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Abstract. The microscopic Monte Carlo quark-gluon string model (QGSM) is employed

to study particle production in ultrarelativistic proton-proton collisions. The model is

based on Reggeon Field theory accomplished by string phenomenology. Various ob-

servables, including multiplicity, rapidity and transverse momentum spectra, short-range,

long-range and femtoscopy correlations, are described quite well in a wide span of the

collision energy. Predictions are made for pp collisions at
√

s = 14 TeV.

1 Introduction

Despite the significant progress achieved in the last years, the theory of multiparticle production in

elementary proton-proton collisions at ultrarelativistic energies is not completed yet. We all know,

of course, that the processes with large momentum transfer Q2 are well described by the perturbative

chromodynamics (pQCD). Unfortunately, even at very high energies the main contribution to multi-

particle production in hadronic interactions comes from the processes with small momentum transfer.

This means that the running coupling constant αs(Q2) is not small and, therefore, the perturbative

series expansion is not very helpful. Other techniques, based on non-perturbative methods, should be

utilized. The quark-gluon string model (QGSM) [1] and similar to it dual parton model (DPM) [2] is

one of the possible approaches to solution of this very interesting and difficult problem. Both models

are based on the Reggeon Field theory (RFT) [3]. Basic principles of the QGSM are sketched below.

2 The QGSM model

The quark-gluon string model, formulated about 30 years ago [1], employs the 1/N series expansion

of the amplitude of a process in QCD, where N is either the number of colors [4] or the number of

flavors [5]. This method is also called topological expansion, because of emergence of diagrams of

various topologies. Although it is not possible to assign weights for the diagrams within the QCD,

there is one-to-one mapping between the diagrams in 1/N-expansion and the processes with exchange
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of Regge singularities in the t-channel. For instance, exchange of quantum numbers via Reggeons

corresponds to planar diagrams, whereas the cylinder diagrams are represented by the reactions with-

out the quantum number exchange. The latter proceed via the exchange of Pomerons. Therefore, the

perturbative Reggeon Field Theory (RFT) [3] is directly linked to quantum chromodynamics.

The Monte Carlo version of the QGSM [6–8] employs statistical weights, hadron structure func-

tions and leading quark fragmentation functions obtained from the Regge approach in [1] to choose

subprocesses of string production, to compute mass and momentum of strings and to simulate string

decays, respectively. The hadron-hadron collision part of the model includes single and double diffrac-

tion subprocesses, antibaryon-baryon annihilations and elastic scattering. The hadron inelastic inter-

action cross section σinel(s) = σtot(s)−σel(s) is split further into the cross section for single diffractive
interactions σS D(s) and the cross section for non-diffractive reactions σND(s), similar to analysis of

experimental data. By means of the Abramovskii-Gribov-Kancheli (AGK) cutting rules [9] the inelas-

tic non-diffractive interaction cross section σND(s) can be expressed via the sum of the cross sections

for the production of n = 1, 2, . . . pairs of quark-gluon strings, or cut Pomerons, and the cross section

of double diffractive process

σND(s) =
∞∑

n=1

σn(s) + σDD(s) . (1)

To find σn(s) one can utilize the quasi-eikonal model [10, 11] which states that

σtot(s) =
∞∑

n=0

σn(s) = σP f
( z
2

)
, (2)

σn(s) =
σP

nz

⎛⎜⎜⎜⎜⎜⎜⎝1 − exp (−z)
n−1∑
k=0

zk

k!

⎞⎟⎟⎟⎟⎟⎟⎠ , k ≥ 1 (3)

σ0 = σP

(
f
( z
2

)
− f (z)

)
, (4)

f (z) =
∞∑
ν=1

(−z)ν−1

νν!
, (5)

Here

σP = 8πγP exp (Δξ) , (6)

z =
2CγP

(R2
P + α

′
Pξ)

exp (Δξ) . (7)

The cross section σ0 corresponds to diffraction contribution. The parameters γP and RP are Pomeron-

nucleon vertex parameters, quantity Δ ≡ αP(0) − 1, and αP(0) and α
′
P is the intercept and the slope

of the Pomeron trajectory, respectively. The quantity C takes into account the deviation from the pure

eikonal approximation (C = 1) due to intermediate inelastic diffractive states, ξ = ln (s/s0) and s0 is a
scale parameter.

The hard gluon-gluon scattering and semi-hard processes with quark and gluon interactions are

also incorporated in the model, see [12]. For the modeling of string fragmentation the Field-Feynman

algorithm [13] is employed. It enables one to consider emission of hadrons from both ends of the

string with equal probabilities. The break-up procedure invokes the energy-momentum conservation

and the preservation of the quark numbers.

Due to uncertainty principle it takes time to create a hadron from constituent quarks, e.g., fast

particles are created the last. In string models two definitions of formation time are accepted [14]:
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the time when string is broken and all constituents of the hadron are created (constituent) or the time

when the trajectories of hadron constituents (quarks) cross (“yo-yo”). In this version of QGSM we

are using the constituent formation time. The formation time t∗i and coordinate z∗i of i-th hadron in the
string center of mass can be expressed through its energy E∗

i , its longitudinal momentum p∗zi and the

longitudinal momenta/energies of all hadrons produced by the decay of this string as

t∗i =
1

2κ

⎛⎜⎜⎜⎜⎜⎜⎝Ms − 2

i−1∑
j=1

p∗z j

⎞⎟⎟⎟⎟⎟⎟⎠ , z∗i =
1

2κ

⎛⎜⎜⎜⎜⎜⎜⎝Ms − 2

i−1∑
j=1

E∗
j

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

Then we calculate ti in the laboratory frame and make the propagation of the coordinates to this point

(xi, yi, zi, ti): ai = a0i + ti pai/Ei, a = x, y, z. Note, that κ acts as a scaling parameter of the particle

formation time.

3 Results

3.1 Bulk observables and scaling relations

Let us first consider bulk characteristics of particle production in pp collisions at ultrarelativistic

energies. Recall that at energies
√

s ≥ 50GeV the annihilation cross section is extremely small and,

therefore, the main features of particle production in pp interactions are similar to those in p̄p ones.

Thus, for the comparison with the model results we utilized data obtained by the UA5 Collaboration

for proton - antiproton collisions at c.m. energies
√

s = 200GeV, 546GeV and 900GeV [15], by the

UA1 Collaboration for p̄p collisions at
√

s = 546GeV [16], by the CDF and the E735 Collaborations

for p̄p collisions at
√

s = 1800GeV [17, 18], and more recent CERN LHC data obtained in pp
interactions at

√
s = 900GeV, 2360GeV, and 7 TeV by the ALICE Collaboration [19] and by the

CMS Collaboration [20].

Pseudorapidity spectra of charged particles in elastic and non-single diffraction (NSD) proton-

proton interactions at 200GeV ≤ √
s ≤ 14 TeV are shown in Fig. 1(a). Available experimental data

are plotted onto the model calculations as well. The hypothesis of the so-called Feynman scaling [21]

postulates that the density of produced charged particles at midrapidity dNch/dη should be saturated

somewhere at very high energies. This scaling regime is obviously not reached yet. Moreover, at

LHC energies dNch/dη
∣∣∣η=0 demonstrates a non-linear rise with ln s, as suggested by the saturation

of the Froissart bound. For pp collisions at top LHC energy
√

s = 14 TeV the QGSM predicts

dNinel/dη
∣∣∣η=0 = 6.1 , dNNS D/dη

∣∣∣η=0 = 7.0 , respectively. The power-law fit to particle densities at

midrapidity suggested by the theory of Color Glass Condensate (CGC) in [22] yields the following

energy dependence
dNNS D

dη

∣∣∣η=0(s) = 0.77 E0.23 , (9)

where E =
√

s/2. Thus, the power-law dependence describing the average transverse momentum of

charged hadrons as a function of
√

s should have a form 〈pT 〉 = A + BE0.23/2, where A and B are

constants to be determined from the fit. The transverse momentum distributions of charged hadrons

in NSD collisions at energies in question are shown in Fig. 1(b) together with the experimental data.

The agreement between the model results and the data is pretty good. Predictions for
√

s = 14 TeV

are plotted as well. Indeed, the average pT of the generated spectra can be well reproduced by the

power law

〈pT 〉 = 0.27 + 0.212E0.115 (10)

Another scaling relation related to Feynman scaling is the extended longitudinal scaling (ELS)

[23] exhibited by the slopes of (pseudo)rapidity spectra. In the QGSM these slopes are identical
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Figure 1. (a): Pseudorapidity spectra for charged particles in inelastic and NSD pp collisions at 200GeV ≤√
s ≤ 14 TeV. (b): transverse momentum distribution of the invariant cross section in NSD pp collisions in the

same energy range.

in the fragmentation region ybeam ≥ −2.5 as shown in Fig. 2, where the distributions
1

σNS D

dσNS D

dy
are expressed as functions y − ymax. QGSM indicates that the ELS remains certainly valid at LHC.

Obtained result contradicts to the prediction based on the statistical thermal model [24]. The latter

fits the measured rapidity distributions to the Gaussian, extracts the widths of the Gaussians and

implements the energy dependence of the obtained widths to simulate the rapidity spectra at LHC. The

extrapolated distribution was found to be much narrower [24] compared to that presented in Fig. 2.

Further LHC measurements of pp collisions in the fragmentation regions are needed to resolve this

obvious discrepancy. Note, that experimentally the extended longitudinal scaling was found to hold

to 10% in a broad energy range from
√

s = 30.8GeV to 900GeV [15].

The extended longitudinal scaling in the QGSM emerges merely due to short range correlations

in rapidity space. The correlation function of particle i and particle j, produced as a result of a string

fragmentation, drops exponentially with rising rapidity difference

C(yi, y j) =
d2σ

σinel dyidy j
− dσ
σinel dyi

dσ
σinel dy j

∝ exp
[
−λ (yi − y j)

]
, (11)

and, therefore, the particles with large rapidity difference are uncorrelated. Consider now the inclusive

process 1 + 2→ i + X. Its single particle inclusive cross section

fi ≡ E
d3σi

d3p
=

d2σ(y1 − yi, yi − y2, p2i T )

dyid2pi T

becomes independent of yi − y2 at sufficiently high collision energy in the fragmentation region of

particle 1, provided y1 − yi ≈ 1 and yi − y2 ≈ y1 − y2 � 1. Thus, the inclusive densities ni ≡ fi/σinel
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√

s = 2360GeV. Open

symbols present the ALICE data [19].

are determined by only two variables

ni = φ(y1 − yi, p2
i T ) . (12)

Another scaling dependence is known as Koba-Nielsen-Olesen (KNO) scaling [25]. It claims that

at
√

s → ∞ the normalized multiplicity distribution just scales up as ln s or, equivalently, that

〈n〉σn

Σσn
= Ψ

(
n
〈n〉

)
, (13)

with σn being the partial cross section for n-particle production, 〈n〉 - the average multiplicity

and Ψ(n/〈n〉) - energy independent function. KNO-scaling was found to hold up to ISR energies,√
s ≤ 62GeV. Violation of the KNO-scaling was predicted within the QGSM in [1]. Later on

the violation was observed experimentally by the UA5 and UA1 collaborations in p̄p collisions at√
s = 546GeV in the full phase space [15]. The rapidity range is crucial for this study. In very cen-

tral pseudorapidity window |η| < 0.5 the KNO-scaling is still maintained at
√

s = 2.36 TeV [19], as

seen in Fig. 3, whereas already the UA5 Collaboration observed progressive violation of the scaling

with increasing η intervals at much lower energies. For a bit broader midrapidity intervals at LHC a

peak at low multiplicities seems to appear, see Fig. 3. The origin of this phenomenon in the model is

the following. At ultrarelativistic energies the main contribution to particle multiplicity comes from

the cut-Pomerons, and each cut results to formation of two strings. Short range correlations inside

a single string lead to a Poisson-like multiplicity distribution of produced secondaries. At energies

below 100GeV the multi-string (or chain) processes are not very abundant and invariant masses of the

strings are not very large. Therefore, different contributions to particle multiplicity overlap strongly,
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and the KNO-scaling is nearly fulfilled. With rising
√

s the number of strings increases as (s/s0)Δ and
their invariant masses increase as well. This leads to enhancement of high multiplicities, deviation of

the multiplicity distribution from the Poisson-like behavior and violation of KNO-scaling [1, 6].

3.2 Long-range and femtoscopy correlations

Long-range correlations between charged particles emitted in forward (F) and backward (B) hemi-

spheres were first observed in [26]. The strength of the correlations is defined as

b =
〈(nF − 〈nF〉)(nB − 〈nB〉)〉[〈(nF − 〈nF〉)2〉〈(nB − 〈nB〉)2〉]1/2 , (14)

where nF and nB represent multiplicities of charged particles in forward and backward hemispheres,

respectively. In Fig. 5 we show the dependence of the mean charged-particle multiplicity in the

backward hemisphere 〈nB〉, measured in the range −4 ≤ η ≤ 0, on the multiplicity in the forward

hemisphere nF for the symmetric range 0 ≤ η ≤ 4 at four energies in question. Comparison with

experimental data at
√

s = 546GeV and 900GeV shows a good agreement between the model results

and the data. The dependence looks pretty linear

〈nB(nF)〉 = a + b nF , (15)

and its slope b increases with energy. In the QGSM the rise of the strength of correlations is linked

to increase of number of Pomerons, i.e. strings, with energy in the aforementioned pseudorapidity
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range. As one can see from Fig. 4, the correlations between 〈nB〉 and nF are fully determined by soft

processes.

The momentum correlations are usually studied by means of two-particle correlation functions

defined as a ratio of the two-particle distributions from the same event to the reference ones. Generally,

the correlations are measured as a function of pair relative momenta four vector q or rather its invariant

form qinv =

√
q2
0
− |q|2.

The 3D correlation analysis can provide information about both the form of the emitting source

and the duration of the emission [27, 28]. Here the momentum correlation functions are ana-

lyzed in terms of the out, side and longitudinal components of the relative momentum vector

q = {qout, qside, qlong}, where qout and qside denote the transverse components of the vector q, and
the direction of qout is parallel to the transverse component of the pair three-momentum. The corre-

sponding correlation widths are usually parametrized in terms of the Gaussian correlation radii

CF(p1, p2) = 1 + λ exp
(
−R2

outq
2
out − R2

sideq
2
side − R2

longq2long
)
. (16)

The extracted Ri as functions of average pair transverse momentum kT = | �pt,1 + �pt,2|/2 are presented

in Fig. 5 for the low multiplicity bin in pp interactions at
√

s = 900GeV. One can see that the

QGSM points are rather close to the ALICE experimental ones [29]. Formally, this implies significant

reduction of the formation time with increasing energy [30]. Recently, however, it was shown [31] that

quantum corrections to pion interferometry results in pp collisions at LHC energies could drastically

improve the agreement between the model results and the data.

4 Conclusions

We apply the quark-gluon string model, based on Reggeon Field Theory, for the description of proton-

proton collisions at ultrarelativistic energies. It is shown that simulations of pseudorapidity, transverse

momentum and multiplicity spectra of secondaries are in a good agreement with the corresponding

experimental data obtained in p̄p and pp collisions at Tevatron and at CERN energies. Predictions

are made for pp interactions at top LHC energy
√

s = 14 TeV.

Several scaling properties observed in particle production at relativistic energies have been exam-

ined. QGSM favors violation of Feynman scaling in the central rapidity region. Extended longitudinal

scaling is shown to hold at LHC, whereas further violation of the KNO-scaling in multiplicity distribu-

tions is demonstrated. The origin of both conservation and violation of the scaling trends is traced to

short range correlations of particles in the strings and interplay between the multi-Pomeron processes

at ultra-relativistic energies.
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