
Proceedings of the DAE Symp. on Nucl. Phys. 57 (2012) 77

Available online at www.sympnp.org/proceedings

Nuclear Fusion in Stars: Origin of the Elements
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Half a century has passed since the foundation of nuclear astrophysics. Today, nuclear
astrophysics represents a multidisciplinary field that combines achievements in theoretical
astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools
and developments have revolutionized our understanding of the origin of the elements:
supercomputers have provided astrophysicists with the required computational capabil-
ities to study the evolution of stars in a multidimensional framework; the emergence
of high-energy astrophysics with space-borne observatories has opened new windows to
observe the Universe; cosmochemists have isolated small pieces of stardust embedded in
primitive meteorites providing clues regarding processes operating in stars; and nuclear
physicists have measured reactions near stellar energies through the combined efforts us-
ing stable and radioactive-ion beam facilities. This contribution will explain fundamental
aspects of nuclear reactions in stars, with examples taken from thermonuclear explosions
in classical novae and helium burning in AGB and massive stars.

1. Introduction

Life on Earth depends on nuclear processes
deep inside the Sun. But how exactly the
nuclear transmutations occur was not under-
stood for some time. The breakthroughs came
at the end of the 1930’s: Bethe and Critchfield
[1] uncovered a sequential reaction sequence
fusing hydrogen (H) to helium (He), now re-
ferred to as the “pp1 chain”, while Bethe [2]
and von Weizsäcker [3] proposed a cyclic reac-
tion sequence, now called the “CNO1 cycle”,
that has the same end result of synthesizing
He from H. For this early work, the Nobel
prize was awarded to Hans Bethe in 1967. It
is interesting to point out that in those days
it was thought the Sun derives most of its en-
ergy via the CNO1 cycle. Part of the problem
was that some of the key nuclear reaction cross
sections were poorly known. When more reli-
able cross sections could be estimated in the
1950’s, it became apparent that it is in fact the
pp1 chain that governs the energy production
in the Sun. The important lesson is that accu-
rate nuclear physics information is crucial for
our understanding of stars.

Some obvious questions followed immedi-
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ately. How do other stars produce energy?
How do they evolve and why do some of them
explode? And perhaps the key question: what
is the origin of the elements? They were
certainly not produced inside the Sun and,
therefore, other processes are required to ex-
plain their origin. A major breakthrough was
achieved with the detection of technetium in
the spectra of several S stars by Merrill [4]
in the early 1950’s. Since this particular ele-
ment has no stable isotopes and the radioac-
tive technetium isotopes have rather short
half-lives on a Galactic time scale, the obvi-
ous conclusion was that the technetium must
have been produced in the observed stars and
thus nucleosynthesis must still be going on in
the Galaxy. Another aspect of paramount im-
portance in this regard was the observed so-
lar system abundance distribution. It is dis-
played in Fig. 1 and reveals a rather compli-
cated structure. The different processes giving
rise to the observed features were explained by
Burbidge, Burbidge, Fowler and Hoyle [5] and
by Cameron [6]. These papers laid the foun-
dation of the modern theory of nuclear astro-
physics. For this work, the Nobel prize was
awarded to Willy Fowler in 1983.

Briefly, H and He are the most abun-
dant species and are mainly produced in the
Big Bang. The abundance curve then drops
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FIG. 1: Abundances of the nuclides, normalized
to the number of Si atoms, at the birth of the solar
system. Data from Ref. [7].

sharply by several orders of magnitude. The
species 6Li, 9Be and B are so quickly destroyed
inside stars that their production must take
place elsewhere. In fact, they are believed to
be produced by cosmic-ray spallation. The
abundance curve increases sharply at C and O.
These are the most abundant elements after H
and He and, incidentally, are the species life on
Earth is based on. For increasing mass num-
ber the abundance curve decreases, but then
produces a maximum near Fe, Co and Ni, re-
ferred to as the iron peak. Interestingly, these
nuclides exhibit the largest binding energies
per nucleon. So far, most of the species have
been produced by nuclear reactions involving
charged particles. To explain the origin of the
nuclides located beyond the iron peak, how-
ever, fundamentally different processes are re-
quired. Those species are mainly produced via
the capture of neutrons by the astrophysical s-
process and r-process.

All nuclides heavier than boron are made in
stars. At the end of their lives, stars eject
their nuclear ashes into space. Out of this
matter new generations of stars are born and
a new cycle of nuclear transmutations is ini-
tiated. Without the occurrence of the many
nuclear processes in primordial and stellar nu-
cleosynthesis, the universe would be a dark
and chemically poor place. Certainly, no form
of life as we know it could have ever emerged.
In the following some key nuclear physics as-

pects are explained in order to appreciate nu-
clear fusion in stars. In addition, some recent
nuclear laboratory work is discussed, with ex-
amples taken from thermonuclear explosions
in classical novae and helium burning in AGB
and massive stars.

2. Nuclear reactions
The cross section of a nuclear reaction is

defined as the number of interactions per time,
divided by the number of incident particles per
area and time, and divided by the number of
target nuclei within the beam. The unit is
barn, where 1 barn≡10−28 m2. For example,
the estimated cross section for the reaction p+
p→ d+e+ +ν, which represents the first step
in the pp chains, amounts to σ = 8×10−48 cm2

at a laboratory bombarding energy of 1 MeV.
Suppose a measurement of this reaction would
be performed using an intense 1 mA beam of
protons, incident on a dense hydrogen target
(1020 protons per cm2), then one obtains only
1 interaction in 6000 years! Clearly, such a
measurement is beyond present experimental
capabilities and hence this cross section needs
to be estimated theoretically.

Cross section curves (cross section versus
bombarding energy) come in many varieties.
In the simplest case, the cross section of a
charged-particle reaction drops dramatically
with decreasing energy, but otherwise exhibits
no structure. A good example is the cross sec-
tion for 16O(p,γ)17F below a center of mass
energy of 2 MeV. Sometimes the cross section
exhibits a well-defined maximum. An exam-
ple for such a behavior is the 13C(p,γ)14N re-
action, which shows a maximum near 500 keV
in the center of mass.

The Coulomb barrier is responsible for the
sharp drop in cross section with decreasing
energy. The transmission coefficient for the
Coulomb potential for low energies is given by

T̂ ≈ exp

(
−2π

~

√
m01

2E
Z0Z1e

2

)
≡ e−2πη (1)

where m01 is the reduced mass, Z0 and Z1

are the charges of the interacting nuclei and
e is the elementary charge. This function
reveals a 1/

√
E dependence in the exponent
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and is referred to as the Gamow factor. It
is frequently used in nuclear astrophysics to
define a rather useful quantity, called the as-
trophysical S-factor, via the relation S(E) ≡
Eσ(E) exp(2πη): division by the Gamow fac-
tor removes from the cross section, σ(E), the
strong Coulomb barrier transmission proba-
bility and produces a function, S(E), that is
more manageable (for example, in theoretical
extrapolations to very low energies).

On the other hand, cross section maxima
are identified as resonances. In formal reac-
tion theory, a simple equation describing a
single isolated resonance can be derived. It
is referred to as Breit-Wigner formula and is
given by

σBW(E) =
λ2ω

4π

ΓaΓb
(Er − E)2 + Γ2/4

(2)

where λ is the de Broglie wavelength, ω is a
factor containing angular momenta, Er is the
resonance energy, Γi are the resonance partial
widths of entrance and exit channel, and Γ is
the total resonance width given by the sum of
all partial widths. The above equation is the
single most important expression describing a
resonance and it is frequently used in nuclear
astrophysics in many applications [8].

3. Thermonuclear reactions
In a stellar plasma, the kinetic energy for a

nuclear reaction derives from the thermal mo-
tion of the participating nuclei. Hence, the
interaction is referred to as thermonuclear re-
action. The thermonuclear reaction rate (the
number of reactions per unit time and unit
volume) for a reaction 0+1→ 2+3 is given by
r01 = N0N1 〈σv〉01, where Ni are the number
densities of the interacting nuclei and 〈σv〉01
is the reaction rate per particle pair, which
is equal to the integral over the product of
cross section and velocity probability density.
In most cases of practical interest, the latter
function is given by the Maxwell-Boltzmann
distribution. Thus the reaction rate per par-
ticle pair can be written as

〈σv〉01 =
const

(kT )3/2

∫ ∞
0

E σ(E) e−E/kT dE (3)

with const =
√

8/(πm01); k the Boltzmann
constant, and T the plasma temperature.
Clearly, for a given temperature the reaction
rate is precisely determined if the nuclear re-
action cross section, σ(E), is known.

It is worthwhile to note that a given nu-
clear reaction occurring in the stellar plasma
can rarely be considered as an isolated inter-
action. Consider, for example, the species
25Al at an elevated temperature. It may be
destroyed in several different ways: via β+-
decay to 25Mg, via proton capture to 26Si, via
photodisintegration to 24Mg, and so on. On
the other hand, 25Al is produced via the β+-
decay of 25Si, via proton capture on 24Mg, via
photodisintegration of 26Si, and so on. The
abundance evolution of 25Al during nucleosyn-
thesis is then given by a differential equation
that accounts for all destruction and produc-
tion mechanisms. Of course, such a differen-
tial equation needs to be written for all species
participating in the nuclear burning. Thus one
obtains a system of coupled differential equa-
tions, called a nuclear reaction network, which
can be solved numerically [9].

It is interesting to investigate Eq. (3) in
more detail by considering two extreme exam-
ples. The simplest case is a nearly constant
S-factor, S0. This situation is usually referred
to as “non-resonant”, which however leads to
considerable misunderstandings since the for-
malism also applies to slowly varying reso-
nance “tails”. Substitution of the S-factor def-
inition (see above) into Eq. (3) shows imme-
diately that the reaction rate depends, apart
from the magnitude of S0, on the integral over
the product of Gamow and Boltzmann fac-
tors, e−2πηe−E/kT . This result is significant
because it demonstrates that the star does not
burn at high energies where the cross section is
large (since the number of particles with such
energies is vanishingly small); neither does the
star burn at very small energies where the
number of particles is at maximum (since the
cross section is vanishingly small). Rather, in
a plasma most nuclear reactions occur at en-
ergies where the function e−2πηe−E/kT is at
maximum. This well-defined energy window
is referred to as the Gamow peak.
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When the Gamow peak is plotted for a
given temperature, but for different target-
projectile combinations (implying different
projectile and target charges and hence dif-
ferent Coulomb barrier heights), a few impor-
tant observations can be made. For increas-
ing charges Z0 and Z1: (i) the Gamow peak
shifts to higher energies; (ii) the Gamow peak
becomes broader; and most importantly, (iii)
the area under the Gamow peak decreases dra-
matically. In other words, for a mixture of
different nuclides in a stellar plasma at given
temperature, those reactions with the small-
est Coulomb barrier produce most of the en-
ergy and are consumed most rapidly. This is
of paramount importance for the star since it
explains the occurrence of well-defined stellar
burning stages.

Next, we will consider a “narrow reso-
nance”. Several different definitions for a nar-
row resonance can be found in the literature,
but none of them is without problems. For the
sake of simplicity, let us assume that a narrow
resonance implies constant partial widths over
the total width of the resonance. Substitution
of Eq. (2) into Eq. (3) yields immediately
〈σv〉 = [(2π)/(mkT )]3/2~2e−Er/kTωγ. The
product ωγ ≡ ωΓaΓb/Γ is proportional to the
area under the narrow-resonance cross section
curve and thus is called resonance strength
(with units of energy). Note that the reso-
nance energy enters exponentially in the above
reaction rate expression. It needs to be deter-
mined rather precisely, otherwise the resulting
uncertainty of the reaction rate becomes rela-
tively large.

In many cases the energy-dependence of the
partial widths over the total width of the res-
onance cannot be disregarded. Such “broad
resonance” reaction rates need to be treated
with care. Although approximate expressions
exist in the literature, it is safer to substitute
Eq. (2) into Eq. (3) and evaluate the integral
numerically. Depending on the location of the
broad resonance with respect to the Gamow
peak, there are in general two contributions
to the total reaction rate. First, the contribu-
tion calculated from the “narrow resonance”
reaction rate, which arises only from the re-

gion near the resonance energy (as is apparent
from the factor e−Er/kT ). Second, from the
smoothly varying tail of the resonance. If the
broad resonance is located outside the Gamow
peak, then in most cases the resonance tail
makes a far larger contribution than what is
calculated from the narrow resonance expres-
sion. Plotting such reaction rates versus tem-
perature frequently reveals a “kink” because
the narrow resonance and broad resonance re-
action rates have different temperature depen-
dences.

Generally, in order to evaluate the total
rate of a single reaction, many different con-
tributions need to be taken into account: nar-
row and broad resonances, non-resonant pro-
cesses, subthreshold resonances, cross section
continua, interferences between different am-
plitudes, and so on. Every single reaction rep-
resents a special case and the evaluation pro-
cess is usually tedious. Evaluations of reac-
tion rates have been provided by Fowler and
collaborators for many years, with their last
evaluation (covering the A=1-30 target mass
range) published in 1988 [10]. A European
effort, by the NACRE collaboration, resulted
in an updated reaction rate evaluation in 1999
[11], while another evaluation including for the
first time radioactive target nuclei was pub-
lished in 2001 [12].

4. Monte Carlo Reaction Rates

It is crucial for an experimentalist to un-
derstand the impact of a new measurement
on the derived reaction rates. However, the
procedures that we have applied until very re-
cently lack any statistical meaning. This may
come as a surprise, but reflects reality: what
is the precise meaning of a published recom-
mended reaction rate? How are we to inter-
pret a published lower or upper rate “limit”?
And what is the probability density function
of a published reaction rate? None of these
questions have clear answers using the com-
monly accepted procedures in nuclear astro-
physics.

We have recently developed a Monte Carlo
method of estimating reaction rates that will
impact our field in a number of ways. A
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simplistic example is given in Fig. 4, show-
ing results for a single, hypothetical resonance
in 22Ne(α,γ)26Mg (with an energy of Er =
300±15 keV and a strength of ωγ = 4.1± 0.2
eV). Each of the two nuclear physics quan-
tities is associated with a (input) probabil-
ity density function. Random samples are
drawn from each of these distributions and
the resulting reaction rates are calculated ac-
cording to the conventional formalism (ana-
lytical expressions or numerical integrations).
The procedure is then repeated many times
until the (output) reaction rate probability
density function can be determined precisely
(histogram in top part). The corresponding
cumulative distribution (solid line in bottom
part) is computed and the 16, 50 and 84 per-
centiles are determined, which are interpreted
as low, recommended and high reaction rate,
respectively. This simple example already re-
veals the power of the Monte Carlo method.
The resulting rates have a statistical mean-
ing: half of the samples lie below and half lie
above the recommended rate, while the cov-
erage probability between low and high rates
amounts to 68%. Of course, the low and high
rate boundaries can be determined according
to any desired coverage probability.

The new Monte Carlo method is the foun-
dation of a recently published thermonuclear
reaction rate evaluation for A=14-40 targets
[13–16]. The results show that the rates
for many reactions have changed dramatically
compared to previous results. It is obvious
that the new Monte Carlo results not only
quantify for the experimentalist the impact of
a measurement, but they are of substantial in-
terest to the stellar modeler as well since the
reaction rate probability density function can
directly be used to derive more reliable stel-
lar model abundances. Experimental Monte
Carlo reaction rates are now available for
about 70 nuclear reactions. These results and
methods form the backbone of a new library
of nuclear interaction rates, called STARLIB,
which our group has developed over the past
few years. We anticipate the release of this
next-generation data base at the end of 2012.

!

"!

#!

$!

%&
'
()
)&
*
+,
-)
.
/
01
2
(

&*(

!

!"#

!"$

!"%

!"&

'

! #!! $!! %!! &!! '!!!

(
)*
+

*,-!.
/
!"0#!!,)12

3
,245

6'
,7
6'
+

'%8

9!8

&$8

:
;

<
;

=
;

)>+

FIG. 2: Results of Monte Carlo rate calcula-
tion for a fictitious resonance in 22Ne(α,γ)26Mg at
T=0.5 GK. (Top) Reaction rate probability den-
sity function, shown as grey histogram. (Bottom)
Cumulative reaction rate distribution; the vertical
dotted lines represent the low, median and high
Monte Carlo reaction rates, which are obtained
from the 16, 50 and 84 percentiles, respectively.
The solid line in the top part shows a lognormal
approximation of the actual Monte Carlo proba-
bility density function.

5. Direct Measurement of the
17O + p Reaction for Classical No-
vae

The competing 17O(p,γ)18F and
17O(p,α)14N reactions at peak tempera-
tures of T = 0.1 − 0.4 GK are of particular
interest to classical novae since they are
important for the Galactic synthesis of 17O,
the stellar production of radioactive 18F,
and for predicted oxygen isotopic ratios in
presolar grains [17]. It has been demonstrated
[18, 19] that the 17O(p,γ)18F reaction rate
for classical nova conditions depends on the
direct capture process, despite the fact that
a narrow resonance (at a laboratory energy
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of 193 keV) is located well inside the Gamow
peak.

The existing low-energy data on the total S-
factor in the 17O(p,γ)18F reaction are shown
in Fig. 5. Four data points at bombarding en-
ergies between Ecm = 280−425 keV (shown as
open full circles) have been reported by Rolfs
[20]. The direct capture contribution derived
in the analysis of Ref. [20] is shown as a dot-
ted line. Furthermore, a total cross section
measurement using an activation method has
been reported by Chafa et al. [19] at a single,
very low, energy of Ecm = 180 keV. This data
point is shown as an open square in Fig. 5
and seems to agree with the direct capture S-
factor reported by Rolfs [20]. However, it must
be pointed out that its uncertainty amounts
to ≈50% and hence the measurement is of
limited significance only. Because the energy-
dependence of the direct capture S-factor re-
ported in Ref. [20] (shown as dotted line in
Fig. 5) could not be reproduced, it was de-
cided to remeasure the S-factor at low ener-
gies.

The experiment was carried out at the
Laboratory for Experimental Nuclear Astro-
physics (LENA), which is part of the Triangle
Universities Nuclear Laboratory (TUNL). A
1 MV JN Van de Graaff accelerator supplied
proton beams of up to 125 µA on target. Tar-
gets of 17O were prepared by anodizing 0.5
mm thick tantalum backings in 17O-enriched
water. Prompt γ-rays from the 17O(p,γ)18F
reaction were detected using a large-volume
(582 cm3) HPGe detector, placed at an angle
of 55o with respect to the proton beam di-
rection and at a distance of 36 mm between
detector front face and target midpoint.

The 17O(p,γ)18F reaction was measured at
six bombarding energies and the resulting to-
tal S-factors are shown in Fig. 5 as full cir-
cles. The parameters of the dominant broad
resonances at center of mass energies of 557
and 677 keV are well-known [21] and their
contribution was subtracted from the total
measured S-factor (solid line) in order to ex-
tract the direct capture contribution (shown
as horizontal dashed line). We find a nearly
energy-independent direct capture S-factor of
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FIG. 3: World data on total, low-energy, non-
narrow-resonant, S-factor in 17O(p,γ)18F. The
previous data are shown as open symbols [19, 20],
while the full circles display the new results of
Newton et al. [22]. Two data points appear inside
the nova Gamow peak region (for T = 0.1 − 0.4
GK). The solid line represents the sum of broad-
resonance and newly determined direct capture
contributions, while the dotted line shows the di-
rect capture S-factor of Rolfs [20]. Note the factor
of 2 difference between the direct capture predic-
tions of Rolfs [20] (dotted line) and Newton et al.
[22] (horizontal dashed line).

SDC(E) = 4.6 keV b, which is a factor of
about 2 lower than the prediction of Rolfs
[20]. We also improved the uncertainty of
the direct capture S-factor from an assumed
value of ±50% in Ref. [18] to an experi-
mental value of ±23% in our work. As al-
ready pointed out, the uncertainty on the data
point from Ref. [19] is too large to be of
any significance. With this new experimen-
tal information, Monte Carlo reaction rates
for 17O(p,γ)18F have been computed and will
be used in future hydrodynamical simulations
of classical novae. For more detailed informa-
tion, see Newton et al. [22].

6. Indirect measurement of the
22Ne + α Reaction for Massive
Stars and AGB Stars

The 22Ne+α reactions are important for the
s(low neutron capture)-process in both mas-
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sive stars and AGB stars. The neutrons that
are produced by the 22Ne(α,n)25Mg reaction
are captured by seed nuclei, unhindered by a
Coulomb barrier, and give rise to the nucle-
osynthesis of about half of the elements be-
yond iron. In addition to this neutron source
reaction, the competing 22Ne(α,γ)26Mg reac-
tion is equally important since it removes α-
particles that would otherwise be available for
neutron production.

It is interesting to review the level struc-
ture in the 26Mg compound nucleus between
the α-particle threshold and the lowest-lying
directly measured resonance at 840 keV bom-
barding energy. In total, there are 41 known
levels of which only 3 are known to be of un-
natural parity and thus can be excluded from
further consideration. Of the remaining 38
states, only 13 were taken into account for
calculating recently published reaction rates
[23]. Obviously, more experimental work was
required in order to derive a reliable rate.
Of particular interest is a level at 11154 keV
that was assigned a spin-parity of 1− in the
26Mg(γ,n) study of Berman et al. [24]. This
state corresponds in energy to a resonance at
630 keV in the center of mass. An observa-
tion of this resonance was reported in Refs.
[25, 26], but the signal was later shown to be
caused by a contaminant reaction [27]. Since
then the possible contribution of this expected
resonance had a major impact on all of the
published 22Ne+α reaction rates. Thus we
decided to determine unambiguously the spin-
parities of 26Mg states above and close to the
α-particle threshold.

The experiment was carried out utilizing
the linearly polarized, mono-energetic, γ-ray
beam from the High Intensity γ-Ray (HIγS)
facility, which is also part of the Triangle Uni-
versities Nuclear Laboratory (TUNL). More
information on the HIγS facility can be found
in Ref. [28]. The sample consisted of 16 g
of MgO powder, enriched to 99.4% in 26Mg,
which was leased from Oak Ridge National
laboratory. The polarized γ-ray beam inci-
dent on this sample had an energy between
10.8 and 11.4 MeV, corresponding to the ex-
citation energy range to be covered in 26Mg,

FIG. 4: Angular distributions of emitted photons
expected from the 26Mg nuclear resonance fluo-
rescence experiment for different spin-parity se-
quences. The first and last spin-parity refers to
the ground and final state in 26Mg, respectively.
The intermediate spin-parity refers to the 26Mg
level excited by the absorption of a photon from
the incident γ-ray beam. The locations of the
γ-ray detectors are also indicated (“V”: vertical;
“H”: horizontal; “O”: out of plane), while the
26Mg sample was located at the center of the ra-
diation patterns.

and a beam energy spread of ≈200 keV. The
beam intensity at the sample position was
about 107 photons per second. Scattered γ-
rays from the sample were measured by sev-
eral 60% HPGe counters that were positioned
in the vertical plane, horizontal plane and out
of plane, with respect to the incident beam
direction. The setup is schematically shown
in Fig. 6. The figure also shows the radia-
tion pattern that results from the 26Mg(γ,γ)
reaction. Since the incident γ-ray beam is
polarized, this type of angular distribution is
referred to as “polarization-direction correla-
tion”. The radiation patterns shown in the
figure were calculated using the formalism pre-
sented in Ref. [29].

It is interesting that different spin-parity se-
quences give rise to very different radiation
patterns. The reverse statement also applies:
measuring the radiation pattern of the scat-
tered photons determines unambiguously the
spin-parity of the excited intermediate level.
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For example, the sequence 0+ → 1− → 0+

(upper left panel) refers to the excitation of
a 1− level from the 0+ ground state of 26Mg
with a subsequent decay to a final state of 0+.
In this particular case no intensity is expected
in the horizontal detector (“H”) and maxi-
mum intensity should be observed in the ver-
tical detector (“V”). The level corresponding
to the elusive 630 keV resonance in 22Ne+α
was indeed observed in our experiment, but
with maximum intensity in the horizontal de-
tector and no intensity in the vertical detec-
tor, i.e., exactly the opposite of what is ex-
pected for a 1− state. The important implica-
tion is that this level has a spin-parity of 1+

(“unnatural parity”) instead of 1− and, conse-
quently, cannot be formed in the 22Ne+α re-
action. Altogether we determined unambigu-
ously the spin-parities for 5 levels near the α-
particle threshold.

With this new experimental information,
Monte Carlo reaction rates for 22Ne(α,n)25Mg
and 22Ne(α,γ)26Mg have been computed. The
new measurements give rise to a significant
improvement in reaction rate uncertainties,
yielding more accurate s-process abundance
predictions for both AGB and massive star
scenarios. More detailed information can be
found in Longland et al. [30]. We are plan-
ning to use our new 22Ne+α reaction rates
in future hydrodynamical simulations of the
s-process.

7. Summary

We reviewed several topics related to ex-
perimental and theoretical determinations of
thermonuclear reaction rates. A new method
of estimating experimental reaction rates us-
ing a Monte Carlo method has been presented.
Apart from a median (“recommended”) rate
and high and low bounds, the complete reac-
tion rate probability density function at any
given temperature can now be derived. This
new method is the foundation of our new eval-
uation of charged-particle thermonuclear reac-
tion rates for A=14-40 target nuclei [14], and
of our new library of nuclear interaction rates,
called STARLIB, which has just been com-
pleted. Furthermore, the recent measurement

of the 17O(p,γ)18F direct capture cross sec-
tion at our LENA facility is presented. The
results are important for the nucleosynthesis
in classical novae, in particular, for the pro-
duction of radioactive nuclei (mainly 18F), for
the Galactic origin of the nuclide 17O, and for
oxygen isotopic ratios in nova presolar grains.
Also, we discussed the recent 26Mg(γ,γ) study
at our HIγS facility. The spins and pari-
ties of 5 levels near the α-particle thresh-
old in 26Mg could be determined, thus reduc-
ing significantly the rate uncertainties for the
important s-process neutron source reactions
22Ne(α,n)25Mg and 22Ne(α,γ)26Mg in massive
stars and in AGB stars.
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