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Abstract: In a seminal work, Hawking showed that natural states for free quantum matter fields on

classical spacetimes that solve the spherically symmetric vacuum Einstein equations are KMS states

of non-vanishing temperature. Although Hawking’s calculation does not include the backreaction

of matter on geometry, it is more than plausible that the corresponding Hawking radiation leads to

black hole evaporation which is, in principle, observable. Obviously, an improvement of Hawking’s

calculation including backreaction is a problem of quantum gravity. Since no commonly accepted

quantum field theory of general relativity is available yet, it has been difficult to reliably derive

the backreaction effect. An obvious approach is to use the black hole perturbation theory of a

Schwarzschild black hole of fixed mass and to quantize those perturbations. However, it is not clear

how to reconcile perturbation theory with gauge invariance beyond linear perturbations. In recent

work, we proposed a new approach to this problem that applies when the physical situation has

an approximate symmetry, such as homogeneity (cosmology), spherical symmetry (Schwarzschild),

or axial symmetry (Kerr). The idea, which is surprisingly feasible, is to first construct the non-

perturbative physical (reduced) Hamiltonian of the reduced phase space of fully gauge invariant

observables and only then apply perturbation theory directly in terms of observables. The task to

construct observables is then disentangled from perturbation theory, thus allowing to unambiguously

develop perturbation theory to arbitrary orders. In this first paper of the series we outline and

showcase this approach for spherical symmetry and second order in the perturbations for Einstein–

Klein–Gordon–Maxwell theory. Details and generalizations to other matter and symmetry and higher

orders will appear in subsequent companion papers.

Keywords: quantum black holes; quantum gravity; quantum fields in curved spacetime

1. Introduction

Black holes are fascinating objects. Not only are black hole binaries among the most im-
portant sources of gravitational radiation [1], supermassive black holes are good candidates
for active galactic nuclei (AGN) connected with a rich astrophysical phenomenology [2];
they are also the source of numerous debates and speculations in classical and quantum
gravity [3–5]. Indeed, as summarized in the seminal singularity theorems by Penrose
(Nobel Prize 2020) [6], black holes clearly indicate that General Relativity is an incomplete
theory and must be supplemented by quantum considerations, thus resolving the classical
singularity. For instance, the classical black hole area theorem [6] combined with quantum
field theory on Schwarzschild spacetime [7] leads to the speculation that black holes carry
an intrinsic entropy measured by the area of the event horizon [8] which hints at a deep
connection between quantum field theory, classical general relativity and thermodynam-
ics. The fact that the entropy is apparently measured by a two-dimensional rather than
three-dimensional region in spacetime leads to the speculation that general relativity is
a holographic theory [9] which delivers a strong motivation for holographic approaches
to quantum gravity such as the modern string theory approach based on the AdS/CFT
conjecture [10].
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While Hawking’s original calculation only considered free quantum matter on a
classical vacuum Schwarzschild spacetime of fixed, time-independent mass, which violates
the Einstein equations as the corresponding energy momentum tensor is obviously non-
vanishing, the presence of the corresponding black body radiation makes it more than
plausible that the black hole loses mass. This is a pure quantum effect forbidden by the
classical area theorem. It leads to the so-called information paradox [11] which may be
sketched as follows: We imagine that the Hilbert space of the entire system made from
geometry and matter can be considered as a tensor product where one factor corresponds
to the observables located in the spacetime region behind the event horizon (black hole
region) and the other to the observables located in the region outside of it (asymptotic
region). Given an initial pure state, we can form its partial trace with respect to the black
hole region which leads to a mixed state for the outside algebra. This mixed state should
correspond to the KMS (temperature) state discovered by Hawking and its von Neumann
entanglement entropy should correspond to the black hole entropy (or information) [12].
We use the Heisenberg picture and describe the dynamics by unitary evolution of operators
acting on the the total algebra of observables while the state remains unchanged and in
particular pure for the total algebra.

As the black hole shrinks due to Hawking radiation, the outside region and thus the
algebra of operators located therein of outside observables grows, while the algebra of
inside observables shrinks. The total algebra of all observables remains the same during the
entire process since the whole system is closed. When the black hole is gone, the outside
algebra becomes the total algebra again. If the semiclassical consideration that leads to the
Hawking radiation picture which was derived for large black holes remains valid also for
small black holes, at the end of the process we have a portion of spacetime isometric to
Minkowski spacetime which means that not all of spacetime (namely the black hole region)
can be reconstructed from the data available at future null infinity. Therefore, information
available at past null infinity (e.g., multipole moments of ingoing radiation) is lost (e.g., the
outgoing radiation only carries information about mass, charge and angular momentum),
entropy is created, and the state, therefore, is not pure, i.e., we still have a KMS state. Thus,
this state would be truly mixed but now for the total algebra. However, in the Heisenberg
picture, the state does not change and remains pure which is a contradiction. Note, that the
representation of the ∗—algebra of observables that derives from a pure state via the GNS
construction is irreducible while for a mixed state, it is properly reducible, i.e., there are
non-trivial invariant subspaces with corresponding projectors [13]. This means that there
are drastic differences between the two situations, somehow the whole representation of
the algebra has changed.

To resolve the apparent contradiction one has several possibilities, of which we men-
tion two, see [3–5] for some of the speculations on possible mechanisms. The first possibility
is that the semiclassical picture breaks down at some point and that indeed at the end of
the evaporation, the state is pure, the von Neumann entropy vanishes, and information is
preserved. For instance, the evaporation could be incomplete leaving a “remnant” so that
there remains an inside region and the outside state can stay mixed. The second possibility
is that the evaporation is complete and ends with a mixed state. Then, the corresponding
projections on invariant subspaces must arise by a dynamical mechanism, i.e., the quantum
dynamics cannot be unitary. The von Neumann entropy is non-vanishing, information
was lost.

The reason why we repeat here this well-known discussion is to highlight two facts:
First, that black holes are ideal laboratories for quantum gravity. Any candidate theory

of quantum gravity must pass the test that consists, among other things, in 1. explaining
the microscopic origin of the Bekenstein–Hawking entropy, 2. resolving the black hole
information paradox, 3. deriving the end product of black hole evaporation and the fate
of the black hole singularity, 4. describing Hawking radiation including backreaction
from first principles and 5. determining the truth value of the (weak) cosmic censorship
conjecture [14] (i.e., that singularities cannot communicate with future null infinity of
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an asymptotically flat spacetime so that predictability from a Cauchy surface holds in
classical GR). Second, that one needs a sufficiently reliable framework in order to turn
these speculations into precise statements. For instance, there has been considerable
progress concerning the microscopic origin of the black hole entropy of stationary black
holes both in String Theory (ST) [15] and in Loop Quantum Gravity (LQG) [16]. These
considerations have already led to a more useful local definition of black hole horizon
which, in contrast to the event horizon, does not rely on knowing the entire spacetime [17].
As far as black hole radiation from dynamical black holes is concerned important insights
have been delivered by the two dimensional exactly solvable models [18], the Vaidya metric
model [19] corresponding to null radiation and the spherically symmetric scalar boson star
model [20–22]. Concerning singularity avoidance of exactly spherically symmetric black
holes see [23–32] and [33–36] in the canonical and covariant framework respectively.

However, it is certainly fair to say that we are very far from understanding all aspects
of quantum black hole physics. As the discussion reveals, many puzzles about black holes
have their origin in the attempts to extend Hawking’s calculation, which was performed
without taking backreaction into account, to treating the case with backreaction. The sim-
plest of such considerations uses the Stefan-Boltzmann law to relate the power of the black
hole, i.e., minus the time derivative of its mass, to its temperature which, in turn, is a
function of the mass. This leads to (suppressing numerical factors)

M(t) = [M(0)3 − t

tP
M3

P]
1/3 (1)

where M(0), MP, tP are initial mass, Planck mass and Planck time, respectively. Clearly (1) can
at best be an approximation because Ṁ diverges at the evaporation time tE = [M(0)/MP]

3 tP

which is of the order of the age of the universe for sufficiently small primordial black
holes. Thus, precisely in the last stages of the evaporation process do we expect significant
deviations from (1) that lead to a resolution of the singularity and to settle the question of
whether there is a remnant thus contributing to dark matter [37,38]. Such deviations are,
therefore, smoking guns for quantum gravity fingerprints provided that primordial black
abundances are sufficiently large [39]. In order to compute the actual time dependence of
the black hole mass and the deviation from (1) we need a proper quantum gravity calcu-
lation from first principles. This is a very complex task within any approach to quantum
gravity. For instance, in LQG [40–44] one would need to first find exact solutions to the
quantum Einstein equations (Wheeler DeWitt equation) [45–49] which can be interpreted
as black hole states and then study their relational dynamics in terms of quantum Dirac ob-
servables. Such a program is indeed conceivable in the reduced phase space approach [50].
This non-perturbative program is still under development and currently non-perturbative
renormalization methods [51] are being applied to fix point the details of the corresponding
physical (reduced) Hamiltonian.

To make progress before this step is completed, in this series of works we take a
perturbative route. The idea is to separate the degrees of freedom into (spherically) sym-
metric background and non-symmetric perturbations and to expand all relevant quan-
tities of the theory such as constraints with respect to that split. This is of course well
known and there is a rich literature on the subject starting with the seminal work by
Regge, Wheeler and Zerilli [52,53] in the Lagrangian setting and Moncrief [54,55] in the
Hamiltonian setting. See also [56–58] for a modern account. Common to these works,
however, is that the background is not considered a dynamic entity. Therefore, the phase
space of the system is coordinatized just by the perturbative degrees of freedom. The
constraints of the system truncated to the first order in the perturbations generate gauge
transformations on this “frozen” phase space and lead to a notion of first-order gauge
invariant objects. To the best of our knowledge, higher orders have not been considered,
partly because the second order frozen constraints do not close under Poisson brackets in
contrast to the first order ones.
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Unfortunately, this kind of analysis is inappropriate precisely when we want to take
the dynamical interplay between background and perturbations into account, that is,
backreaction. A similar question also arises in cosmology and in [59] it was shown how to
extend the action of the first order constraints to the full phase space such that they still
close and define a notion of “unfrozen” gauge invariance to first order. In [59] only a partial
reduction of the gauge invariance was performed, i.e., there is still a single second-order
constraint that was left unreduced. This remaining single constraint trivially commutes
with itself so that a consistent quantum theory can be defined [60].

To the best of our knowledge, the formalism of [59] has not been extended yet to the
question of gauge invariance at higher orders or backgrounds that are not homogeneous.
In [61] we developed a general framework to precisely conduct this. It turns out that the
approach of [59] is embedded in a general reduction algorithm that can be performed
in any order and for any Killing symmetry. It directly computes the physical (reduced)
Hamiltonian perturbatively and including backreaction with respect to (Dirac) observables
which are gauge invariant to all orders. The reason why it computes the fully reduced
Hamiltonian and not the partially reduced constraints is that partial reduction combined
with perturbation theory does not lead to a consistent algebra of perturbed leftover con-
straints when there is more than one which is the case, for example, when we have spherical
symmetry rather than homogeneity. This way a notion of n-th order perturbative gauge
invariance including backreaction, for which no consistent definition is known to the best
knowledge of the author, is never necessary, perturbation theory and non-perturbative
gauge invariance is disentangled. An important ingredient of [61] is a symplectic chart
consisting of four sets of canonical pairs: Symmetric versus non-symmetric and gauge
versus true. The (non-)symmetric gauge degrees of freedom are adapted to a similar split
of the constraints into those that generate gauge transformations that do (not) preserve the
symmetry and are used to reduce them. Thus, the idea to make progress on the question
of backreaction in Hawking radiation is to use the framework of [61] and to compute the
reduced phase space and Hamiltonian to the desired order and with the desired matter
content. This reduced phase space strategy is then the basis to develop the quantum theory.

Some of the immediate questions that arise when approaching black hole perturbation
theory with backreaction are the following:

1. Which black hole symmetry (or solution) should be used?
2. When considering a dynamical background, should one only allow for a dynamics

of the parameters of the symmetric background solution to the Einstein (vacuum?)
equations or should one allow for a dynamic of all background fields compatible with
the symmetry?

3. As we want to study the late stages of the evaporation process and thus want to
“look into the singularity” how can we make sure that we can explore both the
interior and the exterior of the black hole when the location of the quantum horizon
becomes fuzzy?

Concerning the first question, assuming that the black hole no hair theorem and
suitable energy conditions on the energy-momentum tensor of admissable matter hold [6],
it suffices to consider black holes of either axi-symmetry or spherical symmetry. As shown
in [62–64], semiclassical considerations suggest that charge and angular momentum are
radiated off much faster than mass. Hence, starting from a primordial black hole created
close to the Big Bang and evaporating today, it has reached spherical symmetry long before
evaporation. Thus, as we are interested in the late stages of the evaporation process, it
appears to be well motivated to consider spherical symmetry. Notice, however, that the
methods of [61] are immediately applicable also to axial symmetry for which much of the
tedious work has been performed by Teukolsky [65,66]. Hence, to check whether these
semiclassical considerations are justified, one can repeat the steps outlined in the present
paper also for the Kerr case.

To explain the relevance of the second question, recall that according to Birkhoff’s the-
orem a spherically symmetric vacuum black hole is uniquely defined by a single parameter
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(the mass) up to diffeomorphisms. On the other hand a spherically symmetric spacetime is
uniquely defined by four functions that depend on a radial and time coordinate. Hence,
one can either assume that the backreaction just affects the mass parameter making it time
and radially dependent or one can assume that the backreaction affects all four functions.
Of course there is some redundancy in the second description due to the presence of resid-
ual radial and temporal diffeomorphisms (as well as gauge transformations generated by
the primary constraints) that act on those four functions but how these should be consis-
tently accommodated in the presence of perturbation theory is a priori not clear. It is also
not clear whether one should use the first description at all when one considers matter that
gives rise to a non-vanishing spherically symmetric energy-momentum tensor (such as
scalar matter) so that the vacuum solution is not an exact solution to the system.

The framework of [61] gives an unambiguous answer to this question: One has to start
from the description in terms of the four functions. The matter content and the interplay
between the residual gauge transformations that preserve the symmetry and those gauge
transformations that do not, automatically dictate the precise reduced form of the metric.

Finally concerning the third question, we must choose a coordinate system such that
the metric is regular across any potential horizon, in particular the coordinate system
must not depend on any dynamical parameters. In the ideal case, it should simplify the
quantization of the reduced Hamiltonian as much as possible. Since the reduction process
involves splitting the degrees of freedom into gauge and true degrees of freedom, these
requirements select suitable gauges. For spherical symmetry we will, therefore, impose the
Gullstrand–Painleveé gauge [56–58] that the spatial spherically symmetric metric be the
flat Euclidean one which indeed simplifies the quantization of the reduced Hamiltonian
since e.g., spatial curvature terms vanish and the Laplacian becomes the flat one with an
explicitly known spectrum. In particular, the spacetime manifold has the topology of R4

for each asymptotic end. This moves the information about the non-trivial 4-curvature into
the extrinsic curvature. Note, that GP coordinates cover either the advanced or retarded
Finkelstein charts of Schwarzschild spacetime, and therefore, in the classical theory provide
a convenient chart to explore both one asymptotic end and either the black hole or white
hole region of the full Kruskal spacetime up until the singularity. Whether the classical
singularity is resolved and replaced, for example, by a black hole–white hole transition, is
then a question to be answered by the quantum theory which can be accommodated in this
framework by working with two copies of GP manifolds.

The focus of the present paper is on the general structure of this program and we use
the showcase of second-order perturbations of the physical Hamiltonian in the presence
of scalar and Maxwell matter. We will not write out the details of the corresponding
expressions which are reserved for our companion papers [67–69]. Generalizations to
fermionic (in particular neutrino) matter, axial symmetry and higher orders will be the
subject of future publications. The architecture of this article is as follows:

In Section 2 we basically introduce our notation and apply [61] to spherical sym-
metry. In particular, we review spherical tensor harmonics [70] and how they give rise
to constraints C and Z, respectively, which preserve or do not preserve the symmetry,
respectively. Adapted to those we have gauge canonical pairs (q, p) and (x, y), respectively,
which are symmetric and non-symmetric, respectively. These are complemented by true
(observable) canonical pairs (Q, P) and X, Y, respectively, which are also symmetric and
non-symmetric, respectively.

In Section 3 we include a conceptual overview of many interrelated topics associated
with black hole evaporation such as 1. Whether the vacuum black hole mass parameter
M in fact can change at all during time evolution or rather has the status of an integration
constant such as M(0) in (1), 2. What replaces M as a measure of evaporation in case it is
preserved, a natural candidate being the area of the apparent horizon, 3. How to describe
black hole–white hole transitions within the perturbative framework, 4. What kind of
Fock structures of black hole perturbative QFT are selected by the use of GP coordinates,
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5. Which kind of Hawking effects are to be expected and 6. How singularity resolution
would manifest itself.

In Section 4 we construct the exact reduced or physical Hamiltonian based on the
GP gauge for q and the trivial gauge x = 0 for x following [61] which is natural in view
of the algebraic structure of the constraints. This requires the full machinery of decay
conditions on the background and perturbation fields and the solution of the constraints.
We also construct the exact physical lapse and shift following the stability analysis of the
gauge condition using the asymptotic structure at spatial infinity. This distinguishes gauge
diffeomorphisms from symmetry diffeomorphisms and opens access to the full spacetime
metric. The resulting expressions obtained, while non-perturbative, necessarily are implicit.
To obtain explicit expressions, perturbation methods must be invoked. This entails two
steps: 1. Standard non-gauge invariant perturbative expansions of the constraints and
2. Assembling different bits and pieces of those into gauge invariant contributions.

In Section 5 we perform the first step and determine the general perturbative form
of the classical constraints to all orders, that is, we simply expand the constraints in their
polynomial form into spherical tensor harmonics. While tedious, this step is straightforward
and just involves the recoupling theory of angular momentum or equivalently harmonic
analysis on the sphere. In polynomial form, the gravitational contribution to the constraints
is of degree ten which is also the top degree of the perturbative expansion. Performing the
sphere integral returns an expression that is exact.

In Section 6 we perform the second step and perturbatively solve the constraints
C = 0, Z = 0, respectively, for p, y in terms of q, x, Q, P, X, Y and imposing gauges on q, x
following the algorithm of [61]. While the formulae provided in [61] cover all orders, we
detail the concrete expression only up to the second order. As explained in [61] certain
degrees of freedom (e.g., core mass and charge) encoded in q, p are retained among the
(Q, P) due to the presence of boundary terms in the constraints. These also serve to perform
a second Taylor expansion in order to explicitly solve the differential equations that occur
when solving for p, y.

In Section 7 we give a brief introduction to various notions of black hole horizons
and argue that in the present situation with a distinguished notion of time defined by the
free-falling GP observers, the apparent horizon and its area is an important quantity that
captures important information about the degree of black hole evaporation. We show that
the perturbative scheme developed in previous sections extends to all orders and also to
the apparent horizon and its area.

In Section 8 we enter the quantum regime. Since second order perturbation theory
of the reduced Hamiltonian reproduces the Regge–Wheeler and Zerilli free Hamiltonians
for the perturbations in a GP spacetime of given mass, its Fock quantization is the starting
point of perturbative QFT for the perturbations with the higher order terms in the reduced
Hamiltonian considered as interaction terms. While we do not complete this step in the
present paper we sketch all the steps towards this goal, i.e., we formulate QFT in GP
spacetime. This includes a discussion of mode functions that are valid throughout the black
or white hole region and an asymptotic region for each asymptotic end of the spacetime (of
which there are two in the case of a black hole white hole transition). The mathematical
challenge is to gain sufficient control over those mode functions in GP spacetime and
to formulate junction conditions in the transition region. As a regularizing method, we
consider an Einstein–Rosen type bridge of gluing a past ingoing GP spacetime with a
future outgoing GP spacetime which is foliated by proper GP time Cauchy surfaces. Once
established, the Fock quantization can then be applied to the apparent horizon area and its
perturbation theory.

In Section 9 we touch upon the question of backreaction, i.e., interaction between
symmetric and non-symmetric true degrees of freedom. This can be non-trivial already
within Einstein–Maxwell theory when the mass M can change dynamically due to the
details of imposing the the GP gauge. In this case one can use space adiabatic perturbation
theory [71]. We used this already in application to cosmology [72]. When the matter content
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goes beyond that of Maxwell fields, then new challenges arise because the symmetric “slow”
sector is also a field theory with infinitely many degrees of freedom, not only the “fast”
non-symmetric sector.

In Section 10 we construct the conserved Noether current that follows from the reduced
Hamiltonian and which can be used to compute the classical energy flux. It can also be
used to construct the analog of grey body factors for the corresponding Hawking radiation
in the quantum theory.

In Section 11 we summarize and give an outlook into further work under development,
in particular the contact with phenomenology.

In Appendix A we review in a simple setting the Hamiltonian distinction between
symmetry and gauge and how decay behaviors of fields and constraint-smearing functions
as well as concepts of variational analysis come into play.

In Appendix B we apply this to vacuum black holes and show that next to the mass,
there exists a second Dirac observable. The difference between symmetry and gauge
diffeomorphisms explains why this is not in contradiction to Birkhoff’s theorem. This is
relevant because if the second variable shows up in the spacetime metric (depending on the
details of the GP gauge condition) then the black hole mass M is not a constant of motion
as soon as gravitational perturbations are present.

In Appendix C, we complement the GP description of Appendix B by the Kantowski–
Sachs description which has recently received much interest in black hole singularity
resolution scenarios and how they are matched.

In Appendix D we include elements of the analysis of generalized GP coordinates
and free falling observers and foliations in black hole white hole transition spacetimes and
regularized versions thereof. It contains also a consistent mechanism that reconciles the
existence of the second Dirac observable without it appearing in the reduced Hamiltonian.

2. Spherical Tensor Harmonics, Symmetry and Gauge Degrees of Freedom

In the first subsection we summarize the relevant information on spherical tensor
harmonics [70]. These guide our notation and serve to identify the gauge and true degrees
of freedom as well as the symmetric and non-symmetric degrees of freedom. In the second
subsection we interpret these in terms of the notation applied in the general framework
of [61]. In the third we show how to perform the perturbative expansion of all constraints
in closed form.

2.1. Spherical Tensor Harmonics

Let θ1 := θ ∈ [0, π], θ2 := φ ∈ [0, 2π) be spherical polar coordinates on S2,

ΩAB := δ1
A δ1

B + sin2(θ) δ2
Aδ2

B; A, B, C, . . . = 1, 2; ω :=
√

det(Ω); dµ :=
ω

4π
d2θ; ηAB := ω ϵAB (2)

respectively, round metric on S2, its associated scalar density of weight one, corresponding
normalized measure and skew pseudo-metric of density weight zero where ϵ12 = +1. Let
DA be the torsion free Ω compatible covariant differential. The corresponding Riemann
tensor is easily computed to be RABCD = ηAB ηCD with Ricci tensor RAB = ΩAB and Ricci
scalar R = 2. All indices are moved with Ω or its inverse where ΩAC ΩCB = δA

B . We define
the Laplacian ∆ = DA DA.

Let Ll,m, l = 0, 1, 2, . . . ; m = −l,−l + 1, . . . , l be the real-valued orthonormal basis
of L2(S

2, dµ) defined by Legendre polynomials. In terms of the usual complex-valued
Yl,m with Ȳl,m = Yl,−m we have Ll,0 := Yl,0,

√
2 Ll,m = Yl,m + Yl,−m; m > 0, i

√
2 Ll,m =

Yl,−m − Yl,m; m < 0. The scalar harmonics are simply the Ll,m. We define the even “e” and
odd “o” vector harmonics for l > 0 by

√

l(l + 1) LA;e,l,m := DA Ll,m :=
√

l(l + 1) LA;o,l,m := ηA
B DB Ll,m (3)
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which are orthonormal with respect to the inner product

< Lα,l,m, Lβ,l′ ,m′ >L2
2
:=

∫

S2
dµ LA;α,l,m ΩAB LB;β,l′ ,m′ = δαβ δl,l′ δm,m′ (4)

with α, β ∈ {e, o}. The terminology used in the literature referring to “even” and “odd” is
not entirely consistent. A better qualifier would be “polar” and “axial”, i.e., LA;e,l,m does
not involve the pseudo tensor ηAB while LA;o,e,l,m does. An equivalent characterization is
that under reflection θ 7→ π − θ, φ 7→ φ + π the 1-form (or the corresponding vector field)
LA;e/o,l,m has the opposite/same intrinsic parity as Ll,m which is (−1)l . Thus, “even, odd”
should not be confused with the intrinsic parity of Ll,m which is defined to be even/odd
when l is even/odd. With the understanding of “even, odd” as polar, axial the scalar
perturbations are all even. The LA;α,l,m are complete, i.e., every one form that is square
integrable in the sense of (4) can be expanded in terms of them and that expansion converges
to it with respect to the L2

2 norm. This will be shown below.
Next, consider for l ≥ 0 the horizontal “h” and for l ≥ 2 the even “e”, respectively,

odd “o” symmetric (with respect to tensor indices) 2-tensor harmonics

√
2 LAB;h,l,m := ΩAB Ll,m

√

2(l2 − 1)(l + 1)(l + 2) LAB;e,l,m := (DA DB − 1

2
ΩAB∆) Llm

√

2(l2 − 1)(l + 1)(l + 2) LAB;o,l,m := D(A ηB)
CDC Llm (5)

where both the horizontal and even 2-tensor have parity (−1)l and the odd 2-tensor has
parity (−1)l+1. The motivation for the term “horizontal” will become clear only in the next
section. In the literature one refers to both the horizontal and even tensors as “even” since
they are both polar while the “odd” tensors are axial. Note, that the even and odd tensors
in contrast to the horizontal tensors are tracefree with respect to Ω.

The tensors (5) are orthonormal with respect to the inner product

< Lα,l,m, Lβ,l′ ,m′ >L4
2
:=

∫

S2
dµ LAC;α,l,m ΩAB ΩCD LBD;β,l′ ,m′ = δαβ δl,l′ δm,m′ (6)

with α, β ∈ {h, e, o}. The LAB;α,l,m are complete, i.e., every 2-tensor that is square integrable
in the sense of (6) can be expanded in terms of them and that expansion converges to it
with respect to the L4

2 norm.
Tensor harmonics for tensors of higher rank can be constructed analogously using

the building blocks Ω, D, Ll,m. The orthonormality can be established by exploiting that
D and D̃ = η · D are anti-self adjoint as operators D : L2 → L2

2, L2
2 → L4

2 (derivative),
D : L2

2 → L2, L4
2 → L2

2 (divergence) and similar for D̃. The completeness can be
established relying on the completeness of the scalar harmonics as well as the fact that
−∆Ll,m = l(l + 1) Ll,m. For instance, we have for a given vector field vA with divergence
d = DAvA and curl c = D̃AvA

∆vA = DB DB vA = DB [(DB vA − DA vB) + DAvB] = DB (ηBA c) + (DBDA − DADB)vB + DA d

= D̃A c + DAd + RBA
BCvC = D̃A c + DAd + vA (7)

As d, c can be expanded into scalar harmonics and D, D̃ annihilate the l = 0 contributions
we find that −(−∆ + 1)v can be expanded into vector harmonics. However, the operator
−∆ + 1 is positive definite whence

vA = −(−∆ + 1)−1[DAd + D̃Ac] (8)

and since DA∆ f = (∆ − 1)DA f , D̃A∆ f = (∆ − 1)D̃A f we find that after expanding d, c
into scalar harmonics labeled by l ̸= 0 we can simply replace (−∆ + 1)−1 by [l(l + 1)]−1.
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In our application to perturbation theory the Hilbert spaces L2, L2
2, L4

2 appear naturally
in the first order and some terms of second order. In other terms of second order and of
higher order one encounters higher-order contractions of the Ll,m, LA,e/o,l,m, LAB,h/e/o,l,m

that are integrated over S2 with measure µ. These can be computed by combining Clebsch–
Gordan decomposition

Ll,m Ll′ ,m′ = ∑
|l−l′ |≤l̃≤l+l′ ;m̃=m+m′

cl,m;l′ ,m′ ;l̃,m̃ Ll̃,m̃′ (9)

with expressing DA in terms of the angular momentum operators Lµ, µ = 1, 2, 3 which act
diagonally or as ladder operators on the Ll,m.

Some useful identities are

DAΩBC = DA ω = 0

DA LA
α,l,m = −

√

l(l + 1) δe
α Ll,m

DA LAB
h,l,m =

√

l(l + 1)/2 LB
e,l,m

DA LAB
α,l,m = −1

2

√

(l − 1)(l + 2)/2 LB
α,l,m; α = e, o

DALl,m =
√

l(l + 1) LA;e,l,m

DALB;e,lm =
√

2(l − 1)(l + 2) LAB;e,l,m −
√

l(l + 1)/2 LAB;h,l,m

DALB;o,lm =
√

2(l − 1)(l + 2) LAB;o,l,m + η[A
C DB] LC;e,l,m (10)

2.2. Classification of Symmetry and Gauge Degrees of Freedom

As mentioned, for the purpose of concrete illustration we focus on the following
matter content: A charged scalar field Φ with potential V which may serve to build a boson
star and the Maxwell field A. In the canonical setting [14] assuming global hyperbolicity
the spacetime manifold M is diffeomorphic to R× σ where σ is a three manifold and can
be foliated by Cauchy surfaces Σt labeled by t ∈ R. What follows can be conducted in any
spacetime dimension, we consider the case of four dimensions.

We thus, have the following ingredients (µ, ν, ρ, . . . = 1, 2, 3 are spatial tensor indices
with respect to coordinates xµ on the manifold σ):

1. Gravitational degrees of freedom: (S0, W0), (Sµ, Wµ), (mµν, Wµν) where S0, Sµ are
called lapse and shift functions parametrising the embeddings σ → Σt and m is the
intrinsic metric of σ. The W0, Wµ, Wµν are the respective conjugate momenta. We
denote by mµν the inverse of mµν and R[m] the Ricci scalar of m constructed from the
torsion-free covariant differential ∇µ compatible with mµν.

2. Scalar degrees of freedom: (Φ, Π) where Π is the conjugate momentum of the scalar
field Φ on σ which we take as a real-valued SO(2) dublett.

3. Electromagnetic degrees of freedom: (S0, W0), (Aµ, Eµ) where S0 is the temporal

component of the 4-connection and Aµ is its spatial component. Again, W0, Ea are the
conjugate momenta and Bµ = ϵµνρ ∂ν Aρ, Eµ are referred to as magnetic and electric
fields, respectively. We also refer to Fµν := 2∂[µ Aν] as the curvature of Aµ.

4. Primary constraints: B0 := W0, Bµ := Wµ, B0 := W0

5. Secondary constraints:
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V0 := VE
0 + VKG

0 + VM
0

VE
0 :=

1
√

det(m)
[mµρ mνλ − 1

2
mµν mρλ] Wµν Wρλ −

√

det(m) R[m]

VKG
0 :=

||Π||2
2
√

det(m)
+

1

2

√

det(m) mµν [DµΦ]T [DνΦ] +
√

det(m) U(||Φ||2)

VM
0 :=

mµν

2
√

det(m)
[Eµ Eν + Bµ Bν]

Vµ := VE
µ + VKG

µ + VM
µ

VE
µ := −2 ∇νWν

µ

VKG
µ := ΠT Φ,µ

VM
µ := Eν(∂µ Aν)− (Eν Aµ),ν

G := GM + GKG := ∂µ Eµ + ΠT ϵ Φ (11)

where ϵ is the skew matrix in 2 dimensions, D = d + ϵA, ||Φ||2 = ΦTΦ of which the
potential U is a polynomial (e.g., mass term) and ∇ is the covariant differential deter-
mined by m. Here, V0 is referred to as the Hamiltonian constraint, Vµ as the spatial
diffeomorphism constraints and G as the Gauss constraint. We have labeled the re-
spective contributions due to Einstein, Klein–Gordon and Maxwell fields, respectively,
by E, KG, M, respectively.

6. Unreduced Hamiltonian (v0, vµ, v0 are velocities that remain undetermined by the
Legendre transform)

H =
∫

σ
d3x [v0 B0 + vµ Bµ + v0 B0 + S0 V0 + Sµ Vµ + S0 G] (12)

7. Symplectic potential (we normalize by the unit sphere area and d is the exterior
differential on field space)

4π Θ =
∫

σ
d3z [W0 dS0 + Wµ dSµ + W0 dS0 + Wµν dmµν + ΠT dΦ + Eµ dAµ] (13)

The Hamiltonian density is a linear combination of all constraints as it is always true for
generally covariant field theories. As there is a “boundary” at spatial infinity, one has to
add boundary terms to (12) ensuring that (12) continues to be differentiable and convergent
also when the functions S0, Sµ, S0 do not vanish at infinity but we will not display them
here as we will automatically encounter them in a later stage of the analysis. The velocities
v0, vµ, v0 are arbitrary “Lagrange multipliers” that one could not solve for when performing
the Legendre transform. The stabilization (preservation in time) of the primary constraints
B0, Bµ, B0 implies the secondary constraints D0, Dµ, G. Their stabilization leads to no new
constraints because their Poisson algebra closes: The hypersurface deformation algebra
generated by the V0, Vµ closes by itself while V0, G are invariant under G and the Vµ, G
close among themselves. All the primary constraints are obviously close to each other
(they are Abelian since they involve only momenta W0, Wµ, W0) and they have vanishing
Poisson brackets with the secondary constraints because these do not involve the variables
S0, Sµ, S0.

Before proceeding it is convenient to get rid of the primary constraints B0, Bµ, B0 by gauge
fixing the variables S0, Sµ, S0 conjugate to W0, Wµ, W0. This is accomplished by imposing
suitable gauge conditions K = (K0, Kµ, K0) on the variables (mµν, Wµν), (Φ, Π), (Aµ, Eµ).
In order that these conditions are stable under the gauge flow, the variables S0, Sµ, S0

become given functions S∗ = (S0
∗, S

µ
∗ , S∗

0) of (mµν, Wµν), (Φ, Π), (Aµ, Eµ) and are thus also
fixed. The reduced Hamiltonian acts only on the subset of true degrees of freedom, i.e., those
among (mµν, Wµν), (Φ, Π), (Aµ, Eµ) not determined by K = 0 and V = (V0, Vµ, G) = 0
and is determined by first computing the Poisson bracket between functions of the true
degrees of freedom and the unreduced Hamiltonian and then evaluating the result at
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S = S∗, K = V = 0. It follows that the terms proportional to B = (B0, Bµ, B0) can be
ignored from the outset. The correspondingly simplified Hamiltonian coincides with (12)
except that the terms proportional to B0, Bµ, B0 are dropped and that S0, Sa, S0 acquire
now the status of arbitrary smearing functions of the constraints that appear (12) on that
reduced phase space which will later be fixed by the stability requirement for the gauge
fixing condition.

We now make contact with the general framework [61]. To conduct this, we must
introduce two splits of the degrees of freedom into i. symmetric ones and non-symmetric
ones on the one hand and ii. gauge and observable (true) ones on the other. The symmetry
split is essentially dictated by the decomposition of the fields into tensor harmonics. In
particular, it induces a symmetry split among the fields S0, Sµ, S0. Their symmetry split
induces a symmetry split of the secondary constraints V0, Vµ, G which then suggests a
natural additional gauge split on all configuration and momentum variables.

Accordingly, we begin with the spherical harmonics decomposition using the polar co-
ordinate system zA := θA, A = 1, 2 (see the previous subsection) and one radial coordinate
z3 := r for each asymptotic end where zµ = r(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) are the
usual Cartesian coordinates at spatial infinity. We have the following symmetry split of the
functions S0, Sµ, S0

S0 =: f v + ∑
l>0,|m|≤l

gv,l,m Ll,m

S3 =: f h + ∑
l>0,|m|≤l

gh,l,m Ll,m

SA =: 0 + ∑
l>0,|m|≤l, α∈{e,o}

gα,l,m LA
α,l,m, A = 1, 2

S0 =: f M + ∑
l>0,|m|≤l

gM,l,m Ll,m (14)

where the labels ‘‘v” and “h” mean “vertical” and “horizontal”, respectively, and capture
the fact that the Hamiltonian and spatial diffeomorphism constraints, respectively, generate
spacetime diffeomorphisms transversal (vertical) and tangential (horizontal) to the Cauchy
surfaces. The functions f v, gv,l,m, f h, gh,l,m, gα,l,m, f M, gM,l,m depend only on the radial
coordinate r. The contributions to S0, S3, S0 given by the functions f v, f h, f M are, therefore,
spherically symmetric and thus are referred to as “symmetric” smearing functions while
the contributions to S0, S3, SA, S0 defined by the functions gv,l,m, gh,l,m, gα,l,m, gM,l,m are not
spherically symmetric and thus are referred to as “non-symmetric” smearing functions.

We perform an analogous split for the fields mµν, Wµν, Φ, Π, Aµ, Eµ

m33 =: qv
E + ∑

l>0,|m|≤l

xv,l,m
E Ll,m

m3A =: 0 + ∑
l>0,|m|≤l,α∈{e,o}

xα,l,m
E LA;α,l,m

mAB = qh
E ΩAB + ∑

l>0,|m|≤l

xh,l,m
E LAB;h,l,m + ∑

l>1,|m|≤l,α∈{e,o}
Xα,l,m

E LAB;α,l,m

W33 =: ω [pE
v + ∑

l>0,|m|≤l

yE
v,l,m Ll,m]

W3A =:
ω

2
[0 + ∑

l>0,|m|≤l,α∈{e,o}
yE

α,l,m LA
α,l,m] (15)
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WAB =: ω [
pE

h

2
ΩAB + ∑

l>0,|m|≤l

yE
h,l,m LAB

h,l,m + ∑
l>1,|m|≤l,α∈{e,o}

YE
α,l,m LAB

α,l,m]

Φ =: QKG + ∑
l>0,|m|≤l

Xl,m
KG Ll,m

Π =: ω [PKG + ∑
l>0,|m|≤l

YKG
l,m Ll,m]

A3 =: qM + ∑
l>0,|m|≤l

xl,m
M Ll,m

AC =: 0 + ∑
l>0,|m|≤l,α∈{e,o}

Xα,l,m
M LC;α,l,m

E3 =: ω [pM + ∑
l>0,|m|≤l

yM
l,m Ll,m]

EC =: ω [0 + ∑
l>0,|m|≤l,α∈{e,o}

YM
α,l,m LC

α,l,m]

We have paid attention to the fact that the momenta conjugate to the respective configura-
tion variables are respective dual tensors that carry density weight one rather than zero
and thus have pulled out a factor of ω =

√

det(Ω) (see the previous section). The labels E,
KG, M mean Einstein, Klein–Gordon, Maxwell degrees of freedom, respectively. We have
grouped the coefficient functions of the tensor harmonics that appear in (15) and which
only depend on the radial coordinate r into the following four groups following the general
notation of [61]:

1. symmetric gauge {(qa, pa)} := {(qv
E, pE

v ), (q
h
E, pE

h ), (qM, pM)}
2. symmetric true: {(QA, PA)} := {(QKG, PKG}
3. non-symmetric gauge (l > 0, |m| ≤ l, α ∈ {v, h, e, o}): {(xj, yj)} := {(xα,l,m

E , yE
α,l,m),

(xl,m
M , yM

l,m)}
4. non-symmetric true (α ∈ {e, o} and l > 0 for KG, M while l > 1 for E): {(X J , YJ)} :=

{(Xα,l,m
E , YE

α,l,m), (Xl,m
KG, YKG

l,m ), Xα,l,m
M , YM

α,l,m)}.

The labels a, b, c, . . . ; A, B, C, . . . ; j, k, l, . . . ; J, K, L, . . . take the corresponding values
which include the value of the coordinate r. The unfortunate doubling of the labels
A, B, C, . . . = 1, 2 of components of tensors on S2 with the range A, B, C, . . . = r ∈ [0, ∞) for
QA, PA does not cause confusion because we will get rid of the spherical harmonics right
away so that they play no role any more below.

When plugging the decomposition (15) into the symplectic potential (13) we find due
to ω d3z = 4π dr dµ and the normalization of the spherical harmonics with respect to µ
(see the previous subsection)

Θ = pa dqa + PA dQA + yj dxj + YJ dX J (16)

=
∫ ∞

0
dr {[pE

v dqv
E + pE

h dqh
E + pM dqM] + [(PKG)T dQKG]}

+ ∑
l>0,|m|≤l

[( ∑
α∈{v,h,e,o}

yE
α,l,m dxα,l,m

E ) + yM
l,m dxl,m

M ]

+ ∑
l>0,|m|≤l

[(YKG
l,m )T dXl,m

KG] + ∑
α∈{e,o}

[ ∑
l>1,|m|≤l

YE
α,l,m dXα,l,m

E + ∑
l>0,|m|≤l

YM
α,l,m dXα,l,m

M ]}

which shows that the pairs listed in the decomposition (q, p), (Q, P), (x, y), (X, Y) are in-
deed conjugate so that we have, for instance

{yE
α,l,m(r), xα′ ,l′ ,m′

E (r′)} = δ(1)(r, r′) δα′
α δl′

l δm′
m (17)
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etc., (in particular, Poisson brackets between fields from different species E, KG, M vanish)
where δ(1)(r, r′) is the δ distribution on the positive real line if we consider one asymptotic end.

2.3. Perturbative Decomposition

When plugging the decompositions (14) and (15) into the Hamiltonian (12) one would
like to integrate out the angle dependence. This is immediately possible for the contribu-
tions to H from spatial diffeomorphism and Gauss constraint Vµ, G (recall that we could
already delete the piece depending on v0, vµ, v0) because these are homogeneous polynomi-
als of degree three and two, respectively, in the fields (14) and (15) and just requires to apply
the normalization of the spherical harmonics and the Clebsch–Gordan decomposition.
However, the contribution to H from V0 is non-polynomial in the metric field (all other
degrees of freedom enter polynomially). While one could, in principle, try to integrate out
the angular dependence of the non-polynomial constraints directly and non-perturbatively,
it is not known whether one can conduct this in closed form. Moreover, as we are interested
in perturbation theory with respect to the non-symmetric degrees of freedom x, y, X, Y, we
may as well perform the perturbative expansion before the angular integration. One then
obtains a perturbation series which is infinite but only due to field mµν, the series is finite
as far as the other fields are concerned and each term in that series can be integrated into
the closed form using again Clebsch–Gordan theory.

One can avoid this infinite series as follows: The Hamiltonian constraint V0 de-

pends on
√

det(m)
±1

in order that each term has net density weight unity. If we mul-
tiply V0 by

√

det(m) then only det(m) appears which is a cubic polynomial in m. Then,
√

det(m) [VM
0 +VKG

0 ] and the piece of
√

det(m) VE
0 not involving the Ricci scalar is already

polynomial. The Ricci scalar contains a term linear that is derived and a term quadratic but
without derivatives in the Christoffel symbol Γ

µ
νρ = mµλ Γλνρ where Γλνρ is homogeneously

linear and these terms are contracted with the inverse metric. Thus, Ṽ0 :=
√

det(m)
5

V0 is
polynomial in all variables. It is quadratic in all momenta Wµν, Π, Eµ, quadratic in Aµ and
quadratic in Φ if U is just a mass term, otherwise higher if U is a higher-order polynomial.
Since det(m) mµν is a polynomial of degree two, in ṼE

0 all terms are of order eight in mµν,
in ṼKG

0 the term independent of, respectively, dependent on Π has degree eight (or higher if
there is a nonquadratic potential), respectively, six and ṼM

0 has degree seven in mµν. Thus,
Ṽ0 is polynomial in all fields. Since the smearing function S0 is arbitrary, we can absorb
√

det(m)
−5

into it, thererby defining S̃0 = [det(m)]−5/2S0 which has density weight minus
five. Then, we can still use the first formula in (14) with S0 replaced by S̃0 if we multiply its
right hand side by ω−5.

To see that this is allowed, note while the “rescaling” of S0, V0 by γ := det(m)]5/2 > 0
does have a non-trivial effect on both the constraint and the smearing function, it has
absolutely no effect on the reduced Hamiltonian which is what we are interested in. To
see the latter, recall that given gauge fixing conditions say of the form G = K − τ (K
are functions on the phase space, τ are some time dependent coordinate conditions) for
constraints C with smearing functions f the reduced Hamiltonian Hr acting on functions F
of the true degrees of freedom is computed by the formula {Hr, F} = {C( f ), F}C=G= f− f̂=0

where f = f̂ solves {C( f ), G} = τ̇. Since C, C̃ = γC have the same zeroes, the gauge fixing

is the same and the matrices γ cancel in Hr because ˆ̃f = γ−1 f̂ when C = 0.
With this understanding, all constraints are finite polynomials in all fields (of top

degree twelve, e.g., for a charged scalar field and for at most quadratic potential otherwise
of degree nine plus the degree of the potential) and plugging in (14), (15) allows us to carry
out all angular integrals in closed form, thereby yielding an exact closed expression for
the Hamiltonian written as a polynomial of degree two in all p, P, y, Y; of degree two in
xM, XM; of degree two or the degree of the potential in QKG, XKG; of degree at most nine
in qE, xE. Thus, we obtain an expression for H that is known non-perturbatively. However,
note that this perfectly allowed reformulation of H in terms of Ṽ0 (relying on the assumed
non-degeneracy of det(m)) which enables us to carry out all angular integrals, does not
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prevent the exact reduced or physical Hamiltonian from being non-polynomial in Q, P, X, Y.
This is because in its computation [61] we must solve for the momenta p, y which appear
non-linearly (namely quadratically) in Ṽ0 and thus their solution leads to square roots. The
algorithm of [61] computes that square root perturbatively in X, Y which thus involves
again an infinite series. Nevertheless, the computational effort when working with S̃0, Ṽ0 is
significantly smaller than when working with S0, V0 because 1. the number of necessary
Clebsch–Gordan decompositions required are finite and can be performed in closed form,
hence there are no perturbative errors at this stage and 2. since Ṽ0 does not involve
an infinite series while V0 does, the perturbative solution of Ṽ0 in terms of x, y, X, Y is
tremendously simplified. Of course, whether one works with D0 or Ṽ0, the perturbative
solution to both constraints including the angular integrals is the same, it is just that Ṽ0 is
significantly more convenient.

With these preparations and dropping the tilde in S̃0, D̃0 again we can thus write the
Hamiltonian in the form

H = f a Ca + gj Zj :=
∫

R
+
0

dr {[ f v Cv + f h Ch + f M CM] + ∑
l>0,|m|≤l

[ ∑
α∈{v,h,e,o,M}

gα,l,m Zα,l,m] } (18)

where (α ∈ {e, o}, l > 0)

Cv :=< 1, V0/ω6
>L2

, Ch :=< 1, V3/ω >L2
, CM :=< 1, G/ω >L2

, (19)

Zv,l,m =< Ll,m, V0/ω6
>L2

, Zh,l,m =< Ll,m, V3/ω >L2
,

Zα,l,m =< Lα,l,m, V./ω >L2
2
; α ∈ {e, o}, ZM,l,m =< Ll,m, G/ω >L2

where we refer to Ca, Zj, respectively, as the symmetric and non-symmetric constraints,
respectively. Note, however, that each of them depends on all degrees of freedom and thus
Poisson brackets of Ca, Zj, respectively, also affect x, y, X, Y and q, p, Q, P, respectively.

To compute the inner producs (19) we expand the polynomials Ca, Zj into their ho-
mogeneous pieces Ca(n), Zj(n), respectively, where the notation means that, e.g., Ca(n) is

a homogeneous polynomial of degree n ≥ 0 in x, y, X, Y. Then, the integrals over S2 in
(19) involve n or n + 1 tensor harmonics, respectively, for the contribution Ca(n), Zj(n),
respectively. Since < 1, Ll,m >L2

= 0, l ̸= 0 it follows immediately the simple but very
powerful observation that

Ca(1) = Zj(0) = 0 (20)

which turns out to be crucial in order for the perturbative construction algorithm for the
physical Hamiltonian to work. On the other hand, the contributions from Ca(0), Ca(n); n ≥ 2,
Zj(n); n ≥ 1 are in general, not vanishing. One computes them explicitly using Riemann ten-
sor calculus and harmonic analysis on the sphere as well as Clebsch–Gordan decomposition.
Explicitly one finds for vanishing Klein–Gordan potential U that

Cv(n), 1 ̸= n ≤ 12; Ch(n), 1 ̸= n ≤ 2; CM(n); n = 0, 2, Zv,l,m(n), 0 < n ≤ 12;

Zα,l,m(n), α ∈ {h, e, o}, 0 < n ≤ 2; ZM,l,m(n), n = 1, 2 (21)

are non-vanishing and can be computed in closed-form.

3. Concepts of Quantum Black Hole Perturbation Theory

The purpose of this section is to review several concepts of (quantum) black hole
perturbation theory in a non-technical fashion before we go into technical details in later
sections. The aim is to explain these notions and their interrelations in order to erect a
consistent conceptual picture.

3.1. Observables, Backreaction and Black Hole Evaporation

By backreaction, we understand the interaction between the spherically symmetric
and spherically asymmetric true degrees of freedom. The symmetric and asymmetric true
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degrees of freedom, respectively, are basically the l = 0 and l ≥ 1 multipole moments of
the various observable (or true) fields (geometry and matter) as described in the previous
section. With this understanding of backreaction, the following issue arises: Consider
first the Einstein–Maxwell sector, i.e., there is no additional, e.g., scalar matter “hair”.
Then, by Birkhoff’s theorem [6], the symmetric sector (no radiation, i.e., no multipoles) is
uniquely described by two variables, namely the black hole mass M and charge Q. These
arise as integration constants when solving the perturbative Einstein equations also when
the multipoles are non-vanishing. The physical Hamiltonian then will be a functional of
the asymmetric true degrees of freedom denoted by X, Y for the Einstein–Maxwell sector
and a function of M, Q, say H[M, Q; X, Y]. By construction, M, Q have vanishing Poisson
brackets with X, Y and among themselves. Therefore, M, Q would be constants of motion
with respect to H and while there is gravitational and electromagnetic radiation described
by X, Y, certainly M, Q would be unchanged by the dynamics described by H, in particular,
M, Q could not evaporate. This is in contrast to the situation in cosmology where the
physical Hamiltonian, e.g., deparametrized with respect to the homogeneous mode of a
scalar field ϕ, does depend on the scale factor a and its conjugate momentum pa so that there
is backreaction in the above sense between a, pa and the inhomogeneous modes of both
matter and geometry [72]. In spherical symmetry, the situation for M changes, e.g., when
introducing neutral scalar matter and for Q it changes when, e.g., introducing charged
scalar matter. In that case, M, Q are simply absorbed into true symmetric (in this case)
scalar matter degrees of freedom with which there is non-trivial backreaction.

Thus, it would seem that in the Einstein–Maxwell theory M, Q could not evaporate,
not even in the quantized theory which would include a quantization of H[M, Q; X, Y]. While
for Q this is expected as photons do not carry a charge, for M this is non-trivial: In the
classical theory it is a manifestation of the black hole area theorem since Maxwell matter
obeys the weak energy condition. However, in the quantum theory where the weak energy
condition is typically violated locally, one would not expect that M does not evaporate.
In particular, in Einstein–Maxwell theory the above argument suggests that even including
backreaction there is no dynamic mechanism for black hole evaporation which is in contradiction
to the semiclassical argument that the existence of Hawking radiation predicts black hole
evaporation irrespective of the matter species.

Two ways out of that conclusion suggest themselves:

1. The first way out is based on the observation that Birkhoff’s theorem treats all space-
time diffeomorphisms as gauge transformations. However, in the Hamiltonian frame-
work one makes a finer distinction between diffeomorphisms that generate nonobserv-
able gauge transformations and those that are observable symmetry transformations.
If one adopts that Hamiltonian point of view which is consequential within this purely
Hamiltonian treatment of black holes, then additional observables, namely momenta
PM, PQ conjugated to P, Q are unlocked. If the spacetime metric depends at least on
both (M, PM) then M is no longer conserved even in pure Einstein–Maxwell theory
and can possibly evaporate in the quantum theory. We will see that PQ does not
enter the spacetime metric while PM does or does not, depending on the way that the
expression that defines PM is made compatible with the chosen gauge fixing condition.

2. The second way out is to accept the absence of PM from the reduced Hamiltonian
and consists of interpreting M not as the dynamical mass but just as an integration
constant, namely the initial mass M(0) in (1). The role of the dynamical mass must
then be played by another object. It cannot be the ADM mass which is basically
the reduced Hamiltonian which is, therefore, also conserved. The natural notion of
dynamical mass is the square root of the area of the apparent horizon with respect
to the foliation selected by the gauge fixing conditions (equivalent to the selection of
an observer congruence), which coincides with the notion of irreducible mass for the
case that apparent and event horizon coincide.

In the following two subsections, we will spell out some of the details of these two
possibilities. In the main part of the paper, we adopt the second point of view as it appears
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to be less sensitive to the choice of gauge fixing condition but keep the first point of view in
mind for potential future applications. Some of the possible technical implementations of
the first viewpoint can be found in Appendices A–C.

3.1.1. Dirac Observable Conjugate to the Mass

In [23,73,74] it was observed that the reduced phase space of a spherically symmetric
vacuum black hole is not described by just the mass M but also its conjugate momentum
PM and a scaling parameter κ. Both M, PM are Dirac observables, that is, functionals of the
canonical variables of a vacuum black hole (or the symmetric degrees of freedom) that have
vanishing Poisson brackets with the constraints. Moreover, M, PM are canonically conjugate.
The number κ enters the physical Hamiltonian H = κ M. In Appendices A and B we
explain in non-technical terms why this happens: Essentially, one can perform a canonical
transformation to conjugate variables m, pm and the constraints impose that m′ = 0. This
leaves an integration constant m = M as the solution. One then shows that PM :=

∫

dr pm

is gauge invariant, and thus cannot be gauged away and is conjugate to M. Finally,
the transformations that stabilize any choice of gauge consistent with the value PM have the
generator κM where κ is arbitrary. The existence of κ can be understood from the fact that
C(r) = m′(r) = 0 is equivalent to C̃(r) = m(r)− m(0) = 0 which is identically satisfied
at r = 0 thus the constraints C(r) are redundant. Equivalently, when solving the stability
condition for transformations preserving a gauge compatible with PM one must solve a
differential equation for the smearing function of the constraint which has a free integration
constant which is κ. All of this has to be conducted with due care paying attention to decay
conditions, boundary terms, finiteness of both symplectic structure and constraint integrals
and functional differentiability of the constraints, see Appendix A.

In [23,73] it is explained why the existence of PM is not in conflict with Birkhoff’s
theorem: Indeed, Birkhoff’s theorem says that in asymptotically flat regions of spherically
symmetric spacetimes one can pass to coordinates in which PM vanishes. By carefully
investigating the required temporal diffeomorphism, one observes that this diffeomorphism
is asymptotically non-trivial and thus is to be considered as a symmetry transformation
rather than a gauge transformation [75] in the Hamiltonian setting. Thus, the existence of PM

comes about due to the different notions of gauge in the Lagrangian (as used in Birkhoff’s
theorem) and Hamiltonian setting, respectively. To make our exposition self-contained, we
will review this subtle difference in gauge in Appendices A and B. A similar observation
was made in [76] in the context of cosmological models.

Note, that the existence of a two-dimensional rather than one-dimensional reduced
phase space of the spherically symmetric vacuum sector is also natural from the point
of view of symplectic reduction of phase spaces with respect to first-class constraints
which always returns an even-dimensional reduced phase space at least in the case of finite-
dimensional unreduced phase spaces. The idea would then be that the reduced Hamiltonian
depends on both M, PM and X, Y so that H[M, PM; X, Y] mediates an interaction between
both types of degrees of freedom. In the quantum theory, that interaction can then be treated,
e.g., using the methods of space adiabatic perturbation theory [71] (SAPT), a generalization
of the Born–Oppenheimer approximation scheme that can deal with the situation that the
interaction depends on both slow degrees of freedom M, PM rather than just one, similar
to the analysis performed for cosmology [72]. The SAPT scheme then would produce an
effective Hamiltonian for M, PM that would take this notion of backreaction into account.

To make this work, one has to supply a missing ingredient to the works [23,73,74],
namely to explain how the functionals M[q, p], PM[q, p] of the spherically symmetric in-
trinsic metric q and its conjugate momentum p can give rise to prescribed values M, PM

when one solves the constraints for p with some choice of gauge for q installed. Since the
constraints can be solved for p(r) = p(r; M, q) for general q where M is an integration
constant, apparently the only solution to this problem appears to be that the gauge for q
must depend on both M, PM or at least on PM. But then the following puzzle arises: Since
the physical Hamiltonian is essentially the black hole mass M, while M is a constant of
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physical motion, PM is not. This would mean that the metric q, even in the absence of the
perturbations X, Y and outside the horizon is potentially not static and the effect is not
necessarily small as ṖM = O(1) and thus |PM| is unbounded in time. Below, we offer three
possible resolutions to this puzzle which all rests on the fact that the formal expression
for PM[q, p] is actually an ill-defined integral, which requires a more careful definition, for
the standard choices of gauge. The three resolutions differ in the way that this integral is
regularized given a choice of gauge. The choice of gauge we employ, respectively, will be
closely related to the (generalized) Gullstrand–Painlevé gauge (GPG) [56–58] which we
review in Appendix C. This gauge choice is motivated by the fact that it is both adapted
to the spherical symmetry of the problem and natural from the point of view of QFT in
curved spacetimes (Hawking radiation) and black hole–white hole transitions as we explain
further below.

A. Since P̃M[q, p] := PM[q, p]− f (M) is still conjugate to M for any function f of M, it
is possible to obtain a finite expression by choosing the exact Gullstrand–Painlevé
gauge (GPG) [56–58] which is independent of both M, PM, except for an arbitrarily
small neighborhood of the origin where the metric is singular anyway. The coordinate
size L of that neighborhood does not grow with time and can be chosen to be at
most Planck size so that this deviation is hidden behind the horizon even for Planck
size black holes. Yet, the deviation can be chosen to depend on L, M, PM in such a
way that the prescribed value for PM is obtained from P̃M[q, p] on the reduced phase
space (i.e., both constraints and this gauge are installed). This will be described in
Appendix C. A variant of this is to glue two asymptotic ends along the cylinder
r = l < 2M. Then, it turns out that the corresponding vacuum solution reaches the
Einstein–Rosen bridge solution l = 2M exponentially fast, see Appendix B.

B. Another way to regularize the integral is to take the principal values of the integral
which has singularities at r = M, r = ∞. We consider the generalized GPG [56–58]
which depends on an additional parameter e corresponding to the energy of a timelike
radial geodesic observer on which more will be said below. It is then possible to
regularize the integral such that c PM = arth(e/e0) for some fixed numerical value
c, e0. Then, as |PM| grows, e approaches a constant value e0, more rapidly the larger
|c| is, e.g., e0 = 1 which is the exact GPG. Thus, while e is not a constant of physical
motion, it quickly reaches a quasi-constant value e0.

C. We can pick the exact GPG and still regularize the integral such that the given value of
PM results.

Option C is the simplest and while PM exists it does not show up in the gauge fixed q,
its value is simply a regularization ambiguity. For the electric charge, this is automatically
the case, i.e., the momentum PQ conjugate to Q does not enter the gauge fixed metric,
and therefore, the reduced Hamiltonian. Option B is quasi-equivalent to option C rapidly
in time. Option A in the first variant is almost (locally in space) the exact GPG, it has
the disadvantage to make perturbative calculations more complicated. Common to these
options is that PM either does not show up in q at all (option C) or is quasi absent either
with time (option B) or spatially locally (option A, first variant) or the interior of the black
hole is removed so that PM becomes a function of M (option A, second variant). In that
sense, the backreaction on M via the interaction between M, PM, X, Y is either exact or
quasi absent.

Note, that the generalized GPG with parameter e0 are spacetime diffeomorphic to the
standard SS coordinate solution for r > 2M but the required temporal diffeomorphism
involves in all options a rescaling of the time coordinate (i.e., the lapse is asymptotically
different from unity). Hence, it is asymptotically non-trivial and should, therefore, not be
considered a gauge transformation.

To see which of these three options is preferred one may invoke the mathematical
argument to have a match with the Kantowski–Sachs (KS) picture which underlies most
of the treatments of the quantum black hole with LQG methods (LQBH) [23–36] building
on the huge amount of experience with the treatment of quantum cosmology with LQG
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methods (LQC) [77,78]. We will review this in Appendix D. Note, however, two caveats
with that argument: First, the equivalence of both pictures is due to the fact that the GPG
vacuum solution is stationary while the KS vacuum solution is homogenous so that one
can just switch the roles of time and space. This is no longer true with matter coupling
unless the spherically symmetric matter sector also leads to only stationary solutions (such
as TOV spacetimes with perfect fluid energy-momentum tensors and suitable equations of
state between pressure and energy density [14]). Second, the mathematical equivalence
between the KS picture and the generalized GPG picture rests on considering all spacetime
diffeomorphisms as gauge transformations and thus, is insensitive precisely to the issue of
the status of existence of PM which relies on a finer classification of diffeomorphisms.

Nevertheless, it is of interest to understand the correspondence between the two pic-
tures in the Hamiltonian setting: In the KS picture one considers the Hamiltonian analysis
of homogeneous, spherically symmetric but anisotropic KS cosmologies which depend on
two scale factors A, B and their conjugate momenta pA, pB. The spatial diffeomorphism
constraint vanishes identically and there is only one remaining Hamiltonian constraint.
Hence, this is a mechanical system with a 4d phase space and one (necessarily first-class)
constraint so that the counting of degrees of freedom is very simple: The reduced phase is
2d and there are exactly two algebraically independent and canonically conjugate Dirac
observables. One can develop both the relational observables and true degrees of freedom
picture and compute the physical reduced Hamiltonian. The solutions of the physical
equations of motion show that on shell the scale factors and lapse are exactly those of the
Schwarzschild interior solution with the switch between radial and temporal coordinate
understood, up to one exception: While the first observable is associated with the mass,
the second corresponds to a rescaling of the time coordinate and can be interpreted as a
“clock ticking rate”. It is exactly the same scaling parameter κ that occurs also in the above
GPG picture (which covers both the interior and exterior of the black hole). Accordingly,
in the KS picture the possibility for PM to show up in the physical metric never occurs. It
follows that the two pictures agree if we pick for the GPG picture option C i.e., we install
the exact GPG and ascribe PM to a regularization freedom.

It is quite interesting to see how this happens: In the KS picture, we start from a
finite-dimensional phase space with a very transparent counting of degrees of freedom.
On the other hand, in the generalized GPG picture we start with a field theory, i.e., an
infinite dimensional phase space before the constraint treatment and there is a complicated
set of issues such as spatial fall-off conditions, boundary terms, solving spatial differential
equations, etc., arise. Because of this the construction of the reduced phase spaces and
physical Hamiltonians is quite different. In the cosmological KS picture, the physical
Hamiltonian simply results from gauge fixing conditions and the effective equations of
motion for the corresponding true degrees of freedom while in the GPG picture, it is the
boundary term that must be added to make the constraints functionally differentiable that
drives the dynamics of the true degrees of freedom. In the KS picture, we have two true
degrees of freedom or Dirac observables M, κ, in the GPG picture we have two observables
M, PM and an additional integration constant κ which arises due to constraint redundancy
while in the KS picture, there can be no such redundancy. In option C above we can
discard PM as it does not show up anywhere in the metric and then both pictures match as
far as the surviving parameters, namely M, κ, are concerned. However, while M, κ have
non-vanishing brackets in the KS picture, in the GPG picture κ is considered a phase space
independent constant. The resolution of this apparent contradiction is as follows: In the KS
picture, the physical Hamiltonian and M, κ are explicitly time dependent with respect to KS
time T. However, in solutions of the equations of motion they become constants of motion.
In contrast, in the exact GPG picture the physical Hamiltonian is conservative, i.e., like
M, PM is not explicitly time-dependent with respect to GPG time τ. In solutions, also M is a
constant of motion and κ was a time-independent constant from the outset. Note, that since
essentially the KS time T is the radial variable, T independence in the KS picture translates
into radial independence which again brings both pictures into congruence.
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To summarize: For the rest of this paper, we will follow option C when considering
nonvacuum spacetimes. This means that the mass parameter M is a constant of physical
motion and can, therefore, be called the “remnant mass” because the physical Hamiltonian
reduces to it when perturbations and matter are absent. There is no dynamical mechanism
that can change M because while the second Dirac observable PM exists it does not enter the
physical Hamiltonian. We work in the exact GPG. Still, we may use the above-introduced
cut-off l = r as a regularization method when we compute the black hole white hole
transition mode functions, see Section 8.

3.1.2. Apparent Horizon Area

Consider then M as an integration constant. It happens to coincide in the exactly
spherically symmetric case with many different definitions of mass in general spacetimes
that have been discussed in the literature such as the ADM mass [75] or the irreducible
mass [6,14]. The ADM mass is expected to be the leading term of the physical Hamilto-
nian H for small perturbations and thus is, in particular, preserved (together with M if
PM is absent in the metric), hence “evaporation of H” is again not possible. However,
the irreducible mass with respect to the apparent horizon serves as a suitable more direct
measure of backreaction. Recall that given a foliation of (M, g) by spacelike hypersurfaces
τ 7→ Στ a compact 2-surface Sτ ⊂ Στ without a boundary is called an outer marginally
trapped if θ+ = 0, θ− < 0 where θ± are the expansions of the null normals l± = n ± s
with g(n, n) = −1, g(s, s) = +1, g(n, s) = 0 with future-oriented timelike unit normal n
to Στ and the outward-oriented spacelike unit normal s to Sτ and tangential to Στ . The
outermost trapped surface (two-dimensional) is called the apparent horizon Hτ at τ and
the union of apparent horizons as τ varies is called trapped horizon (three-dimensional)
H. Finally, the irreducible mass Mτ at τ is the square root of the area Aτ of Hτ (up to a
constant factor; abusing terminology, the actual definition refers to the event horizon rather
than the apparent horizon).

Following [79] it is not difficult to show, see Section 7, that indeed one can uniquely
determine Aτ to arbitrary order in perturbation theory directly in the Hamiltonian setting
and thus obtain a notion of time-dependent mass that can possibly evaporate. This notion
of mass is also operationally preferred as an astrophysicist would recognize a black hole
as a marginally outer trapped region (which is the condition that the light rays leaving
Sτ orthogonally are marginally converging). Now, the following issue arises: Under a
combination of the usual assumptions, namely that the classical Einstein equations hold,
that the energy conditions for the energy-momentum tensor are satisfied, the validity of
cosmic censorship and global hyperbolicity, classical GR makes two predictions: First, that
the existence of trapped surfaces implies the existence of a singularity and second, if that
singularity is a black hole (rather than a naked one forbidden by cosmic censorship) then
the trapped surface is within the black hole region. Therefore, if the astronomer is outside
the black hole region, they will indeed measure the event horizon as the sphere of no
escape. From that point of view, the apparent horizon appears to be of no use except that
one expects it to be a good approximation (or at least a lower bound) of the event horizon.
The apparent horizon has the advantage of being less teleological than the event horizon
but it has the disadvantage of being foliation dependent. We do not share that criticism
but rather accept that the notion of irreducible mass is observer-dependent and here the
foliation is selected by the (generalized) Gull–Strand–Painlevé gauge which we motivate in
the next subsection. We refer the reader to the rich literature on apparent horizons and its
specialisations (e.g., dynamical and isolated horizons) [17].

Now, again by classical GR the area of the event horizon cannot decrease; therefore, in
classical GR there is no evaporation possible. We need quantum theory to have evaporation
by violating at least one of the assumptions of classical GR. The most obvious one is the
violation of the energy conditions, recalling similar quantum violations of classical (energy)
inequalities in QFT in flat spacetime [80]. In that case, one can have trapped regions which
evolve dynamically while there is no event horizon at all if, for example, the singularity is
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resolved, as the existence of trapped regions no longer implies the existence of a singularity
(assuming that the classical reasoning can be applied at all, at least in a semiclassical sense).
Even if there still is an event horizon, the violation of the energy conditions now no longer
implies the apparent horizon to lie in the black hole region, it can even lie outside. This
picture is confirmed in exactly solvable 2d models such as the CGHS black hole solutions
including matter [18].

Now, in perturbation theory the zeroth order is a spherically symmetric vacuum
black hole if there is no spherically symmetric matter hair and that spacetime does have
a singularity and an event horizon. The second order describes the perturbations as
propagating on that singular spacetime and can, e.g., serve to start a Fock quantization of the
system. Therefore, it appears strange to perturb a singular spacetime with an event horizon
if one expects that in quantum theory the non-perturbative spacetime is in fact free of
singularities, and therefore, does not have an event horizon, that is, it seems that black hole
perturbation methods are unable to capture the actual non-singular nature of the quantum
theory. Our point of view here is that the causal structure of the spacetime including its
singularities and horizons is itself subject to perturbation theory. Hence, even in the second
order one would compute the expectation value with respect to an initial state (using the
Heisenberg picture) of the (perturbed) metric tensor, curvature tensor, reduced Hamiltonian,
apparent horizon and its area, etc., using their classical expressions and substitute them by
the corresponding operator-valued distributions. Altogether, this describes a new effective
spacetime metric to which we may apply the usual classical GR definitions of singularities
and horizons to calculate a quantum corrected Penrose diagram (at least in regions where
that effective metric has small quantum fluctuations). This process can be iterated at
higher orders of perturbation theory and presents a drastic form of backreaction. It goes
beyond the semiclassical Einstein equations in which one defines the Einstein tensor as the
expectation value of the matter energy-momentum tensor G(g) :=< T(g) > and tries to
find a self-consistent metric g solving this equation [81] because here the (perturbations of)
the metric are also quantized in the Heisenberg picture (the Heisenberg equations follow
from the reduced Hamiltonian, to any order in perturbation theory, using the Gell–Mann
and Low formula if we use Fock quantization). A possible mechanism for violation of
energy conditions is due to normal ordering prescriptions of < T(g) >.

If the singularity disappears in this process, what forms and evaporates is then not the
event horizon but the apparent horizon, see also [82,83]. Therefore, perhaps one should in
fact set M = 0 at zeroth order i.e., start with Minkowski space and follow the above process
from formation to evaporation although it is unclear whether starting from M = 0 and
Minkwoski space Fock spaces for the perturbations and an initial coherent state peaked at
gravitational collapse initial data one really obtains a collapse–evaporation process in the
quantum theory. For the sake of generality in this paper, we handle the general M > 0 case
but motivated by the quantum theoretical considerations feel free to regularize the singular
M > 0 background spacetime when needed.

It is remarkable that the innocent-looking integration constants M, Q have such a
tremendous impact on the whole quantization process. Namely, they decide whether
second-order perturbation theory we consider Fock representations on singular or non-
singular spacetimes, with or without horizons. We close the discussion by mentioning the
following observations:

A. The components of the spacetime metric g are specific functions of M, X, Y. These
arise as follows: One imposes the GPG, fixing the components of the spatial metric
m different from X, solves the constraints for the components of p different from Y
and solves for lapse S0 and shift Sa using the stability condition of the imposed gauge
under gauge transformations. The irreducible mass then is also a specific function
m = m[M, X, Y] of these true degrees of freedom. As we will show in Section 7 we
have m = M + m2[M, X, Y] + m3[M, X, Y] + . . . where mn is of n-th order in X, Y.
Now, even if radiation described by X, Y is produced only in a compact spacetime
region R, since X, Y have to obey wave equations, that radiation is generically non-
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vanishing in the entire causal future J+(R) of that region (the causal future is of course
also influenced by the amount of radiation present as it perturbs the metric). Given a
foliation of (M, g) by Cauchy surfaces Στ let τ0 be the latest foliation parameter such
that Στ ∩ R ̸= ∅. Then, still Στ ∩ J+(R) ̸= ∅ for all τ ≥ τ0. Thus, a timelike observer
with eigentime τ will eventually enter J+(R), however, for sufficiently large timelike
distances from R the signal described by X, Y will be weak. Thus, the spatial metric
m returns to almost strict GPG for sufficiently large τ because it is a spatially local
function of X, namely q − gGPG = X. On the other hand, the solution of p, N, Na

at given τ is a spatially non-local function of X, Y involving integrals over the entire
hypersurface Στ . This is because the constraint and stability equations are PDE’s and
not algebraic equations. Since Στ ∩ J+(R) becomes larger in volume the later τ is, these
integrals can counterbalance the decay of X, Y and lead to strong deviations of lapse
and shift from their pre-radiation values which are S0 = 1 and Sa = δa

3

√
2M/r for all

τ ≥ τ0 in the causally allowed region of spacetime. As a measure of this deviation, we
may introduce the effective mass by

√

2meff (r, τ)/r :=
∫

S2 dΩ(y)S3[M, X, Y](r, y, τ)
which, therefore, can deviate from M for all τ ≥ τ0 and can potentially vanish,
therefore, describing the evaporation effect. Since the spatial integral over a fixed
τ hypersurface captures non-linear contributions from the “gravition” fields X, Y
related to their data in R by the corresponding retardation, this may be considered as
an instance of a non-linear memory effect [84].

B. The apparent horizon at τ is defined by a radial profile function ρ : S2 → R+; which
depends on X, Y which become quantum fields. In that sense the coordinate location
of the apparent horizon becomes quantized, subject to quantum fluctuations. This, on
the one hand, is very similar to the construction of quantum reference frames [85,86]
and on the other hand, intuitively explains why the black hole area theorem can be
violated in the quantum theory: Even if an event and apparent horizon coincide,
in suitable states the fluctuations can be very large so that the location of the apparent
horizon becomes fuzzy.

C. In the classical theory, if the metric does not depend on the observable PM conjugate to
M, and possibly also the quantum theory it is conceivable that significant evaporation,
apart from minuscule quantum fluctuations, only arise if we take interactions into
account. These arise only beyond second-order perturbation theory due to either self-
interactions of X, Y or interactions between X, Y and the matter degrees of freedom.
The reason is that in the second order geometry, matter fluctuations decouple and
all field species effectively propagate on a GPG background with fixed M. As that
background is GP time independent, each mode function that solves the corresponding
classical equations of motion is ∝ eiωτ for some ω ∈ R and thus periodic in GP time
with periodicity determined by ω. If the classical or quantum field is only excited
for a finite number of such ω then all notions of mass depending on the fluctuations
will be (quasi-)periodic rather than decaying functions of time which would rather
require a superposition (integral) of an infinite number of modes. In second order
there can be an interaction between matter and geometry fluctuations if the electric
charge does not vanish (or if the Klein–Gordon potential has a linear term) but such a
quadratic interaction can be decoupled by a canonical transformation and the time
dependence would still be quasi-periodic. This indicates that having a manifestly
gauge invariant formalism at one’s disposal that allows to unambiguously compute
the effects of higher order perturbations of the true degrees of freedom is probably
very crucial in order that significant evaporation effects are turned on even if only a
finite number of modes are excited.

3.2. Foliations and Hawking Radiation

The physical Hamiltonian can be expanded to any order in X, Y and in quadratic order
suggests a Fock representation of X, Y corresponding to a free field on a spacetime whose
metric depends parametrically on M. This requires that the τ = const. surfaces of the
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foliation defined by the gauge fixing conditions are actually complete Cauchy surfaces,
i.e., they have a timelike normal and every inextendible causal curve must cross each
Στ precisely once. Moreover, as we wish to explore the fate of the singularity and the
possibility of black to white hole transitions, the spacetime covered cannot only be an
asymptotic region but must also deal with the interior of the black hole parametrized by M
and possibly another exterior region.

All of this rules out using standard Schwarzschild time, as the Killing field ∂t orthog-
onal to the t = const. slices is spacelike for r < 2M and there is a coordinate singularity
at r = 2M. As a physical selection criterion for the gauge fixing and the corresponding
foliation, we use the principle of general relativity, that is, the equivalence principle: The
Fock vacuum (zero particle vector state) selected by the Hamiltonian should be the one
of an observer in geodesic motion since this observer comes as close as possible to an
inertial observer in flat spacetime. Since the spacetime parametrized by M is spherically
symmetric we employ that symmetry property and consider radial unit timelike geodesics
adapted to spherical symmetry. These carry two parameters e, ρ in addition to the direc-
tional angles. Here, e := −g(ξ, u) ∈ R+ is the asymptotic energy per mass where ξ = ∂t

is the Killing vector field corresponding to Schwarzschild time t and u = ∂τ is the unit
timelike tangent along the affinely parametrized geodesics with eigentime parameter τ,
i.e., g(u, u) = −1, ∇uu = 0. The parameter ρ ∈ R labels the geodesic and has the meaning
that at eigentime τ = ρ the geodesic hits the singularity r = 0 where r is the Schwarzschild
radial coordinate. The parameter e which is the same for the whole geodesic congruence
is a function of M, PM as detailed in Appendix C which would be of interest if we would
use option B of the previous subsection and is, therefore, a Dirac observable as one would
expect from its geometrical meaning. For e ̸= 1 the corresponding coordinates are called
generalized GP coordinates while e = 1 corresponds to the standard or exact GPG. As mo-
tivated in the previous subsection we will use e = 1 in what follows but briefly comment
on the case e ̸= 1 for possible future use. Since the geodesics are complete (τ has infinite
range) only for |e| > 1 it is sufficient to consider only the case e ≥ 1.

At each fixed e, the family of ingoing geodesics labeled by ρ, θ, ϕ is a geodesic con-
gruence which covers the Schwarzschild (SS) and black hole (BH) portion of the Kruskal
extension of the spacetime and the family of outgoing geodesics labeled by ρ, θ, ϕ is a
geodesic congruence which covers the mirror Schwarzschild (BSS) and white hole (WH)
portion of the Kruskal extension of the spacetime. It turns out that these geodesics intersect
the spacelike surface r = 0 orthogonally when e = 1 and that the τ = const. slices Στ which
carry coordinates ρ, θ, φ are spacelike surfaces that intersect the singularity tangentially
when e = 1. If we restrict these surfaces to SS and BH or MSS and WH only, then they
are not Cauchy surfaces for these portions because they end at the singularity. We can
turn them into Cauchy surfaces in two ways: The first possibility is to restrict to say the
SS and BH portion and use part of the singularity to complete Στ in a C1 manner to a
Cauchy surface. This spacetime has topology R×R+ × S2 covered by τ, r, θ, φ coordinates.
However, to use part of the singularity surface r = 0 as the Cauchy surface is problematic
as the metric is singular on an entire 3d submanifold of that Cauchy surface and because
the so extended Cauchy surfaces actually overlap at the singularity surface. Thus, one
would rather extend the Cauchy surface into the BH part slightly off the r = 0 surface after
hitting the singularity and such that they do not overlap (there is of course considerable
freedom in doing so). The second possibility is to glue a SS and BH portion belonging to
a “past universe” to an MSS and WH portion of a “future universe”. We conduct this by
gluing an ingoing geodesic labeled by ρ in SS+BH to an outgoing geodesic labeled by ρ
in MSS+WH. In this way we can foliate the entire set SS+BH+WH+MSS by “free falling
Cauchy surfaces” describing a black hole white hole transition between two universes. This
spacetime has topology R2 × S2 covered by τ, ρ, θ, φ coordinates. All ρ = const. geodesics
start at past timelike infinity of the past universe as τ → −∞ and end in the future timelike
infinity of the future universe as τ → +∞. All τ = const. Cauchy surfaces end in the
two asymptotic ends, i.e., the spatial infinity of SS in the past universe and of MSS in the
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future universe. They intersect the singularity in a single point only. Accordingly, it is
mathematically preferred to use the entire SS+BH+WH+MSS portion. It is the common
domain of dependence of all free-falling Cauchy surfaces and thus this spacetime region
is globally hyperbolic if we do not exclude the singularity r = 0. In Appendix C we have
collected the background material associated with this construction.

Note, that due to the singular behavior of the metric at r = 0 there is a priori no reason
to assume that the mass M is the same in the future and past universe, respectively, and
for the same reason the clock ticking rate κ is not necessarily the same. For reasons of
continuity of the geodesic ρ = const. we consider only the equal value case for both M, κ.

In SS+BH+WH+MSS the metric can be described using global coordinates τ, ρ, θ, φ
except for the singularity at ρ = τ and it remains to be investigated whether certain observ-
ables are nevertheless singularity free across ρ = τ in the quantum theory. For instance,
the mode functions that enter the construction of the Fock representation have to solve
a stationary equation of Schrödinger type involving a potential that is singular at r = 0.
However, such a situation is common in quantum mechanics (e.g., the hydrogen atom) and
not necessarily an obstacle to solve the corresponding stationary Schrödinger equation.

Note, that the construction can be repeated indefinitely to the future and the past by
gluing these transition spacetimes labeled by I ∈ Z along the various horizons rI = 2M,
r̄I = 2M where rI is the radial coordinate in the I-th SS+BH and r̄I in the I-th MSS+WH
part. However, that extended spacetime is no longer globally hyperbolic even when
ignoring the singularities because while each transition block is the common domain of
dependence on all its free-falling leaves, for instance the timelike geodesics start and end
in the past and future timelike infinity of that block and do not enter other blocks. Thus,
boundaries between the blocks are Cauchy horizons. Alternatively, one can complete such
a transition block along the r = 2M and r̄ = 2M boundaries by two Minkowski space
Penrose diagram triangles in the past and the future where the vertical long side of the
triangles represent r = 0 and r̄ = 0, respectively, before/after the formation/evaporation of
the black/white hole, see Appendix C for the details. That completed spacetime continues
to be globally hyperbolic.

Returning to one block, given such a foliation, one has to determine the solutions of
the classical equations of motion for X, Y dictated by the quadratic part of the Hamiltonian
(mode functions). For the case e = 1 and r > M these are known as Heun functions [87]
and there are techniques available to extend them to 0 < r ≤ M [88,89]. Thus, in principle,
we can construct the mode functions of the Fock representation selected by the radially
free-falling observers. This works for either the SS+BH or the MSS+WH portions separately.
If these two descriptions can be meaningfully joined we can discuss black hole–white hole
transitions as discussed in the next subsection, otherwise we have to restrict to only one of
these portions keeping in mind the necessity to extend the free-falling equal proper time
surfaces to Cauchy surfaces in this case. In both cases, we call the corresponding vacuum
the geodesic vacuum. As a congruence of geodesic observers defines a Riemann normal
coordinate system wrt which the metric is locally Minkowski, we expect the two-point
function of the geodesic vacuum of Hadamard form [90] when we pick the asymptotic form
of the mode functions at the spatial infinities to correspond to a flat space Hadamard state.

One can then describe two kinds of Hawking effects in the usual way: The first type
is to use the t = const. foliation of the SS portion to define the Fock structure with respect
to an asymptotically static observer, express the quantum fields X, Y restricted to SS with
respect to the mode functions of the τ = const. and t = const. foliations, respectively,
and derive the Bogolubov coefficients from the equality of the two expansions. This is
similar to the Unruh effect with the role of the inertial, respectively, accelerated obserer
of Minkowski spacetime played by the τ, respectively, t foliation observer in the curved
spacetime parametrized by M, i.e., one uses two different foliations in a portion of spacetime.
The second type is to use the observation that in ρ, τ coordinates the vector field ∂τ is not
Killing but everywhere timelike and orthogonal to the foliation (the metric depends only on
the combination ρ − τ so that the Killing vector field is ∂ρ + ∂τ , however, it is not timelike
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everywhere). Accordingly one can use the notion of adiabatic vacua [90–93] familiar from
cosmology to describe particle production between different τ = const. slices within the
same foliation of spacetime.

3.3. Black Hole–White Hole Transition and Singularity Resolution

In the literature on quantum black holes inspired by LQG [23–36] one argues that the
singularity is removed in two possible ways:

I. In the first scenario, so far restricted to vacuum spacetimes, one uses that the BH
and WH portions of the spacetime are described by a Kantowski–Sachs cosmology
in suitable coordinates, i.e., the metric is spatially homogeneous and described by
two scale factor functions A, B of BH resp. WH “time” r, r̄ joined at r = r̄ = 0 (re-
call that the radius is timelike in the interior; one can consider the time coordinate
T := −r in BH and T := r̄ in WH to work with a single “time” coordinate) subject to
the condition A2 = 1 − 2M/B, B2 = r2, r̄2, respectively. Instead of imposing these
conditions we can consider a phase space with canonical pairs (A, pA), (B, pB) and
a Hamiltonian constraint C such that the symplectic reduction of that constrained
system recovers the above form of A, B where 2M plays the role of an integration
constant. See Appendix D for some of the details of this construction. Then, one
quantizes the unconstrained phase space using a Narnhofer–Thirring type of repre-
sentation [94] of the corresponding Weyl algebra inspired by LQG by the same logic
applied in LQC [77,78]. Then, one must impose C as a quantum constraint which in
this representation is only possible if one modifies C by replacing A, B by suitable
linear combinations of Weyl elements which are not all strongly continuous in this
representation, e.g., A becomes sin(λA)/λ for small λ in the simplest proposal. One
finds that the singularity B2 = 0 is resolved and replaced by a minimal positive value
of Planck area order in the “effective equation” approximation sketched below. That
is, the quantum metric becomes regular.

II. In the second scenario, so far restricted to spherically symmetric spacetimes with
dust matter, one uses coordinates that cover both the interior and exterior of potential
black holes. The dust fields are used as material reference systems and one passes
to a reduced phase space formulation. The remaining gauge invariant, spherically
symmetric metric fields are then quantized in a LQG type of representation similar to
in the first scenario. This involves again an approximation of fields by Weyl elements
called “polymerization” and one mostly studies the “effective equations”, i.e., the
classical equations of motion that result from the “polymerized” classical, reduced
Hamiltonian. One also here finds singularity resolution in this restricted sense.

The intention of the present work is to extend these results beyond the spherically
symmetric (vacuum) sector, beyond the effective description and to use standard matter
rather than dust. In that respect the second option is more adapted to the present approach
because it is conceptually and technically unclear how to deal with the switch between time
and radial coordinates in a canonical quantization (which rests on foliations of the entire
spacetime) when passing between the interior and exterior of the black hole. Following
the second option, in the present approach one can identify the role of the symmetric true
observables with the reduced phase space of the purely spherically symmetric models
covered by the second option above and follow their LQG type of quantization. If the
quantum theory would be truly non-singular (not only at the effective level) then the
quantum spacetime would be non-singular and we could in principle straightforwardly
extend X, Y between the BH, and WH portions and discuss BH–WH transitions in a
singularity-free manner although solving the corresponding mode functions would become
quite involved.

Besides those options, here we explore a less radical possibility: If we avoid the
polymerization, which generically is accompanied by “discretization ambiguities”, then
the symmetric sector of the theory, which is typically non-polynomial in the symmetric true
degrees of freedom, describes classically singular spacetimes. Its quantization is, therefore,
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challenging and must be addressed by independent methods. In Section 6 we sketch a
possible approach. It rests on the presence of the integration constant M which allows an
expansion of the reduced Hamiltonian in powers of M−1 (inverse core mass expansion).
The coefficients are then nested radial integrals of the polynomial energy–momentum
density of the symmetric sector which can be quantized, e.g., using Fock space techniques.
The non-symmetric sector couples to the symmetric sector but can be treated also with this
inverse core mass expansion. Therefore, in principle, the system can be treated, e.g., with
perturbative Fock space techniques. Still, the mode functions to be solved when defining
the Fock representations are derived from differential equations with singular coefficient
functions which are obtained from the lowest order in the inverse core mass expansion.
Specifically, the metric expressed in τ, ρ coordinates covers a spherically symmetric vacuum
spacetime which is singular at ρ = τ where the leaves of the geodesic foliation intersect the
singularity. Accordingly, the corresponding wave equations for X, Y are also singular at
ρ = τ. If they can be meaningfully continued across ρ = τ we can discuss black hole white
hole transitions just using standard Fock space techniques. We intend to use a mixture
of the machinery of Heun functions [87,95] and the orthonormal basis of the one particle
Hilbert space developed in [96] that allow to deal with potentials that contain arbitrarily
negative powers of r, r̄ in order to define a dense domain of the corresponding Schrödinger
type operator and to meaningfully analyze the possibility of a BH to WH transition and a
singularity resolution.

3.4. Quantum Penrose Diagramme

In the sketched Fock space approach, eventually, the reduced Hamiltonian for the true
degrees of freedom is a perturbative expansion in the X, Y which at quadratic order is that
of a free quantum field in the exact GP spacetime of mass M. But that does not mean that
the quantum theory describes this spacetime. Rather, the quadratic part of the Hamiltonian
just starts the Fock space representation. After this, interesting observables such as the
apparent horizon area or the metric coefficients become operator-valued distributions.
In the Heisenberg picture, we can, in principle, construct their (perturbative) Heisenberg
evolution with respect to the reduced Hamiltonian (truncated at the desired order) and we
can compute the vacuum expectation values of those. These expectation values now define
a “quantum metric” which will differ from the GP metric we started from and that just
served to initiate the quantization. We can then compute the resulting “quantum Penrose
diagram” from that quantum metric that captures, at least in part, the quantum corrections
to the GP spacetime that one started from. Accordingly, the singular GP spacetime with
mass M that initiates the quantization could, in principle, be replaced by a non-singular
quantum spacetime via this process.

4. Choice of Gauge Condition and Associated Reduced Hamiltonian

In the first subsection, we motivate the choice of gauge condition adapted to spherical
symmetry. In the second we specify the decay behavior of the fields with respect to the
chosen system of coordinates. This is somewhat different from the usual decay behavior in
terms of the coordinates of an asymptotic observer at rest as the shift function approaches
zero more slowly at spatial infinity. In the third, we show that the chosen gauge can be
locally installed modulo the usual global issues. In the fourth we solve the constraints
non-perturbatively in a neighborhood of the chosen gauge cut in implicit form, that is,
modulo explicitly solving a system of ordinary differential equations; however, we provide
an iteration method for solving it. In the fifth, we compute the corresponding reduced
Hamiltonian implicitly but non-perturbatively by solving the stability conditions for lapse
and shift functions thereby obtaining the dependence of the full spacetime metric on the
true degrees of freedom and exploiting the explicit decay conditions. We will follow the
general program outlined in [61].

While all formulae of this section are implicit only, they provide the the fundamental
starting point for the explicit perturbative scheme that is developed in the subsequent sections.
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4.1. Exact and Generalised Gullstrand–Painlevé Gauge

As outlined in [61] it is important to impose gauge conditions that involve only
configuration coordinates on the phase space. This is because otherwise the choice of
gauge would not be disentangled from the (perturbative) solution of the constraints for
the momentum variables which, in turn, determines the reduced Hamiltonian. Therefore,
the gauge condition must not depend on the mass of the black hole. Next, as we wish
to be independent of the matter content, this forces us to impose conditions on the three
metrics mµν. Furthermore, as we wish to explore the black hole interior, we should impose
gauge conditions on mµν which ensures that the metric is regular across any possible
horizons. Therefore, the gauge condition must be regular on the entire three manifold
σ which we choose to be σ = R3 for each asymptotic component. At the same time
the gauge condition should of course not be in conflict with the possible presence of a
black hole (nonvanishing mass) and must be consistent with the available gauge freedom,
i.e., the gauge must not eliminate physical degrees of freedom that cannot be removed by a
true gauge transformation. This is a subtle point which for completeness is reviewed in
Appendices A–C. Finally, there are practical considerations, which prefer gauge conditions
which simplify the computations of covariant derivatives and curvature associated with
mµν as much as possible because mµν features prominently in all couplings between matter
and geometry in the Hamiltonian constraint.

These guidelines motivate the (Generalized) Gullstrand–Painlevé Gauge (GGPG)
Gµ = 0, µ = 0, 1, 2, 3 where [56,57]

G3 := q3 − e−2, GA := qA, G0 := q0 − r2 (22)

which have proved very powerful for exactly spherically symmetric classical and quan-
tum LTB spacetimes [97–99]. Here, e2 ≥ 1 is a parameter that cannot be removed by a
Hamiltonian gauge transformation (it can be by a Lagrangian one, see Appendix C). These
coordinates and their relations to timelike geodesic congruences and simultaneity foliations
are reviewed in Appendix C. We refer to the exact Gullstrand–Painlevé gauge (GPG) as the
one corresponding to e2 = 1.

The notation is as follows: We have chosen Cartesian coordinates xµ, µ = 1, 2, 3 on
σ = R3 with corresponding radial coordinates z3 := r and angular coordinates zA, A = 1, 2;
z1 = θ, z2 = φ and the components q33, q3A, qAB are with respect to z3, zA. Then,

q3 := m33, qA := m3A, q0 :=
1

2
ΩAB mAB (23)

The latter is the trace with respect to the background metric Ω on S2. The GGPG implies
that the dynamical configuration degrees of freedom are

q⊥AB = XAB = qAB − ΩAB q0 (24)

The conjugate momenta are

P3 := W33, PA := 2 W3A, P0 := ΩAB WAB, PAB
⊥ = YAB := WAB − 1

2
ΩAB P0 (25)

Note, that the non-vanishing Poisson brackets are

{P3(z), q3(z
′)} = {P0(z), q0(z

′)} = δ(z, z′), {PA(z), qB(z
′)} = δA

B δ(z, z′),

{PAB
⊥ (z), q⊥CD(z

′)} = [δA
(C δB

D) −
1

2
ΩABΩCD] δ(z, z′) (26)

The GGPG suggests to solve the constraints for the momenta P3, PA, P0 to which we turn
in the next subsection.
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For completeness, we repeat here the argument why the GGPG can always be in-
stalled by a spacetime diffeomorphism when the metric is spherically symmetric (but not
necessarily stationary), that is, of the form

ds2 = − f dT̂2 + g dX2 + 2 h dT̂ dX + k2 dΩ2, dΩ2 := ΩAB dzA dzB (27)

where f , g, h, k are the functions of T̂, X and g, k > 0, f + h2 g−1 > 0 in order for the metric
to be regular and of signature −1,+1,+1,+1. We first set T := T̂, r := k(T̂, X) and invert
T̂ = T, X = K(T, r). Then, upon substitution (27) acquires the form

ds2 = −F dT2 + G dr2 + 2 H dT dr + r2 dΩ2, (28)

where now F, G, H are functions of T, r. Next, we set T = T(τ, r) and find

ds2 = −F Ṫ2 dτ2 + [G − F (T′)2 + 2 H T′] dr2 + 2 [H T′ − F Ṫ T′] dτ dr + r2 dΩ2, (29)

where Ṫ = dT/dτ, T′ = dT/dr. The GGPG can now be completed by solving the non-
linear ODE (at a fixed τ)

G − F (T′)2 + 2 H T′ = e−2 (30)

where G, F, H are functions of T(t, r) and r. The solution of (30) is unique up to a sign and
to addition of a function T0(τ). Plugging in that solution we find

ds2 = −A dτ2 + 2 B dτ dr + e−2 dx⃗2 + r2(1 − e−2)dΩ2

= −[A + B2e2] dτ2 + e−2 δµν [dxµ + B e2 nµdτ] [dxν + B e2 nνdτ] + r2(e−2 − 1)dΩ2 (31)

where nµ = xµ/r which shows that the metric is regular and of Lorentzian signature if
A + B2/e2 > 0 which can be ensured using the freedom of choosing T0.

It is illustrative [56–58] to transform the Schwarzschild form of the line element for
r > 2M (2M is the Schwarzschild radius) to GGP form which can be conducted using

T0(t) = t. One finds (see Appendix C) that A = e−2[1 − 2M
r ], B = ∓e−2

√

e2 − 1 + 2M
r

i.e., A + B2 e2 = 1. It follows that lapse and shift are N = 1, N3 = e2 B, NA = 0.
The sign corresponds to a congruence of outgoing/ingoing timelike geodesics for which τ
is the eigentime.

The GGP form can be analytically extended beyond r > 2M and covers the advanced
(B > 0) and retarded (B < 0) Finkelstein portions of the Kruskal extension and thus makes
it a suitable coordinate system for our purposes of exploring the interior of the black hole.
In fact, we will explore the possibility to glue two such spacetimes to a Black Hole White
Hile Transition (BHWHT) spacetime constructed more explicitly in Appendix C and for
which we require two asymptotic ends covered by two different radial coordinates r, r̄ for
the part of the spacetime containing the black and white hole, respectively.

An important feature of the exact GPG (i.e., e2 = 1) is that in the foliation defined by
the GP time T the spatial sections are flat. This tremendously simplifies all subsequent calcu-
lations in perturbation theory and the canonical quantization of the system. The complete
information about the non-vanishing 4-curvature, therefore, does not reside in the intrinsic
3-curvature but the extrinsic curvature, e.g., K33 = − 1

2N [LN⃗q]33 = −B′. The price to pay
is that the line element is stationary but not static in these coordinates. Of course the GP or
GGP coordinates do not remove the singularity at r = 0. This cannot be achieved by the
classical theory but potentially by the quantum theory, which is what we wish to explore.

That the GGPG can always be installed when the 3-metric is spherically symmetric by
a coordinate transformation that preserves spherical symmetry (i.e., does not depend on
angular coordinates) does not show that the GGPG can also be always installed when the
3-metric is not spherically symmetric. In what follows we will show that this is nevertheless
the case where coordinate transformations that violate spherical symmetry can be exploited
to achieve just that. We will conduct this directly in the Hamiltonian formalism. As a
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prerequisite this requires us to carefully state the decay behavior of the fields at spatial
infinity because these decide which kind of transformations are to be considered as gauges
and which as symmetry. See Appendix A for an illustrative toy model that exhibits this
phenomenon in a mathematically transparent setting and its implications already for the
exactly spherically symmetric vacuum sector in Appendix B.

4.2. Decay Behaviour of the Fields at Spatial Infinity

We consider two asymptotic ends with radial coordinates r, r̄ glued at r = r̄ = 0. Thus,
r = 0 is not a boundary of the spatial slices τ = const. and no boundary conditions need to
be stated there.

In the gravitational sector we have to state the decay behavior of the canonical pairs
(m33, W33), (m3A, W3A), (mAB, WAB). As before we split (dropping the subscript E for
notational simplicity)

m33 = qv + xv, m3A = qA + xA, mAB = qh ΩAB + XAB

W33

ω
= pv + yv,

W3A

ω
=

1

2
[pA + yA],

WAB

ω
=

1

2
ΩAB [ph + yh] + YAB (32)

with qA = pA ≡ 0. The fields qv, pv, qh, ph coordinate the purely spherically symmetric
sector and do not carry any angular dependence. By contrast, the fields xv, yv, xA, yA, hh, yh,
XAB, YAB capture the total angular dependence and have no spherically symmetric l = 0
modes when expanded into scalar, vector and tensor harmonics. The symplectic potential
reads (for two asymptotic ends, z = θ(z)r − θ(−z)r̄)

Θ =
∫ ∞

−∞
dz [ ∑

α∈{v,h}
pα dqα + ∑

α∈{v,h,e,o},1≤l≥|m|
yα,l,m dxα,l,m + ∑

α∈{e,o},2≤l≥|m|
Yα,l,m dXα,l,m] (33)

It is customary to state the fall-off conditions in tandem with parity conditions [100] but in
(33) there are no parity conditions to state any longer as all functions displayed depend
only on r, i.e., they are parity invariant. Since all functions displayed are independent of
each other, every single term must be convergent. Therefore, since we wish not to rely on
possible cancellation effects from the two infinities as the background solution does not
display such an effect, the weakest condition that we can impose is that the individual
terms of the form p dq, y dx, Y dX decay stronger than r−1, say as r−1+ϵ, ϵ > 0.

In the purely spherically symmetric sector reviewed in Appendix B we find that the
general solution of the constraints is given in terms of γ2 := qv, δ2 := qh, pγ := 2γpv, pδ =
2 δ ph by

{
p2

γ

16δ
+ δ[1 − (

δ′

γ
)2]}′ = 0, pδ = γ p′γ/δ′ (34)

where γ, δ are still arbitrary functions of r provided that γ ̸= 0, δ′ = dδ/dr > 0. Denoting
the integration constant by m = 2M the solution of (34) in the GPGG const.= γ2 = e−2 ≤ 1,
δ = r is given by

pγ = ±4
√

m r + [γ−2 − 1] r2, pδ = ±2γ
m + 2[γ−2 − 1]r

√

m r + [γ−2 − 1] r2
(35)

which for the exact GPG γ ≡ 1 simplifies to

pγ = ±4
√

m r, pδ = 2

√

m

r
(36)

Thus, the choice between GGPG and exact GPG makes a drastic difference for the decay
behavior of the momenta in the vacuum case: For generic 0 < γ2 < 1 we have pγ = O(r),
pδ = O(1) while for γ2 ≡ 1 we have pγ = O(r1/2), pδ = O(r−1/2). Likewise, as explained
in Appendix C.6, the choice between GGPG and GPG has a drastic consequence for the
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dynamics of M in the presence of metric perturbations and or matter: While in the GGPG,
M can change dynamically, in the exact GPG it cannot.

Since in the GGPG the fields pv, ph decay much slower and because d qv =∝ d γ2 = O(1)
even does not decay at all to leading order (as γ2 is dynamical in this case), the definition
of the reduced phase space consistent with the GGPG is much more delicate than in the
case of the strict GPG. In the present paper we will, therefore, consider only the decay
behavior in the strict GPG. We will return to the GGPG case in a forthcoming manuscript.

As in the strict GPG the sperically symmetric spatial background metric is the flat
Euclidean metric dr2 + r2 dΩ2 we can motivate the choice of decay behavior from the usual
decay behavior stated in the standard Cartesian coordinates at spatial infinity

mCart
ab = δab +

f e
ab(Ω)

r
+

f o
ab(Ω)

r2
, Wab

Cart =
Fab

o (Ω)

r2
+

Fab
e (Ω)

r3
, (37)

where f e/o
ab (Ω), Fab

e/o(Ω) are even/odd parity tensors depending only on the angular

coordinates. Then, with x⃗ = r⃗n(Ω), z1 = θ, z2 = ϕ, z3 = r

mSph
µν =

∂xa

∂zµ

∂xa

∂zµ mCart
ab

W
µν
Sph

= |det([
∂x

∂z
])| ∂zµ

∂xa

∂zν

∂xb
Wab

Cart

m33 = 1 +
f e
33(Ω)

r
+

f o
33(Ω)

r2

m3A = 0 + f e
3A(Ω) +

f o
3A(Ω)

r

mAB = r2 ΩAB + r f e
AB(Ω) + f o

AB(Ω)

W33

ω
= F33

o (Ω) +
F33

e (Ω)

r

W3A

ω
=

F3A
o (Ω)

r
+

FAB
e (Ω)

r2

WAB

ω
=

FAB
o (Ω)

r2
+

FAB
e (Ω)

r3
(38)

Note, that this transformation between Cartesian coordinates xa at fixed Schwarzschild
time t is to be supplemented by the transition to GP time τ which is given by τ = t ∓ f (r),
f ′ =

√
R/r [1 − R

r ]
−1, R = 2M which means that gtt → gττ = gtt, gtr → gτr =

gtr − gtt f ′, grr → grr + gtt[ f ′]2. Then, if gtt = −1+O(r−1), gtr = O(r−1), grr = 1+O(r−1)
we have gττ = −1 + O(r−1), gτr = O(r−1/2), grr = 1 + O(r−1) which means the lapse and
shift decay N = 1 +O(r−1), N3 = O(r−1) has changed to N = 1 +O(r−1), N3 = O(r−1/2).
Thus, the decay behavior of mµν in (38) is not affected by the switch between the two
time coordinates; however, the changed shift behavior affects the decay behavior of the
momenta which will be accounted for below. The fact that only the spherically symmetric
part of the shift is affected motivates to change the decay behavior of only the spherically
symmetric part of the momenta.

Thus, we first translate the decay behavior of the xα,l,m, yα,l,m, Xα,l,m, Yα,l,m un-
changed. We could, in principle, choose this individual mode by mode (l, m). But to
simplify this, we will write, e.g., for α ∈ {v, h, o}

xα = [ ∑
|m|≤l;l/2∈N

xα,l,mLα,l,m] + [ ∑
|m|≤l;(l+1)/2∈N

xα,l,mLα,l,m] =: xα
e + xα

o (39)
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and we impose the decay behavior only on the linear combination of all even/odd parity
terms rather than individually (for α = e the restrictions on l in the two sums in (39) are
switched). Then

xv =
xv

e

r
+

xv
o

r2
, xA = xe

A +
xe

A

r
, xh = xh r + xh

o , XAB = Xe
AB r + Xo

AB

yv

ω
= yo

v +
ye

v

r
,

yA

ω
=

yA
o

r
+

yA
e

r2
,

yh

ω
=

yo
h

r2
+

ye
h

r3
,

YAB

ω
=

YAB
o

r2
+

YAB
e

r3
, (40)

In this way in the integral definining Θ, the leading order terms are of the form

∫

dr (
∫

S2
dΩ[yo dxe])

1

r
= 0 (41)

as [yoδxe] is an odd parity scalar on the sphere. The subleading terms do contribute
but decay as r−2 and thus converge. Of course in (40) we could also allow for a slower
decay of the momenta, we could multiply the right-hand sides of the above equations for
yv, yA, yh, YAB by r1−ϵ, ϵ > 0, a freedom to keep in mind when discussing the solutions of
the physical equations of motion.

As just motivated, for the spherically symmetric sector we use the vacuum solution as
an input and require that

qv = 1 +
kv

r5/2
, qh = r2 +

kh

r1/2
, pv = ivr1/2, ph = ih r−3/2 (42)

where kv, kh, iv, ih are functions of r only which approach constants or decay at spatial
infinity. Then, pvdqv, phdqh decay at least as r−2.

Altogether (40) and (42) provide a consistent set of decay conditions compatible with
the vacuum solution in GP coordinates. We take this as the definition of the phase space
which then may be translated into any other frame.

Next, we consider the constraints. The variation in the spatial diffeomorphism constraint

d[V∥[S∥]] =
∫

d3x Sρ d[Wµν mµν,ρ − 2(mρµ Wµν),ν] (43)

=
∫

d3x {[dWµν] [LSm]µν − [LW]µν [dmµν]}+
∫

dΣρ{Sρ Wµν dmµν − 2Sν d[Wρµmµν]}

=
∫

d3x {[dWµν] [LSm]µν,ρ − [LW]µν [dmµν]}+
∫

dΩ

ω
S3Wµν dmµν − 2 d[

∫

dΩSν W3µmµν]

where dΣρ = 1
2 ϵµνρdzµ ∧ dzν = δ3

ρ
dΩ
ω and the surface integral is taken at r = ∞ for each

asymptotic region. Since by construction Wµνdmµν to leading order is r−2 for the symmetric
sector and r−1 odd plus r−2 even for the nonsymmetric sector, the first boundary term in
(43) vanishes if the even part of S3 grows at most linearly while the odd part approaches a
constant. In the decomposition of the previous section this means

S3 = f h + gh, f h = O(r), gh = gh
e r + gh

o (44)

where gh
e/o are even/odd functions on the sphere. It follows that

H∥[S∥] = V∥[S∥] + B∥(S∥), B∥[S∥] = 2
∫

dΩ Sν W3µmµν (45)

has well-defined variational derivatives corresponding to the bulk term in (43).
Next, we consider the variation of the Hamiltonian constraint d[V⊥[S⊥]]. This picks up

a boundary term coming purely from the spatial curvature term. Since the decay behavior
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of the spatial metric is unaffected by the use of GP coordinates, we may take over the
standard result that (see, e.g., [100] the second reference in [40–44] and references therein)

H⊥[S⊥] = V⊥[S⊥] + B⊥[S⊥]

B⊥[S⊥] = −
∫ √

det(m) S0 mµν [dΣµ (Γ
ρ
ρν − (ΓND)

ρ
ρν)− dΣρ (Γ

ρ
µν − (ΓND)

ρ
µν)]

+
∫ √

det(m) [∇µS0] mµν mρσ(dΣν[mρσ − mND
ρσ ]− dΣρ[mνσ − mND

νσ ]) (46)

where mND is the non-dynamical part of mµν which in the present case is just δµν in the

Cartesian frame and ∇ is the covariant differential compatible with m. Also, ΓND is the
Christoffel symbol of the non-dynamical part. This term is missing in the usual treatment
in which one implicitly assumes a flat Cartesian frame at infinity. However, the GPG is not
a Cartesian frame and the Christoffel symbol is not a tensor, hence subtraction of that term
is necessary, in general, (in the derivation of the boundary term [100] or second reference
of [40] = [44] only the variation dΓ enters which is a tensor). As in (43), in order for dV⊥[S⊥]
to be written as d H⊥[S⊥]− dB⊥[S⊥] we must assume that

S0 = f v + gv, f v = O(1), gv = gv
e + gv

o r (47)

4.3. Installation of the GPG

As usual, we consider those S∥, S⊥, respectively, for the boundary terms B∥[S∥], B⊥[S⊥]
that vanish a gauge transformation, and for those that do not vanish a symmetry transfor-
mation. We must show that it is possible to install the exact GPG by picking suitable S∥, S⊥
corresponding to gauge transformations.

Having made sure that the functionals H∥, H⊥ have well-defined variational deriva-

tives they generate the following transformations on the 3-metric

δmµν(z) = {H∥[S∥] + H⊥[S⊥], mµν(z)} (48)

= [L
S⃗

m]µν + S0 (2Wµν − mµν W)(x); Pµν := (mµρ mνσ) Wρσ, W := mµν Wµν

where L denotes the Lie derivative. Given arbitrary values of q3 = qv + yv, qA = yA,
q0 = qh + yh consistent with the imposed decay behavior of the previous subsection we
want to show that we can find S3, SA, S0 corresponding to a gauge transformation such
that Gµ + δGµ = Gµ + δqµ = 0 for µ = 3, A, 0 where Gµ = qµ − qGPGµ . Decomposing with

respect to the tensorial structure on S2 we find explicitly

δq3 = 2 [q3 (S3)′ + qA(S
A)′] + [S3 q′3 + SA DAq3] + S0 [2W33 − q3 W]

δqA = [qAB(S
B)′ + qA(S

3)′] + [S3 q′A + q3 DAS3 + SB DBqA + qB SASB] + S0 [2W3A − qA W]

δq0 = ΩAB {[S3q′AB + 2q(A DB)S
3 + SC DCqAB + 2 qC(A DB) SC] + S0 [2PAB − qAB P]} (49)

where qAB = q0ΩAB + XAB. Assuming that ΩAB[2 WAB − qAB W] ̸= 0 (otherwise, conduct
another gauge transformation on the system first so that this quantity is nonvanishing
to begin with which is always possible as it is not a gauge invariant) we can solve the
equation δq0 + G0 = 0 algebraically for S0 and introduce that solution, which depends
linearly on S3, DAS3, SA, DBSA, into the equations for δq3 + G3 = 0, δqA + GA = 0. Due to
the Euclidian signature of mµν we have q3 > 0 and that qAB is non-degenerate and thus the
resulting set of three equations can be cast into the form

[Sµ]′ + F
µ
ν Sν + K

µA
ν DASν = −qµν Gν (50)

for certain coefficient functions F
µ
ν , K

µA
ν and (.)′ = d

dr (.). Thus, (50) is an inhomogeneous
linear, infinite system of ODEs in the variable r and the unknowns Sα

y with Sα
y(r) = Sα(r, y),

y = (y1, y2) and thus can be solved by the method of variation of constants. It remains to
show that the decay behavior of the solution so obtained indeed corresponds to a gauge
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transformation. We assume this to be the case by making use of the choice of integration
constants when solving the system (50).

4.4. Solution of the Constraints in the GPG

We will only treat the gravitational constraints because other constraints corresponding
to the Yang–Mills type of gauge transformations can be treated independently, see next
section. Accordingly, we will write the constraints of GR as

Vµ := −2 ∇ν Wν
µ + Vm

µ ,

V0 := [mµρ mνσ −
1

2
mµν mρσ] Wµν Wρσ + Vc,m

0 (51)

Here, Vm
µ denotes the matter contribution to the spatial diffeomorphism constraint and Vc,m

0
the spatial curvature and matter and contribution to the Hamiltonian constraint multiplied
by

√

det(q). The precise form of these matter and curvature contributions are displayed in
the next section but will not be important for the purposes of the present section. The Levi
Civita differential compatible with mµν is denoted by ∇.

The first step is the decomposition of (51) with respect to the canonical chart (23)–(25)

Vm
µ = 2(mµν Wνρ),ρ − mνρ,µ Wνρ

= 2(mµ3 P3)′ + (mµ3 PB),B + (mµB PB)′

+2(mαB WBC),C − m33,µ P3 − mB,µ PB − mBC,µ PBC

Vm
3 = 2(q3 P3)′ + (q3 PB),B + (qB PB)′ + 2(qB PBC),C

−q′3 P3 − q′B PB − q′BC PBC

Vm
A = 2(qA P3)′ + (qA PB),B + (qAB PB)′ + 2(qAB PBC),C

−q3,A P3 − qB,A PB − qBC,A PBC

−Vc,m
0 = [q3P3]2 + 2 [q3P3] [qA PA] +

1

2
[qAPA]2 +

1

2
q3 qAB PA PB

+2 qA qB PAB P3 + 2qA qBC PC PAB + qAC qBD PAB PCD +

−1

2
[q3 P3 + qA PA + qAB PAB]2 (52)

where we have written (.)′ := ∂
∂r (.).

Remarkably, the constraints (52) display the following features:
1. All momenta P3, PA, P0 appear only polynomially in V0.
2. The momentum P0 does not enter V3, VA with radial derivatives.
3. The momenta P3, PA do enter V3, VA with radial derivatives.
4. All momenta P3, PA, P0 appear in V3, VA with angular derivatives.
This suggests the following solution strategy:

1. We solve V0 algebraically for P0. In fact, since V0 is a quadratic polynomial in P0 we
may write

V0 = g0(q) [P
0 + f 0

+(P3, PA; P⊥; q, Vc,m
0 )] [PT + f 0

−(P3, PA; P⊥; q, Vc,m
0 )] (53)

where g0(q) depends polynomially on q = (q3, qA, qAB) and f 0
± are the two possible

real roots which depend algebraically on P3, PA, PAB
⊥ (i.e., no derivatives enter) and

algebraically on q and Vc,m
0 where the latter depends on the gravitational degrees of

freedom algebraically only through q and all its first and second spatial derivatives.
The explicit calculation reveals
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f 0
± = − A

B
{1 ±

√

1 − B

A2
Vc,m,⊥

0 }

A = r2 P3 − q⊥AC q⊥BD ΩAB PCD
⊥ − r2 q⊥AB PAB

⊥
B = q⊥AC q⊥BD ΩAB ΩCD

Vc,m,⊥
0 = Vc,m

0 +
1

2
[P3 − q⊥ABPAB

⊥ ]2 +
1

2
qAB PA PB − [q⊥AB PAB

⊥ ]2

+r4 ΩAC ΩBD PAB
⊥ PCD

⊥ + 2r2q⊥AC ΩBD PAB
⊥ PCD

⊥ + q⊥AC q⊥BD PAB
⊥ PCD

⊥ (54)

The choice of the sign in (54) is in fact unique if we impose that (54) has a regular limit
B → 0 as we approach an exactly spherically symmetric solution which selects the
solution P0 = − f 0

−.
2. We write V3, VA as

2 q3 [P3]′ + qA [PA]′ + f̃3(P3, PA, P0, q) = Vm
3 , 2 qA [P3]′ + qAB [PB]′ + f̃A(P3, PC, P0, q) = Vm

A , (55)

where f̃3, f̃A depend on P3, PA, P0 only linearly and either with no or at most first
angular derivatives while q enters linearly and with at most first radial and angular
derivatives. Taking linear combinations these can be decoupled and written as

[P3]′ + f 3(P3, PA, P0, q, Vm) = 0, [PA]′ + f A(P3, PB, P0, q, Vm) = 0 (56)

where f 3, f A are still linear in P3, PB, P0, depending at most on angular derivatives
and are non-polynomial with respect to q but linear in Vm

3 , Vm
B . That (55) can be

written as (56) close to the GPG q3 = 1, qA = 0, qAB = r2ΩAB + q⊥AB and for the
perturbation q⊥AB sufficiently small is by inspection.

3. We substitute the root P0 = − f 0
− of (53) into (56) thereby obtaining the constraints

Ṽ3 := [P3]′ + f̂ 3(P3, PA, P⊥, q, Vm) = 0, ṼA := [PA]′ + f̂ A(P3, PB, P⊥, q, Vm) = 0,

Ṽ0 := = P0 + f 0
−(P3, PA, P⊥, q, Vc,m

0 ) (57)

where f̂ 3, f̂ A still depend only linearly on angular derivatives of P3, PA but no longer
linearly on P3, PA, in fact they depend non-polynomially on P3, PA due to the substi-
tution of the square root.

4. The system (57) can be considered as a coupled (inifinite) system of ODE’s in the

variable z = r for the unknowns P
µ
y (r) where (µ = 1, 2, 3; y := (y1, y2)) is consid-

ered as a compound label for these unknowns. Therefore, formal solutions exist
and are unique given initial values. They can be found using the Picard–Lindelöf
iteration for any −∞ ≤ z < ∞ (recall that we work with two asymptotic ends and
z = rθ(z)− θ(−z)r̄)

P
µ
y (z) = P

µ
y (−∞) +

∫ z

−∞
ds f̂ µ(Py(s), qy(s), Vm(s)) (58)

where Pα
y (−∞) are integration constants. Note, that the integrand not only depends

on P
β
y (s) but also on ∂yP

β
y (s) and thus the iteration does not decouple with respect

to y. Note, also that Equation (58) is identically satisfied for z = −∞. Thus, there
is an up to 3 × S2 worth of degeneracy in the constraints and accordingly as many
conjugate variables such as Q

y
α =

∫ ∞

−∞
dzqα(z, y) cannot be gauge fixed but must

be counted as belonging to the set of true degrees of freedom in company with the
integration constants Pα

y (−∞). In Appendix A we demonstrate this phenomenon for a
lower-dimensional field theory. The degree of degeneracy is reduced by the boundary
conditions at infinity.
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Let −hα
y(r) be the solution so obtained. Then, the constraints can be written in the

equivalent form

V̂
µ
y (r) = Pµ(y, r) + h

µ
y (r), V̂0

y (r) = P0(y, r) + h0
y(r) (59)

where h0 = [ f 0
−]Pµ=−hµ . The functionals h3, hA, h0 depend on the degrees of freedom

q3, qA, q0, the integration constants Pα
y (−∞), as well as the union R of the collection of true

matter degrees of freedom with the collection of the true gravitational degrees of freedom
q⊥AB, PAB

⊥ . By construction (59) is an identity for r = −∞ and thus the set of constraints (59)
for r > −∞ is strictly equivalent to the set of constraints (51) for r ≥ −∞. Since the degrees
of freedom P

µ
y (−∞) are thus left unconstrained and since to gauge fix (59) for r ̸= −∞

does not require us to impose the GPG for all −∞ ≤ r ≤ ∞, following [61] we consider
the set of canonical pairs (Qµ(y) =

∫

dz q − µ(z, y0, Pµ(r = −∞, y)) as part of the true
degrees of freedom and adjoin them to R (again the boundary conditions reduce this set).
The so extended set of true degrees of freedom is denoted as R̂. Note, that by virtue of the
Picard–Lindelöf integration involved, the functionals h3, hA, h0 are non-local with respect
to r consisting of nested radial integrals.

4.5. Reduced Hamiltonian

We first review the general theory of how to construct a reduced Hamiltonian in the
presence of boundaries as introduced in [75] and show that this requires a non-trivial
generalization. Indeed, the same authors mention in [101] that beyond the linearized
gravity setting a non-trivial generalization of [75] is necessary. In Proposition 1 below
we state a sufficient condition which when satisfied allows us to construct the reduced
Hamiltonian. In the second part of this subsection we then analyze the details of the gauge
stability conditions for the the present system. In the third part of this subsection, we
confirm that the sufficient condition stated in the proposition holds for the solution of the
stability condition constructed and then provide the reduced Hamiltonian.

4.5.1. Reduced Dynamics in the Presence of Boundaries

As we have seen in Section 4.5, in the presence of boundaries, the constraints V(S)
are not automatically functionally differentiable which poses a problem when computing
Poisson brackets. The problem is displayed by writing the variation of V(S) with respect
to the canonical variables qab, pab, . . . as a sum of a bulk and boundary contribution

d V(S) = [d V(S)]σ + [d V(S)]∂σ (60)

where the first term is a volume integral over the scalar density D
µν
S [dmµν] + DS

µν[dWµν] +

. . . while the second term is a boundary integral over the vector density J
µνρ
S [d mµν +

D
Sρ
µν[d Wab] + . . . for certain coefficient tensor densities depending on S. The bulk term

yields well-defined functional derivatives (the three-dimensional delta distribution is
integrated out), the second does not (a one-dimensional delta distribution is left over).
As explicitly shown in the previous subsection, the idea to remove that contribution is to
impose fall-off conditions on S, m, W, . . . such that one can write the boundary contribution
as an exact differential [δV(S)]∂σ = −δB(S) for a suitable boundary functional B(S) and
then to define H(S) := V(S) + B(S). Then, by construction

δH(S) = [δV(S)]σ (61)

is functionally differentiable.
The constraints are still defined by V(S) = 0 for all S such that H(S) = B(S) on

the constraint surface which can be non-vanishing if S does not decay sufficiently fast at
the boundary. Accordingly, one interprets transformations generated by H(S) with S for
which B(S) = 0 as gauge transformations while those with B(S) ̸= 0 are considered as
symmetry transformations. We subdivide the degrees of freedom mµν, Wµν into two subsets
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of canonical pairs qα, pα and QA, PA and impose gauge fixing conditions Gα = qα − kα = 0
on the qα where kα are certain fixed functions on σ independent of the foliation time τ and
without dependence on the phase space coordinates. We set qα

∗ := kα. We also solve the
constraints Vα = 0 for pα when qα = qα

∗ which yields solutions pα = p∗α.
The gauge Gα = 0 is supposed to be reachable from any point within the constraint

surface Vα = 0 and once it is reached the residual transformations allowed are those that
preserve them

{H(S), Gα}q=q∗ ,p=p∗ = 0 (62)

These stability conditions can be solved for Sα = Sα
∗ in terms of q∗, p∗ and in general are

symmetry transformations rather than gauge transformations. Consider now a functional
F depending on Q, P only. Then, the reduced Hamiltonian E on the reduced phase space
coordinated by Q, P, if it exists, is supposed to give the same equations of motion as H(S)
when we restrict to the fixed quantities q∗, p∗, S∗, that is,

{E, F} = {H(S), F}q=q∗ ,p=p∗ ,S=S∗ (63)

Now, being the boundary value of a volume integral variation that arises due to one or
several integrations by parts, the boundary term has the form

B(S) =
∫

∂σ
dΣµ [Sα j

µ
α + Sα

,ν j
µν
α + . . . ] (64)

for some “currents” j
µ
α , j

µν
α . Using integrations by parts on ∂σ and exploiting ∂2σ = ∅ we

can assume w.l.g. that j
µν
α , . . . = 0 by redefining j

µ
α . Similarly, the bulk term has the form

V(S) =
∫

σ
d3x Sα Vα (65)

for some “densities” Vα.

Proposition 1. Let dΣµ = d2z Nµ(z) where Nµ(y) = 1
2 ϵABϵµνρxν

,Ax
ρ
,B is the corresponding

co-normal of the embedding S2 → ∂σ; y 7→ x. Suppose that there exists a real-valued functional
χ of currents jα on ∂σ such that on ∂σ (i.e., the functional derivative is with respect to the coordinate
dependence on ∂σ)

Sα
∗ = [

δχ

δjα
]j=j∗ , j∗α := Nµ j

∗µ
α , j

∗µ
α := [j

µ
α ]q=q∗ ,p=p∗ (66)

Then, E = χ[j∗].

Proof. We simplify the notation and denote z = (q, p), z∗ = (q∗, p∗) Then, on the one hand

{B(S)z=z∗ , F}S=S∗ =
∫

d2y Sα
∗ {j∗α , F} (67)

Note, that S is set to S∗ only after the Poisson bracket has been taken, the Poisson bracket
is computed with S treated as being independent of the phase space coordinates. On the
other hand using the identity B(S)z=z∗ = H(S)z=z∗ for all S we have

{B(S)z=z∗ , F}S=S∗ = {H(S)z=z∗ , F}S=S∗

= {H(S), F}z=z∗ ,S=S∗ +
∫

d3x ([
δH(S)

δqα(x)
]z=z∗ ,S=S∗ {qα

∗(x), F}+ [
δH(S)

δpα(x)
]z=z∗ ,S=S∗ {p∗α(x), F})

= {E, F}+
∫

d3x {H(S), Gα(x)}z=z∗ ,S=S∗ {p∗α(x), F}
= {E, F} (68)
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where in the second step we split the Poisson bracket into a contribution which acts on
the explicit dependence of H(S) on P, Q and a contribution on the implicit dependence of
H∗(S) on P, Q through qα

∗, p∗α and used that H(S) is functionally differentiable; in the third
we used that qα

∗ does not depend on the phase space coordinates and rewrote the second
contribution as a Poisson bracket with the gauge fixing condition and in the last we used
that by construction of S∗ that Poisson bracket vanishes, that is, (62).

Thus,
{E, F} = {B(S)z=z∗ , F}S=S∗ (69)

This is different from the result quoted in [75]. This is because E ̸= B(S∗)z=z∗ unless S∗
evaluated on ∂σ does not depend on the coordinates P, Q as it is implicitly assumed in [75].
This will in general not be the case because the solution S∗ of the stability condition involves
solving differential equations and thus depends non-locally on P, Q via integrals on all of
its bulk values; therefore, {Sα

∗(x), F} ̸= 0 even if x ∈ ∂σ and F is localized with respect to
Q, P in the bulk. Comparing with (67) we see that the only chance to write the right-hand
side of (69) as a Poisson bracket is that S∗

α is the functional derivative on ∂σ with respect to
a functional χ which depends on the current jα that appears in (67).

The case that Sα
∗ is a constant on the phase space such that E = B(S∗)z=z∗ as it is

considered in [75] is included and corresponds to χ[j] being a linear functional of j. In order
that {E, F} is well defined, the dependence of j∗ on P, Q should be non-local, i.e., involving
radial integrals in order that the Poisson brackets {E, F} which use functional derivatives
on σ rather than ∂σ are well-defined. This is, in fact, conceivable for the gravitational system
because the stability conditions involve the pα explicitly which, in turn, are to be solved
for the P, Q using the constraints and for this, we need to perform radial integrations as
the constraints depend on radial derivatives. Now jα corresponds to the ADM energy and
momentum currents and these again involve pα explicitly. Then, to see whether j∗α , Sα

∗ satisfy
all the requirements critically depends on the fall-off behavior of the fields as these decide
which terms in Sα

∗{j∗α , F} survive as we take the limit r → ∞. It is only with respect to these
limiting surviving terms that the assumptions of Proposition 1 have to hold. Fortunately
there is a substantial amount of flexibility in the choice of those fall-off conditions and
one may also take advantage of the fact that the solution of the constraints for p = p∗ and
of the stability conditions for S = S∗ both at q = q∗ involve “integration constants” in
the form of functions on S2, as we have seen in the previous section, because we have to
solve differential equations with respect to the radial coordinates and one can try to use
the freedom to choose those free functions on the sphere in order to meet the conditions of
Proposition 1.

4.5.2. Solution of Stability Conditions

We now proceed to construct the gauge fixed values S3
∗, SA

∗ , S0
∗. This has two purposes:

First, the leading order behavior at spatial infinity dictates the analytic form of the reduced
Hamiltonian, i.e., the global mass or energy. Second, the explicit bulk behavior determines
the physical lapse and shift, and therefore, contains information about the local mass.

Asymptotics

For a general transformation of mµν induced by the functionally differentiable version
(45) and (46) of the constraints we have

[δm]µν = {H∥[S∥] + H⊥[S⊥], mµν} = [LS∥m]µν + 2S̃0 [Wµν −
1

2
W mµν] (70)

where S̃0 = S0√
det(m)

, Wµν = mµρmνσWρσ, W = mµνWµν. The gauge fixed values S·
∗

are determined by the stability conditions δG· = 0 where G3 = m33 − 1, GA = m3A,
G0 = ΩABmAB − 2r2. This needs to hold only at G3 = V3 = GA = VA = G0 = V0 = 0
i.e., at
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m33 = q∗3 = 1, m3A = q∗A = 0, ΩABmAB = q0 = q∗0 = 2r2, P3 = P3
∗ , PA = PA

∗ , P0 = P0
∗ (71)

where we used the notation (23)–(25) and the values P·
∗ = −h·∗ are given implicitly by (59)

where h·∗ is h· evaluated at G· = 0.
We find

0 = δG3 = [LS∥q]33 + 2S̃0 [P33 −
1

2
P q33]

0 = δGA = [LS∥q]3A + 2S̃0 [P3A − 1

2
P q3A]

0 = δG0 = ΩAB ([LS∥q]AB + 2S̃0 [PAB − 1

2
P qAB] (72)

Using the GPG we have (we suppress the super/subscript ∗ in q∗· , P·
∗ for notational sim-

plicity) using the decomposition P3 = W33 = pv + yv, PA = yA = 2W3A, WAB = PAB =
[ph + yh]Ω

AB/2 + YAB and ΩABXAB = ΩABYAB = 0

P33 = m3µ m3νWµν = P3 = pv + yv

P3A = m3µ mAνWµν = [r2ΩAB + XAB] PB/2 = [r2ΩAB + XAB] yB/2

PAB = mAµ mBνWµν[r2ΩAC + XAC] [r
2ΩBD + XBD] [

1

2
(ph + yh)Ω

CD + YCD]

P = mµνWµν = P3 + [r2ΩAB + XAB]P
AB = [pv + yv] + r2 [ph + yh] + XABYAB (73)

Next with S3 = fh + gh, SA = gA, S0 = fv + gv

[LS∥m]33 = Sµm33,µ + 2 mµ3S
µ
,3 = 2S3

,3 = 2( fh + gh)
′ (74)

[LS∥m]3A = Sµm3A,µ + mµ3S
µ
,A + mµAS

µ
,3 = S3

,A + qABSB′ = gh,A + [r2ΩAB + XAB] gB′

[LS∥m]AB = SµmAB,µ + 2 mµ(AS
µ

,B)
= S3q′AB + SDqAB,C + 2mC(ASC

,B) = S3q′AB + [LS∥⊥q]AB

where SA
∥⊥ := SA has only angular non-vanishing components. Thus, we have explicitly

0 = S3′ + S̃0 [P3 − 1

2
P]

0 = S3
,A + qAB [SB′ + S̃0PB]

0 = ΩAB {S3q′AB + [LS∥⊥q]AB + 2S̃0[qACqBDPCD − 1

2
qABP]} (75)

We now recall the decay conditions derived in Section 4.3

pv = O(r1/2), ph = O(r−3/2)

yv = yo
v +

ye
v

r
, yA =

yA
o

r
+

yA
e

r2
, yh =

yo
h

r2
+

ye
h

r3
,

XAB = Xe
AB r + X0

AB, YAB =
YAB

o

r2
+

YAB
e

r3

S3 = fh + gh, fh = O(r), gh = ge
h r + gh

o ; S0 = fv + gv, fv = O(1), gv = ge
v + go

h r; (76)

while the decay behavior of SA = f A + gA, f A ≡ 0 has not been fixed yet. The various
functions displayed have no l = 0 modes except for pv, ph, fv, fh which are pure l = 0
modes and e, o refers to their parity behavior, i.e., not the polar/axial character. The power
of r with respect to which these functions decay is at most O(r0) but can be lower. The same
applies to fh, fv, i.e., O(rn) means decay with at most power rn, it can be faster, e.g., O(r−1)
allows a decay with power r−(1+m), m ≥ 0.
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In what follows we content ourselves with solving the stability conditions with respect
to the highest non-vanishing order in r and only in as much detail as necessary to construct
the reduced Hamiltonian. We also content ourselves with constructing one particular
solution S3, SA, S0 and leave it for further investigation whether that solution is unique.

We consider first the second relation in (75)

gh,A + qAB [gB′ + S̃0yB] = 0 ⇔ gA′ = −[qABgh,B + S̃0yA] (77)

We assume that
gv = O(1) (78)

which can be achieved by assuming that go
vr is O(1). Then, S0 = O(1) and thus S̃0 = O(r−2)

because

det(q) = det(r2Ω + X) =
1

2
ϵACϵBD[r2Ω + X]AB [r2Ω + X]CD = r4ω2 + r2 ω2ΩABXAB + det(X) = r4ω2 + det(X) (79)

where we used
ϵACϵBDΩCD = ω2ΩAB, ω2 = det(Ω) (80)

and ΩABXAB ≡ 0 by definition. Since det(X) = O(r2) it follows that det(q) = r4ω2[1 +
O(r−2)], [det(q)]−1/2 = r−2ω−1[1 + O(r−2)]. Thus, S̃0yA = O(r−3).

Furthermore, we assume that

gh = O(r−1) (81)

which can be achieved by assuming that ge
h r, go

h decay as r−1. Then, it follows from (77)
that

SA = gA = O(r−2) (82)

It follows that
[LS∥⊥q]AB = r2 [LS∥⊥(Ω + r−2X)]AB = O(1) (83)

in leading order.
The first relation in (75) gives

0 = 2 S3′ + 2 S̃0[P3 − 1

2
[P3 + r2P0 + XABYAB]] = 2 S3′ + S̃0[P3 − r2P0 − XABYAB]

= 2( fh + gh)
′ + S̃0 [pv − r2 ph]− S̃0 [yv − r2yh − XABYAB] (84)

Since yv, r2yh = O(1), XABYAB = O(r−1) and S̃0 = O(r−2) the third term in (84) is O(r−2).
It can thus be canceled by 2 g′h which by (81) is also O(r−2). The second term in (84) on the

other hand is O(r−2) O(r1/2) = O(r−3/2) and then must be canceled by 2 f ′h. Hence,

fh = O(r−1/2) (85)

and we must have

f ′h +
S̃0

2
[pv − r2 ph] = 0 (86)

to order r−3/2 i.e., (86) decays at least as r−2.
The third relation in (75) gives
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0 = 4 r S3 + ΩAB [LS∥⊥q]AB + 2S̃0[ΩAB qACqBDPCD − r2 P] (87)

= 4 r S3 + ΩAB [LS∥⊥q]AB

+2S̃0[(r4ΩCD + 2r2 XCD + ΩABXACXBD) (
P0

2
ΩCD + YCD)− r2(P3 + r2 P0 + XABYAB)]

= 4 r S3 + ΩAB [LS∥⊥q]AB + 2S̃0 {r4 P0 +
1

2
P0ΩABΩCDXACXBD

+2r2 XABYAB + ΩABXACXBD) YCD − r2(P3 + r2 P0 + XABYAB)}
= [4 r S3 − 2r2 S̃0 P3] + [ΩAB [LS∥⊥q]AB]

+2S̃0[
1

2
P0ΩABΩCDXACXBD + r2 XABYAB + ΩABXACXBD) YCD]

The second square bracket in (87) is O(1) as follows from (83). In the third square bracket
of (87) the first term is O(r−3/2), the second is O(r−1) and the third is O(r−2). In the first
square bracket of (83) the second term is O(r1/2) in leading order, therefore, the order of
r S3 must not exceed O(r1/2) as there is no term to compensate for this. Thus, we conclude
again (85) and

fh −
1

2
r S̃0 pv = 0 (88)

to leading order r−1/2, i.e., (88) decays at least as O(r−1). Together with

fv = O(1) (89)

we see that the leading order decay behavior of our solution of the stability condition is
now fixed and falls into the allowed class (44) and (47).

Finally, we consider the constraint

V3 − Vm
3 = Wµνm′

µν − 2[Wµνmµ3],ν = PAPq′AB − 2 PA
,A − 2 P3′

= (
P0

2
ΩAB + YAB) [r2ΩAB + XAB]

′ − 2 PA
,A − 2 P3′

= 2 r P0 + YAB X′
AB − 2 PA

,A − 2 P3′

= 2 [r (ph + yh)− (pv + yv)
′ − yA

,A] + YAB X′
AB (90)

We have ryh = O(r−1), y′v = O(r−2), yA
,A = O(r−1), X′

ABYAB = O(r−2) which means that

these terms can cancel among each other in (90). On the other hand rph, p′v = O(r−1/2) and
these are the only terms of this type if we assume that the matter term Vm

3 decays faster
than this. Therefore,

ph −
1

r
p′v = 0 (91)

to leading order r−3/2 i.e., (91) decays at least as r−2.
Combining (86), (88) and (91) we find

f ′h
fh

= − pv − r2 ph

r pv
= − pv − rp′v

r pv
= −1

r
+

p′v
pv

(92)

to leading order which leads to the solution

fh = κ
pv

r
(93)

where κ is an integration constant. This correctly reproduces fh = O(r−1/2) if pv = O(r1/2).
Moreover, from (88) to leading order
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S̃0 =
fv + gv
√

det(q)
= 2

fh

r pv
= 2κ ⇒ fv = 2κ (94)

as gv has no l = 0 mode. If one wants the lapse to equal unity at infinity then κ = 1
2 .

We summarize: The solution S·
∗ of the stability conditions constructed displays the

decay behavior (78), (81), (82), (85), (89) and the relations (86), (88) and (91) with ph, pv,
namely to the order displayed

S3
∗ = f ∗h + g∗h , f ∗h = κ

pv

r
= O(r−1/2), g∗h = O(r−1)

SA
∗ = gA

∗ = O(r−2)

S0
∗ = f ∗v + g∗v , f ∗v = 2κ = O(1), g∗v = O(1)

ph =
p′v
r

(95)

where the last relation holds when the constraints are used i.e., they should also carry a
label ∗ which we dropped for convenience.

Bulk Solution

We note that (75) is a system of four PDE’s in four variables S3, SA, S0. One may,
therefore, obtain an exact and non-perturbative solution, in principle, as follows: We solve
the fourth equation algebraically for S0 and insert its solution into the first three equations.
This remaining system of three PDEs which is linear in S3, SA can then be solved for the
radial derivatives i.e., it can be written in the form (µ, ν = 1, 2, 3)

Sµ′(r, y) = F
µ
ν (r, y) Sν + G

µA
ν Sν

,A =:
∫

d2y′ K
µ
ν (r; y, y′) Sν(r, y′) (96)

where the right-hand side is linear Sµ and its angular derivatives which we have written in
terms of an integral kernel. Hence, the solution can be written

S
µ
y (r) = [P(exp(

∫ r

−∞
dsK(s)) · Ŝ(−∞)]

µ
y (97)

where the path ordering symbol P orders the highest radial value to the outmost left
and Ŝ

µ
y (−∞) are initial values on the sphere r̄ = −z = ∞ where (µ, y) is considered a

compound label in order to write (96) as a matrix equation. This yields, in particular, lapse
S0 and shift Sµ for the GPG and, therefore, an entire spacetime metric. The initial values
have to be adjusted to the boundary conditions stated.

Instead of a non-perturbative solution, a perturbative solution of (96) may be obtained

as follows: The coefficient functions F
µ
ν , G

µA
ν are under perturbative control, i.e., they

have known expansions in terms of say X, Y in the GPG thanks to the possibility to
solve for P3 = pv + yv, PA = yA, P0 = ph + yh as we will indicate in the next section.
By the notation A(n) we mean the n-th order contribution in X, Y in the expansion of a
quantity A. The perturbative scheme implies that the l = 0 modes pv, ph have no first-
order contribution, i.e., pv(1) = ph(1) = 0 while the l > 0 modes yv, yA, yh have no
zeroth order contribution, i.e., yv(0) = yA(0) = yh(0) = 0. We will solve (96) under
the same premise for the decomposition S3 = fh + gh, SA = gA, i.e., that the l = 0
mode obeys fh(1) = 0 while the l > 0 modes obey gh(0), gA(0) = 0. We now expand all
quantities in (96) in powers of X, Y and obtain a hierarchy of equations for the functions
fh(n); 1 ̸= n ≥ 0, gh(n), gA(n); n ≥ 1.

The structure of these equations is given in more detail by

0 = [S3]′ + [α S3 + βA SA + γB
A SA

,B] F3

0 = [SA]′ + qABS3
,B + [α S3 + βA SA + γB

A SA
,B] FA (98)
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where all α, βA, γB
A, F3 have n = 0 contributions while FA = yA starts at order n = 1.

Since fh,A = 0 it is easy to see that the second equation of (98) is identically satisfied at
order n = 0 while the first equation at n = 0 gives a first-order ODE in r for fh(0) whose
solution is exactly the asymptotically leading behavior of fh displayed in (95).

For n = 1, because FA is already of first order and because we have fh(1) = 0, the sec-
ond equation can be solved explicitly for gA(1) by decomposing gh(1), gA(1), FA(1) into
scalar and vector harmonics, respectively, which yields a first-order linear inhomogeneous
ODE in r for gα,l,m(1), α = e, o that relates it to gh,l,m(1), Fα,l,m(1) and can be solved by
quadrature. When inserted into the first equation of (98) at n = 1 we obtain an integrodif-
ferential equation for gh,l,m(1) or equivalently a inhomogeneous linear second-order ODE
which can be solved by holonomy and variation of constant methods by transforming it
into a system of two homogeneous linear first-order equations.

Proceeding inductively, at order n ≥ 2 we see that the second equation in (98) takes
the form

0 = [gA(n)]′ + r−2ΩAB[gh(n)],B + JA(n) (99)

where JA(n) ∝ FA contains at most (n-1)th order contributions of fh, gh, gA and thus (99)
can be solved for gA(n) by quadrature. For the first equation in (98) we note that the gA(n)
contribution to βASA + γB

A SA
,B is proportional to 2r3DAgA(n) and hence can be written

0 = [ fh(n) + gh(n)]
′ + α(0)[ fh(n) + gh(n)] + K(0) DAgA(n) + J3(n) (100)

where J3(n) contains at most (n-1)th order contributions of fh, gh, gA and K(0) is a com-
putable zeroth order function. Thus, dividing by K(0) and taking the radial derivative of
(99) we find

{ 1

K(0)
([ fh(n) + gh(n)]

′ + α(0)[ fh(n) + gh(n)] + J3(n))}′ = DA{r−2ΩAB[gh(n)],B + JA(n)} (101)

We decompose into scalar harmonics and obtain a second-order, linear, inhomogeneous
system among the fh,l,m(n), gh,l,m(n) which can be transformed to a first-order system and
solved by variation of constant and holonomy methods.

To construct, for instance, S3 perturbatively has the following significance: For spher-
ically symmetric vacuum GR we have 2M = [S3]2 r for any value of r. With matter and
perturbations we may define a local effective mass function

2Meff(x) := [S3(x)]2 r (102)

4.5.3. Evaluation of the Boundary Terms at the Solution of the Stability Conditions

The reason why it was sufficient to determine the asymptotic leading decay order
of S·

∗ is because in the boundary integrals over the asymptotic spheres we take the limit
r → ∞. Thus, the only terms that survive this limit are those that display the leading decay
behavior, the subleading terms drop out. We now determine the corresponding boundary
values B∥[S

∗
∥], B⊥[S∗

⊥].
We have (we consider only one asymptotic end for simplicity)

B∥[S
∗
∥] = 2 lim

r→∞

∫

dΣµ S
ρ
∗ Wµν mρν

= 2 lim
r→∞

∫

dΩ ω−1 [S3
∗ W3ν m3ν + SA

∗ W3ν mAν]

= 2 lim
r→∞

∫

dΩ [S3
∗ P3 + SA

∗
1

2
PB (r2ΩAB + XAB)]

= 2 lim
r→∞

∫

dΩ [( f ∗h + g∗h) (pv + yv) + gA
∗

1

2
yB (r2ΩAB + XAB)] (103)

The term gA
∗ yB = O(r−3) while r2ΩAB + XAB = O(r2) hence the second term in (103)

drops out. Next, as g∗h = O(r−1)) while pv = O(r1/2), yv = O(1) it follows that the
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term proportional g∗h vanishes. Finally, as f ∗h = O(r−1/2) it follows that the f ∗h yv term
vanishes. Accordingly,

B∥[S
∗
∥] = 2 lim

r→∞

∫

dΩ f ∗h pv (104)

Since f ∗h = κ
pv
r we see that

B∥[S
∗
∥] = 2 κ lim

r→∞

∫

dΩ
pv

r
pv =:

∫

∂σ
d2y s∗ j∗ (105)

with j∗ = [ pv

r1/2 ]r=∞ and s∗ = 2κ j∗. Hence, we can apply proposition 1 with

χ[j] := κ
∫

∂σ
dΩ j2 (106)

The contribution to the reduced Hamilton from B∥ is, therefore, given per asymptotic
end by

H∥ = κ lim
r→∞

∫

S2
dΩ

pv(r)2

r
(107)

Note, that the naive prescription to use B∥[S
∗
∥] would have resulted in twice H∥.

Now, we consider B⊥[S∗
⊥] which only depends on F := S0

∗ = f ∗v + g∗v = O(1). We
have explicitly

B⊥[S
∗
⊥] = −

∫ √

det(m) F mµν (dΣµ [Γ
ρ
ρν − Γ

NDρ
ρν ]− dΣρ [Γ

ρ
µν − Γ

NDρ
µν ])

+
∫ √

det(m) [∇µF] mµν mρσ(dΣν[mρσ − mND
ρσ ]− dΣρ[mνσ − mND

νσ ])

= −
∫

ω−1
√

det(m) dΩ F (m3ν [Γ
ρ
ρν − Γ

NDρ
ρν ]− mµν [Γ3

µν − ΓND3
µν ]

+
∫

ω−1 dΩ

√

det(m) [∇µF] (mµ3 mρσ [mρσ − mND
ρσ ]− mµν m3σ [mνσ − mND

νσ ])

= −
∫ √

det(q)/ω2 dΩ F ([Γ
ρ
ρ3 − Γ

NDρ
ρ3 ]− [Γ3

33 − ΓND3
33 ]− qAB [Γ3

AB − ΓND3
AB ])

+
∫

dΩ

√

det(q)/ω2 ([∇3F] mρσ [mρσ − mND
ρσ ]− [∇µF] mµν [mν3 − mND

ν3 ])

= −
∫ √

det(q)/ω2 dΩ F ([ΓA
A3 − ΓNDA

A3 ]− qAB [Γ3
AB − ΓND3

AB ])

+
∫

dΩ

√

det(q)/ω2 ([∇3F] qAB [qAB − qNDAB ]

= −
∫ √

det(q)/ω2 dΩ F ([ΓA
A3 − ΓNDA

A3 ]− qAB [Γ3
AB − ΓND3

AB ])

+
∫

dΩ

√

det(q)/ω2 ([∇3F] qAB [qAB − qNDAB ]

= −
∫ √

det(q)/ω2 dΩ F ([ΓA
A3 − ΓNDA

A3 ]− qAB [Γ3
AB − ΓND3

AB ]) +
∫

dΩ

√

det(q)/ω2 F′ qAB XAB (108)

where we used dΣµ = ω−1 dΩδ3
µ and that mµν is block diagonal i.e., m33 = 1, m3A =

0, mAB = qAB = r2ΩAB + XAB in the GPG so that m33 = 1, m3A = 0, mAB = qAB, qACqCB =
δA

B with mND
33 = 1, mND

3A = 0, mND
AB = r2ΩAB.

Consider first the second term in the last line of (108) which has integrand

[
det(q)

ω

2

]−1/2 F′ det(q) qABXAB = [
det(q)

ω

2

]−1/2 F′ ϵACϵBD[r2ΩCD + XCD] XAB

= [
det(q)

ω

2

]−1/2 F′ [r2 det(Ω)ΩABXAB + det(X)] = [
det(q)

ω

2

]−1/2 F′ det(X) (109)
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Since F = O(1) we have F′ = 0 at r = ∞ since F = fv + gv, fv = c + d r−n,
gv = C(Ω) + D(Ω)r−N , n, N > 0. Moreover, det(X) = O(r2) while det(q)−1/2 = O(r−2).
Hence, the second term has a vanishing limit r → ∞.

To evaluate the first term in (108) we require the Christoffel symbols 2Γµνρ = 2mµ(ν,ρ)−
mνρ,µ, Γ

µ
νρ = mµσΓσνρ

Γ333 = ΓA33 = Γ3A3 = 0

Γ3AB = −1

2
q′AB = −ΓA3B

ΓABC = r2ΓΩ
ABC + ΓX

ABC

Γ3
33 = Γ3

A3 = ΓA
33 = 0

Γ3
AB = Γ3AB, ΓA

3B = qACΓC3B

ΓA
BC = qAD ΓDBC (110)

since q3µ = δ3
µ is constant and we have used block diagonality.

It follows that the non-vanishing symbols have at most one index µ = 3 and Γ3AB,
ΓA3B = O(r), ΓABC = O(r2), Γ3

AB = O(r), ΓA
3B = O(r−1), ΓA

BC = O(1). In particular the
combination required in (108) is

[det(q)ω−2]1/2 ([ΓA
A3 − ΓNDA

A3 ]− qAB [Γ3
AB − ΓND3

AB ])

= [det(q)ω2]−1/2 det(q) (qAB [ΓBA3 − Γ3AB]− qAB
ND [ΓND

BA3 − ΓND
3AB])

= [det(q)ω2]−1/2 (ϵACϵBD [r2ΩCD + XCD] [2rΩAB + X′
AB]− det(q) r−2ΩAB [2rΩAB])

= [det(q)ω2]−1/2 ([r2 det(Ω) ΩAB + ϵACϵBDXCD] [2rΩAB + X′
AB]− 4[r4ω2 + ω2ΩABXAB + det(X)] r−1)

= [det(q)ω2]−1/2 (4 r3ω2 + [det(X)]′ − 4[r4ω2 + det(X)] r−1)

= [det(q)ω2]−1/2 ([det(X)]′ − 4 det(X) r−1) (111)

which is O(r−1). Since F = O(1) it follows

B⊥[S
∗
⊥] = 0 (112)

Altogether, the reduced Hamiltonian is, therefore, given by (taking both asymptotic ends
into account)

H = κ [ lim
r→∞

∫

S2

dΩ
[P3

∗ (r, Ω)]2

r
+ lim

r̄→∞

∫

S2

dΩ
[P3

∗ (r̄, Ω)]2

r̄
] (113)

where P3
∗ is the value of P3 obtained by solving all the constraints and by imposing the

GPG. Due to the decay, yv = O(r−1) we may replace P3 = pv + yv by p∗v in (113).
Several remarks are in order:

Remark 1. In the presentation so far we have omitted the prefactor 1/k, k = 16πG of the
action where G is Newton’s constant and we use units with c = 1. That prefactor propagates
into the constraints and thus the boundary term, and therefore, into H. We check that
H = M for spherically symmetric vacuum GR when (113) is multiplied by 1/k. To see
this we use with S0 = N, the relations Wµν =

√

det(m)[mµνmρσ − mµρmνσ]Kρσ and Kρσ =
1

2N [ṁρσ − [L
S⃗
m]ρσ] in GPG. This gives with ω =

√

det(Ω) the identity pv = P33/ω =

r2[K33 − mabKab] = −ΩABKAB and KAB = − 1
2N [L

S⃗
m]AB = − 1

2N [2rS3]ΩAB = − rS3

N ΩAB,

and therefore, pv = 2r S3

N . If we compare with (93) and use fh = S3, fv = 2κ = N we obtain

exact match. It follows, performing the angular integral in (113) H = 4π
k κ 4r [S3]2/N2.

Since S3 =
√

2GM/r in GPG it follows H = 2κM/N2 for one asymptotic end which equals
M for N = 1 i.e., κ = 1/2. Again, had we wrongly identified H with the value of the
boundary term we would have obtained H = 2M, i.e., twice the ADM mass. The difference
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arises because in the Schwarzschild gauge the ADM momentum vanishes exactly and the
stabilising lapse is a constant on the phase space; therefore, in this case H is simply the
boundary term and yields correctly H = M with the same prefactor 1/k (see, e.g., the
second reference in [40–44]).

Remark 2. By contrast to the usual computation, the Hamiltonian results from the boundary
term of the ADM momentum rather than the ADM Hamiltonian. This can be traced back
to the fact that in the GPG the information about the mass is not encoded in the three
metrics but rather in the extrinsic curvature while in the Schwarzschild gauge the roles are
switched (the extrinsic curvature vanishes in the static presentation of the metric).

Remark 3. In Cartesian coordinates, the Christoffel symbols vanish exactly for the GP
background metric (which is flat) so that the ADM energy term vanishes exactly for that
background, not only to leading order. The relation between the Schwarzschild and GP
coordinates involves a boost (see Appendix C) so that the resulting Hamiltonian becomes
now a component of the ADM momentum.

Remark 4. Remarkably, the expression (113) is positive definite no matter what the concrete
expression for P3

∗ is in terms of the true degrees of freedom. For the present model these
are gravitational mass M, electric charge Q, gravitational tracefree (wrt Ω) angular pertur-
bations XAB, YAB (only l ≥ 2 modes), electromagnetic angular perturbations AC, EA (only
l ≥ 1 modes) and Klein–Gordon field Φ, Π (all l ≥ 0 modes are observables but only l > 0
modes are perturbations) when we solve the Gauss constraint for E3.

Remark 5. At exact spherical symmetry in a vacuum, we have P3
∗ =

√
2Mr hence H = 2κM

(with prefactor k included). The freedom κ is, therefore, the same that arises in the purely
spherically symmetric sector (see Appendix B) or in the Kantowski–Sachs reformulation
(see Appendix D).

Remark 6. When expanding P3
∗ perturbatively in terms of the perturbations just mentioned

we obtain schematically P3
∗ = P3

∗ (0) + P3
∗ (1) + P3

∗ (2) + . . . where the three terms are,
respectively, independent, linear and quadratic in the perturbations. Now, P3 = pv + yv

and by the general theory [61] pv(1) ≡ 0 while yv(n), n ≥ 1 decays too fast to be visible in
(113). Therefore, to second order in the perturbations for one asymptotic end

H =
κ

k
lim

r

1

r

∫

dΩ {[p∗v(0)]2 + 2 p∗v(0) p∗v(2)} (114)

(the angular integral gives just 4π because pv has only zero modes). As we will con-
firm in our companion papers, (114) reproduces the Regge–Wheeler and Zerilli Hamilto-
nian [52–55] in GP coordinates.

Remark 7. The real virtue of (113), however, is that it is a non-perturbative result. It
provides a formula for the physical Hamiltonian entirely expressed in terms of the true
degrees of freedom and in that sense is gauge invariant to all orders that one may want to
expand it into. For instance, we now have access to a non-ambiguous Hamiltonian that
includes cubic (“Non-Gaussian”) (self-)interactions of the perturbations. In particular, in
the absence of scalar matter, the system can be interpreted as a black hole formed due to the
collapse of gravitational and/or electromagnetic waves due to self-interactions mediated
by gravity.

Remark 8. In the present situation, although (113) has contributions from both asymptotic
ends, since p∗v(z), z = θ(z)r − θ(−z)r̄ is obtained from a differential equation, the value
p∗v(−∞) ∝

√
Mr is a non-perturbative (i.e., fixed in all orders of perturbation theory)
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integration constant at z = −∞. Therefore, the contribution from r̄ = ∞ in (113) drops out
in Poisson brackets and we may delete it from H.

5. Perturbative Structure of the Constraints

While in the previous section, we have derived the non-perturbative definition of the
reduced Hamiltonian, it is given only implicitly. To be practically useful, in particular, for
quantization, we need an explicit formula. This can be provided at least perturbatively,
which will be the task of the present and next section.

In this section, we discuss subsequently the perturbative structure of Gauss, spatial
diffeomorphism and Hamiltonian constraint. Since the Gauss and spatial diffeomorphism
constraints are first and second order homogeneous polynomials in all fields, we will be
able to exhibit all perturbative orders explicitly where we leave the evaluation of integrals of
contractions of three spherical tensor harmonics in terms of Clesch–Gordan coefficients for
our companion papers. For the the Hamiltonian constraint, which we treat in its polynomial
form, we collect the full non-perturbative structure of all sub-polynomials from which it is
assembled but then just keep the orders up to two. The explicit computation of the finite
number of higher orders (up to ten in vacuum GR) will be subject of our companion papers.

5.1. Reduction of the Gauss Constraint

Since the Gauss constraint Poisson commutes with all other constraints (we replace
VM

µ + VKG
µ by FµνEν + ΠT [DµΦ] by subtracting AµG = Aµ(GM + GKG) which can be con-

ducted by redefining the Sµ, S0) we may reduce the theory with respect to the corresponding
gauge degrees of freedom before entering the reduction with respect to Hamiltonian and
spatial diffeomorphism constraints. In the case of charge, (i.e., a scalar dublett) it is most
convenient to use a “unitary gauge” otherwise (i.e., a scalar singlett) a radial “axial” gauge.

5.1.1. Unitary Gauge

As the Gauss constraint generates rotations of Φ = (ϕ1, ϕ2), a perfect gauge is ϕ2 = 0
and we can solve G = 0 algebraically for π2 = J := ϕ−1

1 ∂aEa so that no decay properties
of the fields come into play. Then, (ϕ = ϕ1, π = π1), (Aµ, Eµ), µ = 1, 2, 3 are the true
degrees of freedom as far as reduction of the Gauss constraint is concerned. Then, the only
task to do is to perform the following replacements in the Klein–Gordon contributions to
the SDC and HC, respectively,

VKG
µ → πϕ,µ, 2 VKG

0 → π2 + J2

√

det(m)
+

√

det(m)mµν[ϕ,µϕ,ν + Aµ Aνϕ2 + 2V(ϕ2)] (115)

5.1.2. Axial Gauge

We now assume that there is just one KG field ϕ with conjugate momentum ϕ, hence
the term ΠTϵΦ in G is missing and DµΦ → ∂µϕ, Π → π in both VKG

µ , VKG
0 .

In view of the subtle difference between gauge and symmetries that arises for con-
straints that depend on spatial derivatives of the fields exemplified in Appendix A, we
need to specify the decay behavior of the fields at the spatial infinities which we take
to be r−2 in an asymptotic Cartesian frame for both electric and magnetic fields so that
the electromagnetic energy density decays as r−4. This allows the vector potential to de-
cay as r−1 or faster. In terms of the spherical frame Aµ(z) = (∂xa/∂yµ)Aa(x), Eµ(z) =
|det(∂x/∂z)| (∂zµ/∂xa)Ea(x) this translates into E3 = O(1), EC = O(r−1), A3 = O(r−2),
AC = O(r0). However, we must require that the dynamical part of the Maxwell connection
decays as A3 = O(r−2), AC = O(r−1). This makes sure that E3 [dA3], EB [dAB] decay as
r−2 which then makes the symplectic potential converge. The functionally differential form
of the Maxwell contribution to the Gauss constraint is (the Klein–Gordon cointribution is
functionally differentiable as it is)

H[S0] = G[S0] + B[S0] = −
∫

d3z EµS0,µ, B[S0] = −
∫

d2y [E3 S0]r=∞
r=−∞ (116)
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The solution of the constraint (E3)′ + EA
,A = 0 is

E3
∗ = PM −

∫ r

−∞
ds EA

,A (117)

where PM is any function on S2. The boundary term becomes such a solution

B[S0] =
∫

d2y; {−PM [S0(∞)− S0(−∞)] + [
∫ ∞

−∞
dr EA

,A] S0(∞)} (118)

which vanishes for all EA, pM iff S0(∞) = S0(−∞) = 0. Such S0 correspond to a gauge
transformation. The general transformation of Aµ is δAµ = −S0,µ. We cannot gauge A3

completely to zero because for general A3 this would require that S0 =
∫ r
−∞

dsA3(s) which

does not necessarily vanish at r = ∞. Let w be a function of r only with
∫ ∞

−∞
drw = 1,

w = O(r−2), say w = 1
π r0(1+r2/r2

0)
. Then, we can gauge A3 to A∗

3 = w QM, QM :=
∫ ∞

−∞
dr A3 using S0 =

∫ r
−∞

dr [A3 − QM w] which now is a gauge transformation.
Under a gauge transformation QM is an invariant. The transformations that stabilize the
gauge A3 − QMw satisfy −S′

0 + w [S0]
∞
−∞ = 0 i.e., S∗

0 = S∗
0(−∞) + [

∫ r
−∞

w] K, K = [S∗
0 ]

∞
−∞.

which does not vanish at r = ∞ and thus corresponds to a symmetry transformation.
The symplectic structure pulled back to E3

∗, A∗
3 is given by

ΘM =
∫

dr d2y {[PM −
∫ r

−∞
ds EB

,B(s)] w(r) [dQM] + EB [dAB] ]

=
∫

d2y PM [dQM] +
∫

dr d2y EB [d(AB + [
∫ ∞

r
ds w(s)] QM,B] (119)

and displays the canonical pair (QM, PM) on the sphere and the bulk canonical pair (EB, ÂB =
AB + [

∫ ∞

r dsw(s)]QM,B). Under a symmetry transformation EB, ÂB are both invariant. For the

magnetic field we have B3 = ϵBCAC,B = ϵBCÂC,B and BA = −ϵAB[A′
B − QM,Bw) = −ϵAB Â′

B,
i.e., it just depends on the invariant ÂB. Thus, neither the magnetic nor the electric field
depend explicitly on the QM which thus acquire the same invisibility as the momenta Q
conjugate to the gravitational mass if we follow the strategy of Appendix C.6. The electric
field does depend on PM of which the l = 0 mode is just the electric charge.

We now perform the same analysis more explicitly in terms of spherical harmonics.
The corresponding symmetric and non-symmetric Gauss constraints are easily found to be
using ((.)′ := d

dr (.))

G = ∇µEµ = ω[pM′ + ∑
l>0

[yM′
l,mLl,m + ∑

α∈{o,e}
YM

α,l,m DA LA
α,l,m]

= = ω[pM′ + ∑
l>0

[yM′
l,m −

√

l(l + 1)YM
e,l,m] Ll,m (120)

Thus

CM(r) = CM(0)(r) = pM′(r), ZM,l,m(r) = ZM,l,m(1)(r) = yM′
l,m −

√

l(l + 1)YM
e,l,m(r) (121)

with general solution (we relabel z = θ(z)r − θ(−z)r̄ by r which has no range on the
real axis)

pM(r) = pM(0), yM
l,m(r) = pM

l,m(0) +
√

l(l + 1)
∫ r

−∞
ds YM

e,l,m(s) (122)

We plug these into the symplectic structure for the Maxwell field and obtain up to a total
phase space differential
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ΘM =
∫ ∞

−∞
dr {pM(r) dqM(r) + ∑

l>0,|m|≤l

[yM
l,m dxl,m

M (r) + YM
e,l,m(r) dXe,l,m

M (r) + YM
o,l,m(r) dXo,l,m

M (r)}

= PM
h d[

∫ ∞

−∞
dr qM(r)] + ∑

l>0,|m|≤l

YM
h,l,m d[

∫ ∞

−∞
dr xl,m

M (r)] + ∑
l>0,|m|≤l

∫ ∞

−∞
dr {YM

e,l,m(r) d[Xe,l,m
M (r)

+
√

l(l + 1)
∫ ∞

r
ds xl,m

M (s)] + YM
o,l,m(r) dXo,l,m

M (r)}

=: PM
h dQh

M + ∑
l>0,|m|≤l

YM
h,l,m dXh,l,m

M +
∫ ∞

−∞
dr [YM

e,l,m dX̃e,l,m
M + YM

o,l,m dX̃o,l,m
M ](r) (123)

where we have set PM
h := pM(0), YM

h,l,m := pM
l,m(0). We see that the reduced symplectic

structure only depends on the Dirac observables (with respect to the Gauss constraint)

(PM
h , Qh

M), (YM
h,l,m, Xh,l,m

M ) which which are independent of r (they are the harmonic modes

of PM, QM above) and the Dirac observables (YM
e,l,m, X̃e,l,m

M )(YM
o,l,m, X̃o,l,m

M ) which do depend

on r (they are the harmonic modes of EB, ÂB above).
For the magnetic fields we find

B3 = ϵAB DA AB = ω ∑
l>0,|m|≤l,α∈{e,o}

Xα,l,m
M ηAB DALB;α,l,m = ω ∑

l>0,|m|≤l

√

l(l + 1)Xo,l,m
M Ll,m

BA = −ω ηAB (A′
B − DB A3) = −ω ∑

l>0,|m|<l

[(Xe,l,m′
M −

√

l(l + 1)xl,m
M ) LA

o,l,m − Xo,l,m′
M LA

e,l,m]

= −ω ∑
l>0,|m|<l

[X̃e,l,m′ LA
o,l,m − Xo,l,m′

M LA
e,l,m] (124)

which of course also only depends on these Dirac observables.

Thus, we can drop A3, E3 from the list of independent variables in Θ and denote X̃e,l,m
M

by Xe,l,m
M again. We drop the term proportional to G from the Hamiltonian, note that V0, Vµ

then only depend on electric and magnetic fields and write these in terms of the degrees of

freedom PM
h , PM

h,l,m, Xα,l,m
M , YM

α,l,m explicitly

E3 = ω {PM
h + ∑

l>0,m

[YM
h,l,m +

√

l(l + 1)
∫ r

−∞
ds YM

e,l,m(s)] Ll,m} =: PM
h + ∑

l>0,m

ỸM
h,l,m Ll,m

EA = ω ∑
l>0,m,α=e,o

Yα,l,m LA
α,l,m

B3 = ω ∑
l>0,m

√

l(l + 1) Xo,l,m
M Ll,m =: ∑

l>0,m

X̃h,l,m
M Ll,m

BA = −ω ∑
l>0,m,α,β=e,o

ϵαβ Xα,l,m′
M LA

β,l,m (125)

where ỸM
h,l,m, X̃h,l,m

M are just abbreviations for the above linear functions of YM
e,l,m, Xo,l,m

M ,
respectively, and ϵαβ, α, β = e, o is the skew symbol with ϵeo = 1. Note, that

ηABLB
α,l,m = −∑

β

ϵαβLA;β,l,m (126)

In this way, the Hamiltonian H remains polynomial of degree two in these variables.
The field components E3, B3 have merely the status of an abbreviation for the r.h.s. of the
first line and third line of (125).
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5.2. General Perturbative Structure of the Spatial Diffeomorphism Constraint

It is simplest to start with the form of the constraint in which its geometric meaning
becomes most transparent (dropping the boundary term for the moment)

Vµ[S
µ] =

∫

d3x {Wµν [L
S⃗
m]µν + Eµ [L

S⃗
A]µ + πT [L

S⃗
ϕ]} (127)

The boundary term picked up by a variation has been discussed at length in the previous
section as far as the gravitational degrees of freedom are concerned. The boundary term
picked up with respect to the matter fields is

∫

dΣµSµ[EνδAν + πδϕ] =
∫

d2y S3[EνδAν +
πδϕ] which vanishes identically since by construction the term in the square bracket which
enters the symplectic potential is O(r−2). For π, ϕ this is achieved if π, ϕ decay as O(r−2)
in Cartesian coordinates or π as O(1) and ϕ as O(r−2) and ϕ as O(r−2) in spherical
coordinates. The decay of A, E was specified in the previous subsection.

We have explicitly ((.)′ = d
dr (.))

[L
S⃗
m]33 = S3 m′

33 + SA DAm33 + 2m33 S3′ + 2 m3A SA′

[L
S⃗
m]3A = S3 m′

3A + SB DBm3A + m33 DAS3 + mB3 DASB + m3A S3′ + mBA SB′

[L
S⃗
m]AB = S3 m′

AB + SC DCmAB + 2mC(ADB)S
C + 2 m3(ADB)S

3

[L
S⃗

A]3 = S3 A′
3 + SB DB A3 + A3 S3′ + ABSB′

[L
S⃗

A]B = S3 A′
B + SC DC AB + A3 DBS3 + AC DBSC

[L
S⃗
ϕ] = S3 ϕ′ + SA DAϕ (128)

Plugging the expansions (14), (15) into (128) we can carry out the covariant differentials
and write (128) in terms of contracted quadratic monomials of tensor harmonics. Then,
contracting with the momenta in (127) we obtain a sum of contracted cubic monomials
of tensor harmonics that are being integrated with dΩ. These integrals can be performed
in closed form. Of interest to us in this work is not their explicit form but the qualitative
structure. We note that we are interested in the coefficients of the smearing functions f a, gj

which are immediately available from (128) modulo an integration by parts with respect to
the radial variable. These integrations by parts generate radial derivatives of momenta. We
see from (128) that both S3′ and SA′ occur only in [L

S⃗
m]33, [L

S⃗
m]3A, [L

S⃗
A]3; therefore, the

only radial derivatives of momenta that appear are those of W33, W3A, E3 (also the Gauss
constraint contains only radial derivatives of E3). Since the Hamiltonian constraint does
not contain momentum derivatives, it follows that the only radial derivatives acting on the
radial coefficient functions of the tensor harmonics for the momenta that occur are those
of pE

v , yE
v,l,m, yE

α,l,m, pM, yM
l,m with l > 0, α ∈ {e, o}. Since in the construction algorithm we

want to solve jointly the constraints Ca for pa and the constraints Zj for yj it follows that we

can solve algebraically for pE
h , yE

h,l,m but have to solve radial differential equations for the
other p, y type momenta just listed. Note, that, in particular, the true momenta PA, YJ occur
without radial derivatives.

Performing integrations by parts explicitly to recover the actual constraint without
derivatives on the smearing function we find

Vµ[S
µ] =

∫

d3x {

S3 [W33 m′
33 − 2(W33 m33)

′ + 2(W3A m′
3A − 2(W3A m3A)

′) + WAB m′
AB − 2 DA(W

3A m33 + WAB m3B)

+π ϕ′ + E3 A′
3 − (E3 A3)

′ + EB A′
B − DB(EB A3)]

+SA [W33 DA m33 − 2(W33 m3A)
′ + 2 W3B DAm3B − 2 DA(W

3Bm3B)− 2(W3BmAB)
′ + WBC DAmBC

−2 DB(W
BCmCA)]

+π DAϕ + E3 DA A3 − (E3 AA)
′ + EB DA AB − DB(EB AA)]} (129)
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Using the result of the previous subsection we may in fact exploit that G = 0 is identically
satisfied so that the contribution from the Maxwell field can be simplified to

Sµ[Eν∂µ Aν − ∂ν(Eν Aµ)] = 2 Sµ∂[µ Aν] Eν = 2 Sµϵµνρ EνBρ

= 2 [S3 ϵBC EB BC + SA ϵAC (EC B3 − E3 BC)] (130)

We extract the coefficients of S3, SA with respect to the decomposition (14), see (18) and (19).
The symmetric constraint is

f hCh = f h
< 1, V3/ω >L2

= f h{[pE
v (qv

E)
′ − 2 (pE

v qv
E)

′ + pE
h (qh

E)
′ + PKG Q′

KG]

+ ∑
l>0,m

[( ∑
α=v,e,o

yE
α,l,m (xα,l,m

E )′ − 2 (yE
α,l,m xα,l,m

E )′) + yE
h,l,m (xh,l,m

E )′ + YKG
l,m (Xl,m

KG)
′

+∑
α

ϵαβYM
α,l,m Xβ,l,m′]M]}

=: f h{Ch(0)((pE, qE), (PKG, QKG)) + Ch(2)((y
E, xE), (Y

KG, XKG), (Y
M, XM))} (131)

The non-symmetric constraints are

gh,l,m Zh,l,m = gh,l,m
< Ll,m, V3/ω >L2

= gh,l,m {[yE
v,l,m (qv

E)
′ + pE

v (xv,l,m
E )′ − 2(yE

v,l,m qv
E + pE

v xv,l,m
E )′

+pE
h (xh,l,m

E )′ + yE
h,l,m (qh

E)
′ +

√

l(l + 1) yE
e,l,m qv

E + PKG (Xl,m
KG)

′ + YKG
l,m (QKG)

′]

+ ∑
l′ ,m′ ,l̃,m̃

[< Ll,m, Ll′ ,m′ Ll̃,m̃ >L2
{yE

v,l′ ,m′ (xv,l̃,m̃
E )′ − 2 (yE

v,l′ ,m′ xv,l̃,m̃
E )′}

+ ∑
α,β=o,e

< Ll,m, LA
α,l′ ,m′ LA;β,l̃,m̃ >L2

{yE
α,l′ ,m′ (x

β,l̃,m̃
E )′ − 2 (yE

α,l′ ,m′ x
β,l̃,m̃
E )′}

+ ∑
α,β=o,e

< Ll,m, LAB
α,l′ ,m′ LAB;β,l̃,m̃ >L2

YE
α,l′ ,m′ (X

β,l̃,m̃
E )′

+ ∑
α=o,e

< Ll,m, LAB
α,l′ ,m′ LAB;h,l̃,m̃ >L2

YE
α,l′ ,m′ (xh,l̃,m̃

E )′

+ ∑
β=o,e

< Ll,m, LAB
h,l′ ,m′ LAB;β,l̃,m̃ >L2

yE
h,l′ ,m′ (X

β,l̃,m̃
E )′

+ < Ll,m, LAB
h,l′ ,m′ LAB;h,l̃,m̃ >L2

yE
h,l′ ,m′ (xh,l̃,m̃

E )′ (132)

+2
√

l(l + 1) ∑
α=o,e

< LA;e,l,m, LA
α,l′ ,m′ Ll̃,m̃ >L2

2
yE

α,l′ ,m′ xv,l̃,m̃
E

+2
√

l(l + 1) ∑
α,β=e,o

< LA;e,l,m, LAB
α,l′ ,m′ LB;βl̃,m̃ >L2

2
YE

α,l′ ,m′ x
β,l̃,m̃
E

+2
√

l(l + 1) ∑
β=e,o

< LA;e,l,m, LAB
h,l′ ,m′ LB;βl̃,m̃ >L2

2
yE

h,l′ ,m′ x
β,l̃,m̃
E + < Ll,m, Ll′ ,m′ Ll̃,m̃ >L2

YKG
l′ ,m′ (X l̃m̃)′

+ ∑
α,β=e,o

< Ll,m, LA
α,l′ ,m′ LA;βl̃,m̃ >L2

YM
α,l′ ,m′ (X

β,l̃,m̃
M )′ ]

=: gh,l,m {Zh,l,m(1)((y
E
v , qv

E), (pE
v , xv

E), (y
E
h , qh

E), (pE
h , xh

E), (PKG, XKG), (Y
KG, QKG))

+Zh,l,m(2)((y
E, xE); (Y

E, XE), (Y
E, xE), (y

E, XE), (Y
KG, XKG), (Y

M, XM))}

and
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gα,l,m Zα,l,m = gα,l,m ∑
A=1,2

(< LA
α,l,m, VA/ω >L2

)α=o,e

= gα,l,m {[
√

l(l + 1) pE
v δα

e xv,l,m
E − 2(pE

v xα,l,m
E )′ − 2(yE

α,l,m qh
E)

′

+[−2
√

l(l + 1)/2 yE
h,l,m δe

α +
√

(l − 1)(l + 2)/2Yα,l,m]q
h
E

+
√

l(l + 1) PKG δe
αXl,m

KG − PM
h (Xα,l,m

M )′]

+ ∑
l′ ,m′ ,m̃,m̃

[
√

l(l + 1) < LA
α,l,m, Ll′ ,m′ LA;e,m̃,m̃ >L2

yE
v,l′ ,m′ xv,l̃,m̃

E

−2 ∑
β=e,o

< LA
α,l,m, Ll′ ,m′ LA;β,m̃,m̃ >L2

(yE
v,l′ ,m′ x

β,l̃,m̃
E )′

+2 ∑
β,γ=e,o

< LA
α,l,m, LB

β,l′ ,m′ DALB;γ,m̃,m̃ >L2
yE

β,l′ ,m′ x
γ,l̃,m̃
E

+2
√

l(l + 1) ∑
β,γ=e,o

δe
α < Ll,m, LA

β,l′ ,m′ LA;γ,m̃,m̃ >L2
yE

β,l′ ,m′ x
γ,l̃,m̃
E

−2 ∑
β=e,o

< LA
α,l,m, LB

β,l′ ,m′ LAB;h,m̃,m̃ >L2
(yE

β,l′ ,m′ xh,l̃,m̃
E )′

+ ∑
β,γ=e,o

< LA
α,l,m, LBC

β,l′ ,m′ DA LBC;γ,m̃,m̃ >L2
YE

β,l′ ,m′ X
γ,l̃,m̃
E

+ ∑
β=e,o

< LA
α,l,m, LBC

β,l′ ,m′ DA LBC;h,m̃,m̃ >L2
YE

β,l′ ,m′ xh,l̃,m̃
E

+ ∑
γ=e,o

< LA
α,l,m, LBC

h,l′ ,m′ DA LBC;γ,m̃,m̃ >L2
yE

h,l′ ,m′ X
γ,l̃,m̃
E

+ < LA
α,l,m, LBC

h,l′ ,m′ DA LBC;h,m̃,m̃ >L2
yE

h,l′ ,m′ xh,l̃m̃
E

+2 ∑
β,γ=e,o

< DB LA
α,l,m, LBC

β,l′ ,m′ LCA;γ,m̃,m̃ >L2
YE

β,l′ ,m′ X
γ,l̃,m̃
E

+2 ∑
β=e,o

< DB LA
α,l,m, LBC

β,l′ ,m′ LCA;h,m̃,m̃ >L2
YE

β,l′ ,m′ xh,l̃,m̃
E

+2 ∑
γ=e,o

< DB LA
α,l,m, LBC

h,l′ ,m′ LCA;γ,m̃,m̃ >L2
yE

h,l′ ,m′ X
γ,l̃,m̃
E

+2 < DB LA
α,l,m, LBC

h,l′ ,m′ LCA;h,m̃,m̃ >L2
yE

h,l′ ,m′ xh,l̃,m̃
E

+
√

l(l + 1) < LA
α,l,m, Ll′ ,m′ LA;e,m̃,m̃ >L2

YKG
l′ ,m′ X l̃,m̃

KG

+ ∑
β,γ=e,o

ϵβγ < LA
α,l,m, LA;γ,l′ ,m′ Lm̃,m̃ >L2

YM
γ,l′ ,m′ X̃h,l̃,m̃

M

− ∑
β=e,o

ϵβγ < LA
α,l,m, Ll′ ,m′ LA,β,m̃,m̃ >L2

ỸM
h,l′ ,m′ (X̃

β,l̃,m̃
M )′] }

=: gα,l,m {Zα,l,m(1)((pE
v , xα

E), (y
E
α , qv

E), (y
E
h δe

α, qh
E), (Y

E
α , qh

E), (PKG, δe
αXKG), (PM

h , Xα
M))

+Zα,l,m(2)((y
E, xE), (Y

E, XE), (Y
E, xE), (y

E, XE), (Y
KG, XKG), (Y

M, XM))} (133)

where we used the identities (10). The notation is that Ch(n), Zα,l,m(n); α ∈ {h, e, o} are the
collection of all terms of order n = 0, 1, 2 in the perturbations x, y, X, Y and we displayed the
pairs of variables on which the constraints depend (either a pair of two symmetric, or two
non-symmetric or mixed degrees of freedom). We see that Ch(1) = Zα,l,m(0) = 0; α ∈ {h, e, o}.
We also note that Ch(2) = ∑l,m Ch,l,m(2) and just like Zα,l,m(1), α = h, e, o the contribution
Ch,l,m(2) just depends on perturbation variables labeled by l, m. By contrast, the constraints
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Zα,l,m(2), α = h, e, o are “non-local”, i.e., depend not only on variables labeled by l, m but, in

general, on an infinite number of them because the triangle inequality |l̃ − l′| ≤ l ≤ l̃′ + l
admits an infinite number of solutions l̃, l′ for any given l, e.g., l̃ = l′ + l, l′ ∈ N. We display
the “colour” label v, h, e, o for the pairs of variables that occur for Ch(0), Ch,l,m(2), Zα,l,m(1) but
drop it in Zα,l,m(2) although not all possible pairs occur in order to make the notation not
too heavy.

Note, that (130) is the exact expression for the spatial diffeomorphism constraint, no
terms have been dropped. We have just written it in terms of the split variables. The explicit
computation of the coefficients will be carried out in our companion papers [67–69].

5.3. General Perturbative Structure of the Hamiltonian Constraint

As emphasized in Section 2.3 it is of considerable computational advantage to de-
compose the polynomial constraint [det(m)]5/2 V0 displayed in (11) with respect to the
perturbations x, y, X, Y which for vanishing potential U is just a polynomial of order ten.
This is because it remains a polynomial rather than an infinite series as long as the po-
tential is a polynomial in ϕ. Still, working out all orders explicitly is a tedious task both
algebraically and because one needs to perform iterated Clebsch–Gordan decompositions,
i.e., we need the general coefficient Tr(< ∏

N
k=0 Lk >) where N is the top polynomial degree

that occurs, each Lk is a spherical harmonic (scalar, vector, tensor) and the trace and expecta-
tion value indicate contraction of all spherical tensor indices and integration on the sphere,
respectively. We thus, just display the terms of order zero, one and two. In particular, we
need

f v Cv = f v
< 1, [det(m)]5/2 V0 ω−6

>L2
, gv,l,m Zv,l,m = gv,l,m

< Ll,m, [det(m)]5/2 V0 ω−6
>L2

(134)

to those orders and it is clear from Section 2 that Cv(1) = Zv,l,m(0) = 0.

All terms in [det(m)]5/2 V0 except for the curvature term contain two or three factors of

M := det(m) =
1

3!
ϵµνρϵµ′ν′ρ′ mµµ′ mνν′ mρρ′ (135)

=
1

2
ϵACϵBD [m33 mAB mCD − 2 m3A m3B mCD] = ω2 1

2
ηACηBD [m33 mAB mCD − 2 m3A m3B mCD]

We also need

Mµµ′
:= det(m) mµµ′

=
1

2
ϵµνρϵµ′ν′ρ′ mνν′ mρρ′

M33 =
1

2
ϵACϵBD mAB mCD = ω2 1

2
ηACηBD mAB mCD

M3A = −ϵAC ϵBD m3B mCD = −ω2 ηAC ηBD m3B mCD

MAB = ϵACϵBD [m33 mCD − m3C m3D] = ω2ηACηBD [m33 mCD − m3C m3D] (136)

Next, we compute [det(m)]3 times the Ricci scalar

R = 2 mµρ [−∂[µ Γν
ν]ρ + Γλ

ρ[µ Γν
ν]λ] (137)

which after some algebra yields

UE := M3 R (138)

= Mµρ mλµ,ρ [M Mνλ
,ν − 1

2
M,ν Mνλ]− 1

2
M Mµν M,µν +

3

4
Mµν M,µ M,ν −

1

2
M M

µν
,ν M,µ

−Mµρ Mνλ Mστ Γνµσ Γτρλ
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which is manifestly a homogeneous polynomial of order eight. We refrain from computing
its low-order expression explicitly as they do not involve momenta and just denote them as

ω6 [UE
(0)(q

v
E, qh

E) + UE
(1)(q

v
E, qh

E, xE, XE) + UE
(2)(q

v
E, qh

E, xE, XE)] (139)

where all three terms are scalars of density weight zero with respect to S2.
We discuss the expansion to order two of the various other terms separately denoting

by [.](n) the homogeneous n-th order contribution of [.] and dropping terms of order three
or higher

[M2] [mµρ mνσ −
1

2
mµνmρσ] [W

µν Wρσ]

= ∑
r,s,n≥0,r+s+n≤2

[M2](r) [mµρ mνσ −
1

2
mµνmρσ](s) [W

µν Wρσ](n) (140)

We have

M(0) = qv
E (qh

E)
2 ω2 (141)

M(1) = [m33(1) (q
h
E)

2 + qv
E qh

E ΩAB mAB(1)] ω2

M(2) = [m33(1) qh
E ΩAB mAB(1) ++

1

2
m33(0) ηAC ηBD mAB(1) mCD(1) − qh

E ΩAB m3A(1) m3B(1)] ω2

and thus

[M2](0) = [M(0)]
2, [M2](1) = 2 [M(0)] [M(1)], [M

2](2) = [M(1)]
2 + 2 [M(0)] [M(2)], (142)

Likewise exactly

M33 = ω2 1

2
[2 (qh

E)
2 + 2 (qh

E) ΩAB mAB(1) + ηACηBD mAB(1) mCD(1)]

M3A = −ω2 [qh
E ΩAB m3B(1) + ηAC ηBD m3B(1) mCD(1)]

MAB = ω2 {ΩAB (qv
E) (q

h
E) + [ΩAB m33(1) (q

h
E) + +ηACηBD (qv

E) mCD(1)]

+ηACηBD [m33(1) mCD(1) − m3C(1) m3D(1)]} (143)

Next we have the exact result

W := mµν Wµν = m33W33 + 2 m3A W3A + mAB WAB

= [qv
E pv

E + qh
E pE

h ] ω + [m33(1) pv
E ω + qv

E W33
(1) ++qh

E ΩAB WAB
(1) ++

1

2
mAB(1) ΩAB pE

h ω]

+[m33(1) W33
(1) + 2 m3A(1) W3A

(1) + mAB(1) WAB
(1) ] =: W(0) + W(1) + W(2) (144)

and thus up to the second order

W2 = [W(0)]
2 + [2 W(0) W(1)] + [W2

(1) + 2 W(0) W(2)] (145)

Next, we have the exact expression

TE := mµρ mνσ Wµν Wρσ

= [m33 W33]2 + 4 [m33 W33] [m3A W3A] + 2 [m3A W3A]2

+2 m33 [mAB W3A W3B] + 2 W33 [WAB m3A m3B]

+4 m3A PAB mBC W3C + mAC mBD WAB WCD (146)

It follows to second order
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TE
(0) = ω2([qv

E pE
v ]

2 +
1

2
[qh

E pE
h ]

2) (147)

TE
(1) = ω [2 (qv

E pE
v ) (q

v
e W33

(1) + m33(1) pE
v ) + 2 ω ΩAB mAB(1) (pE

h )
2 + 2 ΩAB WAB

(1) (qh
EE)2]

TE
(2) = 2 ω(qv

E pE
v ) m33(1) W33

(1) + (qv
e W33

(1) + ω m33(1) pE
v )

2

+4 ω [qv
E pE

v ] [m3A(1) W3A
(1) ] + 2 [qv

E qh
E] ΩAB W3A

(1) W3B
(1) + 2 ω2 [pE

v pE
h ] ΩAB m3A(1) m3B(1)

+4 ω [qh
E pE

h ] m3A(1) W3C
(1)

+ω2 (pE
h )

2 mAC(1) mBD(1) ΩAB ΩCD + (qh
E)

2 ΩAC ΩBD WAB
(1) WCD

(1) + 4ω qh
E pE

h mAB(1) WAB
(1)

As far as the matter contributions are concerned we note that these are up to second
order (we consider for concreteness only the uncharged case, the charged case can be
treated analogously)

2 M2 TKG = M2 π2

= [ω2 [M2](0) (PKG)2] + 2 ω [M2](0) PKG π(1) + ω2 [M2](1) (PKG)2]

+[+ω2 [M2](2) (PKG)2 ++ω [M2](1) PKG π(1) + [M2](0) (π(1))
2]

2 UKG := Mµν ϕ,µ ϕ,ν = M33 (ϕ′)2 + 2 M3A ϕ′ (DAϕ) + MAB (DAϕ) (DBϕ)

= [M33
(0) (Q

′
KG)

2] + [M33
(1) (Q

′
KG)

2 + 2M33
(0) (Q

′
KG) (ϕ

′
(1))]

+[M33(2) (Q
′
KG)

2 + M33(0) (ϕ
′
(1))

2 ++2 M33(1) (Q
′
KG) (ϕ

′
(1)) + 2 M3A

(1) (Q
′
KG (DAϕ(1))

+MAB
(0) (DAϕ(1)) (DBϕ(1))]

M2 UKG = ∑
r+s≤2

[M2](r) A(s)

V(ϕ) = V(QKG) + V′(QKG) ϕ(1) +
1

2
V′′(QKG) (ϕ(1))

2

4 TM = mµν Eµ Eν

= m33 (E3)2 + 2 m3A E3 EA + mAB EA EB

= [qv
E (PM

h )2] + [m33(1) (PM
h )2 + 2 (qv

E) (Ph
M) (E3

(1))]

+[m33(0) (E3
(1))

2 + 2 m33(1) (PM
h ) E3

(1) + 2m3A(1) (PM
h ) EA

(1) + (qh
E) ΩAB EA

(0) EB
(1)]

4 UM = mµν Bµ Bν

= qv
E (B3

(1))
2 + qh

E ΩAB BA
(1) BB

(1) (148)

It remains to compute zeroth, first and second order of Ṽ0 := [det m]5/2 V0 where for
the purposes of this paper it will be sufficient to consider

Cv :=< 1, Ṽ0/ω6
>L2

= Cv(0) + Cv(2) + . . . , Zv,l,m :=< Ll,m, ṽ0/ω6
>L2

= Zv,l,m(1) + . . . (149)

because we wish to compute the reduced Hamiltonian only up to second order for which
the solution of Ca to second order and of Zj to first order is required. Accordingly,

Cv(0) = CE
v(0) + CKG

v(0) + CM
v(0)

Cv(2) = CE
v(2) + CKG

v(2) + CM
v(2)

Zv,l,m(1) = ZE
v,l,m(1) + CKG

v,l,m(1) + CM
v,l,m(1) (150)

and we find to zeroth order
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CE
v(0) ω6 = [M2](0) [T

E
(0) −

1

2
[W2](0)]− UE

(0)

= ω6 [qE
v (qh

E)
2]2 {[qv

E pE
v ]

2 +
1

2
[qh

E pE
h ]

2)− 1

2
[qv

E pv
E + qh

E pE
h ]

2} − ω6 UE
(0)

2 CKG
v(0) ω6 = [M2](0) [π

2](0) + [M2](0) UKG
(0) + 2 [M3](0) V(0)

= ω6 [qE
v (qh

E)
2]2 {(PKG)2 + (qh

E)
2 (Q′

KG)
2 + 2[qE

v (qh
E)

2] V(QKG)}
4CM

v(0) ω6 = [M2](0) TM
(0) = ω6 [qE

v (qh
E)

2]2 qv
E (PM

h )2 (151)

The higher orders will be worked out in our companion papers.

6. Perturbative Construction of the Reduced Hamiltonian

We first provide the general strategy and then display the details for the zeroth, first
and second order.

6.1. Overview

We follow the general procedure of [61]: Adapted to the present situation, it consists
the following steps:

1. We denote by (.)(n) the homogenous n-th order contribution of (.) with respect to an
expansion into the perturbations (which are considered of first order):

a. xα,l,m
E , yE

α,l,m; α = v, h, e, o; l ≥ 1

b. Xα,l,m
E , YE

α,l,m; α = e, o; l ≥ 2

c. Xl,m
KG, YKG

l,m ; l ≥ 1

d. Xα,l,m
M , YM

α,l,m; α = e, o; l ≥ 1.

2. Suppose that one solves the constraints Cv, Ch, Zα,l,m; α = v, h, e, o exactly for pE
v , pE

h ,

yE
α,lm, then that solution p̂E

v , p̂E
h , ŷE

α,lm can itself be expanded into the contributions b.-d.

above. We write those expansions as p̂E
α = pE

α (0) + pE
α (2) + pE

α (3) + . . . ; α = v, h and
ŷE

α,l,m = yE
α,l,m(1) + yE

α,l,m(2) + . . . ; α = v, h, e, o, respectively, where (.)(n) means the
homogeneous n-th order contribution of (.) with respect to X, Y in b.-d.

3. Expand the constraints Cv, Ch, Zα,l,m first with respect to all variables a.-d. for general

pE
α , yE

α,l,m and then in addition with respect to the decomposition of the solution

pE
α = p̂E

α , yE
α,l,m = ŷE

α,l,m. Denote the n-th order homogeneous contribution with
respect to that combined expansion by Cα(n), Zα,l,m(n) where by construction Cα(1) =
Zα,l,m(0) = 0 due to spherical symmetry.

4. Solve the symmetric, zeroth order constraints Cv(0) = 0, Ch(0) = 0 exactly for

pE
v (0), pE

h (0). The symmetric, first order constraints Cv(1) ≡ 0, Ch(1) ≡ 0 are equivalent

to the statement that pE
v (1) = pE

h (1) = 0.
5. Solve the unsymmetric first order constraints Zα,l,m(1) = 0, α = v, h, e, o; l ≥ 1, |m| ≤ l

for yE
α,l,m(1) at pE

v = pv(0), pE
h = pE

h (0).

6. Proceeding iteratively, by construction [61], for n ≥ 2 the constraint contribution Cα(n)

depends linearly on the pE
β(n) and polynomially on the pE

β(k), yE
β,l,m(k) k ≤ n − 1

while the constraint contribution Zα,l,m(n) depends linearly on the yE
β,l′ ,m′(n) and

polynomially on the pE
β(k), yE

β,l′ ,m′(k) k ≤ n − 1. Therefore, one can successively solve

Cα(n) for pE
β(n) and Zα,l,m(n) for yE

β,l′ ,m′(n).

7. In this way, one perturbatively determines the Abelianised form of the constraints
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Ĉα = pE
α + hα, hα = −

∞

∑
1 ̸=n=0

pE
α (n), α = v, h

Ẑα,l,m = yE
α,l,m + hα,l,m, hα,l,m = −

∞

∑
n=1

yE
α,l,m(n), α = v, h, e, o (152)

8. For the reduced Hamiltonian we are supposed to evaluate (152) in the

GPG qv = q33 = 1, qh = ΩABqAB/2 = r2, qA = q3A = 0. Therefore, we may solve
(152) already with GPG installed.

9. The reduced Hamiltonian is then given for each asymptotic end by (113) (we drop
constant pre-factors)

Hred = lim
r→∞

1

r
[hv(r)

2 + ∑
l>0, |m|≤l

hv,l,m(r)
2] (153)

which follows from P3 = pv + ∑l,m yv,l,m Ll,m. Using the expansion of hv, hv,l,m into
the pv(n), yv,l,m(n) one can compute Hred to any desired order of accuracy. The decay
condition on the yE

α stated in Section 4 in fact implies that the hv,l,m contributions in
(153) vanish as r → ∞.

6.2. Zeroth Order

At zeroth order, we just need to solve the zeroth order of the symmetric parts of the
constraints for the zeroth orders pE

h (0), pE
v (0) which are (we drop the label “0” for pE

h , pE
v

and evaluate at GPG)

Ch(0) = −2(q33(0)P
33)′ − P33 q′33(0) + q′AB(0) PAB + π0) ϕ′

(0)

= −2(pE
v qv

E)
′ − pE

v (qv
E)

′ + ph)E (qh
E)

′ + PKG Q′
KG

= −2(pE
v )

′ + 2r ph
E + PKG Q′

KG

Cv(0) =
1

√

det(q)(0)
[(q33(0) P33)2 + qAC(0)qBD(0) PAB PCD − 1

2
(q33(0)P

33 + qAB(0)P
AB)2]

√

det(q)(0) R[q](0)

+
1

2
[

π2
(0)

√

det(q)(0)
+

√

det(q)(0) (q
33
(0) (ϕ

′
(0))

2 + 2 V(ϕ(0))] +
1

2

√

det(q)(0) q33(0) (E3
(0))

2

=
1

√

qv
E(q

h
E)

2
[(qv

E pv
E)

2 +
1

2
(qh

E)
2 (pE

h )
2 − 1

2
(qv

E pE
v + qh

E pE
h )

2]
√

det(q)(0) R[q](0)

+
1

2
[

(PKG)2

√

qv
E (qh

E)
2
+

√

qv
E (qh

E)
2 (qE

v (Q′
KG)

2 + 2 V(QKG)] +
1

2
√

qv
E (qh

E)
2

qv
E (PM)2

=
1

r2
[(pv

E)
2 +

1

2
r4 (pE

h )
2 − 1

2
(pE

v + r2 pE
h )

2]

+
1

2
[
(PKG)2

r2
+ r2 (qE

v (Q′
KG)

2 + 2 V(QKG)] +
1

2 r2
(PM)2

=
1

2 r2
[(pv

E)
2 − 2 r2 pE

h pE
v ]

+
1

2
[
(PKG)2

r2
+ r2 (Q′

KG)
2 + 2 V(QKG)] +

1

2 r2
(PM)2 (154)

We solve Ch(0) for pE
h

pE
h =

1

r2
[2 (pE

v )
′ − IKG]; IKG

(0) := PKG Q′
KG (155)
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and insert this into Cv(0)

Cv(0) =
1

2 r2
[(pv

E)
2 − 2 r2 pE

v [2 (pE
v )

′ − IKG
(0) ])

+
1

2 r2
[(PKG)2 + r4 (Q′

KG)
2 + 2 V(QKG)] +

1

2 r2
(PM)2

=
1

2 r2
[{(pv

E)
2 − 2 r2 [(pE

v )
2]′}+ pE

v IKG
(0) ]

+
1

2 r2
{(PKG)2 + r4 (Q′

KG)
2 + 2 V(QKG) + (PM)2}

=: −1

2
[
(pE

v )
2

r
]′ + pE

v IKG
(0) + EKG

(0) + EM
(0) (156)

where IKG
(0)

is the symmetric part of the Klein–Gordon momentum density and EKG
(0)

, EM
(0)

the symmetric part of the Klein–Gordon and Maxwell energy density, respectively.
The equation Cv(0) = 0 is solvable in closed form if there is no scalar “hair” (exploiting

that PM is a spatial constant)

(pE
v )

2

2r
= M̂ − (PM)2

r
(157)

where M̂ is the mass of the black hole and
√

2 PM its electric charge. Indeed in GPG one can
easily check that the information about mass and charge resides in the extrinsic curvature
part of the initial data.

In the presence of scalar hair, we solve (156) by the Picard–Lindelöf method. Let us
introduce the abbreviations

z :=
pE

v√
r

, a := IKG
(0)

√
r, b := EKG

(0) + EM
(0) (158)

to cast (156) into the ODE

z′ = a +
b

z
(159)

or equivalently into the integral equation

z(r) = z0 +
∫ r

r0

ds [a(s) +
b(s)

z(s)
] (160)

(with z(r0) = z0 an integration constant) which can be iterated. To solve that iteration we
expand (essentially an inverse square root of core mass M̂ expansion)

z(r) = z0 +
∞

∑
N=0

CN(r) z−N
0 (161)

and compare coefficients. Introducing the abbreviations

A(r) :=
∫ r

r0

ds a(s), B(r) :=
∫ r

r0

ds b(s) (162)

one finds by expanding the geometric sums

z(r) = A(r) +
B(r)

z0
+

1

z0

∞

∑
M=1

(−1)M
∞

∑
n1,... ,nM=1

z
−[n1+...+nM ]
0

∫ r

r0

ds b(s)
M

∏
k=1

Cnk−1(s) (163)

i.e., for N ≥ 2
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C0 = A, C1 = B, CN =
∞

∑
M=1

(−1)M
∞

∑
n1,... ,nM=1

δN−1,n1+...+nM
ζn1,... ,nM

ζn1,... ,nM
=

∫ r

r0

ds b(s)
M

∏
k=1

Cnk−1(s) (164)

where ζn1,... ,nM
is completely symmetric.

The hierarchy can be solved iteratively: For each N we have M ≤ N − 1 since nk ≥ 1,
hence at most finitely many terms survive in (165). At the same time, even for M = 1 we
have n1 = N − 1 and thus at most CN−2 appears on the right-hand side of (165). The first
few terms are

C2 = − ζ1 = −
∫ r

r0

ds b(s) A(s)

C3 = − ζ2 + ζ1,1 =
∫ r

r0

ds b(s) [A(s)2 − B(s)]

C4 = −ζ3 + 2 ζ1,2 − ζ1,1,1 =
∫ r

r0

ds b(s) [−C2(s) + 2 A(s) B(s)− A(s)3] (165)

We see that the coefficients Cn are polynomials in PKG, QKG, PM which appear in nested
integrals with respect to the radial coordinate. Note, that for a discharged black hole z0

is simply
√

M̂ which is a constant of motion when the metric does not depend on the
momentum conjugate to M̂. This means that for large M̂ the inverse core mass expansion
remains a good approximation also during time evolution as one expects the perturbation
contributions to the nested energy integrals to be much smaller than M̂.

6.3. First Order

We now consider pE
v (0), pE

h (0) to be explicitly known via (158), (160) and (163) and
insert these as well as pE

v (1) := 0, pE
h (1) := 0 into the first-order expansions Zα,l,m(1);

α = v, h, e, o. Dropping the labels (0) and (1) for pE
α (0), yE

α,lm,(1) we find in the GPG with
α = e, o

Zh,l,m(1) = −(2(qv
E yE

v,l,m)
′ + (qv

E)
′ yE

v,l,m) +
√

2 (qh
E)

′ yE
h,l,m +

√

l(l + 1) qv
E yE

e,l,m + ZR
h,l,m(1)

= −2(yE
v,l,m)

′ + 2 r
√

2 yE
h,l,m +

√

l(l + 1) yE
e,l,m + ZR

h,l,m(1)

Zα,l,m(1) = −(qh
E yE

α,l,m)
′ +

√

2l(l + 1) qh
E δe

α yE
h,l,m + ZR

α,l,m(1)

= −(r2 yE
α,l,m)

′ +
√

2l(l + 1) r2 δe
α yE

h,l,m + ZR
α,l,m(1)

Zv,l,m(1) = [qv
Eqh

E]
2 {2(qv

E)
2 pE

v yE
v,l,m +

1√
2
(qh

E)
2 pE

h yE
h,l,m

+(qv
E pE

v + qh
E pE

h ) + (qv
E yE

v,l,m +
1√
2

qh
E yE

h,l,m)}+ ZR
v,l,m(1)

= r8 {{2pE
v yE

v,l,m +
1√
2

r4 pE
h yE

h,l,m

−(pE
v + r2 pE

h ) + (yE
v,l,m +

r2

√
2

yE
h,l,m)}+ ZR

v,l,m(1) (166)

Here, the remainder ZR
α,l,m(1) depends on qv

E, qh
E polynomially, on pE

v (0), pE
h (0) quadratically,

on PKG, QKG, PM quadratically, on xα,l,m
E ; α = v, h, e, o linearly (but is set to zero in GPG),

on YE
α,l,m, Xα,l,m

E ; α = e, o; l ≥ 2 linearly and on YM
α,l,m, Xα,l,m

m ; α = e, o; l ≥ 1 linearly.
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The system (166) does not contain derivatives of yE
h,l,m and yE

o,l,m decouples from the
system. We can, therefore, directly integrate

r2 yE
o,l,m = YE

o,l,m +
∫ r

0
ds ZR

α,l,m(1)(s) (167)

and solve Zv,l,m(1) = 0 algebraically for yE
h,l,m

r2

√
2

pE
h yE

h,l,m = (pE
v − r2 pE

h ) yE
v,l,m +

ZR
v,l,m(1)

r8
(168)

When inserted into the equations Zh,l,m(1) = Ze,l,m(1) = 0 we can cast the remaining system
of ODE’s into the form

[

yE
v,l,m

yE
e,l,m

]′
=

[

a b
c d

]

·
[

yE
v,l,m

yE
e,l,m

]

−
[

ZR
v,l,m(1)

ZR
e,l,m(1)

]

(169)

for certain known functions a, b, c, d that one can find from (166). The inhomogeneous
linear system (169) which we write as z′ = A · z + B is easily integrated in terms of the
holonomy of the matrix valued function A

Hol(r) = P(e
∫ r

0 ds A(s)) (170)

where the path ordering symbol P orders the radial dependence of polynomials of A(r)
with the highst radius to the left. Then,

z(r) = Hol(r) [z̃0 +
∫ r

0
ds Hol−1(s) B(s)] z̃0 =

[

YE
v,l,m

YE
e,l,m

]

(171)

Here, YE
α,l,m, α = v, e, o are integration constants. One may be worried that solving (168)

introduces inverse powers of ph
E and thus pv

E. However, these inverse powers can again be
expanded in terms of powers of the inverse core mass times polynomials in QKG, PKG, PM. We
will show in our companion papers that these differential equations can be solved explicitly.

6.4. Second Order

We now consider yα,l,m(1) to be explicitly known via (167), (168), (171) and insert the
expansion pE

α = pα(0) + pE
α (2); α = e, o and yE

α,l,m = yE
α,l,m(1) + yE

α,l,m(2) into Cα(2) = 0 and

Zα,l,m(2) = 0. In fact, since we just need to second-order pE
v =< 1, P33 >= pE

v (0) + pE
v (2)

and thus [pE
v ]

2 = [pE
v (0)]

2 + 2 p − vE(0) pE
v (2) it is sufficient to compute the linear order

yα,l,m(1) and insert it into Cv(2), Ch(2) which already allows to extract pE
v (2). We find in

the GPG

Ch(2) = −2 (pE
v (2) qv

E)
′ − pE

v (2)(q
v
E)

′ + pE
h (2) (q

h
E)

′ + C̃h(2)

= −2 (pE
v (2) qv

E)
′ + 2 r pE

h (2) + C̃h(2)

Cv(2) = [qv
E(q

h
E)

2]2 [(qv
E pE

v (0)) (
1

2
qv

E pE
v (2)− qh

E ph
E(2)) + qv

E pE
v (2)) (

1

2
qv

E pE
v (0)− qh

E ph
E(0))] + C̃v(2)

= r8 [pE
v (2)(pE

v (0)− r2 pE
h (0))− r2 pE

h (2) pE
v (0)] + C̃v(2) (172)

Here, C̃v(2), C̃h(2) depend quadratically on yE
α,l,m(1), xα,l,m

E ; α = v, h, e, o, on YE
α,l,m, Xα,l,m

E ;

α = e, o, on YKG, XKG, on YM
α,l,m, Xα,l,m

M ; α = e, o, on QKG, PKG, PM and polynomially on

qα
E, α = v, h, e, o but we assume their gauge fixed values and set xα,l,m

E = 0. Similar to the
zeroth order we solve the first equation in (172) algebraically for ph(2) and insert into the

second. The result is a single linear inhomogeneous ODE for pE
v (2) which can be solved
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by standard methods. One has to divide by pE
v (0) in an intermediate step which upon an

inverse mass expansion can be written again in terms of just polynomial fields to arbitrary
precision. The details are contained in our companion papers [67–69].

7. Perturbative Structure of the Irreducible Mass

In this section, we show that the same perturbative scheme that one applies to the
reduced Hamiltonian can be employed in order to compute the irreducible mass perturba-
tively whose dynamics we consider as a measure for mass loss due to Hawking radiation as
we argued in Section 3. In the first subsection, we recall some of the notions associated with
horizons and the irreducible mass, see [17] and references therein for the rather extensive
literature on the subject. In the second we compute the irreducible mass perturbatively.
This is based partly on [79] but here we conduct this directly in the Hamiltonian framework.

7.1. Horizons, Expansions and Irreducible Mass

We begin with some elementary definitions.
Consider a globally hyperbolic spacetime (M, g) and a Cauchy surface Σ in it. Let n

be the future-oriented timelike unit normal of Σ. Let S ⊂ Σ be a closed, oriented 2-surface
in Σ without boundary ∂S = ∅ and s be the spacelike unit normal of S pointing outward
from S and tangential to Σ. Hence, g(n, s) = 0 at S. We note that if we are just given
Σ, S, then n, s are known only at Σ, S, respectively, and thus the covariant derivatives of
n, s with respect to ∇, the torsion-free covariant differential compatible with g, are only
computable in directions tangential to Σ, S, respectively. The tensor q = g + n ⊗ n on Σ has
the property q(n, u) = 0 for every tangent vector u of Σ and the tensor h = q − s ⊗ s on S
has the property h(n, v) = h(s, v) = 0 for every tangent vector v of S.

On S we can define the future (from Σ) and outward, respectively, inward (from
S) oriented null vectors l+ = n + s, l− = n − s. We can now construct the affinely
parametrized null geodesics starting from S with initial tangent l±, respectively. This
defines two null geodesic congruences C±

S and thus three-manifolds in M. Such a geodesic

carries parameters s, yA, A = 1, 2 where s is the affine parameter and y are coordinates on S.
Thus, C±

S is an embedded three-manifold with local coordinates (s, y) 7→ c±y (s) where c±y (s)
is the geodesic with initial data c±y (0) = Y(y), ċ±y (0) = l±(Y(y)) and Y : U ⊂ R2 → S

is an embedding of S. The tangential vectors to C±
S are ∂±A =

∂c
µ
y (s)

∂yA ∂µ =: e
µ
A±∂µ and

∂±s =
∂c

µ
y (s)

∂yA ∂µ =: l±. Note, that by definition ∇l± l± = 0 by definition of an affinely

parametrized geodesic, i.e., l± at C±
S is just the parallel transport of the initial l± at S.

Since these vector fields are known on all of C±
S we can take covariant derivatives of

those in directions of C±
S . Thus, we have access to ∇uv on C±

S where u, v are in the span
of eA±, l±. We note that ∇l± g(l±, l±) = 2g(l±,∇l± l±) = 0 i.e., the quantity g(l±, l±) is
constant along every geodesic and since it is zero initially it follows g(l±, l±) = 0 on all of
C±

S . Then

∇l± g(eA,±, l±) = g(∇l± eA±, l±) = g(∇eA± l±, l±) =
1

2
∇eA± g(l±, l±) = 0 (173)

as [∂±A , ∂±s ] = 0. Thus, also g(eA,±, l±) is constant along every geodesic and since it van-
ishes initially (eA,± is tangential to S initially and l± is normal to S initially) whe have
g(eA±, l±) = 0 everywhere on C±

S .
The vectors eA± are geodesic deviation vectors, i.e., they carry information about the

deviation of nearby geodesics as we move infinitesimally in the direction of yA within
the congruence. The vector ∇l± eA± = ∇eA± l± thus contains the information on how the
deviation vectors expand, shear and rotate along the “fluid” with fluid tangent l±. It has
no components in the direction of l± by (173) hence the full information about the geodesic
deviation is contained in the quantity

κ±AB := g(eA±,∇eB± l±) (174)
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We also define on C±
S the objects

h±AB := g(eA±, eB,±), hAC
± h±CB = δA

B (175)

Then
θ± := hAB

± κ±AB, σ±
AB := κ±

(AB)
, ω±

AB := κ±
[AB]

, (176)

are, respectively, called expansion, shear and rotation of the congruence (rotation vanishes
because l± is also normal to C±

S and l± is explicitly hypersurface orthogonal with C±
S as the

integral manifold so ∇[µl±ν] = α[µ l±ν] by the Frobenius theorem). Using the definition of
the Riemann tensor one can compute ∇l±θ± which leads to Raychaudhuri’s equation [14].

We note that θ± evaluated at S only requires information available at S, i.e., we need
not know anything about the actual geodesic congruence C±

S away from S. Nevertheless
the above theory is useful as it equips us with a geometric interpretation of θ± familiar
from hydrodynamics: If θ± > 0/ < 0 then a volume element that flows with the fluid (here:
a light ray) starting from S expands/contracts along the flow lines. In flat space always
θ+ > 0, θ− < 0 for a sphere S (light leaves the sphere outwards/inwards). In a general
spacetime one can have both θ−, θ+ ≤ 0.

Definition 1. Consider a globally hyperbolic spacetime (M, g) and a Cauchy surface Σ in it.

i. A closed, orientable 2-surface in Σ S ⊂ Σ without boundary ∂ΣS = ∅ is called trapped if
θ+ = 0.

ii. A trapped region in Σ is a closed subset T ⊂ Σ such that S := ∂ΣT is trapped.
iii. The trapped surface in Σ defined by the total trapped region (closure of union of all trapped

regions) is called the apparent horizon AΣ of Σ.

Definition 2. Consider a globally hyperbolic spacetime (M, g) and a foliation F = ∪τ∈R Στ of
M by Cauchy surfaces Στ .

i. If τ 7→ Sτ ⊂ Στ is a one-parameter family of trapped surfaces then S := ∪τSτ is called a
trapping horizon.

ii. Let Aτ := AΣτ be the apparent horizon of Στ . Then, AF := ∪τ Aτ is called the apparent
horizon of F .

If M is asymptotically flat then by definition it has a conformal completion M̂ which,
in particular, is equipped with future null infinity S+. The manifold M is embedded into
M̂ via some φ : M → M̂ and B := φ−1(φ(M) ∩ [M̂ − J−(S+)]) is called the black hole
region. Its boundary H := ∂MB is called the event horizon of M. If Σ is a Cauchy surface
then HΣ := H∩ Σ is called the event horizon of Σ. Given a foliation F with corresponding
Cauchy leaves Στ , the classical black hole area theorem states that for all τ1 ≤ τ2 we
have Ar[HΣτ1

] ≤ Ar[HΣτ2
] when the Einstein equations and suitable matter conditions

(inequalities for the energy momentum tensor) hold. One also shows that every trapped
region lies in B, and therefore, every trapped surface in any Σ, in particular, the apparent
horizon in Σ, lies in B. This means that with respect to a foliation, while the area of the
event horizon can only grow within classical GR, the area of the apparent horizon can both
shrink (e.g., radiation emission) and grow (e.g., radiation absorption).

Definition 3. A (part of a) trapping horizon S is called a dynamical horizon, trapped tube or
isolated horizon, respectively, if S is a spacelike, timelike and null three-manifold, respectively.

The advantage of the various notions of trapping and apparent horizons over the
event horizon is that they are by construction local in nature both spatially and temporally
while the event horizon is a so-called “teleological” construct requiring us to know the
entire future development of a spacetime which is neither practical nor operational: after
all an astronomer detects a black hole as the limited region of space from which no light can
escape and within her limited lifetime. Furthermore, an astronomer will measure the time
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development of that region with respect to a certain notion of time, i.e., a certain foliation.
This makes the apparent horizon the ideal and physically motivated notion of a black hole.
It is often objected that an apparent horizon is foliation-dependent while the event horizon
is an absolute notion; however, when viewed as a necessary part of the definition of an
observer, the foliation dependence is actually physically well-motivated.

Definition 4. Given a foliation F of a globally hyperbolic (M, g) by Cauchy surfaces Στ the
irreducible mass at time τ is defined as

[Mirr(τ)]
2 := Ar[Aτ ] (177)

i.e., the square root of the apparent horizon.

We slightly abuse here the terminology as the irreducible mass squared is usually
defined as the area of the event horizon rather than the apparent horizon.

We now have to provide a concrete formula for θ+(τ) and Mirr(τ). Given a foliation
F we introduce ADM coordinates τ, xa; a = 1, 2, 3. We restrict attention to trapped
surfaces of spherical topology and thus have embeddings Yτ : S2 → στ ⊂ σ, y 7→ Yτ(y)
and Eτ : S2 → Sτ ⊂ M = R× σ; y 7→ (τ, Yτ(y)). The future oriented timelike unit
normal to Στ has components nτ = 1

N , na = −Na

N where the usual metric components are

gττ = −N2 + qabNaNb, gτa = qabNb, gab = qab with a, b, c = 1, 2, 3. The vectors TA := ∂E
∂yA

are tangential to Sτ , therefore, (in this section µ, ν, . . . = 0, 1, 2, 3 while a, b, c, . . . = 1, 2, 3)

s̃µ := −1

2
ϵµνρσnν Tν

A Tν
B ϵAB (178)

is co-normal to and outgoing fom Sτ and normal to n. Therefore, up to normalization s̃µ =
gµν s̃ν is the spacelike unit normal to Sτ . Explicitly with ϵτabc = ϵabc and Y(τ, y) := Yτ(y)
and not displaying the τ dependence

s̃a =
1

N
ŝa, s̃τ =

1

N
ŝτ , ŝa :=

1

2
ϵabc ϵABYb

,AYc
,B, ŝτ := Na ŝa (179)

Thus,

ŝτ =
1

N2
[−ŝτ + Na ŝa] = 0, ŝa =

1

N2
[Na ŝτ − NaNb ŝb] + qab ŝb = qab ŝb (180)

It follows g(ŝ, ŝ) = qab ŝa ŝb = qab ŝa ŝb thus

sa =
ŝa

√

qcd ŝc ŝd

, sτ = Na ŝa (181)

is the properly normalized ouward oriented outgoing spacelike unit co-normal from Sτ . It
follows for the corresponding outgoing future oriented null normal l := l+

lτ = nτ =
1

N
, la = na + sa = −Na

N
+ qab sb (182)

Next, the pull-back metric on S2 is given by (recall h = g + n ⊗ n − s ⊗ s)

hAB(τ; y) := [Y∗
τ g]AB(y) = Y

µ
τ,A Yν

τ,B gµν(Yτ(y)) (183)

and thus

Ar[Aτ ] =
∫

S2
d2y

√

det(h(τ; y)) (184)

Note the identity
hµν = gµν + nµnν − sµsν = hABY

µ
,AYν

,B (185)
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as one can quickly show by contacting with the co-basis nµ, sµ, gµνYν
,A. Thus, by definition

θ± = hµν ∇µl±ν = hAB Y
µ
,A Yν

,B[∇µl±ν]

= hAB Y
µ
,A Yν

,B[(∇µnν)± (∇µsν)]

= hAB [Y
µ
,A Yν

,BKµν ± Y
µ
,A Yν

,B (Dµsν)] (186)

where we have used the spatial–spatial projection of ∇µnν is the extrinsic curvature Kµν

of Στ and D is the torsion-free covariant derivative compatible with q = g + n ⊗ n acting
on spatial tensors (i.e., whose contraction of any index vanishes). Now, nτ = gτµnµ =

−N, na = gaµnµ = 0 and thus nµY
µ
,a = −NYτ

,A = 0 compatible with Yτ = τ. It follows

θ± = hAB [Ya
,A Yb

,BKab ± Ya
,A Yb

,B (∇s)ab] (187)

By working out these expressions explicitly in ADM coordinates and using (180) and (181)
one finds

Kab =
1

2N
[∂τqab − [LN⃗q]ab], [∇s]ab = [Ds]ab = ∂asb − Γc

ab(q)sc (188)

where Γ(q) is constructed from qab, qab, qacqcb = δa
b . Thus,

θ± = hAB [Ya
,A Yb

,BKab ∓ Ya
,A sb Da Yb

,B] (189)

where we exploited Ya
,Asa = 0. Next, one verifies that

hABYa
,AYb

,B = qab − sasb (190)

by checking with the co-basis sa, qabYb
,A. Therefore,

hABYa
,AYb

,BKab = [qab − sasb] Kab = −sc sd [qacqbd − qabqcd] Kab = −sasb
pab

√

det(q)
(191)

where we used normalization qabsasb = 1 and the definition of the ADm momentum pab

conjugate to qab. Accordingly the final formula reads

θ± = −sasb
Pab

√

det(q)
∓ Ya

,A sb Da Yb
,B (192)

which expresses the expansion explicitly in terms of ADM data (q, p) and the embedding
function Y with sa = sa(Y, q) via (180), (181) considered as also defined by these.

The time derivative of Ar[Sτ ] is given by

d

dτ
Ar[Aτ ] =

1

2

∫

S2
d2y

√

det(h(τ; y)) hAB [
d

dτ
hAB] (193)

and with the vector fields ξ(Yτ(y));=
∂Y(τ,y)

∂τ , TA(Yτ(y));=
∂Y(τ,y)

∂yA tangential to the appar-

ent horizon AF

[
d

dτ
hAB] = ξµ ∂µg(TA, TB) ◦ Y = 2ξµ g(T(A,∇µTB)) = 2 g(Y(A,∇ξ TB)) = 2 g(T(A,∇TB)

ξ) (194)

whence
d

dτ
Ar[Aτ ] =

∫

S2
d2y

√

det(h(τ; y)) θξ , θξ = hAB Y
µ
,AYν

,B[∇µξν] (195)

This would vanish for Y the embedding of the apparent horizon if we had ξ ∝ l+ but
generically it is not because ξ is generically not even null.
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The extreme cases are that ξ ∝ n, s, l+ which means that the apparent horizon is a
timelike, spacelike or null surface (trapped tube, dynamical horizon, isolated horizon). Now
θ± = θn ± θs and if θ− < 0 as one usually assumes, from θ+ = 0 we obtain θs = −θn > 0.
Then, either θξ ∝ θn < 0, θξ ∝ θs > 0 or θξ ∝ θl+ = 0.

7.2. Constructing the Apparent Horizon in GPG

To construct the apparent horizon in GPG we proceed as in [79] and assume that it has
spherical topology. Then, the embedding function takes the explicit form

Yτ(τ, y) = τ, Y3(τ, y) = ρ(τ, y), YA(τ, y) = yA (196)

The function ρ is called the radial profile. Then,

ŝa =
1

2
ϵabcϵBCYb

,BYc
,C =

{

−ρ,A a = A = 1, 2
1 a = 3

(197)

Hence, ŝ3 > 0 correctly implements outward orientation. The normalized components are

sa = f ŝa, f =
1

√

qab ŝa ŝb

=
1

√

1 + qABρ,Aρ,B

, (198)

where we used the GPG q33 = q33 = 1, q3A = q3A = 0, qAB = r2ΩAB +XAB, qACqCB = δA
B .

Thus, sa is determined entirely by ρ. The profile function ρ must then solve the trapping equa-
tion

−θ+ =
Pab

√

det(q)
sasb + hABsa DY,A

Ya
,B = 0 (199)

where

hAB = qabYa
,AYb

,B = ρ,A ρ,B + qAB, det(h)hAB = ϵACϵBDhCD, = ρAρB + det(q)qAB, ρA = ϵAB ρ,B

det(h) =
1

2
ϵACϵBDhABhCD = det(q) f−2 (200)

and P33 = P3, P3A = 1
2 PA, PAB = 1

2 P0ΩAB + YAB where P3, PA, P0 are themselves func-
tions of XAB, YAB and the physical matter fields upon solving the constraints. Then, the
trapping condition reads

−θ+ =
pab

√

det(q)
sasb + hABsa [Y

a
,AB + Γa

bc(q)Y
b
,AYc

,B] = 0 (201)

where Ya
,AB = δa

3ρ,AB. It is a non-linear second order PDE for the profile function on
the sphere.

To solve it exactly for general X, Y is too complicated. However, since also pab is
only known perturbatively, it is well motivated to compute the profile function also only
perturbatively. Thus, we consider

ρ = ∑
n=0

ρn (202)

where ρn is a monomial in X, Y and matter perturbations of order n. Then, one inserts (202)
into (201) and expands all p, q, s, Y,A in terms of the perturbations XAB, YAB, etc., extracts
the terms of order n and aims for a hierarchy of equations that one can iteratively solve in
closed-form.

We begin with the zeroth order and consider all X, Y dependence vanishing. Thus,
(R = 2M, κ = 1/2)
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qab = δ3
a δ3

b + r2 ΩAB δA
a δB

b

Pab

ω
= 2

√
R rδa

3δb
3 +

1

2

√

R/r3 ΩAB δa
Aδb

B

sa = f ŝa, ŝa = δ3
a − ρ,AδA

a , f = [1 + r−2ΩABρ,Aρ,B]
−1/2

hAB = ρ,Aρ,B + r2ΩAB, det(h) = r4 ω2 f 2, det(h) hAB = ρAρB + r2ω2ΩAB, ρA = ϵAB ρ,A (203)

The Christoffel symbols in the GPG at X = 0 were already computed in Section 4

Γ3
33 = Γ3

3A = ΓA
33 = 0, ΓA

B3 =
1

r
δA

B , Γ3
AB = −rΩAB, ΓA

BC = ΓA
BC(Ω) (204)

Then

hAB sc [Y
c
,AB + Γc

abYa
,AYb

,B] = f hAB [ρ,AB + Γ3
abYa

,AYb
,B − ρ,C ΓC

abYa
,AYb

,B]

= f hAB [ρ,AB + Γ3
CDYC

,AYD
,B − ρ,C (2ΓC

3DY3
,(AYD

,B) + ΓC
DEYD

,AYE
,B)]

= f hAB [ρ,AB + Γ3
AB − ρ,C (2ΓC

3(A ρ,B) + ΓC
AB)]

Pabsasb = ω f 2 [2(Rr)1/2 +
1

4
(R/r3)1/2 ΩAB ρ,A ρ,B] (205)

We make the Ansatz ρ = ρ0 = const. then f = 1, hAB = qAB = r2ΩAB, sa = δ3
a and

−θ+ = [
P33

√

det(q)
+ qABΓ3

AB]r=ρ0 =
2

r2
[
√

Rr − r]r=ρ0 = 0 (206)

has a unique solution
ρ0 = R (207)

as expected.
We will assume inductively that ρ0, ρ1, . . . , ρn−1, n ≥ 1 have been already computed.

We write the unperturbed trapping equation in the form (recall det(q) = ω2r4 + det(X)
and all quantities are evaluated at r = ρ)

0 = [P33 − 2P3Aρ,A + PABρ,Aρ,B] [1 + qAB ρ,A ρ,B]
1/2 [ρ2ω] [1 +

det(X)

ρ4ω2
]1/2

+[ρAρB + det(q)qAB] [ρ,AB + Γ3
AB − ρ,C(Γ

C
AB + 2ΓC

3(Aρ,B))] (208)

To capture the full n-th order dependence of this expression, all quantities that depend
on ρ need to be Taylor expanded up to the n-th order in ∆ = ρ − ρ0 around ρ = ρ0 = R,
for example, P33(ρ) = P33(ρ0) + P33′(ρ0) ∆ + 1

2 P33′′(ρ0) ∆2 + . . . and the second order
contribution in ∆2 is given by ρ2

1 + 2ρ0ρ2, etc.
Let us denote the four factors in the first term of (208) by A, B, C, D from left to right

and the two factors in the second term of (208) by E, F from left to right. We isolate all terms
of order n by expanding each factor to order n. In the resulting sum of terms, which is now
a monomial of order n, we want to isolate all terms that contain ρn. These are contained in
the following contribution

AnB0C0D0 + A0BnC0D0 + A0B0CnD0 + A0B0C0Dn + EnF0 + E0Fn (209)

where An, A0 is the n-th and 0-th order contribution, respectively, of A, etc. We now
consider the individual terms An, . . . , Fn and isolate the terms that contain ρn:

A = P33 − 2P3Aρ,A + PABρ,Aρ,B (210)



Universe 2024, 10, 372 65 of 113

Since ρ,A = ρ1,A + . . . is already of first order and PrA has no zeroth order perturbation,
the only term in An that contains ρn is P33′

0 (ρ0) ρn and A0 = P33
0 (ρ0) where the subscript 0

of P33
0 means that we first expand P33 in terms of the perturbations X, Y and then take the

zeroth order term of that. The resulting function is still to be expanded in terms of ρ − ρ0

and we note the corresponding derivatives by a prime.

B = [1 + qAB ρ,A ρ,B]
1/2 (211)

For the same reason this term has no ρn contribution in Bn and B0 = 1.

C = ρ2ω (212)

The ρn contribution to Cn is 2ρ0ρnω and C0 = ρ2
0ω.

D = [1 +
det(X)

ρ4ω2
]1/2 (213)

There is no ρn contribution to Dn because det(X) is a second order perturbation and thus
D0 = 1.

E = ρAρB + ϵACϵBD[ρ2ΩCD + XCD(ρ)] (214)

As XCD is already of first order, the ρn contribution to En is 2ρ0ρnω2ΩAB and
E0 = ρ2

0ω2ΩAB.

F = ρ,AB + Γ3
AB − ρ,C(Γ

C
AB + 2ΓC

3(Aρ,B)) (215)

The ρn contribution to Fn is ρn,AB + Γ3′
0;AB(ρ0) ρn − ρn,CΓC

0;AB(ρ0) and F0 = Γ3
AB(ρ0).

It follows that the n-th order perturbation equation can be written in the form

Gn = [P33′
0 (ρ0)ρ

2
0ω + P33

0 (ρ0)2ρ0ω + 2ω2ΩABρ0Γ3
0;AB(ρ0) + ω2ρ2

0Γ3′
0;AB(ρ0)] ρn

+ω2ρ2
0ΩAB(ρn,AB − ΓC

0;AB(ρ0)ρ,C)

= [P33
0 (r)r2ω + ω2ΩABr2Γ3

0;AB(r)]
′
r=ρ0

ρn

+ω2ρ2
0ΩAB(ρn,AB − ΓC

0;AB(ρ0)ρ,C)

= ω2 ρ2
0[Ω

AB DA DB − 1]ρn = ω2 ρ2
0[∆S2

− 1] ρn (216)

where we used (206) and that ΓC
0,AB = ΓC

AB(Ω) is the Christoffel symbol of the sphere metric
independent of r = ρ0 to write the last relation in terms of the sphere Laplacian. The term
Gn is the complete n-th oder contribution to (208) except for the terms that contain ρn. It
thus contains the ρm, m ≤ m − 1 and their derivatives polynomially which already have
been solved for. It remains to expand

Gn = ∑
l≥|m|

Gl,m
n Ll,m, ρn = ∑

l≥|m|
ρl,m

n Ll,m, ⇒ ρl,m
n = − Gl,m

n

l(l + 1) + 1
(217)

This proves that the radial profile ρ of the apparent horizon can be solved for the arbitrary
order in the perturbations in closed-form.

7.3. Expansion of the Irreducible Mass Squared

Having computed the radial profile ρ of the apparent horizon we can compute the
irreducible mass squared perturbatively as follows. The non-perturbative expression is

Ar =
∫

d2y
√

det(h) =
∫

d2y
√

det(q)
√

1 + qAB ρ,A ρ,B

=
∫

dΩ ρ2

√

1 +
det(X)

ρ4ω2

√

1 + qAB ρ,A ρ,B (218)
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This expression can be systematically expanded to any order in the perturbations. To
second order

Ar =
∫

dΩ [ρ2
0 + 2ρ0ρ1 + ρ2

1 + 2ρ0ρ2] [1 +
1

2
(

det(X)(ρ0)

ρ4
0ω2

+ qAB(ρ0) ρ1,A ρ1,B)]

=
∫

dΩ {[ρ2
0] + [ρ2

1 + 2ρ0ρ2 +
ρ2

0

2
(

det(X)(ρ0)

ρ4
0ω2

+ qAB(ρ0) ρ1,A ρ1,B)]}

=: Ar0 + Ar2 (219)

where the linear term has dropped out because it contains no l = 0 mode. Thus, the mass
itself to second order is

Mirr = Ar
1/2
0 [1 +

1

2

Ar2

Ar0
] (220)

which to the zeroth order just reproduces M while to the second order is a functional
quadratic in X, Y. In a Fock representation of X, Y we expect quantum fluctuations in the
irreducible mass, non-trivial dynamics and even violations of positivity inequalities [80].

8. Quantum Fields in a BHWHT Spacetime

We consider free quantum fields on the spherically symmetric BHWHT spacetime
(M, g) with mass parameter M or Schwarzschild radius R = 2M. The line element is
given by

ds2 = −(1 − R

|z| ) dτ2 + 2

√

R

|z| dτ dz + dz2 + z2 dΩ2 (221)

and M = R4 ∪ R4 with coordinates τ ∈ R, Ω = (y1, y2) ∈ S2, z ∈ R and radial coor-
dinates r = z, z > 0; r̄ = −z, z < 0. Hence, (221) is the Schwarzschild solution in
ingoing/outgoing Gullstrand–Painlevé coordinates for z > 0/<0. The singularity is at
r = r̄ = 0. However, causal geodesics can be continued across it and this spacetime is
foliated by τ = const. spacelike hypersurfaces which are Cauchy surfaces and define the
simultaneity of proper time surfaces of free-falling timelike observers that fall all the way
from past timelike infinity in a past universe towards future timelike infinity in a future
universe. Those Cauchy surfaces extend all the way from the spatial infinity of the past
universe to the spatial infinity of the future universe. Together both universes, therefore,
define a globally hyperbolic spacetime if one allows singularity crossing. That spacetime is
the common domain of dependence of all those hypersurfaces. Global hyperbolicity is very
important for constructing quantum field theories and sticking to only one universe the
free-falling synchronous hypersurfaces form a foliation but none of its leaves is a Cauchy
surface as they stop at the singularity. If needed, we can consider two regular spacetimes
glued at the cylinder surface r = r̄ = l ≪ R and with the solid cylinder cut out as a
regularization step for what follows. More details are given in Appendix C.

The spacetime metric (221) naturally appears in our perturbative scheme to compute
the reduced Hamiltonian and the black hole apparent horizon at second order and enters
the Regge–Wheeler and Zerilli equations. It, therefore, motivates a natural class of Fock
representations, and therefore, plays a fundamental role also for higher order contributions
to the reduced Hamiltonian which we will treat by standard methods of perturbative
QFT. In the first subsection, we give a brief introduction to QFT in general CST. Then, we
specialize to CST equipped with a Killing vector field which is not necessarily everywhere
timelike but such that the constant Killing time hypersurfaces are everywhere spacelike
so that the time dependence of the wave equation obeyed by the quantum field can be
separated. After that, we specialize even further in CST with spherical symmetry so that
even the angular dependence can be separated off and the wave equation reduces from a
PDE to an ODE of second order. In this case, one can gain important information on the
modes of the quantum field using the Wronskian identities and without explicitly solving
the wave equation. Finally, we discuss some of the details of the wave equation for the
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concrete CST given by (221) and outline the applications that we have in mind with regard
to particle production and Hawking radiation.

8.1. Elements of QFT in CST

Consider a bosonic Quantum Field Theory (QFT) in globally hyperbolic Curved
Spacetime (CST) (M, g). The classical, real valued, free spacetime fields are subject to a
linear wave equation of the form

✷Φ = UΦ, ✷ = gµν∇µ ∇ν (222)

where U is a real valued potential function (e.g., a position dependent mass term, it does
not depend on Φ). This equation is either an Euler–Lagrange equation derived from some
Lagrangian or from the correponding Hamiltonian formulation.

Let V be the vector space of real valued solutions of (222) that vanish sufficiently fast
at spatial infinity. Given a Cauchy surface Σ in M consider the anti-symmetric bilinear
form on V defined by

B(u, v) :=
∫

Σ
dΣµ {u [∇µv]− [∇µu] v} (223)

where dΣµ = 1
3! |det(g)|1/2ϵµνρσdXν ∧ dXρ ∧ dXσ is the volume element defined by g. It is

not difficult to see that the three-form defined by the integrand of (223) is closed which is
why B is independent of the choice of Σ.

Next, we consider the complexification VC of linear combinations w = u+ iv, u, v ∈ V
and consider the sesqui-linear form on VC defined by

< w, w′
>:= −i B(w, w′) = −i

∫

Σ
dΣµ {w [∇µw′]− [∇µw] w′} (224)

Decomposing w, w′ into real and imaginary parts one sees that the sesqui-linear form is
still independent of Σ; however, it is not positive semi-definite and does not equip all of VC

with a Hilbert space structure.
Suppose that we find a subspace V+ ⊂ VC such that < ., . > restricted to V+ is positive

semi-definite. Then, automatically < .,> restricted to V+ is negative semi-definite because

< w, w′
>= −i B(w, w′) = i B(w′, w) = − < w′, w > (225)

If, moreover, V+, V− := V+ are orthogonal with respect to < ., . > and V+ ⊕ V− = VC then
(VC,< ., . >) carries a Krein structure, i.e., an orthogonal decomposition

VC = V+ ⊕ V− (226)

such that < ., . . . > restricted to V+, V− is, respectively, positive semi-definite and negative
semi-definite, respectively, (we refrain from the usual separate treatment of zero norm
vectors for convenience. Then, (V±, ± < ., . >) is a pre-Hilbert space whose completion
(after moding by null vectors) is a Hilbert space H±. Equivalently, (VC, (., .)) is a pre
Hilbert space with an inner product

((w+, w−), (w′
+, w′

−)) =< w+, w′
+ > − < w−, w′

− > (227)

with completion H = H+ ⊕H− Then, H± are orthogonal subspaces of H with correspond-
ing self-adjoint projections P± i.e., P+ + P− = 1H, P2

± = P± = P∗
±, P+P− = 0 where the

adjoint is with respect to (., .).
Consider the anti-self adjoint operator

J := −i(P+ − P−), J∗ = −J, J2 = −1H, P± =
1

2
(1H ∓ i J) (228)
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It preserves the real vector space V: By assumption we have P+VC = P−VC whence
P−VC = P+VC. Therefore, for w, w′ ∈ VC we have using < w, w′ >= − < w′, w >

(w, P+w′) = (P−w, P+w′) = − < P−w, P+w′ >=< P+w′, P−w >= (P+w′, P−w)

= (w′, P+P−w) =< w′, P−w >= − < P−w, w′ >= (P−w, w′) = (w, P−w′) (229)

i.e., P±w = P∓w. Thus, for u ∈ V

Ju = i(P+u − P−u) = −i(P+ − P−) ū = J u (230)

Moreover i JP± = ± P± i.e., H± are eigenspaces of i J with eigenvalues ±1. Finally,

B(u, J v) = −i[B(u, P+v)− B(u, P−u)] =< u, P+v > − < u, P−v >= (u, P+v) + (u, P−v) = (u, v) (231)

is positive semidefinite definite on V and for u, v ∈ V

B(J u, J v) = (J u, P+v) + (J u, P−v) = −(u, J P+v) + (u, J P−v)

= i(u, P+v)− i(u, P−v) = B(u, P+v) + B(u, P−v) = B(u, v) (232)

One calls B a symplectic structure, J : V → V, J2 = −1V a complex structure, a Kaehler
structure if B(J., J.) = B(., .), a positive Kaehler structure if B(., J.) is positive semidefinite.
One can reverse the argument and start from a complex structure on V which is positive
Kaehler with respect to B and then arrives at a Krein structure on VC such that V− = V+

and (w, w′) =< w, (P+ − P−)w′ >= B(w, Jw′).
The classical, real-valued field ϕ is an element of V and thus

ϕ = [P+ϕ] + [P−ϕ] =: A + A∗ (233)

is a decomposition into annihilation and creation parts. If w ∈ V+ set

A(w) :=< w, A >= −iB(w, Φ) (234)

Consider a foliation of M with corresponding lapse and shift functions such that Σ is one
of its leaves, i.e., a τ = const. hypersurface. Then, recalling that gτµ = − 1

N2 [δ
µ
τ − Naδ

µ
a ] =

− 1
N nµ, ϵτabc = −ϵabc

A(w) = = i
∫

σ
d3x N

√

det(q) gτµ[w̄ Φ,µ − w̄,µ Φ]

= −i
∫

σ
d3x

√

det(q) [w̄ [∇nΦ]−∇nw; Φ] = −i
∫

σ
d3x [w̄ π −

√

det(q)∇nw ϕ] (235)

where π =
√

det(q) [∇n; Φ]|Σ is the momentum conjugate to ϕ = Φ|Σ. It follows with

Q = [det(q)]1/2

{A(w), [A(w′)]∗} =
∫

d3x
∫

d3y {[w̄π − Q[∇nw]ϕ](x), [w′π − Q[∇nw′]ϕ](y)}

= −
∫

d3x Q [w̄ [∇nw′]−∇nw w′]

= = −i < w, w′
> (236)

so that the canonical commutation relations (CCR) are

[A(w), [A(w′)]∗] =< w, w′
> 1 (237)

confirming the roles of A, A∗ as annihilation and creation operator valued distributions in
potential Fock representations.
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8.2. CST with Spacelike Killing Time Hypersurfaces

The question is, of course, given B, how to obtain either the Krein or complex structure
with the additional properties mentioned, and how much freedom there is in choosing
them. In the case that is of interest here, namely that there is a Killing vector field ∂τ such
that the τ = const. surfaces are spacelike Cauchy surfaces, the following construction may
be applied. Note, that this is more general than the stationary case in which the Killing
vector field is supposed to be everywhere timelike. In fact, this does not hold for our
∂τ where the GPG time τ defines the free-falling foliation with synchronous τ = const.
surfaces. We consider the Hamiltonian

H =
∫

σ
d3x [

N

2
(

π2

Q
+ Q [qabϕ,aϕ,b + Uϕ2]) + πNaϕ,a] (238)

where N, Na, qab are not explicitly τ dependent. The Hamiltonian equations of motion

ϕ̇ = {H, ϕ} = N
π

Q
+ Naϕ,a, π̇ = {H, π} = (N Q qab ϕ,a),b − NQUϕ + (Naπ),a (239)

reproduce the Euler Lagrange Equations (222) since from the first relation in (239) π =
Q∇nϕ thus

U ϕ = ✷ϕ = |det(g)|−1/2 [gµν |det(g)|1/2ϕ,µ],ν

= [N Q]−1 {[gµτ N Qϕ,µ],τ + [gµa N Qϕ,µ],a]}
= [N Q]−1 {−[Q ∇nϕ],τ + [QNa ∇nϕ],a] + [NQqabϕ,a],b}
= [N Q]−1 {−π̇ + [πNa],a] + [NQqabϕ,a],b} (240)

The idea is now to construct a system of complex solutions of (222) whose normalizable
span defines the space V+ of the Krein structure, i.e., V+,< ., . > is a pre-Hilbert space such
that V− = V+ and V+ ⊥ V−. To conduct this we write out the d’Alembertian explicitly

✷W =
1

N Q
{−[Q ∇nW],τ + [QNa ∇nW],a] + [NQqabW,a],b}; ∇n = N−1(∂τ − Na∂a) (241)

which is still the general expression. Now, we exploit that N, Na, qab do not depend on τ
and thus can separate off the τ dependence in w

Wω(τ, x) := eiωτ wω(x), ω ∈ C (242)

For ω ∈ R the corresponding solutions are called modes, for ℑ(ω) ∈ R+ − {0} ring down
or quasi-normal modes. It follows

0 =
1

NQ
[ω2 Q

N
wω + iω (

Q

N
Na∂a + ∂a

Q

N
Na)wω + ∂a(NQ(qab − NaNb

N2
)∂bwω − N Q U wω ] (243)

This suggests to introduce the operators

E :=
Q

N
1, A := ∂a Na E + E Na ∂a, B := −∂a(NQ(qab − NaNb

N2
)∂b + N Q U 1 (244)

where E, B and A are formally symmetric and anti-symmetric, respectively, on the auxiliary
Hilbert space H = L2(σ, d3x). Formally, each of them maps scalars into scalar densities of
weight one on σ because Q carries density weight one and N, Na are scalars and vectors,
respectively, of density weight zero. Accordingly,

[ω2 E + iω A − B] wω = 0 (245)
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We focus on real ω. Taking the complex conjugate of (245) we see that w∗
ω solves the same

equation as a solution w′
−ω would. Next, we compute the H inner product of (245) with w′

ω′

< wω, B w′
ω′ >H=< wω, [(ω′)2 E + iω′ A] w′

ω′ >H=

= < B wω, w′
ω′ >H=< [(ω)2 E + i(ω) A]wω, w′

ω′ >H (246)

where we used the symmetry of B. It follows from the symmetry of E, i A that

(ω − ω′) [(ω + ω′) < wω, E w′
ω′ >H +i < wω, A w′

ω′ >H] = 0 (247)

Now we compute on the other hand the inner product with respect to the sesqui-linear
form (224)

< Wω, W ′
ω′ > = −i

∫

σ
d3x Q [Wω (∇nW ′

ω′)−∇nWω W ′
ω′ ]

= −i ei(ω′−ω)τ
∫

σ
d3x E [wω ((iω′ − Na∂a)w

′
ω′)− (iω − Na∂a)wω) w′

ω′

= ei(ω′−ω)τ
∫

σ
d3x wω [(ω + ω′)E + i(E Na ∂a + ∂a Na E)] w′

ω′

= ei(ω′−ω)τ [(ω + ω′) < wω, E w′
ω′ >H +i < wω, A w′

ω′ >H] = 0 (248)

which coincides up to the τ dependent phase with the square bracket in (247). Thus, we
obtain from (247) and (248) that

< Wω, W ′
ω′ >∝ δ(1)(ω, ω′) (249)

i.e., the solutions are orthonormal with respect to the inner product (224) and the label
ω in the sense of delta distributions. If the sign of the proportionality factor in (249) is
positive or negative, respectively, then the solution lies in V+ or V−, respectively. When
V+ coincides with the subspace of solutions corresponding to ω ∈ R+ one calls V+ the
positive frequency subspace but, in general, V+ can also contain negative frequency (e.g.,
for the potential barrier underlying the Klein paradox [102]) and thus, should better be called
the positive inner product subspace. In particular, if Wω ∈ V+ then W∗

ω = W′
−ω, w′

−ω =
w∗

ω, hence V+ ⊥ V+ and since by the properties of the scalar product < ., . > we have
< W̄, W̄ ′ >= − < W ′, W > it follows that V− = V+.

8.3. Further Reduction of PDE to ODE in Sperically Symmetric CST

Accordingly we have found a possible Krein structure in the present situation once
we know the space of solutions of (245). In general, this is a complicated second order
PDE. However, in the presence of further symmetries as is the case for our spherically
symmetric background or an axisymmetric background (rotating black hole), a further
separation of variables is possible which then turns (245) into a second order ODE in just the
radial variable z. Namely, in the case of spherical symmetry we have the general structure
qab = γ2(z)δ3

a δ3
b + ρ(z)2ΩABδA

a δB
b , Q = γ ρ2

√

det(Ω), N = N(z), Na = N3(z) δa
3

E =
√

det(Ω) e, e =
γρ2

N
, A =

√

det(Ω) a, a = (e N3 ∂z + ∂z N3 e),

B =
√

det(Ω) [b + c ∆ + Nγρ2 U], b = −∂z N γρ2[γ−2 − [
N3

N
]2] ∂z, c = −Nγ (250)

where ∆ is the Laplacian on the sphere. Then, the separation Ansatz wω(z, y) = wω,l,m(z) Ll,m(y)
yields the ODE

[ω2 e + iω a − bl ] wω,l,m = 0, bl = b − l(l + 1) c + Nγρ2U (251)

and we have with h = L2(R, dz)
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< Wω,l,m, W ′
ω′ ,l′ ,m′ >= ei(ω′−ω)τ δl,l′ δm,m′ [(ω + ω′) < wω,l,m, e w′

ω′ ,l,m >h +i < wω,l,m, a w′
ω′ ,l,m >h] (252)

and

(ω − ω′) [(ω + ω′) < wω,l,m, e w′
ω′ ,l,m >h +i < wω,l,m, a w′

ω′ ,l,m >h] = 0 (253)

One can find out more about the normalization of those solutions without actually comput-
ing them explicitly. These follow from the Wronskian identities. Let us abbreviate

g(z) = e N3, f (z) = N γρ2[γ−2 − [
N3

N
]2], ul = −l(l + 1) c + Nγρ2U,

[ω2 e + iω (g ∂z + ∂z g) + ∂z f ∂z − ul ] wω,l,m = 0 (254)

In the previous section and in (252) and (253) we have implicitly assumed that ia,
a = g∂z + ∂zg, b = ∂z f ∂z are symmetric operators on h = L2(R, dz), i.e., that no bound-
ary terms are picked up when integrating by parts. In what follows we will drop this
assumption, i.e., no assumptions about boundary terms will be needed. The inner product
between two solutions is defined by (we drop the labels l, m as the solutions are rigorously
orthogonal for l ̸= l̃, m ̸= m̃)

< Wω, W̃ω̃ >= ei(ω̃−ω)τ
∫

dz {[wω [(e ω̃ + i g∂z) w̃ω̃ ] + [(e ω + i g∂z) wω ] w̃ω̃} (255)

By construction, (254) is time-independent, therefore, taking the time derivative of (254)
we find

0 = (ω̃ − ω)
∫

dz {[wω [(e ω̃ + i g∂z) w̃ω̃ ] + [(e ω + i g∂z) wω ] w̃ω̃} (256)

which means that the integral in (254) must be proportional to δ(1)(ω̃, ω). On the other
hand we have the Green identity, using that e, f , g are real-valued

wω [b w̃ω̃ ]− b wω w̃ω̃ = {wω f w̃′
ω̃ − wω

′ f w̃ω̃}′

= −wω [(ω̃2 e + iω̃ a − ul) w̃ω̃ ] + [(ω2 e + iω a − ul) wω ] w̃ω̃ ]

= (ω − ω̃) (ω + ω̃) wω e w̃ω̃ − i (ω [a wω ] w̃ω̃ + ω̃ wω ] [a w̃ω̃ ])

= (ω − ω̃) [I − i g (wω w̃′
ω̃ − wω

′ w̃ω̃)− i (ω [a wω ] w̃ω̃ + ω̃ wω ] [a w̃ω̃ ])

= (ω − ω̃) I − i{ω [(2g wω
′ + g′ wω) w̃ω̃ + g(wω w̃′

ω̃ − wω
′ w̃ω̃)] + ω̃ [wω (2g w̃′

ω̃ + g′ w̃ω̃)− g(wω w̃′
ω̃ − wω

′ w̃ω̃)]}
= (ω − ω̃) I − i{ω [g (wω

′ w̃ω̃ + wω w̃′
ω̃)g′ wω) w̃ω̃ ] + ω̃ [g (wω w̃′

ω̃ + wω
′ w̃ω̃) + g′ wω w̃ω̃ ]}

= (ω − ω̃) I − i{(ω + ω̃) g wω w̃ω̃}′ (257)

where I is the integarnd of the integral in (254). We obtain the Wronskian identity

W ′(wω, w̃ω̃) :=
d

dz
[wω f w̃′

ω̃ − wω
′ f w̃ω̃ + i (ω + ω̃) g wω w̃ω̃ ] = (ω − ω̃) I (258)

which holds for arbitrary solutions wω, w̃ω̃ with the same l, m labels and frequencies
ω, ω̃, respectively. The term in the square bracket on the left-hand side is the (generalized)
Wronskian of the two solutions.

Formula (258) has two applications:

1. If we integrate (258) over R we find

< Wω, W̃ω̃ >= ei(ω̃−ω) τ 1

ω − ω̃

∫

dz W ′(wω, w̃ω̃) (259)

In the present application of this formula, we anticipate singular behavior of the
solution at z = 0,±R hence, we interpret the r.h.s. of (259) as the principal value
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∫

dz W ′(wω, w̃ω̃) := lim
l→0+

[
∫ −R−l

−∞
+

∫ −l

−R+l
+

∫ R−l

l
+

∫ ∞

R+l
] dz W ′(wω, w̃ω̃)

= [W(wω, w̃ω̃)]
∞
−∞ + lim

l→0+
([W(wω, w̃ω̃)]

−R+l
−R−l + [W(wω, w̃ω̃)]

+l
−l + [W(wω, w̃ω̃)]

R+l
R−l) (260)

Thus, the inner product between two solutions can be expressed in terms of their
values and first derivatives at both spatial infinities plus a term that is exactly given
by the discontinuities of the Wronskian at z = 0,±R. Indeed, as the coefficients of the
second order ODE have singularities, we expect singularities of the second derivatives
compatible with discontinuities of the first derivative.
Since the right-hand side of (259) does not vanish and becomes singular for ω = ω̃
we conclude that the solutions are not normalizable in the strict sense but in the
generalized sense, i.e., the inner product will be proportional to δ(1)(ω, ω̃).
To read off the normalization constant κω,l,m suppose that the discontinuity vanishes.
Then, note that far out at infinity the solutions obey the flat space wave equations and
thus will display a radial dependence corresponding to radial plane waves ei ±ωz/|z|
while e, f grow as z2. Then, we make use of the distributional identity

lim
z→∞

sin(z(ω − ω̃)

π(ω − ω̃)
= lim

z→∞

∫ z

−z

dz′

2π
eiz′(ω−ω̃) = δ(ω, ω̃) (261)

The positive solution subspace is then selected to be the span of the Wω,l,m, κω,l,m > 0.
To actually compute κω,l,m we must of course gain sufficient knowledge on the solution
and its first derivative near z = −∞ once we specify those data near z = ∞ or vice-
versa, paying attention to the singularities. This is a non-trivial task as one has to
compute the influence of the curvature and its singularity at z = 0 as we follow the
solution from z = ∞ to z = −∞. We expect that methods from the theory of Heun
functions [87] and the rich literature on the solutions of singular second order linear
ODE’s [103] can be employed.

2. For ω = ω̃ we see that the Wronskian is a constant. This leads to Wronskian relations
between the solutions and their first derivatives at the two spatial infinities. Moreover,
for wω = w̃ω we find the constant

f (w̄ω w′
ω − w̄ω w′

ω) + 2iω|wω |2 =: 2icω (262)

Using the WKB decomposition wω = mω eiαω into modulus and phase we obtain

m2
ω [ f α′ + ω g] = cω (263)

which allows us to determine the phase exactly in terms of the modulus. The differen-
tial equation for wω can be split into real and imaginary parts and vanishing of the
imaginary part is equivalent to (263). For the real part we find, using (262) and using
the abbreviation A := m2

ω

[eω2 − ul ] A2 +
1

2
f ′ A A′ − 1

f
(c2

ω − ω2 g2 A2) + f (
1

2
A A′′ − 1

4
(A′)2) = 0 (264)

Unsurprisingly, this equation has a similar structure as the one for the modulus of
the wave function in cosmology (both are obtained from the WKB Ansatz) whose
iterative solution leads to the adiabatic vacua [90]. For cω = 0 one can transform this
into a first-order Riccati equation for B = A′/A.

8.4. Details for the GPG Background

We discuss some of the details of the required steps where we keep a close analogy
with the treatment of the potential barrier problem of QED and the resolution of the Klein
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paradox (Schwinger effect, superradiant scattering) discussed in [102]. The analogy is only
very rough: In contrast to (221) the external electric field of the potential barrier problem is
finite everywhere and has at most jump discontinuities. However, both problems share the
feature that the external potential is asymmetric under reflection of z → −z because in the
past Kruskal universe the metric is given by ingoing GP coordinates while in the future
universe, it is given by outgoing ones.

In what follows, we define past (P) and future (F) by GP time τ and forget about the
past and future labels attached to the Kruskal universes: Every synchronous τ = const.
surface crosses both Kruskal universes and has a “left” end (L) at spacelike infinity of the
future Kruskal universe and a “right” end (R) in the past Kruskal universe. Thus, the P, L
labels have very different meaning. Thus, in what follows:

P means τ → −∞,
F means τ → +∞,
L means z → −∞ ⇒ r̄ → +∞,
R means z → +∞ ⇒ r → +∞.

An observer in the infinite past P located a L can emit spherical waves into the
spacetime which, therefore, must travel towards smaller values of r̄ or larger values of

z. Such a mode is described by e−ikz

|z| , k > 0 (we define the radial momentum operator by

p = i xa

r ∂a = i d
dz so that [p, z] = i and p e−ikz = k eikz). Since at (P, L) the spacetime

metric is flat and the potential U vanishes we have for a temporal dependence eiωτ the
dispersion relation k2 = ω2, hence k = |ω|. That wave will be transmitted and reflected by
the curvature and will at F reach both ends L, R. The transmitted part travels to R at z = ∞

and is described by −ikz, the reflected part travels to L and is described by eikz. Thus, we
define the modes

WP,L
ω,l,m := NP,L

ω,l,m

eiωτ

|z|

{

e−i|ω|z + RP,L
ω,l,m ei|ω|z z → −∞

TP,L
ω,l,m e−i|ω|z z → ∞

(265)

where N, R, T are called normalization, reflection and transmission coefficients.
In complete analogy, we can consider emission from (P, R) of waves traveling towards

smaller r, i.e., smaller z described by modes ei|ω|z. Now, the transmitted mode travels
towards L and the reflected towards R again. Thus, we define the modes

WP,R
ω,l,m := NP,R

ω,l,m

eiωτ

|z|

{

TP,R
ω,l,m ei|ω|z z → −∞

ei|ω|z + RP,R
ω,l,m e−i|ω|z z → ∞

(266)

An observer in the infinite future F located at L can receive waves that travel to larger
values of r̄, i.e., smaller values of z. Those waves are the result of a superposition of two
waves coming from (P,L) and (P,R), respectively. The wave from (P,R) looks like a a wave
transmitted from (F,L) if we travel to the past while the wave from (P,L) looks like a wave
reflected from (F,L) if we travel to the past. This gives the modes

WF,L
ω,l,m := NF,L

ω,l,m

eiωτ

|z|

{

ei|ω|z + RF,L
ω,l,m e−i|ω|z z → −∞

TF,L
ω,l,m ei|ω|z z → ∞

(267)

In complete analogy, an observer in F located at R can receive waves traveling towards
increasing r, i.e., larger values of z and is described by e−i|ω|z which is the result of a
superposition of waves from P from both ends where the wave from L and R looks as
transmitted and reflected, respectively, from (F,R) when followed towards the past. Thus,
we define the modes

WF,R
ω,l,m := NF,R

ω,l,m

eiωτ

|z|

{

TF,R
ω,l,m e−i|ω|z z → −∞

e−i|ω|z + RF,R
ω,l,m ei|ω|z z → ∞

(268)
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For both choices of P, F, the modes labeled by ∗ ∈ {L, R}, ω ∈ R, 0 ≤ |m| ≤ l ∈ N0

are complete generalized orthonormal bases of the Krein–Hilbert space but given ∗, l, m

only for ω ∈ ∆P/F
+,∗,l,m correspond to positive norm solutions with respect to the 1-particle

inner product (224) which selects the annihilation operators AP/F,∗
ω,l,m =< WP/F,∗

ω,l,m , Φ >, ω ∈
∆P/F
+,∗,l,m. Thus, there will be particle production in the sense that the observers at P,F do not

agree on what the zero particle (vacuum state) is when the sets ∆P/F
+,l,m := ∆P/F

+,L,l,m ∪ ∆P/F
+,R,l,m

do not coincide.
These sets will be in bijection with R+, i.e., we have bijections bP/F

l,m : R+ → ∆P/F
+,l,m.

Given ω ∈ R+, l, m we define the Fock space HP/F as the excitations by the modes

bP/F
l,m (ω), l, m of the Fock vacuum ΩP/L. If these Fock spaces are the same, that is, when ΩF

constructed as the excitation by particle pairs of ΩP is normalizable in HP, then the unitary
S-matrix S defined by the matrix elements

< ψF
α , ψP

β >=:< ψF
α , SψF

β >=< ψP
α , SψP

β > (269)

will be non-trivial.
We note that the four sets of modes WP/F,L/R

ω,l,m with asymptotics given in (265)–(268)
allow us to compute their inner products via (259) and (260) in terms of the twelve complex

numbers NP/F,L/R
ω,l,m , RP/F,L/R

ω,l,m , TP/F,L/R
ω,l,m . The modulus |NP/F,L,R

ω,l,m | will be fixed by the

condition that the corresponding κP/F,L/R
ω,l,m equals ±1.

Further analysis has to take the concrete details of (221) and the potential into account.
One finds explicitly

N = 1, N3 =

√

R

|z| , e = z2, g = eN3, f = e(1 − [N3]2), U =
(1 − s2) R

|z| z2
,

ul = e(
l(l + 1)

z2
+ U) = l(l + 1) + (1 − s2) (N3)2 (270)

where s = 0, 1, 2 is the spin of the field (scalar, vector, tensor).
We see that f grows as z2 while g only as |z|3/2 and thus its contribution to the

Wronskian vanishes at infinity since by (265)–(268) the solutions decay as |z|−1. It follows
(drop labels l, m)

lim
z→±∞

W(wω, w̃ω̃)(z) = lim
z→±∞

[|z| wω (|z|w̃ω̃)
′ − (|z| wω)

′ (|z|w̃ω̃)] (271)

It is not difficult to see that equality of (271), which holds in the absence of discontinuities,

at z = ±∞ for ω = ω̃, wω = w̃ω = wP/L,L/
ω,l,m gives the continuity equations

1 = |RP/L,L/R
ω,l,m |2 + |TP/L,L/R

ω,l,m |2 (272)

8.5. Particle Production and Hawking Radiation in BHWHT Spacetime

Assuming that these interesting challenges can be met, one then would have access to
QFT on a BHWHT spacetime, i.e., the quantum field is given by

Φ = ∑
l,m

∫

∆+,l,m

dω {Aω,l,m Wω,l,m + c.c.}; ∆+,l,m = {ω ∈ R; κω,l,m > 0} (273)

This has several aspects. One may construct modes that look like those of Minkowski space
for z = r → ∞, τ → −∞ in the past universe or for z = −r̄ → −∞, τ → +∞ in the future
universe. This selects the corresponding Fock vacua ΩP, ΩF and particle number operators
NP = A∗

P AP, APΩP = 0 and NF = A∗
F AF, A f ΩF = 0 and one may study the particle

content of F particles in the P state < ΩP, NFΩP > or vice versa which may be interpreted
as particle creation effect due to curvature and singularity. Or one may consider only the
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SS portion of the past universe (or the MSS portion of the future universe) and construct a
Fock representation with respect to the Schwarzschild time t foliation in the SS (or MSS)
portion. One can expand the spacetime field Φ in SS with respect to both sets of mode
systems and compute ASS in terms of AP, A∗

P (Bogol’ubov coefficients). This would be the
analog of the Unruh effect with the free-falling GP observer and stationary SS observer,
respectively, playing the role of the inertial and accelerated observer. As usual, the selection
of say, the P vacuum is not unique and may wonder whether there exists a choice for which
the two-point function < ΩP, Φ(τ, x) Φ(τ′, x′)ΩP > has the short-distance singularity
structure of Minkowski space (Hadamard state [90]) which has an elegant reformulation in
terms of the wave front set of this two point function [104].

9. Quantization and Backreaction

In this section, we discuss further challenges of quantum black hole perturbation
theory without going into much detail.

Let us summarize: The concrete expression for the physical or reduced Hamiltonian
which depends only on the true X, Y, P, Q degrees of freedom cannot be provided in closed
form but can be approximated in terms of two distinct perturbative hierarchies: First,
the deviation from spherical symmetry as parametrized by the perturbations X, Y which
are considered as of first order. Second, an inverse core mass expansion. The first expansion
arises from the split of the degrees of freedom into spherically symmetric and spherically
non-symmetric sets and is a simple canonical transformation on the phase space. This
step is, in principle, non-perturbative and can be performed exactly in closed form if one
uses an equivalent polynomial form of the constraints. The expansions come into play
upon the solution of the constraints for the momenta: First, as the constraints depend
non-linearly on the momenta, we obtain an infinite set of non-linear constraints which
are challenging to solve non-perturbatively as is known already from finite-dimensional
algebraic geometry [105]. However, exploiting the first perturbative hierarchy this becomes
feasible as shown in [61] provided one can solve the zeroth order equations of that scheme.
It is this assumption that triggers the second perturbative hierarchy: The zeroth order
constraints (one for each value of the radius) are still nonlinear in the symmetric momenta
but almost decoupled. The coupling is via the fact that the constraints depend on radial
derivatives. There would be no second hierarchy necessary if one could solve that ODE
system exactly. However, unless there is no scalar hair, this is not the case and thus we
must release the inverse core mass expansion as a second approximation scheme of the
Picard–Lindelöf type. Here, the core mass is identified as an integration constant in that
system of zeroth order differential equations which reduce to the Schwarzschild mass in
the absence of scalar hair (in which case the core mass equals the ADM mass). From here
on at each order in the first perturbative scheme, one just has to solve linear ODE systems
for which uniqueness and existence results as well as efficient approximation schemes are
available. The inverse mass expansion continues to play an important role also in those
higher orders.

At any order with respect to both expansions, the approximate expression for Hred

depends non-polynomially on the core mass M̂ and polynomially on the fields Q, P, X, Y
in terms of nested radial integrals and multiple sums over the harmonic labels l, m. Its
quantization is, therefore, challenging in two aspects: First, it is not clear that the opera-
tors M̂n, n ∈ Z can be densely defined. This question has been answered affirmatively
in [96,106]. Second, consider the energy density eKG(r) of the symmetric Klein–Gordon
field which is a quadratic function of PKG and a polynomial function of QKG (that poly-
nomial has degree two unless the scalar field is self-interacting). Then, one can envisage
a Fock quantization of the total Klein–Gordon Energy EKG =

∫ ∞

0 ds eKG(s). However,
the physical Hamiltonian depends on the nested radial integrals of the form

∫ ∞

0
ds eKG(s)

∫ s

0
dt eKG(t) (274)
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and not on polynomials of EKG. The energy density integral with a sharp radial cut-off
could be problematic in QFT and perhaps must be regularized by smoothening the cut-off.
Upon removal of the regulator, the result could retain a regulator dependence which must
be controlled.

Next, we come to the question of backreaction beyond the backreaction on the
spacetime causal structure discussed in Section 3. To avoid misunderstanding, the no-
tion of backreaction used in this work is not that of the semiclassical Einstein equations
G(g) :=< T(g) >g where G(g) is the classical Einstein tensor, T(g) the quadratic form
corresponding to the matter energy-momentum tensor and < . >g is a positive linear
functional on the Weyl algebra Ag of the (free) spacetime matter fields which are supposed
to solve the (free) Heisenberg equations generated by (the quadratic part of) the matter
Lagrangian in the background metric g. The reasons are manifold: First of all, the semiclas-
sical Einstein equations treat g as a classical field rather than a quantum field. Second, they
are supposed to be diffeomorphism covariant rather than singling out a preferred gauge
condition and thus do not distinguish between true and gauge degrees of freedom. This
has the following consequences: Not only is it a complicated task to find a self-consistent
metric that solves these equations because the state < . >g depends on g as well, it also
is inconsistent with the Bianchi identity ∇g · G ≡ 0 if one does not carefully supplements
the chosen (normal) ordering by suitable counter terms which, for example, is responsible
for the trace anomaly in conformally invariant theories [18]. By contrast, our notion of
backreaction is in the context of quantum gravity in which we quantize the metric as well
after reducing the phase space so that only the true degrees of freedom are quantized,
the issue of gauge invariance has been solved from the outset and no Bianchi identities
have to be obeyed. In fact, it is not even a priori clear what one would mean by a “quantum
Bianchi identity”. A possible interpretation of this term would be to try to construct a
quadratic form corresponding to the classical objects ∇g, G(g) where g is to be replaced
by the quantum metric and then to consider ∇g · G(g). Due to the non-commutativity of
operator-valued distributions involved, this is unlikely to vanish identically as a quadratic
form, at best we expect it to vanish to zeroth order in h̄ when computing the expectation
value of the quadratic form with respect to semiclassical (low fluctuation) states.

Having clarified this, consider first the classical theory. Given the Hamiltonian
H = H(P, Q, X, Y) we can, in principle, solve the classical Hamiltonian equations of motion
given initial data. To simplify the notation let R = (P, Q), Z = (Y, X) with initial data
(R0, Z0). Consider first an arbitrary function R(τ) and solve the Hamiltonian equations of
motion ŻR

Z0
(τ) = {H, Z}R=R(τ),Z=ZR

Z0
(τ), ZR

Z0
(0) = Z0 where H(τ, Z) = H(Z(R(τ), Z) is

considered as an explicitly time-dependent Hamiltonian. The solution will be a function
ZR

Z0
(τ) which depends on the chosen R(τ). It can be obtained by Picard–Lindelöf itera-

tion ZR
Z0
(τ) = Z0 +

∫ τ
0 ds; {H, Z}R=R(τ),Z=ZR

Z0
(s) and thus depends on nested integrals

of R(τ). Now, we set R(τ) = RR0,Z0
(τ) and solve the Hamiltonian equations of motion

ṘR0,Z0
(τ) = {H, Z}

R=RR0,Z0
(τ),Z=Z

RR0,Z0
Z0

(τ)
, RR0,Z0

(0) = R0. This takes the form of an inte-

gro differential equation which contains memory and friction terms and whose parametric
dependence on Z0 is considered as “noise” or “environment”. If one has only statisti-
cal knowledge about Z0 one can consider it as a random variable leading to a Langevin
type [107] of equation or one can average over the Z0 dependence which leads to corre-
sponding “master” equations. If one has specific knowledge about the initial state Z0 and
can motivate a certain specific Z0 as given, one may try to obtain an effective Hamiltonian
which governs the integro-differential equation.

In the quantum theory, we see that in the statistical approach we enter the regime of
open quantum systems, decoherence, entanglement, partial tracing and non-equilibrium
statistical mechanics [108] which leads to master equations of Lindbladt type for the
“statistical operator”, i.e., the density matrix that replaces Z0. In the effective approach
of the quantum theory one tries to solve the exact Schrödinger or Heisenberg equations
following the above idea of the classical theory of solving first the equations for the X, Y
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sector and after that for the Q, P sector. To conduct this one assumes that the physical
Hilbert space is a tensor product H = H f ⊗ Hs where H f , Hs, respectively, describe
the “fast” X, Y and “slow” Q, P degrees of freedom. The terminology comes from the
well-known Born–Oppenheimer-Approximation (BOA) scheme [109] that was invented
for molecular physics and for which the huge differences in the masses of electrons and
nuclei leads to a natural hierarchy of time scales of these two types of degrees of freedom
so that the fast particles move essentially as if the slow particles were at rest with only a
weak (adiabatic) correction governed by an adiabatic parameter ϵ (the quotient of electrons
and nuclei masses). Thus, the BOA works very well for systems with 1. finitely many fast
degrees of freedom, 2. finitely many slow degrees of freedom, such that 3. the interaction
between the two subsystems depends only on a commuting set of slow degrees of freedom
(typically Q), such that 4. a natural adiabatic parameter ϵ exists and such that 5. the Hilbert
space representation is of the tensor product type as above.

In the application of black hole perturbation theory the first four assumptions all
fail when incorporating matter “hair” in addition to Maxwell fields such as the Klein–
Gordon or Fermion fields. First, assumption 3 is violated as the interaction involves both
P, Q variables which do not commute in quantum theory. A natural extension of BOA
which relaxes 3 is space adiabatic perturbation theory (SAPT) which However, still rests
on the validity of assumptions 1, 2, 4 while 5 is trivially satisfied for finite dimensional
systems. In [72] SAPT was applied to the simpler case of quantum cosmology for which
the slow sector has only finitely many degrees of freedom, hence assumption 2 holds.
The relaxation of assumption 1 is non-trivial because assumption 5 is now no longer granted
as the Hilbert space representation of the fast sector depends on the slow sector variables
and the corresponding are not necessarily unitarily equivalent. However, the obstacles
can be overcome perturbatively. Already in quantum cosmology also assumption 4 is
violated because there is no mass hierarchy between the homogeneous modes of a scalar
inflaton field and its non-homogeneous perturbations. This obstacle can be overcome
as follows: The adiabatic effective decoupling of the slow and fast sectors rests on the
Weyl quantization of the slow system in terms of the variables Q, P′ := ϵP where ϵ is the
adiabatic parameter. Now, even if the reduced Hamiltonian H(X, Y, Q, P) does not have a
natural such parameter, using that H depends polynomially on P we can multiply H by ϵN

where N is the smallest positive integer such that Hϵ(X, Y, Q, P′) := ϵN H(X, Y, Q, P = P′
ϵ )

has no negative powers of ϵ. Then, SAPT can be formally applied to Hϵ which allows to
compute an effective Hamiltonian Hϵ,n,k(Q, P′) for each energy band n of the fast sector and
k is the order of the adibatic expansion. In the end, we set ϵ := 1 which can be considered as
a kind of analytic extension. In this way the adiabatic parameter just serves to organize the
adiabatic perturbation and is removed in the end. It is of course not granted that resulting
effective Hamiltonians Hn,k = Hϵ=1,n,k converge in any sense.

This still leaves condition 2, which in contrast to quantum cosmology is violated for
quantum black holes: The symmetric degrees of freedom are just spherically symmetric
and not homogeneous and thus defining an effectively 1+1 dimensional field theory on the
radial z-axis rather than a 1+0 dimensional mechanical system. In order to apply SAPT this
calls for the Weyl quantization of a field theory which is problematic [110]. As a first step one
may apply the following regularization of the problem: Let bI , I = 0, 1, 2, . . . be an on ONB
of h = L2(R, dz) and consider the conjugate variables QI =< bI , Q >h, PI =< bI , Q >h.
We now expand H(X, Y, Q, P) into the QI , PI using completeness Q = ∑I QI bI and for
given “mode cut-off” 0 < M < ∞ set to zero for all instances of QI , PI , I > M which
may be called a truncation. The resulting Hamiltonian HM(X, Y, {QI , PI}M

I=0) can then be
treated by SAPT methods as above and one may study in which way one can remove the
cut-off M.
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10. Observation, Radiation Energy and Flux

Since we have a concrete expression for a physical Hamiltonian H[P, Q, X, Y] at our
disposal which depends only on the true degrees of freedom P, Q, X, Y we can write it in
the form

H[P, Q, X, Y] =
∫

σ
d3x h[P, Q, X, Y; x) (275)

where h can be interpreted as the energy volume density observed by the free-falling
observers. From the way it is constructed perturbatively in terms of nested radial integrals
using the inverse core mass expansion, it is spatially non-local, explicit spatially but not
explicitly τ dependent as the system is conservative and at any finite order in perturbation
theory a polynomial in the canonical fields and their spatial derivatives up to a finite order
N. Since h, therefore, depends generically spatially non-locally on the fields we used a
square bracket notation with respect to the dependence of h on them and a round bracket
notation with respect to the explicit x dependence.

To compactify the notation we write R = (Q, X), Z = (P, Y). The variation of (275) is
then given by

[δH][R, Z] =
N

∑
k=0

∫

σ
d3y

∫

σ
d3x {ra1 ...ak (y, x) [δR],a1 ...ak

(x) + za1 ...ak (y, x) [δZ],a1 ...ak
(x)} (276)

where the integral kernels displayed are themselves nested integrals over polynomials in
R, Z and their spatial derivatives up to order N. They can be found by collecting in the ex-
pression for δH all instances of, e.g., [δR],a1 ...ak

(z) where z is one of the integration variables
in the nested integrals and then relabeling integration variables z ↔ x. The Hamiltonian
equations of motion are obtained by integrating parts, dropping boundary terms

Ṙ(x) =
N

∑
k=0

(−1)k
∫

d3y [ra1 ...ak (y, x)],a1 ...ak
, −Ż(x) =

N

∑
k=0

(−1)k
∫

d3y [za1 ...ak (y, x)],a1 ...ak
, (277)

where the multiple partial derivatives are with respect to the argument x.
Let now S(τ) ⊂ σ be a compact region in σ then the object

ES(τ) =
∫

S(τ)
d3x h[R(τ), Z(τ); x) (278)

is the energy content of the region S(τ) where the τ dependent fields satisfy the above
Hamiltonian equations of motion, e.g., Ẋ = {H, X}. Then, PS(τ) = d

dτ ES(τ) is the total
power emitted/absorbed from S(τ). To obtain an energy flux area current one usually
resorts to the Lagrangian framework and extracts the on-shell conserved Noether current
from the symmetry of the Lagrangian under foliation time translations, formally corre-
sponding to the conserved time component of the canonical energy momentum tensor. We
could proceed like this here as well by formally computing the Legendre transform of the
Hamiltonian but since we expect H to depend higher than quadratically on Z and since the
relation between momenta and velocities will involve integro differential equations one
will have trouble to compute the Legendre transform sufficiently explicitly.

Fortunately this is not necessary. All that is needed is the Hamiltonian. To see how this
works in a familiar setting consider the Hamiltonian density h = 1

2 [E⃗
2 + B⃗2] of free Maxwell

theory on Minkowski space where B⃗ = ∇⃗ × A⃗ is the magnetic field of the vector potential
A⃗ which has canonical brackets with the electric field E⃗. The equations of motion resulting
from H =

∫

d3x h are the familiar vacuum Maxwell equations Ḃ = ∇⃗ × E⃗, Ė = −∇⃗ × B⃗.
Consider a compact region S ⊂ R3 and its energy content E(S) =

∫

S d3x h evaluated on a
solution of Maxwell’s equations. Then,

Ė(S) = −
∫

S
d3x ∇⃗ · [E⃗ × B⃗] = −

∫

∂S
dΣa [E⃗ × B⃗]a (279)
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which correctly yields the Poynting vector J⃗ = E⃗× B⃗ as energy current area density. In other
words with Jτ = h the four-vector Jµ is conserved on shell.

We proceed analogously in the present more complicated situation. From (276) we
have for a time independent set S

Ė(S) =
N

∑
k=0

∫

S
d3y

∫

σ
d3x {ra1 ...ak (y, x) [Ṙ],a1 ...ak

(x) + za1 ...ak (y, x) [Ż],a1 ...ak
(x)} (280)

We integrate the spatial derivatives successively by parts. In the course of this process
we may pick up boundary terms or not depending on the distributional properties of the
integral kernels r, z. Typically, if ra1 ...ak (y, x) depends on l ≤ k nested integrals, then the
first l integrations by parts do not generate any boundary terms but each integration by
parts removes one nested integral. Thus, rearranging terms by performing integrations by
parts that do not generate boundary terms, one may rewrite (280) as

Ė(S) =
∫

S
d3y

∫

σ
d3x {r̂(y, x) Ṙ(x) + ẑ(y, x) Ż(x)}+

N

∑
k=1

∫

S
d3x {r̂a1 ...ak (x) [Ṙ],a1 ...ak

(x) + ẑa1 ...ak (x) [Ż],a1 ...ak
(x)} (281)

where the second term is now ultra-local. We now perform the remaining integrations by
parts and obtain a bulk term and a surface term. The bulk term is given by (280) with all
integrations by parts performed and all boundary terms dropped, that is

0 =
N

∑
k=0

(−1)k
∫

S
d3y

∫

σ
d3x {r

a1 ...ak
,a1 ...ak

(y, x) [Ṙ](x) + z
a1 ...ak
,a1 ...ak

(y, x) [Ż](x)} (282)

where the equations of motion (277) were used. The surface term is given by

−Ja :=
N

∑
k=1

k

∑
l=1

(−1)l+1
∫

∂S
dΣa1

{r̂
a1 ...ak
,a2 ...al

(x) [Ṙ],al+1 ...ak
(x) + ẑ

a1 ...ak
,a2 ...al

(x) [Ż],al+1 ...ak
(x)} (283)

where it is understood that the spatial derivatives in (283) are simply absent when the
indices are out of range.

The on-shell conserved energy Noether current can now be determined: it is given
by Jµ with Jτ = h and Ja as in (283) where Ṙ, Ż are to be replaced by (277). In particular,
given a surface element s,

∫

s dΣa Ja is the power flowing through s. Using appropriate
solutions of the field equations one can now compute the classical radiation power through
any surface similar as in usual second order perturbation theory [111].

Similarly, in the quantum theory, one can define at second order, the grey body factors
σω,l,m of the radiation in the usual way for each bosonic degree of freedom [62–64]

lim
r→∞

ωβ[
∫

s(r)
dΣa Ja] =: −∑

l,m

∫

dω
σω,l,m

exp(β ω)− 1
(284)

where s(r) is a round sphere at radius r and β is the inverse temperature, expected to scale
as 1/M, of a corresponding KMS state ωβ which we consider as restriction of the GP
vacuum state to the SS portion in a similar way as the Unruh KMS state arises by restriction
of the Minkowski vacuum state [13] to the Rindler wedge. The form of (284) in fact has
been confirmed for second order perturbation theory using mode functions of the type
discussed in Section 8 but restricted to an asymptotic SS region. More in detail, there one
works with the turtoise coordinate z = r∗ = r + R ln(r/R − 1), r > R = 2M rather than
the GPG coordinate z and observes that the potential that enters the Schrödinger type
equation rewritten in terms of z vanishes at both z = ±∞ being positive in between with a
maximum around the photon sphere r = 3M. Hence, the mode function problem becomes
a regular quantum mechanical scattering problem, see [111] for all the details. One can
work with either SS null coordinates u = t − z, v = t + z or corresponding Kruskal null
coordinates V, U and the KMS state here arises by restricting the Kruskal vacuum state of
one full Kruskal universe (SS, BH, WH, MSS; Hartle–Hawking state) to the SS portion (the
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quantum field is written in terms of u, v mode functions defining the Boulware state which
are then expanded into U, V mode functions defining the Hartle–Hawking state which
gives rise to non-vanishing Bogol’ubov coefficients in (284)).

Remark 9. It should be noted that there is some debate about which Noether current to use
for the gravitational radiation in order to derive the radiation formulae, often the Landau–
Lifshitz pseudo tensor is argued for [112], or one proceeds as sketched above, perturbs
the Lagrangian to the second order and then computes the canonical (Noether) energy-
momentum tensor. In the present situation we have a natural candidate as derived above
and it would be interesting to compare the different formalisms at least at second-order.

Remark 10. Note, that the Schwarzschild stationary and Gullstrand–Painleveé free falling
clocks at distances far away from the black hole tick at the same rate but they have a
radius-dependent offset. Far away from the black hole, during a short amount of time,
the GP observer is barely picking up speed if previously at rest and thus the radius is
approximately constant during observation. An astronomer on Earth can be argued to be
rather free falling toward a black hole rather than being stationary as one cannot prevent
Earth from being attracted to the black hole. However, for both observers, the time passed
during observation is the same to high accuracy.

Remark 11. When the set S(τ) itself is time-dependent then the radiation formula for
d

dτ E(S(τ)) must be corrected by the term that takes the time change in S(τ) into account.
The application would be a trapped region S(τ) with τ dependent profile function ρτ :
S2 → R+ and S(τ) = {(r, Ω), r ≤ ρτ(Ω), Ω ∈ S2}. Then, the correction term for the time

dependence of E(S(τ)) =
∫

dΩ
∫ ρτ(Ω)

0 dr h is given by

∫

S2

dΩ ρ̇τ(Ω) h(r = ρτ(Ω), Ω) (285)

which due to the dependence of ρτ on the gravitational radiation variables X, Y is by itself
a rather complicated functional of the true degrees of freedom.

11. Conclusions and Outlook

To define interacting, gauge invariant black hole perturbations of geometry and matter
is a complicated topic for which many conceptual and technical questions have to be
answered. In this paper, we have attempted a concrete proposal. The basic idea is to divide
the problems into several steps. The first step consists of disentangling gauge invariance
from perturbation theory already in the classical theory. Thus, one first constructs the non-
perturbative reduced phase space (true degrees of freedom) and physical Hamiltonian and
then perturbs it directly in terms of the gauge invariant perturbations which are defined as
those true degrees of freedom which are non (spherically or axi) symmetric. Having access
to both the black hole interior and the exterior at the same time puts restrictions on the
choice of the true degrees of freedom (equivalent to the choice of a congruence of observers),
and therefore, we have opted for the Gullstrand–Painlevé gauge. The second step consists
in quantizing the true degrees of freedom, both the symmetric and nonsymmetric ones,
in suitable representations of the canonical commutation relations which are such that the
physical Hamiltonian, perturbed to the desired order of accuracy is at least a well-defined
quadratic form.

Since the dependence of the perturbed Hamiltonian on the symmetric true degrees of
freedom typically is non-polynomial while it depends non polynomially on the symmetric
true degrees of freedom, one has to use different quantization techniques for these two sets
of degrees of freedom. This observation has already been made in quantum cosmology
where one uses a so-called “hybrid” approach [59,60] and uses a Narnhofer–Thirring type
representation [77,78] for the symmetric (homogeneous) degrees of freedom while the non-
symmetric ones are treated in a Fock representation. In [113,114] we have recently shown
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that one can in fact also use Fock representations for the non-polynomial dependence of the
Hamiltonian if one carefully chooses the dense domain of the quadratic form, for instance,
as the span of the excitations of a coherent state concentrated on a 3-metric Euclidean
signature. This stresses once more the importance of states that describe non-degenerate
quantum metrics as emphasized in [115,116] in a different context.

In this paper we only have proposed a possible framework but of course the real task to
describe black hole evaporation is still to be conducted. In our companion papers [67–69] we
perform the first steps. These consist of showing that our approach reproduces the known
classical second-order results due to Regge–Wheeler, Zerilli and Moncrief [52–55] outside
the Horizon in the Einstein–Maxwell sector after one translates our reduced Hamiltonian
into the Schwarzschild coordinates used in [52–55]. More in detail, in [67] we consider
pure gravity perturbations while in [68] we add electromagnetic perturbations. While
in [67,68] we perform the reduced phase space analysis in the GP gauge, in [69] one
considers more general gauges which are merely asymptotically GP, directly for both gravity
and electromagnetic perturbations. In all cases, non-trivial canonical transformations on
the reduced phase space have to be performed to show that the equations of motion
generated by the reduced Hamiltonian agree with those of [52–55]. However, this is just a
consistency check. The real virtue of our method is that it enables to construct the reduced
Hamiltonian also to higher than second orders without the necessity to change the gauge
invariant (true) degrees of freedom when increasing the order and thus to describe self-
interactions among the symmetric and non-symmetric true degrees of freedom, respectively,
as well as interaction (backreaction) between them. This requires a better understanding
of the Fock representation that is suggested by the second order part of the reduced
Hamiltonian. We have started this investigation in the present paper but the construction
of the mode functions in a black hole–white hole transition spacetime that we considered is
an interesting mathematical challenge in itself and we certainly must know more about
their properties before we can proceed. This is not even under full control in an asymptotic
end of a black hole. However, once this is conducted, one can study the quantum dynamics
of interesting measures of evaporation such as the quantum area of the apparent horizon
for which we have given a perturbative formula in the present paper and which can be
quantized by the tools provided in [113,114]. This will be the subject of future publications
within this series which will allow us to study the (perturbative) mass spectrum defined by
the apparent horizon.

The methodology of the present manuscript can be readily applied also to cosmology
or rotating black holes. But even for spherically symmetric black holes there is a huge
amount of work to be conducted whose steps we described rather concretely in the present
work. The list of these steps is not at all exhaustive, many interesting questions were not
touched upon. For instance, in the asymptotically flat context of black hole spacetimes one
has access to the ten Poincaré generators as Dirac observables. It would be interesting to
derive the (perturbative) reduced phase space formulae for those and to quantize them.
In the present paper we have sketched the corresponding tasks only for one of these
generators, the reduced Hamiltonian, but the same methods can be used to construct the
remaining Poincaré generators.
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Appendix A. Reduced Phase Space and Gauge Fixing of Constraints with Spatial

Derivatives

The reduced phase space of the constrained system is conveniently obtained by solving
the constraints for suitable momenta, imposing gauge fixing conditions on the conjugate
configuration degrees of freedom and determining the values of the smearing functions
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of the constraints from the corresponding stability conditions of the gauge imposed. The
physical Hamiltonian is then determined by those three solutions of the constraints, gauge
fixing conditions and stability conditions.

In this section, we review that there is an important difference between A. constraints
depending purely algebraically on the canonical fields and B. constraints involving spatial
derivatives of these. Namely in case A, the reduced phase space is smaller by at least one
canonical pair than in case B. This section serves as a preparation to understand in later
sections why even in spherically symmetric vacuum GR there are two rather than one Dirac
observable and why this is not in conflict with Birkhoff’s theorem.

To understand this in non-technical terms, consider a 1 + 1 dimensional field theory
on R2 with canonically conjugate fields (q(x), p(x)), x ∈ R and the following constraints

A. C(x) = p(x), B. C(x) = p′(x) (A1)

where (.)′ = d
dx .

For a field theory, it is not sufficient just to state that {p(x), q(y)} = δ(x, y), a complete
characterization of the phase space must also specify the space of functions to which q, p
belong which among other things involves their decay behavior at spatial infinity. One of
the conditions is that the symplectic structure

Ω =
∫ ∞

−∞
[δp](x) ∧ [δq](x) (A2)

converges where δ is the functional exterior derivative. For instance, we could impose
that both δq, δp decay as 1/x which allows both q, p to asymptote to fixed values q±, p± at
x = ±∞ which are not variable on the phase space. If on the other hand p± is considered a
variable on the phase space and p = p± + O(1/x) then q± must not be a variable on the
phase space and we need the integral of δq to converge which either requires a stronger
fall off condition on δq, say as 1/x2 or an asymptotic parity condition, e.g., that δq = δc/x
in leading order where c is another variable on the phase space. The leading order then
vanishes when defined as a principal value integral. This specification of the decay behavior
has also consequences for the treatment of the constraints.

We smear the constraints with test functions f which are treated as constants on the
phase space (δ f (x) ≡ 0), that is, we consider C( f ) :=

∫

R
dx f (x) C(x). The exterior

derivative of C( f ) enters the computation of the Poisson brackets

A. [δC( f )] =
∫

dx f (x) [δp](x), B. [δC( f )] = −
∫

dx f ′(x) [δp](x)− [δB( f )], B[ f ] := −[ f (x)p(x)]∞x=−∞ (A3)

For model A the functional C( f ) is functionally differentiable without any condition on f
while for model B it is functionally differentiable if and only if f+δp+ − f−δp− = 0 where
f± = f (±∞). This is automatically the case if p± do not vary on the phase space (in which
case we can drop B( f ) altogether) or if, e.g., f decays at both infinities. We can, however,
define for both models

A. H( f ) := C( f ), B. H( f ) := C( f ) + B( f ) (A4)

which are functionally differentiable with no condition on f in both cases no matter what
the decay behavior of p is. In contrast to model A, in model B the functional H( f ) is
different from the functional C( f ) unless B( f ) = 0. We call canonical transformations
generated by H( f ), with f such that B( f ) = 0, gauge transformations because C is the
constraint and not H. We call canonical transformations generated by H( f ) with f such
that B( f ) ̸= 0 symmetry transformations. For model A there is no difference between the two
because B( f ) ≡ 0.

For both models, the unconstrained phase space is infinite dimensional. The constraint
surface is the kernel of the constraint C(x) = 0 for all x. The reduced phase space is the
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constraint surface with points identified that lie on the same gauge orbit. In the present case,
the reduced phase space is very simple to compute. In both models p is gauge invariant
because C( f ) depends only on p.

In model A any f corresponds to a gauge transformation and the gauge transformation
of q is

[∆ f q](x) = {C( f ), q(x)} = f (x) (A5)

We are allowed to pick f from the same function space that q belongs to and see that q(x)
can be gauged to any value, say q∗(x) = 0 for all x. As the constraint requires p(x) = 0 for
all x we see that the reduced phase space is the single point p ≡ q ≡ 0. The gauge q∗ = 0 is
also complete, i.e., there are no non-trivial stability transformations that preserve q = 0 as
{H( f ), q(x)} = f (x) = 0 imposes f (x) = f∗(x) = 0 for all x.

In model B, we have to be more careful. The constraint C(x) = 0 now only imposes
that p(x) = M is a spatial integration constant but it is allowed to be considered a variable
on the phase space. Thus, we have, in particular, p± = M. Thus, B( f ) = −M( f+ − f−) on
the constraint surface. Thus, the weakest condition we can impose for f to define a gauge
transformation is that f+ = f−. For f+ ̸= f− we obtain a symmetry transformation. Then,
a possible condition on the decay behavior of q is that δq decays as [δc]/x in leading order
so that we have odd parity conditions at infinity. The gauge transformation of q is

[∆ f q](x) = {H( f ), q(x)} = − f ′(x) (A6)

To gauge a given q(x) to zero we must solve ∆ f q = −q, i.e., f ′ = q which is solved by

fq(x) = f− +
∫ x

−∞
dy q(y) (A7)

However, unless

Q :=
∫ ∞

−∞
dy q(x) (A8)

equals zero, the function (A7) does not correspond to a gauge transformation because
f+ ̸= f−. It follows that q(x) cannot be gauged to zero for all x. Indeed for a gauge
transformation we have

[∆ f Q] = {H( f ), Q} = −
∫ ∞

−∞
dy f ′(y) = −[ f+ − f−] = 0 (A9)

whence Q is gauge invariant, i.e., a Dirac observable. We require the function space space
of q to be such that Q is well defined. Pick ∞ > L. We can then set for x ∈ (−∞, L]

fq(x) = f− + Q −
∫ ∞

x
dy q(y) (A10)

and interpolate smoothly between fq(L) and f− in x ∈ (L, ∞). As this can be conducted
for any L < ∞ we see that q(x) for x < ∞ is pure gauge. Note, that q(x) = 0 for x < ∞

does not fix the gauge completely because we have f+ = f− possibly non-vanishing.
Equivalently, let w(x) be a fixed weight function belonging to the function space of q with
∫

R
dx w(x) = 1. Then, we can gauge q(x) to q∗(x) = Q w(x) for all x because the required

gauge transformation is now given by

fq(x) = f− +
∫ x

−∞
dy [q(y)− Q w(y)] (A11)

which satisfies fq(∞) = f− = fq(−∞). Again the constant f− is unspecified corresponding
to a residual gauge freedom which is also clear from the stability condition δ f (q − Qw) =
− f ′ = 0, i.e., the solution (A11) is only unique up to adding a constant fq → fq + c which
corresponds to shifting f−.
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On the other hand, for a symmetry transformation we have

[∆ f Q] = {H( f ), Q} = −
∫ ∞

−∞
dy f ′(y) = −[ f+ − f−] ̸= 0 (A12)

Since {p(x), Q} = 1 for any x and as we have p(x) = M on the constraint surface, it follows
that (A12) has the canonical generator

H = −( f+ − f−)M =: κ M = B( f ) (A13)

called the physical Hamiltonian. The more systematic way to obtain H is the condition that
for any function F = F(M, Q) we require

{H, F} = {H( f ), F} f= f∗ ,C=0,q=q∗ = −( f ∗+ − f ∗−)
∂F

∂Q
(A14)

where f = f ∗ is the general solution of the stability condition

{H( f ), [q − q∗](x)} = {H( f ), q(x)} − {H( f ), Q} w(x) = − f ′(x) + [ f+ − f−] w(x) = 0 (A15)

which has the solution

f ∗(x) = f− + ( f+ − f−)
∫ x

−∞
dy w(y) (A16)

depending on two free parameters f+, f−. Thus, the general solution of the stability
condition is a symmetry transformation when f+ ̸= f− and it is only sensitive to the single
parameter κ = −( f+ − f−). Thus, the systematic analysis reproduces (A13).

To summarize, the innocent looking spatial derivative of canonical variables in con-
straints have drastic consequences on the reduction of the system: the reduced phase
space is augmented by canonical pairs and there is a residual transformation freedom even
after all possible gauge freedom has been exploited and the gauge has been maximally
fixed. This residual transformation freedom parameter finds its way into the physical
Hamiltonian on which it depends linearly. That parameter, therefore, can be interpreted as
the clicking rate of the clock that measures time.

Appendix B. Consequences for Black Hole Physics

For spherically symmetric spacetimes, the existence of a pair of Dirac observables
rather than just the black hole mass has been discovered, to the best knowledge of the
author, for the first time in [23,73] which provides a complete quantum theory of spherically
symmetric black holes in terms of complex connection variables. In [74] a similar analysis is
performed in terms of ADM variables. In view of the previous section and as we will review
below, the origin of the second Dirac observable is due to the fact that the constraints
of spherically symmetric gravity involve momentum derivatives. This means that the
constraints cannot be used to completely gauge away all configuration degrees of freedom
and that there is an integration constant when solving the constraints for the momenta.
These degrees of freedom are the analogs of M, Q above.

How can this be reconciled with Birkhoff’s theorem which states that every spherically
symmetric vacuum solution is static and completely characterized by a single degree of
freedom, namely the mass of the black hole [6]? As we will show, the freedom corre-
sponding to Q can be considered as associated with a one-parameter family of temporal
diffeomorphism corresponding to the choice of the time coordinate which is supposed to
coincide with the Cartesian time coordinate at spatial infinity. If one considers this freedom
as a gauge degree of freedom as it is customary in the Lagrangian framework, then indeed
one can discard Q. On the other hand, in the Hamiltonian framework one is instructed not
to consider that freedom as a gauge.
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We repeat here from the main text why this is significant: Suppose there would be
no variable conjugate to the mass at all. Then, because the mass has vanishing Poisson
brackets with the matter and the gravitational multiple degrees of freedom, it would have
vanishing Poisson brackets with the reduced Hamiltonian, which is a constant of motion,
and thus would be a constant of motion itself. It would be present also after all Hawking
processes have ceased and thus could also be called remnant mass. If on the other hand we
respect the existence of that Dirac observable conjugate to the mass, then the gauge fixing
condition must be consistent with its existence. This can be granted, for instance, when
the gauge fixing condition keeps a one parameter freedom which is able to capture the
existence of the conjugate variable, let us call it Q. It can also find its way into the reduced
Hamiltonian and now both Q, M can change in time and, in particular, we can have the
backreaction from the multipole and matter degrees of freedom to Q, M.

We will now give a self-contained exposition of how the time variable comes into
existence. The mechanism at work is a one-parameter family of purely temporal diffeo-
morphisms that we use to pull back the Schwarzschild metric away from the GPG. This
leaves the radial coordinate intact but changes lapse, shift and the radial-radial component
of the spatial metric. For instance, we can choose that one-parameter family such that the
pulled-back metric deviates from the exact GPG only in an arbitrarily small neighborhood
of the core r = 0, say in a Planck-length neighborhood which is the region of spacetime in
which we do not trust classical GR anyway, in fact, from a strictly classical point of view the
point of view, r = 0 or a neighborhood of it should be cut out from the physical spacetime.
The parameter Q is directly determined by that temporal diffeomorphism. If one considers
that diffeomorphism as a gauge transformation then Q would be considered as a gauge
degree of freedom. If one considers that diffeomorphism as a symmetry transformation then
Q would be considered as a Dirac observable. It is the first point of view that is taken in
Birkhoff’s theorem coming from a Lagrangean point of view, thereby explaining why one
only has the mass parameter as an observable. It is the second point of view which is taken
coming from the Hamiltonian point of view.

We thus follow the Hamiltonian path in order to keep the possibility open that also
the remnant mass can change dynamically. In the main text and Appendix D we show that
one can also have Q existent without that it leaves a trace in the physical Hamiltonian by
exploiting that the expression that defines Q requires regularization which introduces the
required one-parameter freedom without implementing it into the gauge fixing condition.
Still, evaporation is not excluded because 2M is not the event horizon or apparent horizon
when there is radiation present.

Appendix B.1. The Reduced Phase Space of Spherically Symmetric Vacuum GR

Proceeding to the details, following the notation of Section 4 in the purely spherically
symmetric sector we have the following two constraints prior to any gauge fixing of
2 q0 = ΩABqAB, q3 = q33 with conjugate momenta p0 = PABΩAB/ω, p3 = P33/ω

v3 := V3/ω = p0 q′0 + p3 q′3 − 2(q3 p3)′, v0 := V0

√

det(q)/ω2 =
1

2
(q3 p3)2 − (q0 p0)(q3 p3)− det(q)R/ω2 (A17)

By introducing p0 = (p3q′3 + 2[p3]′q3)/q′0 into V0 relying on q′0 > 0 as
√

q0 should be the
radial coordinate up to a radial diffeomorphism, we have

v0 = − q3 q3/2
0

q′0
[
q3[p

3]2

q1/2
0

]′ − det(q)R/ω2 (A18)

By working out the Ricci scalar explicitly for the non-vanishing components q33, qAB =
q0/2 ΩAB one finds after a longer calculation

v0 = −4
q3 q3/2

0

q′0
{ q3[p

3]2

4 q1/2
0

+ q1/2
0 [1 − (

√
q0

′
√

q3
)2]}′ (A19)
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In the exact GPG q0 = r2, q3 = 1, p3 = 2
√

2Mr we see that the curly bracket is just twice
the black hole mass M. Without imposing any gauge, let us call this quantity m. Then, a
non-trivial calculation confirms that we can pass to new canonical coordinates

γ =
√

q33, pγ = −2γp3, δ =
√

q0, pδ = 2δ p0 (A20)

and after that

m =
p2

γ

16δ
+ δ(1 − [

δ′

γ
]2), pm =

γ pγ

2δΦ
, Φ = 1 − m

δ
, X = δ, pX = pδ − (γ p′γ + m′pm)/δ′ (A21)

which enables us to express the constraints in the equivalent form

ṽ3 = pm m′ + pX X′, ṽ0 = m′ (A22)

which simply enforce pX = 0, m′ = 0.
The transformation (A20) is easy but (A21) is non-trivial to check, see [23,73,74]. A

short-cut is as follows:
The spatial diffeomorphism constraint v3 = δ′ pδ − γ p′γ identifies δ, pγ radial scalars

and pδ, γ as radial scalars of density weight one. Thus, pδ/δ′, γ/δ′ as radial scalars. For any
radial scalar F the function F̂(s) = F(r = δ−1(s)) is spatially diffeomorphism invariant for
any value of s relying on δ : R → R; r 7→ δ(r) = s to be a diffeomorphism (if one wants to
consider one asymptotic end only, one just has to restrict r to positive or negative values,
respectively). Explicitly, one has

F̂(s) =
∫ ∞

−∞
dr δ′(r) ∆(δ(r), s) F(r) (A23)

where ∆ is the δ distribution. This makes it possible to compute the Poisson brackets among
γ̂(s), P̂γ(s) and with v3. That computation shows that {P̂γ(s), γ̂(s̃)} = δ(s, s̃) and that they
have vanishing Poisson brackets with v3. The function m̂(s) can now be expressed just in
terms of these

m̂(s) =
P̂2

γ(s)

16s
+ s [1 − γ̂−2(s)] (A24)

and the Hamiltonian constraint becomes m̂′(s) = 0. As (A24) has no derivatives with
respect to s we have {m̂(s), m̂(s̃)} = 0. To construct a momentum P̂m conjugate to m̂

we solve (A24) for P̂γ(s) = 4 s σ

√

m̂(s)
s + γ̂−2(s)− 1 with σ = ±1 and plug it into the

symplectic potential Θ̂ = −
∫

ds γ̂ δP̂γ. Then, we take the functional exterior derivative

Ω̂ = δΘ̂ = −
∫

ds δγ̂ ∧ δP̂γ = −
∫

ds [
∂P̂γ

∂m̂
δγ̂] ∧ δm (A25)

so that δ p̂m at fixed m̂ must be − ∂P̂γ

∂m̂ δγ̂. This is indeed solved by

P̂m = 2σ

√

1 − γ̂2Φ̂

Φ̂
, Φ̂ = 1 − m̂

s
(A26)

modulo addition of a function that just depends on m̂. It is instructive to check by hand
that P̂m, m̂ are conjugate. For this one needs to plug (A24) into (A26) which yields

P̂m =
γ̂

2

[P̂γ/s]

γ̂−2 − 1
16 [P̂γ/s]2

(A27)

The two constraints pX(r) = 0 and m′(r) = 0, respectively, bring us exactly into the
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situation of models A and B of the previous section. In terms of these canonical coordinates
and setting p = m, q = −pm we have the symplectic structure

Θ =
∫

dx [pX(x)δX(x) + p(x)δq(x)] (A28)

Note, that our aim is to solve the original constraints for p0, p3 which are encoded in
pX , m and not pX , pm which is why we switched the roles of momentum and configuration
coordinates with respect to m.

By the results of the previous section, the coordinatization of the reduced phase
of the equivalent set of constraints pX(x) = 0, p′(x) = 0 is now very transparent: X
is pure gauge while q must carry one degree of freedom Q. Also, pX(x) = 0 fixes pX

completely while p′(x) = 0 retains one parameter P (integration constant) as unconstrained.
The reduced phase space of the system is thus two-dimensional encoded by Q, P and the
reduced Hamiltonian is H = κP up to a constant κ. Thus, up to a constant κ, the physical
Hamiltonian is the ADM mass or energy as one would have expected. The conjugate
variable Q thus plays the role of an intrinsic time variable whose ticking rate is given by κ
which can be chosen to be any value (reparametrisation of the coordinate time).

Appendix B.2. Gauge Fixings Consistent with the Existence of Q

The task left over is to pick a suitable set of gauge fixings which gives rise to Q, i.e.,
yields

Q =
∫ ∞

−∞
dr q(r) = −

∫ ∞

−∞
dr pm(r) (A29)

We have the freedom to subtract from Q an arbitrary function of P because that will change
the reduced symplectic potential Θ = PδQ only by a total differential, hence we require

Q = −
∫ ∞

0
dr [pm(r)− fP(r)] (A30)

Without specifying q33 = γ2, q0 = δ2 for the moment, we can solve m′(r) = 0 as m(r) = P
and solve for pm in terms of γ, δ, P which yields

pm =
γpγ

2δΦ
=

2γ

Φ

pγ

4δ
=

2γσ

Φ

√

[
δ′

γ
]2 − Φ, Φ = 1 − P

|δ| (A31)

where σ is the sign freedom left over from solving the quadratic equation m = P for Pγ and
we note that when solving that equation one finds that the argument of the square root in
(A31) is constrained to be non-negative.

We note that in the exact GPG, we would choose δ = r, γ = 1 which would give

[ δ′
γ ]

2 − Φ = P
|r| ≥ 0 constraining P to be positive. In order to give Q an independent value

that gauge must be relaxed by a one-parameter family of gauges. Among the many possible
choices, we will discuss here two simple possibilities.

Range restriction

This is motivated by Appendix C.3 where we construct a non-singular spacetime by
gluing a black hole and a white hole spacetime along a cylinder |r| = l < R = 2M. We then
have for q = −pm, fP = 0

Q =
∫

|r|≥l
dr q(r) =

∫ l

−l
dr q(r) +

∫

R

dr q(r) (A32)

The second integral in (A32) is ill-defined as it stands and must be defined by a limiting
procedure (principal value). Alternatively, we can simply drop it because it just depends on
M thus drops out of the symplectic structure. The calculation is carried out in Appendix C.6.
It can be given any value and thus can be used to define Q for l ≡ 0, see that section for
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details. Here, we use that regularization freedom to make the second integral vanish.
The first integral then gives

Q = −4σ
∫ l

0
dr

√
R/r

1 − R/r
= −4σ R [2

√

l

R
− ln(

1 +
√

l
R

1 −
√

l
R

)] (A33)

Since the reduced Hamiltonian is H = κ M, κ > 0 and M, Q are conjugate this gives the
equations of motion Q̇ = κ > 0, Ṁ = 0, hence the variable Q is eventually positive which
means that σ.0 so that for large times τ and with c = κ/4

cτ

R
= −2

√

l

R
+ ln(

1 +
√

l
R

1 −
√

l
R

) (A34)

Since this diverges with τ, l(τ) → R−. Thus, for large τ

l = R th
2(

cτ

R
) (A35)

i.e., the solution approaches exponentially fast the Einstein – Rosen bridge solution |r| ≥ R
with two asymptotic ends. Thus for late times, the second parameter l gets frozen to R
and the metric depends only on a single parameter R. However, in this implementation,
the interior of the black hole is cut out from spacetime. We will, therefore, not consider this
possibility further in what follows.

Local deviation from exact GPG

We generalize the gauge to δ = r, γ =
√

1 + ∆ where ∆ will be further specified below
and which will be non-vanishing only in compact subsets of R+ and carries the information
about Q. In particular, ∆ > −1 in order that the metric stays non-degenerate. As P is
constrained to be a constant, this still imposes P > 0. The motivation for that particular
generalization within the Hamiltonian analysis is that the spatial diffeomorphism constraint
generates radial reparametrizations, and therefore, we can always choose δ = r. On the
other hand the relation between temporal spacetime diffeomorphisms and the gauge
transformations generated by the Hamiltonian constraint is more tricky: These two notions
only coincide on shell, i.e., when the equations of motion (e.g., vacuum Einstein equations)
hold. We will not violate those equations at all, we simply pull back the exact GPG form
of the Schwarzschild metric by a temporal diffeomorphism which encodes ∆ and that
pulled back metric then still solves the Einstein equations. In particular, we will not at
all contradict Birkhoff’s theorem because in contrast to the Hamiltonian picture, in the
Lagrangian picture one considers all diffeomorphisms as a gauge transformation.

In that parametrized GPG (PGPG – by Q) the spatial line element reads

q33 dr2 + q0 ΩAB dyA dyB = γ2 dr2 + r2 ΩAB dyA dyB (A36)

Then, (A31) becomes

pm =
2σ

Φ

√

1 − γ2Φ, (A37)

In order for the square root to be well-defined it is sufficient to require that γ2Φ ≤ 1 for
|r| > P. This will be, in particular, the case for γ2 ≤ 1 for all r. We will choose ∆ ̸= 0 for
some subset of [−P, P] which thus satisfies this requirement. Accordingly the integral of
pm approaches for large |r| the function |r|−1/2 and thus would diverge. We thus use the
freedom to add to Q a function that depends just on P which does not change the reduced
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symplectic structure and makes the integral defining Q converge. The natural choice is to
subtract from (A37) its value in the exact GPG (i.e., for γ = 1), i.e., we define

Q = −2σ
∫ ∞

−∞

√

1 − γ2Φ −
√

1 − Φ

Φ
= 4σ

∫ ∞

0

∆
√

1 − [1 + ∆]Φ +
√

1 − Φ
(A38)

where we focus on even functions ∆(r) = ∆(−r) so that we can restrict to the positive axis.
The integral is now confined to the support of ∆ which will lie in the region where Φ < 0.
We will choose ∆ ≥ 0 there so that we obtain the interpretation

σ = sgn(Q) (A39)

Let now w ≥ 0 be a function of compact support in [0, P] such that
∫ ∞

0 dr w = 1 then we
pick ∆ such that

w |Q|
2

=
∆

√

1 − [1 + ∆]Φ +
√

1 − Φ
(A40)

This can be solved for ∆ and yields either ∆ = w = 0 or

∆ = |Q| w [
√

1 − Φ − |Q| w Φ/4] (A41)

which is manifestly nonnegative as Φ < 0 in the support of w. If we want the support
of w to be independent of the value of P we can restrict it to the interval [0, ℓ], l = ϵℓP]
with ϵ ≤ 1 because a Planck size black hole mass is believed to be outside of the regime of
classical GR and within classical GR it is well-motivated to cut out the region r ≤ ℓP from
the physical manifold. Alternatively, we may pick ℓ = min(ϵℓP, P/2). Then, with χ[0,ℓ] the
characteristic function of that interval we make the Ansatz

w(r) = χ[0,ℓ] f (r), f ≥ 0 (A42)

so that

∆ = |Q| χ[0,ℓ] [
f

r1/2

√
P + |Q| f 2

r
(P − r)/4] (A43)

This is regular at r = 0 e.g., for the choice f (r) = h
√

r for some height amplitude h and
yields

∆ = |Q| χ[0,ℓ] [h
√

P + |Q| h2 (P − r)/4] (A44)

The height h is fixed by the requirement

∫ ∞

0
dr w = h

∫ ℓ

0
dr

√
r =

2h

3
[ℓ]3/2 = 1 (A45)

so that we finally obtain

∆ =
|Q|
ℓ

χ[0,ℓ] [
3

2

√

P

ℓ
+

9

16

|Q|
ℓ

P − r

ℓ
] (A46)

in particular

∆(0) =
3

2
z1/2 +

9

16
z, z =

P Q2

[ℓ]3
(A47)

which is also the maximal value that ∆ can be taken for this particular gauge. Note, that
the range of Q is all of R which is compatible with the equation of motion Q̇ = κ that
follows from the reduced Hamiltonian H = κP. The non-differentiable step function can
be mollified to obtain a smooth function which would yield qualitatively similar formulae.

This proves that a suitable gauge for γ exists that produces a given value of Q indepen-
dent of the value of P and that deviates from the exact GPG only very locally, i.e., γ2 = 1
except for a neighborhood of zero of at most of Planck size behind the event horizon.
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Appendix B.3. Relation between Existence of Q and Temporal Diffeomorphisms

To relate a deviation from the strict GPG to a spacetime diffeomorphism we write the
Schwarzschild metric in exact GPG

ds2 = −[1 − 2M

|r| ] dτ2 + 2

√

2M

|r| dr dt + dr2 + r2 ΩAB dyA dyB (A48)

and pull it back by a temporal diffeomorphism

r = ρ(τ̃, r̃) := r̃, τ = T(τ̃, r̃) (A49)

and rewriting (A48) in terms of the coordinate τ̃. That reparametrized metric still solves
the Einstein equations, no matter what the function T is, as long as ∂t̃T > 0, since then we
have just carried out a diffeomorphism (A49) as det(∂(τ, r)/∂(τ̃, r̃)) = ∂t̃T(τ̃, r̃). That the
pulled back metric still solves the Einstein equations is obvious from its tensorial character
but can of course also be verified by hand.

The spatial part of the metric pulled back by this diffeomorphism starting from GPG
q3 =:= γ2 = 1, q0 = r2 becomes

q̃3(τ̃, r̃) = γ̃2(τ̃, r̃) = 1 − Φ(r̃) [∂r̃ T(τ̃, r̃)]2 + 2
√

1 − Φ(r̃) [∂r̃ T(τ̃, r̃)], q̃A = 0, q̃0(t̃, r̃) = r̃2 (A50)

where Φ(r) = 1 − 2M/|r|. It is, therefore, still flat in regions where ∂r̃ T(t̃, r̃) = 0. If we
compare (A50) with q3 =: γ2 =: 1 + ∆, m := 2M from the previous subsection we obtain
the relation

|Q|w
2

= ∂r̃ T(t̃, r̃) (A51)

where w has compact support in an at-most Planck size neighborhood of the origin and
Q is the aforementioned second Dirac observable which can, in principle, be an arbitrary
function of coordinate time t̃ and which is canonically conjugate to the mass m. As the
physical Hamiltonian is just m up to a constant, Q is actually linear in τ̃ on shell.

The GPG lapse α = 1 and shift β =
√

1 − Φ become upon pull-back

α̃2 − β̃2 = Φ[∂τ̃ T(τ̃, r̃)]2, β̃γ̃ = [
√

1 − Φ − Φ∂r̃ T(t̃, r̃)] ∂τ̃ T(τ̃, r̃) (A52)

This can be combined with (A50) to

(α̃γ̃)2 = (∂τ̃ T(τ̃, r̃))2 (A53)

Here, we have employed a general parameterization of spherically symmetric spacetimes
in coordinates τ, r given by gττ = −α2 + β2, gτr = βγ, grr = γ2, gAB = δ2 ΩAB and in the
radial gauge δ = r chosen here the Einstein equations are equivalent to (we drop the tilde
again)

1 − γ−2 +
β2

γ2α2
= 1 − 2M

r
, ∂t M = ∂r M = 0, ∂tγ =

β

γα
∂r[γα] (A54)

which can be combined and integrated to parameterize the metric as a function of γ

β = σα
√

1 − γ2Φ, (γα)(τ, r) = [∂τ T̂](τ)− σ ∂τ [
∫ r

0
ds [

√

1 − γ2Φ −
√

1 − Φ

Φ
](τ, s)] (A55)

where T̂(τ) is an arbitrary function of time and σ a sign which determines whether we
consider the out/ingoing patch (σ = ±1). If we compare this with the definition of Q in
the previous section and with (A53) we find

(γα)(τ, r) = [∂τ T̂](τ) + [∂τQ]
1

2
[
∫ r

−∞
ds w(s)], lim

r→∞
αγ = ∂τ [T̂(τ) + Q/2] = ∂τT, βγ → σαγ

√

1 − γ2Φ (A56)
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As γ → 1 at infinity, we see that α, β approach their exact lapse and shift value value
in GPG up to a pure time reparametrisation. The result of the previous section κ :=
α(∞)− α(−∞) = Q̇ agrees with the Hamiltonian equations of motion.

Thus, the physical meaning of the time function Q has been worked out: It is canoni-
cally conjugated to m and its clicking rate at infinity coincides both with the asymptotic
lapse value and the asymptotic clicking rate of the temporal diffeomorphism. The temporal

diffeomorphism obeys T′ = |Q|w and Ṫ = ˙̂T + ∂τ [
∫

dsT′] and this PDE system is solved by

T(τ, r) = T̂(τ) +
Q(τ)

2

∫ r

−∞
dsw(s) (A57)

This diffeomorphism is generically not an asymptotic identity even if T̂(τ) = τ unless
Q = 0 and thus should not be considered as a gauge transformation but rather a symmetry
transformation in agreement with the Hamiltonian distinction between symmetry and
gauge reviewed in the previous section.

The choice of a one-parameter set of gauge fixings consistent with Q given in the
previous subsection that deviates from the exact GPG only locally in a neighborhood of
the origin r = 0 of at most Planck size has the advantage that it is not observable from the
outside of the black hole. On the other hand, it makes the analysis of mode functions in such
a spacetime very hard. In the next section we, therefore, consider another one-parameter set
of gauge fixings consistent with Q which has a non-local effect on the spacetime metric and
which has an intuitively quite appealing interpretation in terms of the energy of timelike
observers called generalized Painlevé Gullstrand coordinates.

Appendix C. Generalized Gullstrand–Painlevé Coordinates

We review here the theory of radial timelike geodesics in Schwarzschild spacetime
with mass M [56–58]. These define a one-parameter set e 7→ C±

e of congruences C±
e of

free-falling observers that fill the spacetime starting (ending) at timelike infinity and ending
(starting) at the singularity for the ingoing (outgoing) congruence C−

e (C+
e ), respectively.

The parameter e ≥ 1 has the physical interpretation of the special relativistic energy per
unit mass at spatial infinity (i.e., e = [1 − (v/c)2]−1/2 if v is the velocity at spatial infinity).
For each congruence C±

e the geodesics fill an asymptotic end and the white (black) hole
region of the Kruskal extension, respectively. The radial geodesics c±e,ρ,Ω ∈ C±

e are labeled,

besides the angular direction Ω, by a parameter ρ ∈ R that labels the range of the affine
parameter τ along the geodesic where τ ∈ (−∞, ρ) for c−e;ρ,Ω and τ ∈ (ρ, ∞) for c+e;ρ,Ω and

at τ = ρ the geodesic intersects the singularity r = 0.
The set of synchronous points Σ±

e,τ = {c±e;ρ,Ω(τ); ±(τ − ρ) ≥ 0, Ω ∈ S2} defines the

leaf of a foliation of the white (black) hole and asymptotic region by spacelike hypersurfaces.
However, since they start (end) at the singularity, none of them is a Cauchy surface,
i.e., there exist inextendible causal curves not intersecting them. Thus, one cannot use them
for the initial value formulation. One could use a segment of the singularity to turn them
into Cauchy surfaces but then different leaves of the foliation would not be disjointed. One
could use two asymptotic ends in the same Kruskal spacetime and join say the two ingoing
geodesics from the two ends that hit the same point of the singularity in the black hole
region to form Cauchy surfaces but these intersect and do not form a foliation. However,
one can join an ingoing geodesic in the part of a past Kruskal spacetime covering the
Schwarzschild (SS) and black hole (BH) region with an outgoing geodesic in a different,
i.e., future Kruskal spacetime covering the mirror Schwarzschild (MSS) and white hole
(WH) region that hit the same point of the singularity. We may then consider the geodesics
ce;ρ,Ω with ce;ρ,Ω(τ) := c±e;ρ,Ω(τ) for ±(τ − ρ) ≥ 0 and their synchronous hypersurfaces

Σe,τ = {c±e;ρ,Ω(τ); ρ ∈ R, Ω ∈ S2}. The resulting black hole white hole transition spacetime M

consisting of the four pieces SS, BH, WH, MSS is then foliated by the Σe,τ which are Cauchy
surfaces for (M, g), where g is the extension of the Schwarzschild metric just outlined, is
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then globally hyperbolic (but singular) in the usual sense in the future and past Kruskal
patches. We also consider a non singular wormhole regularization of that spacetime.

Therefore, (M, g) is an interesting spacetime to study when analyzing questions such
as black hole–white hole transition (BHWHT) and singularity resolution in quantum gravity
as we explore both interior and exterior regions of spactime. Moreover, the free falling
observer congruences labeled by e define a natural 1-parameter family of gauge fixing
conditions for black hole spacetimes and corresponding preferred generalized Gullstrand–
Painlevé (GGP) coordinates. A parameter like e is motivated by the result of the previous
Appendix because the constraints depend on spatial derivatives giving rise to two Dirac
observables even in vacuum. These will be related to the mass M and e as we will see in the
course of this appendix which are natural observables to consider in spherically symmetric
spacetimes. Finally, each foliation τ 7→ Σe,τ makes it possible to use the machinery of QFT
in CST and to define 1-particle inner products, etc., to study Hawking radiation, etc.

Appendix C.1. Radial Timelike Geodesics in Spherically Symmetric Vacuum Spacetimes

We consider the exterior static region of a spherically symmetric black hole with mass
M > 0, usual Schwarzschild coordinates t ∈ R, r > 2M, Ω = (θ, ϕ) ∈ S2 and line element

ds2 = −Φ dt2 + Φ−1 dr2 + r2 dΩ2, Φ = 1 − 2M

r
(A58)

which has a timelike Killing vector field ξ = ∂t = δ
µ
t ∂µ.

A radial Ω = const., timelike g(u, u) < 0; u = ċ geodesic τ → c(τ) with affine
parameter τ i.e., ∇uu = 0 obeys ∇ug(u, u) = 0 and provides two constants of motion
K := g(u, u) and e := −g(u, ξ). As usual, we may fix K = −1 by rescaling the affine
parameter so that

−1 = −Φ(r(τ)) ṫ(τ)2 + Φ−1(r(τ)) ṙ(τ)2, e = Φ(r(τ)) ˙t(τ) (A59)

It follows with R := 2M

ṙ2 = e2 − Φ = e2 − 1 +
R

r
(A60)

We are interested in geodesics that extend all the way to spatial infinity r = +∞ which
requires that

e2 ≥ 1 (A61)

The geodesic label by e has an outgoing and ingoing branch corresponding to the choice of
the square root of (A60)

ṙ = ±
√

e2 − 1 +
R

r
(A62)

Although the coordinate system is a priori only defined for r > R, Equation (A62) is
meaningful for r ∈ R+. We note that

ut = gtµuµ = −Φut = −Φṫ = −e, ur = grµuµ = Φ−1ur = Φ−1ṙ = ±Φ−1
√

e2 − Φ =: ± f ′(r), uθ = uϕ = 0 (A63)

which means that uµ = −∇µτ±
e where

τ±
e := e t ∓ f (r), f ′(r) = Φ−1(r)

√

e2 − Φ(r) (A64)

Thus, ∇[µuν] = 0 so that the geodesics are hypersurface orthogonal, forming a foliation by

τ±
e = const. hypersurfaces.

The coordinates (τ = τ±
e , r) are called out(in) going generalized Gullstrand–Painlevé

(GGP) coordinates. The line element in terms of them is obtained from

t(τ, r) = e−1[τ ± f (r)], f ′(r) =
√

e2 − Φ Φ−1 ⇒ ds2 = −e−2Φ dτ2 ∓ 2 e−2
√

e2 − Φ dτ dr + e−2 dr2 + r2 dΩ2 (A65)
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which does not require to solve for f (r) explicitly. The line element (A65) is no longer static
but still stationary. It is easy to check that the outgoing (ingoing) future oriented (with
respect to τ) unit timelike geodesics with congruence parameter e′ ≥ 1 in the outgoing
(ingoing) version of the line element (A65) have full range r ∈ R+ but intersect r = 0 at
finite τ. The future oriented ingoing (outgoing) geodesics in the outgoing (ingoing) version
of (A65) on the other hand are confined to r > 2M.

The ADM data of (A65) are

qrr = e−2, qAB = r2ΩAB, qrA = 0, Na = ∓δa
r

√

e2 − Φ, N = 1 (A66)

which gives the future-oriented timelike unit normal to the τ = const. leaves n = N−1(∂τ −
Na∂a) = ∂τ ±

√
e2 − Φ∂r. Note, that the vector field ∂τ in these (τ, r) coordinates is a

Killing vector field but it is not everywhere timelike and nowhere orthogonal to the τ =
const. foliation.

On the other hand, Gaussian or synchronous coordinates are characterized by unit
lapse squared and vanishing shift. One obtains them most easily from (A65) by computing
the function r = a(τ, ρ)

ds2 = e−2 (−Φ ∓ 2 ȧ
√

e2 − Φ + ȧ2) dτ2 + 2 a′ e−2 (ȧ ∓
√

e2 − 1 − Φ) dτ dρ + [a′]2 dρ2 + a2 dΩ2 (A67)

with ȧ = ∂τa, a′ = ∂ρa. The shift vanishes if

ȧ = ±
√

e2 − Φ (A68)

It follows
ds2 = −dτ2 + e−2 (a′)2 dρ2 + a2 dΩ2 (A69)

We call the integration constant ρ = ρ±e in (A68) and find

±(τ − ρ) =
∫

da [e2 − Φ(a)]−1/2 (A70)

which shows that ȧ = −a′ hence without further calculation

ds2 = −dτ2 + e−2[e2 − Φ(a)] dρ2 + a2 dΩ2 (A71)

with a implicitly determined by (A70).
To actually determine a we have to treat the case e2 = 1 separately. The integral

is elementary

±(τ − ρ) =
2

3
a3/2 R−1/2 ⇔ r = a(τ, ρ) = [±3

2

√
R(τ − ρ)]2/3 (A72)

valid for ±(τ − ρ) > 0. Then, (A71) simplifies

ds2 = −dτ2 +
R

a
dρ2 + a2 dΩ2 (A73)

For e2 > 1 we introduce the quantity

z :=

√

(e2 − 1)
a

R
(A74)

then

±(τ − ρ) = R (e2 − 1)3/2 h(z), h(z) = [z
√

z2 + 1 − ln(z +
√

z2 + 1)], h′(z) = 2
z2

√
z2 + 1

(A75)

which determines r = a(τ, ρ) implicitly. Since h is monotonously increasing and h(0) = 0,
again the range of τ, ρ is constrained by ±(τ − ρ) > 0.
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Note, that the metric coefficients gττ , gρρ, gAB, A, B = 1, 2 in (A71) only depend on a
and thus τ − ρ. Therefore, ξe := ∂τ + ∂ρ is a Killing vector field [Lξe

g]µν = ξσ
e gµν,σ = 0

with norm g(ξe, ξe) = −1 + 1 − Φ
e2 = −Φ

e2 that is timelike for r = a > M. Thus, ξe must
coincide for a > R with ξ = ∂t up to a constant, which can be confirmed. Evaluating the
norm at spatial infinity a = ∞ we find ξe = e−1ξ.

Note, also that the change between GGP coordinates (τ, r) and synchronous coor-
dinates τ̃, ρ with τ = τ̃, r = a(τ̃, ρ) gives ∂τ = ∂τ̃ + ([∂τb(τ, r)]r=a(τ,ρ))τ=τ̃ ∂ρ where
b(τ, a(τ, ρ)) = ρ inverts r = a(τ, ρ) for ρ = b(τ, r) at fixed τ. Thus, 0 = b,τ(τ, r =
a) + b,r(τ, r = a) a,τ , 1 = b,r(τ, r = a) a,ρ and since a,ρ + a,τ = 0 it follows ∂τ = ∂τ̃ + ∂ρ.
Thus, while τ̃ = τ there is a non-trivial transformation between ∂τ , ∂τ̃ as vector fields when
changing from GGP to synchronous coordinates. This also explains why ∂τ is a KVF but
not hypersurface orthogonal while ∂τ̃ is no KVF but hypersurface orthogonal. With this
clarification out of the way, we keep the notation ∂τ for both coordinate systems but have
to remember the difference between the roles that ∂τ plays in them.

We consider the geodesic congruence with congruence parameter e′ and geodesic
tangent u = ∂s = uτ∂τ + uρ∂ρ, uτ = dτ/ds, uρ = dρ/ds in the coordinates τ = τ±

e ,
ρ = ρ±e . Then,

−e′ = g(u, ξ) = e[−dτ/ds + (1 − Φ/e2) dρ/ds], −1 = g(u, u) =
dτ

ds

2

+ [1 − Φ

e2
] [

dρ

ds
]2 (A76)

These have two solutions. The outgoing solution for τ − ρ > 0 and the ingoing solution

for τ − ρ < 0, respectively, correspond to ρ = const. and dτ/ds = e′
e which can be seen

from the fact that a(τ, ρ) is monotonously increasing and, respectively, decreasing with
increasing τ thanks to the monotonocity of h in (A72). For the geodesic congruence e′ = e
we see that τ = s coincides with the proper time along the geodesics.

Thus, the out(in) going geodesic congruence with e′ = e becomes especially simple
in out(in)going synchronous coordinates τ = τ±

e , ρ = ρ±e , they are just the lines ρ = const.
and s 7→ τ = s and are valid for τ > ρ and τ < ρ, respectively. All geodesic observers
are synchronized on the τ = const. hypersurface Σ±

e,τ = {±(τ − ρ) > 0, Ω ∈ S2}. The
hypersurfaces are mutually disjointed and cover one exterior region and the white (black)
hole region of the Kruskal extension. Since 1 − Φ(a)/e2 > 0 for all a ∈ R+ and e2 ≥ 1 the
hypersurfaces τ = const have the intrinsic metric of manifestly positive signature and are
thus spacelike. The vector field ∂τ is everywhere timelike and in fact the future oriented
timelike unit normal to the hypersurfaces; however, it is not a Killing vector field, and
therefore, for the geodesic observer the metric is eigentime τ dependent both in the exterior
and interior region. Yet, the observer (in the ideal limit of vanishing spatial extension) feels
no tidal forces and thus considers themselves in an inertial frame.

Appendix C.2. Black Hole White Hole Transition

The geodesic congruence C+
e , C−

e determines a spacelike foliation of the WH and MSS
region or BH and SS region, respectively. However, none of the leaves Σ±

e,τ of the foliation
is a Cauchy surface for those parts of the Kruskal spacetime because ρ is not allowed to
take full range R, rather it is restricted by ±(τ − ρ) > 0. The obvious idea to turn them into
Cauchy surfaces is to consider a gluing of a past SS and BH part of one Kruskal spacetime
with a future WH and MSS part of another Kruskal spacetime along the singularity a = 0.
Accordingly, we consider fixed e coordinates τ, ρ ∈ R and the metric

ds2 = −dτ2 + [1 − Φ(a)

e2
] dρ2 + a2 dΩ2 (A77)

where a(τ, ρ) is the function implicitly defined by

|τ − ρ| =
{

R (e2 − 1)3/2) h(z), h(z) = [z
√

z2 + 1 − ln(z +
√

z2 + 1)], z = [(e2 − 1)a/R]1/2 e2 > 1
2
3

a3/2

R1/2 e2 = 1
(A78)
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The metric (A77) is singular at the singularity “hypersurface” τ = ρ where a = 0. In the
(τ, ρ) diagram the geodesics ρ = const. cross the singularity at the proper time τ = ρ
smoothly. The radial coordinate a(τ, ρ) → 0 is also continuous at τ = ρ but the radial
velocity da/dτ → ∓∞ as τ → ρ∓. The τ = const. surfaces also intersect the singularity
transversally in the (τ, ρ) diagram. Nevertheless, they are geometrically tangential: The
reason for this is that the co-normals n, n′ to the τ = const. and the τ − ρ = 0 surface,
respectively, are given by nµ = ∇µτ = δτ

µ, n′
µ = ∇µ(τ − ρ) = δτ

µ − δ
ρ
µ, hence the normal

is given by nµ = gµνnν = −δ
µ
τ and n′µ = gµνn′

ν = −δ
µ
τ + a

R δ
µ
ρ , respectively, thus n = n′ at

a = 0.
We can return to GGP coordinates but need two radial coordinates, i.e., a past radial

coordinate r and a future radial coordinate r̄ which are related to τ, ρ by

r = a(τ, ρ); t < ρ; r̄ = a(τ, ρ); t > ρ (A79)

These can be combined into a single coordinate

z = −sgn(τ − ρ)a(τ, ρ) =

{

−r̄ τ > ρ
r τ < ρ

(A80)

which like ρ takes full range in R. Then, dz/dτ < 0 (thus, z is monotonous along the
geodesic) taking its minimal value −∞ at τ = ρ and its maximal value −

√
e2 − 1 at τ = ±∞.

Note, that if we use the same τ, θ, ϕ coordinates for the whole spacetime; therefore, the
radial geodesics ρ, θ, ϕ = const. change to the opposite direction when passing through
the singularity.

Appendix C.3. Non-Singular Spacetime

In terms of the synchronous coordinates, the surface a(τ, ρ) = 0 is three-dimensional
but in terms of the Cartesian coordinates xa = rΩa, x̄a = r̄Ωa, a = 1, 2, 3 which vanish at
the singularity, it is just a one-dimensional line. This can be seen also by considering the
surface τ = ρ + ϵ, ϵ ̸= 0 which has induced line element

ds2 = −Φ(a)

e2
dρ2 + a2 dΩ2 (A81)

which for ϵ → 0 results in R > a → 0 so that 0 < −Φ(a) → +∞ while a → 0 so that (A80)
formally has the signature (1, 0, 0).

Following ideas about non-singular and wormhole spacetimes such as [117,118] we
may exclude the singularity in an ad-hoc manner by simply restricting the range of r, r̄
to (l, ∞), l > 0 and perform the gluing for each τ at r = r̄ = l, θ = θ̄, ϕ = ϕ̄ or at
r = r̄ = l, θ = π − θ̄, ϕ = π + ϕ̄. which now has the the topology of R × S2. In
contrast to [117] and similar to [118] this still defines a vacuum solution for any r, r̄ > l,
i.e., the energy-momentum tensor vanishes. This has the following mild disadvantage:
The geodesic ρ = const. in the region ±(τ − ρ) > 0 hits the value r = a(τ, ρ) = l at a
value τ±

l (ρ) = ρ ± ϵl where a(τ±
l (ρ), ρ) = l. Thus, the geodesic that starts at ρ = const. in

the τ < ρ region cannot continue as the geodesic with the same value of ρ in the τ > ρ
region if the affine parameter is to be continuous. Rather, the geodesic parameter must
change to ρ′ where τ+

l (ρ′) = τ−
l (ρ). In the first gluing option the geodesic then continues

in the opposite direction, in the second gluing option it continues into the same direction
(remember that the geodesics are in/outgoing, respectively). If one wishes to interpret this
in a τ, z diagram in which the angular dimension is suppressed, then it appears as if the
geodesic jumps between z = ±l. However, if we consider a three-dimensional diagram in
which we depict the angular dependence by circles, then we should consider two copies
of R3 covered by coordinates τ, r, φ and τ̄, r̄, φ̄ from which we cut out the solid cylinders
0 ≤ r ≤ l and 0 ≤ r̄ ≤ l, respectively. We then glue the surfaces r = l and r̄ = l of the
cylinders at either τ = τ̄, φ = φ̄ or τ = τ̄, φ = π + φ̄. A radial inward geodesic φ = const.
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starting in the first copy then hits r = l at some τ and continues either as the geodesic
φ̄ = φ = const. into the opposite or as the geodesic φ̄ = π + φ = const. into the same
direction. In both cases the geodesic is continuous because of the prescription in which we
identified the points. In the second gluing option also the first derivative of the geodesic
is continuous. W.l.g. consider the ingoing radial geodesic in 1-direction τ 7→ (rρ(τ), 0, 0)
with τ ∈ (−∞, τl), rρ(τl) = l. Then, it continues as the outgoing geodesic (r̄ρ̄(τ), 0, 0) with
τ ∈ (τl , ∞), rρ̄(τl) = l in the first option and as (−r̄ρ̄(τ), 0, 0) in the second. We have by
construction −ṙρ(τl) = ˙̄rρ̄(τl) > 0. This spacetime is, therefore, geodesically complete with
respect to the observers in these congruences and in that sense singularity-free. In the
first option, an observer considers themselves as “bounced” off r = l when entering the
second universe while in the second option, they consider themselves as “gone through”
the cylinder.

Note, that no causal geodesic can stay on the cylinder surface r = l as it is spacelike.
The r = const. surfaces are timelike/null/spacelike for r > / = / < R as may be seen
easiest from (A82) while the hypersurfaces τ = const. are always spacelike. Therefore,
the cylinder surfaces r = l are for l < R certainly spacelike and thus causal geodesics
must cross them transversally. The cylinder surface replaces the singularity by a spacelike
surface with coordinates τ, θ, ϕ and thus has the topology R× S2. It maybe disturbing that
the time τ here serves as a coordinate on a spacelike hypersurface but we can interpret it
as the point of eigentime at which geodesic observers cross the gluing cylinder between
the universes.

One may consider the introduction of l also as a regularization of the singular space-
time which maybe used to construct QFT in CST. This is relevant in the construction of mode
systems (solutions of Klein–Gordon like equations) and 1-particle inner products which rely
on the presence of Cauchy surfaces such as the leaves of this BHWHT foliation. From that
perspective, the corresponding wave equations for a function f (τ, z, Ω) = eiωτ fω(z, Ω)
become stationary Schrödinger type of eigenvalue equations for fω in a singular potential
as l → 0 as we have shown in Section 8.

Appendix C.4. Causal Structure and Penrose Diagramme

In order to understand the causal structure of this singular BHWHT spacetime we
consider the simpler case e2 = 1 for which we can write the line element in terms of τ, z, θ, ϕ
using (A65) and (A81)

ds2 = −Φ(|z|) dτ2 + 2

√

R

|z| dτ dz + dz2 + z2dΩ2 (A82)

Its radial null geodesics are determined by

ds2 = −|z|−1 (dτ [1 + |z|−1/2] + dz) (dτ [1 − |z|−1/2]− dz) = 0 (A83)

where we switched to τ̂ = τ/R, ẑ = z/R and removed the hat again. We use z ∈ R as a
parameter so that we obtain two types of null geodesics

dτ

dz
= ∓ |z|1/2

|z|1/2 ± 1
(A84)

For the upper sign, dτ/dz is everywhere regularly, at z = ±∞ taking the value −1, at the
two horizons z = ±1 taking the value −1/2 and at the singularity of the value 0. For the
lower sign we have four kinds of null geodesics, namely those that are stuck in either of
the intervals (1, ∞), (−1, 1), (−∞,−1) and those that are stuck at the horizions |z| = 1.
For the first interval the null geodesic starts at z = 1 with dτ/dz = +∞ moving to z = ∞

with dτ/dz = 1. For the third interval the null geodesic ends at z = −1 with dτ/dz = +∞

having moved from z = −∞ with dτ/dz = 1. For the second interval the geodesic starts
at z = 1 in the infinite past with dτ/dz = −∞, passes through z = 0 with dτ/dz = 0 and
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ends at z = −1 in the infinite future with dτ/dz = −∞. Accordingly, in the τ, z diagram
the lightcone structure is as follows: For |z| > 1 there are ingoing and outgoing light rays
(i.e., moving to smaller and larger |z|), for z = 1 there is one ingoing one and one that is
tangential to the horizon, for z = −1 there is one outgoing one and one that is tangential to
the horizon, for 0 < z < 1 there are only ingoing lightrays (trapped region), for −1 < z < 0
there are only outgoing lightrays (anti-trapped region) and for −∞ < z < −1 there are both
ingoing and outgoing lightrays. This is of course exactly the BHWHT spacetime structure.
The discussion also shows that the restriction to z > 0 (z < 0), respectively, covers precisely
an ingoing (outgoing) GP spacetime or equivalently an advanced (retarded) Finkelstein
spacetime (covered by v, r or u, r coordinates, respectively, with v = t + r∗, u = t − r∗ on
the SS portion where t is SS time and r∗ is the turtoise coordinate, i.e., there is always the
ingoing (outgoing) null geodesic v = const. (u = const.)).

It is helpful to construct the corresponding Penrose diagram which can be conducted
analytically in the case e2 = 1 in terms of Kruskal coordinates. From (A64) we have

τ = t̄ − f (r̄) = t + f (r), f (r) = R(2y + ln(
y − 1

y + 1
)), y =

√

r

R
(A85)

for Schwarzschild coordinates r, r̄ > 1 and Schwarzschild asymptotic times t, t̄ in the SS
and MSS regions, respectively. In terms of the null coordinates v = t + r∗, u = t − r∗,
r∗ = r + R ln( r

R − 1) and analogously for the barred quantities we set

V := e
v

2R , U := −e−
u

2R , V̄ := −e
v̄

2R , Ū := e−
ū

2R , (A86)

By substituting r∗/R = y + ln(y2 − 1) and for t, t̄ according to (A85) one finds with
κ = τ/(2R)

V = eκ+
y2

2 −y (y + 1), U = −e−κ+
y2

2 +y (y − 1), V̄ = −eκ+
ȳ2

2 +ȳ (ȳ − 1), Ū = e−κ+
ȳ2

2 −ȳ (ȳ + 1) (A87)

The choice of signs is here uniquely determined by the continuity requirement that at the
singularity y = ȳ = 0 we have V̄ = V, Ū = U. Thus, for y, ȳ ∈ R+, τ ∈ R we have
U, V̄ ∈ R, V, Ū ∈ R+ and the Kruskal relations

U V = −ey2
(y2 − 1), Ū V̄ = −eȳ2

(ȳ2 − 1) (A88)

which are bounded from above by +1. The SS, BH, WH, MSS regions are, respectively,
covered by V > 0 > U, U, V > 0, Ū, V̄ > 0, Ū > 0 > V̄ separated, respectively, by the BH
horizon y = 1, the singularity y = ȳ = 0 and the WH horizon ȳ = 1 in chronological order.
We introduce compactified null coordinates

v̂ = arctan(V), û = arctan(U), ˆ̄v = arctan(V̄), ˆ̄u = arctan(Ū), (A89)

with v̂, ˆ̄u ∈ (0, π
2 ), û, ˆ̄v ∈ (−π

2 , π
2 ) and finally

t̂ :=

{

v̂ + û SS,BH
π − ( ˆ̄v + ˆ̄u) WH,MSS

, x̂ :=

{

v̂ − û SS,BH
ˆ̄v − ˆ̄u WH,MSS

(A90)

It follows that in SS −π/2 ≤ û ≤ 0 ≤ v̂ we have

0 ≤ 2v̂ = t̂ + x̂ ≤ π, −π ≤ 2û = t̂ − x̂ ≤ 0, 0 ≤ x̂ ≤ π ⇒ max(−x̂, x̂ − π) ≤ t̂ ≤ min(x̂, π − x̂) (A91)

in BH 0 ≤ û, v̂ ≤ π/2 and U V = cos(v̂−û)−cos(v̂−û)
cos(v̂−û)+cos(v̂−û)

≤ 1, i.e., cos(v̂ + û) ≥ 0 i.e., t̂ ≤ π/2

and

0 ≤ 2v̂ = t̂ + x̂ ≤ π, 0 ≤ 2û = t̂ − x̂ ≤ π, 0 ≤ t̂ ≤ π/2 ⇒ −t̂ ≤ x̂ ≤ t̂ (A92)
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in WH 0 ≤ ˆ̄u, ˆ̄v ≤ π/2 and Ū V̄ = cos( ˆ̄v− ˆ̄u)−cos( ˆ̄v− ˆ̄u)
cos( ˆ̄v− ˆ̄u)+cos( ˆ̄v− ˆ̄u)

≤ 1, i.e., cos( ˆ̄v + ˆ̄u) ≥ 0, i.e.,

ˆ̄u + ˆ̄v ≤ π/2, i.e., t̂ ≥ π/2 and

0 ≤ 2 ˆ̄v = π − t̂+ x̂ ≤ π, 0 ≤ 2 ˆ̄u = π − t̂− x̂ ≤ π, π/2 ≤ t̂ ⇒ t̂−π ≤ x̂ ≤ π − t̂ (A93)

and in MSS −π/2 ≤ ˆ̄v ≤ 0 ≤ ˆ̄u ≤ π/2 and −π ≤ x̂ ≤ 0 and

−π ≤ 2 ˆ̄v = π − t̂ + x̂ ≤ 0, 0 ≤ 2 ˆ̄u = π − t̂ − x̂ ≤ π, ⇒ max(−x̂, x̂ + π) ≤ t̂ ≤ min(2π + x̂, π − x̂) (A94)

It is not difficult to see that in the x̂, t̂ diagram SS is a diamond with corners bP = (0, 0),
i−P = (π/2,−π/2), i0P = (π, 0), i+P = (π/2, π/2), BH is a triangle with corners bP, i+P , i−F =
(−π/2, π/2), WH is a triangle with corners bF = (0, π), i−F , i+P and MSS is a diamond with
corners i0F = (−π, π), i−F , bF, i+F = (−π/2, 3π/2). Here, the subscripts refer to past and
future Kruskal portions. The singularity is the line between i−F , i+P , the BH horizon is the
line between bP, i+P , the WH horizon is the line between i−F , bF. Past and future null infinity
in SS are the lines between i−P , i0P and i0P, i+P , respectively, while past and future null infinity
in MSS are the lines between i−F, i0F and i0F, i+F , respectively. All other diagonal lines are at
r = R or r̄ = R, respectively. The points bP, bF are the bifurcation points in the full past and
future Kruskal spacetimes.

This BHWHT spacetime can be extended indefinitely to the future and the past by
gluing identical pieces along the r = R, r̄ = R lines. Or we can complete it by a Minkowski
part of spacetime both in the past and the future by adding the points I−P = (−π/2,−3π/2)
and I+F = (π/2, 5π/2), respectively, and adding the triangles with corners I−P , i−P , i−F and
I+F , i+F , i+P , respectively. The vertical lines between I−P , I+F and the singularity then represent
r = 0 during the formation of the black hole and evaporation of the white hole, respectively.
In this completed spacetime the free-falling hypersurfaces are still Cauchy surfaces and we
can complete the foliation in the Minkowski regions by segments along past and future
null infinity between i0P, I−P and i0F, I+F and Cauchy surfaces in the Minkowksi parts. In the
completed spacetime past null infinity in the past part and and future null infinity in the
future part got extended by the Minkowski parts and we have two spacelike infinities i0P, i0F
and one past and future timelike infinity I−P , I+F , respectively.

We now explore the radial timelike geodesics and the free-falling orthogonal foliation
they generate. For a geodesic ρ = const. we are interested in the limits τ → ±∞. For
τ → +∞ we eventually enter the region τ > ρ covered by ȳ = (r̄/R)1/2 = [ 3

2 (τ − ρ)/R]1/3

which grows as [τ/R]1/3. Hence, even ȳ2 grows slower than τ/R and the behavior of
V̄, Ū is governed by e±τ/(2R). Thus, V̄ → −∞, Ū → 0 hence ˆ̄v → −π/2, ˆ̄u → 0 i.e., t̂ =
π − ˆ̄v − ˆ̄u → 3π/2, x̂ = ˆ̄v − ˆ̄u → −π/2 i.e., the geodesic ends up in i+F . For τ → −∞

we eventually enter the region τ < ρ covered by y = (r/R)1/2 = [− 3
2 (τ − ρ)/R]1/3

which grows as [−τ/R]1/3. Hence, even y2 grows slower than −τ/R and the behavior
of V, U is governed by e±τ/(2R). Thus, V → 0, Ū → −∞ hence v̂ → 0, û → −π/2,
i.e., t̂ = v̂ + û → −π/2, x̂ = v̂ − û → π/2, i.e., the geodesic ends up in i−P .

For the τ = const. slices we are interested in ρ → ±∞. For ρ → ∞ we eventually enter
the region τ − ρ < 0 covered by y = [− 3

2 (τ − ρ)/R]1/3 which grows as [ρ/R]1/3 and the

behavior of V, U is governed by ey2/2. Thus, V → +∞, U → −∞ i.e., v̂ → π/2, û → −π/2
hence t̂ → 0, x̂ → π, i.e., we end up in i0P. For ρ → −∞ we eventually enter the region
τ − ρ > 0 covered by ȳ = [ 3

2 (τ − ρ)/R]1/3 which grows as [−ρ/R]1/3 and the behavior

of V, U is governed by eȳ2/2. Thus, V̄ → −∞, Ū → ∞, i.e., ˆ̄v → −π/2, ˆ̄u → π/2 hence
t̂ → π, x̂ → −π, i.e., we end up in i0F.

Thus, the following geometric picture emerges: All geodesics start at i−P and end
in i+F as τ grows, all leaves start in i0F and end in i0P as ρ grows. The geodesic labeled
by ρ intersects at τ = ρ the singularity in a point while the hypersurface labeled by τ
intersects the singularity at the coordinate label ρ = τ in a sphere. One can work out dt̂, dx̂
explicitly in terms of the differentials dτ, dρ using the coordinate transformation between
these coordinates by the same technique as below for T, X coordinates. One then shows

by computing dt̂
dx̂ that in the Penrose diagram all τ = const. surfaces coordinated by ρ are
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tangent to the horizontal line representing the singularity (ρ = τ) and have inclination of
+45 degrees at the spatial infinities (ρ = ±∞) while the geodesics ρ = const. coordinated by
τ intersect the singularity line at 90 degrees (τ = ρ) and have an inclination of +45 degrees
at the timelike infinities (τ = ±∞).
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Figure A1. Penrose diagram of a globally hyperbolic region of a black hole–white hole transition with

timelike geodesic labeled by ρ = c (green) and Cauchy hypersurface labeled by τ = c for a constant c.

The geodesic starts in i−P and ends in i+F (bottom to top) intersecting the singularity r = 0 at proper

time τ = c vertically. The Cauchy surface starts at i0F and ends in i0P (left to right) intersecting the

singularity at spatial coordinate ρ = c horizontally. The spacetime can be extended indefinitely to the

future and past by gluing identical regions along the 45 degree lines r = 2M of the boundaries of

the black hole and white hole regions, respectively. Or it can be completed by adding a triangular

Minkowski region in the past and the future along the 45 lines r = 2M between i−P , i+F and the line

r = 0, respectively.

3 2 1 0 1 2 3

1

0

1

2

3

4

5

Figure A2. Foliation of a globally hyperbolic portion of a BHWHT spacetime by synchronous proper

time free falling Cauchy surfaces. The portion is the common domain of dependence of all leaves of

the foliation.
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Figure A3. Congruence of free-falling timelike observers in a globally hyperbolic portion of a

BHWHT spacetime.

In order to determine the finer details of this intersection we introduce the coordinates
T, X, T̄, X̄ defined by

2T = V + U, 2X = V − U, 2T̄ = −(V̄ + Ū), 2X̄ = V̄ − Ū (A95)

Thus, X̄ = X, T̄ = −T at the singularity. Since U V = T2 − X2 = 1 = V̄ Ū = T̄2 − X̄2

at the singularity and U = Ū, V = V̄ > 0 it follows T =
√

1 + X2, T̄ = −
√

1 + X̄2

describes the singularity curves in terms of these coordinates. These have inclinations

dT/dX = X√
1+X2

, dT̄/dX̄ = − X̄√
1+X̄2

, respectively.

We now compute for y = y(τ, ρ), ȳ = ȳ(τ, ρ), respectively, and τ < ρ, τ > ρ,
respectively, using

dy2/2 =
1

2Ry
(dρ − dτ), dȳ2/2 =

1

2Rȳ
(dτ − dρ), d[(y ± 1) ey2/2−∓y] = y2 ey2/2∓y dy (A96)

the differentials

dV =
V

2R
(dτ +

1

y + 1
(dρ − dτ)) =

V

2R(y + 1)
(y dτ + dρ)

dU =
U

2R
(−dτ +

1

y − 1
(dρ − dτ) =

U

2R(y − 1)
(−y dτ + dρ)

dV̄ =
V̄

2R
(dτ +

1

ȳ − 1
(dτ − dρ)) =

V̄

2R(ȳ − 1)
(ȳ dτ − dρ)

dŪ =
Ū

2R
(−dτ +

1

ȳ + 1
(dτ − dρ) =

Ū

2R(ȳ + 1)
(−ȳ dτ − dρ) (A97)
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It follows

2dT =
ey2/2

2R
[eκ−y (dρ + ydτ)− e−κ+y (dρ − ydτ)]

2dX =
ey2/2

2R
[eκ−y (dρ + ydτ) + e−κ+y (dρ − ydτ)]

2dT̄ =
eȳ2/2

2R
[−eκ+ȳ (dρ − ȳdτ) + e−κ−ȳ (dρ + ȳdτ)]

2dX̄ =
eȳ2/2

2R
[eκ+ȳ (dρ − ȳdτ) + e−κ−ȳ (dρ + ȳdτ)] (A98)

This gives

dT

dX
=

sh(κ − y) dρ + y ch(κ − y) dτ

ch(κ − y) dρ + y sh(κ − y) dτ

dT̄

dX̄
=

−sh(κ + ȳ) dρ + ȳ ch(κ + ȳ) dτ

ch(κ + ȳ) dρ − ȳ sh(κ + ȳ) dτ
(A99)

This enables us to conveniently compute the inclinations. For geodesics dρ = 0

dT

dX
= coth(κ − y),

dT̄

dX̄
= −coth(κ + ȳ) (A100)

and for hypersurfaces dτ = 0

dT

dX
= th(κ − y),

dT̄

dX̄
= −th(κ + ȳ) (A101)

Thus, in the T, X and T̄, X̄ diagram, respectively, the geodesics and hypersurfaces have
anti-reciprocal inclinations.

Since at y = 0 we have 2X = 2sh(κ) and at ȳ = 0 we have 2X̄ = 2sh(κ) it follows that
the singularity inclination is th(κ) in terms of T, X and −th(κ) in terms of T̄, X̄, respectively.
It follows that the hypersurfaces are tangent to the singularity while the geodesics are
transversal. Thus, in these coordinates, a τ = const. hypersurface can be described in terms
of the T, X coordinates until it intersects the singularity tangentially (T = ch(κ), X = sh(κ)).
Then, it continues from the tangential point (T̄ = −ch(κ), X̄ = sh(κ)) in terms of T̄, X̄
coordinates.

If one wants to avoid the jump by −2
√

1 + X2 between T and T̄ at the singularity,
we may substitute T, T̄ by T −

√
1 + X2, T̄ +

√
1 + X̄2 which maps the singularity to the

common line T = T̄ = 0.

Appendix C.5. Relation between Different GGP Coordinates

A GGP coordinate system is determined by two parameters M, e. It determines a
geodesic congruence Ce in the BHWHT spacetime which by construction is isometric to
two copies of two complementary halves (namely SS, BH and WH, MSS parts) of Kruskal
spacetime where the latter carries a single parameter M. From this point of view the
additional parameter e is redundant and can be fixed to any desired value by a spacetime
diffeomorphism. To change between two different values, say e, e′ we relate them through
the Schwarzschild time

τ±
e = e t ∓

∫

dr

√

e2 − Φ(r)

Φ(r)
(A102)

which means

1

e
[τ±

e ±
∫

dr

√

e2 − Φ(r)

Φ(r)
] = t =

1

e′
[τ±

e′ ±
∫

dr

√

(e′)2 − Φ(r)

Φ(r)
] (A103)
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This corresponds to a temporal diffeomorphism (consider e, e′ > 0)

τ±
e′ =

e′

e
τ±

e ± [e′]
∫

dr Φ(r)−1[
√

1 − e−2 Φ(r)−
√

1 − (e′)−2 Φ(r)] (A104)

while the radial coordinate is unchanged. Noticing that ge
rr = qe

rr = e−2 we see that the
right hand side of (A104) is exactly the second Dirac observable conjugate to the mass as
derived from the Hamiltonian formulation. This shows that in the Lagrangian formulation
the second Dirac observable is considered as a gauge degree of freedom.

Appendix C.6. Dirac Observable Conjugate to Mass in GGP

We evaluate the Dirac observable conjugate to the mass M (dropping inessential con-
stants)

Q =
∫

R

dz δ′
√

1 − γ2Φ

Φ
, qab dxa dxb = γ2(z)dz2 + δ(z)2dΩ2, Φ = 1 − R

|δ(z)| , R = 2M (A105)

in the GGP gauge δ(z) = z, γ(z) = e−2, e2 ≥ 1, e = const. This gives

Q = 2
∫

R+
dr

√

1 − γ2Φ(r)

Φ(r)
, Φ(r) = 1 − R

r
(A106)

The integral (A106) is ill-defined as it stands due to a singularity at r = R and r = ∞ while
it is regular at r = 0. It, therefore, needs a more detailed definition. We regularize it with
three parameters c < R, d < R, L > 2 R

Qc,d,L

2
=

∫ R−c

0
dr

√

1 − γ2Φ

Φ
, +

∫ L

R+d
dr

√

1 − γ2Φ

Φ
, (A107)

and eventually, take c, d, L−1 → 0+. Note, that γ2 ≤ 1. We treat the case γ2 = 1 separately
from the case γ2 < 1.

Case 1. γ2 = 1: We have

Qc,d,L

2
=

√
R [

∫ R−c

0
dr

√
r

r − R
+

∫ L

R+d
dr

√
r

r − R
]

= R [
∫ 1−c/R

0
dx

√
x

x − 1
+

∫ L/R

1+d/R
dx

√
x

x − 1
]

= 2 R [
∫

√
1−c/R

0
dy

y2

y2 − 1
+

∫

√
L/R

√
1+d/R

dy
y2

y2 − 1
]

= 2 R [
√

L/R −
√

1 + d/R +
√

1 − c/R −
∫

√
1−c/R

0
dy

1

1 − y2
+

∫

√
L/R

√
1+d/R

dy
1

y2 − 1
]

= 2 R [
√

L/R −
√

1 + d/R +
√

1 − c/R − 1

2
[ln(

1 + y

1 − y
)]
√

1−c/R
0 +

1

2
[ln(

y − 1

y + 1
)]
√

L/R√
1+d/R

]

= 2 R [
√

L/R −
√

1 + d/R +
√

1 − c/R

−1

2
[ln(

[1 + y]2

1 − y2
)]y=

√
1−c/R − 1

2
[ln(

y2 − 1

[y + 1]2
)]y=

√
1+d/R +

1

2
[ln(

y − 1

y + 1
)]y=

√
L/R] (A108)

with x = r/R = y2. The terms
√

1 − c/R −
√

1 + d/R, [ln(y + 1)]
√

1+d/R√
1−c/R

, ln((y + 1)/(y −
1))y=

√
L/R vanish independently of how we take the limit c, d, L−1 → 0. Thus, up to those terms,

(A108) becomes
Qc,d,L

2
= 2 R [

√
L/R − 1

2
ln(

d

c
)] (A109)
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Case 2. γ2 < 1 We have with a2 := γ2

1−γ2

Qc,d,L

2
= 2 R

√

1 − γ2 [
∫

√
1−c/R

0
dy

y2
√

y2 + a2

y2 − 1
+

∫

√
L/R

√
1+d/R

dy
y2
√

y2 + a2

y2 − 1
] (A110)

= 2 R
√

1 − γ2 [
∫

√
1−c/R

0
dy {

√

y2 + a2 +

√

y2 + a2

y2 − 1
}+

∫

√
L/R

√
1+d/R

dy {
√

y2 + a2 +

√

y2 + a2

y2 − 1
}]

We have the elementary integrals

∫

dy
√

y2 + a2 =
1

2
[y
√

y2 + a2 + ln(y +
√

y2 + a2)]
∫

dy
1

√

y2 + a2
= ln(y +

√

y2 + a2)

∫

dy

√

y2 + a2

y2 − b2
= ln(y +

√

y2 + a2) +
∫

dy
1

√

y2 + a2
[
y2 + a2

y2 − b2
− 1]

= ln(y +
√

y2 + a2) + (a2 + b2)
∫

dy
1

√

y2 + a2

1

y2 − b2
(A111)

We have

d

dy
arth(h

y
√

y2 + a2
) =

d

dy
arcoth(h

y
√

y2 + a2
) = − 1

√

y2 + a2

ha2

h2 − 1

1

y2 − a2

h2−1

(A112)

To match this to last integral in (A111) we pick a2/(h2 − 1) = b2, h2 = 1 + a2/b2 so
that ha2/(h2 − 1) = b

√
a2 + b2. Then, the argument of the hyperbolic function becomes√

1 + a2/b2y/
√

y2 + a2) which must take values in (−1, 1) and R− [−1, 1], respectively,
for hyperbolic tangens and cotangens, respectively. For the tangens function this implies
due to b = 1 in our case that |y| < 1 while |y| > 1 for the cotangens function. Assembling
these findings we have with b2 = 1 in our case

Qc,d,L

2
= 2 R

√

1 − γ2 {1

2
[y
√

y2 + a2 + 3 ln(y +
√

y2 + a2)]
√

1−c/R
0

+
1

2
[y
√

y2 + a2 + 3 ln(y +
√

y2 + a2)]
√

L/R√
1+d/R

−
√

a2 + 1 [arth(
√

a2 + 1
y

√

y2 + a2
)]
√

1−c/R
0 −

√

a2 + 1 [arcoth(
√

a2 + 1
y

√

y2 + a2
)]
√

L/R√
1+d/R

} (A113)

where we may use

arth(z) =
1

2
ln(

1 + z

1 − z
), arcoth(z) =

1

2
ln(

z + 1

z − 1
), (A114)

for |z| < 1, |z| > 1, respectively. Up to terms that vanish no matter how we take c, d, L−1 →
0 the first two terms in (A113) may be combined into

2 R
√

1 − γ2
1

2
[y
√

y2 + a2 + 3 ln(y +
√

y2 + 1)]
√

L/R
0 (A115)

where the contribution from y = 0 vanishes. The last two terms in (A113) are with
z(y) =

√
a2 + 1

y√
y2+a2

2 R
√

1 − γ2 (−1

2

√

1 + a2) ln([
1 + z

1 − z
]y=

√
1−c/R [

1 − z

1 + z
]y=0 [

z + 1

z − 1
]y=

√
L/R [

z − 1

z + 1
]y=

√
1+d/R) (A116)



Universe 2024, 10, 372 104 of 113

We have
z + 1

z − 1
=

√
1 + a2 y +

√

y2 + a2
√

1 + a2 y −
√

y2 + a2
(A117)

which for y = 0 equals −1 and for y =
√

L/R equals

√
1 + a2 +

√
1 + a2R/L√

1 + a2 −
√

1 + a2R/L
→

√
1 + a2 + 1√
1 + a2 − 1

(A118)

which is finite no matter how c, d, L−1 → 0. For y =
√

1 + d/R (A117) becomes

√
1 + a2

√
1 + d/R +

√
1 + a2 + d/R√

1 + a2
√

1 + d/R −
√

1 + a2 + d/R
=

[
√

1 + a2
√

1 + d/R +
√

1 + a2 + d/R]2

(1 + a2) (1 + d/R)− (1 + a2 + d/R)

=
[
√

1 + a2
√

1 + d/R +
√

1 + a2 + d/R]2

a2 d/R
→ 4(1 + a2)2

a2 d/R
(A119)

while for y =
√

1 − c/R (A117) becomes

√
1 + a2

√
1 − c/R +

√
1 + a2 − c/R√

1 + a2
√

1 − d/R −
√

1 + a2 − d/R
=

[
√

1 + a2
√

1 − d/R +
√

1 + a2 − d/R]2

(1 + a2) (1 − c/R)− (1 + a2 − d/R)

=
[
√

1 + a2
√

1 − c/R +
√

1 + a2 − c/R]2

−a2 c/R
→ −4(1 + a2)2

a2 c/R
(A120)

Hence, the last two terms in (A113) approach

2 R
√

1 − γ2 (−1

2

√

1 + a2) ln(
4(1 + a2)2

a2 c/R

√
1 + a2 + 1√
1 + a2 − 1

a2 d/R

4(1 + a2)2
)

= 2 R
√

1 − γ2 (−1

2

√

1 + a2) ln(
d

c

√
1 + a2 + 1√
1 + a2 − 1

) (A121)

Altogether with a2 = γ2/(1 − γ2), 1 + a2 = 1/(1 − γ2))

Qc,d,L

2
=

2 R√
1 + a2

{1

2
[y
√

y2 + a2 + 3 ln(y +
√

y2 + a2)]y=
√

L/R − 1

2

√

1 + a2 ln(
d

c

√
1 + a2 + 1√
1 + a2 − 1

)} (A122)

In the limit γ → 1− this becomes

Qc,d,L

2
= 2 R {1

2

√
L/R − 1

2
ln(

d

c
)} (A123)

which differs by a factor 1/2 from the result (A109), i.e., the integral and the limit γ → 1−
do not commute.

Yet, we find for all values of γ that

Qc,d,L

4R
= g(γ, L/R)− 1

2
ln(d/c) (A124)

where g(γ, L/R) = Qc,d,/(4R) + 1
2 ln(d/c) is given explicitly in (A109) and (A122) for

γ2 = 1, γ2 < 1, respectively, and diverges as
√

L/R as L → ∞. The fact that (A109) is not
the limit of (A122) as γ → 1− suggests to consider two different strategies:
Strategy 1:

We consider the exact GPG γ2 ≡ 1, i.e., γ is not a dynamical variable. Then, we pick
the following limit c, d, L−1 → 0 in (A109)
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ln(
d

c
) = 2

√
L/R +

Q

2R
, c = e−L/R (A125)

Then, the large L behavior of d is d ∝ e2
√

L/R−L/R, thus both c, d decay exponentially in
L/R. Thus, the value of Q comes about simply because of the ambiguity in the principal
value regularization of the integral defining it. However, Q is not a parameter on which the
spatial metric depends, it is the variable conjugate to M but its existence has no further con-
sequences for the theory. The advantage of this strategy is that it yields a consistent picture,
i.e., the integral defining Q is actually able to produce that value while the exact GPG is
imposed, without introducing additional observable consequences. Furthermore, it agrees
with the Kantowski–Sachs picture that we review in the next subsection which also yields
two Dirac observables one of which is M and the other one is related to a time rescaling
freedom κ which in the GPG also arises, however, not as a Dirac observable but rather as a
residual gauge freedom in choosing the physical Hamiltonian, see Appendices A and B.
Strategy 2:

We consider 0 < γ2 < 1 as a dynamic variable. Then, we pick the following limit
c, d, L−1 → 0 in (A122)

1

2
ln(

d

c
) = g(γ, L/R)− ζ

2
arth(γ), c = e−L/R (A126)

for ζ > 0 some numerical constant. Then, the large L behavior of d is d ∝ e
√

L/R−L/R and
thus both c, d decay exponentially in L/R. The limit L → ∞ then yields

Q

R
= ζarth(fl) (A127)

Now the physical Hamiltonian of spherically symmetric vacuum gravity is just R = 2M
up to a constant which yields the equations of motion M = const. and Q̇ = const. Thus,
Q diverges linearly in τ. Thus, γ = th(Q/(ζR) approaches exponentially fast (the faster
the smaller ζ) the value ±1 from below/above. Thus, e2 = 1/γ2 approaches the value
e2 = 1 exponentially fast from above, i.e., the generalized GP coordinates become dynamically
exponentially fast the exact GP coordinates.

This conclusion is of course dependent on the choice of the finite part in the regulariza-
tion (A125) which is a regularization ambiguity. It is motivated by the desire to reconcile the
fact that in the Lagrangian picture, the parameter e is a choice of gauge that can be removed
by a temporal diffeomorphism while in the Hamiltonian picture it is a function of the Dirac
observables M, Q and thus cannot be gauged away. Thus, the only way to bring both
pictures into agreement with Birkhoff’s theorem that there is only one physical degree of
freedom in the Lagrangian picture is to ensure that in the Hamiltonian picture the additional
degree of freedom dynamically settles to the value it can be assigned to in the Lagrangian
picture. This can be viewed as a temporal diffeomorphism as well but that diffeomorphism
in the Hamiltonian picture is a symmetry transformation. This requirement still does not fix
the finite part of f (γ) (A125) uniquely, any bijection f : (−1, 1) → R; γ 7→ f (γ) with the

property that limγ→± 1∓ = ±∞ will do such as f (γ) = 1+γ
1−γ . However, the faster γ2 → 1

dynamically, the faster the black hole becomes truly static observationally no matter which
picture is used.

Note, that these conclusions hold only in the strictly spherical symmetric vacuum case.
With the presence of gravitational perturbations and matter, the physical Hamiltonian will
be of the form H = M + H1(M, Q) where H1 contains the information about perturbations
and matter and which will depend on both M, Q when expanding the background metric
parametrized by M, e and thus M, Q. This means that M is no longer a constant of motion
and that Q is not necessarily diverging which means that γ2 does not necessarily become
unity as time progresses. In this case, we must use the SAPT framework [71,72] to capture
the corresponding quantum backreaction.
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We will not follow the second strategy in the present paper because it also requires
revisiting the decay behavior of the fields and the whole boundary structure analysis that
leads to the reduced Hamiltonian as developed in Section 4 and which may lead to some
restriction on the freedom to choose f (γ). However, the advantage of the second strategy is
that it offers the possibility to change the integration constant M dynamically, a possibility
that one may want to keep in mind for future investigations.

Appendix D. Kantowski–Sachs Spacetimes

The purpose of this section is to provide the link with the substantial amount of
work [23–32] that has been devoted to the interior of quantum black holes. In particular, we
show that there is no contradiction between the presence of two independent and canoni-
cally conjugate Dirac observables on which the metric depends non-trivially and Birkhoff’s
theorem: While the reduced or physical phase space is manifestly two-dimensional, one of
the degrees of freedom corresponds to a time rescaling of the spacetime coordinates which
is considered a gauge transformation in the Lagrangian formulation but certainly not in
the Hamiltonian formulation (by definition a Dirac observable is gauge-invariant). This is a
general phenomenon for cosmological models as has been pointed out in [76].

Kantowski–Sachs (KS) spacetimes are homogeneous and spherically symmetric rather
than isotropic spacetimes described by the line element

ds2 = −D(T)2 dT2 + A(T)2 dX2 + B(T)2 dΩ2 (A128)

where dΩ2 is the standard line element of the round sphere metric ΩEF while X ∈
[−K/2, K/2] is a KS “radial” coordinate with spatial cut-off K ∈ R+ and A, B, D are func-
tions of KS time T ∈ R only. We consider all coordinates T, X, θ, φ dimension-free while
D, A, B have dimension of length. Alternatively, we may want to introduce dimensionful
coordinates T̂ = L T, X̂ = LX where L is some unit of length and Â = A

L , B̂ = B
L , D̂ = D

L
become dimensionless.

To obtain the Hamiltonian description of these models, we identify the ADM variables

N = D, Na = 0, qab = A2 δX
a δX

b + B2 δE
a δF

b ΩEF, =: qX δX
a δX

b + qS δE
a δF

b ΩEF, (A129)

and

kab =
1

2N
[q̇ab − (LN⃗q)ab] =

1

D
[AȦδX

a δX
b + B ḂδE

a δF
b ΩEF] =: kX δX

a δX
b + kS δE

a δF
b ΩEF, (A130)

whence

pab =
√

det(q)[qac qbd − qab qcd] kcd

= A B2
√

det(Ω) [δa
Xδb

X (A−4kX − A−2(A−2kX + 2 B−2kS))

+δa
Eδb

FΩEF (B−4kS − B−2(A−2kX + 2 B−2kS))]

=:
√

det(Ω) (pX δa
X δb

X + pS δa
E δb

FΩEF) (A131)

Here, qX, qS, kX, kS, pX, pS do not depend on the spatial coordinates and kX, kS have the
dimension of length so that pX , pS are dimension-free.

We rescale the Einstein-Hilbert action by 1
K and pull back the symplectic potential

GN Θ =
1

K

∫

d3x pab [δq]ab =
1

K

∫

dX
∫

dθ dφ
√

det(Ω) (2A pX [δA] + 4B pS [δB])

= 4π (2A pX [δA] + 4B pS [δB]) (A132)

where GN is Newton’s constant which has a dimension of length squared in units in which
h̄ = 1. We define

pA = 2 A pX , pB = 4 B pS (A133)
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which have a dimension of length. Accordingly, we have the non-vanishing Poisson
brackets

{pA, A} = {pB, B} = gN , gN =
GN

4π
(A134)

Next, we compute the constraints

GN Ca(Na) = − 2

K

∫

d3x NaDb pb
a ≡ 0,

GN C(N) =
1

K

∫

d3x N [det(q)]−1/2(pab pab − [pa
a]

2)− det(q)]1/2R(q)]

=
4π D

A B2
(

1

8
[A pA]

2 − 1

4
[A pA] [B pB]− 2[A B]2) (A135)

where the results of Section 2 were used, in particular, that R[Ω] = 2. The appearance of
(A134) suggests to transform from A, B > 0 to x := ln(A/L), y := ln(B/L) ∈ R and to

introduce px := L−2 ApA, py = L−2 B pB. Then with D̃ = D L2

A B2

{px, x} = {py, y} = g =
gN

L2
, C(N) =

D̃

g
(

1

8
p2

x −
1

4
px py − 2e2(x+y)) =:

D̃

g
C̃ (A136)

We can now develop three equivalent descriptions of the system:

1. The reduced phase space description in terms of a physical Hamiltonian and true
degrees of freedom.

2. The description in terms of non-relational Dirac observables.
3. The description in terms of relational Dirac observables.

Appendix D.1. Reduced Phase Space Description

Since C̃ is linear in momentum py we choose y as a clock and rewrite the constraint as

D̃ C̃ = D̂ Ĉ, D̂ = − D̃px

4
, Ĉ = py + h, h = 8

e2(x+y)

px
− px

2
(A137)

We impose the explicitly time-dependent gauge fixing condition

ĜT := y − T (A138)

It is preserved in time on the constraint surface Ĉ = 0 if (note the distinction between the
total and explicit time derivative)

d

dT
ĜT = {D̂Ĉ/g, ĜT}+

∂

∂T
ĜT = D̂ − 1 = 0 (A139)

which fixes D̂∗ = 1. Thus, the gauge degrees of freedom are y, py while the true degrees of
freedom are x, px. The reduced Hamiltonian is defined for functions F depending only on
x, px by

{H, F} := {D̂Ĉ/g, F}D̂=D̂∗ ,y=T,py=−h = D̂∗/g{h, F}y=T = {hy=T , F} (A140)

hence

H = HT =
1

g
(8

e2(x+T)

px
− px

2
) (A141)

which is explicitly time-dependent.
We now solve the resulting equations of motion

ẋ(T) = {HT(x, px), x}x=x(T),px=px(T), ṗx(T) = {HT(x, px), px}x=x(T),px=px(T) (A142)
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We note that
d

dT
HT =

∂

∂T
HT = g−1 16 e2(x+T) p−1

x (A143)

while
d

dT
px = −16 e2(x+T) p−1

x (A144)

Hence,

ET(x, px) := HT(x, px) + g−1 px =
1

g
(8

e2(x+T)

px
+

px

2
) (A145)

is a constant of motion ET = ϵ on the trajectories. As a function of the reduced phase space
it is explicitly time dependent. Next, by combining (A144) and (A145) we have

ṗx = −2 g ET + px (A146)

which is solved by
px(T) = κ eT + 2 g ET (A147)

where κ is an integration constant. It follows

16 e2(x+T) = px(2 ET − px) = −c eT (2 ET + c eT) ⇒ e2 x(T) = − κ

16
(κ + 2 g ET e−T) (A148)

which provides the general and explicit solution. Since (A148) is positive, for a solution
parametrized by ϵ, κ, we must necessarily have ϵκ < 0 and the range of T becomes confined
to the set

2 g
|ϵ|
|κ| e−T

> 1 (A149)

We may also combine (A147) and (A148) into the statement that

cT(x, px) := −16
e2x+T

px
(A150)

is an explicitly time-dependent function on the phase space which is a constant cT = κ on
a trajectory.

In terms of ET , cT the description of this dynamical system is, therefore, especially
convenient. The reduced Hamiltonian and true degrees of freedom are given by

HT = − 1

g
(g ET + cT eT), px = cT eT + 2 g ET , e2x = − cT

16
(cT + 2 g ET e−T) (A151)

where we denoted objects with explicit time dependence with subscript T. The inversion
(A151) is given by (A145) and (A150) which yields

{ET , cT}(x, px) =
1

g
{8

e2(x+T)

px
+

px

2
, (−16)

e2x+T

px
} = { px

2 g
, (−16)

e2x+T

px
} = (−16)

e2x+T

px
= cT (A152)

To interpret ET , cT geometrically, we express D, A, B in terms of them. We have

[
B

L
]2 = e2y = e2T

[
A

L
]2 = e2x = − c2

T

16
(1 + 2 g

ET

cT
e−T)

D =
A B2 D̃

L2
= −4

A B2 D̂∗
L2 px

= −4
A B2

L2 (cT eT + 2 g ET)

D2 = 16 L2 e4T (− c2
T

16
(1 + 2 g

ET

cT
e−T)

1

(cT eT + 2 g ET)2

= −L2 e2T 1

1 + 2 g ET
cT

e−T
(A153)
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This suggests to introduce the new coordinates and functions

r := L eT , t := L X, MT := −L−1 ET

cT
(A154)

In terms of these, the line element takes the form (gN = L2g)

ds2 = − 1
2 gN MT

r − 1
dr2 + [

cT

4
]2 (

2 gN MT

r
− 1) dt2 + r2 dΩ2 (A155)

This is precisely the interior Schwarzschild solution with the roles of r, t of being spatial and
temporal coordinates switched since in the range (A149), i.e., r < 2gN MT the coefficients of
dr2 and dt2 are negative and positive, respectively. The metric depends on the explicitly time
T dependent functions of the reduced phase space given by MT , cT which are conjugated
up to a factor of L−1

{MT , cT} = L−1 (A156)

as follows from (A151). Clearly, MT which is a positive constant on solutions is nothing
but the mass of the black hole while cT which is a dimensionless constant on solutions is
nothing but a rescaling freedom of t.

The interesting point is that although 1. the reduced Hamiltonian HT , 2. the mass MT

and 3. the rescaling freedom cT are explicitly time T dependent and although MT , cT are
canonically conjugate coordinates of the 2-dimensional reduced phase space, nevertheless,
solutions MT , cT are in fact time T independent.

Appendix D.2. Non-Relational Dirac Observables

We consider the full phase space with conjugate pairs (x, px), (y, py) and the constraint

in the form Ĉ = py + h(x, px, py). We note that x, y appear only in the combination x + y in
h. Thus, x − y is cyclic, and therefore, px − py is gauge invariant, i.e., a Dirac observable.

Since Ĉ is trivially a Dirac observable also

E(x, px, y) := g−1(px − py) + Ĉ = g−1[8
e2(x+y)

px
+

px

2
] (A157)

is a Dirac observable. In the gauge y = T it coincides with ET(x, px). Correspondingly, we
conjecture that

c(x, px, y) := −16
e2x+y

px
(A158)

is a second independent Dirac observable because in the gauge y = T it coincides with
cT(x, px). This is readily confirmed

{Ĉ, c} = −16 g−1{8
e2(x+y)

px
+ py −

px

2
,

e2x+y

px
} = − 16

px g
{py −

px

2
, e2x+y} = 0 (A159)

This provides an independent interpretation of the true degrees of freedom MT , cT of the
previous subsection: They correspond to the Dirac observables M := L−1E/c, c evaluated
on the gauge cut y = T. In particular, they are canonically conjugate

{M, c} = L−1 (A160)

Being Dirac observables, they have trivial “evolution” with respect to Ĉ by construction.
This is equivalent to the statement that ET , cT are constants of motion with respect to the
reduced Hamiltonian because

d

dT
ET =

∂

∂T
ET + {HT , ET} = {Ĉ, E}y=T (A161)
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and similar for c.

Appendix D.3. Relational Dirac Observables

The relational Dirac observables corresponding to a function F of the true degrees of
freedom x, px are given by the explicit formula

OF(T) :=
∞

∑
n=0

(T − y)n

n!
{Ĉ, F}(n) (A162)

where {Ĉ, F}(0) = F, {Ĉ, F}(n+1) = {Ĉ, {Ĉ, F}} is the iterated Poisson bracket. The direct
evaluation of the infinite series is quite non-trivial.

However, we may avoid the direct evaluation whenever we have a complete set of
Dirac observables at our disposal as follows: Suppose that (x, px) are the true degrees
of freedom, (y, py) the gauge degrees of freedom, the constraints are given in the form

Ĉ = py + h(x, px, y), the gauge fixing condition is given in the form G = y − k(T) with T
dependent constants k(T) and D a complete set of Dirac observables, i.e., their Hamiltonian
vector fields are linearly independent on the constraint surface Ĉ = 0. Now, for any
function F = F(x, px, y, py) in the full phase space we have the identity (see [50] and
references therein)

OF(T) := [e{s·Ĉ,.} · F]s=k(T)−y = F(Ox(T), Opx (T), T,−h(Ox(T), Opx (T), T)) (A163)

Applied to the system of Dirac observables OD(T) = D we thus find the relations

D(x, px, y,−h(x, px, y)) = D(Ox(T), Opx (T), T,−h(Ox(T), Opx (T), T)) (A164)

which can be solved algebraically for (Ox(T), Opx (T)).
Applied to our system and using the Dirac observables of the previous section we find

with Q := Ox(T), P := Opx (T)

E(x, px, y) =
1

g
(8

e2(x+y)

px
+

px

2
=

1

g
(8

e2(Q+T)

P
+

P

2
)

c(x, px, y) = −16
e2x+y

px
= −16

e2Q+T

P
(A165)

which can be solved for

P = px + 16
e2(x+y)

px
(1 − eT−y)

e2Q = e2x e−(T−y)(1 + 16
e2(x+y)

p2
x

(1 − eT−y)) (A166)

This maybe Taylor expanded in powers of y − T thus providing explicit formulae for the
iterated Poisson brackets. In particular, the zeroth order gives Q = x, P = px as it should be.

The physical Hamiltonian, i.e., the Dirac observable, that drives the evolution of the
relational observables is given by [50]

H(x, px, y) = Oh(T) = h(x = Ox(T), px = Opx (T), y = T) (A167)

and coincides with HT(x, px) at the gauge cut y = T.
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