + 20y + o)
= (817 82)'

Once again we will use WP(3,2,1). This time the corresponding homogeneous poly-

nomials are

5 homogenized in WP(3,2,1) = (3.38)

3X2+ Y3 4+ e, Y2U? 4+ YU — 5,US
5Y4 + 3cs XY2U + 2, XYU? + 3¢3Y2U* + 2¢,YUS + . XU® — s,U8.

And, of course, the only common root at infinity (U = 0) is [0: 0: 0].
3.4.4  Quantitative Forms for the Elliptic and Hyperbolic Umbilics

Elliptic and Hyperbolic Umbilics: Table 2.3 gives the universal, quantitative
form of a lensing map in the neighborhood of either an elliptic umbilic (D)) or

hyperbolic umbilic (D) caustic. These are both one-parameter maps 7. induced by
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a three-parameter time delay family 7,s. (In the context of gravitational lensing,
¢ will represent some physical input, such as the source redshift.) For the elliptic

umbilic, this induced mapping is

Neen(T,y) = ($2 —y?, —2xy + 4cy) = (s1,52),
while for the hyperbolic umbilic, it is

Newyp (T, y) = (22 + 2cy , y* + 2cz) = (s1, 52).

The desired extension in both cases is to WP(1,1,1) = CP?, with corresponding

homogeneous polynomials

X2 —Y2 —$1U2

Me.en homogenized in WP(1,1,1) = { COXY 4 AV — syl

and

2 _ 2
Nenyp homogenized in WP(1,1,1) — { X4 2cYU - 5,U

Y2+ 2eXU — s,U2.

The only common root at infinity (U = 0) in either caseis [0: 0: 0] ¢ WP(1,1,1). O
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4

A Lens Equation for Equatorial Kerr Black Hole
Lensing

4.1 Introduction

We now switch gears and address gravitational lensing in the setting of one of the
most important non-spherically symmetric and non-static solutions of the Einstein
equations, namely, Kerr black holes. This has already been the focus of many studies.
Indeed, several authors have explored the Kerr’s caustic structure, as well as Kerr
black hole lensing in the strong deflection limit, focusing on leading order effects
in light passing close to the region of photon capture (e.g., Rauch and Blandford
(1994), Bozza (2003, 2008a,b), Vazquez and Esteban (2003), Bozza et al. (2005),
Bozza et al. (2006), and Bozza and Scarpetta (2007)).

Studies of Kerr lensing have also been undertaken in the weak deflection limit.
In particular, Sereno and De Luca (2006, 2008) gave an analytic treatment of caus-
tics and two lensing observables for Kerr lensing in the weak deflection limit, while
Iyer and Hansen (2009a,b) found an asymptotic expression for the equatorial bending

angle. Werner and Petters (2007) used magnification relations for weak-deflection
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Kerr lensing to address the issue of Cosmic Censorship (for lensing and Cosmic Cen-
sorship in the spherically symmetric case, see Virbhadra and Ellis (2002)).

This chapter and the next develops a comprehensive analytic framework for Kerr
black hole lensing, with a focus on regimes beyond the weak deflection limit (but not
restricted to the strong deflection limit). This chapter begins by presenting a new,
general lens equation and magnification formula governing lensing by a thin deflector.
This lens equation is applicable for non-equatorial observers and assume that the
source and observer are in the asymptotically flat region. In addition, it incorporates
the displacement for a general setting that Bozza and Sereno (2006) introduced for
the case of a spherically symmetric deflector. This occurs when the light ray’s tangent
lines at the source and observer do not intersect on the lens plane. An explicit
expression is given for this displacement when the observer is in the equatorial plane
of a Kerr black hole as well as for the case of spherical symmetry. In Chapter 5 this
lens equation is solved perturbatively to obtain analytic expressions for five lensing
observables (image positions, magnifications, total unsigned magnification, centroid,

and time delay) for the regime of quasi-equatorial lensing.

4.2  General Lens Equation with Displacement

4.2.1  Angular Coordinates on the Observer’s Sky

We assume that our deflector is a “thin lens,” by which we mean that its spatial
extent is much less than its distances to the source and observer. Let us define
Cartesian coordinates (z,y, z) centered on the thin lens and oriented such that the
observer lies on the positive z-axis.

Assume that the observer in the asymptotically flat region is at rest relative to
the (z,y,2) coordinates. All equations derived in this section are relative to the
asymptotically flat geometry of such an observer. The natural coordinates for the

observer to use in gravitational lensing are angles on the sky. To describe these angles,
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source plane
source
{
z =
lens plane
.-®
1
Image
deflector — W y

“«— observer

FIGURE 4.1: Angles on the observer’s sky. An image’s position is determined by (¢, ). The
source’s position is given by (B, x).

we introduce “spherical polar” coordinates defined with respect to the observer and
the optical axis (from the observer to the lens), and the yz-planes at the deflector
and the light source. The vector to the image position is then described by the angle
¥ it makes with the optical axis, and an azimuthal angle ¢. Similarly, the vector to
the source position is described by the angle B it makes with the optical axis and by
an azimuthal angle y. These angles are shown in Fig. 4.1. Note that the optical axis
is the x-axis. We adopt the usual convention for spherical polar coordinates: the
image position has ¥ > 0 and 0 < ¢ < 27, while the source position has B > 0 and
0 < x < 27. In fact, since we only need to consider the “forward” hemisphere from
the observer we can limit ¥ to the interval (0,7/2) and B to the interval [0, 7/2).
The “lens plane” is the plane perpendicular to the optical axis containing the

lens, and the “source plane” is the plane perpendicular to the optical axis containing
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i «— lensplane

pt T image

-

f dis | d |

FIGURE 4.2: A lensing scenario demonstrating that the tangent line to the segment of the
ray arriving at the observer and the tangent line of the ray at the source need not intersect on
the lens plane; i.e., A" # B’ in general. The angles B and ¥ are as in Fig. 4.1 (or rather, they
are their projections onto the xz-plane), & is the “bending angle,” and dj,, dg, and dps are the
perpendicular distances between the lens plane and observer, the source plane and observer, and
the lens and source planes, respectively.

the source; these are also shown in Fig. 4.1. Define the distances d; and dg to be
the perpendicular distances from the observer to the lens plane and source plane,
respectively, while dy g is the perpendicular distance from the lens plane to the source
plane. Some investigators define dg to be the distance from the observer to the source
itself, as opposed to the shortest distance to the source plane. We shall comment on

this distinction in Section 4.3.3.
4.2.2  General Lens Equation via Asymptotically Flat Geometry

Consider the lensing geometry shown in Fig. 4.2. With respect to the light ray being
lensed, there are two tangent lines of interest: the tangent line to the segment of
the ray arriving at the observer and the tangent line to the ray emanating from the
source. As first emphasized in Bozza and Sereno (2006), it is important to realize
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that these two tangent lines need not intersect. If they do intersect (as for a spherical
lens, since in that case the tangent lines are coplanar), the intersection point need
not lie in the lens plane. This effect has often been neglected, and while it may
be small in the weak deflection limit (see Section 4.3.3 below) we should include it
for greater generality. A simple way to capture this displacement is to consider the
points where the two tangent lines cross the lens plane, namely, the points A" and
B’" in Fig. 4.2. If the tangent lines do intersect in the lens plane, then A" = B'.
Otherwise, as can be seen in greater detail in Fig. 4.3, there is a displacement on the

lens plane that we quantify by defining
d, = B, — A}, d, =B —A. (4.1)

Note from Fig. 4.3 that the tangent line to the segment of the ray arriving at the
observer is determined by (9, ¢). The tangent line to the ray emanating from the
source can likewise be described by the angles (Vg, ¢g), where —7/2 < g < 7/2 and
0 < g < 2m. As shown in Fig. 4.3, ¥5 has vertex B’ and is measured from the line
joining the points B’ and B”, which runs parallel to the optical axis. We adopt the
following sign convention for ¥g: if ¥g goes toward the optical axis, then it will be
positive; otherwise it is negative (e.g., the ¥g shown in Fig. 4.3 is positive). We will
obtain the general lens equation by considering the coordinates of the points A’ and

B’ in Fig. 4.3. Using the asymptotically flat geometry of the observer, we have
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distan ds

d.s / cosds

deflector — )

Vi e -

~—— observer

FIGURE 4.3: A detailed diagram of lensing with displacement. The tangent line to the segment
of the ray arriving at the observer is determined by (9, ¢) and intersects the lens plane at A’, while
the tangent line to the ray emanating from the source is determined by (dg, ps) and intersects the
lens plane at B’. The distance between these two points is quantified by the displacement amplitude
d, whose horizontal and vertical components we denote by d, and d., respectively. The deflector
could be a Kerr black hole and the light ray may dip below the xy-plane.

Al =0,
A, = dptand cosp, (4.2)
Al = dptand singp, (4.3)
B. = 0,
B; = dgtanB cos x + dpgtandg cos(m — pg), (4.4)
B, = dgtanB siny — dps tandg sin(m — ¢g) . (4.5)
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Substituting eqns. (4.2)—(4.5) into eqn. (4.1) yields

dstanB cosx = dptand cosy + dpgtants cosps + d, (4.6)

dstan B siny = dptand sing + dpgtandg sinps + d,. (4.7)

The left-hand sides involve only the source position, while the right-hand sides involve
only the image position. In other words, this pair of equations is the general form
of the gravitational lens equation for source and observer in the asymptotically flat
region, for a general isolated thin lens. Note that apart from the asymptotic flatness
assumption, these equations use no properties specific to Kerr black holes; and if
the deflector was a Kerr black hole, then neither the observer nor the source was
assumed to be equatorial. We shall refer to eqns. (4.6) and (4.7), respectively, as the
“horizonal” and “vertical” components of the lens equation due to the cosine/sine
dependence on y.

Consider now the case when the light ray and its tangent lines lie in a plane which
contains the optical axis. This forces y = ¢ or x = ¢ + ™ depending on whether the
source is on the same or opposite side of the lens as the image. To distinguish these
two cases, it is useful to define q = cos(x — ¢) to be a sign that indicates whether
the source is on the same side of the lens as the image (q = +1) or on the opposite
side (@ = —1). The condition A" # B’ will still hold in general, but the line in the
lens plane from the origin to the point B’ will now make the same angle with respect
to the y-axis as the point A’, namely, the angle ¢ (see Fig. 4.3). As a result, the
line in the source plane from the origin to the point B” will also make the angle ¢
with respect to the y-axis. Thus we will have pg = ¢ + 7. Given these conditions,

eqns. (4.6) and (4.7) reduce to the single lens equation
dsqtanB = dp tant — dpg tan(a —9) + 4, (4.8)

where the displacement amplitude is d = d,/cos ¢ = d./sin ¢ (in the case of planar

rays), and to connect with traditional descriptions of gravitational lensing we have
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introduced the light bending angle & = ¢ + Jg. (If desired, the sign q can be
incorporated into the tangent so that the left-hand side is written as tan(ql3), where
we think of g8 as the signed source position.) FEqn. (4.8) is the general form of
the lens equation in the case of planar rays. If the displacement d is ignored, then
eqn. (4.8) matches the spherical lens equation given by Virbhadra and Ellis (2000).

We consider the displacement term in Section 4.3.3.
4.2.83  General Magnification Formula

The magnification of a small source is given by the ratio of the solid angle subtended
by the image to the solid angle subtended by the source, since lensing conserves
surface brightness (e.g., Petters et al. (2001), p. 82). As measured by the observer,
if ¢ is the distance to the image (as opposed to the perpendicular distance), then the

small solid angle subtended by the image is

|(¢d) (£sind dep)|
2

dQy = = |sin® di dy| = |d(cos?) dyp|.

Similarly, the small solid angle subtended by the source is
dQs = |sin B dB dx| = |d(cos B) dx|.

We then have the absolute magnification

A9, L
Il = g, = det /17,

where J is the Jacobian matrix

S cosB,x) _ [ i ]

ox ox
a(COS 19’ ()0) 0 cos v op

Writing out the determinant and dropping the absolute value in order to obtain the

signed magnification, we get

B [sinB (aB ox OB ax>]—1

o0 0p  0p 0 (49)
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7 COS{ COS ¢

rcos sing

FIGURE 4.4: Cartesian (X,Y, Z) and spherical polar (r,(, $) coordinates centered on the black
hole, where ( = 7/2 — p with p the polar angle; note that —m/2 < ¢ < 7/2. The black hole spins
about the Z-axis, which corresponds to { = 7/2, in the direction of increasing ¢. The equatorial
plane of the black hole corresponds to ¢ = 0 or the (X, Y)-plane.

In the case of spherical symmetry, the image and source lie in the same plane, so

0B/dp = 0 and dx/dp = 1, recovering the familiar result

_ sinB% -t
F=\Gno o0) -

4.3 Lens Equation for Kerr Black Holes

4.3.1 Kerr Metric

Now let the deflector in Fig. 4.3 be a Kerr black hole. The Kerr metric is the unique
axisymmetric, stationary, asymptotically flat, vacuum solution of the Einstein equa-
tions describing a stationary black hole with mass M, and spin angular momentum
J. (see, e.g., Wald (1984), p. 322-324). Consider the Kerr metric in Boyer-Lindquist
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coordinates (¢, 7, p, ¢), where g is the polar angle and ¢ the azimuthal angle. For our
purposes, it is convenient to transform p to ( = /2 — p and work with the slightly
modified Boyer-Lindquist coordinates (¢,r,(, ¢); note that —7/2 < ¢ < 7/2. The
spatial coordinates are shown in Fig. 4.4.

The metric takes the form
ds® = gu dt® + g dr® + gec dC° + g AP + 2 grp dt dop
where t = ct with t being physical time. The metric coefficients are

r(r —2m,) + a%sin? ¢
= — 4.10
g 72 + aZsin® ¢ ’ (4.10)

r? 4+ a%sin? ¢
rr 5 4.11
9 r(r—2m,) + a2 ( )

gc = r*+atsin’(, (4.12)

(r? +a?)? —a%(a® +r(r —2m.)) cos?’¢
_ , 413
dad 72 4+ a2sin® ¢ cos™¢ (4.13)

2m,arcos? ¢

= -5 . 4.14
It 72 +a2sin® ¢ (4.14)

The parameter m, is the gravitational radius, and a is the angular momentum per

unit mass:

GM. a o \7.
’ M,

Note that both m, and a have dimensions of length. It is convenient to define a

dimensionless spin parameter:

Q>
I
B

Unless stated to the contrary, the black hole’s spin is subcritical; i.e., a® < 1.

65



4.8.2  Lens Equation for an Equatorial Observer

We now specialize to the case when the observer lies in the equatorial plane of the
Kerr black hole, so the coordinates (z,vy, 2) in Fig. 4.2 coincide with the coordinates
(X,Y, Z) in Fig. 4.4. Note that we still consider general source positions.

In Appendix 4.4 we carefully analyze null geodesics seen by an observer in the
equatorial plane. By considering constants of the motion, we derive the following

lens equation:

sin ¥ cos ¢

dstanBcosy = dpstanidgcosps + dr (4.15)

cosdg

dy sin
dstan Bsiny = dpgtantgsinpg + - gsm — X (4.16)
1 — sin® Yg sin® pg

[cos psindg tan g sin g cos pg + (sin2 ¢ — sin? ¥g sin® gos) 1/2] )

This is the general form of the lens equation for an equatorial observer in the Kerr
metric for observer and source in the asymptotically flat region. It is valid for all
light rays, whether they loop around the black hole or not, as long as they lie outside
the region of photon capture. No small-angle approximation is required.

Note that eqns. (4.6) and (4.7) represent the general form of the lens equation,
with the displacement terms explicitly written, while eqns. (5.3) and (5.4) give the
exact lens equation for an equatorial Kerr observer, with the displacement terms
implicitly included. Demanding that these two pairs of equations be equivalent

allows us to identify the displacement terms for an equatorial Kerr observer:

1 1
d, = dpsin? — 4.1
Y L COS()O(COS??S cosﬁ‘)’ (4.17)
dp sind
d, = —dptandsing + Lo X

1 — sin® g sin? pg
[cos psin g tan g sin pg cos pg + (sin2 ¢ — sin? g sin? gps)l/2] .(4.18)
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4.3.8  Schwarzschild Case

In the case of a spherically symmetric lens we have pg = ¢ + mw, and either y = ¢
or Y = i + m, depending on whether the source lies on the same or opposite side
of the lens as the image. Once again, we define q = cos(y — ¢) to be a sign that
distinguishes these two cases. With these conditions eqns. (5.3) and (5.4) combine

to form the single lens equation with displacement for a Schwarzschild black hole:

sin ¢

dgq tan B = dL - dLS tal’lﬁg . (419)

cos Vg

Two comments are in order. First, our spherical lens equation (4.19) is equivalent
to the spherical lens equation recently derived by Bozza and Sereno (2006) (up to
the sign q, which was not discussed explicitly in Bozza and Sereno (2006)); see also
Bozza (2008a). The second comment refers to the amplitude of the displacement.
By comparing our general planar-ray lens equation (4.8) with eqn. (4.19), we can

identify the displacement

1 1
d =dgsinv — 4.2
L [cos(a — 1) cosz?] ’ (420)

where we have switched from g to the bending angle o = ¥ + ¥5. Now let da =
amod 27, and assume that ¥ and da are small. (Note that we need not assume «
itself is small, only that d« is small. This means that our analysis applies to all light
rays, including those that loop around the lens.) Taylor expanding the displacement

in ¥ and « yields

d= % (¥ 0a) (0 — 209) + O(4).

4.4 Exact Kerr Null Geodesics for Equatorial Observers

In this section we determine the equations of motion governing light rays seen by

equatorial observers in the Kerr metric. We obtain the exact equations of motion by
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considering constants of the motion.
4.4.1 FEquations of Motion for Null Geodesics

We first study the equations of motion for a general Kerr null geodesic C(\) =
(t(A),7(N), C(N), #(A)), where X is an affine parameter. The geodesic is assumed to
be outside the region of photon capture. Two immediate constants of the motion for
Kerr geodesics are the energy £ and the orbital angular momentum £. They yield

two equations of motion (see, e.g., O’Neill (1995), p. 180):

g¢¢5 + gwﬁ
9oy = Gudos

9t6€ + gu L
Jtt9pp — 9t2¢ ’

where the dot denotes differentiation relative to the affine parameter A. Since we
only consider unbound light rays, we may assume £ > 0. With a suitable fixed choice
of affine parameter A, we henceforth assume that £ A has dimension of length. The
dimension of the ratio £/€ is also length. A third constant of motion is nullity, which

yields

) ) . coN 12
=+ <_9ttt2 — 9¢¢C® = 9os?” — 29t¢>t¢>>
- Grr '

A fourth constant of motion Q is the Carter constant, which comes from separating
the Hamilton-Jacobi equation (Carter (1968)). We henceforth assume that Q > 0;
i.e., that the light ray either crosses the equatorial plane or asymptotically approaches

it (see, e.g., O’Neill (1995), p. 204-205). Employing the notation

dx g

Y Q=€27

>
Il
tn
>
Ko
Il
o
Il
S Ry
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the fourth equation of motion can be written

C?_ d¢ B +(Q+azsin2§—ﬁ2tan2 C)l/2
CdN r2 + a2sin’ )

(4.21)

Using the metric coefficients (4.10)—(4.14) shown in Section 4.3.1, the null geodesic
equations of motion become

: om, r(a® —al + r?)

t = 1+ [32 + 7’(7” — 2m.)] (7"2 4 32 sin2 C) ) (422)

g _ +[r4—(Q+ﬁ2—az)r2+2m.((ﬁ—a)2+Q)r—32Q]1/2
B r2 4+ aZsin? ¢

. (4.23)

>

~ . 2 2, 2
5 = 2am,r + Lr(r — 2m,) sec (—i—a.\ gtan ¢ . (4.24)
[a2 + r(r — 2m,)](r? + a%sin” ()

Eqns. (4.21)—(4.24) form the set of equations of motion that we must solve in order

to describe null geodesics in the Kerr metric.
4.4.2  FEzxact Lens FEquation for Equatorial Observers

Assuming that the source and equatorial observer are in the asymptotically flat

region, we consider now the constants of motion £ and Q. We can find them by

examining the equations of motion in the asymptotically flat region of the spacetime

far from the black hole. Formally, this means taking the limits a,m, — 0, in which

case the equations of motion reduce to
(7"2 - Q - £2)1/2

i=1, r=+ . (=4
T T

(4.25)

At the position of the observer, the light ray is a straight line described by the angles

¥ and . For an equatorial observer, we see from Fig. 4.3 that the three Cartesian
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components of the line can be written as

(A) = dp+ (A= Xo)cos?,
y(\) = —(A—=Xo)sindcosp,

2(A) = —(A—Xo)sindsingp,

where Ao is the value of the affine parameter at the position of the observer, and
the affine parameter range for the line segment is —dy /cos ) + Ao <A< Ao (recall

that 0 < ¥ < 7/2 and that A has dimension of length). Next, we convert to spherical

coordinates (r, (, ¢) and evaluate r, (, r, and ¢ at A = \o:

o 2 PR B sin 9 cos
rMo)=dr, ((Mo)=0, 7(Xo)=cost, o¢(No)= _T(p . (4.26)

Finally, we substitute eqn. (4.26) into eqn. (4.25) to solve for £ and Q when A = Ao:

Lo = QZT2COSQC‘5\ R = —dpsinvcosp, (4.27)
=Xo

0o = [r2 (1—732) —ﬁ2] ‘x = disin?dsin’ . (4.28)
=A0

(To be clear, we have labeled these constants of motion with “O” for observer. Note

that Qo = 0. Note also that we could just as well have used 7 and C , Or ( and Q'S, to

solve for £ and Q) Going further, we define

b= (Q + ﬁ2) Y sing (4.29)
to be the (absolute) impact parameter of the light ray (since 0 < ¥ < 7/2, sind is
positive.) This is clearly a constant of the motion.

We could equally well express the constants of motion in terms of the light ray at
the position of the source. To be clear, we write these constants as L and Qg. Recall

that the position of the source is defined by the angles (B, x), while the direction of
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the light ray at the source is defined by the angles (Jg, ¢s). So the three Cartesian

components of the light ray at the source can be written as

95(5\) = —dps+ (5\ — 5\3) cos Vg ,
y()\) = dS Y;rc - (5\ - 5\5’) SiIl’l?S COos Qg ,

Z()\) = dS Zsrc - (5\ - S\S) Sin’ﬁs sin ©Ys,

where \g is the value of the affine parameter at the position of the source, and the
affine parameter range for the line segment is 5\5 <A< dpg/cosvg + 5\5 (recall that

0 < g < m/2). Note that for simplicity we have defined
Yie = tanBcos y, Zge = tan Bsin x .

By a computation identical to those in eqns. (4.26) and (4.28), we solve eqn. (4.25)

for £ and Q when \ = 5\5 to obtain

Ls = —dgYgccosts + dpgsintgcospg, (4.30)

Qs = diZ2 (cos* Vg + sin® ¥g cos® ps)

—2dg Zg sinVgsin pg(dpgcosVg + dg Yere sin g cos pg)

+(d3Y2. + d3 ¢) sin® Ug sin? pg . (4.31)

Src

Since we are discussing constants of the motion, we must have ﬁo = ﬁg and QO =
Q. Using eqns. (4.27) and (4.30), the condition Lo = Lg is a trivial linear equation
for Y., which yields

sin ¥ cos ¢

dstan Bcosy = dpstanig cosps + dr (4.32)

cos Usg

Using eqns. (4.28) and (4.31), the condition Qo = Oy is a quadratic equation in Z.,
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which yields the following two roots:

dpstanvgsin pg dr, sin v
Lge = + X 4.33
dg dg (1 — sin? ¥g sin? gps) ( )

[cos psindg tan ¥g sin g cos pg + (sin2 Y — sin? ¥g sin? gps) 1/2] .

We will take the positive root in eqn. (4.33) because in the case of spherical sym-
metry only the positive root, taken together with eqn. (4.32), will combine to form

eqn. (4.19) in Section 4.3.3. We thus have

dr sin v
1 — sin® ¥g sin? ¢g

dstan Bsiny = dpgstandgsinpg + X (4.34)
[cos psindg tan g sin g cos pg + (sin2 Y — sin? ¥ sin? @5) 1/2] )

Eqns. (4.32) and (4.34) thus constitute the two components of the general lens equa-

tion for an equatorial observer in the Kerr metric.
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5

Quasi-Equatorial Lensing Observables

5.1 Introduction

This last chapter addresses lensing observables in the regime of quasi-equatorial
lensing by a Kerr black hole. First, the full light bending angle is obtained with
“horizontal” and “vertical” components for an equatorial observer and light rays that
are quasi-equatorial. Next, the lens equation of Chapter 5 is solved perturbatively to
second order in €, which is the ratio of the angular gravitational radius to the angular
Einstein radius, to obtain formulas for the lensing observables: image position, image
magnification, total unsigned magnification, centroid, and time delay. It is shown
that the displacement begins to affect the lensing observables only at second order in
g, and so can safely be ignored for studies of first-order corrections to weak-deflection
quasi-equatorial Kerr lensing. The findings presented here also yield new results on

the lensing observables in Schwarzschild lensing with displacement.
5.2 Definitions and Assumptions

We work under the following assumptions:

73



1. The Kerr black hole and the light source are not at cosmological distances, so
that dg = d, + dps, where dg and dj, are the perpendicular distances from the
observer to the source and lens planes, respectively, and d g is the perpendic-

ular distance from the lens plane to the source plane;

2. Both the source and observer are in the asymptotically flat region of the Kerr
spacetime, and the observer lies in the equatorial plane of the Kerr black
hole. This last condition implies that the coordinates (z,y, z) coincide with the

Boyer-Lindquist coordinates (X, Y, Z) centered on the black hole (see Fig. 4.4);

3. The source is not required to be incrementally close to the optical axis and can
be either on the equatorial plane or slightly off it, so that y = xo + dx, where
Xo = 0 or m. Similarly, the lift of the light ray off the equatorial plane is small,
so that ¢ = @ + dp and pg = Yo+ T+ dps, where g = 0 (retrograde motion)
or m (prograde motion), and where dp and dpg are small and considered only

to linear order. We henceforth refer to this as the quasi-equatorial regime.

In Chapter 4 we derived the following general lens equation governing lensing by

a thin deflector, for source and observer in the asymptotically flat region:

dstanB cosx = dptand cosp + dpstanidg cosps + 4, (5.1)

dstan B siny = dptand sinp + dpgtandg sinpg + d.. (5.2)

Here the displacements are shown explicitly; note that (dz + dg)l/ =din Fig. 4.3.
Specializing to the case of an equatorial observer in the Kerr metric, we also

derived in Chapter 4 the following lens equation with the displacements implicitly
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included:

in v

dstanBcosy = dpstantgcosps + dj SImyLosy (5.3)
cos g
dy, sin

dstanBsiny = dpgstandgsinpg + L5 X (5.4)

1 — sin® g sin? pg
[cos psindg tan ¥g sin g cos g + (sin2 Y — sin? ¥g sin? gps) 1/2] .

This is valid for all light rays, whether they loop around the black hole or not, as long
as they lie outside the region of photon capture. No small-angle approximation is

required. Comparing our two lens equations allowed us to extract the displacement

terms:
4, — dysind ! ! (5.5)
= sin v cos — )
v L it cosdg cos? /)’
dr sin?d
d, = —dptandsing + L5 X

1 — sin® g sin? pg
[cos psin¥g tan ¥g sin g cos pg + (sin2 ¢ — sin? g sin? gps)l/z] . (5.6)

5.3 Quasi-Equatorial Kerr Light Bending

With that as background, we begin by calculating the component of the bending
angle in the equatorial plane, which is the zy-plane in Fig. 4.3; we call this the
“horizontal” component. Due to the technical nature of the calculations, we quote
the key results here and refer to Section 5.7 for the detailed treatment. Note from
Fig. 4.3 that according to the way the angles 1 and vg are defined, they may lift
off the xy-plane. Let us define ¥ and 195 to be their projections onto the xy-plane,
respectively. Without loss of generality, we choose the same sign conventions for )
and Jg as we chose for ¢ and g, in which case we can unambiguously write the

“horizontal” component of the bending angle as

~ ~

Qhor = 9+ 195 . (57)
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Note that the positivity of U and the fact that the bending angle is nonnegative

forces the condition

(Indeed, with our signs conventions the condition Vg < — would be equivalent to
repulsion of the light ray.) Writing U and Jg in terms of the angles v, p, Vg, g, we

have

Y = tan'(tandcos ) , (5.8)

Jg = tan~!(tandg cos(m — @g)) . (5.9)
As stated in assumption (3) above, in the quasi-equatorial regime we have

p=pot+op,  ps=po+T+ps, (5.10)

where (g is either 0 (retrograde motion) or 7 (prograde motion), while d¢ and dpg
are small and considered only to linear order. In this regime eqns. (5.8) and (5.9)

simplify to

53
&

+v,

~

’195 ~ i’l?s

Since U and U have the same signs as ¥ and g, respectively, we discard the negative

solutions, so that eqn. (5.7) reduces to
Ohor 0 +10g, Vg =—0. (5.11)

Thus in the quasi-equatorial regime we may use the full angles ¥ and ¥g in place of
their respective projections onto the xy-plane. With that said, we show in eqn. (5.70)
of Section 5.7 that the “horizontal” bending of light has the following invariant series

expansion:

) = 4 (5) ¢ () () a5 03
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where

A = 4, (5.13)
Ay = 1?7”—4&1, (5.14)
A = %8—107rsa+4a2, (5.15)
Ay = 34:45”—192sa+285”d2—4sa3. (5.16)

The variable s equals £1 depending on whether the light ray undergoes prograde
(+1) or retrograde (—1) motion (see eqn. (5.57) in Section 5.7 below). Note that
eqns. (5.12)—(5.16) are consistent with the bending angle obtained by Iyer & Hansen
Iyer and Hansen (2009a) by a different means—mnote also that their bending angle
is consistent with the exact bending angle Iyer and Hansen (2009a,b). We remind
the reader of our conventions in Chapter 4. The parameter m, is the gravitational

radius and a is the angular momentum per unit mass,

- GM, . A
o2 M.

m,

(5.17)

where M, is the mass of the black hole and 7, its spin angular momentum (see,
e.g., Wald (1984), pp. 322-324). Note that both m, and a have dimensions of length.

The quantity a is a dimensionless spin parameter:

Unless stated to the contrary, the black hole’s spin is subcritical; i.e., a*> < 1. Finally,
b = dpsind is the impact parameter (see eqn. (4.29) in Chapter 4), which is a
constant of the motion.
When there is no spin, the coefficients reduce to A; =4, Ay = 157/4, A3 = 128/3,
Ay = 34657/64 and recover the Schwarzschild bending angle in Keeton and Petters
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(2006b). Also, eqn. (5.12) shows that in the weak-deflection limit (at first order in
m./b) the Kerr bending angle agrees with the Schwarzschild bending angle. The spin
enters only in higher-order correction terms. The sign is such that the spin makes
the bending angle larger for light rays that follow retrograde motion (s = —1). This
makes sense intuitively because retrograde rays spend more time in the presence of

the black hole’s gravitational pull.
5.4 Observable Properties of Lensed Images

In this section we derive asymptotic formulas for image position, image magnifica-
tion, total unsigned magnification, centroid, and time delay for quasi-equatorial Kerr

lensing with displacement.
5.4.1 Quasi-Equatorial Lens FEquation

We begin with our general lens equation (5.18)—(5.19) and insert a bookkeeping

parameter § to monitor the displacement in either d, or d.:

dgstan B cosy dptand cosp + dpgtandg cosps + £d,, (5.18)

dstanB siny = dptand sing + dpstanidg singpg + &4, . (5.19)

(The displacements d, and d, are given by eqns. (5.5) and (5.6).) We can take

¢ =1 to include the displacements properly, or choose & = 0 if we wish to ignore the

displacements (in order to connect with work in Keeton and Petters (2006b,a)).
Beginning with eqn. (5.18), we substitute eqn. (5.5) in place of d, and Taylor

expand in the small angles dp, dpg, and dx, to obtain

. 1 1
qtanB = (1—D)tand — Dtandg + 5(1_D)Smﬁ(cosﬁs _cosﬁ>

+ 0@, (5.20)
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where q = cos(xo — o), D = dps/ds, and O (2) indicates terms that are second
order in dyp, dpg, and/or dx. (Below, we incorporate the sign q into the tangent
so that the left-hand side is written as tan(qB) and we think of g3 as the signed
source position.) This is the “horizontal” component of the lens equation. Recall
that ¢ identifies terms associated with the displacement. Including the displacement

by setting & = 1 in eqn. (5.20) yields

sin ¢

qtanB = (1—-D) — Dtanvg + O(2).

cos Usg

Thus, to lowest order in out-of-plane motion we recover the same lens equation as in
the Schwarzschild case (see eqn. (4.19) in Chapter 4).
We use Jg = Gyor — ¥, taking dy,o, from eqn. (5.12), and introduce scaled angular

variables:

_g _i _ —1 mo _19._19—E
6—19E, H_ﬁE7 ¥, = tan (dL>’ €= = . (5.21)

Here the natural angular scale is given by the angular Einstein ring radius:

AGM.d; g \/4m.D
_ _ , 29
Vs \/ drdg dy (5.22)

Note that we have defined the scaled source position 3 to be a signed quantity, with

a sign that indicates whether the source is on the same or opposite side of the lens
as the image. In eqn. (5.12) we wrote the bending angle dy,, as a series expansion in
m./b. For analyzing the observable image positions, ¢ is the more natural expansion
parameter. To convert &y into a series expansion in e, note that according to

equs. (5.21) and (5.22) and the fact that b = d, sind, we have

m, 4D e? 1 8D?4
- __ 4

3 5
. P
b sn(@dDz0) 0 3 © 106 (5:23)
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As in Keeton and Petters (2006b,a, 2005), we postulate that the solution of the

“horizontal” lens equation (5.20) can be written as a series expansion of the form
0 =00+ 01e + 0> + O(e). (5.24)

Converting now to our scaled angular variables (5.21)—(5.24), our quasi-equatorial

“horizontal” lens equation (5.20) takes the form

1 1 157

B = leo—e—o] + H—Slsd—1—6+(1+«9§)«9115 (5.25)

1
Y= [12 sa (5m —460;) — 24a” — 384 + 36 (157 — 861) + 246, 05 (1 + 6)
0

+ 86y (48 D by + 8D* 6 (—23° — 76y + 26;)) + 19265 (1 — D)(1 —2D6) & | €

+0(e)’.

Note that displacement terms (indicated by &) only begin to appear at second or-
der. Also, since we are simultaneously expanding tangB3 = tan(4 5 D¢), note the
occurrence of 3% in the 2 term.

Now we turn to the “vertical” component of the lens equation, namely, eqn. (5.19).
Substituting eqn. (5.6) in place of d, and Taylor expanding in the small angles d¢,

dpg, and dx, we obtain
(6x) (qtanB) = (0¢p) (1 —=¢)(1 — D)tand — (dpg) D tandg (5.26)
+ &(1 — D)sind {(&pg sinUs tands + [(6¢)” — (0ps)? sin® 195]1/2}
+ 0(2).
Next, we use eqn. (5.79) in Section 5.7 to write (d0pg) sintg = (d¢) W (9):
(6x) (qtanB) = dp (1 —&)(1 — D) tand + 6o D W (9)(cos¥g) (5.27)

+ &(1—D)sind{dp W (0) tandg + dp [1 — W (9)?]"?} .
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(In Section 5.7 we show that 1—T/(1)? > 0, so this equation is never complex-valued.)
Finally, we convert to our scaled angular variables (5.21)—(5.24) and expand in ¢,
obtaining

(ﬁ FOD P40 (5)4> 5y =

1 1 15
5(p {[90—9—0] +9—gl28d—Tg+(1+93)91]8

+ [s a (90m — 966;) + 2a” + 4576; — 24(16 + 65) + 86 (8D%05(—7 + 2605 + 6¢)

24603
+ 3(0y + 0305 + 86p&) — 24D0(—2 + £ + 2935))];;2 + O (5)3} : (5.28)

This is the “vertical” component of the lens equation. We will use it to obtain a
relation between the small angles dy and dp. To that end, we divide eqn. (5.28) by

eqn. (5.25) to eliminate 3:

sa

= 1 S 2
% 5gp{ + 90(98—1)6 (5.29)

TeO2(02 — 1\2 - 5 — ~(1 — 902) | 22
+16«9§(9§—1)2[S( 57 + 403(5m — 1201) + 160,) + 16a(1 — 26)|=

+(9(5)3}.

Observe that in general oy # d¢ in the regime of quasi-equatorial lensing. Thus
when a # 0, the light ray’s trajectory cannot lie in a plane other than the equatorial

plane (in which case dp = dx = 0).
5.4.2  Image Positions

We now solve our “horizontal” lens equation (5.25) term by term to find 6y, 6y, 65,

and 63. The zeroth-order term is the familiar weak-deflection lens equation for the
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Schwarzschild metric,

1
=t (5.30)

which yields the weak-deflection image position

— 2 (VF+i+p). (5.31)

We neglect the negative solution because we have explicitly specified that angles
describing image positions are positive. For a source with § > 0, the negative-parity
image is obtained by plugging —( in eqn. (5.31); note that eqn. (5.31) will still be
positive. (Note also that we are solving for quasi-equatorial images; there may be
additional images in the general case.)

Requiring that the first-order term in eqn. (5.25) vanishes yields

15m —16sa
9 = - . 2

L16(02 + 1) (5.32)

Likewise with the vanishing of the second-order term,

1
= ———— 164 (6 — D(2D + 6(1 — D) — DOy)) + 24a* — 12sa(5m — 4

0, M0 @) 64 (6 (2D + 6( )05 0)) + 24a sa(bm — 46,)
30, (157 — 86,) — 19263(1 — D)(1 — 2D63) £ |, (5.33)

where we have used eqn. (5.30) to substitute for 3 in terms of 6. Note that the
displacement only affects 05, not 6y and 6;.
In terms of the source position 3, we can write the terms for the positive- and

negative-parity images as

or -

1
2
-

(VET19).

> 157 — 16s &

-H

32 ’



where we have written s* to remind ourselves that the two images have different
respective values of the prograde/retrograde sign parameter. In fact, we have s~ =
—s*. The terms 65 as functions of 3 are similarly obtained, but are too lengthy to be
written here. Now thinking of the universal relations studied in Keeton and Petters

(2006a), we observe that the zeroth-order terms obey

O — 66 =16, 656 =1,
which are identical to the zeroth-order position relations obeyed by PPN models (see
Keeton and Petters (2006a)). The first-order terms have

15 *ta
r stal

16 /32+4

In Keeton and Petters (2006a) it was shown that 6] + 6; is independent of source

oF + 07 =

position for static, spherical black holes in all theories of gravity that can be expressed
in the PPN framework. However, as first shown in Werner and Petters (2007), we
see that in the presence of spin, 6" + #; is no longer independent of source position.
This is a direct consequence of the fact that one image corresponds to a light ray
that follows prograde motion, while the other has retrograde motion. The difference
between the second-order components is (cf. Keeton and Petters (2006a))

05 — 0 = _ oatJAt P + a|Bl(16a + 15ms™)+/4 + (52
2 2 8(4 + (32)3/2

—30msTa + a(48a + 15ws™) (4 + 5?) 18| 1
2 + ’
8 (4+ 32)" 256

where

I = —4096 + 2257 + 2048 D + 1607s*a — 5124 + 4096 D(1 — D).
Plots of the image correction terms 6; and 5 as functions of the source position 3 are
shown in Fig. 5.1, for a positive-parity image undergoing either prograde (s = +1)
or retrograde (s = —1) motion.
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FIGURE 5.1: First- and second- order angular image correction terms as functions of the angular
source position [, for a positive-parity image undergoing either prograde (s = +1) or retrograde
(s = —1) motion near the equatorial plane of a Kerr black hole. The solid curves represent a Kerr
black hole with spin parameter @ = 0.7. When @ = 0, we recover Schwarzschild lensing (dashed
curves). For the second- and third- order image corrections, the displacement parameter £ = 1
and D = drs/ds = 0.5. (Note that §; and 6y are dimensionless, but have factors of ¢ and &2,
respectively. Note also that drs and dg are the perpendicular distances between the lens and
source planes and the observer and source plane, respectively.) These results hold for a black hole
with sufficiently small Jg.

5.4.83  Magnifications

In Chapter 4 we derived the following general magnification formula:

_[sinB (0B ox B ax\]
=l (B nw)] 531

To compute 0B/0Y, we employ the same techniques that led to eqn. (5.25). For
0x/0p, we use eqn. (5.29). (Note that 0B/d¢ = 0 for quasi-equatorial lensing.) The

result is the following series expansion:

po=po + e + pae? + O(e)?, (5.35)
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where

0o

C [157(62 —1)* + 64sab3] 63
Hr = 16 (62 — 1)2(62 +1)3 (5.37)
93 ~2n4 2 4
s = - | 768 @205 (5 — 202 + 503) (5.38)

384(02 — 1)3(62 + 1)
+ 120msta(l + 1662 — 3460, + 4405 — 3965 + 12605°)
+ 05(05 — 1)* (—12288D(0 + 63)° + 1024D*(1 + 63)* (6 + 1665 + 1)

— 36 (4096 + 05(—675m* + 4096(67 + 2))))
— 6144(D — 1) (6o — 63)* (=1 + 2DG3(2 + 63)) £ | -
Note that displacement terms (indicated by &) begin to appear only at second order

in €. In terms of the source position 3, we can write the terms for the positive- and

negative-parity images as

po = 1, _#+2

27218/ +47
. 1wpr+64sTa
M =

1652 (8% + 4)32

N N 202572 — 1024(8% + 4)(12 + D(12 — (3% + 18) D))

e T 384 5] (B2 + 4)72
Smsta 15 (64+3462+48) 9 532 + 8
+ 32 32 l_l o (32 _|_4)5/2 ] + 2a 18]3(62 +4)5/2

+16¢(1— D) [DiD(ﬁ4+6ﬁ2+6)_1].

18] (52 + 4)%2
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Observe that

po + g = 1,

s P2
Ho Ho = 18] (3% + 4)1/2
oo o= 157

Hq My = 8(32 + 4)32
N _ 8sTa
M

B SrstalB| (B8 + 3432 + 48)
: = 326D(1—-D
Ho + Ho 16 62(62 +4)5/2 + 5 ( ) ’

N - Srsta R 53% + 8
Po — Ho = — %52& + 44 1BP(32 + 4)52 (5.39)
B D(B*+65%+6)—1
ra2e(1-0) | P e |

N 202572 — 1024(3? + 4)(12 + D(12 — (5% + 18) D))
1923] (5% + 4)5/2 '
The zeroth-order sum relation is the same as the universal relation found for static,
spherical PPN models in Keeton and Petters (2006a). Notice that the zeroth-order
difference relation is independent of spin. In the first-order difference relation, the
right-hand side is zero for PPN models, but nonzero in the presence of spin (see also
Werner and Petters (2007)). In the second-order sum relation, the right-hand side
is not zero even in the absence of spin. This is a consequence of the displacement

(indicated by &).
5.4.4  Chritical and Caustic Points

To determine the set of critical points, we set u~' = 0, the reciprocal of the series
expansion given by eqn. (5.35) in Section 5.4.3, and solve for 6y, 01,65, and 05 (see

Aazami et al. (2011a) for a derivation of the third-order term 65). This yields the
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following #-components:

eo;iritical = 1 ) (540)
. lbm
el;iritical = —sa-+ 3—2 ) (541)
15rsa 67572 20
R — D?* (= -8 4D(3¢ —2) —4 5.42
2critical 32 2048 + ( 3 5) + ( 6 ) 5 ) ( )
0, i (22 8D?(1—€) —8D¢ — 8 1oma” (5.43)
i = —s — — &) — -8 - .
3critical 256 64

157(400 — 22572 — 4096 D*(1 — &) + 2048 ¢ — 2048D(—2 + 3€))
8192 )

where “ + 7 corresponds to the two values s = +1. Note that since we are in the
regime of quasi-equatorial Kerr lensing (¢ = ¢+ d¢ with ¢y = 0 (retrograde motion)
or m (prograde motion)), eqns. (5.40)—(5.43) do not define a circle on the lens plane,

but are to be interpreted (by eqn. (5.58)) as four points (6.

crit?

T+ 0p), (0, £o)
on the lens plane, for a given dp. We now insert these into the “horizontal” lens
equation (5.25) to third order in & and solve for #. This yields the -components of

the caustic points, which we express here as a series expansion in ¢ to third order:

+ . OTsa 4

caustic . SQ&— 16

(5.44)

~

+ 715 | 11867 + 5 (2257 — 4096 £ + 4096 D°(1 — 2€) + 4096 D(~2 + 3¢)) | <°

+0(e)" .

The signs + correspond to prograde (s = +1) and retrograde (s = —1) motion,
respectively. When a = 0 the two caustic points converge to one point at the origin
of the source plane. Note from the third-order term that the caustic points are not

symmetric about the vertical axis on the light source plane.
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5.4.5  Total Magnification and Centroid

If the two images are too close together to be resolved (as in microlensing), the main
observables are the total unsigned magnification and the magnification-weighted cen-
troid position. Using our results above, we compute the total unsigned magnification:

. B B2+ 2 8sta
,thot=|/~b | + |M |: |ﬁ| (624‘4)1/2 - 62(62_,_4)3/2 €

(5.45)
+ (g — pz)e® + O(e),

where the second-order term is given by eqn. (5.39). The magnification-weighted
centroid position (actually, its “horizontal” component, since we are in the regime of

quasi-equatorial lensing) is

_ O =0 18P 43) | (2-8%)sta
Ocent = |:U+| + |:U_| - 32 +2 + (ﬁ2 n 2)2 c
4+ B%)Con
384 |;5| (8 + 2;52 FIE e + 0(e), (5.46)
where

Con = 120msTalp|(2+8%)(3+ 5%)(4+ %)% +384a* [(2+ 5°)(—16 — 83° + B*)
+ 48 +26% 4 6Y)] — 22+ 7) [3(675m* — 4096(4 + (7))
+1024(4 + %) (D(68% — D(—2 + 96* + %))

+3(=1+ D)(—6*+2D(6 + 46 + %)) €)] -

In Keeton and Petters (2006a) it was shown that the first-order corrections to the to-
tal unsigned magnification and centroid position vanish universally for static, spher-
ical black holes that can be described in the PPN framework. We see that in the
presence of spin, the first-order corrections are nonzero (see also Werner and Petters
(2007)). Once again, the displacement terms (indicated by &) appear only at second
order in ¢ in both eqns. (5.45) and (5.46).
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5.4.6  Time Delay

In Appendix 5.8, we show that the lensing time delay can be written as

where
R =dp,  Rye= (g +d3tan’B)"? | B=48Dc¢,

and R, and R are the radial coordinates of the observer and source in the Kerr
metric. We derive a Taylor series expansion for the function T'(R) in Appendix 5.8
(see eqn. (5.83)). To determine the observable time delay, we evaluate T(R) at
Ry and Ry, and then replace ry with b using eqn. (5.63). We change to angular
variables using b = d sin?, and then reintroduce the scaled angular variables in
eqns. (5.21)—(5.24). Finally, we take a formal Taylor series to second order in our

expansion parameter €. This yields

l1 + 3 -0 —In ( (5.47)

T
1536 62 (62 + 1)

dp, 03 9% 15m —16sa
4ddrs 16 6y

9
S|
| =

+

2+ 0(),

where

T = —96msa(—7+0;+0;) + 7684 (205 + 30, + 05) — (1 + 63) {6757
+ 307265 (05 + 1) (24 B* + 64 — 23 (65 + 1) — 4¢€)
+ 3072D03(1 + 03)(—8 + B* + 23°05 — 305 + 4€ + 805¢)

+ 1024D%(1 + 65) (—8 + (24 — 58")05 + 565 — 2465€) } (5.48)
and the natural lensing time scale is

_ drdg

m,
o CdLS

TE 192E=4
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Notice that retrograde motion (s = —1) leads to a longer time delay than prograde
motion (s = +1), which makes sense intuitively. As with our other lensing observ-
ables, displacement terms in the time delay (indicated by &) begin to appear only at
second order in €.

The differential time delay between the two images, A7 = 7= — 7 is such that

ar [%wwmm(m*'ﬂ')] S E N

e NCETETE

D 3
+ 53671 0) e2+0()°, (5.49)

where

D = 96rs™a(4+4 %) (78> —1) — 768a° |B]\/4 + B2 — |B]/4 + B2 {—6757°(3 + 7
+ 3072(—8 + 2% + B*) + 1024D*(4 + B*)(18 + 5% — 24¢)

— 3072D(4 + 3%)(6 + 8% — 8¢)} .
5.5 Remarks on Lensing Observables

We make a few remarks regarding our results:

1. The procedure for solving the lens equations in the quasi-equatorial regime
is as follows: given a source whose (scaled) location on the source plane is
(B, x0 + dx), we first solve the “horizontal” lens equation (5.25) term by term
to find 6, 61, and 0y (all expressed in terms of [3), and then insert these into
the “vertical” lens equation (5.29) and solve for dp. The (scaled) locations of

the two images in the lens plane are then
(o + 07 c+ 05>, o+ 0pT)

where “+ 7 corresponds to s = +1 and where ¢y = 0 for retrograde motion

(s = —1) and 7 for prograde motion (s = +1).
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2. Note that for all lensing observables—image position, image magnification,
total unsigned magnification, centroid, and time delay—the displacement pa-
rameter £ begins to appear only at second order in €. Therefore displacement
can safely be ignored for studies of first-order corrections to weak-deflection
quasi-equatorial Kerr lensing. Note that the displacement affects the caustic

positions only at third order in €.

3. When there is no spin, we obtain new results on the lensing observables due
to Schwarzschild lensing with displacement. Indeed, all of our results in Sec-
tion 5.4 immediately apply to this regime once we set a = 0 and the displace-
ment parameter £ = 1. This is equivalent to beginning with the spherically
symmetric lens equation with displacement (given in Bozza and Sereno (2006)
and eqn. (4.19) in Chapter 4) and then computing lensing observables pertur-

batively in ¢.

4. If one sets a = 0 = £ (i.e., if one turns off spin and ignores displacement),
then all of our results in Section 5.4 are consistent with the previous studies of

Keeton and Petters (2006b,a).

5. The total magnification and centroid (eqns. (5.45) and (5.46), respectively)
are consistent with the corresponding results obtained in Werner and Petters
(2007) to first order in e. (The analysis in Werner and Petters (2007) was
carried to first order in ¢ and did not consider displacement.) In fact we
point out that the “horizontal” and “vertical” components of our lens equa-
tion (eqns. (5.25) and (5.28)) and our magnification terms (eqns. (5.36) and
(5.37)) are all consistent to first order in ¢ with those in Werner and Petters
(2007), after an appropriate change of variables. Furthermore, the “horizontal”

and “vertical” components of our bending angle (see equs. (5.75) and (5.82)
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in Section 5.7 below) are also consistent to second order in ¢ with those in
Werner and Petters (2007) (their bending angles were written to second order

in ¢).

6. Finally, our image correction and magnification terms are also consistent with
those in Sereno and De Luca (2006) to first order in &, while the “horizontal”
and “vertical” components of our bending angle are consistent to second order

n €.

5.6 Transformation from Sky Coordinates to Boyer-Lindquist Coor-
dinates

In this section we determine the relation between angular coordinates (9, ) on the
sky as measured by the observer, and the slightly modified Boyer-Lindquist coordi-
nates (¢,r, ¢, ¢) shown in Fig. 4.4.

Recall from Chapter 4 that the latter coincide with the usual Boyer-Lindquist
coordinates (t,7, p, ¢), except that the polar angle p is shifted to ( = 7/2 — p. To
analyze light bending, it is actually convenient to work with another set of coordi-
nates, namely, the lens-centered coordinates (r, T, ®) shown in Fig. 5.2. Our goal is
to connect the modified Boyer-Lindquist coordinate angles ({, ¢) to observer-centered
angles (¥, ). This will be done in two stages: first, by relating (¢, ¢) to (T, ®), and
then by relating (1, ®) to (9, ¢).

Comparing Fig. 4.4 with Fig. 5.2 below yields the following relation between (¢, ¢)
and (1, ®):

sin( =sinYsin®, tan¢ = tan Y cos ® . (5.50)
In order to relate the observer-centered angles (¥, ) to the lens-centered angles
(T, ®), we make the following construction. Consider extending the actual light

ray to infinity both “behind” the source and “beyond” the observer. Note that
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FIGURE 5.2: Lens-centered coordinates (r, T, ®).

evaluating at such points is well-defined because the light ray is a linear path in the
asymptotically flat regions where both the source and observer reside. With that

said, the asymptotic “final” angular position the light ray reaches is (cf. Section 5.3)
T, = 9, Q=9+ (prograde motion),
T, = =9, Q=0 (retrograde motion).

The asymptotic “initial” angular position from which the light ray originates is

Y, = w—19g, P = ps (prograde motion),

T, = m+4Ys, Qr = g (retrograde motion).

Using eqn. (5.50), we can find the initial and final positions in terms of the angles

(¢, ). For prograde motion, these are:

sin (; = sin g sin g , sin(y = —sindsingp), (5.51)
tan ¢; = — tan g cos @g , tan¢; = —tanvcos .
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For retrograde motion, they are:
sin ; = —sin g sin g, sin (y = sin¥sin g, (5.52)
tan ¢; = tan g cos ¢g , tan ¢y = tanv cos p.

We will use eqns. (5.51) and (5.52) in our derivation of the “vertical” component of

the bending angle vector in Section 5.7.3 below.

5.7 Quasi-Equatorial Kerr Bending Angle
5.7.1 FEquations of Motion for Quasi-Equatorial Null Geodesics

Recall from Section A 1 of Chapter 4 that the equations of motion for null geodesics

are

R om, (a2 — al + r?)
B [a2 4 r(r — 2m,)](r2 + a2sin?¢) ’

(5.53)

: [ = (Q + £2 =% + 2m.((£ —2)> + Q)r —a*Q]"/?
r = i ,,,.2 + a2 Sin2 C ’ (554)

A 2am, A — 2m, 2 2 p 2
$ = am,r + Lr(r — 2m,) sec C-l—é ftan ¢ . (5.55)
[a2 + r(r — 2m,)](r? + aZsin” ()

g _ +(Q + a%sin® ¢ — £2 tan? ()12
- 72 + a2sin® ¢

, (5.56)

where Q = Q/£% and £ = L£/€, with £ the energy, £ the orbital angular momentum,
and Q the Carter constant (a and m, are given by eqn. (5.17)). Now consider an
equatorial observer and source in the asymptotically flat region. To compute the light
bending angle, we focus on null geodesics that remain close to the equatorial plane
(which is a plane of reflection symmetry). There are light rays in the equatorial plane
that have ( = 0 everywhere. There are other light rays that remain close to the plane
and have || « 1 everywhere. Such quasi-equatorial light rays must have ¢ = o+ dp
with ¢g equal to either 0 or m, and |dp| « 1. Given the spin configuration, light rays
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with pg = 0 follow retrograde motion and have £ < 0, while light rays with ¢y = 7

follow prograde motion and have £ > 0. Thus, if we define a sign s by

. | +1 prograde motion
s = sign(£) = { —1 retrograde motion (5.57)
then we can identify
S = —COSpg. (5.58)

We showed in Chapter 4 that the constants of the motion £ and Q can be written

as

L= —dsin? cos, de%sinzﬁ sin? .

In the quasi-equatorial regime, these become

A

L =sbcosdyp, Q=1 sin’dy.

We expect dp to be of the same order as (, so we can Taylor expand eqns. (5.53)—

(5.56) in both ¢ and dp. This yields

: r? a? 2m.abs

b= a2 +r(r—2m,) <1+§_ 73 F> + 00,

B b2 2 me b2 1/2

ro= i(l—r—QGJr 3 F2> + 0(2), (5.59)
¢ bs 2m,

¢ = a2 +r(r—2m,) (1 o F> +0(), (5.60)
: b

¢ = <L [Gor e + o), (560

where O (2) indicate terms that are second order in ¢ and/or d¢, and we have defined




Notice that ¢, 7, and gb do not depend on ( or dp at zeroth order or first order.
In other words, the “in plane” motion is insensitive to small displacements above
or below the equatorial plane. By contrast, ( lacks a zeroth-order term but has a
nonzero first-order term. Thus, there is a solution with { = dp = 0 (i.e., a ray that
stays in the equatorial plane), but there are also solutions in which ¢ and d¢ are
nonzero.

Before evaluating the quasi-equatorial light bending, we need to relate the light
ray’s coordinate distance of closest approach, ry, to the invariant impact parameter b.
The distance of closest approach is given by the solution of 7 = 0. From eqn. (5.59)

this is a simple quadratic equation in b, whose positive real solution is

b 2 . —1/2
L (G— m F2> . (5.62)

To To

Alternatively, 77 = 0 is a cubic equation in 7y, whose one real solution is given by

2 1 F> m,
%0 =31 G2 cos lg cos™ (—33/2 @R n; )] : (5.63)

Taylor expanding in m, /b « 1 yields

P05 (3 s () - T (5) s (%)

G b 2G52 \ b G4 b 8Gl11/2 \ p
A8 F0 rm,\5 3003F2 /m,\6 mo\7
T (7) ~ 16Gl72 ( b ) * O( b ) ' (5.64)

(We could further expand F and G as Taylor series in m, /b, but choose not to do that
yet.) Note that in the absence of spin (a = 0), F = G = 1 and so eqns. (5.62)—(5.64)

reduce to their respective Schwarzschild values in Keeton and Petters (2006b).
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5.7.2 Horizontal Light Bending Angle

We consider the bending of a null geodesic along the ¢-direction (horizontal). From

equs. (5.59) and (5.60), we can write the equation of motion as

sbri/? (r—2m,F)
[a2 4+ 7 (r —2m,)][r® + 0? (2m, F2 — Gr)]/2

(5.65)

To understand the sign, consider Figs. 4.3 and 4.4. In the case of retrograde motion,
or = —J and ¢; = 7 + Vg, with ¢; > o5 (cf. Section 5.3); recall from Section 5.3
that O and Jg are the respective projections onto the zy-plane of the angles 9 and

Us. For the “incoming” ray segment (from the source the point of closest approach),

we have (see, e.g., (Weinberg, 1972, p. 189)),

el

where ¢q is the value of ¢ at the point of closest approach. For the “outgoing”

d¢
%‘ d'f’,

segment (from the observer the point of closest approach), we have

¢0—¢fzf:

Putting them together yields

d¢
%‘ d'l“.

0

@‘dr.

R g o
T+ 0s+9 =¢ — o5 f o

0

Identifying U + g as the “horizontal” bending angle éne: (see eqn. (5.7)), we can

rewrite this equation in the more familiar form (cf. Keeton and Petters (2006b))

0
dhor = QJ
0

d¢

dr

dr — . (5.66)
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In the case of prograde motion, we have ¢; = U and ¢ = —(m+ 193) with ¢f > ¢;.

Similar logic then yields

0

7r+z§s+1§=¢f—¢i=2f %‘dr. (5.67)

o

Identifying ¥ + Ug = duor again yields equ. (5.66).

Thus, eqn. (5.66) represents the general expression for the “horizontal” compo-
nent of the bending angle. The integrand depends on the invariant impact parameter,
b, but the integral itself also depends on the coordinate distance of closest approach,
ro. For pedagogical purposes, and to connect with previous studies of lensing by
Kerr black holes, it is useful to express the integral purely in terms of ry, and later
to convert back to b.

In the weak-deflection regime, r — 2m, and r — 2m,F are always positive, so
all factors in eqn. (5.65) are positive except for s = +1. Hence the absolute value
in eqn. (5.66) simply removes the factor of s. Changing integration variables to

x = ro/r, we can write the bending angle as

1—-2Fhx

1
o or = 2 ~ dr — ,
“h L (1—2hx+a*>h?2?) [G(1 —22) — 2F2h(1 — 23)]1/2 T

where h = m, /1o, and we have used eqn. (5.62) to substitute for b in terms of ry. In
the weak-deflection regime h « 1, so we can expand the integrand as a Taylor series
in h and then integrate term by term to obtain
15 122 15
OAéhor(h) = Cy ™ + 4C1h + <—4C2 + Tﬂ-dQ) h2 + (T C3 — Tﬂ-dg) h3

3465
64

+ (—130 c+ d4> ht+ O (h)°, (5.68)
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1
Co = W - ]-7
F?+G—FG
T T er
F?(F? + G—FG)
C =
G5/2 !
1 4 2 ~2 2
b = = [15F" —4G(F—1) (3F? +26G) —2a°G*],
]_ 6 4 2 2 2 12 2
G = olqn [61F° —G(F —1) (45F" + 32F?G + 16G°) —4G°a°(2F* +2G —FG)],
F2
d3 = Ed27
¢, = i[651:6—49(F—1)F4G—8F2(—4+d2+4F)G2
65 GY/2
+4(4+a*(F—2)—4F) 6*] |
1
di = ————5|1155F® — 840(F — 1)F°G — 140 F(—4 + 4* + 4F) G

1155 G9/2
+80(4 + a*(F—2) —4F)F?G° + 8(16 — 12a° + a* + 8(a® — 2) F) G'] .

(Terms beyond order four in the bending angle series can be derived but are not
used in our study.) In the absence of spin, we have @ = 0 and F = G = 1, so the

coefficients become
C()ZO, C1=C2=C3=d2=d3=C4=d4=1.

In this limit, eqn. (5.68) reduces to the Schwarzschild result in Keeton and Petters
(2006b).
Let us briefly consider the bending angle to lowest order in m,/ry and a/rg. At

first order, b = r¢ so from eqn. (5.62) we have F ~ 1 —sa/ry and G ~ 1. This yields
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co~ 0 and ¢; 1 —sa/ry. So to lowest order eqn. (5.68) gives

. m a
ahor%4 : I—s— )
To To

which recovers the known result for such a regime (see., e.g., Boyer and Lindquist

(1967), p. 281).

The expression (5.68) is coordinate-dependent because it involves the coordinate
distance of closest approach, ry. We must rewrite the formula in terms of the impact
parameter b to obtain an invariant result. We use eqn. (5.63) to write h = m,/ry as

a Taylor series in m, /b,

- (3 () i (G ()

L) G o3 o

and insert this into eqn. (5.68) to obtain a series expansion for the bending angle in

m./b:

(b)) = Cp + Cl(”;') + 02(”2')2 + Cg(m')?’ + 04(m')4 + 0("")5,

(5.70)
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where

1
C(] = (w—1>ﬂ',

F2+G—FG
01 = 4T>
m 4 2 ~2 ~2
C: = Jw [15F* —4G(F—1) (3F* +2G) — 24°G*],
8
Cy = o |[16F° —4G(F—1) BF' + 2F° G+ G°) —a’G°(2F* + 2G —FG)]| ,
3T 8 6 4 ~2 2
C, = INEED [1155F® — 840(F — 1)F°G — 140F* (=4 + a° + 4F) G

+80 (4+a*(F—2) —4F) F?G° +8(16 — 12a* + a* + 8(a° — 2)F) G'] .

Eqn. (5.70) holds for values of F and G where the spin is bounded, a? < 1. In other
words, when expanding in m,/b we really ought to expand in a/b as well. Formally,
we may accomplish this by writing F and G in terms of ¢ and m,/b as in eqn. (5.62),
expanding the coefficients C; as Taylor series in m, /b, and collecting terms to obtain
a new series expansion for the bending angle. The result is:

o) = 0 (5) ¢ A C3) ¢ (5 () 03

where

A = 4, (5.71)
A — 1%”-4@, (5.72)
A = %8—10“%4&2, (5.73)
Ay = 34(365” 192844 BTE g (5.74)

(Recall that a*> < 1.) When there is no spin (a = 0), the coefficients reduce to
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Ay =4, Ay = 156m/4, A3 = 128/3, Ay = 34657/64 and recover the Schwarzschild
values in Keeton and Petters (2006b).
Note that in our scaled angular variables (5.21)—(5.24), the “horizontal” bending

angle to third order in € is

. 4 157+ 16sa — 1660
por(€) = 5 ct v Lg? (5.75)

N 256 4+ 246> — 60rsa + 64D29§ — 4570, + 48sa by + 249% — 240005
g
603

+ 0.
5.7.8  Vertical Bending Angle

This section presents new results on the vertical component of the bending angle
in quasi-equatorial lensing. From eqns. (5.59) and (5.61), the quasi-equatorial light

bending in the (-direction is governed by the equation of motion

ac _
dr

<ol

(5¢0)° 2
G - C2:| )

= +i(r) [

where

bGl/2

)= et am PR R (5.76)

The equation of motion has solutions of the form

() = o2 sin[£1() +3]

where

I(r) = JT i(r')y dr', (5.77)



and p is a constant of integration. We are interested in the two asymptotic values

(,r - w)?

where I, = lim, , I(r). We can eliminate p and relate the two solutions to one

another:

B 5@ ' o G1/2
C, = _W S11 [—QIw + sin (@ C+ . (578)

The asymptotic values ¢+ must correspond to the initial and final values, ¢; and (y,
introduced in Section 5.6, but we must determine the correspondence. In order to
do that, we first examine (; and (; more carefully, using eqn. (5.51). Recall that
in the quasi-equatorial regime we have ¢ = ¢y + dp and g = @ + ™ + dpg, with
o = 7 for prograde motion and g = 0 for retrograde motion. Using these relations,

eqns. (5.51) and (5.52) both become
sin ¢; = sinvg sindypg, sin(y = sinv sindyp.
Since we are working to first order in ¢ and dp, we can write these as
(i = 0pg sindg, Cr=0p sind.

Upon considering the spherical case (see below), we recognize that we want to put

(. = ¢ and (4 = (s in eqn. (5.78). This substitution yields

J

__ % W ()
Ops = Gl/2 sin ¥g

sin [—2[00 + sin™! (Gl/2 sin 19)] = S0

op. (5.79)

Notice that the coefficient of d¢ depends only on ¥, not on . (In addition to

the explicit ¢ dependence, there is implicit dependence through ¥ and I, which
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depends on b = dj, sinv).) We can therefore define it to be the function W (9), with
a factor of sin g that will prove to be convenient later.
Before evaluating I, let us check the case of a spherical lens to make sure our

result is reasonable. For a spherical lens, a =0 and F = G = 1, so we have

21 —2JOO bdr =1 +s+ 9
© ) PR — R —emy2 T T

where the last equality is obtained after comparison with the spherical limits of
eqns. (5.65) and (5.66). Together with our choices (_ = (; and (; = (y, eqn. (5.79)

then becomes

dp o1y
dps = s sin [ -7 — dg — ¥ +sin”' (sin )| = 6y,

which is consistent with the symmetry. This verifies our choice of signs above.
We now evaluate the integral (for the general case, not just the spherical limit),

in parallel with the analysis in Section 5.7.2. From eqns. (5.76) and (5.77) we have

0 bG1/2
I, = J dr .
(r* —v2Gr? + 2m, b2 F2 )1/

Using eqn. (5.62) for b and changing integration variables to x = rq/r yields

G1/2

Lo :L [G(1 — 22) — 2F2 h(1 — 29)]/2

dx

where h = m,/ro. Taylor expanding in h and integrating term by term gives

T 2F? F? F6
J— — (157 — 16) h? 244 — 457) h?
© 5T g h+8G2(57r 6)h +12G3( 5m) h

+ 5E° (—1664 + 6937) h* + O (h)°

128 G4 ‘
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We now use eqn. (5.69) to write A in terms of m, /b, and then collect terms to obtain

LT, 2F? (&> 157 F4 (ﬂ>2 N 64 F6 (&>3 34657 F8 (&)4
© b 8G3 \ b 3692\ p 128G5 \ b

2 G2
+ O(n;')g’.

As in eqn. (5.71), when we expand in m,/b we ought to expand in a/b as well. We

use eqn. (5.62) to write F and G in terms of a and m,/b, and then collect terms to

find
o) () (B (5 ) ()
. (3?227? 198sd4 135;&2 —6sd3> (rr;.>4 Lo (n;.>5. (5.50)

This is to be used with eqn. (5.79) to describe the “vertical” bending (see eqn. (5.29)
in Section 5.4.1 above). Note also that the expression inside the square root in

eqn. (5.27) is

2
1-WW? = 1- (% sin [—21 + sin~" (G1/2 sin 19)])

= (1—sin219) + 4 sin 20 (nll')

157 N\ . m, \ 2

— [16005219+ (—T —|—8sa) stﬁ] ( A )

m 3

— [(307‘( —64sa)cos2d + a(15ms — 10a) sin 20 — 4 & tanﬂ] (f)
m,\ 4
+0(b).

Since 0 < ¥ < 7/2 and m,/b « 1, this expression is nonnegative.

Finally, analogously to the “horizontal” component of the bending angle derived
in Section 5.3, we derive the “vertical” component of the bending angle, as fol-
lows. Consider the angles v; and v; shown in Fig. 4.3. We define v; to be strictly
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nonnegative and within the interval [0,7/2), but allow v; to be negative, so that
—m/2 < v; < w/2, and enforce the following sign convention for v;. As shown in
Fig. 4.3, v; is the angle whose vertex is the point B’ on the lens plane, and is mea-
sured from a line parallel to the equatorial plane. If v; goes away from the equatorial
plane, then we take it to be positive; otherwise it is negative (e.g., the v; shown in
Fig. 4.3 is positive). Now denote by 7; and 0y the respective projections onto the
xz-plane of the angles v; and vy, and adopt the same sign conventions for them.
With these conventions, the “vertical” component of the bending angle can be un-
ambiguously expressed as

Qyert = Vy — V.

By the positivity of 7; and the fact that the bending is nonnegative, we have
U <Dy .

(Indeed, with our signs conventions the condition #; > 7y would be equivalent to
repulsion of the light ray.) Writing 7; and 2y in terms of the angles 9, ¢, ¥g, pg, we

have

7y = tan'(tandsing)

p; = tan"'(tandgsin(m — @g)) ,
which in the quasi-equatorial regime reduce to

Us +optand ,

&

v, =~ Fopstandg ,

where we have set ¢ = ¢ + 0p, dps = @o + T + dpg, with g = 0 (retrograde
motion) or 7 (prograde motion), and expanded to linear order in the small angles

dp and dpg. Using the identities W (0) dp = sindg dpg and Jg = apnor — ¥ given by
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eqns. (5.79) and (5.11), we can thus write dyer as

dvert x i(;gO [tanﬁ + &)ﬁ)] .

cos(Gpor —

The expression inside the square brackets is of the form 16D csc ) sec? 9 + O (g)*,
so it is positive (recall that 0 < ¢ < 7/2). Since the bending angle is strictly
nonnegative, we will adopt “ + 7 for dp > 0 and “—" for dp < 0, so that we may
write

W)

cos(Gpor — V) (5:81)

Qyert = 0 ltanﬁ +

We now expand eqn. (5.81) in our scaled angular variables (5.21)—(5.24) to third

order in € to obtain

A 1 - - 1
Gyert(€) = g {tanﬁ + ol sin [—2[00 + sin™! (G1/2 sin 19)] m}

o la L 3216
— %, 102

| 256+ 728 — 907 s + 64D°05 + 96 5.6, — 45m0) + 2467 — 24006,
668

+0 (5)4} . (5.82)

The result in eqn. (5.82) is new.
5.8 Quasi-Equatorial Time Delay

We now compute the time delays for quasi-equatorial lensed images. Let Rg. and
Ros be the radial coordinates of the source and observer, respectively. From geom-

etry relative to the flat metric of the distant observer, who is assumed to be at rest
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in the Boyer-Lindquist coordinates, we can work out

1/2

Rops = dy, Ry = (d%s + d% tan? B)

The radial distances are very nearly the same as angular diameter distances since
the source and observer are in the asymptotically flat region of the spacetime. In the
absence of the lens, the spacetime would be flat and the light ray would travel along
a linear path of length dg/cos B from the source to the observer.

The time delay is the difference between the light travel time for the actual ray,
and the travel time for the ray the light would have taken had the lens been absent.

This can be written as

ds
_T sre T obs) T T 15
o7 = T(Rue) + T(Rone) =
with
B\ at R\
T(R)zf —drzf ~| dr.
ro dr ro |T

We use £ and 7 from eqns. (5.59) and (5.59), substitute for b using eqn. (5.62), and

change integration variables to z = ro/r. This yields

T(R) =1 Jl (G—2F2h)Y2(1 + a?h?2?) —2saF h?2®
— Y ) rat(L—2ha +a2h?a?) [G(1 —a?) — 2F2 (1 — 23)]12

dx

where h = m,/ro. We expand the integrand as a Taylor series in h and integrate

term by term. The result is a series in h whose coefficients are rational functions of
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w = ro/R. The first three terms in the expansion are

T(R) = /R =13 + hry [i*/ﬂwln (”—mﬂ (5.83)

(1+w) w

3F'+4F2G +8¢G?
e (I —sin*1w> —2saFG12y/1 —w?

+h2’l"0[ 5

_F2(4G+(F2+4G)w)\/1—w2] c ow .

2G% (14 w)?

The third-order term is easily obtained, and is needed in the derivation of eqn. (5.48),
but is too unweildy to write here. Note that if we substitute for F and G using
eqn. (5.62) and take the far-field limit, we recover previous results (e.g., Dymnikova

(1984, 1986)).
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6

Future Goals

One of my future explorations is a systematic study of magnification relations in the

Kerr black hole geometry in the non-quasi-equatorial case.
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