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Abstract

Since the ground-breaking work of Baker and others, the analysis of series expansions using Padé approximants has been
an essential technique for calculating critical properties. In this paper, we present a new approach to the analysis of series
expansions based on a Bayesian analysis of the information contained in the series. This new method is capable of determining
critical properties with greatly improved accuracy. 1999 Elsevier Science B.V.

1. Introduction

The analysis of series expansions was perhaps the
earliest approach to the accurate calculation of critical
exponents in the theory of phase transitions. With the
advent of computers, it became possible to generate
expansions of the partition function or the magnetic
susceptibility in powers of the inverse temperature
or magnetic field [1]. The coefficients of the leading
terms can be obtained exactly for various models
of interest, with the number of such terms ranging
from six to fifty. The task was then to extract the
information about the locations and exponents of
critical singularities contained in those coefficients.

The Padé approximant method [2,3] is the best
known of a variety of numerical methods that have
been developed for this task, although Neville ta-
bles [2], differential approximants [2], and other meth-
ods have also proven useful. The results have been
very good, with the determination of up to three or
four significant digits in the critical exponents [1].

Despite their achievements, Padé approximants and
the other standard methods have three problems. First,
their convergence properties have never been com-
pletely understood, and they give results not accom-

panied by reliable error analysis. Second, these meth-
ods exhibit steeply diminishing returns: after a certain
point, the inclusion of more terms in the series expan-
sions tends to produce relatively little improvement,
even though an enormous computational effort is re-
quired to calculate each additional coefficient. Third,
certain types of non-analytic behavior, such as con-
fluent singularities and logarithmic corrections, have
proven particularly difficult to deal with. This is es-
pecially serious since all critical phenomena involve
confluent singularities as corrections to scaling.

In this paper, we present a new method for analyz-
ing series expansions that overcomes many of these
problems. The method differs qualitatively from stan-
dard approaches in that it produces a Bayesian proba-
bility distribution to describe the information about the
parameters of interest that is contained in the known
coefficients [4]. The width of this probability distri-
bution provides an estimate of the uncertainty in the
calculation.

A unique consequence of the Bayesian approach is
that all available information concerning the critical
properties of the system can be incorporated explicitly
into the calculation, whether the information comes
from duality conditions, finite-size scaling of Monte
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Carlo data, or Monte Carlo renormalization group cal-
culations. It is also possible to combine the informa-
tion from two or more series in a straightforward man-
ner.

2. Method

Any particular functionF(x) has a power series
expansion about 0 whosenth order coefficient isan.
Given the firstN coefficients of this series, the goal
is to determine location of a singularity (the critical
temperature) and the value of the exponents of that
singularity.

Bayesian analysis is based on interpreting “proba-
bility” as a description of the knowledge of the in-
vestigator, instead of the more usual (in physics) in-
terpretation in terms of frequency of occurrence of an
event [4]. The analysis begins with Bayes’ Theorem,

P(θ |X)= P(X|θ)P (θ)/P (X), (1)

whereθ indicates the set of parameters to be deter-
mined (critical temperature, critical exponents, etc.),
andX indicates the set of experimental data.P(θ |X)
is the conditional probability distribution of the para-
metersθ , given the experimental results,X. P(X|θ) is
known as the likelihood and is the conditional proba-
bility of X givenθ , viewed as a function ofθ . P(θ),
called the prior distribution, represents our knowledge
of the parameters before we include the experimental
resultsX.

Although “data” in Bayesian analysis usually refers
to experimental results with accompanying experi-
mental errors, we have extended the concept of data
to haveX represent the leading series expansion coef-
ficients, which can be calculated exactly. Since there
are no errors in the data, this produces a singular like-
lihood, which is rather unusual in Bayesian analysis.

Our analysis exploits the fact that we know a great
deal about the functions we are investigating. Our first
assumption is that the function can be represented as a
sum of non-analytic terms plus an analytic remainder.
As an initial approximation, these non-analytic terms
can be a sum of singularities, although the analysis can
be extended to products of singularities, logarithmic
corrections, etc.

F(x)=
∞∑
m=0

Am(1− ymx)αm + f (x). (2)

The assumption thatf (x) is analytic is expressed in
terms of the coefficients of its series expansion,fn.
We assume that the magnitudes of the coefficientsfn
decrease withn, and can be described by a distribution

fn ∼N
(
0, (Bsn/n!)2). (3)

An example of an analytic function that satisfies this
assumption would beB exp(sx). We have assumed
thatB ands are independent and both are distributed
exponentially, so that, for example,

P(B)= (1/B0)exp(−B/B0), B > 0. (4)

We have found that the results are only very weakly
dependent on the values we choose forB0 ands0, and
we have usually chosenB0= s0= 1.

To write the likelihood explicitly, we expand the
singularities in Eq. (2) to obtain
∞∑
m=0

Am(1− ymx)αm =
∞∑
n=0

dnx
n, (5)

where the set{dn} is a function of the set of parameters
{Am,ym,αm}. The likelihood is then given by the
simple form

P(X|θ)=
∞∏
n=0

δ
(
an − (dn + fn)

)
, (6)

whereδ is the Dirac delta function. Finally, we include
any information that we have about the theoretical
parametersθ . In most of the tests we have carried out,
we have assumed very broad Gaussian distributions
for all of the parameters being investigated, so that
the results were not greatly influenced by variations
in these assumptions. We also investigated the effect
of locking certain known parameters, like the location
of the phase transition in thed = 2 Ising model, to the
correct values.

3. Test series

To demonstrate the Bayesian method, we present
results for three test series, along with a comparison
with the Padé approximant method. The first test series
is a simple branch point plus an exponential function,

F1(x)= (1− x)−3/2+ exp(−x). (7)

Table 1 shows the results of the usual Padé analysis
of the logarithmic derivative ofF1(x). For simplicity,
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Table 1
Padé results forF1(x)

Order [N,D] Location Exponent

17 [8,8] 1.00002 1.5018

19 [9,9] 0.99996 1.4963

21 [10,10] 1.000007 1.50092

23 [11,11] 0.999996 1.49969

25 [12,12] 1.0000030 1.50053

27 [13,13] 1.0000022 1.50044

29 [14,14] 1.0000014 1.50033

31 [15,15] 1.0000007 1.50022

Exact 1 1.5

only the diagonal terms in the Padé table have been
shown. The usual notation[N,D] has been used, with
N giving the order of the numerator of the Padé ap-
proximant and D giving the order of the denomina-
tor. Including the term lost in the differentiation, the
[N,D] Padé result requires the original series to order
N+D+1. Table 1 uses between 17 and 31 terms. The
Padé results for this simple example are very good,
finding 7 significant digits for the location of the sin-
gularity and 4 for the exponent.

Instead of a Padé table, our method only produces
one result, a probability distribution, for a given
number of terms. The values given are the values ofy

andγ at the maximum of the probability distribution.
Table 2 shows the Bayesian results for the same
function, F1(x). The error estimates are standard
deviations of the probability distribution, obtained
from the second derivative. The deviation from the
exact answer is usually within two or three standard
deviations. Table 2 uses between 10 and 15 terms
in the series. No logarithmic derivative is performed,
so the amplitude of the singularity is determined as
part of the calculation. The Bayesian results have an
unprecedented accuracy. It should be noted that the
highest order series used in Table 2 is 15, where the
lowest order series used in Table 1 was 17.

Tables 3 and 4 show the Padé and Bayesian results
for the more difficult case of confluent singularities,
again with an added analytic term,

F2(x)= (1− x)−3/2+ (1− x)−9/10+ exp(−x). (8)

The Padé results in Table 3 give only the leading
singularity. The location of the singularity is rather

Table 2
Bayesian analysis results forF1(x) where form of singularity is
A(1− yx)−γ

Order y γ

10 1.0006(4) 1.4994(5)

11 0.999993(5) 1.50008(6)

12 1.0000008(5) 1.499991(7)

13 0.99999993(5) 1.5000010(7)

14 1.000000006(5) 1.49999991(7)

15 0.9999999995(4) 1.500000008(6)

Exact 1 1.5

Table 3
Padé results forF2(x)

Order [N,D] Location Leading exponent

17 [8,8] 0.99978 1.4589

19 [9,9] 0.99975 1.4570

21 [10,10] 0.99985 1.4643

23 [11,11] 0.999989 1.4685

25 [12,12] 0.999918 1.4717

27 [13,13] 0.999940 1.4749

29 [14,14] 0.999960 1.4783

31 [15,15] 0.999959 1.4782

Exact 1 1.5

Table 4
Bayesian analysis results forF2(x) where form of singularity is
A(1− yx)−γ1 +B(1− yx)−γ2

Order y γ1 γ2

13 0.9997(2) 1.523(14) 0.96(3)

14 1.00003(2) 1.497(2) 0.890(6)

15 0.999996(2) 1.5004(2) 0.9013(7)

16 1.0000004(2) 1.49996(3) 0.89985(10)

17 0.99999996(2) 1.500004(3) 0.900016(10)

18 1.000000003(2) 1.4999996(3) 0.8999985(10)

19 0.9999999997(2) 1.50000003(2) 0.90000013(9)

20 1.00000000002(1) 1.499999998(2) 0.899999990(7)

Exact 1 1.5 0.9

well determined, but the value of the exponent is
somewhat low. The Bayesian results in Table 4 give
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Table 5
Padé and Bayesian analysis results forF3(x) where form of singularity for Bayesian analysis isA(1− yx)−γ [1− b ln(1− yx)]

Padé results Bayesian analysis results

Order [N,D] Exponent Order γ Ab, amplitude of log

17 [8,8] 1.7112 10 1.485(9) 0.95(3)

19 [9,9] 1.6907 11 1.503(2) 1.009(5)

21 [10,10] 1.6945 12 1.4996(2) 0.9986(9)

23 [11,11] 1.6848 13 1.50004(3) 1.00018(12)

25 [12,12] 1.6787 14 1.499995(3) 0.999978(115)

27 [13,13] 1.6736 15 1.5000005(4) 1.0000024(16)

29 [14,14] 1.6683 16 1.49999995(3) 0.99999977(16)

31 [15,15] 1.6620 17 1.500000004(2) 1.000000021(15)

Exact 1.5 Exact 1.5 1

both singularities, with the location, exponents, and
amplitudes determined very well.

The final example, shown in Table 5, uses a function
that includes logarithmic corrections,

F3(x)= (1− x)−3/2 (1− ln(1− x))+ exp(−x). (9)

The Padé results in Table 5 show estimates for the
exponent that are much too high. Even worse, it
looks as if it is converging rather well to a value of
about 1.66, with no hint that it is quite wrong. The
Bayesian results in Table 5, on the other hand, obtain
the correct value of the exponent, and the amplitude of
the logarithmic correction.

4. Future work

We are currently applying the Bayesian method to
the analysis of series for various models in statisti-
cal mechanics. In addition to the functions described
above, we are able to investigate more than one sin-
gularity, so that both ferromagnetic and antiferromag-
netic singularities are determined from the same cal-
culation. Future work will include the analysis of low-
temperature series and series in two or more variables

(tricritical points) [1]. We are also able to include two
or more series in the same calculation, so that we will
be able to determine a universal critical exponent from
series for several different lattice. As new results be-
comes available from any source, such as Monte Carlo
simulations, the new information can be used by our
method to sharpen the analysis of the related series.
We believe that the method will also be useful for
problems in related areas, such as lattice gauge the-
ories for quantum chromodynamics (QCD).
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