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Abstract
The self-force expansion allows the study of deviations from geodesic motion
due to the emission of radiation and its consequent back-reaction. We invest-
igate this scheme within the on-shell framework of semiclassical scattering
amplitudes for particles emitting photons or gravitons on a static, spherically
symmetric background. We first present the exact scalar two-point amplitudes
for Coulomb and Schwarzschild, from which one can extract classical observ-
ables such as the change in momentum due to geodesic motion. We then
present, for the first time, the three-point semiclassical amplitudes for a scalar
emitting a photon in Coulomb and a graviton on linearised Schwarzschild,
outlining how the latter calculation can be generalized to the fully non-linear
Schwarzschild metric. Our results are proper resummations of perturbative
amplitudes in vacuum but, notably, are expressed in terms of Hamilton’s prin-
cipal function for the backgrounds, rather than the radial action.
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1. Introduction

Perturbation theory in general relativity has been developed extensively over the past 100
years using the two-body problem as a natural laboratory (see [1–4]). In this case, the pres-
ence of multiple scales allows for several perturbative schemes which may be investigated
individually, as in the effective field theory approach to the two-body problem first pion-
eered by Goldberger and Rothstein [5]; see [6–8] for reviews of subsequent developments.
Among these schemes, the post-Minkowskian (‘PM’) expansion [9–17], valid for weak grav-
itational fields but with no restrictions on velocity, has received renewed attention. This interest
follows a remarkable state-of-the-art calculation, building upon [18, 19], for the PM expan-
sion of the conservative potential of a compact binary system, using on-shell scattering amp-
litudes [20, 21]. This calculation and subsequent works [22–31] have demonstrated the pos-
sibility of systematically organizing the PM expansion solely in terms of on-shell amplitudes
in Minkowski spacetime and their classical limits, bypassing ordinary perturbative methods in
classical relativity and providing an alternative way to understand the two-body problem (see
[32–34] and reviews [35–37]).

In particular, it has been demonstrated—for instance, using the formalism developed by [34,
38–41]—that the PM expansion of classical observables such as scattering angle, waveform
and power emitted are determined by corresponding on-shell, perturbative scattering amp-
litudes. In essence, the classical observable, to a given PM precision, is determined by an on-
shell phase space integral over the classical limit of on-shell scattering amplitudes (or products
thereof) computed in the ordinary perturbative expansion of a quantum field theory (QFT).
For example, the classical waveform for gravitational radiation emitted by the scattering of
two Schwarzschild black holes is determined to leading PM order by the tree-level five-point
amplitude for two massive scalars to scatter and emit a single graviton in the field theory of
massive scalars minimally coupled to general relativity [40].

Consequently, it is natural to consider whether the same tools can be applied to other per-
turbative expansions relevant to the two-body problem in general relativity. One example is
the self-force expansion [42–47], whose relation to on-shell amplitudes has been the subject
of recent papers [48, 49]. This expansion assumes the existence of an exact solution to the
Einstein field equation, referred to as the background and it is defined by studying deviations
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from geodesic motion in powers of a dimensionless parameter given by the mass of the particle
and a natural mass scale associated with the background.

The self-force expansion on a Schwarzschild background is perhaps the most notable
example, due to its significance in the effective-one-body description which accurately
describes the two-body problem in general relativity for a (non-spinning) binary system of
massesm andM≫ m [50–53]. At zeroth-order in the mass ratiom/M, the motion of the probe
particle follows a geodesic, and no radiation is emitted. At next-to-leading order, the emission
of gravitational waves due to the particle’s acceleration and its consequent backreaction is
taken into account by solving Einstein’s field equations to the same order [54–58], or equival-
ently, considering effective field theory (EFT) in curved spacetime [59, 60]. Interestingly, most
of the literature on this topic has focused on the study of self-force for initially bound orbits,
while the investigation of the unbound case has only gained attention quite recently [49, 61–
67]. This setting seems highly amenable to scattering amplitude methods, where initial data is
expressed in terms of on-shell, unbound states.

Indeed, the self-force expansion on a gravitational plane wave background (where all orbits
are unbound and wavefunctions for external scattering states can be determined exactly [68–
70]) has recently been pursued using precisely these methods. Classical on-shell observables,
such as impulse and waveform, can be derived directly from on-shell scattering amplitudes
on the plane wave background [48, 71, 72]. Further, the Penrose limit argument [73] suggests
that the self-force expansion on a gravitational plane wave serves as a useful toy model for
understanding self-force on any background, along a null geodesic.

Building on the findings of [48], an intriguing question arises: if the classical limit of on-
shell amplitudes on a plane wave background encodes the self-force expansion for unbound
particles, what are the necessary building blocks to compute self-force corrections to scat-
tering observables on a Schwarzschild background? In this paper, we provide a straightfor-
ward answer: the required building blocks are represented by semiclassical on-shell amp-
litudes on the corresponding Schwarzschild background, constructed within the perturbiner
approach (see [74–86]). Here tree-level scattering amplitudes are computed from solutions of
the classical equations of motion, determined by the multiplicity of the scattering process of
interest, and by the quantum numbers of the scattered states. While this is also the natural
input for standard (i.e. Feynman diagram) calculations of scattering amplitudes, the power of
the perturbiner approach is that it can be used even when the S-matrix does not exist, as on a
Schwarzschild background [87–92].We show that the building blocks of self-force corrections
constructed in this way are controlled by Hamilton’s principal function (HPF) on the back-
ground. Furthermore, we demonstrate that they may also be interpreted in terms of resummed
perturbative amplitudes. We thus argue that our approach provides a conceptual pathway to the
self-force approximation for unbound orbits solely in terms of on-shell amplitudes in vacuum3.

Our focus is on the scattering of scalar particles and the leading order emission of radiation
in static spherically symmetric backgrounds. We find it useful to consider electromagnetism
alongside the more complicated gravitational setting (see [98, 99] for studies of the two-body
problem in scalar quantum electrodynamics (QED) using the electromagnetic analogy of the
PM expansion), so our investigation concerns scattering in Coulomb and Schwarzschild back-
grounds, respectively.

3 At the geodesic level, the possibility of exploring all-order results from resummed scattering amplitudes in vacuum
has been investigated in [93], using an algebraic relation between scattering amplitudes and the Hamiltonian in an
isotropic gauge [21, 94–96], valid to all orders only in four-dimensions [97].
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This paper is organized as follows: In section 2 we review the perturbiner method and
introduce the notion of semiclassical scattering amplitudes, the calculation of which will be
the focus onmuch of this paper. Section 3 applies this formalism to elastic scattering ofmassive
scalars on Coulomb and Schwarzschild backgrounds, where we introduce a novel method
to define the semiclassical wavefunctions in terms of HPF for the background and certain
‘matching coefficients’ to ensure proper asymptotic behaviour. We see that this reproduces the
well-known expressions for elastic scattering and geodesic motion in terms of the radial action
of the background.

We then proceed to the computation of the semiclassical photon emission amplitude in
section 4. We see that this is controlled by the HPF (rather than the radial action), and demon-
strate that in the classical, weak field limit the semiclassical amplitude on the Coulomb back-
ground gives the probe limit of the classical five-point photon emission amplitude from two
scalars. This implies that the classical, probe limit of the five-point amplitude is in fact a lin-
ear function of the HPF itself, highlighting that it is the HPF, rather than radial action, which
controls radiation. Section 5 deals with the semiclassical graviton emission amplitude, where
the definition of the emitted graviton state presents new complications. While we are only
able to define the amplitude schematically on the full Schwarzschild metric, linearising the
background enables a more explicit but still rich computation. The semiclassical amplitude is
again controlled by the HPF, with its classical weak field limit reproducing the classical probe
limit of the 5-point graviton emission amplitude from massive scalars in Minkowski space-
time. Section 6 concludes with a discussion of future directions and how classical, self-force
observables can be constructed from our results.

2. Semiclassical scattering amplitudes

In standard perturbation theory around a trivial vacuum, tree-level scattering amplitudes can
be given a purely variational definition, as multi-linear pieces of the classical action eval-
uated on recursively constructed solutions to the equations of motion. The order to which
one constructs the solution perturbatively in the coupling and its boundary conditions are dic-
tated by the multiplicity of the scattering process and the asymptotic quantum numbers of the
scattered states, respectively. This is sometimes called the perturbiner approach to scatter-
ing amplitudes [74–86], which trades the combinatorial computations of traditional Feynman
rules for computations in differential equations and variational calculus.

The perturbiner approach can easily be extended to scattering amplitudes in background
(gauge and gravitational) fields by extracting multilinear pieces of the classical background
field action (see [69, 70, 100–102])4. When the background fields admit an S-matrix (e.g.
ultrarelativistic beams, shockwaves and sandwich plane waves in gauge theory and grav-
ity), the amplitudes obtained from the perturbiner approach agree with those obtained using
background-coupled Feynman rules. However, even when the S-matrix does not exist—as in
black hole spacetimes [87–92]—the perturbiner approach remains well-defined. The result-
ing amplitudes are gauge-invariant quantities which contain all of the dynamical information
expected from tree-level background field scattering amplitudes which is needed to compute
observable quantities; see [106] for explicit examples in the case of electromagnetic horizons.
As such we continue to use to word ‘amplitudes’ for the output of perturbiner calculations.
Other potential ambiguities associated with a particular backgrounds (e.g. lack of a unique

4 An equivalent definition of these quantities as ‘on-shell’ correlators has been given in [103–105].
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choice of vacuum) will manifest themselves in the choices of admissible boundary conditions
for the background-coupled equations of motion.

The recursive construction of solutions to the equations of motion in the perturbiner
approach is seeded with solutions to the free equations of motion with boundary condi-
tions corresponding to asymptotic scattering states; this is simply the perturbiner version of
LSZ truncation. The external states corresponding to the full tree-level S-matrix (which will
include quantum information when there are massive particles involved) are thus exact solu-
tions to the ‘free’ equations of motion on the background. However, on many backgrounds
including Coulomb potentials in QED and black holes in general relativity (linearised or fully
non-linear), the required solutions are so complicated that explicit calculations of scattering
amplitudes—particularly in the presence of emitted radiation—have simply not been possible.

To address this, we introduce here a tractable approximation of tree-level scattering amp-
litudes in background fields which we refer to as semiclassical scattering amplitudes. These
semiclassical amplitudes are defined by taking the semiclassical Wentzel-Kramers-Brillouin
(WKB) approximation for the external states in the scattering process—that is, by approxim-
ating solutions to the free equations of motion in the background—and using these as the input
for the perturbiner approach. To be precise:

Definition 1 (Semiclassical scattering amplitude). A tree-level scattering amplitude (in the
sense of the perturbiner approach) with all external legs defined by solving the free equations
of motion using the WKB expansion to leading order in the ℏ→ 0 limit.

For external massless fields, where ℏ does not enter the equations of motion, this semi-
classical prescription is not an approximation: the free equation of motion is classically exact.
Thus, massless legs in a semiclassical scattering amplitude are represented by solutions to their
full equation of motion, without approximation.

As we will see, semiclassical amplitudes defined in this way are controlled by HPF: the
solution to the Hamilton–Jacobi equations for a particle on the background. Even when there
are massless external legs which interact with the background—as in the emission of gravit-
ational radiation on a curved spacetime—this remains the case, as the graviton wavefunction
can be written in terms of the HPF and a background-dressed polarization tensor, which is
itself related to the HPF through the linearised Einstein equation.

The massive free field equations on the asymptotically flat, static and spherically sym-
metric backgrounds (i.e. Coulomb and Schwarzschild) that we consider in this paper are not
WKB exact, so these semiclassical amplitudes contain less information than the full tree-level
S-matrix, but—as we will see—they encode the underlying classical probe dynamics in the
background and its weak field limit.

3. Semiclassical scalar wavefunctions & elastic scattering

The external wavefunctions for any scattering process in a background are defined by solving
the free, background-coupled equations of motion for the asymptotic incoming and outgo-
ing states involved in the process. For massive scalar particles coupled to electromagnetism
or gravity, these are solutions to the Klein–Gordon equation on the given background with
appropriate boundary conditions. The standard approach to solving these equations for spher-
ically symmetric backgrounds like a Coulomb field or the Schwarzschild metric is to separate
variables, reducing the problem to a second-order radial ODE for the coefficient functions of
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a spherical harmonic expansion (see [107–115]). The two-point (or, more properly, 1→ 1)
amplitude for elastic scattering is then read off—at least, in principle—from the asymptotic
expansion of these radial wavefunctions (see [116–119]). Simplifications arise under assump-
tions such as small momentum exchange, ultrarelativistic limits or a perturbative description
of the background (e.g. [102, 120–124]).

Here, we show that semiclassical scalar wavefunctions in static, spherically symmetric
backgrounds can be determined (at all-orders in the coupling, for generic scattering angle)
by using a WKB ansatz combined with an asymptotic matching condition to the usual radial
wavefunctions. This procedure is inspired by a similar ‘patching’ approach to solving the
Klein–Gordon equation in the WKB-exact, ultrarelativistic setting where the background is
localized on a lightfront [120, 124–126], suitably generalized to non-WKB-exact backgrounds
like Coulomb and Schwarzschild. States constructed in this way have the substantial advantage
of being highly amenable to calculation in the relativistic, covariant framework of background
QFT. As a warm-up, we show how the two-point, elastic scattering amplitudes for semiclas-
sical scalars are obtained in a straightforward way using these states.

3.1. Semiclassical scalar states on static, spherically symmetric backgrounds

On-shell complex scalar fields coupled to background electromagnetic or gravitational fields
are defined by solutions to the Klein–Gordon equation in the background. Let Aµ(x) denote a
background electromagnetic field solving Maxwell’s equations in Minkowski spacetime and
gµν(x) denote a background metric solving the Einstein equations. Working in Lorenz gauge
for the electromagnetic background (∂µAµ = 0) and de Donder gauge for the gravitational
background (gµν Γα

µν = 0 forΓα
µν the Christoffel symbols of gµν), theKlein–Gordon equations

become(
□− 2i

ℏ
eAµ∂µ −

e2

ℏ2
A2 +

m2

ℏ2

)
ϕ(x) = 0 ,

(
gµν∂µ∂ν −

m2

ℏ2

)
ϕ(x) = 0 . (3.1)

In the first equation,□ := ηµν∂µ∂ν is theMinkowski spacetime d’Alembertian, e is the charge
of the complex scalar and all indices are contracted via the Minkowski metric.

To define semiclassical states from solutions to these equations, we employ a WKB
approximation

ϕ(x) = ei
S(x)
ℏ . (3.2)

In the ℏ→ 0 semiclassical limit, the Klein–Gordon equation (3.1) become the Hamilton–
Jacobi equations for the background:

ηµν (∂µS− eAµ) (∂νS− eAν) = m2 , gµν ∂µS∂νS= m2 . (3.3)

In other words, in the semiclassical limit the field equations impose that the WKB phase S(x)
becomesHPF for the background. From nowon, wewill set ℏ= 1 inmost expressions, with the
implicit understanding that we work in the semiclassical limit described by (3.3); the dropping
of quantum contributions will be highlighted where necessary.

Now, to obtain scattering states parametrized by an on-shell asymptotic momentum pµ
obeying ηµνpµpν = m2, we follow [102] and make a weak-field expansion of the WKB phase

S(x) =
∞∑
n=0

S(n) (x) , S(n) (x)∝ en, Gn , (3.4)
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where e is the elementary charge in the electromagnetic case andG is Newton’s constant in the
gravitationally-coupled case. We also assume the existence of a similar weak-field expansion
of the background fields themselves; for the inherently linear electromagnetic background this
is trivial, while for gravity it implies

gµν = ηµν +Hµν +
∞∑
n=2

H(n)
µν (3.5)

with Hµν ∝ G the leading, linear correction to Minkowski spacetime and H(n)
µν ∝ Gn encoding

the higher, non-linear terms.
This leads to a system of coupled differential equations at each order in the expansion:

∂µS
(0) ∂µS(0) = m2 , (3.6)

∂µS(0) ∂µS
(1) = eAµ ∂µS

(0) , 2∂µS(0) ∂µS
(1) = Hµν ∂µS

(0) ∂νS
(0) , (3.7)

to subleading order in the weak field expansion, with all indices in all equations now contracted
using the Minkowski metric. The (theory-independent) leading equation for S(0) can then be
solved in terms of an on-shell momentum pµ:

S(0) (x) = p · x , p2 = ηµνpµ pν = m2 , (3.8)

in Minkowski spacetime.
We nowmake an additional simplifying assumption, which in effect restricts us to the cases

of interest: we assume that the background field is spherically symmetric. By Birkhoff’s the-
orems in both electromagnetism [127] and general relativity [128–130] this implies that the
backgrounds are static and asymptotically flat. In particular, if we assume that scattering occurs
in a vacuum region of spacetime (i.e. outside of any sources), the electromagnetic and gravita-
tional background fields are the Coulomb gauge potential and Schwarzschild metric, respect-
ively. In terms of the fields entering the PDEs defining S(1) in (3.7), we have, in spherical polar
coordinates (t,r,θ,ϕ)

Aµ =
QUµ

4π r
, Hµν =

2GPµν

r
, (3.9)

whereQ is the charge of the Coulomb potential,Uµ = (1,0,0,0) andPµν is the constant tensor

Pµν :=M(ηµα ηνβ + ηµβ ηνα − ηµν ηαβ)U
αUβ , (3.10)

for M the Schwarzschild mass. The equation (3.7) for S(1) are then easily integrated to give

S(1) (x) =
eQp ·U
4π |⃗p|

log(|⃗p|r+ p⃗ · r⃗) , (3.11)

for electromagnetism and

S(1) (x) =
GPµν pµ pν

|⃗p|
log(|⃗p|r+ p⃗ · r⃗) (3.12)

for gravity. In both expressions, p⃗ denotes the spatial components on the on-shell momentum
pµ with (Euclidean) norm |⃗p|.
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It should be noted that in the context of large-distance, the phase S(1) is equal to an eikonal
phase, which is a function of the radial distance r alone (see [102, 115, 122]). However, if
one wishes to consider situations beyond elastic 2-point scattering, the non-trivial angular
dependence of S(1) is crucial, as we will show later.

More generally, one can proceed recursively to solve for the HPF (3.4) order-by-order in
the weak-field expansion. Let Sp(x) denote the resulting all-order HPF corresponding to on-
shell asymptotic momentum pµ; a general solution to the free field equation (3.1) can then be
determined by taking an on-shell linear combination of such particular solutions:

ϕ(x) =
ˆ

dΦ(p) Λ(p) eiSp(x) , (3.13)

where (defining d̂4p≡ d4p/(2π)4 and δ̂(·) = 2πδ(·)),

dΦ(p) := d̂4pΘ
(
p0
)
δ̂
(
p2 −m2

)
, (3.14)

is the Lorentz-invariant on-shell measure and Λ(p) are as-yet-undetermined coefficients.
At this point, we take inspiration from a similar procedure for constructing general solu-

tions to the Klein–Gordon equation on plane- or pp-wave backgrounds which are localized
on a lightfront [120, 124–126]. In that context, the coefficients in the on-shell superposi-
tion (3.13) are determined by matching conditions at this lightfront, namely that the equation
of motion is solved on the lightfront itself. Such backgrounds which include impulsive plane
waves, ultrarelativistic shockwaves and beams are, of course, very different from Coulomb
or Schwarzschild: they are WKB exact, so the procedure determines fully quantum mechan-
ical scattering states. The lesson we wish to apply to the context of (3.13) in a Coulomb or
Schwarzschild background is that the coefficients in the sum can be fixed by demanding that
the solution has desired properties in a certain region of spacetime.

In Coulomb or Schwarzschild, the natural matching region is at spatial infinity5, r→∞.
Here, our solution should agree with solutions to the Klein–Gordon equation obtained in the
‘standard’ way, by separating variables and expanding in spherical harmonic modes. The radial
wavefunctions obtained in this way encode the elastic scattering amplitude in their asymptotic
behaviour as r→∞, so clearly the solutions (3.13) must agree with them in this asymptotic
region. This is enough to fix the coefficients Λ(p).

To begin, recall that general solutions to the Klein–Gordon equation (3.1) in a static, spher-
ically symmetric background can be written in terms of a spherical harmonic expansion

ϕp (x) =
4π eiEt

r

∞∑
ℓ=0

ℓ∑
m=−ℓ

Ymℓ (x̂) Y
m
ℓ (p̂) Rℓm (r) , (3.15)

where E≡ p0, Ymℓ (x̂) are the usual spherical harmonics evaluated at (θ,φ) on the unit sphere
x̂= (sinθ cosφ, sinθ sinφ, cosφ) and p̂= p⃗/|⃗p| is the unit vector associated to the spatial
momentum. The non-trivial part comes from solving for the radial wavefunctionmodesRℓm(r),

5 In spherical polar coordinates, r→∞ is the asymptotic boundary region associated to the Coulomb potential and
Schwarzschild metric. However, one could instead write the background fields in some other coordinate system with
a different boundary; for instance, retarded Bondi coordinates would give future null infinity I + as the natural
boundary. Thematching conditions andwavefunctions in such alternative coordinates will certainly look very different
to those in spherical coordinates, but diffeomorphism invariance ensures that the corresponding scatting amplitudes
themselves will agree; see [131, 132] for some two-point examples obtained from I .
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which are determined by a second-order ODE of Schrödinger type. The functional form of
these radial wavefunctions can be quite complicated: in Coulomb or linearized Schwarzschild
backgrounds they are Whittaker/confluent hypergeometric functions, while in a fully non-
linear Schwarzschild metric they are confluent Heun functions. Luckily, we will only require
the asymptotic form of the radial wavefunctions as r→∞, and their asymptotic expansions
are well-known (see [133] sections 33 and 31, respectively).

First, we consider the asymptotic expansion of the semiclassical WKB ansatz. For S(0) =
p · x one invokes the plane wave expansion and spherical harmonic addition theorem to find

eip·x = 4π
∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓ jℓ (|⃗p|r) Ymℓ (−x̂) Ymℓ (p̂) e
iEt , (3.16)

where jℓ are the spherical Bessel functions. As r→∞ these obey

jℓ (|⃗p|r) =
ei(|⃗p|r−ℓπ/2)

2i |⃗p|r
− e−i(|⃗p|r−ℓπ/2)

2i |⃗p|r
+O

(
r−2
)
. (3.17)

The two leading terms correspond to left or right-moving particles in the semiclassical state,
respectively; only the second term is relevant for the desired state in the on-shell sum (3.13),
so the first term is discarded by hand6.

From (3.11) and (3.12) it is clear that the next correction to the HPF, S(1)(x) grows like
logr as r→∞, while all terms in the HPF S(n) for n⩾ 2 scale as O(r−1) (see [134–137] for
explicit expressions at n= 2 in the eikonal regime); this follows simply by inspection of the
structure of the Hamilton–Jacobi equations at higher-orders in the weak-field expansion. Thus,
it follows that the semiclassical WKB wavefunction, to all orders in the coupling, behaves at
large r as

eiSp(x) =
2π i
|⃗p|r

( ∞∑
ℓ=0

Ymℓ (x̂) Y
m
ℓ (p̂)

)
ei(Et−|⃗p| r+S(1)(x)) +O

(
r−2
)
, (3.18)

for an outgoing state. Using the spherical harmonic completeness relations, this is further sim-
plified to

eiSp(x) =
2π i
|⃗p|r

δ2Ωx
(x̂− p̂) ei(Et−|⃗p| r+S(1)(x)) +O

(
r−2
)
, (3.19)

where

δ2Ωx
(x̂− p̂) :=

1
sinθ

δ2 (x̂− p̂) , (3.20)

covariantly localizes the angular dependence to that of the on-shell momentum. On the support
of these delta functions

S(1) (x)−→ Cp log(2|⃗p|r) , (3.21)

6 If we proceeded naïvely, keeping the first term leads to an apparent un-physical divergence in the wavefunction. To
see that the first term corresponds to a finite contribution which simply has the wrong scattering behaviour requires a
more careful treatment of all harmonic and asymptotic expansions, which is described in appendix A.
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for Cp the theory-dependent constant pre-factor determined by (3.11) and (3.12) in electro-
magnetism and gravity, respectively.

Feeding (3.19) and (3.21) into (3.13), the asymptotic behaviour of the general solution is

ϕ(x) =
2πi
Er

ˆ ∞

0
|⃗p|d|⃗p|Λ(|⃗p|, x̂) ei(Et−|⃗p| r+Cp log(2|⃗p| r)) +O

(
r−2
)
, (3.22)

where three of the four on-shell phase space integrals have been done trivially against delta
functions.

At this point, the asymptotic matching condition between (3.22) and an exact solution of
the form (3.15) with momentum p ′

µ and energy E reads:

i
E

ˆ ∞

0
|⃗p|d|⃗p|Λp ′

(|⃗p|, x̂) lim
r→∞

ei(Et−|⃗p| r+Cp log(2|⃗p| r))

= 2eiEt
∞∑
ℓ=0

ℓ∑
m=−ℓ

Ymℓ (x̂) Y
m
ℓ (p̂

′) lim
r→∞

Rℓm (r) , (3.23)

where the superscript onΛp ′
denotes the fact that these coefficients are being fixed bymatching

with a solution of momentum p′. This condition can be solved by taking

Λp ′
(|⃗p|, p̂) =−2iE

|⃗p|
δ (|⃗p| − |⃗p ′|)

×
∞∑
ℓ=0

ℓ∑
m=−ℓ

Ymℓ (p̂) Y
m
ℓ (p̂

′) lim
r→∞

Rℓm (r) e
i(|⃗p| r−Cp log(2|⃗p| r)) . (3.24)

Now, as r→∞ the radial wavefunctions behave at leading order as (see [115]):

Rℓm (r)
r→∞−−−→ e−i(|⃗p| r−Cp log(2|⃗p| r))+iBℓ , (3.25)

where Bℓ depend on the kinematics and mode number ℓ but are otherwise constant. In other
words, the r-dependence appearing in the large-r limit part of the matching condition (3.24)
precisely cancels, leaving a finite result.

The combination of spherical harmonics and large-r limits appearing in (3.24) can then be
repackaged into a (finite) partial wave sum known as the elastic scattering amplitude [115]:

f p
′
(|⃗p|, p̂) :=

∞∑
ℓ=0

ℓ∑
m=−ℓ

Ymℓ (p̂) Y
m
ℓ (p̂

′) lim
r→∞

Rℓm (r) e
i(|⃗p| r−Cp log(2|⃗p| r))

=
∞∑
ℓ=0

(2ℓ+ 1) Pℓ (p̂ · p̂ ′) e2i Iℓ(r=∞)−iπℓ , (3.26)

where Pℓ are the Legendre polynomials and Iℓ(r=∞) is the radial action [138] at infinity,
regularized by the subtraction of a divergent accumulation phase. The radial action takes the
explicit forms (see [115])

ICoulomb
ℓ (r) =

ˆ r

rturn

√
p⃗ 2 s2 + EeQ

2π s− ν2
ℓ

s2
ds , (3.27)

10
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for νℓ =
√
ℓ2 − eQ

4π − 1/2 in Coulomb and

ISchℓ (r) =
ˆ r

rturn

√
p⃗ 2 s2 + 2GMms− s−2GM

s ℓ2

(s− 2GM)
2 ds . (3.28)

in Schwarzschild, and the accumulation phase takes the universal form |⃗p|r+ η log(2|⃗p|r) for

ηCoulomb :=
EeQ
2π |⃗p|

, ηSch :=
GM
|⃗p|

(
E2 + p⃗ 2

)
. (3.29)

In both cases, rturn is the value of s for which the integrand—the radial momentum of a freely
falling probe—vanishes.

It is worth mentioning that in the limit where the angle between p̂ and p̂ ′ is small, it is
well-known that the partial wave sum in (3.26) can be expressed as an eikonal integral (see
[113, 139–144]). In this eikonal limit, the coefficients Λ(p) are still given by (3.32), but the
amplitude f is now given by

f p
′
(|⃗p|, p̂) = i |⃗p|

ˆ
d2x⊥ eix

⊥·(p̂−p̂ ′) ei(2I(|x
⊥|)−π |⃗p| |x⊥|) , (3.30)

where

I
(
|x⊥|

)
:= I|⃗p| |x⊥|− 1

2
(r=∞) , (3.31)

in terms of the radial action. This is due to the eikonal limit of the partial wave sum being
dominated by large ℓ contributions, and the eikonal integral (3.30) is similarly dominated by
a large |x⊥| saddle point [145–148].

To summarize, for arbitrary scattering angle the matching condition fixes

Λp ′
(|⃗p|, p̂) =−2iE

|⃗p|
δ (|⃗p| − |⃗p ′|) f p

′
(|⃗p|, p̂) , (3.32)

with f p
′
(|⃗p|, p̂) determined by the radial action of the background. Feeding this back into

the initial form of the general solution (3.13) gives the final expression for an outgoing state
associated with momentum pµ:

ϕp (x) =
ˆ

dΦ(l) Λp (l) eiSl(x)
∣∣∣
l0=p0

=−i |⃗p|
ˆ

d2Ωl f
p
(
|⃗p|, l̂

)
eiSl(x)

∣∣∣
l0=p0

, (3.33)

upon performing two of the on-shell phase space integrals. The remaining integral is over the
celestial sphere with measure

d2Ωl := sinθℓ̂ dθ̂l dφ̂l , (3.34)

corresponding to the angles defined by l̂.

11



Class. Quantum Grav. 41 (2024) 065006 T Adamo et al

3.2. Scattering without emission from the radial action

Usually, the elastic 1→ 1 scattering amplitude in a static, spherically symmetric background
is read off from the asymptotic expansion of the radial wavefunction, with the results for
Coulomb and Schwarzschild backgrounds being well-known [107, 108, 110, 113–115, 118].
Here, we show how these results can be obtained directly from the perturbiner approach
described in section 2. This is important for two reasons: firstly, it extends the results of [102]
connecting 1→ 1 scattering in linearised Schwarzschild with the eikonal amplitude to 1→ 1
scattering in the exact, non-linear Schwarzschild metric, and secondly, it serves as a useful
warm-up for the case of 1→ 2 scattering with emission that we will consider in subsequent
sections.

The two-point amplitude in this framework is given by the quadratic part of the background
coupled classical action, evaluated on the sum of an incoming and outgoing state, taking only
the contribution linear in each state. The fact that these states solve the free equation of motion
means that only a boundary term contributes7, and for background Coulomb of Schwarzschild
fields (expressed in spherical coordinates) it is straightforward to show that this is given by

⟨p ′|S|p⟩ := lim
r→∞

ˆ
R×S2

dtd2Ωx r
2 ϕ̄in

p ∂rϕ
out
p ′ , (3.35)

for 1→ 1 scattering of a charged or gravitationally-coupled complex scalar with initial
momentum p and final momentum p′. As the amplitude is totally localised at spatial infinity,
the scattering conditions at this boundary are that the incoming and outgoing states appearing
in (3.35) are given by

ϕin
p (x) = eiSp(x) , ϕout

p ′ (x) =−i |⃗p ′|
ˆ

d2Ωl f
p ′
(
|⃗p ′|, l̂

)
eiSl(x)

∣∣∣
l0=(p ′)0

, (3.36)

in terms of the HPF and background dressing (3.33).
Plugging these into (3.35) and exploiting the asymptotic expansion (3.19) gives

⟨p ′|S|p⟩= |⃗p ′|
|⃗p|

lim
r→∞

ˆ

R×(S2)2

dtd2Ωx d
2Ωl δ

2
Ωx

(x̂− p̂) δ2Ωx

(
x̂− l̂

)
f p

′
(
|⃗p ′|, l̂

)
× exp[i((E ′ −E) t+(|⃗p| − |⃗p ′|) r+Cp ′ log(2|⃗p ′|r)−Cp log(2|⃗p|r))] , (3.37)

dropping all terms which vanish in the r→∞ limit. The time integral is now performed to
give a delta function setting E ′ = E, and thus |⃗p|= |⃗p ′|, as the masses of the incoming and
outgoing states are equal. This immediately removes all remaining r-dependence from the
integrand, rendering the r→∞ limit trivial and leaving

⟨p ′|S|p⟩= δ̂ (E ′ −E)
ˆ

S2×S2

d2Ωx d
2Ωl δ

2
Ωx

(x̂− p̂) δ2Ωx

(
x̂− l̂

)
f p

′
(
|⃗p|, l̂

)
= δ̂ (E ′ −E) f p

′
(|⃗p|, p̂) . (3.38)

7 For the Schwarzschild metric, there is another boundary at r= 2GM, the event horizon. By ignoring this boundary’s
contributions to the two-point amplitude, we are implicitly considering elastic scattering with sufficiently large impact
parameter that the probe’s interaction with the horizon is vanishingly small. This assumption is implicit in most
considerations of 1 → 1 scattering in black hole spacetimes, although there are several interesting studies that consider
horizon effects in different frameworks (e.g. [149–156]).

12
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In particular, we find that the well-known result that the 1→ 1 elastic scattering amplitude is
given by f p

′
(|⃗p|, p̂). By (3.26), this also confirms that the 1→ 1 amplitude on any spherically

symmetric background is captured exactly, without any small angle or leading-order eikonal
approximation, by the full outgoing amplitude, which is itself controlled by the radial action
associated with the background [115].

3.2.1. The scattering angle. It is interesting to see how classical physics, such as the scat-
tering angle, is encoded in the two-point amplitude (3.38). The Legendre polynomials appear-
ing in (3.26) describe the angular dependence of the wavefunction for the outgoing state and
contain both classical and quantum information; in keeping with the correspondence prin-
ciple [157], the classical information is encoded only by certain values of ℓ in the partial wave
sum, namely (see [119], chapter VII section 49 and XVII section 127):

θ ℓ≫ 1 , (π− θ)ℓ≫ 1 , (3.39)

for cosθ = p̂ · p̂ ′ (not to be confused with the spherical polar coordinate θ). The condition of
classicality for the angular part of the wavefunction can thus be expressed as: for a given value
of θ ̸= 0,π, the classical limit occurs for large values of ℓ, which corresponds to a small vari-
ation in the De Broglie wavelength. In this limit, the Legendre polynomials can be expanded
as

Pℓ (cosθ) =

√
θ

sinθ
J0

((
ℓ+

1
2

)
θ

)
+O

(
(θℓ)

−3/2
)
, ℓ≫ θ−1 , (3.40)

where J0 is the Bessel function of the first kind. Substituting this expansion into (3.26) does
not result in any loss of information so long as the resulting expression is understood in the
classical (i.e. large ℓ) limit.

In particular, this eliminates the need to use a small-angle approximation to arrive at the
expansion (3.40), as was done in [144]. One then defines

b :=
(ℓ+ 1/2)

|⃗p ′|
, (3.41)

so that the high-energy limit is now equivalent to assuming small variations of b and the sum
over ℓ can be replaced with an integral over b. The two-point amplitude then becomes

⟨p ′|S|p⟩= 2i δ̂ (E ′ −E) |⃗p|
√

θ

sinθ

ˆ ∞

0
bdbJ0 (|⃗p|θb) ei(2 I(b)−π |⃗p|b)

=
i
π
δ̂ (E ′ −E) |⃗p|

√
θ

sinθ

ˆ ∞

0
bdb
ˆ 2π

0
dφei |⃗p|θ b cosφ ei(2 I(b)−π |⃗p|b) ,

(3.42)

where I(b) is defined in (3.31) and the last line follows from the integral representation of the
Bessel function. Performing all integrals via saddle point approximation, one finds that the
integral is sharply peaked at (b∗,φ∗) such that

θ+
2
|⃗p|

dI
db

(b∗)−π = 0 , φ∗ = 0 . (3.43)
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Finally, since the scattering angle is χ := π− θ, we can use (3.41) to obtain an expression for
this classical observable as a function of the radial action to all orders:

χ = 2
dIℓ∗ (r=∞)

dℓ
, (3.44)

which is still valid for large angles8.

4. Photon emission

At two-points, we have seen that the WKB approximation for the external states captures the
full elastic scattering amplitude through the leading-order correction to the HPF in the weak
field expansion. In particular, the fact that the two-point amplitude is localized as an asymptotic
boundary term means that all contributions come from the purely radial part of S(1), which is
controlled by the radial action of the background. Beyond elastic scattering, when the emission
of radiation plays a role, this is no longer the case.

In this section, we compute the semiclassical amplitude for photon emission from a charged
scalar scattering on the Coulomb background. After showing that this amplitude is controlled
by the HPF, we consider the classical weak-field limit of the amplitude in the Coulomb back-
ground, recovering the classical part of the probe limit of five-point scattering between two
charged scalars with single photon emission in a trivial vacuum. This confirms that our semi-
classical amplitude contains the expected physical information at leading order in perturbation
theory, but also demonstrates that the radial action is not sufficient to describe classical two-
body physics in the presence of emitted radiation at infinity. Indeed, the full angular depend-
ence of the HPF is required to obtain the correct perturbative result.

4.1. Semiclassical photon emission amplitude

Following the perturbiner description of tree-level scattering amplitudes (see [69, 70, 74–81,
102]), the three-point amplitude for photon emission from a complex, charged scalar in a back-
ground gauge field is given by (i times) the tri-linear terms of the scalar QED action, evaluated
on solutions of the free, background-coupled equations of motion:

⟨p ′,k|S|p⟩=−e
ˆ

d4x
(
aoutkµ ϕ̄

in
p D

µϕout
p ′ − aoutkµ

(
D

µ
ϕ̄in
p

)
ϕout
p ′

)
, (4.1)

where ϕin
p , ϕ

out
p ′ are the incoming and outgoing scalar fields with momenta p and p′, respect-

ively aoutkµ is the outgoing photon with (massless) momentum k, and Dµ = ∂µ − ieAµ is the
covariant derivative defined by the background gauge field. To obtain the semiclassical scat-
tering amplitude, we simply evaluate this expression using wavefunctions defined by the
WKB approximation—and hence the HPF of the Coulomb background—in accordance with
Definition 1.

8 Of course, this relation can also be derived using standard Hamilton–Jacobi analysis [138]; what is relevant for us
is that it can be related to scattering amplitudes.
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Since the photon is massless and does not interact with the background gauge field, it can
be described exactly by an ordinary plane wave momentum eigenstate, while the scalar wave-
functions are given by the general solutions (3.33)9. Explicitly, we have:

ϕ̄in
p =

ˆ
dΦ(l) Λp (l)e−iSl

∣∣∣
l0=p0

,

ϕout
p ′ =

ˆ
dΦ(l ′) Λp ′

(l ′) eiSl ′
∣∣∣
(l ′)0=(p ′)0

,

aoutkµ = εµ eik·x , (4.2)

where εµ is the photon polarization vector, on-shell with respect to the photon momentum
kµ in Lorenz gauge (i.e. k2 = 0= k · ε). the massless photon momentum. With these external
wavefunctions, the semiclassical photon emission amplitude is

⟨p ′,k|S|p⟩= ie
ˆ

d4xdΦ(l) dΦ(l ′) Λp (l)Λp ′
(l ′)

× ε · (∂Sl+ ∂Sl ′ + 2eA) ei(k·x+Sl ′−Sl)
∣∣∣l0=p0
(l ′)0=(p ′)0

, (4.3)

with Aµ given explicitly by (3.9). Aside from performing the trivial time integral (which
results in an energy-conserving delta function), this is as far as the semiclassical scattering
amplitude can be evaluated analytically (at least, without making further approximations or
simplifications).

This complexity is simply an example of the more general fact that amplitudes on strong
backgrounds (even with WKB-exact wavefunctions) are generically highly non-trivial func-
tions of the scattering data (see [158–160]). Unlike in a trivial vacuum, it is not usually possible
to perform all spacetime vertex integrals, even at low numbers of points.

Given this complexity, it is natural to ask if there are any checks that we can perform on
our results. Clearly, the semiclassical amplitude (4.3) contains some of the information in the
full tree-level three-point amplitude for photon emission on the Coulomb background, but it
is not at all obvious that this corresponds to the probe limit of leading classical, perturbative
contributions to photon emission. To check this, one must re-expand (4.3) in powers of the
coupling to the background to see if an appropriate, purely perturbative result is obtained.

4.2. The classical and weak field limits

If the semiclassical 3-point amplitude is truly capturing classical perturbative physics, then the
leading classical contribution to ⟨p ′,k|S|p⟩ in an expansion in the coupling to the Coulomb
background Q should recover part of the 5-point tree-level perturbative amplitude for two
massive scalar charges to scatter and emit a photon. The part of this amplitude we should
recover is its leading classical behaviour (since we work in a WKB expansion) in the probe
limit, in which the recoil of one charge (which is essentially a background, since it is not
affected by the scattering) is neglected.

The expansion of (4.3) to first order in Q contains two qualitatively distinct contributions.
One set of terms will arise by taking the order Q contributions from each factor of the match-
ing coefficients Λp(l) and Λp ′

(l ′), with all occurrences of the HPF being restricted to S(0).

9 As amplitudes at three-points and higher are not localized to a spacetime boundary, both incoming and outgoing
wavefunctions must be fully dressed by the background.
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In other words, taking factors of Q from the first line of (4.3) only. The other set of terms
arises from taking order Q contributions only from the second line of (4.3), with only order
Q0 contributions from the matching coefficients.

Let us begin by considering the first set of contributions to the weak-field limit:

e
ˆ

d4xd2Ωl d
2Ωl ′

(
f p
(
|⃗p|, l̂

)
f p

′
(
|⃗p ′|, l̂ ′

))∣∣∣
O(Q)

ε · (l+ l ′) ei(k+l
′−l)·x

∣∣∣l0=p0
(l ′)0=(p ′)0

= 2e
ˆ

δ̂4 (k+ l ′ − l) d2Ωl d
2Ωl ′

(
f p
(
|⃗p|, l̂

)
f p

′
(
|⃗p ′|, l̂ ′

))∣∣∣
O(Q)

ε · l
∣∣∣l0=p0
(l ′)0=(p ′)0

, (4.4)

ignoring irrelevant overall factors. As this is proportional to on-shell three-point momentum
conserving delta functions, it is immediately vanishing; however, it is interesting to see that
these contributions also vanish if one first takes the classical limit rather than using the overall
momentum conserving delta functions.

As we saw in section 3, in the classical limit the elastic amplitude behaves as an eikonal-like
integral, meaning the weak field expansion has the form

f p
(
|⃗p|, l̂

)
= δ2Ωl

(
p̂− l̂

)
+ iA4

(̂
l− p̂

)
+O

(
Q2
)
, (4.5)

where A4 is the tree-level, single photon exchange amplitude between two charged scalars
with exchanged momentum l̂− p̂. This arises through the eikonal phase, which is precisely
the inverse Fourier transform of A4. Furthermore, at leading order in the classical limit, the
massless photon momentum k scales as ℏ times the classical wavenumber (see [34]). Thus, in
the classical, weak field limit the contribution (4.4) is given by

ie2Q
ˆ

δ̂4
(
l ′ − l

)
d2Ωl d

2Ωl ′ ε · l
(
δ2Ωl

(
p̂− l̂

)
A4

(̂
l ′ − p̂ ′

)
− δ2Ωl ′

(
p̂ ′ − l̂ ′

)
A4

(
p̂− l̂

))∣∣∣l0=p0

(l ′)0=(p ′)0

= ie2Qε · p
(
A4

(
p̂− p̂ ′)−A4

(
p̂− p̂ ′))

=−2e2Qε · p ImA4
(
p̂− p̂ ′)= 0 . (4.6)

In the second and third lines, irrelevant energy conserving delta functions have been omitted,
and the imaginary part ofA4 vanishes as it is a real function of the Mandelstam invariants (i.e.
s/t), or equivalently as a consequence of the optical theorem.

In other words, the contributions to the classical, weak field limit of ⟨p ′,k|S|p⟩ which arise
from perturbatively expanding the matching coefficients vanish (which should be contrasted
with the case of the two-point amplitude), and the only non-trivial contributions arise from
the perturbative expansion of the HPF or the explicit background insertion in (4.3). Collecting
these terms requires expanding theWKB exponents, so we now replace Sp(x)→ p · x+ S(1)p as
in (3.11), with an additional subscript to keep track of the scattering momenta, and keep terms
linear in Q. With this, (4.3) simplifies to

⟨p ′,k|S|p⟩
∣∣
Q
= ie
ˆ

d4xei(k+p
′−p)·x

[
ε · (p+ p ′)

(
iS(1)p ′ (x)− iS(1)p (x)

)
+ε · ∂

(
S(1)p ′ (x)+ S(1)p (x)

)
+ 2eε ·A(x)

]
, (4.7)

in which the dressing factors have been replaced by their zeroth-order expressions, given by
the first term in (4.5), allowing the integrals over l and l′ to be performed.
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The position integrals can now be performed as a simple Fourier transform (as taking the
classical and weak field limits removes all non-trivial x–dependence from the exponent). The
Fourier transform of S(1)p is

S(1)p (x) :=−i
ˆ

d̂4ℓe−iℓ·x S̃(p;ℓ) , S̃(p;ℓ) = eQ
δ̂ (U · ℓ)
|ℓ⃗|2

U · p
ℓ · p

, (4.8)

where the factor of −i is included for convenience, while the Fourier transform of the back-
ground Coulomb field is

Ãµ (ℓ) = Uµ
Q δ̂ (U · ℓ)

|ℓ⃗|2
. (4.9)

With this, (4.7) becomes

⟨p ′,k|S|p⟩
∣∣
Q
= ie

[
ε · (p+ p ′)

(
S̃(p ′;ℓ)− S̃(p;ℓ)

)
− ε · ℓ

(
S̃(p ′;ℓ)+ S̃(p;ℓ)

)
+ 2eε · Ã(ℓ)

]
,

(4.10)

in which ℓ= k+ p ′ − p is the total momentum transfer. It is now apparent that the leading
classical and weak field limit of our three-point amplitude is fully determined by the Fourier
transform of the leading WKB phase S(1).

At this point, to obtain the classical, weak field limit of ⟨p ′,k|S|p⟩we need to work consist-
ently only to leading order in the classical limit. Recall that the massless momentum k scales
as ℏ times its classical wavenumber, and we also expect the recoil of the massive scalar probe
to be small compared to its own rest mass in the classical limit. We thus write p ′

µ = pµ + qµ
in which q scales as ℏ to leading order [34]. In terms of these variables

⟨p ′,k|S|p⟩
∣∣
Q
= 2ie

[
ε · p

(
S̃(p+ q;ℓ)− S̃(p;ℓ)

)
− ε · qS̃(p;ℓ)+ eε · Ã(ℓ)

]
. (4.11)

Taking the classical limit of (4.11) is then equivalent to extracting the leading term in a Taylor
expansion in which both k and q are of the same small order (i.e. k,q∼ ℏ). When performing
this expansion it is useful to note that, by definition, q2 + 2p · q= 0 and so p · q is actually of
order ℏ2.

Let us consider this expansion for each of the various terms in (4.11) explicitly. The entire
expression is proportional to an overall factor of eQδ̂(U · ℓ)/|ℓ⃗|2, so we begin by stripping this
off from each term and then expanding. For instance,

ε · qS̃(p;ℓ)∝ ε · q U · p
(k+ q) · p

ℏ→0−−−→ ε · q U · p
k · p

+O(ℏ) , (4.12)

where the leading term is ℏ-independent. The expansion of the combination S̃(p+ q;ℓ)−
S̃(p;ℓ) is slightly more subtle:

S̃(p+ q;ℓ)− S̃(p;ℓ)∝ U · (p+ q)
(k+ q) · (p+ q)

− U · p
(k+ q) · p

= U · p
[

1
(k+ q) · (p+ q)

− 1
(k+ q) · p

]
+

U · q
(k+ q) · (p+ q)

. (4.13)
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Each of the terms in the large brackets here appears to have super-classical (∼ ℏ−1) behaviour,
but this cancels between them leaving ℏ-independent leading behaviour:

1
(k+ q) · (p+ q)

− 1
(k+ q) · p

=
�����1
k · p

− 1
k · p

− k · q+ q2

(k · p)2
ℏ→0−−−→ k · q

(k · p)2
+O(ℏ) , (4.14)

so that

S̃(p+ q;ℓ)− S̃(p;ℓ)∝ U · p k · q
(k · p)2

+
U · q
k · p

+O(ℏ) , (4.15)

as desired. Here, we imposed that the total recoil k+ q is small (to stay within the regime of
validity for the background field approach), which means we only keep the leading term in
1/(k+ q)2 and, in effect, allows us to use the identity q2 + 2k · q= 0 in the numerator. We are
thus working to leading order in ρ := |q+ k|/M, which is the recoil of the heavy particle in
units of its mass; we denote this by ‘LO(ρ)’.

Assembling (4.12)–(4.15), the final result for the leading classical and weak field limit of
the 3-point semiclassical amplitude on a Coulomb field is thus

lim
ℏ→0

⟨p ′,k|S|p⟩
∣∣LO(ρ)
e2Q

=δ̂ (U · (q+ k))
2ie2Q

(k+ q)2

×

[
−ε ·U+

ε · q
k · p

U · p− ε · p
k · p

U · q− ε · pU · pk · q
(k · p)2

]
. (4.16)

This result can now be compared to direct calculations in perturbative scalar QED; the neces-
sary results are provided in appendix B. Let A5 be the perturbative 5-point amplitude for
photon emission (momentum k) in the scattering of two massive scalar charges (p→ p ′ and
P=MU→ P ′), stripped of its momentum-conserving delta functions. We find that our three-
point semiclassical photon emission amplitude on the Coulomb background is directly related
to A5 via

lim
ℏ→0

⟨p ′,k|S|p⟩
∣∣LO(ρ)
e2Q

= lim
ℏ→0

δ̂ (U · (q+ k))
2M

ALO(ρ)
5 (p,P→ p+ q,P− q− k,k) . (4.17)

This relationship is sufficient to guarantee that our semiclassical amplitude will reproduce
known classical observables, such as the waveform [40], in the weak field and probe limits.
A further check is provided by the literature: (4.16) recovers the extreme mass limit ratio of
e.g. (5.48) in [34], which is itself the leading classical limit of the full five-point amplitude.
As an aside, this demonstrates the commutativity of the probe and classical limits.

4.3. The five-point amplitude and HPF

If the Hamilton–Jacobi equation is separable, the solution of the radial part is the radial action
of the system, I(r). It is often assumed that the radial action alone is sufficient to describe a
classical two-body system (at least in the probe limit). However, as discussed in section 3.2, the
results here show that it will not hold when, for instance, considering the classical waveform
at infinity.

Working to leading order in the self-force expansion, radiative observables are controlled
by the three-point amplitude (4.3). Investigating even the simplest weak-field limit of this
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amplitude, we have now seen in (4.10) and (4.17) that it is determined by the Fourier transform
of the leading order HPF S(1)(x), which comprises both the radial action and non-trivial angular
dependence, as is evident from the explicit position-space representation (3.11). Had we not
used the full HPF, but only the radial action, we would not have recovered the correct five-point
amplitude.

This is perhaps the simplest counterexample to the claim that the radial action controls all
dynamics of a point particle on a (spherically symmetric) background.

We conclude this section by rewriting the result (4.17) in a manner which echoes the known
relation between the radial action and the perturbative 4-point amplitude. Inspecting (4.16), we
observe that it can be written as

lim
ℏ→0

⟨p ′,k|S|p⟩
∣∣LO(ρ)
e2Q

= δ̂ (U · ℓ) 2ie
2Q
ℓ2

[
ε · ℓ
ℓ · p

U · p+ ε · p
ℓ · p

U · k− ε · pU · pk · ℓ
(ℓ · p)2

]
, (4.18)

in which ℓ≡ q+ k, we have used q · p= 0 and, for simplicity, chosen the gauge such that
U · ε= 0.We have also used the delta function to flip the sign of the second term, because doing
so makes it clear that the entire result can be re-packaged in terms of the Fourier transform of
the HPF (4.8):

lim
ℏ→0

⟨p ′,k|S|p⟩
∣∣LO(ρ)
e2Q

= δ̂ (U · ℓ) 2ie2Q
ℓ2

[
ε · ℓ
ℓ · p

U · p+ ε · pk · ∂p
(
U · p
ℓ · p

)]
=−2e

[
ε · ℓ S̃(p;ℓ)+ ε · pk · ∂p S̃(p;ℓ)

]
. (4.19)

This Fourier transform can be undone by integrating over ℓ, keeping in mind that the polar-
isation vectors depend on k= ℓ− q→−i∂x− q. We could either express the inverse Fourier
transform of (4.19) in terms of ε̂ := ε(−i∂x− q) or, since we have fixed the gauge, simply
strip the polarisation vectors from both sides of (4.19) before performing the transform. In

this case we find, expressing the classical limit of ⟨p ′,k|S|p⟩
∣∣LO(ρ)
e2Q

in terms of A5 ≡ εµA5µ

from (4.17),

lim
ℏ→0

ˆ
d4ℓe−iℓ·x δ̂ (U · ℓ)

2M
ALO(ρ)

5µ (p,P→ p+ q,P− ℓ,ℓ− q)

= 2e

[
∂S(1)p

∂xµ
(x)− ipµ k

ν ∂S(1)p

∂pν
(x)

]
. (4.20)

Thus, the Fourier transform of the five-point amplitude is a linear function of the HPF and its
derivatives (with respect to both position and asymptotic momentum). This is highly remin-
iscent of the result that the Fourier transform of the four-point amplitude is the leading order
radial action, but again emphasises that it is the HPF that controls radiation.

5. Graviton emission

We now turn to the semiclassical graviton emission amplitude on a Schwarzschild spacetime.
This computation is significantly more complicated than its scalar QED counterpart for two
reasons: firstly, the emitted graviton ‘sees’ the background field (unlike the photon in QED) so
defining the semiclassical graviton wavefunction is non-trivial; and secondly, because effects
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due to the event horizon must be accounted for in the fully non-linear black hole background.
At two-points, the issue of the event horizon could be ignored with the physically reasonable
assumption that elastic scattering occurs at sufficiently large impact parameter, or equival-
ently that the two-point amplitude only receives contributions from the asymptotic boundary.
However, at three-points and beyond, interactions must be integrated over the whole spacetime
manifold and the event horizon simply cannot be ignored.

In this section, we outline how the semiclassical graviton wavefunction on fully non-linear
Schwarzschild could be determined within our framework, but to circumvent dealing with
horizon effects—and to present a more concrete calculation—we then simplify to a linear-
ised Schwarzschild background, where the event horizon does not play a role. Even with this
simplification, determining the graviton wavefunction and computing the three-point semi-
classical emission amplitude is non-trivial, and we confirm that this is controlled by the HPF
of the background. As in the QED case, we show that the classical weak-field limit of the amp-
litude on linearised Schwarzschild recovers the classical part of the probe limit of five-point
scattering between massive scalars with single graviton emission in Minkowski spacetime.

5.1. Semiclassical graviton states

We begin by considering a generic vacuum spacetime background with metric gµν , and a
linearised metric perturbation hµν on this background. Define

h̄µν := hµν −
1
2
gµν h

σ
σ , (5.1)

and impose the covariant Lorenz gauge

∇µh̄µν = 0 , (5.2)

where all indices are raised and lowered with background metric g and ∇µ is the Levi–Civita
connection of the background. In this gauge, the linearised Einstein equations governing the
gravitational perturbation become:

∇2h̄µν + 2Rµρνσ h̄
ρσ = 0 , (5.3)

where ∇2 := gαβ∇α∇β , Rµρνσ is the Riemann curvature tensor of the background and we
have used the assumption that the background is vacuum, and hence that its Ricci tensor
vanishes.

There is no ℏ entering this equation: the graviton is a massless wave and so the linearised
Einstein equation is classically exact. However, it is nevertheless useful to make an ansatz for
the graviton wavefunction which is motivated by the desire to have a Fourier basis:

h̄µν (x) = Eµν (x) eiS(x) , (5.4)

where S is the HPF solving the massless Hamilton–Jacobi equation on the background

S(x) = k · x+ GPµν kµ kν

|⃗k|
log
(
|⃗k|r+ k⃗ · r⃗

)
+O

(
G2
)
. (5.5)

Note that the graviton polarization tensor, Eµν(x), acquires non-trivial spacetime dependence
due to its interaction with the background. The choice to factor out the HPF phase is motivated
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by the form of known exact graviton wavefunctions in other background fields, for example
plane waves, see [69]. As we will see, the choice is natural: the asymptotic behaviour at spa-
tial infinity of our graviton state contains an accumulated phase similar to that in the scalar
wavefunction. This is completely consistent, since it matches the asymptotic behaviour of a
gravitational perturbation around Schwarzschild, and it is equivalent to requiring, as a bound-
ary condition, a free phase in tortoise coordinates (see, for example, section 12.2.5 of [4]). In
particular, the polarisation tensor becomes equal to the free-field polarisation at large distance,
simplifying our matching conditions.

A straightforward calculation with this ansatz shows that the linearised Einstein equations
and Lorenz gauge condition become

∇2Eµν + iEµν∇2S+ 2i∂αS∇αEµν + 2Rµρνσ Eρσ = 0 , (5.6)

and

∇µEµν + iEµν ∂µS= 0 , (5.7)

respectively. In particular, this means that with the ansatz (5.4), the background-dressed semi-
classical graviton polarization Eµν is determined by the HPF (and the background geometry)
through (5.6) and gauge consistency condition (5.7)10. Note that if we additionally impose
traceless gauge (i.e. hµµ = 0), then h̄µν = hµν and these are the equations for the graviton polar-
ization itself.

Wemake the additional assumption that the dressed polarization admits a weak field expan-
sion

Eµν (x) = εµν +
∞∑
n=1

E(n)
µν (x) , (5.8)

with εµν the on-shell graviton polarization in Minkowski spacetime in transverse traceless

gauge (ηµνεµν = 0= ησµ kσ εµν) and E(n)
µν of order Gn. Thus, the dressed polarization tensor

can be determined order-by-order by solving the linearised Einstein equation with the weak
field expansion of the HPF itself. For instance, using the weak field expansion (3.5) of the
background spacetime metric, (5.6) at linear order in G becomes:

(□+ 2ik · ∂)E(1)
µν + iεµν

(
□S(1) − kσ η

αβ Γ
(1)σ
αβ

)
− 4ikα εσ

(
µΓ(1)σ

ν

)
α+ 2R(1)

µρνσ ε
ρσ = 0 ,

(5.9)

where all indices are now raised and lowered with theMinkowskimetric, and Γ(1)α
βγ and R(1)

µρνσ

are the linearised Christoffel symbols and Riemann curvature tensor, both constructed from
Hµν .

10 Observe that, as the graviton wavefunction is meant to describe a classical wave, its background-dressed polariza-
tion does not obey the transport equation and the gauge consistency condition of the strict geometric optics limit (for
more on this limit, see [1, 161–163]).
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With the specification that we are working with the Schwarzschild metric, for which Hµν

is given by (3.9), it follows that we can solve for E(1)
µν using a Green’s function:

E(1)
µν (x) =−2εβ(µ k

α

ˆ
d̂4ℓ

e−iℓ·x

ℓ2 − 2ℓ · k+ iϵ

(
H̃β

ν) ℓα + ℓν) H̃
β
α − H̃ν)α ℓ

β

)
− iεµν

ˆ
d̂4ℓ

|ℓ⃗|2 e−iℓ·x

ℓ2 − 2ℓ · k+ iϵ
S̃(k;ℓ)

− ερσ
ˆ

d̂4ℓ
e−iℓ·x

ℓ2 − 2ℓ · k+ iϵ

(
−ℓµℓν H̃ρσ + ℓνℓρ H̃µσ + ℓσℓµ H̃ρν − ℓσℓρ H̃µν

)
,

(5.10)

where iϵ denotes a choice of contour prescription for inverting the differential operator acting
on E(1)

µν in (5.9) in momentum space. In this expression

H̃µν = 4πG
Pµν δ̂ (U · ℓ)

|ℓ⃗|2
, S̃(k;ℓ) = 2πiG

δ̂ (U · ℓ) Pαβ kα kβ

|ℓ⃗|2 ℓ · k
, (5.11)

so it follows that all of the ℓµ appearing in (5.10) are effectively ℓ⃗µ and purely spatial.
Proceeding in this fashion, one can recursively solve for the dressed polarization order-by-
order in the weak field expansion, similarly to how one constructs the HPF itself. It can be
verified that E(1)

µν obeys the Lorenz gauge condition (5.7) to linear order in the coupling at
leading order in r−1, which is the regime of validity for our approximation, to this order. One
can also verify that it satisfies the traceless gauge condition at this order. Additionally, it is
easily seen that limr→∞ E(1)

µν (x) = 0, reducing the graviton polarization to the free field polar-
ization at large r.

Just as we did with scalar states in section 3, we construct a general graviton wavefunction
by taking an on-shell linear combination of the solutions to the linearised Einstein equations
in the form of our ansatz:

hµν (x) =
ˆ

dΦ(k) Λµν
ρσ (k) Eρσ (x) eiSk(x) , (5.12)

where dΦ(k) is the massless Lorentz-invariant on-shell measure andΛµν
ρσ(k) are the tensorial

coefficients of the on-shell combination. Although our exposition above of the linearised
Einstein equation (5.6) was in Lorenz gauge, this expression for a general graviton is schem-
atically true in any gauge: the difference with Lorenz gauge will be in the structure of the PDE
determining Eµν from the HPF.

In the fully non-linear Schwarzschild spacetime, the coefficients in (5.12) must be consist-
ent with boundary values of exact solutions to the linearised Einstein equations both asymptot-
ically (r→∞) and at the event horizon (r→ 2GM). The mechanism for doing this is to con-
sider the linearised Einstein equations with separation of variables; this was initially done long
ago in the Regge–Wheeler gauge, where gravitational perturbations are governed by simple 1-
dimensional radial Schrödinger equations with different potentials depending on whether they
are of axial or polar type [108, 110, 112, 164]. This is still the case in Lorenz gauge [165],
where the radial part of the perturbation is controlled by a generalized Regge–Wheeler–Zerilli
equation. The presence of dissipative horizon dynamics (such as quasinormal modes) would
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then correspond to allowing the HPF to become complex, with corresponding damped, non-
oscillatory behaviour at the event horizon. Matching at the event horizon must also be taken
into account for the scalar wavefunctions—defined in section 3 only through a matching at
infinity—governed by the behaviour of the radial scalar wavefunctions of the Klein–Gordon
equation in the Schwarzschild metric near the horizon (see [166–168]).

While it would be extremely interesting to understand how the matching at infinity and
event horizon is implemented in the fully non-linear setting, doing so explicitly is beyond the
scope of this paper. To give a precise example of the general semiclassical graviton wave-
function (5.12), we focus on the case of the linearised Schwarzschild metric. In this case, the
expansion of the dressed polarization tensor truncates with E(1)

µν given by (5.10). In the linear-
ised metric, there is no event horizon and the only matching condition is at infinity, as r→∞.
However, we have already seen that the dressed polarisation reduces to the free field polar-
ization εµν as r→∞. Combined with the asymptotic behaviour of the pure HPF phase part
in (5.12), the matching coefficients automatically reduce to those of a massless scalar:

Λk ′
µν

ρσ (k)
∣∣∣
lin. Schw.

=−2iδσ(µρ δν)
δ
(
|⃗k| − |⃗k ′|

)
fk

′
(
|⃗k|, k̂

)
, (5.13)

where fk
′
(|⃗k|, k̂) is the massless (i.e. m= 0) scalar elastic scattering amplitude on

Schwarzschild.
In other words, the general wavefunction for a graviton of momentum k in the linearised

Schwarzschild metric is given by

hkµν (x) =−i |⃗k|
ˆ

d2Ωl f
k
(
|⃗k|, l̂

)
Eµν (x) eiSl(x)

∣∣∣
l0=k0

, (5.14)

where all four-momenta appearing in this expression are null and Eµν is implicitly on-shell
with respect to l.

5.2. Semiclassical graviton emission amplitude

Once again following the perturbiner prescription for tree-level scattering amplitudes, the
three-point amplitude for graviton emission from a massive complex scalar in a curved back-
ground spacetime is given by the tri-linear terms in the gravitationally coupled scalar action11:

κ

ˆ
d4x
√
−|g|houtkµν

[
2∂µϕout

p ′ ∂ν ϕ̄in
p − gµν

(
∂αϕ

out
p ′ ∂αϕ̄in

p − m2

2
ϕout
p ′ ϕ̄in

p

)]
, (5.15)

where κ=
√
8πG is the gravitational coupling constant, all indices are raised and loweredwith

the background metric gµν and |g| is its determinant. For the fully non-linear Schwarzschild

11 We work throughout with a minimally coupled scalar field. Relaxing this assumption would amount to modelling
finite size effects for the object moving in the background, as is customary in an EFT language. While this does not
play a role at the level of the discussion in this paper, we expect it to be necessary at higher orders to ensure finite self-
force corrections to scattering observables. This is because the notion of a point particle is not assumed but derived
when considering the self-force approximation. For an example of where divergences might arise, see [49].

23



Class. Quantum Grav. 41 (2024) 065006 T Adamo et al

black hole, we can only give a schematic refinement of this expression, with semiclassical
wavefunctions

ϕ̄in
p =

ˆ
dΦ(l) Λp (l)e−iSl

∣∣∣
l0=p0

,

ϕout
p ′ =

ˆ
dΦ(l ′) Λp ′

(l ′) eiSl ′
∣∣∣
(l ′)0=(p ′)0

,

houtkµν =

ˆ
dΦ(k ′) Λk

µν
ρσ (k ′) Eρσ eiSk ′

∣∣∣
(k ′)0=k0

, (5.16)

where the gravitonwavefunction and dressed polarization are defined in Regge–Wheeler gauge
and the scalar and tensorial matching coefficients are determined by agreement with exact solu-
tions to the Klein–Gordon and Regge–Wheeler–Zerilli equations, respectively, at the event
horizon and asymptotically. We re-emphasize that we have certainly not described this match-
ing at any sort of technical level. With this in mind, the semiclassical graviton emission amp-
litude is given schematically by:

⟨p ′,k|S|p⟩=−κ

ˆ

R1,3\B(rS)

d4x
√
−|g|
ˆ

dΦ(l) dΦ(l ′) dΦ(k ′) Λp (l)Λp ′
(l ′) Λk

µν
ρσ (k ′) Eρσ

×
[
2∂µSl ′ ∂

νSl− gµν
(
∂Sl ′ · ∂Sl+

m2

2

)]
ei(Sk ′+Sl ′−Sl)

∣∣∣l0=p0
(l ′)0=(p ′)0, (k ′)0=k0

,

(5.17)

where the region of integration over spacetime is the exterior (r> rS = 2GM) of the black hole.
For the case of the linearised Schwarzschild background, we can be significantly more

explicit. By working in the traceless Lorenz gauge, only the first term in the integrand of (5.15)
survives, there is a well-defined S-matrix and the only matching conditions are at infinity, sim-
plifying the structure of the outgoing graviton wavefunction (5.14). This leads to the semiclas-
sical graviton emission amplitude

⟨p ′,k|S|p⟩=−2κ
ˆ

d4xdΦ(l) dΦ(l ′) dΦ(k ′)
√

−|g|Λp (l)Λp ′
(l ′) Λk (k ′)

× Eµν ∂µSl ′ ∂
νSl e

i(Sk ′+Sl ′−Sl)
∣∣∣l0=p0
(l ′)0=(p ′)0, (k ′)0=k0

(5.18)

where gµν is now the linearised Schwarzschild metric in the spherical coordinates of (3.9) and
the HPFs are defined with respect to this metric.

5.3. The classical and weak field limits

To check the classical, weak field limit of the semiclassical graviton emission amplitude, it
suffices to start with the answer (5.18) on linearised Schwarzschild. As in the photon emission
calculation, it is convenient to divide contributions to this limit into those coming from the
matching coefficients—or equivalently, elastic amplitudes—and everything else. In (5.18),
there are three such matching coefficients: one for each incoming/outgoing scalar and one
for the emitted graviton. It is easy to see that the contributions coming from perturbatively
expanding each of these in turn to linear order inGwill be proportional to on-shell three-point
momentum conservation, so all such contributions vanish for exactly the same reason as in the
QED calculation.
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Thus, the only contributions to the classical, weak field limit of ⟨p ′,k|S|p⟩ come by taking
powers of G from the HPF, the dressed polarization, or explicit insertions of the background
metric. A straightforward calculation shows that

⟨p ′,k|S|p⟩|κ3 =−2κ

[
εµν p

µ pν
(
S̃(k;k+ q)+ S̃(p+ q;k+ q)− S̃(p;k+ q)

)
−εµν p

µ qν
(
S̃(p;k+ q)+ S̃(p+ q;k+ q)

)
+ Ẽ(1)

µν (k+ q) pµ (p+ q)ν

+
1
2
H̃σ

σ (k+ q) εµν p
µ pν − H̃µσ (k+ q) εµν p

ν (p+ q)σ − H̃νσ (k+ q) εµν p
µ pσ

]
,

(5.19)

with p ′
µ = pµ + qµ and the Fourier transformed quantities are defined by (5.10) and (5.11).

To take the classical limit of this expression, we expand all quantities to leading order in the
ℏ→ 0 limit, keeping in mind that massless momenta kµ, qµ scale linearly with ℏ in this limit.
Furthermore, as in section 4, we impose that the total recoil k+ q is small, and exploit identities
such as q2 + 2p · q= 0, which tell us that p · q scales like ℏ2 in the classical limit. The result
is

lim
ℏ→0

⟨p ′,k|S|p⟩|LO(ρ)
κ3 = δ̂ (U · (q+ k))

64M2κ3

(q+ k)2
εµν

[
UµUν (k · p)2

q2
− 2Uµ qν

k · pp ·U
q2

+
qµ qν

q2

(
(p ·U)2 − m2

2

)
+

2pµUν

q2

(
k · pq ·U− q2

2
(p ·U)

)
− pµ qν

q2

(
q2m2

2k · p
+ 2p ·Uq ·U− q2 (p ·U)2

k · p

)

−pµ pν
(

m2 q2

8 (k · p)2
− (p ·U)2 q2

4 (k · p)2
+
p ·Uq ·U
k · p

− (q ·U)2

q2

)]
, (5.20)

for the classical weak field limit of the semiclassical graviton emission amplitude.
This can now be compared against the perturbative five-point amplitude for two scalars of

masses M≫ m to scatter and emit a single graviton in Minkowski spacetime [169]. Let A5

denote this tree-level amplitude, stripped of its overall momentum conserving delta functions.
By comparing with the analysis of this amplitude in appendix B, we find the relationship

lim
ℏ→0

⟨p ′,k|S|p⟩
∣∣LO(ρ)
κ3 = lim

ℏ→0

δ̂ (U · (q+ k))
2M

ALO(ρ)
5 (p,P→ p+ q,P− q− k,k) , (5.21)

between the classical weak field limit of our semiclassical three-point amplitude in
Schwarzschild and the classical, probe limit of the perturbative five-point amplitude in
Minkowski spacetime. Once again, this demonstrates that the semiclassical amplitude will
recover known classical observables in the weak field and probe limits.

As the Coulomb electromagnetic field and the Schwarzschild metric are related by clas-
sical double copy [170], one may be tempted to look for a double copy relationship between
our graviton (5.18) and photon (4.3) emission amplitudes on those respective backgrounds.
However, at this stage we have only superficial comments to make in this direction. Firstly,
there is a fairly obvious ‘double copy’ relationship between the first-order HPFs, replacing
electromagnetic charge with a second copy of probe momentum and tensorial structure corres-
ponding to subtracting the dilation. Secondly, as the perturbative limits of both emission amp-
litudes correspond to the probe limits of the corresponding five-point perturbative amplitudes,
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the known double copy relationship [169] between those amplitudes is similarly recovered in
the perturbative limit.

It would, of course, be interesting to explore a more enlightening notion of double copy
between the emission amplitudes that fully manifests the non-perturbative nature of the
backgrounds.

6. Conclusions

Scattering amplitudes serve as the natural building blocks for studies of the two-body prob-
lem in general relativity. When defined in a Minkowski vacuum, they provide the integrands
necessary to extract classical observables within the perturbative PM approximation [34]. On a
generic background, they define the on-shell integrands for perturbative self-force corrections
to observables of scattering orbits [48, 71]: the relevance of this perturbative scheme for the
two-body problem is twofold.

First, and practically, while ground-based observatories continue to generate waveform
templates by combining information from post-Newtonian calculations and numerical relativ-
ity in the strong field regime, this approach will no longer be suitable for extreme mass ratio
inspiral waveforms, such as those accessible to eLISA12. This motivates efforts to explore
the self-force expansion using modern tools such as those coming from QFT, where on-shell
data defines the scattering problem. Secondly, on a conceptual level, this approach offers an
intriguing way to inform other perturbative schemes, such as PM calculations. For instance,
Damour demonstrated that the calculation of the gravitational scattering angle at the first self-
force order determines the complete two-body potential through 4PM (i.e. order G4) to all
orders in the mass ratio [173], providing a concrete motivation for investigating these cal-
culations using scattering amplitudes. This perspective opens up, in particular, possibilities
to understand perturbation schemes that do not rely on weak field assumptions, using only
perturbative amplitudes in vacuum and their resummation. This, in turn, would offer poten-
tial applications of powerful methods like the double copy, generalized unitarity, and BCFW
recursion relations in a strong field regime.

In this work, we have already seen a few examples of this. Our main results concern-
ing the semiclassical two-point (3.38) and three-point amplitudes on Coulomb (4.3) and
Schwarzschild (5.18) demonstrate that these on-shell quantities encode the expected weak
field probe limit dynamics for the radiative sector of classical scattering. Understanding these
quantities at the perturbative level solely in terms of on-shell data has allowed us to revisit
the entire scattering amplitude defined on the background as a resummation of amplitudes in
vacuum. This perspective reveals known relations, such as the connection between the radial
action and the four-point amplitude in vacuum [24, 115]. However, for the five-point amp-
litude in vacuum, the structure is more intricate. We have found that it receives contributions
not only from the radial action but also from the angular part of the HPF. This implies that even
the simplest amplitude with emission on a background carries significant information that is
not available in the radial action alone.

Looking to the future, it would be interesting to explore the extraction of classical observ-
ables from the background field amplitudes that we have considered. Their use can be made
systematic following [71] and by a proper counting of the matrix elements on the background
in powers of the mass ratio. For example, the first deviation from geodesic motion will appear
in the form of radiation emitted by a particle moving on the background. This would result in

12 For more details, see [171], chapter II.2 of [172] and section 1.2 of [65].
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a formula for the total power emitted, which would in turn generate a correction to geodesic
motion due to momentum balance. This correction will depend on the mass of the particle. At
leading order, the formula for the radiated momentum can be expressed as on-shell integral
over a wavepacket ϕ(p)—sharply localized to ensure a well defined classical limit—and the
impact parameter b as:

Kµ =
∑
η

ˆ
dΦ(p,p ′, l,k) ϕ(p) ϕ(p ′) eib·(p−p ′)/ℏ⟨p ′|S†|l,kη⟩⟨l,kη|S|p⟩kµ . (6.1)

Here, the sum is over the helicity of the emitted photon or graviton and the ℏ→ 0 limit of the
entire expression of the right-hand-side is implicit.

To perform all of the integrals in this expression using our results, a combination of six
eikonal-type integrals would be necessary, along with additional contributions. Although
we have not considered classical observables in this paper, our approach offers an altern-
ative method to address self-force corrections to geodesic motion, solely based on on-shell
data. By contrast, the standard approach to first-order in self-force corrections relies on the
‘MiSaTaQuWa equations’ [174, 175]13. Results for radiative observables obtained in this way
(such as the radiated momentum or waveform) could be cross-checked against results found by
numerically solving the Regge–Wheeler–Zerilli equations [177, 178]. It would also be interest-
ing to contrast the derivation of similar classical observables, which incorporate contributions
of all orders in the coupling, with a conjecture presented in [41] regarding the final semiclas-
sical state in a two-body scattering scenario involving radiation. When one of the objects has
a significantly larger mass than the other, it would effectively acts as a background as in our
calculation. Finally, it would be interesting to extend our results with radiation to a Kerr back-
ground, motivated by the possibility of describing exact geodesic motion with perturbative
methods [179, 180]. We hope to explore this in future work.
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Appendix A. Detailed asymptotic expansions

In this appendix, we provide a rigorous derivation of the matching coefficients (3.24), coming
from the asymptotic matching of our WKB ansatz to the known exact solution of the Klein–
Gordon equation on the same backgrounds (3.15).

We start with the ansatz

ϕ (x) =
ˆ

dΦ(p) Λ(p) eiSp(x) , (A.1)

for some unknown coefficients Λ(p) that will be matched onto the exact solution asymptotic-
ally. Expanding eiSp(x) in spherical harmonics gives the general result

eiSp(x) = eiEt
∞∑
ℓ=0

2ℓ+ 1
2

cℓ (r)Pℓ (cosθ) , (A.2)

where cosθ = p̂ · x̂ and the coefficients cℓ(r) are determined via

cℓ (r) =
ˆ π

0
dθ sinθ ei(Sp(r,cosθ)−Et)Pℓ (cosθ) . (A.3)

The ansatz (A.1) is thus equivalent to

ϕ(x) = 2π
ˆ

dΦ(p) Λ(p) eiEt
∑
ℓ,m

cℓ (r) Y
m
ℓ (x̂) Y

m
ℓ (p̂) , (A.4)

which we want to match asymptotically onto the known solution

ϕp ′ (x) =
4π eiE

′t

r

∑
ℓ,m

Ymℓ (x̂) Y
m
ℓ (p̂

′) Rℓm (p
′;r) , (A.5)

where we have explicitly denoted the dependence of the radial wavefunction on themomentum
p′.

Since the spherical harmonics are orthogonal, we can equate coefficients between (A.4)
and (A.5) at large distances to find

lim
r→∞

ˆ
dΦ(p) Λ(p) eiEt

∑
ℓ,m

cℓ (r) Y
m
ℓ (x̂) Y

m
ℓ (p̂)

2eiE
′t

r

∑
ℓ,m

Ymℓ (x̂) Y
m
ℓ (p̂) Rℓm (p

′;r) . (A.6)

This equality requires E= E ′, and this in turn implies that |⃗p|= |⃗p ′|. Exploiting this and the
underlying spherical symmetry, (A.6) implies that

Λp ′
(p) = δ(|⃗p| − |⃗p ′|)

∑
ℓ ′,m ′

Ym
′

ℓ ′ (p̂) Ym
′

ℓ ′ (p̂ ′) dℓ ′m ′ (p ′) , (A.7)

in terms of some as-yet-undetermined coefficients dℓ ′m ′(p ′). Substituting this back into (A.4),
the two mode sums are identified due to the orthogonality of the spherical harmonics in p̂. This
means that the asymptotic matching condition is reduced to:

lim
r→∞

dℓm (p
′) cℓ (r) =

2E
|⃗p|2

lim
r→∞

Rℓm (p ′;r)
r

, (A.8)
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with the factors of E/|⃗p|2 arising from the on-shell integrals on the left-hand-side of (A.6).
This in turn gives the expression

Λp ′
(p) =

2E
|⃗p|2

δ(|⃗p| − |⃗p ′|)
∑
ℓ,m

Ymℓ (p̂) Y
m
ℓ (p̂

′) lim
r→∞

Rℓm (p ′;r)
rcℓ (r)

, (A.9)

for the matching coefficients.
To further process this expression, we need to investigate the asymptotic properties of the

cℓ(r) defined by (A.3). Observe that

cℓ (r) =
ˆ π

0
dθ sinθ ei(−p⃗·⃗x+Cp log(|⃗p| r)+Cp log(1+cosθ))Pℓ (cosθ)+O

(
r−2
)

= eiCp log(|⃗p| r)
ˆ 1

−1
dxei(Cp log(1+x)−|⃗p| r x)Pℓ (x)+O

(
r−2
)
, (A.10)

where Cp is the theory-dependent constant defined by (3.11) and (3.12), and the integration
variable is x≡ cosθ in the last line. Defining

c̃ℓ (r) :=
ˆ 1

−1
dxei(Cp log(1+x)−|⃗p| r x)Pℓ (x) , (A.11)

we observe that

c̃ ′ℓ (r) =−i |⃗p|
ˆ 1

−1
dxei(Cp log(1+x)−|⃗p| r x) xPℓ (x) . (A.12)

Now, the recurrence relation

(2ℓ+ 1) xPℓ (x) = (ℓ+ 1) Pℓ+1 (x)+ ℓPℓ−1 (x) , (A.13)

for Legendre polynomials can be combined with (A.11) and (A.12) to deduce the recurrence
relation

c̃ℓ+1 (r) =
i (2ℓ+ 1)
|⃗p| (ℓ+ 1)

c̃ ′ℓ (r)−
ℓ

ℓ+ 1
c̃ℓ−1 (r) , (A.14)

for the c̃ℓs. By computing the first few of these coefficients explicitly, one soon arrives at

c̃ℓ (r) =
i ei(Cp log2−|⃗p| r)

|⃗p|r
+(−1)ℓ

CpΓ(iCp) ei(|⃗p| r−Cp log(i|⃗p| r))

|⃗p|r
+O

(
r−2
)
, (A.15)

which can easily be proven to solve (A.14) for all ℓ by induction. Note that for Cp → 0, this
reproduces the asymptotic expansion for spherical Bessel functions, as expected.

In (A.15), we only want contributions which will contribute to the wavefunction as waves
travelling like ei(Et−|⃗p| r), so we discard the second term. Note that this un-wanted term is per-
fectly finite; it simply has the wrong scattering behaviour. Plugging the first term of (A.15)
into (A.10) and then into (A.9) gives:

Λp ′
(p) =−2iE

|⃗p|
δ(|⃗p| − |⃗p ′|)

∑
ℓ,m

Ymℓ (p̂) Y
m
ℓ (p̂

′) lim
r→∞

Rℓm (p
′;r) ei(|⃗p| r−Cp log(2|⃗p| r)) , (A.16)

matching (3.24) from the text.
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Appendix B. The probe and classical limits of 5-point amplitudes

In this appendix we describe the probe and classical limits of the five-point amplitudes in scalar
QED and gravitationally coupled scalars which appear from the classical, weak field limits of
our semiclassical three-point amplitudes on Coulomb and Schwarzschild backgrounds. We
will first consider the probe limit and show how this is equivalent to a background field cal-
culation. We then take a further, classical limit, which provides the check on the semiclassical
calculations of sections 4 and 5.

We begin with the scalar QED calculation. In vacuum, consider the emission of a photon,
momentum k and helicity η, in the scattering of two charges, one of mass m, momentum p→
p ′, the other of mass M, momentum P→ P ′. We can assume without loss of generality that
Pµ =MUµ as in (3.9). The five-point amplitude M5 is easily calculated in scalar QED, with
the result

M5 = ie2Q δ̂4 (P ′ + p ′ + k− p−P)

× (P ′ +P)µ

(P−P ′)
2

[
−2εµ −

ε · p ′

k · p ′ (p
′ + p+ k)µ +

ε · p
k · p

(p ′ + p− k)µ

]
+(p↔ P,p ′ ↔ P ′) . (B.1)

Consider the momentum-conserving delta functions. To see how the probe limit arises, we
split these into temporal and spatial pieces:

δ3
(
P⃗ ′ + ℓ⃗

)
δ

(√
M2 + ℓ⃗2 + k0 − p0 −M

)
, ℓ⃗ := p⃗ ′ + k⃗− p⃗ . (B.2)

We takeM to be large, and assume the recoil of that particle is negligible, which quantitatively
means assuming the total momentum transfer ℓ⃗ obeys ℓ⃗ 2 ≪M2. This allows us to expand the
square root in the temporal delta function. We similarly expand in powers of ℓ⃗ in the full QED
amplitude. The leading order terms are those shown explicitly in (B.1), which go as 1/ℓ⃗2. The
result is, writing ℓµ = kµ + p ′

µ − pµ,

M5 → 2M δ̂3
(
P⃗ ′ + ℓ⃗

)
M̃5 ,

M̃5 := δ̂ (U · ℓ) 2ie2Q
ℓ2

[
−ε ·U+

ε · p ′

k · p ′ U · p− ε · p
k · p

U · p ′
]
. (B.3)

It can be checked by direct calculation that M̃5 is precisely the three-point amplitude (p→ p ′

with emission of photon k) on a Coulomb background, calculated to leading order in the back-
ground charge Q. The differences between M5 and M̃5 are resolved at the level of physical
predictions: the additional δ̂3 and factor of 2M in M5 relative to M̃5 are absorbed, in observ-
ables, by state normalisation and final state integrals over the heavy particle momentum, see
also [102]. Hence (B.3) is indeed the probe limit, physical predictions fromwhich agree exactly
with those obtained in a direct background field calculation.

In our semiclassical approach used in the text, we work to leading nontrivial order in ℏ.
To compare to the perturabtive QED results here, we thus need to identify the leading clas-
sical behaviour of (B.3). To do so we recall that massless momenta k scale as ℏ times classical
wavenumber, while continuing to impose that the recoil of the mass M particle is small com-
pared to its own rest mass. Hence, we write p ′

µ = pµ + qµ in which q also scales as ℏ to leading
order [34]. Taking the classical limit of (B.3) is then equivalent to taking a Taylor expansion

30



Class. Quantum Grav. 41 (2024) 065006 T Adamo et al

in which both k and q are of the same small order. This expansion yields the leading classical
behaviour

M̃5 → δ̂ (U · (q+ k))
2ie2Q

(q+ k)2

[
−ε ·U+

U · pq · ε
k · p

− U · qp · ε
k · p

− k · qU · pp · ε
(k · p)2

]
. (B.4)

We confirm in the text that this is indeed what is recovered from our WKB analysis.
For gravity, the implementation of the probe and classical limits happens in exactly the

same fashion; the only distinction is the functional form of the five-point amplitude for grav-
iton emission from the scattering of two massive scalars. Needless to say, this computation,
in Feynman diagrams, is significantly more complicated than its scalar QED cousin due to
the appearance of the cubic graviton vertex. In this case it is easiest to avoid Feynman dia-
grams by employing double copy methods [169], which also allow for the classical limit to be
taken immediately. Employing the same momentum notation as before, the classical five-point
graviton emission amplitude is

M5 = 16M2κ3 δ̂4
(
P ′ + p ′ + k− p−P

) εµν

ℓ2 (p− p ′)2

×
[
4
(
k · pUµ − k ·Upµ

)(
k · pUν − k ·Upν

)
+ 4p ·U

(
k · pU(µ − k ·Up(µ

)
Qν)

+

(
(p ·U)2 − m2

2

)(
QµQν − ℓ2 (p− p ′)2

(k · p)2 (k ·U)2
(
k · pUµ − k ·Upµ

)(
k · pUν − k ·Upν

))]
,

(B.5)

where

Qµ :=−2(p ′ − p)
µ − kµ − (p− p ′)

2 pµ

k · p
+

ℓ2Uµ

k ·U
. (B.6)

Applying the probe limit to this expression, we arrive at (5.20) in section 5.
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