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Abstract

Since the ground-breaking work of Baker and others, the analysis of series expansions using Padé approximants has been
an essential technique for calculating critical properties. In this paper, we present a new approach to the analysis of series
expansions based on a Bayesian analysis of the information contained in the series. This new method is capable of determining
critical properties with greatly improved accuraty1999 Elsevier Science B.V. Open access under CC BY-NC-ND license,

1. Introduction panied by reliable error analysis. Second, these meth-
ods exhibit steeply diminishing returns: after a certain
The analysis of series expansions was perhaps thepoint, the inclusion of more terms in the series expan-
earliest approach to the accurate calculation of critical sions tends to produce relatively little improvement,
exponents in the theory of phase transitions. With the even though an enormous computational effort is re-

advent of computers, it became possible to generatequired to calculate each additional coefficient. Third,

expansions of the partition function or the magnetic
susceptibility in powers of the inverse temperature
or magnetic field [1]. The coefficients of the leading
terms can be obtained exactly for various models
of interest, with the number of such terms ranging
from six to fifty. The task was then to extract the
information about the locations and exponents of
critical singularities contained in those coefficients.
The Padé approximant method [2,3] is the best
known of a variety of numerical methods that have
been developed for this task, although Neville ta-
bles [2], differential approximants [2], and other meth-

certain types of non-analytic behavior, such as con-
fluent singularities and logarithmic corrections, have
proven particularly difficult to deal with. This is es-
pecially serious since all critical phenomena involve
confluent singularities as corrections to scaling.

In this paper, we present a new method for analyz-
ing series expansions that overcomes many of these
problems. The method differs qualitatively from stan-
dard approaches in that it produces a Bayesian proba-
bility distribution to describe the information about the
parameters of interest that is contained in the known
coefficients [4]. The width of this probability distri-

ods have also proven useful. The results have beenbution provides an estimate of the uncertainty in the

very good, with the determination of up to three or
four significant digits in the critical exponents [1].

calculation.
A unique consequence of the Bayesian approach is

Despite their achievements, Padé approximants andthat all available information concerning the critical

the other standard methods have three problems. First,properties of the system can be incorporated explicitly
their convergence properties have never been com-into the calculation, whether the information comes
pletely understood, and they give results not accom- from duality conditions, finite-size scaling of Monte
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Carlo data, or Monte Carlo renormalization group cal- The assumption thaf (x) is analytic is expressed in
culations. It is also possible to combine the informa- terms of the coefficients of its series expansigp,
tion from two or more series in a straightforward man- We assume that the magnitudes of the coefficights

ner. decrease with, and can be described by a distribution
fo ~ N(0, (Bs" /n1)?). 3)
2. Method An example of an analytic function that satisfies this

assumption would beB exp(sx). We have assumed

Any particular functionF (x) has a power series  that B ands are independent and both are distributed
expansion about 0 whosgh order coefficient isi, . exponentially, so that, for example,

Given the firstN coefficients of this series, the goal 1 50 4
is to determine location of a singularity (the critical P(B) = (1/Bo) exp(—B/Bo), B >0. )
temperature) and the value of the exponents of that We have found that the results are only very weakly

singularity. dependent on the values we chooseBgrandsg, and
Bayesian analysis is based on interpreting “proba- we have usually choseBy = so = 1.

bility” as a description of the knowledge of the in- To write the likelihood explicitly, we expand the

vestigator, instead of the more usual (in physics) in- singularities in Eq. (2) to obtain

terpretation in terms of frequency of occurrence of an 0

event [4]. The analysis begins with Bayes’ Theorem, Z AL = yp)® =3 dyx", (5)

POIX) = P(X|0)P(©)/P(X), 1) m=0 n=0

where# indicates the set of parameters to be deter- Where the sefd, } is a function of the set of parameters
mined (critical temperature, critical exponents, etc.), {Am>Ym,@m}. The likelihood is then given by the

and X indicates the set of experimental darg|X) simple form

is the conditional probability distribution of the para- 0

meters), given the experimental results, P (X|6) is P(X10) =[] 8(an — (dn + fi)). (6)
known as the likelihood and is the conditional proba- n=0

bility of X given#, viewed as a function of. P(6), wheres is the Dirac delta function. Finally, we include

called the prior distribution, represents our knowledge any information that we have about the theoretical
of the parameters before we include the experimental parameters. In most of the tests we have carried out,
resultsX. we have assumed very broad Gaussian distributions
Although “data” in Bayesian analysis usually refers for all of the parameters being investigated, so that
to experimental results with accompanying experi- the results were not greatly influenced by variations
mental errors, we have extended the concept of datain these assumptions. We also investigated the effect
to haveX represent the leading series expansion coef- of locking certain known parameters, like the location
ficients, which can be calculated exactly. Since there of the phase transition in the= 2 Ising model, to the
are no errors in the data, this produces a singular like- correct values.
lihood, which is rather unusual in Bayesian analysis.
Our analysis exploits the fact that we know a great
deal about the functions we are investigating. Our first 3. Test series
assumption is that the function can be represented as a
sum of non-analytic terms plus an analytic remainder.  To demonstrate the Bayesian method, we present
As an initial approximation, these non-analytic terms results for three test series, along with a comparison
can be a sum of singularities, although the analysis can With the Padé approximant method. The first test series
be extended to products of singularities, logarithmic is a simple branch point plus an exponential function,

corrections, etc. Fix)=(1—x)"%2 4 exp(—x). @)
o
F(x)= Z Ap(L = ypux)® + £(x). ) Table 1 shqws Fhe re'sult's of the usual Ffade' a}naly5|s
of the logarithmic derivative of1(x). For simplicity,

m=0
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Table 1 Table 2

Padé results foFy (x) Bayesian analysis results fdry (x) where form of singularity is
Order [N, D] Location Exponent Al —yx)77
17 [8.,8] 1.00002 15018 Order y y
19 [9,9] 0.99996 1.4963 10 1.0006(4) 1.4994(5)
21 [10,10] 1.000007 1.50092 11 0.999993(5) 1.50008(6)
23 [11,11] 0.999996 1.49969 12 1.0000008(5) 1.499991(7)
25 [12,12] 1.0000030 1.50053 13 0.99999993(5) 1.5000010(7)
27 [13,13] 1.0000022 1.50044 14 1.000000006(5) 1.49999991(7)
29 [14,14] 1.0000014 1.50033 15 0.9999999995(4) 1.500000008(6)
s1 [15,15] 1.0000007 1.50022 Exact 1 15
= - Lo Table 3

Padé results fofF(x)

only the diagonal terms in the Padé table have been

Order [N, D] Location Leading exponent

shown. The usual notatidiN, D] has been used, with
N giving the order of the numerator of the Padé ap- 17 (8.8 0.99978 1.4589
proximant and D giving the order of the denomina- 19 [9.9] 0.99975 1.4570
tor. Including the term lost in the differentiation, the 21 [10,10] 0.99985 1.4643
[N, D] Padé result requires the original series to order 23 [11,11] 0.999989 1.4685
N+ D+ 1. Table 1 uses between 17 and 31 terms. The
Padé results for this simple example are very good, 25 [12,12] 0.999918 Larir
finding 7 significant digits for the location of the sin- 27 [13,13] 0.999940 1.4749
gularity and 4 for the exponent. 29 [14,14] 0.999960 1.4783

Instead of a Padé table, our method only produces 31 [15,15] 0.999959 1.4782

one result, a probability distribution, for a given
number of terms. The values given are the values of Exact L 15

andy at the maximum of the probability distribution.

Table 2 shows the Bayesian results for the same Table 4

function, Fi(x). The error estimates are standard Bayesian analysis results fdf,(x) where form of singularity is
deviations of the probability distribution, obtained A®=Y07™+Bd—y0)77

from the second derivative. The deviation from the Order y Y1 2

exact answer is usually within two or three standard 13 0.9997(2) 1.523(14) 0.96(3)
_dewahong Table 2 uses petwe_en _10_and 15 terms 1.00003(2) 1.497(2) 0.890(6)

in the series. No logarithmic derivative is performed,

so the amplitude of the singularity is determined as 1>  0:999996(2) 1.5004(2) 0.9013(7)
part of the calculation. The Bayesian results have an 16 1.0000004(2) 1.49996(3) 0.89985(10)
unprecedented accuracy. It should be noted that the; 0.99999996(2) 1.500004(3) 0.900016(10)

highest order series useq in Table 2 is 15, where the 18 1.000000003(2) 1.4999996(3) 0.8999985(10)
lowest order series used in Table 1 was 17.

Tables 3 and 4 show the Padé and Bayesian results!® ~ 0.9999999997(2)  1.50000003(2) ~ 0.90000013(9)
for the more difficult case of confluent singularities, 20 1.00000000002(1)  1.499999998(2)  0.899999990(7)
again with an added analytic term,

Fo(x)=1—-x)"%24+ 1 —x)"Y1% L exp—x). (8)

The Padé results in Table 3 give only the leading well determined, but the value of the exponent is
singularity. The location of the singularity is rather somewhat low. The Bayesian results in Table 4 give

Exact 1 15 0.9
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;2?1'2 :nd Bayesian analysis resultsfgtx) where form of singularity for Bayesian analysisd$l — yx) ™" [1— bIn(1— yx)]
Padé results Bayesian analysis results

Order [N,D] Exponent Order y Ab, amplitude of log
17 [8,8] 1.7112 10 1.485(9) 0.95(3)
19 [9,9] 1.6907 11 1.503(2) 1.009(5)
21 [10,10] 1.6945 12 1.4996(2) 0.9986(9)
23 [11,11] 1.6848 13 1.50004(3) 1.00018(12)
25 [12,12] 1.6787 14 1.499995(3) 0.999978(115)
27 [13,13] 1.6736 15 1.5000005(4) 1.0000024(16)
29 [14,14] 1.6683 16 1.49999995(3) 0.99999977(16)
31 [15,15] 1.6620 17 1.500000004(2) 1.000000021(15)
Exact 15 Exact 15 1

both singularities, with the location, exponents, and (tricritical points) [1]. We are also able to include two

amplitudes determined very well. or more series in the same calculation, so that we will
The final example, shown in Table 5, uses a function be able to determine a universal critical exponent from
that includes logarithmic corrections, series for several different lattice. As new results be-

_ comes available from any source, such as Monte Carlo
Fa(xr) = (1= "% 1= In(1—x)) + exp(—x). (9) simulations, the new information can be used by our
The Padé results in Table 5 show estimates for the method to sharpen the analysis of the related series.
exponent that are much too high. Even worse, it We believe that the method will also be useful for
looks as if it is converging rather well to a value of problems in related areas, such as lattice gauge the-
about 1.66, with no hint that it is quite wrong. The ories for quantum chromodynamics (QCD).

Bayesian results in Table 5, on the other hand, obtain
the correct value of the exponent, and the amplitude of
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