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Abstract

We numerically construct solutions to four dimensional General Relativity with negative
cosmological constant, both with and without an electromagnetic field. Our results suggest
that in both cases the space-time curvature can be made to grow without bound in a region
visible to distant observers by imposing sufficiently violent boundary conditions on the
metric or gauge field. In the electromagnetic case, this only happens at zero temperature, and
we present a new numerical scheme capable of performing time evolution in this context.
We argue that our results, at least in the electromagnetic case, violate the spirit of the
Weak Cosmic Censorship Conjecture, so that this conjecture fails in 3+ 1 dimensional
asymptotically Anti de-Sitter spaces. We then argue that if charged fields are included with
a sufficiently large charge relative to their mass, cosmic censorship appears to be restored.
The minimal charge agrees precisely with the bound given by the Weak Gravity Conjecture,
suggesting an intriguing connection between this conjecture and cosmic censorship. More
generally, we propose that “large” naked singularities, where the curvature becomes large
over a large region of space, will be forbidden in any theory which can be completed into
quantum gravity in the UV.
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Chapter 1

Introduction

Over one hundred years since its inception, General Relativity (GR) remains the best descrip-
tion of gravity that we have. In GR, the gravitational field is described by a set of non-linear
partial differential equations, collectively referred to as Einstein’s equation. Constructing
solutions to these non-linear equations is a challenging problem, and up until the 1980s, the
known solutions typically contained a large amount of symmetry. However, over the last
few decades the situation has been transformed by dramatic improvements in the power of
computers. It is now possible to use numerical analysis techniques to construct interesting
solutions to Einstein’s equation with few simplifying assumptions. In this thesis, we present
two new classes of solution that have been obtained in this way. Both are 3+1 dimensional
and asymptotically Anti-de Sitter. The first is in vacuum, and the second contains an electro-
magnetic field. These solutions are significant because, in each case, we find evidence that
the space-time curvature can be made to grow without bound in a region visible to distant
observers.

One of the most important open problems in GR is to prove, or disprove, the Weak
Cosmic Censorship Conjecture. This conjecture claims that, under a modest set of conditions,
the formation of naked singularities is impossible in GR [49]. We review the conjecture in
detail in Chapter 2, but roughly, naked singularities can be thought of as places with infinite
curvature that are visible to distant observers. Our solutions do not contain naked singularities
in this sense, since the curvature does not become infinite in finite time. However, the
curvature does become arbitrarily large, and we will argue that our electromagnetic solutions
at least do violate the Weak Cosmic Censorship Conjecture in spirit. The evidence in the
vacuum case is weaker. We claim that the Weak Cosmic Censorship Conjecture therefore
does not hold in 3+1 dimensional asymptotically Anti-de Sitter spaces.

Interestingly, we find that in order for our electromagnetic solutions to violate cosmic
censorship, it is essential that any charged fields have small charge relative to their mass. If
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the charge is large, then large naked curvatures are avoided. What’s more, the minimal charge
necessary to protect cosmic censorship appears to agree precisely with the minimal charge
stipulated by the Weak Gravity Conjecture, one of the so called Swampland conjectures of
String Theory. The Weak Gravity Conjecture asserts that any low energy effective theory
can only have a UV completion into quantum gravity if it contains a charged particle of
sufficiently large charge relative to its mass [1]. This potential connection [55] between the
two conjectures is intriguing, and it is tempting to suggest that generically the Weak Cosmic
Censorship Conjecture will hold in any theory which can be completed into quantum gravity
in the UV.

There are other proposed violations of cosmic censorship which seem to contradict this
suggestion. The Weak Cosmic Censorship Conjecture fails in higher dimensions through
the Gregory-Laflamme instability [27], and superradiance might provide an alternative
mechanism that causes it to fail in 3+ 1 dimensional asymptotically Anti de-Sitter space
in vacuum [46, 7], yet a consistent quantum gravity completion can likely be found in both
cases. However, the naked singularities arising in these examples are “small”. The curvature
becomes arbitrarily large in an arbitrarily small region of the space time. Our examples
are more violent, with the curvature becoming large over a large region of the space time.
Having strengthened the Weak Cosmic Censorship Conjecture by extending it to cover large
finite curvatures, we will now suggest weakening it. While “small” naked singularities
might sometimes be allowed, perhaps “large” naked singularities will always be forbidden
in theories which are the low energy effective description of a consistent quantum gravity
theory in the UV.

The rest of this thesis is organised as follows. In Chapter 2 we review the Weak Cosmic
Censorship Conjecture, and explain how it can be applied in asymptotically Anti-de Sitter
spaces. In Chapter 3 we review a numerical method [3] which can be applied to solve
time dependent problems in asymptotically Anti-de Sitter spaces at finite temperature. In
Chapter 4 we present original work showing how this method can be adapted to cope
with a broader class of problems, including those at zero temperature. Chapter 5 contains
the vacuum solutions and is based on the publication [14]. This work was carried out in
collaboration with Jorge E. Santos (JES) and Gary T. Horowitz (GTH). Chapter 6 contains
the electromagnetic solutions, and is based on the publication [15], a collaboration with
JES. Finally, in Chapter 7 we give evidence for a connection between the Weak Gravity
Conjecture and Weak Cosmic Censorship. This Chapter is based on the publication [13] and
contains work carried out in collaboration with JES and GTH. Where numerical results are
presented, time dependent solutions were produced by the author, and stationary solutions by
JES, unless otherwise stated.



Chapter 2

The Weak Cosmic Censorship
Conjecture

The Weak Cosmic Censorship Conjecture (WCCC) roughly says that whenever a singularity
forms, it should be contained inside a black hole [59]. Before discussing the motivation for
and significance of the WCCC, we begin by briefly reviewing the definition of a singularity
and the definition of a black hole.

A singularity can be heuristically understood as a “hole” in the space-time [58]. Con-
verting this intuition into a precise mathematical definition is notoriously difficult, but the
standard approach is to say that a space-time is singular if there are geodesics which terminate
in finite affine length. If this was true of a time-like geodesic, then a freely falling observer
could encounter the edge of the space-time in finite proper time. This is a puzzling predic-
tion for a theory to make. However, the examples we consider will typically be curvature
singularities. A curvature invariant blows up as the singularity is approached. This helps us
make sense of how these singularities should be interpreted: in the high curvature regime
tidal forces become very large and new unknown physics becomes important. It should not
be surprising that GR predicts such singularities, since it is a classical theory and we expect it
to be only an effective description of nature at large scales. The equations of fluid dynamics
also predict their own downfall in a similar way.

A more unfamiliar prediction of GR is that of a black hole. In asymptotically flat space, a
black hole is a region which does not lie in the causal past of future null infinity, I +. The
boundary of this region is known as the black hole horizon. It is therefore not possible for
any observer outside of the black hole horizon to receive information from an event inside
the black hole. In particular, if a singularity is contained inside a black hole then it will not
be visible to observers outside.
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Both singularities and black holes have been important objects of study in GR ever
since the first non-trivial solution to Einstein’s equation was written down by Schwarzschild
[51]. The Schwarzschild solution is the spherically symmetric stationary vacuum solution
to Einstein’s equation, and contains both a curvature singularity and a black hole region.
Importantly, the singularity is contained inside the black hole. The same is true of the
Kerr solution [41] (which is stationary but not spherically symmetric). For a long time it
was not clear which features of these solutions might have astrophysical relevance, and
which were merely unphysical consequences of the simplifying assumptions. The celebrated
singularity theorem of Penrose [48] ultimately proved that singularities would generically
be produced in sufficiently violent gravitational collapse, even if perturbations break the
spherical symmetry1. This left open the question: would these singularities generically be
hidden inside black holes, as in Schwarzschild and Kerr, or might they be “naked”? Penrose
proposed that singularities would never be naked [49]. A “Cosmic Censor” would always
hide them inside a black hole. This proposal led to what we now call the Weak Cosmic
Censorship Conjecture (WCCC), the precise statement of which shall be reviewed shortly.

The WCCC, if true, could be viewed as both a blessing and a curse. On the one hand it
means that we do not have to worry about the unknown physics of the singularity in order to
make predictions in astrophysics. Whatever goes on at the singularity, the WCCC means that
it can have no observable consequences for anyone outside the black hole. If, for example,
we want to model the collision of two black holes, then all we need is the classical vacuum
Einstein equation. Numerical simulations have been able to predict the gravitational wave
signals which have now been observed by LIGO. On the other hand, this same feature could
be viewed as a curse. If we want to learn about the new physics which takes over when
the curvature becomes large, presumably a quantum theory of gravity, then a black hole
singularity would be an ideal place to look. However, the WCCC tells us that we cannot
extract any information about what goes on there unless we jump into a black hole. It is as if
nature is conspiring to hide the effects of quantum gravity from us. If this really is the case,
it could be hinting at something deep about the nature of quantum gravity.

In this chapter we first review the WCCC in asymptotically flat space and present some
evidence that has been put forward to support it. We then review asymptotically Anti-de
Sitter space and explain how the WCCC can be adapted to cover these spaces as well.

1However, these theorems do not guarantee that the singularity will be a curvature singularity.
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2.1 Precise formulation of the WCCC

The statement that it is impossible to form a naked singularity can be formulated more
precisely as follows

Conjecture 2.1.1. The maximal Cauchy evolution of asymptotically flat initial data is asymp-
totically flat and strongly asymptotically predictable [22].

This captures the intuition that if we want to predict everything that happens outside of
the black hole region, then Einstein’s equation (along with the relevant matter equations
of motion) are all we need in order to do this. Strong asymptotic predictability means that
there exists an open set in the conformal compactification of the space-time which contains
the exterior of all black hole regions as well as all black hole horizons, such that this set is
globally hyperbolic. In other words, we can predict everything on and outside of the black
hole horizons. A naked singularity cannot form if this conjecture is true, because if a null
geodesic connected an event outside of the black holes to a singularity, then this geodesic
would not intersect the initial data, and a globally hyperbolic open set of the form required
by strong asymptotic predictability would not exist.

The problem with the conjecture as stated is that it can be shown to be false. In order for
the WCCC to have a chance of being true, we must add a number of conditions in order to
rule out classes of non-physical counter-examples. We now discuss each of these conditions
in turn.

• The initial data must be geodesically complete. This requirement is easy to understand.
There do exist solutions to Einstein’s equation containing naked singularities. One
example is the unphysical negative mass Schwarzschild solution. Other examples
include the cosmological solutions which have been put forward to describe our
universe, since the initial Big Bang singularity is visible to all observers. The WCCC
can therefore only be true if it asserts that it is impossible to form a naked singularity
if you do not begin with any singularity initially. We must require that there are no
singularities already contained in our initial data.

• Non-generic counter-examples are allowed. If you are allowed to fine tune the initial
data, then it is possible to form naked singularities. The standard example of this is
critical gravitational collapse. The gravitational collapse of a massless scalar field in
spherical symmetry was studied analytically by Christodoulou [10], and numerically
by Choptuik [8]. If the initial amplitude of the scalar field profile (described by a
parameter p) is small, then the scalar field eventually disperses. If p is large, then a
black hole is formed. There is a critical value, p∗, which separates these two regimes.
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When p = p∗ precisely, a naked singularity forms. This appears to contradict the
WCCC, but if such a critical solution is perturbed slightly, then either the singularity
will disappear, or a black hole will form to hide it. We therefore do not expect this
counter-example to be physically relevant, and we should refine the conjecture to
allow for such non-generic exceptions. To violate the refined version of the conjecture,
it is not enough to find a single solution which produces a naked singularity, as in
critical collapse. We must find an open set of such solutions. For the collapse of a
massless scalar field in spherical symmetry Christoudoulou has rigorously proven that
the generic version of the WCCC does in fact hold [11].

• The matter fields must be suitably well behaved. Since the WCCC remains unproven
even in vacuum, it is unclear precisely what minimal conditions the matter fields will
need to satisfy in order for the WCCC to hold. But for the WCCC to be physically
interesting, they should not be too restrictive. One condition that certainly is required
is that the matter equations of motion have a well posed initial value formulation.
Another is that the stress tensor obeys the dominant energy condition: −T a

bV b is a
future directed causal vector for all future directed timelike V a. A consequence of the
dominant energy condition is that the energy density of matter is always nonnegative.
It makes sense that we need to impose this, since otherwise we might be able to use
the matter to form a negative mass Schwarzschild black hole, which would contain
a naked singularity. Physically reasonable matter is expected to obey the dominant
energy condition.

These conditions alone do not appear to be sufficient however. Christoudoulou has
shown that generic (at least within spherical symmetry) counter-examples to the WCCC
exist for “dust” matter [9], which has a pressureless stress tensor. Such an equation of
state is not thought to be physically realistic, and it could lead to singularity formation
even if evolved in a flat background uncoupled from gravity [59]. This suggests that we
should impose a further condition: the matter fields should not produce singularities if
evolved in a fixed globally hyperbolic background space-time from regular initial data
[59]. This condition rules out some physically relevant matter, such as fluids, but it
guarantees that any naked singularities which form are gravitational in origin. The fact
that fluid singularities can be visible should be no surprise and should have nothing to
do with the validity of the WCCC.

• The number of space-time dimensions must be 3+1. This is clearly not an unreasonable
condition from a physical point of view, but it is interesting that it appears to be
necessary. As soon as you go to 4+1 dimensions or above, there exist asymptotically
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flat black hole solutions with non-spherical topology. In particular, in 4+ 1 dimen-
sions there exist so called “black ring” (S1 × S2) [17] solutions. Unlike their 3+ 1
dimensional counterparts, these black holes are unstable to the Gregory-Laflamme
instability [27]. Numerical studies have confirmed that the apparent horizon of a black
ring will pinch off in finite time [42, 20], appearing to result in a naked singularity.
One limitation of these numerical studies is that it is only possible to track the apparent
horizon, not the true event horizon. Another limitation is that you must begin with an
unstable black hole solution, and it is not clear that such a black hole could ever be
formed in the first place. Nevertheless, it seems very likely that the WCCC fails to
hold in higher dimensions.

2.2 Evidence in favour of the WCCC

Although the WCCC has still not been proven, there is now convincing evidence that it is true
in asymptotically flat 3+1 dimensional space-times. This evidence comes from investigating
the many cases where the WCCC might have been violated, and consistently finding that it
instead holds firm:

• For the special case of a massless scalar field with spherical symmetry, Christoudoulou
has proven that the WCCC is true [11].

• The study of linear perturbations to the Schwarzschild [56] and Kerr [60] black hole
solutions has established their mode stability, meaning that fixed mode perturbations
always decay. More recently, it has been proven that the Schwarzschild solution
is stable for arbitrary linear perturbations [16]. This makes these solutions good
candidates for the endpoint of gravitational collapse, with their singularities safely
hidden behind a horizon. If they had been found to have unstable modes, or to be
otherwise linearly unstable, then this would have indicated that naked singularities
almost certainly can form, as is thought to be the case for black rings.

• The WCCC can be used to derive a constraint on initial data known as the Penrose
inequality, assuming that the evolution eventually settles down to a Kerr black hole.
The WCCC implies that an apparent horizon must be contained inside an event horizon
in order that the resulting singularity is not naked, the total event horizon area must
increase in time by Hawking’s area theorem, the area of the final stationary black hole
is bounded above by the final mass, and the mass must be less than the initial energy of
the system (some energy can be radiated to infinity). Putting all this together gives the
Penrose inequality, a bound on the initial apparent horizon area by the initial energy.
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Despite many attempts, no initial data has been found which violates this inequality.
In the case of null dust, it has actually been proven that the inequality will hold for all
initial data [24].

• By now, there are many numerical studies of the full non-linear Einstein equation in
regimes far from any known analytical solution. For example, black hole collisions
can now be studied numerically [45]. In all cases looked at so far, no violation of the
WCCC has ever been observed. Singularities have always been hidden inside black
holes.

• Finally, evidence in favour of the WCCC comes from the failure of attempts to overspin
or overcharge a black hole. Both the Kerr solution, and the Reissner-Nordstrom solution
(a black hole with electric charge), develop a naked singularity when the spin, or the
charge, is increased beyond the extremal value. This suggests a possible way to violate
the WCCC [57, 52]: we try to throw a particle with spin, or charge, into a black hole
such that if it is captured, it will push the spin, or charge, of the black hole beyond
its extremal limit. However, attempts to do this run into the problem that as the black
hole approaches the extremal limit, it tends to repel particles with the same spin or
charge more and more strongly. Overspinning or overcharging a black hole appears to
be impossible.

2.3 The WCCC in Asymptotically Anti-de Sitter Space

There is now compelling evidence from a variety of different lines of research that the WCCC
is true in asymptotically flat space, but the subject of this thesis is the status of the WCCC
in asymptotically Anti-de Sitter (AdS) space. We will need to generalize the statement
of the WCCC so that it can be applied in AdS, and the obvious question is: why bother?
Our universe does not appear to be asymptotically AdS2, and we have already seen that a
number of conditions are required in the statement of the WCCC to rule out non-physical
counter-examples. If we find that our generalized form of the WCCC is violated in AdS, it
seems that all that means is that we will just have to add one more condition to this long list.
Why is that worth doing?

There are a number of answers that can be given to this question. First, the WCCC
remains unproven, and is an active field of research. Exploring the necessary conditions

2Our universe is not asymptotically flat either, but asymptotically flat space-times are thought to be good
models for isolated gravitational systems, so that a counter-example to the WCCC in asymptotically flat space
would have astrophysical significance.



2.3 The WCCC in Asymptotically Anti-de Sitter Space 9

that are required for it to hold will help to improve our overall understanding of cosmic
censorship, which is important. For example, one could imagine a counter-example to the
WCCC in AdS motivating the construction of a counter-example in flat space, or inspiring a
new argument for why it should hold (although this is not something that we have been able
to do in this thesis).

Second, if there really is a deep reason for why the WCCC is true3, coming from as
yet unknown physics, then non-physical counter-examples to the WCCC would take on a
new fascinating significance. For example, if we understood why the precise statement of
the WCCC given previously must be true, then knowing that it is false in 5 dimensions or
more means that we would have also understood why the universe we live in has fewer
than 5 dimensions. Similarly, finding a counter-example in AdS would mean that a deeper
understanding of cosmic censorship might explain why the universe we live in is not AdS.
These would be extremely important results, and such scenarios are probably unrealistic.
There is unlikely to be a deep quantum gravity reason for why the precise statement of
the WCCC is true (if it is indeed true) since it seems to be possible to construct consistent
quantum gravity theories in 10 dimensions (described by string theory) where the WCCC
does not hold. However, we will argue later that such naked singularities are “mild”, and a
weaker version of the WCCC ruling out only “large” naked singularities might indeed be
a deep principle with its origins in quantum gravity. This weaker version might hold not
only in higher dimensions, but also in AdS. The AdS counter-examples we find would then
need to be non-physical for some reason (other than their AdS asymptotics), and this will
lead to the fascinating possibility of connecting cosmic censorship with the Weak Gravity
Conjecture (WGC), one of the so-called “swampland” conjectures of string theory. If this
story is correct, then a deep understanding of cosmic censorship might not tell us why we
live in 3+1 dimensions, or why we do not live in AdS, but it would help to improve our
understanding of why the WGC is true. Conversely, a better understanding of the swampland
conjectures might improve our understanding of cosmic censorship.

Finally, asymptotically AdS space-times have a special significance because of the
AdS/CFT correspondence. This correspondence is one of the most important developments
in fundamental physics in the last few decades. It says that a non-gravitational gauge theory
in d space-time dimensions can be dual to a gravitational theory (in particular a string theory)
in d+1 dimensional asymptotically AdS space [44]. What’s more, a strong coupling large N
regime in the gauge theory corresponds to a tractable weakly coupled gravitational theory
which can be described with classical equations of motion. Conversely, when the string

3Here we have in mind not a formal mathematical proof within the framework of GR, but a physical reason
coming from a higher energy theory.
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coupling and string length are large, the gauge theory is weakly coupled and tractable, giving
a way of doing quantum gravity outside of the perturbative regime. It has therefore become
more important to understand the behaviour of gravity in asymptotically AdS space-times,
and understanding the status of the WCCC should be a part of that. For example, if we were
able to form a naked singularity in AdS, then we would want to ask what this looked like
in the boundary theory, and whether we could learn anything about how the singularity is
resolved within quantum gravity. Unfortunately, though we will find counter-examples to
the WCCC in AdS, the “large” ones only appear to be present when no consistent quantum
description exists at high energies, ruling out an investigation of these naked singularities
using the AdS/CFT correspondence.

2.3.1 A Brief Review of AdS Space

AdS space is the maximally symmetric vacuum solution to Einstein’s equation with a negative
cosmological constant. The metric for d +1 dimensional AdS space can be written in the
following form

ds2 =−
(

1+
r2

L2

)
dt2 +

(
1+

r2

L2

)−1

dr2 + r2dΩ
2
d−1 (2.1)

which makes the SO(d) symmetry of the space-time (a subgroup of the full isometry group)
manifest. L, a characteristic length scale associated with the curvature, is related to the
cosmological constant by

Λ =−d(d −1)
2L2 . (2.2)

Conformal compactification can be applied to the r coordinate to give a Penrose diagram for
the space-time, which turns out to be a cylinder, shown in Figure 2.1.

One important feature which distinguishes AdS from flat space, is that the boundary
at r = ∞ is timelike. This means that there is no Cauchy surface. If we wish to perform
dynamical evolution in an asymptotically AdS space-time, there will always be points whose
past light cone intersects the boundary before it intersects the initial data. Therefore, as well
as providing initial conditions, to solve Einstein’s equation in asymptotically AdS space-
times we must also provide boundary conditions for each of our fields at r = ∞. Typically,
the boundary conditions we impose will cause waves that reach the boundary to be reflected
back into the bulk. For this reason, AdS space is sometimes referred to as a “covariant box”.
It gives us a way of putting “walls” around a gravitational system without breaking local
Lorentz invariance anywhere. These reflecting walls give rise to new kinds of gravitational
physics, and this will play a crucial role in our proposed violations of the WCCC.
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Fig. 2.1 The Penrose diagram for AdS. The triangular region bounded by the dotted lines is
the Poincaré patch.

It is common to work in a smaller patch of the full AdS space-time, marked by the dotted
lines in Figure 2.1. This is known as the Poincaré patch, while the full AdS space-time is
often referred to as global AdS. We can choose coordinates covering this patch so that the
metric is placed in the following simple form

ds2 =
L2

z2

(
dz2 +ηµνdxµdxν

)
. (2.3)

The advantage we get by thinking in terms of these coordinates is that any constant z surface
is flat. The metric restricted to a constant z surface is just ηµν , the Minkowski metric, scaled
by an overall factor. The coordinate z, referred to as the bulk radial coordinate, tells us how
deep we are in the bulk. The AdS boundary lies at z = 0, and the dotted lines in Figure 2.1
lie at z = ∞, a surface referred to as the Poincaré horizon. The word “horizon” is appropriate
here because this surface separates points which are in causal contact with the boundary of
the Poincaré patch from those which are not.

So far we have discussed AdS space as the maximally symmetric solution to Einstein’s
equation with negative cosmological constant, but we are really interested in the behaviour
of solutions which are only asymptotically AdS, which means that they approach AdS near
their timelike boundary4. We will eventually construct such solutions numerically, but there
are some important asymptotically AdS solutions which are known analytically. These
are the analogues of the Schwarzschild, Reissner-Nordstrom, and Kerr black holes from
asymptotically flat space.

4We will even consider still more general solutions, where the boundary metric can also be deformed, giving
rise to solutions described as asymptotically locally AdS.
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Unlike in asymptotically flat space, where it has been proven that all black holes in 3+1
dimensions have spherical topology, black holes in asymptotically AdS space can have both
spherical and planar topology. The metrics for spherical and planar AdS-Schwarzschild black
holes are given below5

ds2 =−
(

1− 2M
rd−2 +

r2

L2

)
dt2 +

(
1− 2M

rd−2 +
r2

L2

)−1

dr2 + r2dΩ
2
d−1 (2.4)

ds2 =
L2

z2

[
−
(

1−L−2d+2Mzd
)

dt2 +
(

1−L−2d+2Mzd
)−1

dz2 +δi jdxidx j
]
. (2.5)

Note that if we set M = 0, the spherical black hole metric reduces to the AdS metric given
in Equation 2.1. We can think of the size of the spherical black hole shrinking to zero as
M → 0. On the other hand, the planar black hole metric reduces to the metric for the Poincaré
patch given in Equation 2.3. We can think of the Poincaré patch as the zero temperature limit
of the exterior of a planar AdS-Schwarzschild black hole, with the Poincaré horizon a zero
temperature black hole horizon. It is important to stress that while the metrics 2.1 and 2.3
describe the same space-time (the second describes a subset of the first), the same is not true
of the spherical and planar black hole metrics given above. This tells us that if we deform the
Poincaré patch metric given in 2.3, we can end up with an asymptotically AdS solution that
cannot be interpreted in terms of the global AdS picture.

We conclude this section by considering one particular example of a phenomenon that is
dramatically altered by the presence of a timelike boundary: superradiance. Before discussing
superradiance, recall the Penrose process for particles [50]. Rotating black holes contain
an ergoregion outside of their event horizon where the Killing field generating asymptotic
time translations becomes space-like. It is therefore possible for a time-like geodesic in this
region to have negative energy. In particular, a particle can fall into this region with positive
energy and split in two, producing one particle with negative energy and one with a larger
positive energy than was present initially. The negative energy particle must be captured by
the black hole, but the positive energy particle can escape. When backreaction is taken into
account, the mass of the black hole must be reduced, and we have in effect extracted energy
from the black hole through what is known as the Penrose process.

The same procedure can occur with solutions to the wave equation on a rotating black
hole background, where it is known as superradiance [64, 53]. Through superradiance, it
is possible for a wave to extract energy from a black hole. In asymptotically flat space, if
we send a massless wave towards a black hole then it will return with more energy before
escaping to infinity. But in an asymptotically AdS space-time, there is nowhere for it to

5A third possibility, with a hyperbolic horizon, is omitted.
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escape to. When it hits the time-like boundary it will be reflected back towards the black hole.
This is the origin of the runaway process known as the superradiant instability. Rotating
black holes in asymptotically AdS space can therefore be unstable [32, 6] (though not all
are), unlike their counterparts in asymptotically flat space.

The stability of black holes was one of the key pieces of evidence in favour of the WCCC
in asymptotically flat space-times. The fact that it fails to hold in AdS should already cause
us to doubt the validity of the WCCC in that regime. Indeed, it has been proposed that the
endpoint of the superradiant instability for AdS-Kerr black holes will lead to naked singularity
formation and the violation of the WCCC [46], though these are not the counter-examples
we will consider in this thesis. If naked singularities form during superradiance, they are
likely to be mild, in the same family as those arising from the Gregory-Laflamme instability.
The naked singularities we present are “large” (the curvature grows over a large region of the
space-time).

2.3.2 A Brief Review of AdS/CFT

Much of the current interest in asymptotically AdS space-times comes from the AdS/CFT
correspondence. In its original form, the AdS/CFT correspondence is a conjectured duality
between Type IIB Superstring theory in an AdS5 × S5 background (the bulk) and N = 4
Super Yang-Mills theory with gauge group SU(N) living on its 3+1 dimensional boundary
[44, 62, 29]. The large N, strong coupling limit of the gauge theory corresponds to the
classical, weak coupling limit of the string theory, where a classical supergravity description
is appropriate. The AdS/CFT correspondence is often referred to as “holography” because of
the different number of space-time dimensions in the two theories. The original conjecture has
been generalized to cover different theories with different numbers of space-time dimensions,
but the idea is always that a string theory in AdSd+1 × “some compactification” is dual to
a conformal gauge theory living on its d dimensional boundary6 [43]. One check on the
validity of the conjecture is that the symmetries of each theory match. The full isometry
group of AdSd+1 is SO(2,d), and this is also the group of conformal transformations in
d dimensions. Thinking of the d dimensional space-time as the boundary of AdS makes
this equivalence manifest: an isometry of AdS acts on the AdS boundary as a conformal
transformation.

The statement that two theories are dual is, in this context, the assertion that they really
describe the same underlying physics. There should be a dictionary which tells you how to
write states of one theory as states of the other, and this dictionary should have the property

6This is the picture at least up to d = 6. Beyond this point no interacting superconformal field theories exist.
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that it commutes with the dynamics. For example, suppose theory 1 begins in state A, and the
dictionary tells you that this is equivalent to state D(A) in theory 2. If at a later time theory 1
is in state A′, then theory 2 should be in state D(A′).

The AdS/CFT correspondence remains a conjecture, and a complete understanding of
the dictionary is lacking. Part of the problem is that string theory is not well understood
outside of the perturbative regime. Nevertheless, some aspects of the dictionary have been
made precise. First, we know that we have to provide boundary conditions for each of the
fields in the bulk in the classical limit, and so we can ask what the interpretation of this
will be on the boundary. A natural assumption is that the boundary conditions for fields in
the classical gravity theory become sources for operators in the boundary theory [62, 29],
since boundary conditions and sources play a similar role: they can be freely specified and
that then determines the dynamics. Applying this idea to a bulk scalar field φ , and equating
the partition functions of the two theories (if they contain the same states obeying the same
dynamics then their partition functions should be equal) we get a part of the holographic
dictionary 〈

exp
∫

φ0O

〉
CFT

= ZS(φ0). (2.6)

The left-hand side is the partition function of the CFT with a source φ0 included for some local
operator O, and the right-hand side is the bulk partition function with boundary condition φ0

applied to the scalar field. In the classical limit this partition function reduces to

ZS(φ0) = exp(−IS(φ0)) (2.7)

where IS is the supergravity action evaluated on the classical solution. With this dictionary,
we could now compute correlation functions of the operator O in the large N limit by varying
φ0, and using the classical equations of motion in the bulk to evaluate the right-hand side. In
particular, we can calculate the expectation value (the one-point function) of the boundary
operator O in terms of the bulk scalar field φ . This turns out to be given by the next leading
order piece in the asymptotic expansion of φ near the boundary. If φ obeys the Klein-Gordon
equation with mass m, then near the boundary it can be expanded as

φ(z,xµ) = φ0(xµ)z∆− +φ1(xµ)z∆+ + ... (2.8)

where

∆± =
d
2
±
√

d2

4
+m2L2. (2.9)
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The expectation value of O is then proportional to φ1, as might be expected on dimensional
grounds. This same pattern is repeated for all of the classical bulk fields. For each field
there is a boundary condition, and this is identified with a source for some operator in the
boundary theory. The expectation value of the operator is given by a sub-leading term in the
asymptotic expansion of the field near the boundary (the required order of the term can be
determined using dimensional analysis). Note that for scalar fields, the scaling dimension of
the corresponding operator, ∆+, depends on the scalar field mass m.

One important class of fields in the bulk are the gauge fields. Examples might include an
electromagnetic vector potential associated with a U(1) gauge symmetry, or the metric itself,
associated with diffeomorphism invariance. Gauge fields are dynamical, but their evolution
is underdetermined. There will be many distinct solutions with the same initial conditions,
related by gauge transformations, since gauge transformations can vary arbitrarily in space
and time. For this reason, gauge invariance is usually thought of not as a physical symmetry,
but as a redundancy in our mathematical description. It is natural to ask what the significance
of this bulk gauge invariance is on the boundary.

Recall that the boundary conditions we impose on our gauge fields are non-dynamical,
and are identified with sources in the boundary theory. These boundary conditions will
generically be altered by gauge transformations, so in a sense there is still a redundancy
in our mathematical description of the boundary, but since the boundary conditions are
non-dynamical this is no longer gauge invariance. The boundary dynamics are not underde-
termined. However, there is a special set of gauge transformations which preserve the gauge
field boundary conditions, despite acting non-trivially in the bulk. If the gauge group is G,

so that a general gauge transformation is a G valued function g(z,xµ), then this is the set of
gauge transformations for which g(0,xµ) = g0 is constant. Such transformations can mix up
the boundary operators while preserving the gauge field boundary conditions, and leaving
the action invariant. They can therefore be interpreted as global symmetries on the boundary.
Another aspect of the duality has now been made precise: gauge symmetries in the bulk are
dual to global symmetries of the boundary. Conversely, any global symmetry of the boundary
should be gauged in the bulk, since there are no global symmetries in quantum gravity [63].

This correspondence can be made more concrete. Consider the case of a U(1) symmetry.
We have a bulk gauge field Aa, which we have seen should be dual to some source/operator
pair on the boundary. On the other hand, we have a global U(1) symmetry on the boundary
which must have a corresponding conserved current operator, Jµ , and this should be dual to
some bulk field. It turns out that A is dual to J. If we work in a gauge where Az = 0, then the
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gauge field can be expanded near the boundary as

Aµ = Aµ

(0)+Aµ

(1)z
d−2 + ... (2.10)

and it can be shown that bulk gauge invariance implies ∂µAµ

(1) = 0. For this reason we identify
Aµ

(1) with ⟨Jµ⟩ . Roughly, the idea is that if we vary the bulk fields around a solution to the
equations of motion, then the action can only change by a boundary term. In the special
case where we apply an arbitrary infinitesimal gauge transformation, even this boundary
term must vanish, since the action is gauge invariant. The gauge field variation is an exact
derivative, and so applying integration by parts with respect to the boundary coordinates
shows that the current Aµ

(1) is conserved. The same story holds for the metric, where in
the appropriate gauge we can extract a conserved boundary stress tensor from its O(zd−2)

behaviour. The conservation of this stress tensor is a direct consequence of diffeomorphism
invariance in the bulk.

Finally, we can try to understand what happens in the bulk if we place the boundary
theory at some finite temperature. The concept of temperature arises in situations where we
do not know the state of a system exactly, but only a probability distribution, or ensemble, to
which it belongs. In classical mechanics, dealing with this uncertainty requires a lot of extra
work, and the introduction of new mathematical machinery. Remarkably, in quantum field
theory there is a simple recipe for adapting our description of the dynamics to obtain results
at finite temperature. This is because the partition function from the path integral formulation
of quantum field theory is already strikingly similar to the partition function from statistical
mechanics (so similar that they are given the same name). The partition function (in the
statistical sense) for a quantum mechanical system at temperature T is given by

Z = ∑
n
⟨n|e−Ĥ/T |n⟩ (2.11)

where the states |n⟩ are a basis of the Hilbert space. This can be compared with the partition
function (in the path integral sense) for a quantum theory on a background where the time
coordinate is periodic with period τ

Z = ∑
n
⟨n|e−iĤτ |n⟩. (2.12)

So in order to place a quantum system at temperature T, all we have to do is euclideanize time,
and periodically identify the euclidean time coordinate with period 1/T. Finite temperature
correlation functions can then be obtained using the Feynman rules in the usual way.
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Since the holographic dictionary identifies the time coordinate on the boundary with the
time coordinate in the bulk, we should be able to obtain a gravitational description of a finite
temperature CFT by applying the same recipe. We should look for stationary asymptotically
AdS solutions to Einstein’s equation in Euclidean signature, where the time coordinate has
period 1/T. There are only two known non-singular solutions of this type [31]: AdS itself
with periodic identification, and an AdS-Schwarzschild black hole with Hawking temperature
TH = T. Consider first the standard case of a spherical boundary. When T is small, no black
hole solution exists (spherical AdS-Schwarzschild black holes have a minimum temperature),
but when T is sufficiently large the black hole solution dominates the canonical ensemble (its
action is smaller than that of AdS). The phase transition between the two regimes is known
as the Hawking-Page transition [31], and it is believed to be dual to a confinement transition
in the CFT7 [62]. The temperature of the phase transition is proportional to 1/L, where L,
the AdS curvature scale, is also the radius of the sphere that the boundary CFT lives on. This
has to be the case, since the boundary theory is conformal, and so L is the only length scale
available. If we put the same CFT on a plane, with no natural length scale, then there can
be no phase transition. In this case, we find that the appropriate bulk geometry is the planar
AdS-Schwarzschild black hole, which can take any temperature. In summary, at least at large
T, the gravitational dual of a finite temperature holographic CFT is an AdS black hole with
Hawking temperature TH = T.

We have now discussed various aspects of the holographic dictionary in the limit where
the bulk becomes classical. We could try to leverage these ideas to gain insight into the large
N limit of strongly coupled gauge theories, but that is outside the scope of this thesis. For
our purposes, the AdS/CFT correspondence is relevant for two reasons. It provides some
motivation for studying gravity in asymptotically AdS space. But also, it provides a new
source of intuition for thinking about gravitational problems in this regime. This will be
helpful when we discuss some proposed counterexamples to cosmic censorship.

2.3.3 Restating the WCCC in AdS

In asymptotically flat space, the WCCC roughly said that if we start from good initial data,
then we cannot form a singularity which is visible at I +. The natural generalization of this
to asymptotically AdS space is to say that if we start from good initial data, and impose good
boundary conditions, then we cannot form a singularity which is visible at the boundary. Just
like in flat space, we will need to add some conditions to this statement in order for it to have

7Strictly speaking this phase transition is only present in the infinite N limit.
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a chance of being true: non-generic counter-examples are allowed, the matter fields must be
suitably well behaved, and the number of space-time dimensions should be 3+18.

We could now attempt to give a precise formulation of the WCCC in AdS in terms of the
predictability of solutions to Einstein’s equation. However, the examples we consider, which
we will call counter-examples to cosmic censorship, would not actually violate this precise
statement. In these examples, no naked singularity forms in finite time. Instead, the curvature
grows in time without bound in a region visible to the boundary. If the analogous scenario
arose in asymptotically flat space, it would not violate the commonly accepted technical
statement of the WCCC discussed previously, since we are still able to classically continue
the evolution arbitrarily far into the future. But it does violate the spirit of the WCCC. Recall
that the WCCC is interesting because it says that regions where we expect new physics to be
important are generically hidden from view. But in our examples, whatever the curvature
scale is at which new physics kicks in, such curvatures will eventually be visible to a distant
observer who is prepared to wait for a sufficiently long time. It might be objected that even
in flat space we can always find an open set of initial data whose evolution exceeds some
given curvature bound (we could take a set of solutions near the critical value in gravitational
collapse for example). But this still requires fine tuning: the higher the desired curvature, the
more careful the tuning must be. What is special about our examples is that we have an open
set of initial data for which the curvature during the evolution exceeds any bound.

We therefore propose a strengthened form of the WCCC

Conjecture 2.3.1. For any open set of initial data (+boundary conditions) there exists a
K > 0 such that for some member of the set, |RabcdRabcd|< K on or outside of the black hole
horizons throughout the entire evolution.

This form of the conjecture is stronger, in that it forbids large naked curvatures even if the
curvature never actually becomes infinite anywhere9, but it could be said to more accurately
capture the spirit of cosmic censorship. In asymptotically flat space, its status is similar to
the formulation of the WCCC in terms of predictability. All the evidence we saw in favour of
the WCCC in that context can also be taken as evidence in favour of this strengthened form.
But in asymptotically AdS space, we will present numerical evidence that this strengthened
form of the conjecture is violated. First, we will work in vacuum where the WCCC may be
violated, but things are still not completely clear. Then, we will introduce a U(1) gauge field,
where the evidence that the WCCC is violated is much stronger. But before we can present
these solutions, we should first explain how to construct them.

8In higher dimensions a sufficiently small AdS-black ring solution should behave like its asymptotically flat
counterpart, where the WCCC is violated.

9It is also weaker in that it only covers curvature singularities.



Chapter 3

Numerical Evolution with a
Characteristic Scheme

Any method for constructing numerical solutions to Einstein’s equation must deal with
the problem of gauge invariance. Even when we specify initial and boundary conditions,
Einstein’s equation is underdetermined. If we have one solution then we can always apply
a coordinate transformation to obtain another. If we want a well-posed set of equations,
we must therefore fix a gauge by specifying which coordinate system we are going to use.
This is a non-trivial problem, and if done badly the solution may become singular because
the coordinate system breaks down, rather than because of any genuine pathology in the
spacetime1. This would then prevent us from continuing the evolution any further into the
future.

The solutions in this thesis have all been obtained using a characteristic scheme. This
means working with coordinates corresponding to a null slicing of the spacetime. The
particular null slicing is uniquely fixed because we explicitly specify the null geodesics which
generate it. The advantage of such a scheme is that the set of PDEs we need to solve take on
a remarkably simple form, since the coordinates have been adapted to characteristic curves of
Einstein’s equation (null geodesics) and most of the problem is reduced to integrating ODEs
along these curves. When they work, characteristic schemes are therefore very powerful.
However, it is possible that caustics will form during the evolution (where two of the null
geodesics intersect) at which point the coordinate system will break down. Fortunately, we
have been able to avoid this problem for the solutions we have constructed.

In this chapter we present the Bondi-Sachs coordinate system [5], which can be used
to perform characteristic evolution in asymptotically flat space [61]. We then review how

1We can compute gauge invariant quantities such as the Kretschmann to test whether a singularity is an
artefact of the choice of coordinates or not.
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this coordinate system can be adapted to describe asymptotically AdS space with a finite
temperature horizon, and we describe in detail a characteristic scheme which can be applied
in that context [3].

3.1 The Bondi-Sachs Coordinate System

The standard way to apply a characteristic scheme in asymptotically flat space is to work in the
Bondi-Sachs coordinate system, which was introduced in [5] in order to study gravitational
waves. The coordinate system is constructed as follows. First, pick a timelike curve O to use
as an origin (its intersection with any Cauchy surface will be a point). Then, enclose this point
inside a sphere2 on which we pick coordinates ψ,φ and a time coordinate v. Now consider
all the null geodesics which emanate from O. These can be labelled by the coordinates of
their intersection with the sphere (v,ψ,φ) and each can be parametrised with some parameter
r. This then defines coordinates for the entire spacetime: (v,r,ψ,φ). For any event E we just
find the null geodesic it lives on, which is labelled by some v,ψ,φ , and then we find the value
of the parameter r on this geodesic at E. This construction works provided that this family
of null geodesics does actually cover the spacetime, and provided that no two of these null
geodesics ever cross (otherwise there would be an ambiguity in how this event is labelled).

Assuming that this procedure does give a valid set of coordinates for the spacetime, there
is still one more potential problem. Although a constant v surface in these coordinates is
made out of a family of null geodesics, this does not guarantee that the surface itself is null.
It will generically be timelike in places, which is a problem if we want to treat v as the
“time” coordinate in our numerics. Fortunately we still have a great deal of freedom in our
specification of the coordinates: we did not say how to choose the coordinates v,ψ,φ on the
sphere, and we did not say how to choose the parameter r along each geodesic. It is shown in
[5] how the coordinate v can be chosen on the sphere to ensure that constant v surfaces are
null. When this is done the metric takes the following form

ds2 =−
(

V r−1e2β − r2hABUAUB
)

dv2 −2e2β dvdr−2r2hABUBdvdxA + r2hABdxAdxB

(3.1)
where dxA = (dψ,dφ) and

h = e2χ

(
eα coshθ sinhθ

sinhθ e−α coshθ

)
. (3.2)

2by which we mean a surface with topology of a sphere
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The only place dr appears is in the dvdr term, which implies that constant v slices are null.
Even in this restricted form, we still have some gauge freedom left. We have not specified
how to parametrise the null geodesics, and so we can replace r with any new coordinate
r̃ = r̃(v,r,θ ,φ) without changing the structure of the metric. This freedom must be dealt with
in any implementation of a characteristic scheme using Bondi-Sachs coordinates.

3.2 Bondi-Sachs Coordinates in AdS: A Characteristic Scheme
for Asymptotically AdS Space at Finite Temperature

3.2.1 Constructing the Coordinates

The numerical scheme used in this thesis closely follows the scheme presented in [3], which
we now review. The idea is to adapt the construction of Bondi-Sachs coordinates so that it
can be applied in asymptotically AdS spaces with a finite temperature horizon. As before, we
fill the space with null geodesics, but instead of labelling them according to their intersection
with some spherical surface, we use their point of intersection with the AdS boundary. If we
choose coordinates on the boundary v,xA,xB and introduce a parameter z along each of our
null geodesics (so that z = 0 corresponds to the AdS boundary), then just as before we can
use v,z,xA,xB as coordinates for the entire spacetime.

There are two problems that arise with this construction. First, there is an additional
ambiguity that was not present in asymptotically flat space, because there is no analogue
of the origin O. This means that the labels v,xA,xB do not yet uniquely specify the null
geodesic. We know where it intersects the boundary, but we do not know in which direction
it is pointing. Second, we again need to ensure that constant v slices will be null, but we do
not now want to do this by redefining our boundary coordinate v, because we would like to
specify our boundary conditions in terms of v during the setup of the problem. Fortunately,
these two issues have a common solution. The new ambiguity can be fixed by requiring
that constant v slices are null, and we do not then have to give up our freedom to pick the
boundary coordinates however we like.

It might not be immediately obvious how this works. We have a two parameter family of
null directions to choose from at each point on the boundary, and only a single constraint:
the normal to the generated surface should square to zero. But in fact, this single constraint
fixes both degrees of freedom. There are two independent spacelike vectors which lie in a
constant v surface at any point on the boundary, and the two dimensional space of covectors
orthogonal to these contains only a single null direction, n̂a. We are therefore forced to



22 Numerical Evolution with a Characteristic Scheme

choose our geodesic so that n̂a ends up being the normal to our constant v surface in the bulk.
The only way to do this is to pick the geodesic with tangent n̂a.

So the end result of this discussion is that we are led to the metric ansatz presented in [3]:

ds2 =−
(

e2βV z− hABUAUB

z2

)
dv2 − 2e2β

z2 dvdz− 2hABUB

z2 dvdxA +
hAB

z2 dxAdxB (3.3)

where again

h = e2χ

(
eα coshθ sinhθ

sinhθ e−α coshθ

)
. (3.4)

The metric in this form still has the remaining gauge freedom corresponding to redefinitions
of the bulk radial coordinate z, and this can be used to fix the function χ. In [3] they fix the z
dependence of χ to be of the form

χ(v,z,xA,xB) =
1
4

log(1+2z3
χ3(v,xA,xB)) (3.5)

but there is still some gauge freedom left, as χ3 is unspecified. In particular, although we can
specify the initial value of χ3 as part of our initial conditions, χ̇3 will not be determined by
the equations of motion (where˙denotes a derivative with respect to v). This freedom is used
to choose χ̇3 during the evolution so that the apparent horizon remains fixed at z = 1, which
will be the inner boundary of our computational domain. The apparent horizon is expected
to always lie inside the event horizon, so by imposing this condition we should guarantee
that the entire exterior of the black hole region is being captured. In order to impose this
apparent horizon condition, we will need an explicit expression for the expansion of a set of
null geodesics orthogonal to the z = 1 surface. An apparent horizon is a surface for which
this expansion vanishes, so we want to be able to pick χ̇3 to ensure that this happens.

3.2.2 The Apparent Horizon Condition

Consider a congruence of null geodesics with tangent ξ µ . This vector field must then obey
the conditions ξ µξµ = 0 and ξ µξρ;µ = 0. The expansion of the null geodesic congruence
is given by ξ µ

;µ . We are interested in the outgoing null geodesics which are orthogonal to
the z = 1 surface at a particular time v0. Construct a function S[v0](v,z,xA,xB) such that the
surface generated by these null geodesics corresponds to S = 0. The tangents to the null
geodesics are orthogonal to themselves, and to the z = 1,v = v0 surface, so when we lower
their index we must get something proportional to the normal to S : ξµ = RS,µ . We are free
to pick the 3 parameter function S[v0](v0,z,xA,xB) however we like provided that it vanishes
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on z = 1, and this gives us most of the partial derivatives of S. The conditions ξ µξµ = 0 and
ξ µξρ;µ = 0 can then be used to solve for S,v and R,v. This turns out to be enough to show
that the expansion on z = 1, given by ξ µ

;µ , is proportional to

z2(z∂zχ −1)V −DAUA −2χ̇|z=1 (3.6)

where the symbol DA denotes the covariant derivative with respect to the 2 dimensional
metric hAB. It will be convenient to introduce a new function

dt χ ≡ χ̇ − z2

2
(z∂zχ −1)V (3.7)

and the apparent horizon condition can then be written

dt χ +
1
2

DAUA|z=1= 0. (3.8)

3.2.3 The Numerical Scheme

We are now ready to present the details of the numerical scheme. The basic idea is to
show how the functions β ,UA,V, α̇, θ̇ and χ̇ can be determined on a given time slice if the
functions α,θ and χ are known. We can then use the time derivatives to jump to the next time
slice, and repeat the same procedure again. There is an additional complication, because it
turns out that we will also need to assume some knowledge of the boundary behaviour of UA

and V beyond what is given to us by the boundary conditions. In holographic language, we
need to know some components of the boundary stress tensor. However, the time derivatives
of these components can also be determined, so we can evolve them between time slices in
the same way that we evolve α,θ and χ.

The first step of the scheme is to solve the zz component of Einstein’s equation for β :

4
z
(−1+ z∂zχ)∂zβ −2∂

2
z χ − 1

2
(
4(∂zχ)

2 +(∂zα)2 cosh2
θ +(∂zθ)

2)= 0. (3.9)

Next, we define an auxiliary function

π
A ≡ z−2e2(χ−β )hAB∂zUB (3.10)

and this function can then be solved for using the Az component:

z2e−2χ

2
∂zπA −

1
z2 e2χ

∂z(z2e−2χ
∂Aβ )+

1
2

hBCDC∂zhAB −2DA∂zχ = 0. (3.11)
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To solve this equation, we need boundary data for πA, but this is not given to us by the AdS
boundary conditions. This is the first step where some knowledge of the boundary stress
tensor is required. We will therefore need to ensure that we can propagate boundary data
for πA between time slices so that this equation can be solved. Once we have πA, it is then
straightforward to determine UA by inverting Equation 3.10.

With β and UA determined, it remains to solve for V, α̇, θ̇ and χ̇. Instead of solving for
V directly, the next step is to solve for the function we introduced in Equation 3.7: dt χ. This
can be done using the combination

hABGAB = 4e−2(β+χ)z2
∂z

(
e2χ

z2 dt χ

)
− 1

2
e−4β hAB∂zUA

∂zUB − 2Λ

z2

+R−2e−β−2χDAe2χhABDBeβ + z4e−2(β+χ)DAe−2χ
∂z

(
e4χUA

z4

)
= 0 (3.12)

where R is the Ricci scalar associated with the metric hAB. In principle, we again require
some knowledge of the boundary stress tensor here to provide the necessary boundary data
for dt χ (we need to know its behaviour at O(z2)). This is another piece of boundary data
which should be dynamically evolved between time slices. However, since we know that
we are going to eventually choose χ̇ in order to enforce the apparent horizon condition,
we could actually use the apparent horizon condition itself here (given in Equation 3.8)
as a boundary condition for dt χ at z = 1. If our scheme is consistent, then both of these
approaches should give the same answer, which gives us a way of monitoring the numerical
error. In our solutions, we choose to evolve boundary data for dt χ so that we can impose a
boundary condition at z = 0, and we evaluate the left hand side of Equation 3.8 at z = 1 to
monitor the numerical error.

It turns out that although we still do not know V, we can now use the two remaining
linearly independent combinations of GAB to solve for the two auxiliary functions

dtα ≡ α̇ − z3

2
V ∂zα (3.13)

dtθ ≡ θ̇ − z3

2
V ∂zθ . (3.14)

This requires us to solve two coupled linear equations simultaneously.
Apart from the time derivatives of our boundary data, the only functions left to determine

are now χ̇ and V, and since these are now related by Equation 3.7, there is really only one
unknown function remaining. In principle, we should be able to freely specify χ̇ at this point
due to the remaining gauge freedom, but recall that we would like to choose it to ensure that
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the apparent horizon condition is enforced. Imposing this condition directly is not possible,
because we have seen that the expansion, given by the left hand side of Equation 3.8, should
already have been determined when we solved for dt χ. However, it turns out that we can
make sure that its time derivative vanishes. That way, we just need the apparent horizon to
lie at z = 1 in our initial data, and it will remain there for all times.

In order to do this, we consider the combination Gz
t +UAGz

A. If we suppose that the
time derivative of the left hand side of Equation 3.8 vanishes, and also make use of Equation
3.9, then this reduces to an elliptic equation for V at z = 1 :

− 1
2

D2V − 1
2

(
e−2β

∂zU +2Dβ

)
·DV −

(
∂zdt χ +

1
2

D ·U −U ·D∂zχ

)
e−2βV

+ e−2(β−χ)dt
(
e−2χhAB

)
DAUB +

1
4

e−2(β−2χ)dt
(
e−2χhAB

)
dt

(
e−2χhAB

)
+

1
2

e−2β

(
(DAUB)(DAUB)+(DAUB)(DBUA)− (D ·U)2

)
|z=1= 0. (3.15)

This can be solved to determine V on z = 1, and that then determines χ̇ through Equation
3.7. But the z dependence of χ̇ was fixed in Equation 3.5, so the fact that we know its value
on z = 1 allows us to compute it (and V via Equation 3.7 again) everywhere.

All that remains to do is explain how to evolve the boundary data for πA and dt χ. Since
we now have most of the solution on the time slice (we already know χ,α,θ ,β ,UA,V, χ̇, α̇
and θ̇ ), extracting the time derivatives of the boundary data from the remaining equations
of motion turns out to be relatively straightforward. If we expand the vA component of
Einstein’s equation near the boundary, this can be rearranged to give an expression for π̇3|z=0

(no integration is required). Similarly, the vv equation at the boundary gives ∂vdt χ

z2 |z=0. These
are precisely the quantities we need to evolve the boundary data forward. Roughly, this
corresponds to evolving the momentum density and energy density of the boundary stress
tensor. The equations we use to do this are equivalent to enforcing conservation of this stress
tensor3.

3.2.4 Boundary Conditions

We have now explained the order in which the equations must be solved. We have also
claimed that some necessary boundary data is not determined by the boundary conditions,
and must therefore be evolved between time slices, and we have explained how this can be

3The remaining 2 independent components of this stress tensor are related to the behaviour of α and θ near
the boundary, which we also evolve between adjacent time slices.
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done. However, we have not yet been explicit about what the boundary conditions themselves
actually are, or about how our metric functions behave near the boundary.

The boundary conditions we must provide correspond to fixing the O(1/z2) behaviour
of the metric near z = 0. In holographic language, we must fix the boundary metric, and
typically we impose that the boundary metric is flat4. When this is done, we find the following
expansions near z = 0 :

V =
1
z3 +V3 +O(z) (3.16)

β =−1
2

χ3z3 +O(z4) (3.17)

UA =UA
3 z3 +O(z4) (3.18)

α = α3z3 +O(z4) (3.19)

θ = θ3z3 +O(z4). (3.20)

The five integration constants V3,α3,θ3,UA
3 describe the five degrees of freedom of the

traceless boundary stress tensor.
Sometimes, we will want to deform the boundary metric, and in this case the expansions of

the metric functions off the boundary become more complicated. For the problems considered
in this thesis, we typically impose non-trivial boundary conditions on the functions UA. In
this case we find the following expansions

V =
1
z3 −∂AUA

0
1
z2 −

3
8

(
δABδ

CD
∂CUA

0 ∂DUB
0 +∂AUB

0 ∂BUA
0 −∂AUA

0 ∂BUB
0

) 1
z
+V3 +O(z)

(3.21)

β =− 1
16

(
δABδ

CD
∂CUA

0 ∂DUB
0 +∂AUB

0 ∂BUA
0 −∂AUA

0 ∂BUB
0

)
z2 − 1

2
χ3z3 +O(z4)

(3.22)

UA =UA
0 +

1
2

δ
BC

∂B∂CUA
0 z2 +UA

3 z3 +O(z4) (3.23)

α =
(
∂1U1

0 −∂2U2
0
)

z+α3z3 +O(z4) (3.24)

sinhθ =
(
∂2U1

0 +∂1U2
0
)

z+θ3z3 +O(z4) (3.25)

where the source term UA
0 is some function of the boundary coordinates.

4When we include an electromagnetic field together with this boundary condition it does not affect the given
expansions.
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3.2.5 Conclusion

This completes the description of the characteristic scheme for finite temperature asymp-
totically AdS space. To actually implement this scheme in practice we will need to pick a
numerical method for solving the ODEs along each characteristic, for solving the elliptic
equation for V on z = 1, and for performing the time evolution. We have used spectral
methods to do the first two of these, with a Chebyshev grid in the z direction, and either a
Fourier or Chebyshev grid in the boundary directions according to whether they are periodic
or not. To perform the time evolution, we use the 4th order Runge-Kutta method. We also
apply filtering every few time steps to improve numerical stability. This means interpolating
onto a smaller grid (with about 2/3 the number of grid points) and back again, which helps
to reduce the effects of aliasing error.





Chapter 4

Refining the Characteristic Scheme:
Gauge fields, Zero Temperature, and
Non-Compact Boundaries

The characteristic scheme from [3], presented in the previous chapter, allows us to solve
time dependent problems in asymptotically AdS spaces in vacuum at finite temperature,
and it works well when the boundary coordinates are all compact. However, many of the
problems that we are going to consider will not satisfy all of these conditions. First, we
will sometimes want to include an electromagnetic field. This will require us to add a few
more steps to the scheme, involving the electromagnetic field and its equation of motion. We
present these new steps in the first half of this chapter. Second, we will sometimes want to
work at zero temperature. It is more difficult to see how the scheme should be adapted to
cope in this context. In the second half of this chapter, we explain how it can be done by
presenting a new way of constructing the coordinates. To our knowledge, this is the first
time that time evolution has been performed in an asymptotically AdS space-time with a
planar zero temperature horizon. Finally, we will sometimes want to consider cases where
the boundary coordinates are non-compact. Although it is not immediately obvious that the
previous scheme will fail to cope with a non-compact boundary, we have not been able to
make it work. We explain why at the end of this chapter, and why the adaptations that we
make to the scheme to handle zero temperature can solve this problem as well.
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4.1 Introducing an Electromagnetic Field

The Einstein-Maxwell action is

S =
1

16π

∫
d4x

√
−g
(

R+
6
L2 −FabFab

)
(4.1)

where
F = dA. (4.2)

The vector potential A comes with its own gauge freedom that must be fixed before we can
apply a numerical scheme. In particular, for any function ψ, we can add dψ to A to obtain
another solution to the equations of motion, since this transformation leaves F invariant.
We choose to fix this freedom by imposing that Az = 0. Given an arbitrary gauge field
configuration, we can always achieve this condition by choosing ψ such that ∂zψ =−Az,

as this equation can be solved by integrating inwards from the boundary. The solution will
be unique (up to a constant) since if ψ had any dependence on the boundary coordinates
at z = 0 then this would affect the boundary conditions. There is therefore no more gauge
freedom left. Additionally, in all of the problems we consider with a gauge field, there will
always be a symmetry under the reflection or translation of one of the boundary coordinates,
so this leaves only 2 non-zero components:

A(v,z,x) = Av(v,z,x)dv+Ax(v,z,x)dx (4.3)

where x is the single boundary coordinate on which our functions can depend.
The introduction of this gauge field will alter all of the equations that we had previously,

because there is now a non-zero stress tensor on the right hand side of Einstein’s equation.
Fortunately, this turns out to not disrupt the scheme too much. We just need to add Ax to the
list of fields that we assume we know, and then we have to add steps to the scheme to solve
for Av and Ȧx at the appropriate places. The right hand side of the new version of equation
3.9 (coming from Tzz) depends only on Ax, not on Av, so we can solve for β again straight
away. Next, we solve for Ux and Av together. Along with the auxiliary function πx from
Equation 3.10, we define an additional auxiliary function

πM = e2χ−2β (∂zAv +Ux
∂zAx) (4.4)

and with this definition, the v component of Maxwell’s equation ∇µFµν = 0, reduces to

eα
∂zπM −∂x∂zAx +(∂xα)(∂zAx) = 0 (4.5)



4.2 Zero Temperature 31

which we can solve for πM. Just like with πx, solving this equation requires more boundary
data than is given to us by the boundary conditions. In holographic language, this is the
boundary data associated with the charge density under the global U(1) symmetry on the
boundary. Just like with the components of the boundary stress tensor, we will later have to
evolve this boundary data between time slices. For now though, with πM determined, we can
solve the new version of Equation 3.11 for πx, since the new right hand side (coming from
Txz) can be written in terms of πM. We can then determine Ux and Av by inverting Equation
3.10 and 4.4 in that order.

The next step is to find dt χ, which we were able to do in the original scheme by solving
hABGAB = 0. The right hand side of this equation is now non-zero, but it turns out that we
can evaluate it using the functions we have found so far. This means we can solve the new
equation for dt χ in the same way. We are then supposed to solve for dtα and dtθ using the
remaining two independent combinations of GAB. Since we are now assuming a symmetry
in one of our boundary directions, we know that θ = 0, and there is only 1 independent
component of GAB left. This makes things easier, but we also have an additional unknown
quantity to solve for: Ȧx. It again helps to define a new quantity

dtAx = Ȧx −
z3

2
V ∂zAx. (4.6)

We can then solve for dtα and dtAx together using the yy component of Einstein’s equation
and the x component of Maxwell’s (where we use y to denote the coordinate along the
symmetry direction).

With these functions all determined, we can solve for V and χ̇ using the same equation
on the horizon as before (now with a non-zero right hand side), and all that remains is to
evolve the boundary data. The vv and vA components of Einstein’s equation can again be
used to find the time derivatives of the boundary data for πx and dt χ, and this is equivalent to
enforcing conservation of the boundary stress tensor. But we now also need to know π̇M|z=0.

This can be obtained by rearranging the z component of Maxwell’s equation, expanded near
the boundary, and this is equivalent to enforcing charge conservation.

4.2 Zero Temperature

To understand why the previous scheme cannot cope with a vanishing temperature, and to
motivate the new coordinate construction which can, it is helpful to consider pure AdS as
an example. We gave the metric for the Poincaré patch of AdS in Equation 2.3, where we
explained how it can be thought of as a zero temperature planar black hole. The problem
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with applying the null slicing procedure of Section 3.2.1 to the Poincaré patch in the natural
way is that caustics will then appear on the Poincaré horizon, as we now demonstrate.

First, let us try to explicitly construct a coordinate transformation which removes the
coordinate singularity at the Poincaré horizon, z = ∞. There are two obvious problems
contributing to the singular behaviour there: the coordinate z itself blows up, and it is a
horizon. We can try to solve the first problem by replacing z with r = L2z−1 and we can try
to solve the second by switching to ingoing null coordinates v = t − z. This gives

ds2 =− r2

L2 dv2 +2dvdr+
r2

L2 δi jdxidx j (4.7)

but this metric is still singular at the Poincaré horizon! All of the components of the metric
in the xi directions vanish at r = 0. To get rid of the coordinate singularity, we will have to
do something with the xi coordinates as well. One coordinate system that does the job, used
in [35], is the following: we first transform the boundary coordinates amongst themselves to
get polar coordinates on the boundary

ds2|∂=−dt2 +dR2 +R2dφ
2 (4.8)

and then we define new coordinates for the bulk as follows

ρ
−1 = L−2

√
z2 +R2 (4.9)

ψ = arctan
z
R

(4.10)

v = t −L2
ρ
−1. (4.11)

In these coordinates, the bulk metric is

ds2 =
1

sin2
ψ

(
−ρ2

L2 dv2 +2dvdρ +L2 (dψ
2 + cos2

ψdφ
2)) (4.12)

which is now non-singular at the Poincaré horizon, ρ = 0.
We are now in a position to understand why taking the null slicing of the Poincaré patch

in the natural way does not work. If we pick a time coordinate on the boundary so that the
boundary metric is Minkowski, and then construct a null slicing according to the procedure
described in Section 3.2.1, we will end up with something like the metric of Equation 4.7
(up to redefinitions of r). The null geodesics generating this null slicing, written in terms of
the standard Poincaré patch coordinates, are of the form t = z+ c, with the coordinates xi

constant along each geodesic. But we can now see that all of these null geodesics actually
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Boundary

Horizon

Fig. 4.1 A visualization of the null geodesics which generate the null slicing of Equation 4.7.
There is a caustic on the Poincaré horizon at ψ = π

2 .

intersect the Poincaré horizon in the same place: ψ = π

2 . In other words, we have a caustic
on the Poincaré horizon. This is why the metric in Equation 4.7 is singular there. The null
geodesics are shown pictorially in Figure 4.1.

We have also seen that a non-singular null slicing is possible. An example of such a
slicing is provided by the coordinates we used to construct the metric 4.12. The null geodesics
generating this null slicing are visualised in Figure 4.2. But although these null geodesics
cover the entire horizon, they do not cover the whole boundary. They only intersect the
origin, R = 0. This is a problem if we want to formulate a numerical scheme in the way we
outlined in Section 3.2. In particular, it is not true that every point on the boundary has a
unique v,ψ, and φ coordinate.

How should we proceed? The idea is to pick a null slicing which is a compromise
between Figure 4.1 and Figure 4.2. We want to fill the space with null geodesics so that they
cover the whole boundary and the whole horizon. This is depicted pictorially in Figure 4.3.
We can do this in pure AdS by constructing coordinates in the following way:

ρ
−1 = L−2

√
(z+ c)2 +R2 (4.13)

ψ = arctan
z+ c

R
(4.14)

v = t −L2
ρ
−1 (4.15)

for some arbitrary constant c (we always work with c = 1). This puts the metric in the form

ds2 =
1

(sinψ − cρ/L2)2

(
−ρ2

L2 dv2 +2dvdρ +L2(dψ
2 + cos2

ψdφ
2)

)
. (4.16)
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Boundary

Horizon

Fig. 4.2 A visualization of the null geodesics which generate the null slicing of Equation
4.12. There is no longer a caustic on the Poincaré horizon but now the geodesics all intersect
the boundary at a single point.

For our numerics, we make the further coordinate redefinition x = sinψ so that the metric
becomes:

ds2 =
1

(x− cρ/L2)2

(
−ρ2

L2 dv2 +2dvdρ +L2
(

dx2

1− x2 +(1− x2)dφ
2
))

. (4.17)

This metric is non-singular at the Poincaré horizon ρ = 0, but at the same time, v,x and φ

can still be used as coordinates on the boundary. When this is done, the boundary metric
(still flat) takes the unusual form

ds2|∂=−dv2 +2
c
x2 dvdx+

c2

x2

(
dx2

1− x2 +(1− x2)dφ
2
)
. (4.18)

So in a general asymptotically AdS space-time, if we choose these coordinates on the
boundary, and apply the recipe of Section 3.2.1 to construct a null slicing for our numerical
scheme, we should have a good chance of avoiding caustics on or outside of the horizon.
This motivates adopting a metric ansatz

ds2 =
1

(x− cρ/L2)2

(
−(e2βV −hABUAUB)dv2 +2e2β dvdρ −2hABUBdvdxA +hABdxAdxB

)
(4.19)

where dxA = (x,φ) and the boundary conditions can be chosen so that the boundary metric
takes the form in Equation 4.18 (note that V is defined slightly differently to the previous
scheme so that it does not diverge at the boundary). With this, we can solve time dependent
problems in asymptotically AdS space at zero temperature.
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Boundary

Horizon

Fig. 4.3 A visualization of the null geodesics which generate the null slicing of Equation
4.17. The geodesics now cover the entire horizon and the entire boundary.

4.2.1 Details of the Zero Temperature Numerical Scheme

Fortunately, we can solve the equations of motion arising from this metric ansatz with a
numerical scheme that is almost identical to the one that we had previously. All of the
functions are solved for in the same order, using the same components of Einstein’s (or
Maxwell’s) equation at each step. The only differences are that we need to change the way
that we fix the ρ dependence of χ, and we need to give new definitions of πA,dt χ,dtα, and
dtAx. The simplest way to do this is the following. To keep χ in a similar form to before, we
impose

χ(v,ρ,x) =
1
4

log
(

1+2
(

1− cρ/L2

X

)
χ3(v,x)

)
. (4.20)

The new definition of πA is

πA ≡ (x− cρ/L2)−2e2(χ−β )hAB∂zUB (4.21)

and the new dt χ is

dt χ ≡ χ̇ +

(
c/L2 +(x− cρ/L2)∂zχ

2(x− cρ/L2)

)
V. (4.22)

With this definition of dt χ the apparent horizon condition is again

dt χ +
1
2

DAUA|ρ=0= 0 (4.23)
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which, after we have solved for dt χ, has no dependence on χ̇ or V. This means that the story
we had before applies here as well. We cannot impose the apparent horizon condition directly
through our choice of χ̇, we must do it indirectly (we impose that the time derivative of the
apparent horizon condition vanishes and use this to derive an elliptic equation for V on the
horizon). Because we do this, we could even choose to use the apparent horizon condition as
a boundary condition for dt χ at the horizon, instead of evolving data for it at the boundary,
and if our scheme is consistent then these two approaches should give the same answer. We
can use this to monitor the numerical error. For the other functions beginning with dt , we
just replace dt =

∂

∂v −
z3

2 V ∂z with dt =
∂

∂v −
1
2V ∂z.

Finally, when numerically solving the equations we need to take account of the fact that
the boundary no longer lies at a constant value of ρ. Instead, it is given by ρ = xL2/c. To deal
with this, we make a further coordinate transformation. We use the coordinates (v,ρ,x,φ) to
construct the metric and derive the equations of motion, but just before solving the equations
numerically, we define

Z = 1− cρ

L2x
(4.24)

X =
√

1− x. (4.25)

The boundary then lies at Z = 0, the horizon lies at Z = 1, and the symmetry axis lies at
X = 0. This does not spoil the structure of the numerical scheme because

∂

∂ρ
|x,φ= (− c

L2x
)

∂

∂Z
|X ,φ (4.26)

so if an equation contained only ρ derivatives of a given function before, it still contains only
Z derivatives after. We can then solve the equations using spectral methods by introducing a
Chebyshev grid in both the Z and X directions.

The definition of X ensures that if we expand any of the functions around the symmetry
axis, they will contain only even powers of X . This means we can use a “doubling trick” in
this direction. Although the computational domain of X is the interval [0,1], we construct a
Chebyshev grid on the artificially extended domain [−1,1], and impose a symmetry on all of
our functions under reflection through the origin. This symmetry means that we can then
restrict back down to the interval [0,1] and construct differentiation matrices for this half of
the Chebyshev grid alone.
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4.2.2 Boundary Conditions at Zero Temperature

In the previous section we gave the boundary conditions that need to be imposed on the
metric functions in order to get a flat boundary metric. With these boundary conditions, the
expansions of the metric functions near the boundary take a similar form to the previous
Chapter. But we still need to explain how to impose non-trivial boundary conditions on
the gauge field in these new coordinates, and how to deform the boundary metric if we do
not want it to be flat. First, consider the gauge field. To work out how to impose boundary
conditions, it is helpful to work with the gauge invariant quantity Fab, rather than Aa. There
is then no need to worry about how to make the Aρ = 0 gauge choice.

Consider placing the field Fab in an AdS background space-time, and writing it in terms
of the coordinates (t,z,R,φ) from the previous section

F = FtR(dt ∧dR)+Ftz(dt ∧dz)+FzR(dz∧dR). (4.27)

If we were to evolve the field in this background, then we would need to specify the value
of FtR at z = 0 as a boundary condition. Physically, this is the R component of the electric
field at the boundary. The values of the other two functions at the boundary (the z component
of the electric field and the φ component of the magnetic field) are fixed by Maxwell’s
equations. The question we need to answer then is the following. How can we write the
boundary electric field, FtR, in terms of the components of F in the new coordinates (v,ρ,x)?
This is the expression whose value we will need to fix as a boundary condition. Performing
the coordinate transformation gives the result

FtR =−ρx
L2

√
1− x2

(
Fvx +

ρ

x
Fvρ

)
. (4.28)

On the boundary, we have ρ = xL2/c, so this reduces to

FtR =−x2

c

√
1− x2

(
Fvx +

L2

c
Fvρ

)
. (4.29)

This is the boundary condition that must be imposed. To do this, we work exclusively
with F rather than A in the numerical scheme. This is easy to do, since A only appears in
combinations corresponding to components of F. Then, at the step where we solve for dtAx

we pick our boundary condition on dtAx to ensure that Equation 4.29 is satisfied.
Sometimes, rather than introducing a boundary electric field to drive the dynamics, we

will want to deform the boundary metric instead. In particular, we will want to introduce
dtdφ and dRdφ cross terms into the boundary metric. This again requires us to consider
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how the boundary conditions will transform to the new coordinates. But there is a trick
we can use to simplify this calculation. Instead of working with the functions Uφ and θ

from before (which are the functions that would acquire non-trivial boundary conditions
in this problem), we leave these out of our metric ansatz. In their place, we introduce
new functions Av and Ax and replace dφ in the metric with (dφ +Avdv+Axdx). Note that
redefinitions of the coordinate φ change A by an exact derivative, so it behaves under gauge
transformations like an electromagnetic field. In fact, we can then solve this problem as
if it were an electromagnetic field with fixed boundary metric, with the φ µ component of
Einstein’s equation playing the role of the µ component of Maxwell’s (with index down).
Working with F instead of A means we can then use Equation 4.29 to impose the appropriate
boundary condition, just as before. One additional complication is that A now appears
explicitly in some of the equations, instead of always appearing as components of F. We can
fix this by replacing some of the equations of motion we use during the numerical scheme
with gauge invariant combinations. The necessary replacements are as follows:

Gxφ → Gxφ −AxGφφ (4.30)

Gvφ → Gvφ −AvGφφ (4.31)

Gvx → Gvx −AxGvφ −AvGxφ +AvAxGφφ (4.32)

Gvv → Gvv +A2
vGφφ −2AvGvφ . (4.33)

4.2.3 Conclusion

It is interesting to ask whether this coordinate construction is the only way to perform
numerical time evolution with a zero temperature planar horizon. If we want to use a
characteristic scheme, then it seems likely that the answer is yes. The null geodesics we have
chosen to generate our coordinates with appear to be the simplest family with the property
that every point on the boundary, and on the horizon, lies on a unique geodesic. It is essential
that we have this property in order for a characteristic scheme to be applicable. We do still
have freedom in our choice of the parameter c, and although it has always been set to 1 for
the results appearing in this thesis, it would be interesting to investigate further how different
choices of this parameter affect numerical stability.

4.3 Non-Compact Boundary

In the previous section, we described a numerical scheme that works at zero temperature
when the boundary directions are non-compact. Interestingly, the simpler finite temperature
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numerical scheme is unable to cope with a non-compact boundary. Our attempts to use it in
this context resulted in numerically unstable solutions with a boundary energy density that
rapidly diverged. It is possible to understand this behaviour, and why the zero temperature
scheme avoids this problem, by considering how energy conservation is enforced.

Suppose we have a boundary coordinate R which ranges from 0 to ∞. To model this on a
computer, we need to apply a coordinate transformation so that the computational domain is
finite. For example, we might define R = r

1−r2 so that r ranges between 0 and 1. Now in the
usual finite temperature numerical scheme, if we take the limit R → ∞ on the boundary at a
fixed value of v, we end up at spatial infinity of the boundary. The total energy on a constant
v slice (obtained by integrating the energy density of the conserved boundary stress tensor)
should therefore be constant in time. But as energy flows out towards r = 1, keeping track of
energy conservation requires extremely precise tuning of the energy density. This is because
small changes in the energy density near r = 1 will result in very large changes in the total
energy. Numerical error therefore leads to large violations of energy conservation. This extra
energy can then flow back towards smaller values of r, where it causes the energy density to
diverge, making the numerical solution unstable.

The zero temperature numerical scheme avoids this problem, because now if we take
the limit R → ∞ with v fixed, we reach null infinity on the boundary. This means that as v
increases, energy can be radiated away, so the total energy is no longer conserved. If small
numerical errors arise in the energy density near R = ∞, this can still lead to a much larger
error in the total energy, but the propagation of this energy back towards smaller values
of R is strongly suppressed. The numerical evolution remains stable. The motivation for
constructing the numerical scheme of the previous section was to handle situations with zero
temperature, but it turns out that in doing this, we have also found a way to solve the problem
of a non-compact boundary as well.





Chapter 5

Attempting to Form Naked Singularities
in Vacuum

5.1 Motivation

In this chapter, we explain how it may be possible to form a naked singularity in asymptot-
ically AdS space with no matter fields present, by imposing sufficiently violent boundary
conditions on the metric [14]. As motivation, we can ask the following question: is it possible
to use the AdS boundary conditions to overspin a black hole? Recall that overspinning a
black hole (which means increasing the angular momentum beyond the extremal limit) is
one way that people have historically tried to violate cosmic censorship in asymptotically flat
space-times [57]. In that context, it has been found that as black holes approach the extremal
limit, they repel particles with the same angular momentum more and more strongly, and so
it seems to be impossible to overspin a black hole by throwing more matter in. However, in
asymptotically AdS spaces, the boundary conditions give us a new tool that we can exploit to
try to dynamically increase the angular momentum beyond the extremal limit.

Consider the so-called “boosted black brane” solution in 4 dimensions, which is an
asymptotically AdS planar black hole with momentum along one of the boundary directions
(we will periodically identify the boundary coordinate y which is why we refer to this
momentum as angular momentum):

ds2 =
L2

z2

(
− f

K
dt2 + f−1dz2 +K(dy−ωdt)2 +dx2

)
(5.1)
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where

f = 1−L−3Mz3 (5.2)

K = 1+
β 2

1−β 2 L−3Mz3 (5.3)

ω = β
−1(1−K−1). (5.4)

The temperature is given by

T =
3M1/3

4πL4/3

√
1−β 2. (5.5)

The question is: can we destroy a black hole like this by using the boundary conditions to
dynamically force β to exceed 1? The boundary metric for this solution is the same for all
values of β (it is just the flat metric) so the answer at first sight appears to be no. However,
suppose we introduce some x dependence, but make the gradients small enough that the
solution still looks like the boosted black brane locally. In that case, the answer is yes.

First, note that as ∂/∂y is Killing we can shift ω by a constant by redefining y. It is
therefore only the difference between ω on the boundary and ω on the horizon that is
physically significant. We denote this difference ∆ω. For a boosted black brane, ∆ω = β .

Now for a stationary solution with a Killing horizon, ω on the horizon should be constant.
Therefore, if we use the boundary conditions to specify a profile ω(x)|z=0 on the boundary
such that maxω(x)−minω(x)|z=0> 2, there will be some value of x for which ∆ω(x)> 1.
We expect the solution to look locally like a boosted black brane, but if that is the case at
this value of x, we would need to have β > 1. Imposing such boundary conditions therefore
looks like a promising way to destroy a black hole.

We can also try to understand this from the field theory perspective on the boundary using
AdS/CFT. The CFT should be strongly interacting, but as a toy example, suppose we have a
free massless scalar field on the following background

ds2 =−dt2 +dx2 +(dy+a(x,y)dt)2. (5.6)

Suppose that the function a(x,y) varies sufficiently slowly that we can use the hydrodynamic
approximation: we can calculate thermodynamic quantities at (x0,y0) by taking a(x,y) =
a(x0,y0) to be constant in a local region. This matches the approximation we made above
when we assumed that the bulk metric functions had small gradients in x. Solutions to the
scalar field equation of motion in this region can then be decomposed into non-interacting
modes e−i(ω+kya)t+ikyy+ikxx where ω2 = k2

x +k2
y . The partition function of a single mode, after
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quantization, is given by:
Z = ∑

n
e−βn(ω+kya). (5.7)

For modes with momentum directed in the y direction, we have ky = ±|ω|. As a → ±1,
the ratio of this geometric series can then approach 1 for such modes, and their occupation
number diverges. Macroscopically, this causes the total momentum in the y direction to
diverge. When |a|≥ 1, a thermal equilibrium state no longer exists. Geometrically, points
with |a(x,y)|≥ 1 form the ergoregion. Naively, we might then expect problems to arise as
soon as an ergoregion forms in the boundary metric.

A subtlety arises when the source function a is independent of y, as it was in the gravita-
tional solutions we discussed. In this case we can shift a by a constant using a coordinate
transformation y′ = y+ ct which sends a to a− c. This means the inequality |a|≥ 1 is no
longer gauge invariant and the above discussion cannot apply. The reason it breaks down is
that there is now an additional conserved quantity to consider when we construct the partition
function: the momentum in the y direction. This must be included along with an associated
chemical potential. The new partition function is:

Z = ∑
n

e−βn(ω+kya)+β µnky (5.8)

and the new requirement for the sum to converge is that

a−1 < µ < a+1. (5.9)

For an equilibrium solution, µ must be independent of x, and so this inequality implies a
necessary condition on the source function a(x) : its maximum and minimum cannot differ
by more than 2. This is exactly what we found on the gravitational side. Equivalently, there
must exist some coordinates in which the boundary metric does not contain an ergoregion.

With this we are now ready to propose a plan for how to form naked singularities in
vacuum asymptotically AdS spaces. We begin with pure AdS, and then deform the boundary
metric according to Equation 5.6, with time dependence introduced into a. We dynamically
increase a until it exceeds 1 (in the case that a has y dependence) or until its range exceeds
2 (in the case that it is independent of y). At this point, at least working within the small
gradient approximation, we should expect something dramatic to happen. There should be
no non-singular stationary solution that the system could settle down to.

There are two potential problems with this, arising from the fact that an ergoregion in the
boundary metric appears to be essential in order to get singular behaviour. The first is that a
superradiant instability might set in near the boundary when the y symmetry is broken. The
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fact that the ergoregion is on the boundary means it is not completely clear if a superradiant
instability will exist or not, since ingoing waves are partially absorbed by the horizon and
return with smaller amplitude. This can compensate for the enhanced scattering off the
ergoregion. However, in [26] it is shown that in global AdS, with a compact Killing horizon,
if the horizon Killing field becomes space-like anywhere outside the horizon then the solution
will be unstable. Given this result, it is likely that our solutions will be unstable as well. If
we assume a y symmetry in our numerics, we might therefore get misleading, non-generic,
results. The second problem is that there may be no positivity of energy theorem when
the boundary metric contains an ergoregion. If that is the case, although we might observe
singular behaviour, this would not be particularly interesting. We already have examples
where we can use unphysical negative energy matter to form naked singularities, and our
examples might belong in the same category as these. We will discuss both of these problems
after presenting our results. From now on in this Chapter we work in units where L = 1.

5.2 Stationary Solutions

Before studying the full time dependent case, we can study stationary profiles a(x). If the
rough hand-wavy discussion above is correct, we should expect that when the size of the
profile becomes sufficiently large, non-singular stationary solutions will no longer exist. In
the high temperature limit (when the gradients in x in units of temperature are small) we
might expect this to happen precisely when the range of values of a exceeds 2. Furthermore,
studying the behaviour of the stationary solutions as the amplitude of the boundary profile
approaches its maximum could tell us how the time-dependent solutions will behave when
the profile varies very slowly in time.

5.2.1 Compact Case

We now change notation to better match that found in [14]. Consider a boundary metric of
the following form

ds2
∂
=−dt2 +dX2 +(dW −ω(X)dt)2 (5.10)

where X and W are both periodic with periods 2π/kX and 2π/kW respectively. The source
function is now denoted ω(X), and we choose to impose a profile

ω(X) = acoskX X . (5.11)
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Note that if a > 1, there is a boundary ergoregion (and the range of values of ω exceeds
2), whereas if a < 1 there is none, so we write aergo = 1. We construct stationary solutions
numerically using the DeTurck method [33], for various values of a and temperatures T.
Note that stationary solutions should also be characterised by their total angular momentum,
J. In the numerics, this is imposed by the boundary condition we use for ω on the horizon.
But in the time dependent case, the angular momentum will be conserved, and so is not up
to us to specify. In particular, we want to imagine starting from pure AdS, where the total
angular momentum is zero. We are therefore interested in the stationary solutions with zero
total angular momentum. These will be the stationary solutions for which ω vanishes on the
horizon. The symmetry of our profile then ensures that the total angular momentum of our
stationary solutions is always zero.

For all temperatures, we do find a maximum value amax above which no stationary
solutions appear to exist. Furthermore, as a approaches amax, the space-time curvature
diverges. To see this, we can monitor the square of the Weyl tensor CabcdCabcd throughout
the spacetime, and find its maximum value

Cmax ≡ max
M

|CabcdCabcd|. (5.12)

We plot this quantity as a function of a in Figure 5.1 for T/kX = 0.239 (top curve) and
T/kX = 0.0119 (bottom curve). This is suggestive that in the time-dependent case, a naked
singularity might indeed form. In Figure 5.2 we plot amax as a function of the temperature.
We find that when the temperature is large, amax = aergo to within numerical error, agreeing
with the intuition of the previous section. When the temperature is small, amax > aergo, so it
is always necessary to have an ergoregion on the boundary in order to observe this singular
behaviour.

Finally, we can ask whether the situation changes if we break the symmetry in the W
direction. Suppose we take a boundary metric of the following form

ds2
∂
=−dt2 +(dX −ω(W )dt)2 +(dW −ω(X)dt)2. (5.13)

The calculations are much more time consuming since we are now solving ten coupled
three-dimensional nonlinear partial differential equations. Nevertheless, we reach similar
conclusions. Again we find that solutions exist up to a maximum value amax and that this can
be larger than aergo = 1/

√
2.
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Fig. 5.1 Cmax as a function of a, depicted for T/kX = 0.2387 (top curve) and T/kX = 0.0119
(bottom curve). The kink in the bottom curve corresponds to the interchange of two local
maxima.

5.2.2 Non-Compact Case

We can also try to observe similar behaviour with a planar boundary metric. Suppose we
take a boundary metric of the following form

ds2
∂
=−dt2 +dr2 + r2 (dφ −ω(r)dt)2 (5.14)

with
ω(r) = ap(r) (5.15)

such that rp(r)→ 0 as r → ∞. If ω varies slowly with r (or if the temperature is large) the
same arguments that we had before would suggest that once the difference between the
horizon value of rω and the boundary value of rω exceeds 1, problems should occur. But
now, if we want a finite value of the total angular momentum, the horizon value of ω must
vanish, so that the difference between boundary and horizon values is 0 for large r. This
means that even though we have a symmetry in φ , problems should occur as soon as rω(r)
exceeds 1 anywhere. It is not necessary that its range exceeds 2. Again, this is equivalent
to there being an ergoregion in the boundary metric. We can also understand this from the
fact that angular momentum is no longer conserved in the time-dependent solutions, in the
sense that the final stationary state which we approach asymptotically need not have the same
angular momentum that is present initially. Angular momentum can now be radiated towards
infinity.
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Fig. 5.2 amax as a function of T/kX . The black star is the T = 0 result and the dotted red line
is a = aergo = 1.

We again construct stationary solutions numerically using the DeTurck method, for
various values of a, T, and profiles p(r). Typically, we choose profiles of the form

ω(r) =
a

(1+ r2/σ2)n/2 . (5.16)

Since the boundary metric is now only determined up to conformal rescalings, we choose to
fix σ = 1 in the numerics. For all temperatures and profiles, we again find a maximum value
amax above which no stationary solutions seem to exist. Furthermore, as a approaches amax,

the spacetime curvature again diverges. We plot Cmax as a function of a in Figure 5.3 for
n = 8 at T = 0 (left) and n = 4 at T = 0.9/4π (right). In Figure 5.4 we plot amax as a function
of the temperature when n = 4. Again, when the temperature is large, amax = aergo to within
numerical error. When the temperature is small, amax > aergo, so it is again necessary for an
ergoregion to be present on the boundary in order to see singular behaviour.

5.3 Time Dependent Solutions: The Compact Case

We have also studied the time dependent solutions in the compact case using the numerical
method presented in Chapter 3. The goal is to see if large curvatures become visible to distant
observers when the amplitude is made large. We chose kX = kW = 1 and have collected



48 Attempting to Form Naked Singularities in Vacuum

●●●●●●●●●●
●●●●●

●●●●
●●●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●
●
●
●
●
●
●
●
●

●

●

●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●
●
●
●
●
●

●

� � � � � � � �
�

��

��

��

��

��

��

��

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

●●
●●

●●
●●

●●
●●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

� � � � �
�

��

��

��

��

���

���

Fig. 5.3 Cmax as a function of a, computed for n = 8,T = 0 (left) and n = 4,T = 0.9/4π

(right).

results for a cosine boundary profile at various final amplitudes:

ω(t,X) = (1− sech5t)ω f (X)

ω f (X) = a0 cos(X)

a0 = 0.7,0.9,1.0,1.1,1.3.

This choice of time dependence causes the amplitude of the profile to increase smoothly from
an initial value of 0 to a maximum value a0, with ω(1,0)> 0.98a0 and ω(2,0)> 0.9999a0.

We find that when a0 < 1, the solution settles down to a stationary solution at late times
as expected. These solutions are presented in Section 5.3.1. But when a0 > 1 so that an
ergoregion is present on the boundary, the solutions do not settle down. Instead, a component
of the boundary energy-momentum tensor, representing the momentum density in the W
direction, grows linearly with time. We denote this component

j = ⟨T t
W ⟩. (5.17)

Since both ∂/∂ t and ∂/∂W are Killing vector fields of the late time boundary metric, j is
physically significant and the growth is not merely an artefact of the choice of coordinates.
For the intermediate a0 = 1 case, the solution also showed no signs of settling down, but in
this case the growth in the momentum density was not linear. We present these solutions in
Section 5.3.2.
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Fig. 5.4 amax as a function of T, computed for n = 4. The black star is the T = 0 result and
the dotted red line is aergo.

We can understand this behaviour as follows. Our initial temperature is 3
4π
. From the

stationary solutions of the previous section, we can see that this temperature is large enough
that the maximum amplitude is indistinguishable from aergo = 1 to within numerical error.
We should therefore expect no stationary solutions to exist at this temperature almost as
soon as an ergoregion forms in the boundary metric. This explains why our solutions with
a0 ≥ 1 did not settle down during the time that we can evolve them for. There is an additional
complication to consider, because the temperature of our solutions changes with time. In
the solutions which eventually settle down, we observe that it always decreases (we give
an explanation for why it decreases in Section 5.3.1). As the temperature decreases, amax

increases, and so we have to consider whether a temperature could be reached with amax > a0.

We discuss this issue in Section 5.3.2.
In order to demonstrate the dependence of amax on temperature explicitly with the time-

dependent numerical scheme, we have also generated solutions where the initial temperature
is halved, so T = 3

8π
. This is equivalent to making ω f (x) oscillate twice as fast, and this is

how we actually modify the numerics in practice. In this case we are able to find solutions
with a0 ≥ 1 which do settle down. These solutions are presented in Section 5.3.3.

Finally, one might be worried that because we assume a symmetry in the W direction,
the behaviour that we observe may not be generic. In order to check this, we have also
constructed some numerical solutions to the full 3+1 problem in which no such symmetry
assumption is made. We are not able to evolve these solutions very far, but they appear to be
behaving similarly. We present these results in Section 5.3.4.
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5.3.1 a0 < 1 Solutions

In Figure 5.5, for the a0 = 0.7,0.9 solutions we plot the maximum value of the momentum
density on the boundary, and its time derivative, as a function of time. In both cases
the solution appears to stabilize at late times. It is interesting to consider the parameters
characterizing the final stationary solution. The total momentum (obtained by integrating the
momentum density over the boundary) must be conserved, and so vanishes both on the initial
time slice and on the final stationary solution. However, the energy and the temperature
both change. Interestingly, the final temperature is lower than the initial temperature. Our
initial conditions have temperature 3

4π
≈ 0.24 but for the a0 = 0.7 and a0 = 0.9 solutions

we find final temperatures of 0.21 and 0.18 respectively. Using this measured value of the
temperature, we are able to directly compare the endpoint of our evolution with the stationary
solutions of the previous section, and we find good agreement. This is a reassuring check on
the accuracy of the numerics.

We can understand the decrease in the temperature as follows. Suppose that we were
to increase the profile more slowly, so that the adiabatic approximation is valid and the
time-dependent solution approximately moves through the space of stationary solutions of
increasing amplitude. The entropy of the stationary solutions at fixed temperature diverges
as the amplitude approaches 1, but if our time-dependent solution changes adiabatically then
its entropy is conserved. The temperature must therefore decrease in order to satisfy this
condition. In fact, by choosing an amplitude sufficiently close to the maximum one, and by
varying the profile sufficiently slowly, we should in principle be able to make the temperature
of our final stationary black hole arbitrarily small.

5.3.2 a0 ≥ 1 Solutions

In Figure 5.6, we plot the maximum value of the momentum density for the solutions
corresponding to a0 = 1, a0 = 1.1 and a0 = 1.3. We stop each evolution when our estimate
of the error, as measured by the expansion of null geodesics at z = 1, becomes larger than
10−3.

For these profiles, the momentum density grows in time long after the boundary profile
has settled down. For the a0 = 1.1 and a0 = 1.3 solutions, this growth appears approximately
linear, and the gradient is larger for larger amplitudes. For the a0 = 1.3 solution, the amplitude
is larger than amax for any value of the temperature, and so we expect the growth in the
momentum density in this case to continue indefinitely. For the a0 = 1 and a0 = 1.1 solutions
on the other hand, it is not immediately clear what will happen in the distant future. These
amplitudes are above the maximum amplitude corresponding to the initial temperature ( 3

4π
),
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Fig. 5.5 The maximum of the boundary momentum density, and its time derivative, as a
function of time for the a0 = 0.7 and a0 = 0.9 solutions.

but they are less than the zero temperature maximum, and the temperature in our time
dependent solutions is not fixed. However, we have an argument for why these solutions
should not be able to settle down either. The energy is conserved after about 1 unit of time
once the boundary metric becomes stationary, which means that if the system were to settle
down, we know which stationary solution it would have to settle down to. We also know the
entropy of this stationary solution. But the entropy of our dynamical solutions is diverging
rapidly along with the momentum density (assuming this is given accurately by the area of
the apparent horizon). Since the entropy cannot decrease, once it has exceeded the value of
the corresponding stationary solution, it should be impossible for the system to settle down.
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Fig. 5.6 The maximum of the boundary momentum density, and its time derivative, as a
function of time for the a0 = 1.0, a0 = 1.1, and a0 = 1.3 solutions.

5.3.3 T = 3
8π

Solution

In Figure 5.7, we plot the maximum value of the momentum density for a0 = 1.0 when the
initial temperature is halved. The numerical error in this case grows more rapidly, and we
cannot evolve beyond t = 3 without the expansion of null geodesics on z = 1 becoming large.
However, we do see the first indications that the solution is settling down. This supports
the observation made in the previous section that the maximum amplitude increases with
decreasing temperature.
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Fig. 5.7 The maximum of the boundary momentum density, and its time derivative, as a
function of time for the a0 = 1.0 solution with initial temperature T = 3

8π
.

5.3.4 3+1 Solutions

The solutions presented so far assumed a symmetry in the W direction, and so it is not
completely clear whether the behaviour we observe is generic or not. To test this, we have
attempted to simulate the full 3+1 problem with no symmetry. These solutions appear to
be behaving in a similar way, although unfortunately we have not been able to evolve them
very far before they become numerically unstable. We break the symmetry by imposing the
following boundary metric

ds2
∂
=−dt2 +(dX −ω(W )dt)2 +(dW −ω(X)dt)2 (5.18)
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where the function ω is chosen in the same way as before. The results for a0 = 1.3 are
presented in Figure 5.8. We are only able to evolve to about 1 unit of time before the
numerical error grows unacceptably large, but already the momentum density is diverging
rapidly.
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Fig. 5.8 The maximum of the boundary momentum density, and its time derivative, as a
function of time for the 3+1 dimensional a0 = 1.3 solution.
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5.4 Is Cosmic Censorship Really Violated?

5.4.1 The Space Time Curvature

We have presented examples in which an observer at the boundary is able to see gauge-
invariant quantities rapidly diverging. We want to say that this is a violation of Cosmic
Censorship in the sense discussed in Chapter 2. However, we have not yet said whether the
space time curvature itself is blowing up. Do we have a naked singularity or not? In the
stationary solutions, we saw that the Weyl tensor diverges as you approach the maximum
amplitude, suggesting that a naked singularity would form. But for the time dependent
solutions we have obtained, in the compact case at finite temperature, it looks like the space
time curvature is in fact not diverging. We plot the maximum value of the Kretschmann
scalar for the a0 = 1.3 solution in Figure 5.9.
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Fig. 5.9 The maximum value of the Kretchmann scalar in the a0 = 1.3 solution as a function
of time.

How can this be? Firstly, we do not vary the boundary profile slowly (to ensure that we
can obtain results in a reasonable time), so the argument that the time dependent solution
should behave like a family of stationary solutions fails for that reason. But also, even if
we were to vary the profile slowly, the temperature would not be constant, which is another
reason why our solution cannot behave exactly like a family of stationary solutions at fixed
temperature. It is possible that if we were to obtain time dependent solutions in the planar
case, then they would behave more like the corresponding family of stationary solutions, and
the space time curvature would diverge. In that case the temperature would be fixed. We
have attempted to simulate this at zero temperature using the numerical method of Chapter 4,
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but we have not been able to evolve these solutions for long enough to confirm or reject this
possibility. Whether or not naked curvature singularities can really form in our examples is
still an open question.

5.4.2 Superradiant Instability

Because our potential counter-examples to Cosmic Censorship all contain an ergoregion,
another complication to consider is that a superradiant instability might set in when the
symmetry in the W direction is broken. This means that although we were able to find
some stationary solutions with amplitude in the range aergo < a < amax, there is reason to
think that they might be unstable. In fact, we have explicitly checked that they are unstable.
Solutions in this range should then also, generically, not be able to settle down, even though
the amplitude is below amax. It has been proposed that such superradiant instabilities in AdS
space times might also violate Cosmic Censorship. However, these violations would be
very different from the ones proposed in this thesis. In particular, the violations we propose
exhibit large curvatures in large regions of spacetime, whereas naked singularities arising
from superradiance would likely involve arbitrarily large curvatures in an arbitrarily small
region of spacetime. One thing we need to worry about then is whether this instability will
affect the behaviour of our solutions when the symmetry is broken, which could mean that
the 2+ 1 numerical results are not generic. However, the growth rate of the superradiant
instability is likely to be very slow compared to the blow up in the momentum density, and
so we expect the latter instability to dominate. We saw that our 3+1 solutions still began to
exhibit momentum blow up, even though we were not able to evolve them for very long.

5.4.3 Positivity of Energy

The most serious problem with our proposed counter-examples is that positivity of energy
probably fails as soon as an ergoregion appears in the boundary metric. If this is the case,
then our violations of the WCCC would be trivial. It is already known to be possible to
form naked singularities if you have access to negative energy matter. One argument for
why positivity of energy fails uses AdS/CFT. It seems clear that positivity of energy will fail
on the CFT side. Consider the planar case with aergo < a < amax. The boundary metric is
an asymptotically flat spacetime with an ergoregion and no horizon. Consider first classical
or free quantum fields. Classical fields on such spacetimes are known [21] to be unstable
since one can construct negative energy solutions by exciting fields in the ergoregion. Since
stationary solutions must have zero energy and the energy radiated to infinity is always
positive, if the energy is negative initially, it will continue to decrease. Free quantum fields
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on such a spacetime exhibit a similar instability: it has been shown [2, 40] that there is no
Fock vacuum that is time translation invariant. In other words, there is particle creation in all
states. It is also clear that there is no lower bound on the energy for free quantum fields in
such a spacetime. This is because excitations localized in the ergoregion can have negative
energy, and one can give them arbitrarily large occupation number.

Even at strong coupling, a CFT on a spacetime with ergoregion and no horizon cannot
have a minimum energy state1. Start with the ground state in Minkowski space and act with
a unitary operator in a finite region A. This creates a state with E > 0 that looks like the
vacuum outside A. By scale invariance, we can make A as small as we want. Now consider
our boundary metric and pick a small locally flat region inside the ergoregion. As long as A
is small enough, we can insert the above state into this geometry. We can then boost it to
give it arbitrarily negative energy.

However, just because positivity of energy fails on the CFT side does not immediately
imply that it must fail on the gravity side. Note that even in vacuum asymptotically flat space
times, there exist gravitational states with negative energy. The negative mass Schwarzschild
solution is one example. The positive energy theorem of GR does not say that no asymptot-
ically flat negative energy states exist, it says that no non-singular negative energy states
exist. This might still be true for our solutions as well. One could imagine that every negative
energy state on the CFT would be dual to a gravitational state containing a naked singularity.
Indeed, we have tried and failed to construct negative energy non-singular initial data in this
set-up, which is weak evidence that positivity of energy might hold after all.

One can also present a purely gravitational argument for why positivity of energy should
fail with a boundary ergoregion, though it is slightly weaker than the arguments given above.
One can clearly place test particles in the ergoregion and boost them so that their energy is
arbitrarily negative. We now want to replace the test particle by a small black hole. There
are gluing theorems which ensure that one can add a small black hole in the ergoregion to
initial data on a constant t surface [39]. An O(1) boost of this black hole will cause it to
contribute negatively to the total energy, and should not result in any singularities in the initial
data. Moving the black hole further into the asymptotic region should increase its negative
contribution to the energy without bound. However, it is not clear how the backreaction of
the black hole on the space time will affect this argument.

What are the implications of this discussion for our results? There are two possibilities
we need to consider: positivity of energy holds, or it does not. If it does not, as seems
likely, then our naked singularities (if we can actually form naked singularities) are trivial,
and we have failed to violate cosmic censorship. In this case, the fact that we always find

1We thank D. Marolf for suggesting this argument.
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amax > aergo can be taken as evidence in favour of the WCCC in vacuum 3+1 dimensional
asymptotically AdS space times. On the other hand, if positivity of energy does hold, then
we may have found a way to violate the WCCC in vacuum 3+1 dimensional asymptotically
AdS space times in a non-trivial way (assuming there are circumstances in which the space
time curvature actually does diverge). However, these counter-examples would only work
when the dual CFT has energy unbounded from below. In other words, although our counter-
examples make sense from the point of view of classical GR, it looks like they cannot be
realised as the low energy description of a well behaved quantum gravity theory in the UV.
When we look at examples involving an electromagnetic field (where positivity of energy
certainly holds) we find the same thing. We can violate the WCCC, but only when there is
no good quantum gravity theory in the UV. We discuss this intriguing observation further in
Chapter 7. First though, we present the electromagnetic examples.



Chapter 6

Forming Naked Singularities with an
Electromagnetic Field

6.1 Motivation

In the previous Chapter, we presented potential violations of the WCCC in asymptotically
AdS vacuum space times. However, these examples ended up being somewhat underwhelm-
ing. We were not certain that naked curvature singularities would actually form, and even
if they did, it was not clear whether these singularities would qualify as violations of the
WCCC anyway. In particular, it seemed unlikely that there existed a positivity of energy
theorem for our examples. In this Chapter, we present potential violations of the WCCC
in asymptotically AdS space times containing an electromagnetic field. We work with the
Einstein-Maxwell action

S =
1

16π

∫
d4x

√
−g
(

R+
6
L2 −FabFab

)
. (6.1)

This time, we have strong evidence that naked singularities really can form, and they do
appear to be genuine violations of the WCCC (in the sense discussed in Chapter 2). There is
a positivity of energy theorem for these space times.

In the previous Chapter, we were able to motivate our examples by considering the
problem of trying to overspin a black hole, but that argument will not work for charged black
holes. This is because the chemical potential of an AdS-Reissner-Nordstrom black hole can
be made arbitrarily large without the black hole becoming extremal. Nevertheless, there
is still numerical evidence that under the right circumstances, naked singularities might be
formed by imposing sufficiently violent boundary conditions on the electromagnetic field.
This was first uncovered in [35]. Their original aim was to use the AdS/CFT correspondence
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to study localized defects in condensed matter systems. Working in coordinates where the
boundary metric takes the form

ds2
∂
=−dt2 +dR2 +R2dφ

2 (6.2)

they imposed a boundary electric field

f =
aRγ

σ2
(

1+ R2

σ2

) γ

2+1
dt ∧dR (6.3)

and constructed stationary solutions at zero temperature for various values of γ ≥ 1. Due
to conformal invariance of the UV theory, only the product aσ is physically meaningful,
and from now on we will set σ = 1. Just like the examples of the previous Chapter, they
found that there was a critical amplitude amax above which no stationary solutions could be
constructed, at least with a connected horizon. That is to say, there were stationary solutions
with a > amax, but they necessarily contained so called hovering black holes. There was
always a charged extremal spherical horizon hovering above the Poincaré horizon, held in
stable equilibrium by the balance between gravitational and electrostatic forces. Furthermore,
in the stationary solutions without a hovering black hole, the curvature diverged on the
horizon as a → amax. Unlike the vacuum case, it is only at zero temperature that a maximum
amplitude is found. At finite temperature, stationary solutions with a connected horizon exist
for arbitrarily large amplitude.

We can now explain the proposal for how to violate the WCCC, first outlined in [38],
using the same idea that was used in the previous chapter. We impose the boundary condition
6.3 but promote a to be a function of time. We set a = 0 initially, starting in vacuum AdS,
but then we smoothly increase a to some value beyond amax. It is impossible for a hovering
black hole to form dynamically, because we have no charged matter, so if the results of [35]
are correct then it should be impossible for these time-dependent solutions to settle down to
a smooth stationary solution. Instead, we expect a naked singularity to form. This claim is
supported by the fact that the curvature of the stationary solutions diverged on the horizon as
a → amax. We again might expect this to be a good indication as to what will happen in the
time dependent solutions if a is varied slowly. It is also supported by studying the behaviour
of finite temperature solutions with a > amax as T → 0 [38]. The curvature diverges on the
horizon in that case as well.
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6.2 Results

To test this proposal, we have numerically constructed time dependent solutions in the γ = 1
case using the numerical method from Chapter 4 (with some slight modifications that are
outlined in the Appendix). All of our results are presented in units in which L = 1. In Chapter
4, we explained how it was useful to construct the coordinates (v,x,φ) on the boundary, in
which the boundary metric, though still flat, took on the unusual form

ds2|∂=−dv2 +2
c
x2 dvdx+

c2

x2

(
dx2

1− x2 +(1− x2)dφ
2
)

(6.4)

where c is a constant which we set to 1 in our numerics. To get an intuitive understanding
of what the coordinate v means, recall that it is related to standard polar coordinates on
the boundary (t,R,φ) by v = t −

√
c2 +R2. At large R, v is effectively an outgoing null

coordinate. Working in these coordinates, we choose to make a a function of v in the
following way

a(v) = a0 [1− sech(5v)] . (6.5)

This function increases smoothly from an initial value of 0 to a maximum value a0, with
a(1)> 0.98a0 and a(2)> 0.9999a0. Our choice of a simple v dependence for the boundary
electric field comes at the expense of introducing a more complicated t and R dependence.
We nevertheless still have the important property that at large t the electric field converges to
the stationary profile 6.3 with a = a0. We therefore expect to see a violation of the WCCC
based on the arguments in [38].

We can construct the bulk radial coordinate Z as in Chapter 4, but for the presentation of
these results we make the further redefinition ξ = 1−Z so that the boundary lies at ξ = 1
and the apparent horizon lies at ξ = 0.

For the profile we consider, the critical amplitude was studied in [35] and found to
be amax ≈ 0.678. We have collected results up to time v = 7.5 for five amplitudes: a0 ≈
0.4243, a0 ≈ 0.5657, a0 ≈ 0.7071, a0 ≈ 0.8485, a0 ≈ 0.9899. The two solutions with sub-
critical amplitude approach a smooth stationary solution at late times as expected. The
three solutions with super-critical amplitude have curvature growing without bound on the
event horizon at the point x = 1. This growth appears to follow a power law in v, and so no
singularity forms in finite time. However, by waiting for sufficiently long times we can form
arbitrarily large curvatures visible to boundary observers, violating the WCCC.

To demonstrate this, we compute the value of F2 = FabFab on the apparent horizon and
look at how it changes with v. This is a gauge invariant scalar, so a divergence in F2 indicates
the formation of a singularity. We can also use the equations of motion to show that it implies
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Fig. 6.1 |F2| at ξ = 0,x = 1 as a function of v for five different values of a0. For the sub-
critical amplitudes, the value of |F2| on the horizon in the corresponding stationary solution
can be deduced analytically [35] and is shown as a dotted line.
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Fig. 6.2 vd(F2)
dv at ξ = 0,x = 1 as a function of v for five different values of a0. The symbols

and colours are the same as in Fig. 6.1.

a divergence in the space-time curvature as well. The Einstein-Maxwell equations imply that

RabRab =
36
L4 +4

(
Fa

cFbcFadFb
d −

1
4
(F2)2

)
(6.6)

and we have checked that in our solutions the second term is proportional to (F2)2. A
divergence in F2 therefore implies a divergence in the curvature invariant RabRab.

In Figure 6.1 we plot |F2(v)|ξ=0,x=1 for our five solutions. In all five cases, the magnitude
of F2 is increasing with time, with decreasing derivative. The important question is whether
F2 will converge to some finite value, or whether its magnitude will continue to grow
indefinitely. To address this we need to check whether its derivative is tending to zero
faster than 1/v. In Figure 6.2 we plot vd|F2|

dv |ξ=0,x=1 for the five solutions. The solutions
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dv at ξ = 0,x = 1 as a function of v for three different values of a0.

of sub-critical amplitude are consistent with non-divergent growth in F2, as vd|F2|
dv |ξ=0,x=1

appears to decay as v increases. The solutions of super-critical amplitude indicate a divergent
growth in F2. For the solutions with the two largest amplitudes, vd|F2|

dv |ξ=0,x=1 has started to
grow as v increases. We also expect the a0 = 0.7071 solution to diverge, as it is super-critical,
but it is difficult to deduce this with confidence from Figure 6.2. We have continued to evolve
this particular amplitude beyond v = 10 and find that, although vd|F2|

dv |ξ=0,x=1 has still not
begun to grow, it does not appear to be decaying towards 0. This could be indicative of
logarithmic growth in F2 or, more likely, power law growth with a very small exponent. This
can be understood from the fact that this amplitude is very close to the critical one.

It is interesting to ask how fast F2 is diverging in the super-critical solutions. If we
assume that its late time growth is governed by a power law F2 ∼ vγ then the logarithmic
derivative v

F2
dF2

dv |ξ=0,x=1 would equal the exponent γ. In Figure 6.3 we plot the logarithmic
derivative of our super-critical solutions. The results are consistent with power law growth at
late times, with an exponent that increases with the amplitude.

6.3 Are Large Curvatures Visible to Distant Observers?

We have so far presented evidence that the curvature is growing on the apparent horizon
ξ = 0. However, the apparent horizon itself will generically lie inside the event horizon
and so will not be visible to distant observers. In numerical investigations of the WCCC, it
is usually not possible to locate the event horizon, and instead it is assumed that singular
behaviour on the chosen apparent horizon must lead to singular behaviour on the event
horizon as well. We can take the same approach here, but it would be preferable to show
explicitly that it is possible for a null geodesic to travel from a region of arbitrarily large
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Fig. 6.4 Coordinate velocity of an outgoing null geodesic along x = 1 for the a0 = 0.7071
solution at various times. The inset plot depicts small ξ .

curvature out to the conformal boundary. We claim that our results allow us to do this. We
have evidence that the apparent horizon is approaching the true event horizon at late times.

In Figure 6.4 we plot the coordinate velocity dξ

dv of an outgoing null geodesic along x = 1
as a function of ξ for the amplitude a = 0.7071 solution at times v ≈ 1.98,v ≈ 3.96,v ≈
5.94,v ≈ 7.92. We find a function which is increasing and positive almost everywhere except
for very close to the apparent horizon, ξ = 0. If this plot were independent of time, then an
outgoing null geodesic to the right of the zero (marked with the letter P in Fig. 6.4 for the
v = 1.98 case) would eventually reach the conformal boundary. An outgoing null geodesic to
the left of the zero would fall towards ξ = 0. The zero itself would mark the position of the
event horizon, although the relevant quantities are so small here that we should be worried
about numerical error.

We cannot actually identify the event horizon at any particular time because the solution
is time dependent. However, the plots show that at late times it is only changing very slowly.
It appears to be converging to some time independent function, and importantly, the zero is
moving leftwards towards the apparent horizon (ξ = 0). This suggests that the coordinate
velocity at late times is converging to a function of ξ which is positive and increasing for all
ξ > 0, with a zero exactly at the apparent horizon ξ = 0. If this were true, then any positive
ξ coordinate would eventually be connected to the conformal boundary by an outgoing null
geodesic and the apparent horizon would be approaching the event horizon at late times. To
check this, in Figure 6.5 we plot the coordinate velocity at ξ = 0 itself to show that it is
indeed approaching zero with increasing v.

A final possible concern is that even if the apparent horizon approaches the event horizon
at late times, and even if the curvature on the apparent horizon is increasing without bound,
the approach may be such that the curvature on the event horizon remains bounded. However,
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Fig. 6.5 Coordinate velocity of an outgoing null geodesic along x = 1 at ξ = 0 for the
a0 = 0.7071 solution as a function of v. The inset plot depicts late v.

this interpretation does not appear to be consistent with our results. One way to argue that the
curvature is diverging on the event horizon is as follows. Given an arbitrarily large bound C :

• after some finite time, by extrapolating our numerical results, we will have RabRab >C
on the apparent horizon ξ = 0.

• By continuity, at the same time there will be a point with small positive ξ coordinate,
ξ = δ , where the curvature also violates this bound.

• After some additional finite time, by extrapolating our numerical results again, the
point with ξ = δ will be visible to boundary observers.

• If we additionally assume that the curvature has not decreased at ξ = δ in this time,
then we now have a point with RabRab >C visible to boundary observers.

The assumption that RabRab is always increasing with v for fixed (ξ ,x) was essential to
this argument, and this does turn out to be the case, at least over the range of v values for
which we have numerical results. To show this, in Figure 6.6, F2 is plotted along x = 1 for
the a0 = 0.9899 solution at various times.

6.4 Checks on Numerical Accuracy

Our results provide convincing evidence that the WCCC is violated. Given the significance
of this result, it is important to check that the numerical results are accurate. We explained in
Chapter 3 that computing the expansion on the apparent horizon is one way of monitoring
the numerical error (equivalent to checking that the constraint equations are satisfied away
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and are defined in the Appendix.

from the boundary). The expansion should vanish, but this is not enforced explicitly by
the numerical scheme. We have checked that although the expansion is non-zero, it indeed
remains small in all of our results. We can be even more explicit about its effect on the
numerical error in our solution by comparing the two different ways of solving for dt χ.

Recall that we had two choices of boundary condition. We could evolve boundary data at
ξ = 1 (the approach we actually took) or we could explicitly impose a vanishing expansion
at ξ = 0 to get a boundary condition for dt χ at ξ = 0. In our numerics, dt χ is replaced by the
function Vn (see Appendix), and comparing the two different ways of calculating Vn at the
boundary can therefore give us an estimate of the size of the numerical error. In Fig. 6.7, we
plot the maximum size of the difference between the two methods of calculating Vn against v
for our a0 = 0.7071 solution. As a test on convergence, we have repeated this for different
grid sizes.
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As a further check on the accuracy of our numerical scheme, we can compare the end-
point of our sub-critical solutions to the stationary solutions obtained in [35]. We make this
comparison in Figure 6.8, plotting the tt component of the boundary stress tensor in the two
cases, and finding good agreement. The small discrepancy can be explained by the fact that
our solution has not yet completely settled down.

6.5 Discussion

We have presented numerical evidence that the WCCC is violated if we impose the boundary
condition 6.3 with a sufficiently large a and γ = 1 (corresponding to a 1/R decay in the
potential near infinity on the boundary). Based on the stationary solutions in [35], we should
also expect to see similar behaviour for faster decays (with γ ≥ 1). It would be interesting to
check this in the time dependent solutions as well. However, when the decay is faster we have
not been able to keep our super-critical numerical solutions stable for long enough to observe
what will happen. Part of the problem is that amax grows rapidly with γ so that solutions with
a > amax necessarily contain large gradients which are difficult for the numerical scheme to
resolve. We must rely on the evidence from the stationary solutions to argue why the WCCC
is likely to be violated with faster decays as well.

One might worry that since we are adding energy to the system, it will heat up, so that our
zero temperature boundary conditions at x = 0 will no longer be consistent (see for instance
[34]). However, raising the temperature of a planar horizon requires an infinite amount of
energy and we have checked that the total energy we add to the system is finite. Checking this
is not entirely straightforward. The boundary energy density ⟨Ttt⟩ at large R exhibits a 1/R
decay, because of the contribution from outgoing spherical waves, and naively integrating
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this over a constant v slice does give a divergent result. However, we find that this 1/R tail
decays exponentially with v, so that integrating over a constant t slice gives a result which is
both finite and bounded as t → ∞. This implies that the total energy added to the system is
actually finite, as required.

Another concern is whether or not there is a positivity of energy theorem for these space
times. This was the most important problem with the numerical results of Chapter 5. This
time though, even with the time dependent boundary conditions we impose, the metric and
gauge field satisfy the required conditions for the proof of the positivity of energy theorem
detailed in [25]. This result does not follow immediately from the coordinates used in the
numerics. However, one can show that if we transform our boundary expansion to Fefferman-
Graham coordinates [19], the approach to pure AdS in standard Poincaré coordinates is
compatible with those required in [25].

One might also wonder whether our counter-examples to the WCCC are generic, since
∂/∂φ is a Killing vector field everywhere in the bulk. Recall that it is straightforward to
violate the WCCC if you are allowed to fine tune the initial conditions. However, weakening
this symmetry assumption is unlikely to change our conclusions. This is because even
if ∂/∂φ is only an asymptotically Killing vector field, no static solutions with a simply
connected horizon were found in [35] for a > amax.

Finally, it is interesting to ask what will happen to our examples if charged fields are
included in our action. The fact that we had no charged matter was a crucial ingredient in our
argument for why we expected to see cosmic censorship violation. This is because we needed
to rule out the formation of hovering black holes. Stationary solutions containing hovering
black holes exist for arbitrarily large amplitude, and so they could provide an alternative,
non-singular, end point for our time dependent solutions when charged matter is present. It
seems likely that some critical charge to mass ratio is necessary for these hovering black
holes (which have an extremal horizon) to form, so that below this ratio the WCCC is still
violated, while above this, it is saved. Of course at the classical level one can always set the
charged matter fields to zero in the initial conditions and recover our solutions, but the initial
data would in that case be fine tuned.

If this interpretation is correct, it is reminiscent of the Weak Gravity Conjecture (WGC)
[55], one of the Swampland conjectures in String Theory. The WGC claims that any
consistent quantum theory of gravity with a gauge interaction must contain particles which
are charged under that interaction, and the charge to mass ratio must be above some critical
threshold [1]. This raises the interesting question: could it be that the WCCC is only violated
when the WGC conditions are violated as well? In other words, do our WCCC violations
only work when our action cannot be realised as the low energy limit of a consistent theory
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of quantum gravity? We also saw hints of this idea in Chapter 5. Even if positivity of
energy holds and our vacuum examples violate the WCCC, it seems unlikely that they can
be embedded in a consistent quantum theory of gravity, since the dual CFT has energy
unbounded below. We discuss these ideas in detail in the next Chapter.





Chapter 7

A Connection between Weak Gravity
and Cosmic Censorship?

In the previous Chapter, we suggested that it might only be possible to violate the WCCC in
theories which cannot be realised as the low energy limit of a consistent theory of quantum
gravity. In particular, if the WGC is true, then our electromagnetic examples cannot be
completed into quantum gravity in the UV unless we also include charged matter with a
sufficiently large charge (relative to its mass). However, it seems likely that if we were to
do this, then the WCCC would no longer be violated in our examples. It is interesting to
investigate this potential connection [55] between the two conjectures further. One way to
test it would be to compare the lower bounds on the charge in the two conjectures to see if
they really do match.

In the first part of this Chapter, we review the WGC. In the second part, we present
numerical evidence that the two charge to mass ratios do indeed match, and we discuss the
implications of this result.

7.1 The Weak Gravity Conjecture

The WGC is one of the so called “Swampland” conjectures of String Theory, reviewed in
[47]. We now summarise the key points. The swampland conjectures seek to divide the space
of apparently self-consistent low energy effective QFTs into those which can be completed
into quantum gravity in the UV (the landscape) from those which cannot (the swampland).
In particular, the WGC (first proposed in [1]) asserts that any theory with a U(1) gauge
interaction must contain particles which are charged under that interaction. Furthermore, the
charge of at least one of these particles must be above some critical threshold, typically set
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by the requirement that extremal charged black holes should be able to decay. This means
that although there exist apparently self-consistent effective theories which violate these
conditions (Einstein-Maxwell theory being one example), if they are going to be completed
in the UV into a theory of quantum gravity, then charged particles must appear at some
energy scale along the way. We should consider how this would affect our results from the
previous chapter.

There are two kinds of arguments that one can use to arrive at the swampland conjectures.
First, one can explicitly construct string theory vacua to obtain examples of effective theories
which lie in the landscape, and then look for features which all such theories seem to have in
common. If a single example was found which violated one of the swampland conjectures,
then that would be enough to refute the conjecture, so every example which is consistent
with the conjectures is at least weak evidence in their favour. However, an obvious drawback
with this approach is that constructing these vacua is very difficult, and the ones which are
known have very special properties. For example, they are usually supersymmetric. It could
be that the swampland conjectures only apply to these special vacua, and are not true of the
landscape generally. The second approach is to use quantum gravity arguments directly in
the low energy theory, typically relating to black holes. We now briefly review one of the
main arguments of this kind that has been put forward to support the WGC.

To motivate the WGC, it is common to begin with the claim that there should be no exact
global symmetries in quantum gravity [63]. This claim can itself be viewed as a kind of
swampland conjecture, in that it puts a constraint on which low energy theories are acceptable.
It can be defended with arguments based on the behaviour of black holes. The basic idea is
that any global symmetry should have an associated conserved charge, but that the Hawking
evaporation process for black holes will not respect this conservation rule, since the charge
of the black hole under this symmetry should not affect the geometry of its horizon. The
same problem does not occur with gauge symmetries, since in that case the charge of the
black hole can be measured outside of the horizon (from the flux of the gauge field) and will
therefore influence the evaporation process so that charge conservation is respected.

If we accept this argument, then we have ruled out the existence of global symmetries
in quantum gravity. The intuition behind the WGC is that gauge symmetries, although not
forbidden, can still be constrained by applying similar black hole arguments. In particular,
there will be constraints on the gauge coupling. The WGC says that charged particles should
exist, and it places a lower bound on the charge that at least one of the charged fields must
obey. This comes from the requirement that charged black holes should be able to decay.
If charged black holes were unable to decay, then the theory would contain stable charged
“remnants”, and it has been suggested that this would be problematic. It is still unclear
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whether remnants necessarily lead to an inconsistency in a theory of quantum gravity, but
supposing that they do, it is then fairly straightforward to calculate the lower bound on the
charge. This is because the charge of the black holes themselves is bounded above by the
mass, through the extremality bound. In 3+1 dimensions with no cosmological constant we
have

Q ≤ M (7.1)

where Q and M are the charge and mass of the black hole respectively. When the black
hole emits particles, through either thermal emission or Schwinger pair production, its new
charge and mass must still obey the above inequality. This means that in the case where the
black hole is initially extremal, saturating the inequality, the particles it emits must obey the
opposite inequality

q ≥ m. (7.2)

This is the WGC bound on the charge in 3+1 dimensions with no cosmological constant.
Since the counter-examples to the WCCC presented so far have all been asymptotically

AdS, we are interested in the WGC bound with negative cosmological constant. Again, we
can derive this bound from the requirement that charged extremal black holes should be
able to decay. Unlike in asymptotically flat space where black holes are only unstable once
quantum effects are taken into account, in asymptotically AdS space the instability can be
seen at the classical level. This is because of the reflecting boundary conditions, which lead
to the superradiant instability. We can therefore obtain the AdS WGC bound based on the
requirement that extremal charged black holes should be unstable to the classical superradiant
instability.

To stay as close as possible to the original weak gravity conjecture, we will consider an
arbitrarily small black hole1. The charged matter we consider is a massive scalar field of
charge q and mass m. The general spherically symmetric charged black hole in AdS is the
AdS Reissner-Nordstrom black hole:

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dΩ

2, A = µ

(
1− r+

r

)
dt (7.3)

where

f (r) =
r2

L2 +1+
µ2r2

+

r2 − r+
r

(
r2
+

L2 +1+µ
2
)
. (7.4)

1Note that even an uncharged black hole is quantum mechanically stable in AdS when sufficiently large, but
this is not supposed to present a problem for the WGC.
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The event horizon lies at r = r+ (the largest real root of f (r)) and the Hawking temperature
is given by

TH =
L2 −L2µ2 +3r2

+

4L2πr+
. (7.5)

We are interested in extremal black holes which have µ =
√

1+ r2
+/L2 so that TH = 0.

Superradiant scattering occurs for modes with [53, 23]

0 < ω < qµ (7.6)

so we need to know which values of ω are allowed for a small black hole. In other words, we
need to know what the quasinormal mode spectrum looks like. If the black holes are small,
two decoupled sectors of quasinormal mode excitations exist: one whose imaginary part
grows infinitely negative as the size of the hole decreases, and another whose imaginary part
drops to zero as the black hole becomes smaller and whose real part approaches the normal
modes of AdS [4, 54]. It is the latter type that is of interest to us. In the approximation where
the extremal black hole is very small, the quasinormal mode with the smallest real part will
have

ωL = ∆+o(r+/L) (7.7)

where

∆ =
3
2
+

√
9
4
+L2m2. (7.8)

If we substitute this into the inequality 7.6, and take the r+ → 0 limit we find the AdS WGC
bound

q ≥ ∆

L
. (7.9)

Note that this reduces to the flat space bound in the L → ∞ limit.

7.2 Testing the WGC-WCCC Connection

To test the connection between the WGC and WCCC, we should add a charged field to our
electromagnetic examples to see if this can prevent the formation of a naked singularity. In
particular, if there turns out to be a minimum charge necessary to avoid a naked singularity,
we want to compare this to the bound given to us by the WGC: q ≥ qW = ∆

L . Including a
charged massive scalar field in our action gives us

S =
1

16π

∫
d4x

√
−g
(

R+
6
L2 −FabFab −4(DaΦ)(Da

Φ)† −4m2
ΦΦ

†
)

(7.10)
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where Da = ∇a − iqAa is the gauge covariant derivative. This gives rise to the equations of
motion:

Rab +
3
L2 gab = 2

(
Fc

a Fbc −
gab

4
FcdFcd

)
+2(DaΦ)(DbΦ)† +2(DaΦ)†(DbΦ)+2m2gabΦΦ

†

(7.11)

∇aFa
b = iq

(
(DbΦ)Φ† − (DbΦ)†

Φ

)
(7.12)

DaDa
Φ = m2

Φ. (7.13)

Ideally, we would repeat the time dependent calculations from Chapter 6 with these equations
of motion. We might then expect to see the formation of hovering black holes. However, the
time dependent numerics are challenging, and it turns out that we can make some progress
just by looking at stationary solutions. The idea is that once we have a scalar field, not
only might we be able to form hovering black holes, but also the stationary solutions with
connected horizon might now be unstable to forming scalar hair. If (1) they are unstable,
and (2) these hairy solutions persist for arbitrarily large amplitude, then this would suggest
that naked singularities are avoided, whether or not hovering black holes form. Fortunately,
we are able to check (1) and (2) just by examining stationary solutions. In the next section
we present our numerical results and show that remarkably, (1) and (2) are both true for a
sufficiently large value of the charge. The required charge agrees precisely with the WGC
bound.

7.2.1 Results

Stationary solutions to the equations of motion arising from 7.10 were obtained using the
DeTurck method, for boundary electric field profiles of the form

A∂ =
adt

(1+ r2/l2)
n/2 . (7.14)

Again, only the product al is physically meaningful, so we set l = 1 without loss of generality.
First, we recover the stationary solutions already obtained in [35] with connected horizon
and no scalar field. We now want to test if these solutions are unstable to forming scalar
hair through the mechanism proposed in [28, 30]. In order to do this, we make use of the
fact that a static normalizable mode usually marks the transition between stable and unstable
solutions. We will search for such zero modes following the same strategy as in [36, 12]. We
take our stationary solutions as a fixed background, and look for time independent solutions
of Equation 7.13 on this background. In the stationary solutions, time derivatives all vanish
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and the only non-zero component of the gauge field is At . Equation 7.13 therefore reduces to(
∇a∇

a −m2)
Φ = q2AaAa

Φ. (7.15)

This can be viewed as a generalized eigenvalue problem, with eigenfunction Φ and eigenvalue
q2. For a given electric field profile, and given value of the scalar field mass m, we can
determine the smallest eigenvalue qmin. We will then want to interpret this as the smallest
charge required for the stationary solution to be unstable to forming scalar hair.

We also need to specify the boundary conditions on the scalar field. The leading order
behaviour of the scalar field near the boundary is given, in Fefferman-Graham coordinates,
by

Φ = Φ−zδ− +Φ+zδ+ + ... (7.16)

where

δ± =
3
2
±
√

9
4
+L2m2. (7.17)

Note that ∆, as defined in Equation 7.8, is equal to δ+. Typically, we set Φ− to zero as our
scalar field boundary condition. The only exception is when we want to work with ∆ < 3

2 .

We can make sense of this by identifying ∆ with δ− instead of δ+, and then setting Φ+ to
zero as a boundary condition. This works provided that ∆ ≥ 1

2 .

With this set-up, we have computed qmin for various profiles, labelled by n, and ampli-
tudes, a, with both ∆ = 2 and ∆ = 4. The results are displayed in Figures 7.1 and 7.2. To
facilitate comparison with the WGC bound, we plot qmin/qW on the vertical axis and place
a dotted horizontal line at qmin/qW = 1. Each curve on the plot terminates at amax, where
stationary solutions with connected horizon and no scalar field no longer exist. In every
case, we see that the curve dips below the dotted line before reaching amax. This means
that if the WGC bound is obeyed, so q > qW , and we slowly increase the amplitude, the
Einstein-Maxwell stationary solution appears to become unstable to forming scalar hair
before it becomes singular. The resulting hairy solutions might themselves give rise to
singular behaviour, but these results suggest that the WGC bound is at least sufficient to
avoid the kind of naked singularity we saw in the previous Chapter.

We should now check that these zero modes really do mark the boundary between stable
and unstable solutions. To do this we include harmonic time dependence e−iωt in the scalar
perturbation and compute the lowest quasinormal mode frequency for each a. We take ∆ = 4,
and set q = qW since larger q are more likely to induce instabilities. Since the zero mode
has ω = 0, as we change a at fixed charge, both the real and imaginary parts of the lowest
quasinormal mode frequency must pass through zero. If Imω becomes positive, the mode
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Fig. 7.1 The minimum charge, qmin, needed for a zero-mode as a function of the amplitude
a, plotted for several different profiles. From bottom to top we have n = 2,4,6,8,10,
respectively. The horizontal dashed line represents the weak gravity bound qmin/qW = 1.
These curves were determined for ∆ = 2.
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Fig. 7.2 The minimum charge, qmin, needed for a zero-mode as a function of the amplitude
a, plotted for several different profiles. From bottom to top we have n = 2,4,6,8,10,
respectively. The horizontal dashed line represents the weak gravity bound qmin/qW = 1.
These curves were determined for ∆ = 4.
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Fig. 7.3 The lowest quasinormal mode frequency for n = 8,∆ = 4,q = qW . The black dot
denotes the zero mode. The red dots have the opposite sign of ω from the blue dots. The
insert on the right plots the data on a logarithmic scale, clearly showing that Imω becomes
positive after the zero mode, so the solution without the scalar field becomes unstable.

becomes unstable. As Figure 7.3 shows, this is exactly what we find. The location of the
zero mode is shown as a black dot, and Imω changes sign there. Since Imω is small near the
zero mode, the instability sets in slowly. We believe that the instability will set in faster for
larger values of q.

We should also check whether the same story will hold for all values of the scalar field
mass. We have repeated the calculation of the zero-mode charge qmin for many values of ∆.

Since the lowest value of qmin always occurs for a = amax, we keep a = amax and compute
qmin for various ∆ for the n = 8 profile. The results are plotted in Figure 7.4. The fact that
qmin/qW is always less than one means that the situation is always qualitatively the same as
the previous cases.

We have now seen evidence that if the WGC bound is obeyed, the Einstein-Maxwell
stationary solutions with connected horizon become unstable to forming scalar hair. The
next question is: how do these hairy solutions behave? In particular, do non-singular hairy
solutions persist for arbitrarily large amplitude, thereby avoiding naked singularity formation?
Or might they too become singular? We have constructed the hairy stationary solutions
numerically for n = 8,∆ = 2 with various different charges and amplitudes (other values
of n and ∆ have also been tried and give similar results). We find that for certain values of
the charge, there is still a maximum amplitude in the hairy solutions, with the Kretschmann
diverging as this maximum is approached. It seems that the formation of scalar hair is
not necessarily enough to avoid naked singularity formation. However, we find that as
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Fig. 7.4 qmin/qW as a function of ∆ ≥ 1 plotted for n = 8 and a = amax. The orange region
indicates the region of moduli space where we used alternative boundary conditions.

the charge increases, the maximum amplitude increases as well. Remarkably, when the
charge exceeds qW , there is no longer a maximum amplitude at all, and so there seems to
be no naked singularity. We present these results in Figure 7.5. The blue curve depicts the
stationary solutions we found before, ending at amax. The orange curve shows the threshold
for existence of the hairy solutions. For each value of the amplitude, we decrease the charge
until the solution becomes singular (the Kretschmann diverges), and the place where that
happens becomes a point on the orange curve. Hairy solutions therefore only exist above this
curve. The orange curve appears to approach the dotted line qmin/qW = 1 as a → ∞, so there
is no maximum amplitude if and only if the WGC bound is respected. The WGC condition
appears to be both necessary and sufficient for the WCCC to hold.

There is one caveat that must be added to this result. We have only looked at stationary
solutions, and we have not said anything about hovering black holes. This means that
although we can be confident that the WGC bound is sufficient to avoid a violation of the
WCCC, it may not be necessary. We cannot rule out the possibility that hovering black holes
might form even when q < qW . This could also prevent the formation of a naked singularity.
We would need to compute the full time dependent solution to determine whether or not this
happens.

Another problem with the above results is that we always work with n≥ 2. This is because
the numerics for the stationary solutions are easier to handle. However, the time dependent
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Fig. 7.5 Phase diagram of solutions for n = 8 and ∆ = 2. The dashed vertical line denotes
a = amax. Solutions with Φ ̸= 0 exist above the (blue and yellow) line connecting the dots,
and Φ → 0 along this line for a < amax, but develops singularities along the line for a > amax.
The right panel shows a blowup of part of the left panel.

results of the previous chapter, which confirmed the formation of a naked singularity without
charged matter, had n = 1. This is because that turned out to be the numerically simpler
choice in that context. We expect the n > 1 profiles to behave similarly in the time dependent
case, based on the corresponding stationary solutions. Nevertheless, it is unfortunate that we
cannot compare the results of this Chapter directly to the results of the previous one, using
the same value of n.

7.3 Conclusion

We have seen evidence for a close connection between the WGC and the WCCC. If the WGC
is true, then an effective theory can only be completed into a consistent quantum gravity
theory in the UV if it contains a charged particle with q > qW . Remarkably, the WCCC in
3+1 dimensional asymptotically AdS space appears to only hold if that same condition is
true. This connection has been further supported by the work of [37], which found evidence
for this connection in a wider class of theories, first including a dilaton and then including
multiple gauge fields. It is tempting to conclude that violations of the WCCC are possible,
but only in theories which do not admit a UV completion in quantum gravity.

The vacuum examples of Chapter 5 are consistent with this conclusion. Recall that they
could be interpreted in one of two ways. If no positivity of energy theorem applies to these
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examples, then the rotational analogue of our electromagnetic boundary condition fails to
violate the WCCC. This then poses no problems for our conclusion. If on the other hand a
positivity of energy theorem does apply, the vacuum examples may violate the WCCC, but
only when the boundary metric contains an ergoregion. In this case the dual CFT would
have a spectrum of energy states unbounded below. This would then be a new, independent,
example where the WCCC can be violated only when there is no good quantum gravity
description in the UV. This would be even stronger evidence in support of our conclusion.

What about the violations of the WCCC which do not fit into this picture? In Chapter 2
we saw two examples where the WCCC is probably violated but a consistent quantum gravity
description presumably does exist: the Gregory-Laflamme instability in higher dimensions,
and the superradiant instability in asymptotically AdS spaces (including in 3+1 dimensions).
However, the naked singularities arising in these examples are “small”. The curvature
grows arbitrarily large, but only in an arbitrarily small region of the space time. It is worth
pointing out that we also expect to see these kind of naked singularities in 3+1 dimensional
asymptotically flat space as well. They are not present in the classical theory, and do not
arise during gravitational collapse (so are unlikely to have astrophysical relevance), but once
quantum effects are taken into account we do expect black holes to become unstable and
eventually evaporate. At the end of this process, we would expect quantum gravity effects to
become visible to distant observers. However, the curvatures would again only be large in
a small region of the space time. This is in contrast to our examples, where the curvature
grows large over a large region of the space time.

With this in mind, we can propose a new, weakened, statement of the WCCC.

Conjecture 7.3.1. The maximal evolution of complete initial data should contain no “large”
naked singularities if the theory admits a consistent UV completion in quantum gravity.

This conjecture has been further explored in [18], where holographic arguments were
used to derive the Penrose inequality in AdS. This is an explicit example of how quantum
gravity considerations can enforce the WCCC in classical GR. Their derivation also works in
higher dimensions, where the WCCC in the traditional sense fails, but the weakened form
may still hold. If this conjecture is true, it is interesting to ask why. It seems to be pointing to
something deep about the nature of quantum gravity.
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Appendix A

Further Details of the Zero Temperature
Numerical Scheme

The numerical scheme used to produce the results in Chapter 6 closely followed the de-
scription given in Chapter 4, but with a few slight differences. We present these differences
here, as well as providing some further details on exactly how the scheme was implemented.
Throughout this Appendix we choose L = c = 1.

First, we use a different definition of the function χ3 :

χ(v,ρ,x) =− logρ +

(
x−ρ

x

)3

χ3(v,x). (A.1)

The second difference is that instead of defining coordinates Z and X using Equations 4.24
and 4.25, we work with the coordinates y and r defined in terms of ρ and x as follows:

ρ
−1 =

1
x

(
1+

1− y2

2y2

)
(A.2)

x =
1− r2√

r2 +(1− r2)2
. (A.3)

The AdS boundary then lies at y = 1, the horizon lies at y = 0, and the symmetry axis lies at
r = 0. This coordinate definition means we expect all of our functions to contain only even
powers of y, and so we used a doubled Chebyshev grid in the bulk radial direction as well (in
Chapter 4 we explained how to use such a grid in the boundary direction).

With these differences, the functions that we actually numerically integrate can now be
defined. We define these new functions below in terms of the original metric functions given
in Chapter 4 (the new functions are given a subscript n). The main guiding principle is to
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subtract off as much of the known asymptotic behaviour at the boundary as we can:

(A.4a)β (v,ρ,x) = −χ3(v,x) f (ρ−1,x)3 + f (ρ−1,x)3
βn(v,y,r)

(A.4b)U(v,ρ,x) = f (ρ−1,x)2(1 − x2)Un(v,y,r)

(A.4c)
∂Av

∂ρ−1 (v,ρ,x) =
(

f (ρ−1,x)
xρ−1 − 1

)2

x(Ez)n(v,y,r)

(A.4d)

V (v,ρ,x)− 1

=

(
x3ρ−3 + 3(1 − xρ−1)3χ3(v,x)

2ρ−1(1 − xρ−1)4

)−1
e

2(1−3xρ−1+3x2ρ−2)χ3(v,x)
x3ρ−3 xρ−1

1 − xρ−1 dtχn(v,y,r)

− ∂vχ3(v,x)


(A.4e)α(v,ρ,x) = − log(1 − x2) + f (ρ−1,x)2 2 − x2 − x

√
4 − 3x2

2 − 2x2 αn(v,y,r)

(A.4f)
∂Ax

∂ρ−1 (v,ρ,x) =
(

f (ρ−1,x)
xρ−1 − 1

)2

Bn(v,y,r)

(A.4g)
∂Ax

∂v
(v,ρ,x)− ∂Av

∂x
(v,ρ,x) = x−1(Er)n(v,y,r) +

1
2

∂Ax

∂ρ−1 (V − 1)

(A.4h)
∂α

∂v
(v,ρ,x) = f (ρ−1,x)2 2 − x2 − x

√
4 − 3x2

2 − 2x2 dtαn(v,y,r) +
1
2

∂α

∂ρ−1 (V − 1)

where
f (a,b) =

(ab−1)(1+4(ab−1))
(1+2(ab−1))2 . (A.5)
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