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ABSTRACT 

A. V. Crewe pointed out that with air core and high field a 
helical quadrupole magnetic lens is easier to build than a con"'. 
ventional alternating sectional quadrupole focusing magnet system. 
The motion of a charged particle iri such a helical quadrupole field 
is studied here under the linear paraxial approximation. The re­
sult shows that the focusing action of such a helical quadrupole 
system is about 10%. stronger than that of a corresponding alternating 
sectional system with the same periodicity and field gradient. With 
appropriately chosen field gradient, pitch and length" a helical quad­
rupoie magnet can be designed to form point images from point sources 
located on the axis; Formulas and graphs relating these parameters 
are derived. 

An example of a helical quadrupole lens system is shown in Figure:1. . /-. 
·: A..is the pitch of,the helix.,.~.the analogous case :of alter.na:ting eon-· . 
. vtmtional len:aes ,; within thi.1 -distance there would-norfually occur. . 

two pairs.of focus-defocus elements. 

I. Magnetic Field in a General Helical Zn - pole Magnet 

The scalar potential for such a field is of the form 

cp (r, 8, z) =f. {r) sinn(8 - Z~z l 
n n 

( l) 

. wher_e r, 8, z are the conventional cylindrical coordinates and A. is the pitch of the 
helix. Substituting cp in the Laplace equation we get the radial equation for f 

n n 
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· Air Core Helical Q11adrupole Focusing Magnet · 
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The solu~on of this equation which is regular at r = 0 is 

f (r)'-? J (i 
2

~n r) 
n · n 
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(3) 

where J is the Bessel function of order n and i is the imaginary unit. Since we 
n 

will be interested only in the values of fn(r) for small r we need the expansion 

·formula 

Jn (Z) = { -~ ) n 

~ 
n 

L.. 
.t=O 

· -··thring (4j we get for (3) 

f (r) c..-, 
n 

n 
r 

and for the scalar potential 

00 

I 
.t =0 

f-½-r i-1)
1 

1 ! (n+l)! 

21 
l (,rnr) 

1! (n + 1) ! ). 

oO 

- n . 2,r z · 5 
cpn(r,8,z)e,..,r s1nn(8-~)L_ 

l ,rnr 
1 ! (n + 1) ! ( --r-) 

1=0 

n ;= integer ~ 0 

(5) 

21 
(6) 

(4) 

Whence we see that the lowest term is of degree n in r. ·For collineation we need 

. a'field linear in r or a potential quadratic in r, i.e., a quadrupole field with 

n = 2, and 
,:,,0 

.._ ( 
8 

-) 2 . 2,rz · z 
'1'

2 
r, , z c-. r sin 2( 8 - -).- ) 

1 =0 

l /_2,rr)
21 

1! (1 + 2) ! \_ ). 
(7) 

We shall be interested only in the lowest degree term and shall write approximately 

- G 2 . 2 - 2 ,r z ) (8 ) 
cp2 = Z r Sln (8 - ). _ 

where G is the proportionality constant. This approximate potential gives for the 

magnetic field in the cylindrical coordinates 
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a cJ>2 _ . 2~z 
B =- = ·Gr sin 2(8 - -A-) 

r ar 

a cJ>2 ,..., 2 ir z 
B

8 
= r a a = Gr cos 2(8 - .-A-) (9) 

B 
a cJ>2 ,..., 2,r G 2 2 ,r z 

=-::: - r cos 2(~ - -.- ) 
z az A A 

and in the Cartesian coordinates X = r COS 8, y = r sin 8, Z = Z, 

(B -
. X 

a cJ>2 -:::::: -- -ax 
. 4,rz . 4,rz 

G( -xsm -.- + v cos -.-) . A. • A. • 

a cJ> 4,r z 2 ,._ ( . 4irz 
By = ay = G y sin -A- + X cos -A-) ( 10) 

a cJ>2 2,rG [ 2 2 4,rz . 4A,r z ] B =-~ - (x - y ) cos ~ + 2xy sin 
z . a z A 

These equations provide a physical meaning for G, namely 

( aB ~ (aB ) · . X V 
G- -- : _J.. 

- ay z=0 ax .z=0 (

aB 8 ) 

= ~ z=8=0 

( 11) 

II. -Orbit Equations 

The equations of the orbit of a charged particle moving in a magnetic field 

have been derived before in many places (see Orbit Theory Notes). With z as the 

independent variable the orbit equations in the cylindrical coordinates.are 
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d ( I ) 

r 812 e 

~ -Ji + r:2 + r 2 0•2 . -
= - (r8'B - B ) 

-V 2 2 2 
pc z 8 

1 + r' + r 81 

d (; ., ) 2 r'8' e 

r dz /i+r'2+r2 8'2. 
+ =-(B-r'B) I 2 2 2 

pc r z 
l+r' +r 8 1 

where prime means 
d 

dz 
, p and e are the momentum and the charge of the 

( 12) 

·particle, and c is the velocity of light. In ·Cartesian coordinates the corresponding 

equations ar.e 

d ( x' 
dz 

0+x'2+y'2 
) = ~ (y'B - B) pc z y 

(13) 

• C . ) . d---
e 

(B - x'B ) 

z /i+x'2 + y'2 
pc X z 

Since we are interested here only in the paraxial motions, we shall expand (12) 

and (13)to first·degree terms in r, (x,y), andr', (x',y 1). The resulting equations 

· aftel' the substitution of (9) and ( 10) are, for cylindrical coordinates 

2 
r 11 

- r 8 1 = -
eG 
pc 

r cos 2(8 - 2'11' z -r> 

r8" + 2 r 18 1 
_ eG 
- ~ r sin 2 ( 8 _ \'II' z ) 

and for Cartesian coordinates 

( 14) 
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x'' = 
eG 
pc 

4 ,r z 
(x cos "":I 

-5-

4,r z + y sin~:>,.~ 

y" 
eG . 4,rz 

= - -(x sin-pc :>,. 
41rz 

-y cos --) :>,. 
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It should be note-d that since the lowest term occurring in B is of the second z 

( 15) 

degree in r, 'B is completely absent in these linearized equations. Also, because 
z 

of the absence -of the centripetal and the ·coriolis terms in the Cartesian forms 

(15) these equations are simpler in structllre. Henceforth, we shall focus our 

attention on these equations. 

III. Approximate Solutions 

Equation (15) can be further simplified by . . ·t f :>,. expressing z in uni s o 4 ,r 
and 

2 
-df 

•.. -- l. eG 
e 1mng a= - 2 --

16 'Ir p C 

·The resulting equations are 

[

x" = a(x cos z -Fy sin z) 

y"=a(xsinz-ycosz) (16) 

Although this set of coupled Mathieu equations being of a very special type can be 

solved exactly in terms of closed elementary functions, an approximate iterative 

solution in power series of "a" _serves in the first place, to illustrate a general 

method applicable to all systems of ·coupled linear equations and, in the second 

place, to give a set of approximate formulas which are, in certain cases, more 

illuminating and easier to handle. 

-General Method 

We shall start with a system of n coupled homogeneous linear equations 

(since the particular integral for inhomogeneous equations can be obtained by 

straightforward quadrature from the Green's function formed·-with.ths) general solu­

tions of the homogeneous part of the equations) which has already been reduced to 

the fir st order, namely 
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x'. = A .. (z) x. 
1 lJ J 

i=l,2,3, .... n (17) 

These are, .in general, n linearly independent sets of solutions which shall be 

denoted by x. (z) (µ = 1, 2, 3, ••• n). The coefficients A.; are assumed to be 
1µ ~ 

small and shall for the moment be written as t!: A .. where c is the "smallness" 
lJ 

parameter. The solutions x. are now written as a power series in tE. 
1µ . 

xiµ (z) = x. (0) 
1µ 

. where· we shall put 

+ E x (l) 
iµ 

+ Ei2x (2) 
ii-' 

( 0) 
x. = x. (z = 0) = constants • 

1µ 1µ 

+ • • • • . (18) 

Substituting (18) in (17) and equating the coefficients of·monomials in € , we get 

{ 0) I = 0 
X. 

1µ 

{l) I 
X = 

iµ 
A .. x_(O) 

lJ JI'-

.x.< 2)' =A .. x.(l) 
1µ lJ JI-'-

etc. 

These equations can be integrated to give 

x. ( O) = x. (z = 0) = initial conditions 
1µ 1µ 

(l) 
X 

iµ 

(2) 
x. 

1µ 

etc. 

=[ dz 

= lz 
A .. X (0) 

lJ jµ 

x. 
{l) 

dz A .. 
lJ J µ 

= !oz dzA .. lz 
lJ . 

0 0 

{O) 
dz Ajk ~µ 

(19) 

{20) 
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For a simple complete set of initial conditions.we can take 

x (O) 
iµ 

= $ . = Kr~necker J 
lfl, 

Substitu.ting (21) in (20) we get 

x_(l)(z)=i dzA. 
lfl, lfl, 

0 

- (2) (z) = f x. 
lfl, 0 

etc • 

dz A .. 
lJ f .dz A. 

Jfl, 
0 

·Now if we write the general solution in the matrix form 

x. (z) = M .. (z) x. (0) 
1 lJ J 

. ·we get immediately 

M .. (z) = x .. (z) 
lJ lJ 

= r 
k=O 

x.(~) (z) 
lJ 

= S. . + Jz dz A .. + 1· dz A.k J, dz A . 
lJ lJ l kJ 

0 0 0 .. 
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+ I dsAfr f, dz¾, r dz A
1

. + .•••• )o J 

(21) 

{22) 

(23) 

(24) 

Equ.ations (23) and (24) give the general solution of (17) in power series of A ... 
lJ 
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Application to ( 16) 

Equation. ( 16) can be put in the form ( 17) by the substitution x1 = x, 

x' 
X = r­
.2 -ya 

y' 
X = -­'. X3 = y, 4 ra 

This gives 

X 1 = ,/a X 
1 2 

1 

x
2 

= P (x
1 

cos z + x
3 

sin z) 

x3 =-z/a x4 

x4 =/a <, sin z - x
3 

cos z) 

or 

0 

cos_ z 

A .. = fa I lJ 0 

sin z 

1 0 

0 . sin z 

0 0 

0 -cos z 

, Straightforward integrations, then, give up to a 
4 

terms 

0 ,z 0 

-< 1) 
J. sin z 0 1 - cos z 
2. 

x .. = a 
lJ 0 0 0 

1- cos z 0 -sin z 

0 

0 

I 
1 

0 

0 

0 
I 

z 

0 

(25) 

(26) 

(27) 
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-(2) 
x .. = lJ 

x{3l - ¾ .. - a 
.lJ 

a 

-9- Feb. 18, 1959 

/ 

1- cos z 0 . z - sin· z 0 

I 0 -(1-z sin z-cos z) 0 sinz - z cos z 

' z - sin z 0 -(1- cos z) 0 

0 sinz- zcos z 0 1-z sin z - cos z 

( 0 -(z -2 sin z + z cos z) 0 2 - z sin z - 2 cos z · 

'-(z-2sinz+zcosz) 0. -( 2 - z sin z - 2 cos z) 0 

0 2 - z sin z - 2 co:s z 0 z-2 sinz+zcos z 

·2 - z sin z - 2 cos z 0 -{z- 2sinz+ zcos z) 0 
p. 

;;:{4) 
ij = 

2 
a 

3 
1 2 . 

3 - 2 z -zs1nz- cosz 0 -( 2 z - 3 sin z + z cos z) 0 

0 3 1 2 . 3 - 2 z -zs1nz- cosz 0 -{2z.-3 sinz+zcos 

2 z - 3 sin z + z co·s z 0 

0 2 z - 3 sin z + z cos z 

1 2 . 
3 3--z -zs1nz- cosz 

2 
0 

0 
1 2 . 

3-zz ~zs1nz-3cos, 

/ 
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- (5) _ - (5) __ (5) __ (5) __ (5) __ (5) __ (5) __ (5) _ 0 
xl 1 - xl3 - x22 - x24 - x31 - x33 · - x42 - x44 -

- (5) (5) ,% 1 3 x
12 

= x.
34 

= a t (3 z '- 6 z - 4 sin z + z co, z) 

.x
43 

= -x
21 

= a _3z - (6- 2 z) s1nz+3zcosz _ (5) _ (5) s4i [ · 1 2 . J 
(5) _ (5) 5h [ l 2 . 1 2 ] , x

23 
= x

41 
= a 6- 2 z - 3 z s1nz - (6- 2 z ) cos z 

- (5) - (5) · % 2 . ·x
14 

=-x
32 

.= ,a (4-z -zs1nz-4cosz) 

- (6) __ (6) __ (6) __ (6) __ (6) __ (6) _ - (6) _ - (6) _ 
0 · xl2 - xl4 - x21 - x23 - x32 = x34 - x4-l - x43 -

_ (6) . -(6) 3 [ 3 2 . 1 2 ] x =-x =a 10--z-4zsmz-(10--z)cosz 
, 11 · 33 2 . 2 

_ (6) - (6) 3 [ 1 2 1 3 . 3 2 ] x = -·x · =a 10- -z -(6z--
6 

z )smz-(10--z )cosz 
,44 22 2 2 

xi;> = x3(:) = a
3 

[6z - f :? - (10 - + z 2
) sinz+4zcos z)] 

- (6) - (6) 3 [ 3 2 . 1 3 J 
-x24 =-x42 =a 4z-(10-zz}s1nz+(6z-6z)cosz 

(27) 
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. _(7) -(7) _ (7) _ (7) _(7) _(7) _(7) _(7) 
= 0 ·Xll = xl3 =. x22 = x24 = x31 = X33 =x --=x · 

42 44 

(7)' (7) _(7) (7) 
xl4 = x41 = x32 = ... :x 

· . 23 

%[ 2 l 3. 2 ] = a 20 - 2 z - ( l Oz - 6 z ) sin z - ( 20 - 2 z ) cos z 

_(7) _{7) 
x34 = 

_(7) -
-x -

43 
_(7) 

-xl2 = -x21 

\_ 
tr . l 3 2 . l 3 1 = a lOz - 'T'" z - (20-2 z) sin z + (10z- 'T'" z) cos.z 

• u u J 

(27) 

.(8) _(8) 
xl2 = xl4 

_(8) 
= x21 

_(8) _(8) 
=xn =~2 

_(8) 
: X34 = 

_(8) 
x41 

(8) 
= :!t 

43 
= 0 

_(8) 
xll 

_(8) 
x3l 

_(8) 
= x22 -

-(8) -
X33 -

-(8) 
X44 

.4[ 2 l 4 . l 3. 5. 2 ] = a 35-5z + 
24 

z -(15z- 6 z )sinz-(35- 2 z )cosz 

~(8) _(8) _(8) 
= X = -xl3 =-x 

42 24 

4 [ 23 52, 13 J = a 20 z - 3 z - (35 - 2 z l sin z + (15 z - 6 z l cos z 

··-we shall reserve the ·discussions of this approxhnate solution until after we 

obtain the exact solution. °For_ later reference we shall _rewrite the displacement-

slope vector as 
X 

x' 
2a 
y 
y' 

2a 

• The corresponding transfer matrix M .. (z) is, then, 
iJ 



M= 

2 3 -4 
1-taA+a B+a C + a D 

l 2 3 
2 {I+aJ+a K+a L)-

2 3 4 -· 
aE + a F+ a ·G + a H 

l 2 3-c-­
T {A+ aM+ a N+ a 0) 

2 3 4 
2{az + a J + a P + a L) 

2 3 4 
aE-aF+·aG-aH 

2 3 4 
l+aR+a B+a S+a D 

l 2 3 
-y(A-aM+a N- a O) 

2 3 4 
2{a M + a Q + a 0) aA 

2 . 3c 4 1- +aB-a +aD 

2 3 4 
aT+a F + a U + a H 

.1 2 3 - 2 {1-aJ+a K - a L) 

where 

A= 1- cos z 

E=z-sinz 

I= sin z 

T = sin z - z cos z 

· l 2 
B:::(.3-,zz J-zsinz-zcosz 

F=ZZ.:3 sinz+zcosz 
I 

J = _z-+ 2 sinz - zcos z 
' -·~--

M·=:2.- z sinz- 2cos z 

R= -1 + z sinz+cos z 
2 . 

Q={-4+ z }+ z sin z-f 4 cos z ,._....,. 

3 
U=-4z+ {10-z 

2 ,-·. l 3 
z )sinz+(..-6z+ 6 z ) cos z 

T i,,. 

3 2 . l 2 
C•,(10-zz )-4zsmz-t(l0-tz z Jcosz 

l 3 t 2 . 
G=(6 z - 6 z }+(-10-t l z }s1nz-t4 z cos z 

'. 1 2 
K::: -3 z +(6 - z z }sin z - 3 z cos z 

l 2 . l 2 
N={6-zz }-3zs1nz-f{-6+zz )cosz 

P=, (3z-¾ z
3
}- 4sinz + zcos.z 

2 3 4 
2{a M - a Q + a 0) 

2 3 4 
aT-a F+ .a U-a H 

2 3 4 
2{az- a J+a P- a L) 

2 3 4 
1-ak+a B-a S+a D 

2 l 4 t 
D=(35-5z +

24 
z )+(-15z+ 6 z 

2 3 5 2 . 
H=(20z- 3 z )+(-35+

2
z) s1 

L = (-10 z+ ¾ z
3

) + (20 - 2z
2

) sin 

O= {all-2z
2
)+(-10z+¾z

3
) sin' 

l 2 l 3 . 
S= {-l0+

2
z )-t (6z- 6 z )sm 

(NOTE: The capital letters A to U used here should not be confused.with similar ones used elsewhere 
in this paper.-4:-. 

i 7--
,,......_ 

0 

\ 
,I 
'i 

, .. ---.( 

(28) 

~' ~}'.-: 
,;,­.. 

,J 
t~r: .. l 

;/1-~ 
'/ 

., ... ;; 
-1 .; -, c) 

r-~ lf• ·- 5 2 · c::3s + - z > cos z 

., '"· J'i~ 3 

2 

;Jt~S t'_'.7·{6°) it ) cos z 
:>~ ,. ; ;·: .· 
\;'~ ;,.;-.,.:-/d 3 

0
(-;-lOz+ 6 z )cos z 

r~ 
" 2 

,\:i20+Zz )cos z 

3 2 z z ) cos z 

j/; ~, 

i;·!t ~., .... ; 
w1 l· 
<"'' , 
& ~t. 
~ 

··------=~~=. """"''"''"'"'""-- ---------------------~-----------------------------------------------------------. . . . ' . 
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IV. Exact Solutions 

Multiplying the second of (16). by i and adding to the first we obtain 

iz 
Z 11 = a e Z* (29) 

where Z = x + i y. Similarly we can obtain the complex conjugate equation 

-iz 
Z*'' = a e Z (30) 

Solving (29) for Z* and.differentiating with respect to z twice we get 

l -iz 
Z*" =· - (Z.1111 - 2i z 111 

- Z") e 
a 

(31) 

Combining (30) and (31) we get 

Z.11"-2iZ111 -Z."-a
2
Z=0, (32) 

a linear equation with constant coefficient. The index equation 

4 . 3 2 2 
a. - 21 a - a - a = 0 

or 
2 ( ")2 2 a. a.-1 =a 

gives the four roots 

a= ~(l -J:.V1 ±4a) (33) 

We shall be interested only in the case when all four roots are purely imaginary so 
that the motion is purely oscillatory. This means that we shall limit a so that 

l 
-4<a<.!. 4 

The solution can ,now be written as 

·. i 
~l+/1+4a)z 2 (1-Jl+4a)z 

Z=Z
1

e +z
2

e + 

(34) 

~(1+ifl-4a)z ~(l-i/l-4a)z 

z3 e + z4 e (35) 
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where the 4 .. complex.constants :;-::
1 

z
2 

z
3 

and z
4 

are, however, not all independently 

arbitrary. Substituting (35) in the second order equation (29) or (30) to get the 2 

comple.x relations between z
1 

z
2 

z
3 

and z
4

, expressing these complex constants 

in component forms (with 4 real arbitrary constants) such that these relations are 

identically satisfied, then taking the real and the imaginary parts of Z we obtain 

X = A 
[ 

cos 1(1+f1 +4a) 

1+J1+4a 

[

sin.; (1 +,/1 + 4a) 
-B 

I +J1 + 4a 

[

cos 1(1+/l-4a) 
+c 

l +-,/l -4a 

+ 

-D 
[ 

sin ·1 (1 +/1 - 4a) 

----::===-- + 
l+Jl-4a 

y = A 

+B 

+c 

+D 

[ 

sin 1(l+yl+4a) 

l+,yl+4a 

[ 

cos ~ (1 +,/I +4a) 

l +, J 

I sin } (I +fl ,-4a) 

[ I +JI-4a 

I cos 1 (1+)1-4a.) + 

1· T -1-il-4;, 

+ 

cos 1 (1 -Jr+ 4a) ] 

l--,/l+4a 

sin 1 (l .:.ll+4a)J 

l-Jl+4a 

cos 1 (1 -,/1 - 4a)] 

l-Jl-4a 

sin ~ (1 -/1 - 4a) 
2 

sin 

l-1l-4a 

~ (1 -/1 + 4a)] 

1-/1+4a 

cos 1 (l -{l+4a)] 

l -Jl+4a 

sin~ (l-/l-4a) 
2 

cos 

1-Jl-4a 

~(l-/I-4a} 
2 

I -,fl -4a 

(36) 
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These are the exact solutions of (16). The most convenient manner to presen.t 

the solution is, again, to write it in the matrix form (23). To do this, we first 

express the constants A, B, C, D in terms of x(z=0), x 1(z = 0), y(z = 0), y'(z = 0). 

The coefficients of these 4 quantities in the expressions for x, x 1
, y, and y' are 

then the matrix elements of M. .• If we write the vector x. as 
lJ 1 

the matrix M .. is 
lJ 

X, = 
1 I 

X 

x' 
2a I (37) 
y 
y' 

2a 
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sin tj, 

"Vl - 4a 

z 
sin 2 

z 
+cos 4' cos 2 

sin 4' 

Vl -4a 

z 
s::os z 

"' . z cos "' sin 2 

- sin tj, z 
;:::==:;-CO S -

i/i-4a 
2 

z 
sin -

2 

-16-

-(cos <1>- cos tj,)sin ; 

+ [ sin <j> - (l-4a) sin 4' ] cos~ 

Ji +4a {1+4 a 
2 

sin <j> 

J1+4a 

z 
sin 2 

z 
+ cos lJ, cos 2 

- - a -::::::::::= sin -~ ( 1 4 l 
'

sin tj, j . z 

/1 -4a 
2 

z 
+ (cos <I> - .cos 4') cos 2 

z 
cos tj, sin 2 

sin cj> z 
cos 2 

/1+4a 

• '.Z 
-COS <j> Sin -2 

sin <j> z 
+ ==:!::COS Z 

/1+4a 

sin cj> 

J1+4a 

z 
sin 2 

z sin cj> sin 
2 -J1+4a 

-

z 
+ cos <I> cos 2 

sin <j, z 
cos -

/1+4a 
2 

) 
/ 
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[ 
sin 4' - (1 + 4 a) ~ ] sin ~ 

A-4a Jl+4a 2 

z 
+(cos tj, -' cos <j>} cos 2 

. z 
-cos <I> sin 2 

+ sin tj, 

-,/l--4a 

z 
cos 

2 

(cos tj, - cos f) sin ~ 

_ [sin tj, _ (l +4-a) sin cj> ] 

LJ -4 a J1 + 4 a 

z 
cos <I> cos 2 

sin tj, z 
+ sin 2 

,/1 -4a 

z 
cos 2 
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where <j,;;:: i /1 + 4a, and lj, = i /1 - 4 a. It can now be checked that the 

matrix elements given in (38) when expanded in power series ·of "a" agree with 

those given in (28). 

A forther simplification in the representation of the solution in matrix 

form is accomplished by choosing at each location z ·a set of quasistationary co­

ordinate axes X and Y rotated about the z-axis from the x and y axes so as to be 

aligned to· the orientation of the helix at that z location. These X and Y axes are 

to be quasi stationary in the sense that once they are aligned at a given location z 

they are, then, assumed to be stationary as z takes on increments instead of to 

be following the rotation of the helix. This means that the relations between X, 

X', Y, Y', andx, x 1 , y, y' are given by 

or 

z . z 
X = x cos 2 + y sin 2 

X' = x 1 cos 
Z I • Z - + y sin -2 2 

. z z 
Y = -x sin - + y cos 

2 2 

Y' = -x' sin ; + y 1 cos 
z 
2 

(z in units of 
4

~ ) (39) 
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~1 2a 

-

:. ) 
2a 

z 

= 

'= 
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z 
I cos- 0 

: 2 

I 
z 

0 cos -
2 

z 
-sin -2 

0 

z 
0 -sin -2 

z 0 cos -
2 

0 
z 

co:s. 2 
I 

z 
-sin-

2 
0 

0 
.Z 

-sin -2 

X 

x' 
(N .. ) I 2a 

lJ 

I y 

..r__ 
2a 

I 
0 

Feb. 18, 1959 

z 
0 sin-

I I X 2 
z 

\ I 
0 sin - x' . 2 --

2a 
z 

00: i) \ 
cos -2 y 

0 
__r_ 
2a 

I z 

z 
0 sin - \ I X 

2 x' 

0 
z I I 2a sin -2 

! 
z 

(M .. ) 

~ 
y 

cos - 0 . lJ 
2 y' 

0 cos ; I \ 
2a 

I o 

(40) 
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The elements of N .. are given by 
lJ 

cos "' 

~ 
-/1 - 4 a 

sin <j, 

Jl + 4 a 

sin 'P 
- (l-4a) iJ"1-4a 

cos "' 

sin <j, 

iJ1+4a · 

0 

Feb. 18, 1959 

cos "' - cos"' 

sin <j, 

/1 - 4a 

sin 4' 

.,/l-4a 
cos <j, - cos "' cos <j, 

sin .i, 

-J 1-4 a 

+(1+4a) sin <I> 

~1+4a 

0 

V. Discussions 

A. Radial Oscillations 

~ 

/1+4a 

~ 
-J1+4a 

cos <j, 

Let a-
1 

and <r 
2 

be the phase shifts per periodic length ~ , of the two 

normal modes of radial oscillation. Then we have, in general, 

(41) 

cos a-
1 

+ cos a-
2 

=+ Trace [M(z = 2,r)] =-~Trace [N(z = 2 ir)j (42) 

where the negative sign infront of Trace (N) corresponds to the fact that at 

z = 2 ,r the local quasi stationary coordinate.s:X and Y are just the inverse of the 

initial fixed coordinates x and y. 

In our present case it is obvious that a-
1 

= a-
2 
= a-. Therefore, we have 
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1 .... 
cos a- = 4 Trace [M(z = 2,r)] 

1 
= - 4 Trace r N (z = 2 ,r)] 

= - -½- (cos ,rf 1+4a + cos ,r J1-4a) 
(43) 

22 2224 6 
= 1 - 2 ,r a - ( 10 - - ,r ) ,r a + 0 (a ) ,. 3 

where the next to the .last expression is the exact result obtained from (41), and the 

last expression is the approximate result correct to a
5 

terms obtained from (28) 

and can be further simplified to give 

3 5 
a- = 2 ,r a + 5 ,r a + 0 (a ) (44) 

It is interesting to compare these results with those for a conventional linear­

alternating-sectioned quadrupole magnet system with the same field gradient and 

the same repetition length ~ (length of each magnet = ~ ). They are 

E·:x:act 

cos a- = cosh ,r ,Ii. cos ,r ,/a 
s 

Approximate 
2 ,r 

a- = r::- a+ 
s v3 

4 ,r6 

315~ 

,r 
= 

27D 
(2,ra) + 

3 5 
a + 0 (a ) 

4 5 ,r 3 
1575 -,f3 (S ,r a ) + 0 (a

5
) 

.r--~~ 3 5 
= (~069 (2;:!)+ 0.4487 (5,ra ) + 0 (a ) 

(45) 

(46) 
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The comparison shows that for a 4; 1 (in practice, for protons with energy 

above 1 Bev it is very difficult to get values of a > O. 01) the strength of focusing 

(measured by a-) is linearly proportional to ."a" in both cases, being about 10% 

larger for the helical quadrupole system. The exact a-and a- for large values 
s 

of "a" are plotted in Fig. 21 where it can be seen that the advantage of stronger 

focusing of the helical quadrupole system becomes more prominent for larger 

values of a. 

B. Stigmatic Imaging 

··For a point source located on the axis at a distance p (in units of _>.._) 
4 ,r 

from the entr~ce (z=O) to the helical quadrupole magnet, 

I 

X = p X 1 = 
0 .0 

2 a P 

y = p y' = 2 a p 
0 0 

x' 
0 

2a 

x' 
0 = p 2a 

y' 
0 

2a "= P 

y' 
0 

2a 

At the exit of the magnet (z = z) we then have 

x ,; (Mll p + Ml 2) 

x' y' 
0 0 

2 a + (M13 p + Ml4) 2a 

x' 
-=(M 
2a 21 

x' 
o' 

p + M22) 2a + (M23 p + M24) 

y' 
0 

2a 

y = (M31 p + M32) 

x' 
0 

~ + (M33 p + M34) 

y' 
0 

2a 

y' . 
2 a - (M41 p + M42) 

x' 
0 

2a"° + (M43 p .+ M44) 

y' 
0 

2a 

(47) 

(48) 
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If a point image is to be formed at a distance (negative} q (in units of 4~ ) 

from the exit we must have both 

and 

X 
Q = 2 a q = x' 

2a 

y 
o.=:2aq= L 

2a 

be independent of 

out are 

y' 
0 

x' 
0 

and 

Mll p + Ml2 

M21 p + M22 

M31 p + M32 

M41 p + M42 

Mll p + Ml2 

M21 p + M22 

= 

y' 
0 

(Mll _P + Ml2) + (M13 p + Ml4) xi; 

(M21 p + M22) + (M23 p + M24) 

(M31 p + M32) + (M33 p +-M34) 

y' 
0 

x' 
0 

y' 
0 

x' 
0 

y' 
'" 0 ..L " 1--..L 'M p ... V \ 0 
1'v'41 ~ ' "''42' ' ,. 43 ~ ' ·"44' x' 

0 

(49) 

(50) 

and equal to each other. These conditions when written 

Ml3 p + Ml4 

M23·P + M24· 

M33 p + M34 

M43 p + M44 

M31 p + M32 

M41 p + M42 

= 0 (51) 

= 0 (52) 

= 0 (53) 



i 
·! 

I 
l 
i 

' 

(~--·, 

l,. 

ANLAD-55 -23- Feb. 18, 1959 

It is clear that vie could just as well have based the same argument and reasoning 

on the X Y coordinates at the exit, instead of the original x y coordinates, and 

. would have arrived at a set of conditions identical to (51), (52) and (53) except 

that the matrix elements M .. are replaced by the corresponding simpler elements 
lJ 

N ... ·Turthermore, these conditions are not all mutually independent. As a matter 
lJ . 

oLfact, direct substitutions of M .. or N .. into (51) and (52) or their equivalents 
lJ lJ 

show that they are identical conditions. Thus we are left with only two conditions, 

say, (51) and (53) or their equivalents in the X Y coordinates. 

= 

-

= 

-

I 

Nll p + Nl2 

N21 p + N22 

Nll Nl3 

N21 . N23 

Nl3 p + Nl4 

N23 P + N24 

Nu Nl4 

pz ' ( 
N21 N24 

' 
2 

AP +BP+C=O 

Nll p + Nl2 N31 p + N32 

N21 p + N22 N41 p + N42 

ti N,1 I 2 rll N,z/ ' p + 
N21 N41 N21 N42 

2 
a.P+j3P+\'=0 

Nl2 Nl3 

) P, + 

N22 N23 

t' N22 

N,1 I )e. I NIZ 

N41 I N22 

Nl2 
N14 ! 

N22 N24 

(54) 

N32 

N42 

(55) 
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. Straightforward computation. gives 

-
A 

sin cp sin ij, 
+ cos cf, cos 4' - l = 

-,/1 + 4 a J1 - 4a 

sin ij, sin <I> 
B = cos cf, -

)1 - 4a Jl + 4a 

C = 

'-

sin cj, 

J1 + 4a 

o. :: ( l - 4 a) sin cj, 
~1+4a 

sin 4' 
J1 - 4 a 

~ 
J1 - 4a 

j3 = 2 sin ij, cos 4' _ ~ sin cp 
Ji..;4a Jl+4a 

~sin ij, y -
- /1 -4a r 

cos 4' 

- -,..-:_-_-_,..._- - cos cf, cos 4' + cos 4' 
( 

sin <I> 72 

z 
J1+4a 

cos 4' + cos cf, sin 1j., 1/ 
Jl-4a 

Eliminating P from (54) and (55) we get 

(56) 

(57) 

2 
(A 'i - Co.) - (B y - C 13} (A j3 - B o.) = 0 (58) 

The magnet parameters a and z should be adjusted to satisfy (58). The corres­

ponding values of P and Qare then given by 

p = -

and 

Ay- Co. 
Aj3-Bo. 

(59) 



\:,~, . .,.,...,.,,,=,,,.,.,, =· =-- .:,_,, 
TABLE I (Continued) -'1 i 

- ,. r-: 
' . 

a·= .. 0075 a = . 0050 a= . 0025 a.= . 0010 

z p = -Q z p - -Q. z p - -Q z P- -Q 

6.285307 42.4332 6. 284128 63.6616 6. 283421 127. 3 2 6.283223 318.310 
12.570611 21.2400 12 .. 568255 31. 8440 12.566842 63.668 . 12.566446 159. 158 
18.855908 14. 1857 18. 852381 21. 2466 18.850263 42.454 18.849669 106.109· 
25.141197 lo .. 6659 25. 136506 15.9530 25.133684 31. 850 25.132892 79.5354 
31. 426474 8.5594 31.420628 . 12.7808 31.417104 25.4893 31.416115 63.6720 
37.711738 7. 15933 37.704747 10,6691 37.700525 21. 2506 _37. 699338 53. 0639. 
43,996986 6.16254 43.988863 9.16344 43.983945 18.2244 43.982561 45.4873 
50.282218 5.41748 50.272974 8.03633 50.267365 15.9560 50.265784 39,8054 
56. 567432 4.83993 56:557082 7.16151 56.550784 14. 1927 56.549007 . 35. 3864 
62. 852629 4.37935 62. 841185 6.46317 62.834204 12. 7832 62. 832231 31. 8518 
69, 137808 4.00356 69.125283 5.89310 69.117623 11. 6308 69. 115454 28.9605 
75.422970 3.69113 75.409377 5.41911 75.401041 10.6712 75.398677 26.5510 
81.708!14 3.42720 81.693464 5.01893 81. 684459. 9:85987 . 81. 681899 24.5124 
87. 993243 3. 20119 87:977548 4.67666 87.967877 9. 16517 87.965122 22.,7656 
94.278358 3.00532 94. 261625 4.38064 94,251294 8.56363 94,248345 21. 2520 

100.563458 2.83377 100.545697 4.12210 100. 534711 8.03783 100.531568 19,9276 
106.848549 2.68209 106.829764 3.89435 106.818127 7,57435 106.814791 18,7594 
113.133630 2.54685 113. 113827 3.69220 113. 101542 7. 16283 113. 098014 17,7212 
119,418704 2.42531 119, 397884 3.51153 119.384957 6.79502 119.381237 16,7926 
125. 703772 2.31530 125.681936 3.34905 125.668372 6.46436. 125.664460 15.9570 



TABLE I 

a = 0. 100 a= 0.075 a= 0.050 a = O. 025 a= • 0100 

z p = -Q z P· -Q z P· -0 z p = -0 z p = -Q 

6.694600 3.03366 6.505087 4.14561 6.379246 6.30680 6.306856 12.7046 6. 286958 31.8201 
13.363289 1. 60359 .12. 993933 2, 19787 12.753889 3.27237 12.613353 6.42544 12.573906 15. 9411 
16.077000 27.3319 19.484770 1.49233 19. 124186 2. 26429 18,919257 4.35577 18.860835 10.6613 
20,150791 o. 959306 22. 286382 16.3760 25.494156 1. 73442 25. 224506 3.33055 25.147738 8.03042 
21. 241043 1.13447 26. 027331 1. 03764 31. 870373 1. 37670 31.529191 2.71664 31. 434606 6.45846 
26.551304 o. 354542 27. 553590 1.46147 34. 769627 11. \726 37.833513 2. 30350 37.721437 5.41520 
32. 153693 13.7312 3 2. 830458 o. 609239 38.264421 l. 08816 44. \37742 2.00\36 44.008225 4.67333 
38. 839611 2.55487 33.064309 0.613502 40.150161 l. 86622 50.442208 l. 76567 50.294972 4.11919 
45.514306 1.44739 38.575027 o. 182324 44. 703919 0.819774 56.747313 1.57181 56.581677 3. 68963 
48. 232277 9,02031 44.571713 8.29756 45.885898 0.989103 63.053571 l.40495 62.868343 3,34674 
52.383060 0.836662 51. 068602 2. 87370 51. 621636 0.545152 66.064613 24. 0460 69,154972 3.06642 
53.102608 0,897009 57.554528 1. 79777 57.357373 o. 237102 69,361681 l. 25551 75.441569 2. 83264 
58.412869 o. 253284 64.061050 1.25777 63.158220 61.4439 71.889385 4.07568 81. 728140 2.63429 
64. 306236 6,93407 66. 128616 2.65409 '69.537146 5. 74613 75.672657 l. 11683 88. 014689 2.46347 
70.983704 2.21306 70. 675713 0,835261 75. 911255 3.12774 77.880168 2. 38452 94.301226 2.31440 
77.671440 1. 30763 71. 639335 0.947180 82. 281294 2. 19730 81.988092 0,983919 100. 587754 2. 18274 
79,653912 2.66313 77.150053 o. 382827 88.651547 l. 69294 83.870950 l. 62432 106. 874284 2.06520 
84,680014 o. 707422 78. 326204 o. 330027 95,028907 l. 34546 88.310676 0.852832 113. 160824 l. 95923 
84. 964174 0.714809 82.660771 0.0091879 97,928097 9,40616 89.861732 l. 17660 119.447381 l. 86282 
90, 274435 0.159285 89,139964 4.25078 101. 425828 l. 06074 94, 645392 0.720221 125. 733967 1.77434 
96.456825 4.69152 95.629128 2. 22435 103,243272 1. 73474 95,852515 0.870192 

103.127820 1. 95281 102.119465 I. 50617 107. 873079 o. 792440 101. 002663 0.583188 
109, 837907 I. 1-7844 104,920852 18. 3706 108.979009 0. 932999 101. 843297 0.638380 
111. 515477 1.85132 108.659457 I. 04857 114. 714746 0,510045 107. 408714 0.439157 
116,825739 0.567215 110. 214361 1.49942 120.450483 0.209432 107. 834080 0.449355 
11'7.130509 0. 560886 115.446924 0.621560 126.316433 30.7380 113. 824862 0.285579 
122.136001 0.0695822 115, 725080 o. 627745 113.956865 o. 284962 
128,605165 3. 58114 121. 235799 0,191971 119. 815643 0,136053 

127.206337 8,76226 125. 822272 252.444 

' ' ~- =='>'·"="< ·, =-----,.--
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Mll p + Ml2 
Q = __;;:__ __ ;:___ 

M21 P+M22 
(60) 

·However, (69) may not be necessary at all. ·From symmetry arguments one may 

immediately come to the conclusion that Q = -P. Equation (58) is solved numerically 

on the IBM~704 (Fortran program written by E. A. Crosbie). The results are given 

in Table l. ·For a given value of !!a" there exist infinitely many values for the length 

· z of the helical quadrupole magnet which will satisfy condition (58). Those smaller 

than z !t 40 ,r_ are given in the table together with the ·corresponding-object and 

image -distances P and Q. One observes from this table that for small values of 

a(< 0. 05) the roots of (58) are approximately given by 2n,r (n = l, 2, 3, ..• ). 

As a matter of fact, when the expanded forms (28) for the elements of. M .. are .. . . ~ 

substituted in (58) (with M .. replacing N .. } we see that (58) is satisfied by z = Zn ,r · 
lJ . . lJ 

·. to terms of order a 8 while the lowest non-identically vanishing terms on the left 
6 

hand side are of order a . -The lowest order non-zero ·terms in A, B, and C for 

z = 2n,r are 
2 2 2 

A=4n ,r a 

B = -4 n ,r a 

2 . 2 2 
C = -8 n ,r a. 

which when substituted in (54) and (60) give for P and Q 

p = -Qf=' _l_ 
n,ra 

for z = Zn,r (2n,ra 4 1) 

(61) 

(62) 

·However, this approximation is valid only when 2 n ,r a %" l. This checks also 

with the values given in Table l. For numerical computation "a" is related to 

the magnet particle parameters by 

>,_2G 
TJ 

= 4,942 x 10
5 

a (kilogauss cm) 

0') ~ r,1 

(63) 
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The general relations between the object and image distances in real units 

p and q, and the parameters P and Q are 

..£_= 
X. 

p 

8 ,ra 
q Q T = ..,8,_ir_a __ 

"'The. approximate ·formula {62) gives, in real units 

z n 
X. = 2 (a 4: 1) 

and 

~=- ~ = 
l 

. 2-----Z 
8 n ,r a 

(2 n,ra~ 1) 

(64) 

(65) 

. As an example, for 12. 5 Bev protons { '1'J = 14. 288) and X. = 30 cm, a high but still 

reasonable value of G = 39. 23 kilogauss/cm will give a = O. 005. With these para­

meters a h~lical magnet bf length ~ = 10. 0015 (Table 1) or z = ro. 0015 X. = 3. 0 m 

. P __ q= 
will give X. - X. 

3.3490 
8 ,r X 0. 005 

= 26. 65 (Table 1) or p = ~q = 26. 65 X.:: 8. 0 m. 

The approximate formulas (65} give : = 10. 0 (n = 20) (a good approximation be­

cause th.e condition a = 0. 005 41 is satisfied) and 

p q 
x.=-x.= 

1 

160 ... 2 (0. 005) 2 = 25. 33 or p = -q_= 25. 33 X. = 7. 6 m. (not a very 

good.approximation because the condition 2n,ra = 0.6283 -<:< 1 is not satisfied). 

.. This example shows that even with quite high magnetic field gradient available 

large spaces are required to image a beam of 12. 5 Bev protons. 

\o ~ 
1,/ C'..-- ) v·-... . 




