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An extended meson exchange model for the �N → NN weak decay interactions is presented
by taking full account of the pseudoscalar, vector, scalar, and axial-vector meson exchanges, as
well as the pomeron exchange. In the procedure we make use of the strong coupling constants
for baryon–baryon–meson vertices of the Nijmegen ESC08c model (2016 version). The present
model can explain satisfactorily the hypernuclear non-mesonic weak decay observables such
as decay rates �nm, �n/�p, asymmetry parameters α�, and lifetimes τ for light-to-heavy mass
systems. Attention is payed to the proper roles of each meson exchange. In the parity-conserving
channels, the potentials due to the non-strange mesons (π , ρ, a1) are found to behave oppositely
in signs to the potentials due to the strange mesons (K , K∗, K1) having the same J PC, respectively.
In the parity-violating part, all the weak potentials work additively in the 3S1 → 1P1 channel. We
found that the one-nucleon-induced non-mesonic weak decays proceed predominantly through
the parity-violating (3S1)�N → (1P1)NN and (3S1)�N → (3P1)NN channels.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

As the hyperon–nucleon (YN ) scattering experiment in free space is practically impossible, the hyper-
nucleus, which is a strongly interacting many-body system consisting of nucleons and hyperon(s),
offers us a nice laboratory for the study of the strangeness S = −1 sector of baryon–baryon strong
interactions. The behavior of the Pauli-free hyperon in the nuclear medium is also a novel subject
which attracts many theoretical and experimental interests [1–5]. When the � hypernucleus is pro-
duced by K , π , and electron beams or in heavy-ion collisions, it is mostly in the excited state and
is polarized depending on the reaction kinematics [6–8]. The hypernucleus de-excites and cascades
down by emitting γ rays and/or nucleon(s) through electromagnetic or strong interactions until it
reaches the ground state.

The� hypernucleus eventually decays through strangeness-changing (	S = 1) weak interactions
to form non-strange final nuclear particles. The hypernuclear lifetime is of the order of that of the
� particle itself (τ� = 2.63 × 10−10 s). Thus the hypernuclear weak process offers another nice
opportunity for the study of hyperon–nucleon weak interaction. The weak decay process consists
of the π -mesonic mode and the non-mesonic (NM) mode, where the former process has been
explained well theoretically [9,10]. On the other hand, hypernuclear NM weak decay has attracted
much attention because the experimental phenomena are not always easy to understand and also
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because the non-mesonic weak decay interactions were not fully established. Much NM weak decay
data have been accumulated along with the development of experimental facilities and innovative
detection techniques. Those data include the total non-mesonic decay rates, the partial decay rates
for the processes such as �p → np, �n → nn, and two-nucleon-induced ones, the decay proton
and neutron spectra, the asymmetry parameters of the decay proton angular distribution from the
polarized hypernuclei, and the hypernuclear lifetimes [5,11–18].

On the theoretical side, much work has been performed over several decades by focusing attention
on how to theoretically construct the NM weak decay interactions between � and nucleons. Those
efforts include the various meson exchange models [10,19–26], the quark–meson hybrid model
[27,28], and the effective field theory [29,30]. We note here that the meson-exchange potentials by
Chumillas et al. [23] are successful in explaining the �nm, �n/�p, and the asymmetry parameter
data of 5

�He and 12
� C weak decays. It is essential for any theory that the NM weak decay observables

such as the total decay rate�nm, the partial decay ratio�n/�p, and the asymmetry parameter of decay
protons should be explained consistently.

In the course of our study of NM weak decay [10,25,26], we have proposed a framework to take
into account the correlated two-meson/meson exchange processes in constructing the weak decay
interaction between� and N . In fact, in addition to the one-meson exchanges, we have tried to include
the 2π/ρ and 2π/σ exchanges [25] for the first time and then extended further to take the axial-
vector a1 exchanges such as ρπ/a1 and σπ/a1 [10,26], showing that the data of �nm, �n/�p, and
the asymmetry parameters of s- and p-shell hypernuclei can be explained. It should be emphasized
first that the framework has an important merit of flexibility in treating various kinds of correlated
two-meson exchanges. Also, one can extend the construction of weak interactions corresponding to
the development of the strong baryon–baryon forces.

Recently, a new version of the Nijmegen extended-soft-core model called ESC08c has been pro-
posed to describe the strong NN and hyperon–nucleon YN as well as hyperon–hyperon interactions
in a unified way using the broken SU(3) symmetry [31–33]. The strong potentials include contribu-
tions from one-boson exchanges of the nonet meson members such as pseudoscalar, vector, scalar,
and axial-vector mesons, and the diffractive exchanges; their parameters have been determined on
the basis of the NN and YN scattering data and the updated hypernuclear structure data with strange-
ness S = −1 and −2. This new version of the strong interactions provides us another opportunity
to study the roles of various meson exchanges in the extended weak NM decay Hamiltonian. On
the other hand, new experimental weak decay data have been reported from the FINUDA experi-
ments [4,13,14] on the proton-stimulated decay rate �p(�p→ np) for A = 5–16 mass hypernuclei
and the neutron-stimulated decay rate �n(�p → nn) for some hypernuclei, and also on the two-
nucleon-induced decay ratios �2N/�nm for these hypernuclei. New lifetime data for medium-heavy
hypernuclei were reported quite recently [34].

In view of this situation we think it timely to achieve an essential update in constructing the weak
NM decay interactions by extending our previous framework as employed in Refs. [10,25,26]. This
is the first purpose of this paper. In order to maintain this aim, the weak decay meson exchanges are
consistently introduced in a wider and firm basis under the following guidelines.

(1) Exchange mesons are considered to cover the quantum numbers of pseudoscalar (J PC = 0−+),
vector (J PC = 1−−), scalar (J PC = 0++), and axial-vector (J PC = 1++, first kind) types, and
the model should include the pomeron (J PC = 0++) exchange as well.

(2) Non-strange mesons and strange mesons are considered equally and symmetrically.
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(3) The new baryon–baryon–meson coupling constants from the ESC08c model [32,33] are
employed for strong vertices in the weak decay diagrams.

As the second purpose of this paper, we clarify the roles of the various meson exchanges as well
as the pomeron exchange and evaluate their contributions to the NM weak potentials and the weak
decay observables. In addition, we will analyze the decay characteristics of the non-mesonic weak
decays by investigating the six decay channels starting from the initial �N relative S-state.

In Sect. 2, the formulas of the non-mesonic weak decay rate and the asymmetry parameter are
given. The weak decay transition potentials for �N → NN are constructed in the extended meson
exchange model in Sect. 3. Calculated non-mesonic weak decay potentials are presented in Sect. 4.
In Sect. 4.1, the initial hypernuclear states and final nuclear and outgoing two-nucleon states are
described. In Sect. 4.2, the weak decay potentials of six decay channels are displayed to see the
roles of each meson-exchange potential. Then the potential properties based on the pseudoscalar and
vector meson exchanges are discussed in Sect. 4.3, and those based on the scalar and axial-vector
mesons and pomeron exchanges are discussed in Sect. 4.4. In Sect. 5 the calculated weak decay
observables are shown and compared with the experimental data. Calculations are carried out step
by step by adding the meson exchange potentials successively to elucidate the effects of potentials
on the decay observables. These matters are presented through Sects. 5.1–5.3. Also, the relation
between the model by Chumillas et al. [23] and our present model is discussed in Sect. 5.4. Finally,
a summary and conclusions are given in Sect. 6. In Appendix A the expression for the NM decay
rate �1 is given. The definitions of meson-decay coupling interactions are described in Appendix B.

2. Formulas for non-mesonic weak decay rates and asymmetry parameter

The hypernucleus, as a strongly interacting system of nucleons and hyperon(s) with strangeness,
finally decays through the weak non-leptonic process of either the mesonic mode or the non-mesonic
mode, leaving a non-strange residual nucleus.

In this paper we confine ourselves to study the one-nucleon-induced non-mesonic decays such as
�p→ np and �n→ nn. Formulas for the non-mesonic decay rates and the asymmetry parameter
have been presented in the previous papers [10,26], but a brief recapitulation of these expressions
would be appropriate for later discussions.

The hypernuclear non-mesonic decay rate�nm is evaluated by using the unpolarized density matrix
ρunpol as follows:

�nm = Tr (TρunpolT
†), (1)

ρunpol = 1

2JH + 1
1, (2)

where T is the transition matrix from the initial hypernuclear state (JH , TH ) to the final residual
nuclear plus outgoing two-nucleon state. Thus the non-mesonic weak decay rate is given by summing
all the final states of the process A

�Z (JH , TH )→ A−2Z′ (J ′1, T ′1)+ N + N as

�nm = 2π

2JH + 1

∑
J ′1M ′1α′1

∑
T ′1M ′T1

∑
S ′2M ′S2

∑
T ′2M ′T2

∑
MH

∫
dk

(2π)3

∫
dK

(2π)3
δ(Ef − Ei)

×
∣∣∣〈 A−2�J ′1M ′1α′1,T ′1M ′T1

1√
2
[1− (−1)S

′
2+T ′2Px] eik·reiK ·R

× χ
S ′2
M ′S2

ξ
T ′2
M ′T2

|
∑

ik

Vnm(i, k) | A�� ; JH MH , TH MTH

〉∣∣∣2. (3)
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Here, Vnm(i, k) is the �N → NN weak decay interaction. Px signifies an exchange operator for
the outgoing two nucleon radial vectors. The relative and the center-of-mass radial vectors and the
corresponding momenta are defined, respectively, as

r = r1 − r2, R = r1 + r2

2
, (4)

k = k1 − k2

2
, K = k1 + k2. (5)

The energy conservation δ-function is expressed as

δ(Ef − Ei) = δ
(

k2

MN
+ K2

4MN
+ Ex(A− 2, J ′1T ′1α′1)+

K2

2MA−2

+ MN −M� − εN − ε�
)

, (6)

where Ex denotes the internal excitation energy of the residual nucleus, and its recoil energy is taken
into account with its mass MA−2 = (A− 2)MN being used for simplicity. εN and ε� are the binding
energies of a nucleon and a � in the initial state, respectively.

The expression for �nm in the shell model basis is given in Eq. (2.9) of Ref. [10] or Eq. (30) of
Ref. [25]. �nm is composed of the proton-stimulated decay rate �p(�p→ np) (νN = −1/2 for the
proton) and the neutron-stimulated one �n(�n→ nn) (νN = +1/2 for the neutron) as

�nm = �p + �n. (7)

If the hypernuclei are polarized at the initial stage, the emitted protons (neutrons) in the non-
mesonic decays show asymmetric angular distribution with respect to the plane perpendicular to
the polarization axis. This is characteristic to the weak process in which interference between the
parity-conserving and parity-violating amplitudes takes place. In the case where the initial hyper-
nuclear states have pure vector polarization PH = PH n, with n being the polarization direction, the
hypernuclear ensemble is expressed in terms of a density matrix ρpol as [35,36]

ρpol = 1

2JH + 1

[
1+ 3

JH + 1
(PH · J H )

]
, (8)

where J H is the hypernuclear spin.
The angular distribution of decay protons is calculated by fixing the direction k̂p of the proton as

[37]

d�(JH TH , PH → k̂p, νp)

d�k̂p

= Tr (TρpolT
†)

= �0 + �1 PH cos θp

= �0 (1+ α1PH cos θp) (9)

with

α1 = �1

�0
. (10)
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Fig. 1. Momentum vectors of the outgoing neutron k1 and proton k2, and the relative momentum vector k and
total momentum vector K of the two outgoing nucleons.

The angle θp of the emitted proton is measured from the polarization direction n as defined by
cos θp = (n · k̂p). α1 is the asymmetry parameter of the emitted proton angular distribution for the
hypernuclear spin JH . �0 is related to �p(�p→ np) as �0 = �p/4π .

Hereafter we use the notation k2 = kp for the outgoing proton momentum and k1 for the outgoing
neutron one, corresponding to the two-body process of�+ p→ n+ p. The momentum vectors are
depicted in Fig. 1 in the proton helicity frame.
�1 in Eq. (9) is expressed as [10,26]

�1 = 2π

2JH + 1

3

JH + 1

∑
J ′1M ′1α′1

∑
T ′1M ′T1

∑
S ′2M ′S2

∑
MH

∫
dk1

(2π)3

∫
k2

2 dk2

(2π)3
δ(Ef − Ei)

×
∣∣∣
〈∑

T ′2

A−2�J ′1M ′1α′1,T ′1M ′T1

1√
2
[1− (−1)S

′
2+T ′2Px] eik·reiK ·R

× χS ′2
M ′S2

ξ
T ′2
M ′T2
=0 |

∑
ik

Vnm(i, k) | A�� ; JH MH , TH MTH

〉 ∣∣∣2 ·MH . (11)

In evaluating �1 of Eq. (11), we choose

k2, θk1 , and φk1 (12)

for the three independent integral variables [38], and the following notations are used:

kQ =
√

2MN [M� −MN + εN + ε� − Ex (A− 2, J ′1T ′1α′1)], (13)

k1 =
−k2cos θk1 +

√
(A− 1)(A− 2)k2

Q − k2
2 [(A− 1)2 − cos2 θk1]

A− 1
, (14)

k2,max =
√

A− 2

A− 1
kQ, (15)

4k2 = k2
1 + k2

2 − 2k1k2cos θk1 , (16)
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K2 = k2
1 + k2

2 + 2k1k2cos θk1 , (17)

φk = φK , (18)

cos θk = 1

2k
(−k2 + k1cos θk1), (19)

cos θK = 1

K
(k2 + k1cos θk1). (20)

When the shell model wave functions are adopted for the initial hypernuclear and final nuclear states,
and when the weak decays take place from the �-proton (nucleon) relative S-state, the detailed
expression of �1 is obtained as given in Appendix A. In Eq. (A.1), the Block–Dalitz notations [39]
for the �p → np transition amplitudes, a, b, c, d, e, and f , are introduced conventionally, which
express the possible non-mesonic decay channel transitions, respectively. Also, for convenience of
later discussions, we give here the “channel numbers” Ch.1–6 to these channels as follows:

Ch.1 : a(1S0 → 1S0), Ch.2 : b(1S0 → 3P0), Ch.3 : c(3S1 → 3S1),

Ch.4 : d(3S1 → 3D1), Ch.5 : e(3S1 → 1P1), Ch.6 : f (3S1 → 3P1). (21)

The two-body amplitudes are defined as〈
i�0 j�0(k , r)Y�0S ′2J ξ

T ′2
M ′T2
=0 |Vnm(r ) |φn�=0(r, br)Y�=0SJ=Sξ

T2=1/2
νp=−1/2

〉
. (22)

As mentioned above, the asymmetry parameter α1 of the emitted protons in Eq. (10) is defined for
the polarized hypernuclei with spin JH and polarization PH . However, one often discusses the �-
polarization P� and the asymmetry parameterα� for the polarized� hyperon in the nuclear medium.
For comparison we note the following relations when the hypernuclear state is well described in the
weak coupling model of� in the s�1/2 state and the core-nucleus state of Jc. The asymmetry is written
as

A = PHα1 = P�α�, (23)

and the relation holds well in the weak coupling model as

P� = − JH

JH + 1
PH if JH = Jc − 1/2,

= PH if JH = Jc + 1/2. (24)

Then it follows from Eq. (23) that

α� = −JH + 1

JH
α1 if JH = Jc − 1/2,

= α1 if JH = Jc + 1/2. (25)

The quantity α� is referred to as the intrinsic asymmetry parameter for the polarized � hyperon in
the hypernucleus having spin JH . The intrinsic α� should be compared to the asymmetry parameter
αelem
� for the elementary process �� + p → n + p in free space, when the � hyperon is polarized.

We quote here αelem
� in terms of Block–Dalitz amplitudes {a, b, . . . , f } when the initial �-proton is

assumed to be in a relative S-state [10]:

αelem
� = 2

√
3 Re [−ae∗ + b(c−√2d)∗/

√
3+ f (

√
2c+ d)∗ ]

|a|2 + |b|2 + 3 [|c|2 + |d|2 + |e|2 + |f |2 ] . (26)
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3. Meson exchange model to construct �N → NN weak decay potentials

The weak decay potentials for the transition �N → NN (	S = 1) are constructed in the meson
exchange model. The following guiding principles are adopted in devising the potentials.

(1) Meson exchanges are considered as completely in quantum numbers as possible. For those
mesons we include:

(i) pseudoscalar (ps) (J PC = 0−+): π , K
(ii) vector (vec) (J PC = 1−−): ρ, K∗, ω

(iii) scalar (sc) (J PC = 0++): σ , κ
(iv) axial-vector (avec) (J PC = 1++, first kind): a1, K1.

(2) Non-strange mesons and strange mesons are considered on an equal footing.
(3) Pomeron (pom) (J PC = 0++) P exchange is included.
(4) For the coupling constants of the baryon–baryon–meson strong vertices we adopt those of the

Nijmegen ESC08c model in the recent 2016 version [32,33].
(5) For the coupling constants of the baryon–baryon–meson weak vertices we accept the empirical

values of �Nπ and �Nπ weak vertices, and also, for the other vertices, the theoretical ones
from the work of Parreño et al. in Ref. [21].

(6) When the meson–meson–meson coupling constants are needed in constructing our model, we
use the empirical value if it is known or we determine them by imposing the constraints on our
potential model as described later.

(7) The 	I = 1/2 rule is assumed for the weak baryon–baryon–meson coupling Hamiltonians.

Correspondingly, here we extend our basic framework [10,26] to include new processes of meson
exchanges such as K∗, κ , and K1, and the pomeron exchange as well. Two types of meson exchange
potentials between � and N are introduced. The first type is the ordinary one-meson exchange
potentials such as Vπ , VK , VK∗ , and Vω, corresponding to π , K , K∗, and ω exchange, respectively.
The second one (we call thisY-type) is the correlated two-meson/meson exchange potentials in which
the two mesons are correlated and coupled to one meson with specified quantum numbers in the
intermediate state. In other words, one meson is dissociated into two mesons in the intermediate state
during the interaction process between� and N . In this way the ρ, σ , κ , a1, and K1 meson exchanges
can be treated systematically, and these Y-type processes are called in our paper as exchanges of
2π/ρ, 2π/σ , Kπ/κ , (ρπ/a1, σπ/a1), and K∗π/K1, respectively. Thus we designate V2π/ρ , V2π/σ ,
VKπ/κ , (Vρπ/a1 , Vσπ/a1), and VK∗π/K1 as these meson exchange potentials. The pomeron exchange
is treated similarly as the 2π/P exchange, and the potential is denoted as V2π/P.

We briefly comment here on the pomeron coupling to mesons and baryons. Besides meson
exchange, pomeron exchange is needed to understand the high energy dependence (

√
s) of all

hadronic cross sections such as π±p, pN , p̄N , etc. A low-energy extrapolation of pomeron exchange
in πN and NN scattering leading to the pomeron–nucleon and pomeron–pion coupling has been
used in the Nijmegen soft-core models [31,40]. This is also applied in this paper. From the point of
view of chiral symmetry in πN scattering, the cancellation between sigma and pomeron exchange is
important in order to have a small I = 0 scattering length. Therefore, next to 2π/σ , 2π/P exchange
weak decay graphs are also included in our work.

As a typical example, the Kπ/κ exchange consists of four kinds of Y-type Feynman diagrams as
shown in Fig. 2(a1), (a2), (b), and (c). They are distinguished by an intermediate baryon, a nucleon,
�, and�, respectively. The contributions of the diagrams (a1)+(a2), (b), and (c) to the potentials are
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(a1) (a2) (b) (c)

Fig. 2. Y-type Feynman diagrams of �N → NN for Kπ/κ exchange. The diagrams (a1) and (a2) contain a
N in the intermediate baryon line, while (b) and (c) contain � and � instead. The weak vertices are marked
by an open circle.

(a1) (a2) (b) (c)

Fig. 3. Y-type Feynman diagrams of �N → NN for K∗π/K1 exchange. See also the caption to Fig. 2.

termed VKπ/κ(A), VKπ/κ(B), and VKπ/κ(C). The potential VKπ/κ represents

VKπ/κ = VKπ/κ(A) + VKπ/κ(B) + VKπ/κ(C). (27)

In Fig. 3 we show the Feynman diagrams of K∗π/K1 exchange. Corresponding to the diagrams
(a1)+(a2), (b), and (c) in Fig. 3, the potentials of VK∗π/K1(A), VK∗π/K1(B), VK∗π/K1(C) are calculated,
respectively. The potential VK∗π/K1 represents

VK∗π/K1 = VK∗π/K1(A) + VK∗π/K1(B) + VK∗π/K1(C). (28)

For the correlated two-meson/meson exchange potentials, the loop integrals have to be performed
for the loop momentum. One faces three kinds of loop integrals:

(1) For scalar meson exchanges such as 2π/σ and Kπ/κ , and also for the 2π/P exchange, the loop
integrals do not diverge.

(2) For a vector meson exchange such as 2π/ρ and for the axial-vector meson exchange of σπ/a1,
the loop integrals diverge since the integrands have forms like

G(k) = F0 + F1k2

[k2 − c]3 , (29)

where k is a loop momentum. For the first the k0-integration is performed and the three-
dimensional k-integration is left. In order to circumvent the divergence, we introduce a form
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factor of the form

�2
1

k 2 +�2
1

, (30)

where k is the three-momentum and �1 is the cutoff mass parameter.
(1) For axial-vector meson exchanges such as ρπ/a1 and K∗π/K1, the loop integrals contain

integrands like

G(k) = F0 + F1k2 + F2k4

[k2 − c]3 , (31)

and the integrals diverge. Similarly to the preceding case, the k0-integration is carried out first.
Then, in order to regularize the k -integral, we introduce a form factor of the form

[
�2

2

k 2 +�2
2

]2

, (32)

where k is the three-momentum and �2 is the cutoff mass parameter.

We use the vertex form factor (FF) to obtain the potentials. For the one-π exchange, we use a global
FF of the monopole type as described in Ref. [25]. For other one-meson exchange potentials, double

FFs such as
[

�2
i

q 2+�2
i

]2
are adopted, where q is the momentum transfer and �i is the cutoff mass

for the exchanged meson i. For the case of the correlated two-meson/meson exchange potentials

like 2π/ρ, ρπ/a1, σπ/a1, and K∗π/K1, we use the single-vertex FF
[

�2
i

q 2+�2
i

]
for the baryon–

baryon–meson strong vertex [N–N–meson (non-strange) or �–N–meson (strange)] part. This is
because the correlated two-meson/meson exchange potentials involve the loop integral and contain
the regularization FF, and such parts are supposed to act like a sort of vertex form factor. For the
scalar meson exchanges such as 2π/σ and Kπ/κ , the “zero” form factor is considered [10,26,41]

and the vertex FF takes the form (1− q2

U 2
x
)

�2
i

q 2+�2
i
, where Ux is a mass parameter.

The actual types of the weak potentials depend on the exchanged mesons [10,25,26]. We show here
the K∗π/K1 exchange potentials that correspond to the (a1)+(a2), (b), and (c) diagrams in Fig. 3:

VK∗π/K1(A) =
{
VS(r)(σ 1 · σ 2)+ VT (r)S12 + VLS(r)(L · S)
+ i VV1(r) i[(σ 1 × σ 2) · r̂] + i VV2(r) (σ 2 · r̂)

}
(τ 1 · τ 2), (33)

VK∗π/K1(B) =
{

same potential type as in Eq. (33)
} · (3

2
− 1

2
(τ 1 · τ 2)

)
, (34)

VK∗π/K1(C) =
{
VS(r)(σ 1 · σ 2)+ VT (r)S12 + VLS(r)(L · S)

} · ( a0 + a1(τ 1 · τ 2 ) )

+ {
i VV1(r) i[(σ 1 × σ 2) · r̂] + i VV2(r) (σ 2 · r̂)

} · ( b0 + b1(τ 1 · τ 2) ), (35)

where a0, a1, b0, and b1 are expressed in terms of the weak coupling constants of � → N + π
decays. Particle 1 refers to a � hyperon. The parity-violating potentials are expressed as imaginary.
It is noted that the K1 exchange potentials have no simple isospin dependence except for VK∗pi/K1(A),
i.e. the potentials have factors with a mixture of isoscalar and (τ 1 · τ 2) dependence. This is because
the K1 meson is an iso-doublet particle.
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PTEP 2018, 113D01 K. Itonaga et al.

4. Initial and final wave functions and calculated non-mesonic weak decay potentials
4.1. Initial hypernuclear states and final nuclear states

The hypernuclear ground state is well represented in the weak-coupling model of the nuclear shell
model lowest state coupled with a � hyperon in the s-state. For the � hyperon state we use a
solution of the density-dependent Hartree–Fock equation of the core-nucleus+� system. The �
wave function is expanded in the harmonic oscillator basis for further manipulation. The details are
given in Refs. [10,25].

In evaluating the �N → NN transition matrix element, we take into account the initial �N -state
correlation (called ISC) and the final NN -state correlation (FSC) properly. The ISC in the nuclear
medium is treated by solving the Bethe–Goldstone equation for the�N relative S-state with the use
of Nijmegen model-D interaction [42,43]. Then the initial state φn�=0(r, br)Y�=0SJ in Eq. (22) is
replaced as

φn0(r, br)Y0SS −→ fS(r)φn0(r, br)Y0SS + δS, 1f2(r)Y211 (36)

for the S(� = 0) wave. fS(r) is the correlation function for the S wave of spin S-state, and f2(r) is
the induced D(� = 2) wave for the initial 3S1 state.

For the final outgoing two-nucleon states, the scattering states are solved by the Runge–Kutta
method. For the NN 3S1 and 3D1 states in particular, the coupled channel equations due to the tensor
interaction are solved. We use the Nijmegen model-D for the NN strong interaction [42,43]. Thus
the partial wave i�0 j�0(k , r)Y�0S ′2J in Eq. (22) is replaced as

i�0 j�0(k , r)Y�0S ′2J −→ i�0 ψ�0S ′2J (k , r)Y�0S ′2J

+ δS ′2, 1δJ , 1 [ δ�0, 0i2χ2(k , r)Y211 + δ�0, 2i0χ0(k , r)Y011 ]. (37)

The function ψ�0S ′2J (k , r) denotes the scattering wave. The functions χ2(k , r) and χ0(k , r) are the
induced D wave for the final 3S1 state and the induced S wave for the final 3D1 state, respectively,
due to the tensor interaction. The coupled-channel solutions for the final two-nucleon relative wave
functions for 3S1 and 3D1, and their induced waves i2χ2 and i0χ0, are shown for a typical momentum
case (k = 370.0 MeV/c) in Fig. 7 of Bandō’s paper [1].

4.2. Behaviors obtained for weak decay transition potentials

The �N → NN weak decay potentials are calculated based on the Feynman diagrams. It is char-
acteristic that the strangeness-changing �N → NN weak interaction allows both exchanges of
non-strange mesons and strange mesons between � and N . The adopted strong coupling constants
of baryon–baryon–meson (BBM) and meson–meson–meson (MMM) vertices are summarized in
Table 1, which also lists meson masses, cutoff masses in the vertex form factors, and cutoff mass
parameters in the regularization form factors. Table 2 presents the weak coupling constants of
baryon–baryon–meson vertices.

The BBM strong coupling constants are those determined in the 2016 version of the Nijmegen
ESC08c model [32,33], and the weak coupling constants of NNK , NNK∗, and �Nω are taken from
Ref. [21]. The cutoff mass�i in the vertex FF for the K , K∗, and ω exchange are taken from papers
of Ueda et al. [44,45], while the other �i are determined so that our FF simulates the Nijmegen FF
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PTEP 2018, 113D01 K. Itonaga et al.

Table 1. Strong coupling constants of baryon–baryon–meson and meson–meson–meson vertices, cutoff
masses in the baryon–baryon–meson vertex FF, and cutoff mass parameters in the regularization FF employed
in our potentials. The meson masses, cutoff masses, and cutoff mass parameters are given in MeV. The coupling
constants marked with a * have signs opposite to the conventional ones due to the definition of our relevant
Hamiltonians (see Appendix B).

Strong coupling constants

Meson Mass BBM MMM Cutoff mass

π 139.57 gNNπ = 12.807 �π = 920.0
g��π = 9.391

K 493.67 g�NK = −14.002 �K = 1129.5
g�NK = 3.925

ρ 771.10 gNNρ = 2.248 gππρ = −5.90* �ρ = 800.0
fNNρ = 13.579 �1(2π/ρ) = 750.0
g��ρ = 0.0
f��ρ = 8.271

K∗ 891.66 g�NK∗ = −3.894 �K∗ = 1129.5
f�NK∗ = −15.249
g�NK∗ = −2.249
f�NK∗ = 0.747

ω 782.80 gNNω = 11.943 �ω = 1129.5
fNNω = −2.723

σ 600.00 gNNσ = 6.30 gππσ = −1850.0 MeV* �σ = 1130.0
Ux = 750.0

κ 800.00 g�Nκ = −3.900 gKπκ = −2340.0 MeV* �κ = 900.0
Ux = 750.0

a1 1230.00 gNNa1 = −2.896* gρπa1 = −1660.0 MeV* �a1 = 1380.0
fNNa1 = 9.163* gσπa1 = 5.791 �2(ρπ/a1) = 900.0

�1(σπ/a1) = 750.0
K1 1403.00 g�NK1 = −2.774* gK∗πK1 = −3835.0 MeV* �K1 = 1380.0

f�NK1 = 8.778* �2(K∗π/K1) = 900.0
P 223.12 gNNP = 11.793 gππP = −4280.0 MeV*

[32,33] approximately,

[
�2

i

q2 +�2
i

]2

≈ exp

(
− q2

�2
i (ESC)

)
, (38)

for q = 400–800 MeV/c, which is effective in the non-mesonic weak decay process. We take the
value Ux = 750 MeV from Refs. [32,33]. The MMM coupling constants are determined as described
below. The empirical value is adopted for gππρ [46], while gππσ is the same as in Refs. [10,26]. The
coupling constant gσπa1 is determined by the relation gσπa1 = 2gNNa1 , which comes if we consider
an almost conserved axial current [26,41]. The coupling constant gρπa1 and the cutoff mass parameter
�2(ρπ/a1) for the ρπ/a1-exchange potential are determined as follows. We construct the strong
NN potential version in the ρπ/a1-exchange model by replacing � by N and replacing the weak
�Nπ vertex by the strong NNπ one in the weak potential model. Then gρπa1 and �2(ρπ/a1) are
determined so that our potential V strong

ρπ/a1
(NN–NN ) can simulate the strong potential V strong

a1 (NN–NN )
in the ESC08c model as well as possible,

V strong
ρπ/a1

(NN–NN ) ≈ V strong
a1 (NN–NN ). (39)
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PTEP 2018, 113D01 K. Itonaga et al.

Table 2. Parity-conserving (PC) and parity-violating (PV) weak coupling constants. The weak coupling con-
stants for the π decays of� and� hyperons are given in units of 10−6, while those for other mesons are given
in units of GF m2

π = 2.21×10−7. The weak coupling constants for NNK , NNK∗, and�Nω vertices are adopted
from Ref. [21]. The masses are given in MeV.

Weak coupling constants
Meson Mass PC PV

π 139.57 λ�gw
�Nπ = −1.727 gw

�Nπ = 0.233
λ�++gw

�++
= −4.384 gw

�++
= 0.013

λ�0
0
gw
�0

0
= −2.031 gw

�0
0
= 0.220

λ�−−gw
�−−
= 0.159 gw

�−−
= 0.426

K 493.67 CPC
K = −18.9 CPV

K = 0.76
DPC

K = 6.63 DPV
K = 2.09

K∗ 891.66 CPC,V
K∗ = −3.61 CPV

K∗ = −4.48
CPC,T

K∗ = −17.9
DPC,V

K∗ = −4.89 DPV
K∗ = 0.60

DPC,T
K∗ = 9.30

ω 782.80 αω = −3.69 εω = −1.33
βω = −8.04

The values gK∗πK1 and �2(K∗π/K1) are determined in a similar manner to the case of gρπa1

and �2(ρπ/a1). We take �2(K∗π/K1) = �2(ρπ/a1) for simplicity. The cutoff mass parameter
�1(2π/ρ) is determined so as to fulfill the relation

V strong
2π/ρ (NN–NN ) ≈ V strong

ρ (NN–NN ), (40)

where the right-hand side is the potential in the ESC08c model. The pomeron coupling constant gππP

is treated as an adjustable parameter so that the calculated non-mesonic decay rates and asymmetry
parameter of 5

�He reproduce the available data, in which particularly the experimental errors for
α� are small enough to be used as a good restriction on the theory. As a matter of course, we have
paid attention to whether the strong V strong

2π/P (NN–NN ) properly simulates the V strong
P (NN–NN ) in the

ESC08c model.
The calculated meson exchange potentials are displayed in Figs. 4–9 for the six decay channels

to which the transition amplitudes {a, b, c, d, e, f } correspond, and we give them the channel
numbers Ch.1–Ch.6, respectively, as defined by Eq. (21). Three panels, (a), (b), and (c), are shown
in Figs. 4–8, while only two panels, (a) and (b), are shown in Fig. 9. Consider, for instance, Fig. 4
for the (1S0)�p → (1S0)np channel. The panel (a) plots two lines of potentials: one is the potential
V (Sum1) coming from the partial summation over the “pseudoscalar + vector” meson exchanges,
and the other is the total potential V (SUM) including all mesons and pomeron exchange: SUM =
Sum1 + “scalar + axial-vector” meson exchanges + pomeron exchange. For easy understanding we
denote them as follows:

V (Sum1) = Vπ + VK + V2π/ρ + VK∗ + Vω, (41)

V (SUM) = Vπ + VK + V2π/ρ + VK∗ + Vω

+ V2π/σ + VKπ/κ + V2π/P + Vρπ/a1 + Vσπ/a1 + VK∗π/K1 . (42)
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A note is added for special channels. In Fig. 7(a) of the (3S1)�p → (3D1)np channel, V (SUM) does
not include contributions from V2π/σ , VKπ/κ , and V2π/P, and in Fig. 9(a) of the (3S1)�p → (3P1)np

channel, both V (Sum1) and V (SUM) do not include contributions from VK∗ and Vω. In each panel (b)
of Figs. 4–8 we show the divided potentials for the pseudoscalar and vector meson exchanges. Panel
(c) shows the divided potentials for the scalar and axial-vector meson exchanges and the pomeron
exchange. It is noted that in Fig. 7(c) for the tensor interaction channel of (3S1)�p → (3D1)np there
is no contribution from the scalar meson and pomeron exchanges. In Fig. 9, panel (b) shows the
divided contributions of the pseudoscalar and scalar meson exchanges and the pomeron exchange.
Potentials of vector meson (K∗,ω) exchanges do not contribute to this channel. Potentials of other
correlated two-meson/meson exchanges of vector and axial-vector mesons are not shown, because
they are very small.

4.3. Potential properties based on exchanges of pseudoscalar and vector mesons

The characteristic features found in the calculated potentials are summarized as follows. The parity-
conserving (PC) central interaction potentials are shown in Fig. 4(b) for the (1S0)�p → (1S0)np

channel—we call this Ch.1, cf. Eq. (21)—and in Fig. 6(b) for (3S1)�p → (3S1)np channel (Ch.3).
The potential Vπ shows remarkable behavior, almost completely opposite in sign to that of the
potential VK , and these two potentials tend to cancel out in both channels, Ch.1 and Ch.3. Similarly,
the V2π/ρ potential also has notable behavior opposite in sign to that of the VK∗ potential in Ch.1
and Ch.3, though, particularly in Ch.3, V2π/ρ is strong and positive at R � 0.5 fm while VK∗ is
weak and negative at R � 0.6 fm. These features show the role of the non-strange meson (π , ρ) and
strange meson (K , K∗) exchanges. The Vω potential is strong and negative. As a result, the potentials
V (Sum1) in Ch.1 and Ch.3 turn out to be negative, as seen in Figs. 4(a) and 6(a). The PC tensor
interaction potentials are shown in Fig. 7(b) for (3S1)�p → (3D1)np channel (Ch.4). The potential Vπ
shows the characteristic behavior opposite in sign to the potential VK , though Vπ is rather stronger
in strength than VK at all interaction ranges. Vπ is positive. Likewise, the two potentials V2π/ρ and
VK∗ show opposite behaviors, different in sign from each other, though VK∗ is a little stronger than
V2π/ρ . VK∗ is positive. Also, in the tensor interaction channel (Ch.4), one notices the clearly different
contributions to the potentials from the non-strange meson (π , ρ) and the strange meson (K , K∗)
exchanges. The Vω potential is weak and positive. As a result, the potential V (Sum1) in Ch.4 turns
out to be positive, as seen in Fig. 7(a).

The parity-violating (PV) potentials are shown in Fig. 5(b) for the (1S0)�p → (3P0)np channel
(Ch.2), Fig. 8(b) for the (3S1)�p → (1P1)np channel (Ch.5), and Fig. 9(b) for the (3S1)�p → (3P1)np

channel (Ch.6). In Ch.2 the two potentials Vπ and VK show opposite behavior in sign, while V2π/ρ

and VK∗ show the same sign behavior. The Vω potential is weak and positive. Then, the summed
potential V (Sum1) in Ch.2 becomes negative due to the strong and negative sign behaviors of VK

and VK∗ . The Ch.5 pseudoscalar and vector meson exchange potentials in Fig. 8(b) are interesting.
All the potentials contribute in the same positive sign and thus work additively. Among them, the
contributions of Vπ , VK∗ , and V2π/ρ are important. Accordingly, the V (Sum1) potential is strong and
positive, as seen in Fig. 8(a). Ch.6 for the (3S1)�p → (3P1)np transition is special. The one vector
meson exchange potentials such as VK∗ and Vω do not contribute to this channel due to the kinematics
for the matrix element on the i[(σ 1 × σ 2) · r̂] operator. The pseudoscalar meson exchanges have
major contributions. The potentials Vπ and VK work additively in negative sign. Although the V2π/ρ

potential has a (σ 1 · r̂)-type potential in addition to the i[(σ 1×σ 2) · r̂]-type one [25], its contribution
is very small and is not shown in Fig. 9(b).
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PTEP 2018, 113D01 K. Itonaga et al.

(c)

(a) (b)

Fig. 4. (Channel 1 (Ch.1)) The central-type weak decay transition potentials for the (1S0)�p → (1S0)np channel.
(a) V (Sum1) is the summed potential based on the (π+K+2π/ρ+K∗+ω)meson exchanges, while V (SUM)
is the total potential by summing, in addition to V (Sum1), all contributions from the other (2π/σ + Kπ/κ +
ρπ/a1+σπ/a1+K∗π/K1)meson exchanges and the pomeron exchange (2π/P). (b) The transition potentials
coming from the pseudoscalar mesons (π + K) and the vector mesons (2π/ρ + K∗ + ω). (c) The transition
potentials coming from the scalar mesons (2π/σ+Kπ/κ), the axial-vector mesons (ρπ/a1+σπ/a1+K∗π/K1),
and the pomeron 2π/P exchange.

4.4. Potential properties based on exchanges of scalar and axial-vector mesons and
pomeron

In Ch.1 of Fig. 4(c), the central potentials of V2π/σ and V2π/P work oppositely in sign. This might
be interpreted that the effective scalar–isoscalar “σ” meson exchange potential should become weak
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(c)

(a) (b)

Fig. 5. (Ch.2) The parity-violating vector-type weak decay transition potentials for the (1S0)�p → (3P0)np

channel. Panels (a), (b), and (c) are the same as in Fig. 4.

when one considers only the “σ” meson exchange with no pomeron exchange. We notice that
the two potentials V2π/σ and VKπ/κ , having opposite signs, tend to diminish each other, and the
Vρπ/a1 + Vσπ/a1 and VK∗π/K1 potentials also behave in opposite signs. These features show again
the role of the non-strange meson (σ , a1) and strange meson (κ , K1) exchanges. As a result, the net
contribution from all the scalar and axial-vector meson exchanges and pomeron exchange in Ch.1
becomes weak and negative. This is clearly shown in Fig. 4(a), where V (SUM) has only a slight
variation from V (Sum1). Similar features are also found for the Ch.3 central potentials of V2π/σ ,
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(c)

(a) (b)

Fig. 6. (Ch. 3) The central-type weak decay transition potentials for the (3S1)�p → (3S1)np channel. Panels (a),
(b), and (c) are the same as in Fig. 4.

V2π/P, Vρπ/a1 , Vσπ/a1 , and VK∗π/K1 , as observed in Fig. 6(c). However, note that the behavior of
VKπ/κ in Ch.3 is different from that in Ch.1, since the VKπ/κ potential in Ch.3 is positive. This
difference comes from the strong isospin dependence as c′0 + c′1(τ 1 · τ 2 ) of the Kπ/κ exchange
potential, where the isospin of the final NN is TNN = 0 for Ch.3, while TNN = 1 for Ch.1. Evidently
the net contribution from the scalar and axial-vector meson and pomeron exchange potentials in
Ch.3 becomes large and positive. As a result, the sign of the partial summed potential V (Sum1)
has been changed in getting the total potential V (SUM), as shown in Fig. 6(a). It is notable that
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(c)

(a) (b)

Fig. 7. (Ch.4) The tensor-type weak decay transition potentials for the (3S1)�p → (3D1)np channel.
(a) V (Sum1) is the summed potential based on the (π + K + 2π/ρ + K∗ + ω) meson exchanges, while
V (SUM) is the total potential by summing V (Sum1) and the contributions of the axial-vector meson exchanges
of (ρπ/a1 + σπ/a1 + K∗π/K1). (b) The transition potentials coming from the pseudoscalar mesons (π + K)
and the vector mesons (2π/ρ + K∗ + ω). (c) The transition potentials coming from the axial-vector mesons
(ρπ/a1 + σπ/a1 + K∗π/K1).

V (SUM) in Ch.3 is weakly positive and of short range. Figure 7(c) shows the obtained behaviors of
the tensor potentials based on the axial-vector meson exchanges in Ch.4. It is clearly seen that the
sum of Vρπ/a1 +Vσπ/a1 almost cancels the contribution of VK∗π/K1 . Thus the net contribution of the
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(c)

(a) (b)

Fig. 8. (Ch.5) The parity-violating vector-type weak decay transition potentials for the (3S1)�p → (1P1)np

channel. Panels (a), (b), and (c) are the same as in Fig. 4.

axial-vector meson exchanges turns out to be very small and negligible. This is reflected in Fig. 7(a),
where V (SUM) is almost unchanged from V (Sum1).

The PV potentials of the scalar and axial-vector meson exchanges and the pomeron exchange in
Ch.2 and Ch.5 are very weak and short ranged, which is reflected in very small variations of V (SUM)
from V (Sum1) in Fig. 5(a) and Fig. 8(a). In Ch.6 of Fig. 9(b), the potentials of the scalar meson
exchanges such as V2π/σ and VKπ/κ show similar behavior and are positive at short range, and V2π/P

is seen to be positive. The net contribution of the scalar meson and pomeron exchange potentials
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(a) (b)

Fig. 9. (Ch.6) The parity-violating vector-type weak decay transition potentials for the (3S1)�p → (3P1)np

channel. (a) V (Sum1) is the summed potential based on the (π+K+2π/ρ)meson exchanges, while V (SUM)
is the total potential by summing, in addition to V (Sum1), all contributions from the other (2π/σ + Kπ/κ +
ρπ/a1+σπ/a1+K∗π/K1)meson exchanges and the pomeron exchange (2π/P). (b) The transition potentials
coming from the pseudoscalar mesons (π + K), the scalar mesons (2π/σ , Kπ/κ), and the pomeron 2π/P
exchange.

is positive at short range R � 0.4 fm, which causes a visible change of V (SUM) from V (Sum1) at
short range, as shown in Fig. 9(a).

5. Estimates of non-mesonic weak decay rates and other observables
5.1. Calculated decay rates and comparison with experiments

We present the calculated results for the proton-stimulated decay rate �p(�p → np), the neutron-
stimulated one �n(�n → nn), the ratio �n(�n → nn)/�p(�p → np), the total decay rate �nm =
�p(�p→ np)+�n(�n→ nn), and the asymmetry parameter α1 (or α�) of the decay protons from
the polarized hypernuclei. The intrinsic asymmetry parameter α� from the polarized � hyperon
in the nuclear medium is mostly discussed here, as α� is often quoted and shown in the literature
[11,26,47–49].

Table 3 summarizes the calculated decay rates, �p, �n, �nm, �n/�p, and the asymmetry parameter
α� for the typical hypernuclei of light s- and p-shell and medium-to-heavy mass systems. They are
estimated on the basis of the weak decay potentials V (SUM) obtained for the six channels in the
preceding section. The asymmetry parameter α1 is calculated by Eq. (10), where �1 is evaluated by
Eq. (A.1) with the restriction of allowing L0 = 0 only since the higher L0 ≥ 2 contributions to �1 are
small. The intrinsic asymmetry parameter α� is related to α1 by Eq. (25). The decay rates are given
in units of the free � decay rate �� (= 2.50× 10−15 GeV). In Table II of Ref. [10] we reported the
theoretical estimates of non-mesonic decay observables within some limitation of meson exchanges,
while in this paper Table 3 presents the updated results obtained within the more comprehensive
framework of the newly extended meson exchange potential models.
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Table 3. Calculated decay rates, �p, �n, �nm, and �n/�p ratios, and intrinsic asymmetry parameter α� of
s- and p-shell and medium-to-heavy hypernuclei. The weak decay potentials V (SUM) of Eq. (42) for six
decay channels are employed. For p-shell hypernuclei, the results with the simple shell-model wave functions
are listed in parentheses, while the configuration-mixed wave functions are employed in the other cases.
Calculations of α� are done with restriction of L0 = 0 only. The decay rates are given in units of the free �
decay rate ��. See the text.

�p �n �nm �n/�p α�
4
�H (0+) 0.028 0.082 0.110 2.903 —
4
�He (0+) 0.207 0.056 0.264 0.272 —
5
�He (1/2+) 0.265 0.105 0.371 0.398 0.029
7
�Li (1/2+) 0.345 0.161 0.506 [0.518] 0.469 [0.429] 0.389 [0.159]
8
�Li (1−) 0.346 0.184 0.530 [0.534] 0.532 [0.530] 0.349 [0.301]
9
�Be (1/2+) 0.450 0.184 0.634 [0.635] 0.410 [0.410] 0.064 [0.064]
10
�B (1−) 0.507 0.187 0.693 [0.688] 0.368 [0.372] 0.240 [0.234]
10
�B∗ (2−) 0.547 0.186 0.733 [0.725] 0.340 [0.340] −0.024 [−0.026]
11
�B (5/2+) 0.507 0.223 0.730 [0.729] 0.440 [0.447] 0.198 [0.223]
12
�B (1−) 0.509 0.249 0.757 [0.746] 0.489 [0.500] 0.191 [0.269]
12
�C (1−) 0.602 0.224 0.825 [0.830] 0.372 [0.378] 0.072 [0.069]
12
�C∗ (2−) 0.602 0.214 0.815 [0.813] 0.355 [0.349] 0.068 [0.069]
13
�C (1/2+) 0.558 0.233 0.792 [0.793] 0.418 [0.420] 0.078 [0.082]
14
�N (1−) 0.624 0.235 0.859 [0.857] 0.376 [0.370] 0.104 [0.086]
15
�N (3/2+) 0.627 0.263 0.889 [0.888] 0.419 [0.419] 0.088 [0.107]
16
�N∗(1−) 0.588 0.273 0.861 [0.863] 0.465 [0.464] 0.091 [0.081]
16
�O (0−) 0.661 0.248 0.909 [0.902] 0.376 [0.365] —
16
�O∗ (1−) 0.661 0.248 0.909 [0.909] 0.376 [0.376] 0.057 [0.059]
28
�Si (2+) 0.828 0.329 1.157 0.398 0.083
51
�V (11/2+) 0.894 0.395 1.289 0.441 0.098
56
�Fe (1−) 0.863 0.381 1.244 0.441 0.079
89
�Y (7/2−) 0.876 0.400 1.276 0.456 0.087
139
� La (9/2+) 0.857 0.428 1.285 0.499 0.067
209
� Bi (9/2+) 0.833 0.450 1.283 0.540 0.066

The experimental data are summarized in Table 4, which should be compared with the calculated
results listed in Table 3.

5.2. Analyses of the roles of various meson exchanges

Here we focus our attention on the particular roles of each meson exchange potential in getting
the theoretical estimates of the non-mesonic decay rates and the decay asymmetry parameter α1

(α�). First, in Table 5 we compare the calculations of 5
�He with the experimental data. With the

aim of understanding the asymmetry parameter α1 (α�), the separate contributions to α1 (α�) from
the interference terms between the parity-conserving and the parity-violating amplitudes in �1 in
Eq. (A.1) are shown respectively in Table 6 for 5

�He.
We express�1 = A+B+C and the asymmetry parameter with the following symbolic expressions:

α1 = �1

�0
= A+ B+ C

�0
= 4πA+ 4πB+ 4πC

�p
, (43)

A = Re[ae∗], B = Re[−b(c−√2d)∗/
√

3], C = Re[−f (
√

2c+ d)∗]. (44)
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Table 4. Summary of experimental data for �p, �n, �nm, and �n/�p, and the intrinsic asymmetry parameter
α�. The decay rates are given in units of the free � decay rate ��. The data marked with a * are the weighted
average for 12

� C and 11
� B hypernuclei.

�p �n �nm �n/�p α� Ref.
4
�H 0.17± 0.11 [50,51]
4
�He 0.16± 0.02 0.01+0.04

−0.01 0.17± 0.05 0.06+0.28
−0.06 [50,51]

0.16± 0.02 0.04± 0.02 0.20± 0.03 0.25± 0.13 [52]
0.180± 0.028 ≤ 0.035 0.177± 0.029 ≤ 0.19 [53]

5
�He 0.21± 0.07 0.20± 0.11 0.41± 0.14 0.93± 0.55 [56]

0.424± 0.024 0.45± 0.11+0.03
−0.03 [54,55]

0.11± 0.08+0.04
−0.04 [48]

0.07± 0.08+0.08
−0.00 [49]

0.24± 0.22 [47]
0.22± 0.05 [13]

0.125+0.066
−0.066 0.58± 0.32 [14]

7
�Li 0.28± 0.07 [13]
9
�Be 0.30± 0.07 [13]
11
� B 1.04+0.59

−0.46 [56]
0.30± 0.07 0.95± 0.13+0.04

−0.04 2.16± 0.58+0.45
−0.95 [57,58]

0.861± 0.063+0.073
−0.073 [59]

0.47± 0.11 [13]
0.21± 0.16 0.46± 0.37 [14]

−0.20± 0.26+0.04
−0.04* [48]

−0.16± 0.28+0.18
−0.00* [49]

12
� C 1.14± 0.20 1.33+1.12

−0.81 [56]
0.31± 0.07 0.89± 0.15+0.03

−0.03 1.87± 0.59+0.32
−1.00 [57,58]

0.828± 0.056+0.066
−0.066 0.87± 0.09+0.21

−0.21 [59]
0.940± 0.035 0.56± 0.12+0.04

−0.04 [54]
−0.20± 0.26+0.04

−0.04* [48]
−0.16± 0.28+0.18

−0.00* [49]
0.51± 0.13+0.05

−0.05 [60]
0.45± 0.10 0.23± 0.08 0.68± 0.13 0.51± 0.14 [61,62]
0.65± 0.19 [13]

0.28± 0.12 0.58± 0.27 [14]
13
� C 0.60± 0.14 [13]
15
� N 0.49± 0.11 [13]
16
� O 0.44± 0.12 [13]
27
� Al 1.230± 0.062+0.032

−0.032 [59]
28
� Si 1.125± 0.067+0.106

−0.106 0.79+0.13+0.25
−0.11−0.24 [59]

�Fe 1.21± 0.08 1.13+0.18+0.22
−0.15−0.24 [59]

The quantities A, B, and C are defined such that, for example, A = Re[ae∗] signifies the integrated
value of the term which contains the amplitude Re(ae∗) in �1 of Eq. (A.1), and this term corre-
sponds to Re〈−ae∗〉 of αelem

� in Eq. (26). The apparent sign difference between A = Re[ae∗] and
Re〈−ae∗〉 is understandable from the decay kinematics originated in the nuclear medium for the
quantity A and has been explained in Ref. [10]. The two quantities should have the same property.
Therefore, intuitively, it is all right to consider the expression of A as ∼ “Re[−ae∗]” in opposite
sign, like Re〈−ae∗〉 in αelem

� as far as the sign is concerned. Likewise, B and C are the inte-
grated values of the interference terms which contain the amplitudes of Re{−b(c − √2d)∗/

√
3}
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Table 5. Calculated decay rates �nm, �n/�p, and asymmetry parameter α� of 5
�He for the four stages of the

weak decay potentials are compared with the experimental data. The decay rates are given in units of the free
� decay rate ��. The abbreviation (ps+vec) = “π +K + 2π/ρ +K∗ +ω” is used. The value marked ** is the
one-nucleon induced decay rate.

�nm �n/�p α� = α1

I: π 0.260 0.109 −0.417
II: (ps+vec) 0.315 0.417 0.141
III: (ps+vec) + 2π/σ + Kπ/κ + 2π/P 0.372 0.409 0.032
IV: (ps+vec) + 2π/σ + Kπ/κ + 2π/P
+ ρπ/a1 + σπ/a1 + K∗π/K1 0.371 0.398 0.029
Exp. [54,55] 0.424± 0.024 0.45± 0.11+0.03

−0.03

Exp. [48] 0.11± 0.08+0.04
−0.04

Exp. [49] 0.07± 0.08+0.08
−0.00

Exp. [47] 0.24± 0.22
Exp. [14] 0.342± 0.078** 0.58± 0.32
Chumillas et al. [23] 0.388 0.415 0.041

Table 6. The separate contributions of the A = Re[ae∗], B = Re[−b(c−√2)∗/
√

3], and C = Re[−f (
√

2c+
d)∗] parts to �1 in Eq. (43), �1, �0, and α� of 5

�He for the four stages of the weak decay potentials are
compared with the experimental data. The decay rates are given in units of the free� decay rate ��. (ps+vec)
= “π + K + 2π/ρ + K∗ + ω.”

4πA 4πB 4πC 4π�1 4π�0 α� = α1

I: π 0.0012 0.012 −0.111 −0.098 0.234 −0.417
II: (ps+vec) 0.110 0.013 −0.091 0.032 0.222 0.141
III: (ps+vec)+ 2π/σ + Kπ/κ + 2π/P 0.140 −0.0022 −0.129 0.0086 0.264 0.032
IV: (ps+vec)+ 2π/σ + Kπ/κ + 2π/P
+ ρπ/a1 + σπ/a1 + K∗π/K1 0.138 −0.0021 −0.128 0.0078 0.265 0.029
Exp. [48] 0.11± 0.08+0.04

−0.04

Exp. [49] 0.07± 0.08+0.08
−0.00

Exp. [47] 0.24± 0.22

and Re{−f (
√

2c+ d)∗} in �1 of Eq. (A.1), respectively. These correspond to Re〈b(c−√2d)∗/
√

3〉
and Re〈f (√2c + d)∗〉 of αelem

� in Eq. (26), respectively. The signs of the B and C terms are also
understandable.

Note that in the calculations the transition amplitudes such as c(3S1 → 3S1), d(3S1 → 3D1),
e(3S1 → 1P1), and f (3S1 → 3P1) are modified owing to the initial �N tensor correlation for the
(3S1)�N state and the final NN tensor correlations for the (3S1)NN and (3D1)NN states.

The calculations are carried out step by step by introducing the meson exchange potentials succes-
sively. We take four stages of calculations corresponding to four different combinations of the weak
decay potentials. They are classified as stage I: Vπ only; stage II: potentials of the pseudoscalar and
vector meson exchanges, which we denote as “(ps+vec).” Then stage III also contains the potentials
of scalar meson exchanges and the pomeron exchanges, and in stage IV all contributions are added.
Thus we discuss the calculated results following these four categories, noting that II and IV cor-
respond to the potentials V (Sum1) and V (SUM), respectively, presented in the preceding section.
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I : π only

II : (ps+vec) ≡ (π + K + 2π/ρ + K∗ + ω) ←→ V (Sum1)

III : (ps+vec)+ 2π/σ + Kπ/κ + 2π/P (45)

IV : (ps+vec)+ 2π/σ + Kπ/κ + 2π/P + ρπ/a1 + σπ/a1 + K∗π/K1 ←→ V (SUM).

First of all, the case of the one-π exchange potential only is shown in the second line in Table 5. This
case predicts a small �n/�p ratio and large negative α�, which disagree with the data. This feature
is well known and is understood in terms of the very strong tensor force of Vπ . In Table 6, it is shown
in the second line that the large α� comes from the large C term for which Re[−f (

√
2c + d)∗] ∼

“Re[f (√2c + d)∗]” is negative due to the dominant contribution of Re(fd∗) being f < 0 and
d ≈ d0(

3S1 → 3D1) > 0. It is noted that the amplitude d is expressed as

d(3S1 → 3D1) = d0(
3S1 → 3D1)+ d1(induced 3D1 → 3D1)

+ d2(
3S1 → induced 3S1)+ d3(induced 3D1 → induced 3S1), (46)

when the ISC for �N in 3S1 and the FSC for NN in 3D1 are properly considered. In the case of the
strong tensor force in Vπ , d ≈ d0(

3S1 → 3D1) holds when the ISC is not large.
Next are the calculated results in stage II quoted as (ps+vec) = “π + K + 2π/ρ + K∗ + ω,”

which are shown in Tables 5 and 6. The decay rate �nm and the ratio �n/�p are improved, but
the α� value is a little overestimated. The results are understandable from the decay potential of
V (Sum1) = Vπ +VK +V2π/ρ +VK∗ +Vω, which has the following characteristics: (a) The central
potentials of Ch.1 (1S0 → 1S0) and Ch.3 (3S1 → 3S1) are strong and negative. (b) The tensor
potential of Ch.4 (3S1 → 3D1) becomes weaker compared with the Vπ potential alone. (c) The
parity-violating potentials of Ch.2 (1S0 → 3P0) and Ch.5 (3S1 → 1P1) are strong, though their signs
are opposite. The potential of Ch.6 (3S1 → 3P1) is strong and negative. [See Figs. 4(a)–9(a).] These
features of V (Sum1) enhance the decay rate and the �n/�p ratio and make α� positive. The separate
contributions of the A, B, and C terms to α� are listed in the third line of Table 6.

The results obtained in stage III are shown in the fourth line in Tables 5 and 6. The calculated
observables �nm, �n/�p, and α� seem to be good compared with the data. This shows the special
effect of adding the potentials of the scalar mesons and pomeron exchanges to V (Sum1) of the
(ps+vec) exchanges. The “scalar-meson + pomeron” exchanges modify the central potentials of
Ch.1 (1S0 → 1S0) and Ch.3 (3S1 → 3S1) in particular. The potential of Ch.1 becomes a little
stronger than V (Sum1) with negative sign, while the potential of Ch.3 turns out to be positive in
sign, which is different behavior from V (Sum1) in Ch.3. The difference between the potential in
Ch.1 and that in Ch.3 is attributed to the different behavior of the VKπ/κ potential for Ch.1 and
Ch.3, as seen in Figs. 4(b) and 6(b), since VKπ/κ has an isospin dependence of c′0 + c′1(τ 1 · τ 2)

and the isospin TNN = 1 for Ch.1 and TNN = 0 for Ch.3. The parity-violating potentials of Ch.6
(3S1 → 3P1) are modified at short ranges of R � 0.6 fm, as seen in Fig. 9(b).

The variation of the central potential in Ch.1 makes the transition amplitude a(1S0 → 1S0) larger
in negative sign, and then makes A ∼ “Re[−ae∗]” larger in positive sign, as seen in the fourth line
in Table 6. The variation of the central potential in Ch.3 changes the amplitudes c(3S1 → 3S1) and
d(3S1 → 3D1) from those in case 3. The amplitude c is expressed as

c(3S1 → 3S1) = c0(
3S1 → 3S1)+ c1(induced 3D1 → 3S1)

+ c2(
3S1 → induced 3D1)+ d3(induced 3D1 → induced 3D1). (47)
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Table 7. Channel contributions to �p(�p → np) and �n(�n → nn) for 5
�He estimated in stage IV, i.e.

V (SUM). The decay rates are given in units of the free � decay rate ��.

1S0 → 1S0
1S0 → 3P0

3S1 → 3S1
3S1 → 3D1

3S1 → 1P1
3S1 → 3P1 Sum

�p 0.019 0.0011 0.051 0.017 0.144 0.033 0.265
�n 0.037 0.0022 — — — 0.066 0.105

(�nm = �p + �n = 0.371��)

When the ISC is not large, c ≈ c0(
3S1 → 3S1) + c2(

3S1 → induced 3D1). In the present case, c0

becomes positive and c2 is also positive, resulting in c being positive and large. The amplitude d
is expressed in Eq. (46), and d ≈ d0(

3S1 → 3D1) + d2(
3S1 → induced 3S1). d0 is positive, while

d2 becomes negative since the induced 3S1 wave i0χ0(k , r) in the FSC is negative over the effective
interaction range [1], resulting in d being positive but not large. These features explain that C ∼
“Re[f (√2c + d)∗]” is negative and large, and B ∼ “Re[b(c − √2d)∗/

√
3]” is negative but small.

Consequently α� is reduced to a small value, as seen in the fourth line in Table 6.
Finally, in stage IV, the calculations are performed with the potential V (SUM) of “all mesons and

pomeron” exchanges, so that the potential V (SUM) in each decay channel shown in Figs. 4(a)–9(a)
is adopted. The calculated values are listed in the fifth line in Tables 5 and 6, and these final results
should be compared with the experimental data. The potential V (SUM) includes the contributions
from the axial-vector meson exchanges. However, the contributions of potentials from the axial-
vector meson exchanges in each channel are found to be small. Actually, Vρπ/a1 + Vσπ/a1 for the
non-strange meson a1 exchange and VK∗π/K1 for the strange meson K1 exchange tend to cancel each
other out for the PC central and tensor-force channels, as seen in Figs. 4(c), 6(c), and 7(c). The PV
potentials themselves of the a1 and K1 exchanges are very weak and negligible, as seen in Figs. 5(c)
and 8(c). Thus the effect of the axial-vector meson exchanges on the total potential V (SUM) is not
large and, therefore, the calculated values of the observables for stage IV of the “pseudoscalar +
vector + scalar + axial-vector” mesons plus pomeron exchanges exhibit only small variations from
those of stage III, the “pseudoscalar + vector + scalar” mesons plus pomeron exchanges. It is verified
that the present model of “pseudoscalar + vector + scalar + axial-vector” mesons plus pomeron
exchanges for the weak decay interaction can explain the experimental data well.

In Table 7 we show separate channel contributions to the proton-stimulated decay rate �p(�p→
np) and the neutron-stimulated one �n(�n→ nn). It can be seen in Table 7 that Ch.3 (3S1 → 3S1),
Ch.5 (3S1 → 1P1), and Ch.6 (3S1 → 3P1) contribute dominantly to �p, while Ch.6 (3S1 → 3P1)
contributes to �n to a large extent. Such a contribution of Ch.3 to �p is understood by the amplitude
c(3S1 → 3S1) ≈ c0(

3S1 → 3S1) + c2(
3S1 → induced 3D1), which is big due to the c2 term of the

tensor force and induced i2χ2(k , r) coming from the FSC of the strong tensor correlation [1], and
other contributions to �p mentioned above can be recognized from the channel potentials depicted
in Figs. 8(a) and 9(a). Another noticeable point is that the summed decay rate of PV channels, i.e.
“(3S1)�N → (1P1)NN plus (3S1)�N → (3P1)NN ,” amounts to 0.243��, which is as large as 65%
of the total decay rate �nm = 0.371�� for the non-mesonic weak decay of 5

�He.
Table 8 shows the calculated decay rates and asymmetry parameter of 12

� C(1−) for four stages of
different combinations of the meson exchanges. As in the case of 5

�He decay, the stage III and IV
calculations of �nm and �n/�p and the asymmetry parameter α� for 12

� C lead to almost the same
results, as shown in the fourth and fifth lines, respectively, of Table 8. The model of “(ps+vec)
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Table 8. Calculated decay rates, �nm, �n/�p, and asymmetry parameter α� of 12
� C(1−) for the four stages

of the weak decay potentials are compared with the experimental data. The configuration-mixed nuclear SM
+ � hyperon wave function is adopted. The decay rates are given in units of the free � decay rate ��. The
data marked with a * are the weighted average for 12

� C and 11
� B hypernuclei. The values marked ** are the

one-nucleon induced decay rates.

�nm �n/�p α� = − JH+1
JH
α1

I: π 0.578 0.102 −0.339
II: (ps+vec) 0.690 0.382 0.162
III: (ps+vec) + 2π/σ + Kπ/κ + 2π/P 0.830 0.384 0.075
IV: (ps+vec) + 2π/σ + Kπ/κ + 2π/P
+ ρπ/a1 + σπ/a1 + K∗π/K1 0.825 0.372 0.072
Exp. [59] 0.828± 0.056+0.066

−0.066 0.87± 0.09+0.21
−0.21**

Exp. [54] 0.940± 0.035 0.56± 0.12+0.04
−0.04

Exp. [48] −0.20± 0.26+0.04
−0.04*

Exp. [49] −0.16± 0.28+0.18
−0.00*

Exp. [60] 0.51± 0.13+0.05
−0.05

Exp. [61,62] 0.68± 0.13** 0.51± 0.14
Exp. [14] 0.77± 0.15** 0.58± 0.27
Chumillas et al. [23] 0.722 0.366 −0.207

Table 9. Channel contributions to �p(�p → np) and �n(�n → nn) for 12
� C(1−) estimated in stage IV, i.e.

V (SUM). The configuration-mixed SM + � hyperon wave function is adopted. The decay rates are given in
units of the free � decay rate ��.

1S0 → 1S0
1S0 → 3P0

3S1 → 3S1
3S1 → 3D1

3S1 → 1P1
3S1 → 3P1 Sum

�p 0.049 0.0021 0.112 0.039 0.327 0.073 0.602
�n 0.098 0.0040 — — — 0.121 0.223

(�nm = �p + �n = 0.825��)

+ 2π/σ + Kπ/κ + 2π/P + ρπ/a1 + σπ/a1 + K∗π/K1” exchanges can explain the experimental
data of 12

� C well within the error bars.
In Table 9 the separate channel contributions to�p(�p→ np) and�n(�n→ nn) are shown. It can

again be seen in Table 9 that Ch.3 (3S1 → 3S1), Ch.5 (3S1 → 1P1), and Ch.6 (3S1 → 3P1) contribute
dominantly to �p, while Ch.6 (3S1 → 3P1) contributes to �n to a large extent. The summed decay
rate of PV channels, i.e. “(3S1)�N → (1P1)NN plus (3S1)�N → (3P1)NN ,” amounts to as much as
63% of the total decay rate �nm = 0.825�� for the non-mesonic weak decay of 12

� C.
It is interesting to note that in Table 3 the p-shell hypernuclei with odd Z such as �Li, �B, and

�N isotopes are calculated to have a large asymmetry parameter α� for the angular distribution of
emitted protons due to the decay kinematics.

5.3. Calculated lifetimes up to heavy hypernuclei

The hypernuclear lifetimes can be estimated from the weak decay rates of�π and�nm by the relation
τ = �/(�π +�nm). The evaluated lifetimes are compared with the available experimental data [15–
18,34,50,51,56,65–71] in Table 10 and Fig. 10. The mesonic decay rates �π are taken from our
works, Refs. [63,64]. Some values marked by an asterisk (∗) in Table 10 are substituted values from
calculations for other hypernuclei or other spin states. That is, we substitute the numbers of 16

� O(1−),

25/32

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2018/11/113D

01/5206052 by C
ER

N
 - European O

rganization for N
uclear R

esearch user on 11 D
ecem

ber 2018



PTEP 2018, 113D01 K. Itonaga et al.

Table 10. Calculated hypernuclear weak decay rates and lifetimes for s- and p-shell, and medium-to-heavy
hypernuclei. The decay rates are given in units of the free� decay rate ��. The lifetimes are given in picosec-
onds. Experimental data of lifetimes are listed for comparison. The data marked ** are for the hyperfragments
whose masses are not specified. See the text.

�π �nm �π + �nm τ τ exp

3
�H 217+19

−16 [15]
183+42

−32 [16]
155+25

−22 [17]
181+54

−39 [18]
4
�H 0.891 0.110 1.001 262.7 194+24

−26 [50,51]
194+20

−18 [15]
140+48

−33 [16]
4
�He 0.658 0.264 0.922 285.2 256± 27 [50,51]

245± 24 [53]
5
�He 0.608 0.371 0.979 268.6 256± 21 [56]

273+11
−10 [65]

11
�B 0.316 0.730 1.046 251.4 192± 22 [66]

211± 13 [67]
12
�C 0.228 0.825 1.053 249.8 211± 31 [66]

231± 15 [67–69]
16
�O 0.074∗ 0.909 0.983 267.5 86+33

−26 [70]
27
�Al 203± 10 [67]
28
�Si 0.088 1.157 1.245 211.2 206± 12 [67–69]
A � 28± 7 212.2± 3.5** [34]
A � 32± 8 201.1± 49.3** [34]
51
�V 0.02∗ 1.289 1.309 200.9
A � 54± 16 209.5± 4.5** [34]
56
�Fe 0.02∗ 1.244 1.264 208.1 215± 14** [67–69]
89
�Y 0.005∗ 1.276 1.281 205.3
A � 100± 30 220.5± 45.6** [34]
139
� La 0.005∗ 1.285 1.290 203.9

209
� Bi 0.005∗ 1.283 1.288 204.2 250+250

−100 [71]

57
� Ni, 57

� Ni, 91
� Zr, 139

� Ba, and 209
� Pb for 16

� O(0−), 51
� V, 56

� Fe, 89
� Y, 139

� La, and 209
� Bi, respectively. One

sees in Table 10 and in Fig. 10 that the calculated lifetimes explain the general trend of experimental
data fairly well, and give the saturated value at the medium-to-heavy mass systems; however, the
evaluated τ are somewhat overestimated to larger values compared to the data for light s- and p-shell
hypernuclei. The overshooting of the evaluated lifetimes of the light hypernuclei could be due to the
fact that our non-mesonic decay rates �nm are calculated exclusively as one-nucleon induced ones
as �nm = �p(�p→ np) + �n(�n→ nn), and do not include contributions from the two-nucleon
induced decay rate �2N , which is known to exist.

5.4. Additional comments on the roles of two-meson exchanges

We note that the strong baryon–baryon–meson (BBM) coupling constants are taken from the ESC08c
model, and how to determine the MMM coupling constants was already described in Sect. 4.2. On
the other hand, we treat the pi–pi–pomeron coupling constant gππP as an adjustable parameter in
order to reproduce the α� value observed for 5

�He, because we found that the calculated asymmetry
parameter α� depends sensitively on the gππP value and also because the experimental errors for α�
(5
�He) are small enough to give a good restriction [48,49] (cf. Table 4). This situation is demonstrated
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PTEP 2018, 113D01 K. Itonaga et al.

Fig. 10. The hypernuclear lifetimes calculated in the present model (solid line) and the experimental data
compared as a function of mass number. The lifetime of a free � is shown by the dash-dotted line. Lifetimes
are in picoseconds.

Table 11. The parameter gππP dependence on the decay rate, the decay rate ratio, and the asymmetry parameter
for 5

�He, which is used to fix gππP. The resultant predictions for 12
� C are also listed for reference. The decay

rates are given in units of the free � decay rate ��.

5
�He 12

� C
gππP �nm �n/�p α� �nm �n/�p α�

−4050.0 MeV 0.372 0.384 −0.024 0.825 0.353 0.024
−4280.0 MeV 0.371 0.398 0.029 0.825 0.372 0.072
−4460.0 MeV 0.371 0.409 0.072 0.827 0.387 0.110

in Table 11, where the calculated weak NM decay observables of 5
�He and 12

� C are compared for
the three choices of gππP. Here one sees that the decay rates �nm and �n/�p do not change much,
while the asymmetry parameter α� varies noticeably within the chosen range of gππP. Thus we have
adopted the optimum value gππP = −4280.0 MeV so as to be consistent with the experimental data
of α�. For the experimental values one may refer to Tables 5 and 8, respectively. We also remark that
the optimum gππP value is correlated mostly with the gππσ one, which has been fixed in previous
works [10,26].

It is interesting to compare the present results with those of the Chumillas et al. model [23] in which
the meson exchanges are expressed symbolically by OME(ps+vec) + 2π/σ +2π . In the present case
the coverage of the meson exchanges to be compared are shown by stages III and IV of Eq. (45). Both
models take account of the common exchange effects of the SU(3) octet of pseudoscalar and vector
mesons, although the treatments are certainly different from each other. As the OME model cannot
explain the small α� observed in 5

�He and 12
� C, Chumillas et al. [23] introduced the correlated and

uncorrelated 2π exchange effects, achieving satisfactory results. In the present case, because the net
effect of axial-vector meson exchanges (a1 and K1) in stage IV is small, as discussed previously, the
main part of our model is maintained by stage III, which consists of (ps+vec)+ 2π/σ+Kπ/κ+2π/P.
Thus we know that the sum of the three potential parts V2π/σ +VKπ/κ +V2π/P would possibly have
similar roles to the V2π/σ + V uncorrel

2π potential of Chumillas et al. It should be noted that our model
treats the potentials due to the non-strange meson and the strange meson exchanges symmetrically
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even in the scalar meson sector, like the treatment in the pseudoscalar, vector, and axial-vector meson
sectors.

6. Summary and conclusions

In order to construct the weak�N → NN two-body potentials for hypernuclear non-mesonic weak
decay (NMWD), the previous framework of a potential model has been systematically extended
to include various correlated two-meson exchanges. Exchanges of pseudoscalar, vector, scalar, and
axial-vector mesons and also the pomeron have been taken into account, so that both non-strange and
strange meson members have been considered equally and symmetrically to form as completely in
quantum number J PC as possible. The present framework is based on the newest attainment for the
strong coupling constants for the baryon–baryon–meson vertices of the Nijmegen ESC08c model
(2016 version) by replacing it partly with a possible weak interaction vertex.

First we obtained the overall explanation and satisfactory agreement with the experimental weak
non-mesonic decay observables such as the decay rates �nm, the ratios �n/�p, the asymmetry
parameters α�, and the hypernuclear lifetimes τ for the light to medium-to-heavy mass systems.
The theoretical estimates are presented in tables in comparison with the experimental values. The
partial decay rates �p(�p→ np) and �n(�n→ nn)were studied by divided channel contributions,
assuming that the decays occur from the initial�N in a relative S-state. It is notable that the theoretical
asymmetry parameter α� is sensitive to the gππP coupling constant, although the estimates of the
total decay rates �nm and the ratios �n/�p are rather stable. We also note that the one-nucleon
induced NMWD proceeds with a large weight through the parity-violating “(3S1)�N → (1P1)NN

plus (3S1)�N → (3P1)NN ” channels.
Second, we have clarified the interesting roles and properties of weak decay two-body transition

potentials underlying the theory–experiment comparison. It is remarkable to find that the decay
potentials based on the non-strange meson (π , ρ, σ , a1) exchanges and those based on the strange
meson (K , K∗, κ , K1) exchanges show characteristic and intriguing behaviors depending on the decay
channels. The roles of various meson exchanges are clarified and summarized as follows:

(1) The potentials due to the (π , ρ, a1) exchanges have signs opposite to and tend to cancel the
potentials due to the corresponding (same J PC) (K , K∗, K1) exchanges in the PC central 1S0 →
1S0 and 3S1 → 3S1 channels and in the tensor 3S1 → 3D1 channel. The two potentials of the
σ exchange and the κ exchange have the opposite sign in the 1S0 → 1S0 channel but the same
sign in the 3S1 → 3S1 one owing to the isospin dependence of the κ-exchange potential in the
final NN state.

(2) In the PV 3S1 → 1P1 channel the potentials of all meson exchanges regardless of the strangeness
work additively in the positive sign, and in the PV 3S1 → 3P1 channel the potentials of the (π , σ )
exchanges and those of the (K , κ) exchanges work together in the negative sign.

(3) The pomeron exchange potential has a role to reduce the strength of the scalar–isoscalar σ
exchange potential, which is necessary to solve the magnitude and sign problem of the decay
asymmetries of the emitted protons from the polarized hypernuclei.

Third, we emphasize the following potential properties obtained as a consequence of the corre-
sponding meson exchanges mentioned above. The total central potential in the (1S0)�N → (1S0)NN

channel becomes strong and negative. On the other hand, the potential in the (3S1)�p → (3S1)np

channel becomes weak and positive, and the total tensor potential in the (3S1)�p → (3D1)np channel
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becomes positive and weaker in comparison with the one-pion exchange potential. The parity-
violating potentials are totally strong in the (3S1)�p → (1P1)np and (3S1)�N → (3P1)NN channels.
These potential characteristics coming from exchanges of mesons and pomeron are newly recognized
in this paper. We note that these potential properties constitute the reason why the present extended
meson exchange model can explain the experimental decay observables satisfactorily.

As an additional remark, we found that the major part of the present model can be approximated by
the potentials due to the limited exchanges of pseudoscalar, vector, and scalar mesons plus pomeron
exchange. This is owing to the fact that the axial-vector meson exchange potentials have only a minor
effect on the NMWD because of the mutual cancellations among those for the a1 and K1 exchanges.
This recognition of the role of the axial-vector meson exchange has been altered from our previous
works [10,26], in which the a1 meson has been solely considered as the axial-vector meson.

Further refinement of the model is needed, especially for the treatment of the short-range part of
the initial�N state, and also the final outgoing NN state. The two-nucleon induced decay rates �2N

are still an open problem to be studied.
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Appendix A. Expression for �1

�1 is expressed as follows in the shell model framework by using the Block–Dalitz two-body tran-
sition amplitudes [39] a, b, c, d, e, and f of�p→ np, when it is assumed that the weak decays take
place from the �-proton relative S-state (Ĵ ≡ √2J + 1):

�1 = 4MN

2JH + 1

3

JH + 1

∑
J ′1M ′1α′1

∑
T ′1M ′T1

∑
J2M2

∑
J22

∑
MH0>0

∑
na�aja

∑
n′a�′aj′a

2
∫

d(cos θk1)dφk1

×
∫ k2,max

0
dk2

(A− 2)k2
1 k2

2√
(A− 1)(A− 2)k2

Q − k2
2 [(A− 1)2 − cos2 θk1]

× (T ′1M ′T1
1/2νp|TH MTH )

2 (−1)�a+ja+j�(−1)�
′
a+j′a+j�

× S1/2
JcTc,J ′1T ′1α′1

(ja, tN = 1/2)S1/2
JcTc,J ′1T ′1α′1

(j′a, tN = 1/2)

× ĴcĴ2 W (J ′1jaJH j� ; JcJ2) · Ĵc ˆJ22 W (J ′1j′aJH j� ; JcJ22)

× (J ′1M ′1J2M2|JH MH0)(J
′
1M ′1J22M2|JH MH0) ·MH0

×
∑
L=�a

∑
L′=�′a

∑
nN

∑
n′N ′

∑
n�n′�

(−1)L−λMλ=�a=L(na�an�0 ; n0NL ; MN , M�) c(n�)

× (−1)L
′−λ′Mλ′=�′a=L′(n

′
a�
′
an′�0 ; n′0N ′L′ ; MN , M�) c(n′�)

× (−1)N+N ′(−i)L−L′φN ,L=�a(K , bK ) φN ′L′=�′a(K , bK )

×
[

ĵa · 1 W (ja�a1/2S = 0 ; 1/2J2) · ĵ′a
√

3 W (j′a�′a1/2S ′ = 1 ; 1/2J22)

×
∑
M′

∑
MM ′

(J = 00LM |J2M2)(J ′ = 1M′L′M ′|J22M2)(−1)M2
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× √1 (J = 00J ′ = 1−M′|k = 1−M′)

×
∑
L0

L̂ L̂′√
4π L̂0

(LML′ −M ′ |L0 M −M ′) (L0L′0 |L00)

× (−1)k=1 2
2√
4π

Re
{
[ae∗ − b(c−√2d)∗/

√
3]Yk=1,0−M′(θk ,φk = 0)

× YL0,M−M ′(θK ,φK = 0)
}

+ ĵa
√

3 W (ja�a1/2S = 1 ; 1/2J2) · ĵ′a
√

3 W (j′a�′a1/2S ′ = 1 ; 1/2J22)

×
∑

MM′

∑
MM ′

(J = 1MLM |J2M2)(J ′ = 1M′L′M ′|J22M2)(−1)M2

× √3 (J = 1MJ ′ = 1−M′|k = 1M−M′)

×
∑
L0

L̂L̂′√
4π L̂0

(LML′ −M ′ |L0 M −M ′) (L0L′0 |L00)

× (−1)k=1

(
−
√

2

3

)
2√
4π

Re
{
[f (√2c+ d)∗]Yk=1,M−M′(θk ,φk = 0)

× YL0,M−M ′(θK ,φK = 0)
} ]

. (A.1)

Appendix B. Meson-decay coupling interactions

The meson-decay Hamiltonians used in this work are as follows (see, e.g., Ref. [10]):

Hππσ = +gππσ φσ (ϕπ · ϕπ)+ h.c., (B.1a)

Hππρ = +gππρ φμρ ·
[
(∂μϕπ)× ϕπ − ϕπ × (∂μϕπ)

]+ h.c., (B.1b)

Hρπa1 = +gρπa1 φμa1
· (φρ,μ × ϕπ)+ h.c., (B.1c)

Hσπa1 = +gσπ a1 φμa1
· [(∂μφσ )ϕπ − φσ (∂μϕπ)

]+ h.c., (B.1d)

HK∗πK1 = +igK∗πK1 ((φ
μ
K1
)†τφK∗,μ) · ϕπ + h.c., (B.1e)

HKπκ = +gKπκ ((φ
μ
κ )

†τφK ,μ) · ϕπ + h.c., (B.1f )

HππP = +gππP φP(ϕπ · ϕπ)+ h.c. (B.1g)

In order to compare the strong meson decay couplings with the literature, e.g. Ref. [72], we define
the alternative dimensionless couplings by the Lagrangians

Lππσ = +1

2
g′ππσ mπ φσ (ϕπ · ϕπ)+ h.c., (B.2a)

Lππρ = −g′ππρ φμρ · (ϕπ ×
←→
∂μ ϕπ)+ h.c., (B.2b)

Lρπa1 = −g′ρπa1
M φμa1

· (ϕπ × φρ,μ)+ h.c., (B.2c)

Lσπa1 = −g′σπ a1
φμa1
· (ϕπ←→∂μ φσ )+ h.c., (B.2d)

LK∗πK1 = +ig′K∗πK1
M ((φ

μ
K1
)†τφK∗,μ) · ϕπ + h.c., (B.2e)
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LKπκ = +g′Kπκ M ((φμκ )
†τφK ,μ) · ϕπ + h.c., (B.2f )

LππP = +1

2
g′ππP M φP(ϕπ · ϕπ)+ h.c., (B.2g)

where we use as scaling masses mπ = 140 MeV/c2 and M = 938.27 MeV/c2. In contrast to some of
the couplings in Eqs. (B.1a)–(B.1g), the couplings in Eqs. (B.2a)–(B.2g) are all dimensionless. The
relation between the couplings of Eqs. (B.1a)–(B.1g) and (B.2a)–(B.2g) can be read off readily, and
have a relative minus sign.

The numerical (rationalized) values of the couplings in Eqs. (B.2a)–(B.2g), using Table 1 are:

g′ππσ /
√

4π = 7.455,g′ππP/
√

4π = 2.574,

g′ππρ/
√

4π = 1.664,g′ρπa1
/
√

4π = 0.499,

g′σπa1
/
√

4π = 1.634,g′K∗πK1
/
√

4π = 1.153,

g′Kπκ/
√

4π = 0.704. (B.3)
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