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ABSTRACT

A. V. Crewe pointed out that with air core and high fielda
" helical quadrupole magnetic lens is easier to build than a con-
ventional alternating sectional quadrupole focusing magnet system.
The motion of 2 charged particle in such a helical quadrupole field
is. studied here under the linear paraxial approximation. The re-
sult shows that the focusing action of such a helical quadrupole
‘system is about 10% stronger than that of a corresponding alternating’
-sectional systemn with the same periodicity and field gradient. With
appropriately chosen field gradient, pitch and length,.a helical quad-.
rupole magnet can be designed to form point images from point sources
located on the axis. Formulas and graphs relating these parameters

" are derived.

An'example of a helical quadrupole lens system is shown in Figure_ 1. eg=
:A.is the pitch Of:the helix...In.thé analogous case of alternating :éon-: -
. . ventional lensés,. within this distance there would. rormally occur - -
-7 . two pairs.of focus~defocus elements.

1. Magnétic Field in a General Helical 2n - pole Magnet
The ‘sca;la.r potential for such a field is of the form

B o

. where r, 0, z are the conventional cylindrical coorciinates and X\ is the pitch of the
belix. = Substituting ¢, in the Laplace equation we get the radial equation for fn

| . - a?s | = . |
- ; ' zn + = -n" { t —5)f =0 {2)
dr o A r




' Figure 1’
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The-sclu:"c‘ion of this equation which is regular at r = 0 is

t(x)er T (1252 x) - 3)

where Jn is the Bessel function of order n and i is the imaginary unit, Since we

- will be interested only in the values of fn(r) for small r we need the expansion

formula | : 2y

22
n A
|z (vt [z | . -
Ta 8= ( 2) f:‘o i (2] neinteger 0 (4)
Using (4) we get for {3} i
P :
£ (r)o—,r Z’ _ (Trnr (5:)
n £ (n + !)'
and for the scalar potent1a.1
24 ‘
2132 Tonr :
q;(rez)cnr smn(e- 5 )Z 1'(n+.¢)' { k‘) (6)

- Whence we see that the lowest term is of degree n in r, For collineation we need
-a‘field linear in r or a potential quadratic in r, i.e., a quadrupole field with

n = 2 and

S S 21
2 1 2 1 -
cpz (r,8, z)c-:r sin 2(0 - 2"2 )Z VTR ( ;r) o (7)

", We shall be interested onljr in the lowest degree térm and shall write approximately -

4, &= rPeinz2(e- 15 | (8)

m|o

where G is the proportmna.hty constant, This approxuna.te potent:.a.l gives for the

magnetic field in the cylindrical coorchna.tes



-
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8.6 |
2 o~ e 2wz
Br= 5T __.Grs:.nZ(B- X )‘_.
9¢ , :
: 2 2wz
BB.—rBB = Grcos 2(6 - X ) (9)
o .
) 2 2 G 2 2wz
Bz-—-———az ey T cQS 2(6 - N )

coordinatés x = r cos 8, y =r 8in 6, z = =z,

. 4wz . 4z
G{ -xsin ‘1r + v cos ‘-n' )
L x ) x

n

Z Gy sin =2Z% 4+ x cos —RZ) _ S {10)
X x
- 2nG [(xz-'yz) cos 41“z+2xy sin 4:Z]

"TTh'esevequationsprovi'de a physical niea;ning for G, namely . .
. [ @B 3B | 8B, \ . ;
.Gz(ax) =(az - (22 Sy

¥ Jz=0 x z=0 iz -9=0 :

L II. “Orbit Equations

The equations of the orbit of a charged particle moving in a magnetic field
 have been derived before in many places (see Orbit Theory Notes). With z as the

independent variable the orbit equations in the cylindrical coordinates.are



ANLAD-55 d-  Feb, 18, 1959

d ' rt ' r B'z ‘ e
= | - = =7 (r0'B, - By)
¢ dz S |
_‘ \f1'+r'2+' r'ze'?‘ \/1+r'2+ r2 6‘2 .
. (12)
d J st
= 3] — + 21‘_9 - e (B -r'B )
S 2. 2.2 2 2.2 P T 2
' l+r'"+r 0 ’/l-f'r' +r @

, pand e are the momentum and the charge of the

- where prime means 12

‘particle, and c is the velocity of light. In Cartesian coordinates the corresponding

. eguations are
d x! ) e ' :
= B -B)
s = : ——{y'B,
(1/1+x'2+y'2 | P v

. d . Y!' _ ...f_.... _ ' )
dz 5 5 - pc (Bx x B,)

(13)

_ Since we are interested here only in the paraxial motions, we shall expand (12)
and (13) to first degree terms'in r, {x,y), and r', (x',y'). The resulting equations
" after the substitution of (9) and {10) are, for cylindrical coordinates

rt! -r9'2=- _e_(:.:_ r cos 2(0 - 2z

)

2z (14)

A

)

r sin 2(@ -

re’ + 29 =

‘and for Cartesian coordinates



ANLAD-55 — -5-. Feb. 18, 1959

X' = . ;2 {x cos 4:z + vy sin 41;2 )
' e G . 4wz 47z (15)
yif = - 5c (x sin " Yces —yx )

It should be noted that since the lowest term occurring in Bz is of the second
degree in r, ‘Bz is completely absent in these linearized equations. Also, because
of the absence of the centripetal and the Coriolis terms in the Cartesian forms
(15) these equations are sim'plez; in structure . Henceforth, we shall focus our

attention on these equations.

1I11. Approximate Solutions

Eguation {15) can be further simplified by expressing z in units of yp and

12 e G

16 -rr2 pe

defining a = - . The resulting equations are
x! = a(x cos z ¥y sin z)

y!".za..(x sin z = y cos z} (16)

Although this set of coupled Mathieu equations being of a very special type can be
solved exactly in terms of closed elementary functions, an approximate iterative
solution in power series of ""a' .serves in the first place, to illustrate a general
method applicable to all systems of coupled linear equations and, in the second
place, to give a set of approximate formulas which are, in certain cases, more
illuminating and easier to handle. :

'Gene ral Method

We shall start with a system of n coupled homogeneous linear equations
(since the particular integral for inhomogeneous equations can be obtained by
straightforward quadrature from the Green's function formed with the general sotu-
tions of the homogeneous part of the equations) which has already been reduced to

the first order, namely
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(17)

x!, = A, (z)x, i=1, 2,3,....n
i ij j

These are, in general, n linearly independent sets of solutions which shall be
denoted by xip7{-z) (=1, 2, 3, ...n). The coefficients A, are assumed to be
small and shall for the moment be written as &€ Aij where €& is the '""smallness"
parameter. The sqlutions xip. are now \_writtfen as a power series in €

x, (z) =x.(0) + éx.-(l) + é‘ax_(z) S , {185
ip ip

ip ip

. where we shall put

x.(o) =x, {z = 0)= constants.
ip ip

Substituting (18) in (17) and equating the coefficients of monomials in € , we get

Lo
ip
N Ca9)
ip ij “ie _
.x.(z)' “—‘A..x.(l) etc..
ip ij ik

‘These equations can be integrated to give

(0
x,( ) = x, (z = 0) = initial conditions
ip ip

z z z
x.(z) = dz A, x_(l) = dz A, . dz A, xk(o)
ip ij g ij . jk kp
. 0 0 0 ‘

etc.

Lt
xip. = dz Ai
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- For a simple complete set of initial conditions we can take

3'5.(0) = §. = Kronecker &
ip 1P

Substituting (2l) in (20) we get

{1

X.{ ) (z) = dz A.
ip ip

0

=% 5y = dz A.. dz A-

ip ij -jv
0 0
. ete.

"Now if we write the general solution in the matrix form

- . ‘. 3
xl (z} = lVi.J (2} xJ (0)
We get imniedia.tely

A .= _ = (k)
Mij(z)— Xij(z) = Zo * (z)

2 L
= 5 -+ + :
i dZAij f dz Aik dz Akj
.. 0 0
(2]
Z
ZAikf dZAkﬂ fdz A1j+" . e s
0 0 0

Feb. 18, 1959

(21}

. {22)

(23)

(24)

Equations (23) and (24) give the general solution of {17) in power series of Aij'
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Application to {16)

' Equation. {16) can be put in the form {17) by the substitu'tion,xl‘ = x,
YI
, X, =Y, X, = —&— .
Ut A
. This gives
| .
X = 4a x,
= i 2
*, [(xl cos z + x, sin z) (25)
x =da x,
x'-/_ (xlsnlz-x cos z)
0 1 0 0
cos z 0 .8in = 0
AL=v2 (26)
1 0 0 0 1
sin -z 0 -cos z 0
; Straightforward integrations, then, give up to a terms
0 - E 0 0
_(1 ‘:L;' sin z 0 l~cos =z 0 (27)
X, . = a :
N 0 0 0 Z

l-cos z 0 ~-5in =z 0
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l-cos 2z 0 -z -sinz 0
—(2) 0 -{l-z ginz-cos z) 0 -ginz -2z cos z
X, = a
1j _
: z - sin z 0 -{l - cos z) 0
0 ginz-zcosz - 0 l-zsinz -cosz
/ 0 -(z~2sinz t+zcos z) 0 2-zsinz-2cosz
_.f(S)__a% t{z~-28inz+zcosz) 0. -(2-zsinz-2(:osz) 0
i )
0 2-z8inz - 2cosz 0 . z-2sinz+zcosz
2-z8inz-2cosz D ~-(z-2sinz+zcosz) 0 &
x4
-(2z-3sinz+zcos z) | 0

1 2 '
-zZsinz~3¢cos%z 0

0 ~-{2z~3sinztzcos

0 7 3——%—22_~zsinz-3cosz
-0 -3--%—22-zsinz-3cos-z

. 2z~3s8inztzcosz
. 1 2 .
2z-38Binz+zcosz _ 0 3--2—2 ~zsginz ~3cos:
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(5)_-(5)_-(5)_-€5)_—(5) (5) =5 ) -(5)20‘

*11 T *1z T ¥z T ¥ag T 3 *33 42 *44
“(8) _=(5) _ %o, L 3, -
12 _334 =a’® (3z - 5 % 4 sin z + z cos z)

.5{(5) - .z ® _ 7 [3z..;{6--——2}-—-z2) sinz+3zcosz] '

. .
7(5) =5'c(5) - aé[e_.l? 22-32 sinz—(f)-izzz) cos z]

FB) g6 B, 2

-z 8in z - 4 cos z)

6y o (6) o {6) _-(6) _ o (6) _ - (6) _-(6) . (6) _,

12‘ 14 T *21 X3 T 32 F X34 T Xy *43
) | | - (27)
a2 o £k 2]

-1(2) - 3(;’) a. [6z - ..é_ 23 - (10 - %ZZ) sBinz+4 zcos z)]

—(6) = '(6) -a.3 [4z-(10-—3—zz)sinz+(6z-—t— z3) cos z]

k24 *42 2
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R G BN I O RN I 0

(7 N (7 -
2N A .M =%, 44

11 T *13 T %22 T X4 T ¥*3 T *33

@@

X184 T *q1 T ¥z T 7Ry

_ . : |
= a.é [20- 222 - {10z - —é— z3) sinz - (20 - Zzz) cosg z]

RO .
F3g T THy3 T TF2 T U¥p

.= a.% [IOz-—sl—-z3-(20~2z2)sinz+(-1pz*——%—-zs)cos_z] _
& | - (27)

[8) (&) _ (8) __(8) _(8) _ A8 (&) _ (& _

Ry, = Xpy =X, T Xyg T Hgo T Fzp T Fyy T Tas

(8 _(8) _ =(8) _ -(8)
"‘(1'1) = ¥az T OF33 T My

4 2,1 4 1 3 ' 5.2
= a [35-—5:5 +-2—4~z -(lﬁz--é-z)51nz—(35- 5z )cosz]
1@ @ _ @ (@
31 T Fgp TTF13 T Ty
4 2 3 5 2. . : I 3
= a [ZOZ. -3 - (35 - >z }sinz + (15z - . % ) cos z]

A

" "We shall reserve the discussions of this approximate solution until after we

- obtain the exact solution. "For later reference we shall rewrite the displacement-
1 x

slope vector as !

ia . The corresponding transfer matrix Mij(z) is, then,
Yi

Za



1taA+a’B4a’C4a D

2
M = aF +a’Fta’G+al
I
% (At+taM+ azN+ a30_)
where

A=l-cosz

E-z=singz

I=8inz =-z+2ginz-zcosz
i

st
T=sinz-=zcosz

—

=-]l+zsinz+cosz

—{1+a.J+a. K+a L)—- -

1 2 -
B:(_’w-zz J~zsinz-~zcosz

F=23-3ginz+zcosz

M=2~z8inz-2cosz

2. -
Q=(-4+2 M+ zsinz+4cosez P=(3z-
ik

. .
2faz+a J¥ a.3P + a.4L}
1+ aR + aZB + ajs + a.éD
2(a2M+ aBQ + 340)

2 3 4
aT+a F+a U+a H

:

1
&

U=-4z+ (10--?- zz)ainz+'(:é'z+-]; z3) cos z

2 T
i

|
fo

{

(NOTE:
in this paper, _),,

3 } ~».—,.‘i._.-,.

§ g

2
ak ~a F +-a3G-a4H
%——(A—aM+azN- a30)
1-ah+ a’g-alceatpd

2
-'%{I-a..T+a K- aBL)

C=(10- %zz)—iiz sinz ¥ (10{-—1— zzlcos %

2

G={6z- ézsl-l-(—lﬂ-{- X zz}sinz+4 Z €cos z

2

1 2

3

z }-

K= -3z+(6——é~z }sin z - 3mcos

N=(6 - —;—. z2)—3 z sinz (-6 + -;'- zz'}cos b4

4sinz + zconz

The capital letters A to U used here should not be con.fused W1th gimilar ones used elsewhere

L2 3 4
ZaM-a Q+anQ}
2
aT-a F+.a.3U-a4H
2{az - aZJ’+ asP-a4L)

i~ ak+a2}3 - a3S+a4D

L=(—102+iz3]+(20—2z2) sin !

6
2

O=(30-22 )+(—102+}-z3) s_in

6

1 2 I 3.
S-(—lq+-zz )-!-(6.2-—6—2 Jsin
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IV. Exact Solutions
| Multiplying.the second of (16) by i and adding to the first we obtain
ZW =2 e ? zx | : ‘ (29
where Z =x + i-y. Simiiarly we can obtain the complex conjugate equation
Z#b ca e %z : | | - (30)

' Solving (29) for Z% and. differentiating with respect to z twice we get

Z#N = %(z_'!" - 28zt . ZM)e (31)
Combining (30) and (31) we get
Zhu L 21 Zm o Z¥ - a®z.=0 , - (32)

a linear equation with constant coefficient. The index equation

’ 2
né-Zio.S—uZ-a =0

or
2 2
a {a-1i) =a

gives the four roots

a:%(lfVl tda) | " (33)

We shall be interested only in the case when all four roots are purely imaginary so
that the motion is purely oscillatory.  This means that we shall limit a so that
1

1
-x< a< g (34)

The solution can now be written as

o i i i
. 32’(1+ /_1,+4a)z —2—(1_.‘}1-5-43, =z Z(l+3}1-4a A —2-(1-1)1-43. Z
e +Z,e +Z,e + Z4 e (35)

Z:ZI 2 3



 ANLAD-55 '  _14- ' | ' Feb. 18, 1959

. where the 4-..corhple;_c.‘cqnstants 'Zl Z 2 2.3 and Z 4 are. however, not all independently

. arbitrary. Substituting (35) in the second order equation (29) or (30) to get the 2
complex relations between Zl ZZ Z3 and Z4, ‘expressing these complex constants
 in component forms (with 4 real arbltrary constants) such that these relations are

:-identiéa.l',ly' satisfied, then taking‘the real and the imaginary pé.rts of Z we obtain

cos —(1+71 + 4a) cos l-%{l-‘l/l'+ 4a)

%= A - +

1+J/1+4a 1-7/1+44a

_ ’si.n';(l +/1+ 42)  sin ;(1-'1/1+4a.)—
-B - .
L 141 +4a 1 31-,/1_-_}-_4a
- A .
cos = (1 +1 - 4a) - cos ; {1 -/1 ~ 4a)
+C . - ~
- 14+7/1- 4a 1-J1-42
o sin---'z- (1+91 - 4a) sin % (1 -9/1 - 4a) "
-D -
| 1+ 41 -4a 1-41-4a J
- (36)
sin —(1+g/1+4a)  sin ——-(1 -yl +4a)
¥y = A +
1+71 4+ 4a 1-/1+4a
‘ A
.5 cos = (1 +/1+4a) | cos ~(1-z/1+4a)
141 +4a 1~|$1+4a
- . Z . =
o sin 3 (1 + 41 -4a) | osin g (1-]/1-4a)‘l
| 1+fI-4a 1-J1-42 J
[cos —(1+;)1 4a) cos %(1.-;/1-4a)']
+D
' T +41-4a 1 -1-42 l
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These are the exact solutions of (16). The most convenient manner to present
the solution is, égain, to write it in the matrix form (23). To do this, we first
express the constants A,B. C, D in terms of'x(z=0), x"z=0), y(z = 0), y'(z=0).

" The coefficients of these 4 quantities in the expressions for x, x', y, and y' are

then the matrix elements of Mij' If we write the vector xi as ’

2a (37)

the matrix Mij is
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sin Y
sin

V1 ~4a 2

_ z
+cos Y cos >

sin ¢ o5 2
l1-4a 2

.,z
cos Y sin >

ﬁ+4a

-(cos ¢~cos Y)sin %

sin

-16-

. 7
-CcOSs cl) s1In -Z

+ [__..Q_Sin - (1-43.)———-——] cos-g- 2% cos ;—

||1+4 a

||1 +4a

sin . z
gin 5
\/1 +4a

z
+ cos Y cos 5

sin

fl-4a

sin —(1-4a}

+ (cos ¢ - cos V) cos

z
cos Y sin =
2
sin
- cos —

zZ
3/1+4a 2

.,  Z
sin =

2

2

Jl+4a

___?_sin sin —;-
111 +4a

o] ™

s1n ? Sin
fl+4da :

%
+ cos ¢$.Ccos —
¢ z

L

Feb. 18, 1959

" sin Y sin . z
-1+ 4 sin =
[/rfa a2l 71+4a] 2

4
+{cos Y = cos ¢} cos =

.j',

. Z
=C03 ¢ sin -2-

sin Y

Jl-4a

Z
co8 =

(cos LIJ - cos %) sin —;—

} [sin¢
1){-43.

- (L +4a)'_ii3_1_?;
Vl+4da

. Z
COS ¢ COB 5
sin ¢, z
sin =
2

+——-—
¥l-4a

co 2
*2

(38)
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-where ¢z %7/1 +4a, and Y= -‘-;—7/1 - 4a. It can now be checked that the

matrix elements given in (38)" when expanded in power series of "a' agree'with
those given in (28).

A further simplification in the representation of the solution in matrix

form is accomplished by choosing at each location z a set of quasistationary co-

ordinate axes X and Y rotated about the z-axis from the x and y axes so as to be

‘aligned to the orientation of the helix at that z location. These X and Y axes are

to be quasistationary in the sense that once they are aligned at a given location = 7
they are, then, assumed to be stationary as z takes on increments instead of to
be following the rotation of the helix. This means that the relations between-X,

X', Y, Y, and x, %', y, y' are given by
z .z
ﬁ{—xccsz-%ymn-z

z . Z
X'=x*cos < +vy'sin =

2 2 X .
, {z in units of ) : 3
4w (39)
. B z _
!Y-—-xsnli +ycosz

= «x' sin % + v* cos -%

&

or
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z . B
X c:os 3 0 51n-2- 0 <
. Xt 0 C_OS -;- 0 _gin 'Z' x!
Za: B 2a
= . Z z '
Y -sin 0 cos < 0
! 2 1
'Za‘ 0 -sin 3 0 cos > 5 _
Ay Z
0 sin = 0 x
2 !
< 2 .z 2a
cos > 0 sin
) (M, ) ¥
0 cos % 0 1 .
v
2a
- Z 0 cos z
sin 3 >
x
xl
b {40}
1
2a
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The elements of Nij are given by

$in _(1_43')7511141 ' sin

cos ¥ i+ da Jf-4a JI+4da .

cos Y - cos ¢

gin ¢

‘cos & 0
_ 1-4a

:
]

cos ¢ - cos { v cos ¢ -Mﬁli‘éa) sin ¢
1-4a I}l+4a-
sin sin
- : - cos ¢

- (41)

V. Discussions

A. Radial Oscillations

Let o, 2nd o be the phase shifts per periodic length -—%~ , of the two

1 2
nqrma.l modes of radial oscillation. Then we have, in general,

1 1
cos o + cos v, =5 Trace [M(z = ZTr)] =-— Trace [N(z = 2 v)—] {(42)

where the negative signinfront of Trace (N) corresponds to the fact that at
'z = 2« the local quasistationary coordinatesX and Y are just the inverse of the
initial fixed coordinates x and y.

In our present case it is obvious that o, = ¢ v. Therefore, we have

17 92%
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ces o

-'-i—-""Trace [M(Z = 2“’)] = - ';i" Trace [N (== Zw)]

-—%—-(cos 1r1}l+4a + cos 1r1/l—4a)

(43)

2 4 6
1-211'2a.:_a-‘/(10- é-n'z)-n' a +0{a)-

where the next to the last expression is the exact result obtained from (41), and the
' 5
last expression is the approximate result correct to a” terms obtained from (28)

and can be further simplified to give
' , 3 5
c=27a + 5wra + O (a") (44)
It is interesting to compare these results with those for a conventional linear-

 alternating -sectioned quadrupolé magnet system with the same field gradient and

: ' A
the same repetition length -%-— (length of each magnet = e ). They are

Exac _
cos u-s = cosh w J_a_. cos w ﬁ - {45}
- Approximate ‘
B 2. 6
: i 4 ¢ - 3 5
G = a e - &~ + 0 (a)
s 43 3543
o 40 3 5
= {(Zra)+ —————— (572 )+0O(a’)

243 1575 43
{46)
/ST 3 5
- &9069 (2raj)+ 0.4487 (5wa”) + O (a)

i
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" The comparison shows that for a << 1 (in practice, for protons with energy
above 1 Eev it is very difficult to get values of a > 0.0l) the strength of focusing
{measured by ¢} is linearly proportional to 'a' in both cases, being about 10%
larger for the ‘helical guadrupole system. The exact ¢ and T for large values
of "a'" are plotted in Fig. 2, where it can be seen that the advantage of stronger
'focusing of the helical quadrupole system becomes more prominent for larger
values of a. |

B. Stigmatic Imaging
. " “For a point source located on the axis at a distance p (in units of 4X )
, ™

from the entrance {z=0) to the helical quadrupole magnet,

! X'o xo
x0=px.é.-.Zap-‘-2-;£P P
o _ T 7
= t-2ap 55— =P
Yo PY Za ~— 2a
At the exit of the magnet {(z = z) we then have
xl Yl
S(M,.P4+M.) 5— + (M, P+M )5
* = (M) 120 Za T W3 14’ 2a
' xt, y!
b4 Q (@]
5= My P+ My} 5=+ My P M) —-
x' Y' (48)
Q [¢]
Y= (Mg Pt M) 5 My, P M) —=

- x | y!
v _° o
5= (M, P+ M) 5= v (M P M) 57
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If a point image is to be formed at a dista:.nce (negative} q (in units of e )

from the exit we must have both

. Yo
_ x (M) P+ M)+ (M3 P+ M) =7
Q = 2aq= —_—= - : i .
x 7 - ; i (49)
2a ) o
i (M21P+M22)+ {M23 PfM24) :
~and 1
Yo
_ y (M) P+ Myl + (Mg P oMy, ) <7
O=2aq-= - = i ' T (50)
2a i D vVt D+ M ) °
\IVJ.41J- +}v{42; v \M43 - +a£44’ x;)
¥e -
be independent of x'O and equal to each other. These conditions when written
out are °
My P+ M, Mz P+ My, : |
=0 (51)
M21P+M22 M23._P+M24‘
M31P+M32 1\.4[3:,’3:‘-1*1\&34
' = 0 ' (52)
M41P+M42 M43P+M44
. and
M11P+M12 1~/I312E5‘+M32
=0 (53)
'MZlP-f-MZZ M41P+M42
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‘It is clear that we could just as well have based the same argument and reasoning
on the X Y coordinates at the exit, instead of the original x y coordinates, and 7

. would have arrived at a set of conditions identical te (51}, (52) and (53) except

that the matrix elements Mij-are replaced by the corresponding simpler elements
""Nij' “Furthermore, these con.ditions‘ are not all mutually inde_pendent. As a matter
of’fact, direct substitutions of MIJ or Nij into {51} and (52) or ﬁheir equivalents

- show that they are identical conditions. Thus we are left with only two conditions,

slay., (51) and {53) or their equivalents in the X Y coordinates.

;
N, P+N, N PtN,
N, P+N,, N, P+N,,
Ny, N , N Nig N, N3 Ny, Ny
= ' P + +. P+
Ny Nas Ny Ny Ny, Nos Naz Nagf
(54)
_ 2
T AP°+BP+C=0
N, P+N, Ny P+ Nj,
Ny P+N,, N, P+N,
N R
N; Ny 5 N; N3 N Ny 2 Niy
= ' P + + P+ N N
Ny Ny Ny Ngp N, Ny 22 42

2
= aP + P+ y=0 _ (55)



hal
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. Straightforward computation. gives

A = sin ¢ sin Y '+cos¢cos¢-1

Jl+4a Yl-4a

ﬁ B = 211_43, ¢ zl.l-t-éa. _ _ (56)

- - sin sin \p
\ ﬂ1+4a 3'1 -42a
N :
. . 2 .
a=({L-4a) . 8in ¢ sin [ Sng -~cosdcos Y ¥ cos Y

: 1Jl+4a. z’l -4a I’l+4a

= ZM—COSQJ- __Si_n_i_ cos 1{J+_.S_1_I_1..}.P_. cos ¢ (57}
{!1-’4a. 111+4a. 1)1-43

-

_ [ sin Y

Jl-éa
Eliminating P from (54) and (55) we get
, :
" (AyYy-Ca) -(BYy-CB}(APp-Ba)=10 (58)

The magnet parameters a and z should be adjusted to satisfy {58). The corres-

ponding values of P and Q are then given by

e L Ay-Ca '
P = - 28TBa | (59)

. and




TABLE 1 {Continued] _ \*.
- 2 =.0075 | a = .0050 a = .0025 a.=.0010
b2 P = -Q z P=-0Q. z TP =-D z P=-0Q
6.285307  42.4332 . 6.284128  63.6616 . 6.283421  127.32 - 6.283223 318,310
12.570611 21.2400 12.6568255  31.8440 12.566842 . 63.668 12. 566446 159.158
18.855908  14.1857 18.852381 - - 21,2466 18.850263  42.454 '18.849669 106.109:
25.141197 10. 6659 25. 136506 15,9530 25.133684. 31.850 25.132892 79.5854
31.426474 8.5594 31.420628 12,7808 31.417104 25.4893 31.416115 63.6720-
37.711738 7.15933 | 37.704747 . 10.6691 37.700525 - 21,2506 37.699338 53.0639 .
43.996986 '6.16254 43,988863 9.16344 43.983945 = 18,2244 43,982561 45,4873
50.282218 5.41748 | 50.272974  8.03633 50.267365 15,9560 50.265784 39.8054
56.567432 4.83993 56.557082 7.16151 56.550784  14.1927 56.549007 . 35.3864
62.852629 ©  4.37935 62.841185 6.46317 62.834204 12.7832 62.832231 31.8518
- 69,137808 4.00356 69.125283 5.89310 69.117623 11.6308 69.115454 28,9605
75.422970 3.69113 75.409377 5.41911 75.401041 10,6712 75.398677 26.5510
81.708114 3.42720 81.693464 5.01893 81.684459, 9.85987 - 81.681899 24.5124
87.993243 3.20119 87.977548 4.67666 87.967877 9.16517 87.965122 22.7656
94278358 3.00532 94. 261625 4.38064 94, 251294 8.56363 94, 248345 21,2520
100.563458 2.83377 100. 545697 4.12210 100.534711 8.03783 100.531568 19,9276
106, 848549 2.68209 | 106.829764 3.89435]  106.818127 7.57435 106.814791 18.7594
113.133630 2.54685 | 113.113827 3.69220 113.101542 7.16283 113.098014 17.7212
119.418704 2.42531 119.397884 . 3.51153 119.384957 6.79502  [119.381237 16,7926
125,703772 2.31530 | 125.681936 3.34905 125.668372 - © 6.46436 125. 664460 15.9570




TABLE I

a = 0.100 a = 0.075 a = 0,050 3 =0.025 ® = . 0100
Z P=-0Q Z P=-0 zZ - P=-0 z P=-0 z P=-0
6.694600 3.03366 6.505087 4.14561 6.379246 6.30680 6.306856 12,7046 6.286958 31.8201
13.363289  1.60359 12.993933  2,19787 12.753889 3.27237 | 12.613353 6.42544 12.573906  15.9411
16.077000 27.3319 19.484770  1,49233 19.124186 2.26429 | 18.919257 4.35577 18.860835 10,6613
20.150791  0.959306 22.286382 16.3760 25.494156  1.73442 | 25.224506 3.33055 25,147738 8.03042
21.241043  1.13447 26.027331  1.03764 31.870373 1.37670 | 31.529191 2.71664 31.434606 6.45846
26.551304  0.354542 27.553590  1.46147 34.769627 Ll.1726 37.833513 2.30350 37.721437 5.41520
32.153693 13.7312 32.830458 0.609239 | 38.264421 1.08816 | 44.137742 2.00136 44, 008225 4.67333
38.839611  2.55487 33.064309 0.613502 | 40.150161 1.86622 | 50.442208 1.76567 5@, 294972 4,11919
 45.514306  1,44739 38.575027 0.182324 | 44.703919 0.819774| 56.747313 1.57181 56.581677 3.68963
48.232277 _ 9,02031 44.571713  8.29756 45.885898 0.989103 | 63.053571 1.40495 62.868343 3.34674
52.383060  0.836662 51.068602 2.87370 51.621636 0.545152| 66.064613 24,0460 69. 154972 3.06642
53.102608  0.897009 57.554528 1.79777 57.357373 0.237102| 69.361681 1.25551 75.441569 2.83264
5B.412869  0,253284 64.061050 1.25777 63.158220  61.4439 71.889385 - 4, 07568 81.728140 2.63429
64.306236  6.93407 66.128616  2,65409 ‘69.537146 5.74613 | 75.672657 1.11683 88.014689 2.46347
70.983704  2.21306 70.675713  0.835261 75.911255 3.12774 | 77.880168 2.38452 94.301226 2.31440
77.671440  1.30763 71,639335 0.947180 | 82.2B1294 2,19730 | 81.988092  '0.983919 | L00.587754 2.18274
79,.653912 . 2.66313 77.150053 0.382827 88.651547 1.69294 83.870950 1.62432 106.874284 2.06520
84.680014 0.707422 78.326204 0.330027 95.028907 1.34546 88.310676 0.852832 113,160824 1.95923
84.964174 0,714809 82.660771 0.0091879| 97.928097 9.40616 | 89.861732 1.17660 119.447381 1.86282
90, 274435 0.159285 89.139964 4.25078 101.425828 1, 06074 94.645392 0.720221 125,733967 1.77434
96.456825  4,69152 95,629128  2.22435 103.243272 1.73474 | 95.852515 0.870192
103,.127820 1.95281 102.119465 1.50617 107.873079 0,792440]101. 002663 0.583188
109, 837907  1.17844 104.920852 18,3706 108.9790G9 0.932999{101.843297 0.638380
111.515477 1.85132 108. 659457  1.04857 114.714746 0.510045 |107.408714 0.439157
116,825739 | 0.567215 110.214361 1.49942 | 120.450483 0.209432|107.834080 0.449355
117.130509 0.560886 115.446924 0.621560 | 126.316433 30.7380 [113.824862 0.285579
122,136001  0.0695822 | 115,725080 0.627745 113.956865 0.284962
128,605165 3.58114 '121.235799  0,191971 119.815643 0.136053"
' : 127, 206337 8.76226 125,822272 252,444
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M, P+M - -
e | Nl ¥ | o B (60)

MZl P+ Ma2

.' ‘However, (760_) may not be necessary at all. "From symmetry arguments one may

: ifnmed_ia.tely come to the conclusion that Q = -P. Equation (58) is solved numerically

' on ‘Ehe IBM-704 (Fortran program ivfitten by E. A. C:rosbie). The reéults.#re given
in Table 1. "For a given value of Ma" there exist infinitely many values for the length
'z of the hehcal quadrupole- magnet which will satisfy condition (58}). 'Tﬁose smaller
tha.n z= 407 are glven in the ta.ble together with the corresponding object and
ﬁmage-dlstances P a.nd'Q. ‘One observes from this table that for small values of
é (< 0.05) fhe roots of (58) are approximately given by 2nr {n =1, 2, 3, e e e )

As a matter of fact, when the expanded forms (28) for the elements of M i are

: -'.substztuted-ln (58) (with M, , repla.c1ng N ) we see that (58) is satnsfled by z = 2nw

- to terms of order a.8 ~while Jthe lowest non-identically vanishing terms on the left |

hand side are of order a_6. "The lowest order non-zerotermsin A, B, and C for

=.2n% are
A=4n21'rza.2
B=-4nwa o | N (3)
2.2 2 | |
.C=—8n T oa.

which when substituted in (54) and (60) give for P and Q

. ~ 1 | o
= - Do ——————— =2 2
P Q —y for z nt (2nma <& 1) {62)
" ‘However, this approximation is valid only when 2 nrwa <& 1. This checks also

. _,"with"'l_:he values given in Table 1. For numerical computation *a" is related to

- the rha_gnet particle parameters by

2 | | , |
A G |4 942x10° a (kilogauss cm) ' ' (63)

) = B
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~The rg-ézi:‘.é.ral relations 'rbetween the object and image distances in real units
' p and q, and the parameters P and' Q are

h.-‘81ra_" A  @8wa

B £ i .2 o (64

N '. V*Th.eA approximate formula (62) gives, in real units

fz =n - |
(2.2 - sl
. and ﬁ ' ' : g : L - -‘ .-(-65)
P9 A (Z2nmaZ 1) V |
LS _‘JL ' 8n1r2_a-2 - ‘

_ Aé an e_xa._rnpl‘e,‘ for 12.5 Bev protons (n = 14.288) and A\ = 30 cm, a high but still. -

re356nab1e véll;e of G = 39. 23 kilogauss/cm will give a = 0.005. With these para-
meters a helical magnet of length — = 10.00l5 (Table 1) or z =10.0015 A< 3.0 m

A
Sy .o P _ 4. 3.3490 } R .
will give X% Ba % 0.005 ~ 26.65 (Tablle lYor p=-q=26.65A1=8.0m.

The a.pproxima.fe formulas (65) give ' {- =10,0 (n = 20) (a ‘good alﬁproﬁmation be-

ca_.h.se the condition a = 0.005 <€ 1 is satisfied) and
P._ 8 0 21 = =25.330r p = ~-q = 25.33 A = 7.6 m. (not a very
A X 160 %% (0.005) |

good-appx;oximation because the condition 2nwa = 0.6283 <¥ 1 is not satisfied).
“This -examplé shows that even with quite high magnetic field gradient available

large spaces are required to image a beam of 12.5 Bev protons.





