

η/s ratio of nuclear matter at high angular momentum and its theoretical validation

Srijit Bhattacharya^{1,*}, Deepak Pandit^{2,3}, B. Dey⁴, D. Mondal², S. Mukhopadhyay^{2,3}, Surajit Pal², A. De⁵ and S. R. Banerjee⁶

¹ Department of Physics, Barasat Government College, Barasat, N 24 Parganas, Kolkata - 700124, INDIA

² Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata - 700064, INDIA,

³ Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai - 400094, INDIA

⁴ Department of Physics, Bankura University, Bankura - 722155, INDIA

⁵ Department of Physics, Raniganj Girls' College, Raniganj 713358, INDIA

⁶ (Ex)Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata - 700064, INDIA,

* email: srijit.bha@gmail.com

Introduction

The ratio of shear viscosity to entropy density (η/s) is a key property of an ideal fluid. The conjecture of Kovtun-Son-Starinets (KSS) lower bound has initiated avid research work in this field, especially in strongly correlated Fermionic systems like quark-gluon-plasma at very high temperature (T). The relation between nuclear collectivity and η has been established by references such as Auerbach and Shlomo, using isovector giant dipole resonance (IVGDR)[1]. IVGDR width and energy may be used to understand η and η/s ratio. However, GDR is a collective phenomenon and hence the trend of T-dependent η is different from that of classical fluids. Dang [1] unveiled a new elegant but simple formalism to connect GDR width and the ratio. In a recent work, interestingly, Mondal et al [2] has shown that at low T and angular momentum (J) values, atomic nucleus behaves as almost an ideal fluid with η/s very similar to quark-gluon-plasma at high temperature. This probably indicates that strong fluidity could be the universal feature in strong interaction. The behaviour of atomic nuclei at high J and T in terms of η/s has also been studied in a few nuclei in our recently published work[1]. The Fermi liquid drop model, which was highly instrumental to explain the ratio at low T and J, could not explain the experimental η/s at high J (12-54 \hbar) and T (1.2-2.1 MeV) and hence modified as J-FLDM. It was found, however, that critical temperature included fluctuation model (CTFM) successfully predicts the experimental data.

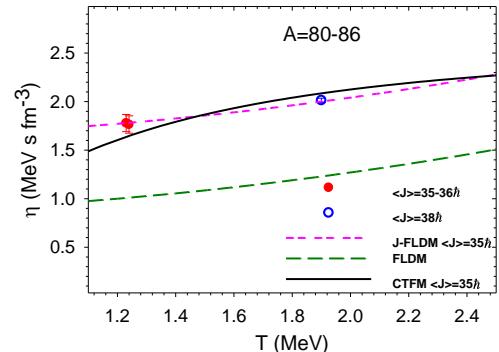
So far there are a few interesting investigation in this field. But the study of η/s at high J and T is still very rare. In this work, η and η/s of ⁸⁰Zr, ⁸¹Rb, and ⁸⁶Mo are extracted from the existing experimental data of GDR width. The entropy density (s) is also explored from the experimental data and finally η/s ratio has been found out. We also investigated the validity of J-FLDM as well as CTFM to explain the experimental data.

Data analysis

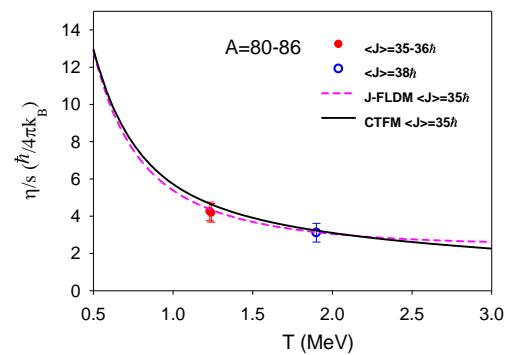
The nuclei ⁸⁰Zr, ⁸¹Rb are selected from the existing literature. These compound nuclei (CN) were populated in the reactions ⁴⁰Ca+⁴⁰Ca, ³⁷Cl+⁴⁴Ca [3] (beam energy E_{lab} at 136 and 95 MeV, excitation energy Ex of 54 and 83 MeV, respectively). The nucleus ⁸⁶Mo was populated in the reaction ²⁸Si+⁵⁸Ni at E_{lab} 125 MeV and Ex of 66 MeV [4]. The average angular momentum J has been 35 \hbar and temperature T is 1.8-1.9 MeV in the first two reactions. For the latter, J and T were kept at 35 \hbar and 1.23 MeV. The average J and T have been found out using statistical model code CASCADE selecting only the decay steps that directly contribute to the GDR γ -ray emission. The angular momentum J is greater than the critical angular momentum J_c beyond which its effect can be observed on the GDR width Γ . The GDR width at ground state (Γ_0) is taken as 4.5 MeV that was measured experimentally in photoabsorption experiment [3]. The viscosity η at temperature T is extracted in this work using the experimental GDR width as proposed by Dang in the equation:

where $\eta(0)$ is constant at $T=0$ MeV, taken as 1u or 1 MeV s fm⁻³, $E(0)$ and $\Gamma(0)$ is the GDR energy and width at ground state ($T=0$). $\Gamma(T)$ is the T -dependent GDR width, $L(\Gamma_T)$ is a function depending on the GDR width [1].

Results and discussions


Using equations (1) and (2), the temperature dependent viscosity is found out for the mass number $A=80-86$. The entropy density s is calculated from the formula $s=S(T)\rho/A$, where ρ is the nuclear matter density taken as 0.16 fm^{-3} . $S(T)$ is the entropy at temperature T , given by $S(T)=2a(T)T$. The nuclear level density parameter $a(T)$ is formulated from well-known Reisdorf-Ignatyuk expression [1]. The entropy density calculated in such way is used to extract the ratio η/s .

The T-dependent η shown in Fig. 1. in red filled and blue unfilled circles denotes the data points for average $\langle J \rangle = 35$ and $38 \hbar$, respectively. The error bars are calculated from the errors of the experimental GDR width. The experimental η is nicely corroborated by the theoretical model CTFM (pink short dashed line). However, the FLDM (green large dashed line) could not explain the data with in-medium N-N scattering cross-section taken as 4.6 MeV that is 50% of that of free space and Fermi energy as 36 MeV . FLDM can explain the data if the cross-section is taken 80% of that of the free space, which is highly unrealistic considering the range of experimental T. The FLDM only considers the expressions for two-body collision and therefore cannot account for the full width at half maximum (FWHM) of the GDR line shape. Earlier, we have modified the FLDM (renamed as J-FLDM) to explain the high J data by adding a term $b \exp(b_1 \xi)$, where b and b_1 are constants and $\xi = J/A^{5/6}$ [1]. Here J-FLDM again successfully predicts the T-dependent η at $J=35\hbar$ with b and b_1 are 0.05 and 3.20 units, respectively. CTFM on the other hand is a macroscopic model that takes into account the J and T dependent Γ . The experimental η 's is shown in Fig. 2 (with markers) and also explained by the CTFM and J-FLDM


successfully. Intriguingly, the experimental η 's shows the J-independent behaviour of the data.

Conclusion

In this work we have studied the η , s and η/s for the mass range $A=80-86$ at high $J=35\hbar$ and found that CTFM successfully predicts the data. FLDM could explain the data only after modifications done. The η/s ratio, though obeys the KSS bound, comes out very close to that of a partonic system like quark-gluon-plasma of high T . The experimental η/s shows the J -independent behaviour.

Fig. 1 T-dependent η with model predictions

Fig. 2 T-dependent η /s with model predictions

- [1] S Bhattacharya et al, Phys. Rev. C 103 (2021),014305 & references therein.
- [2] D Mondal et al. Phys. Rev. Lett.118 (2017) 192501.
- [3] S Ceruti et al. Phys. Rev. C 95 (2021),014312.
- [4] S Rathi et al, Phys. Rev. C 67 (2003),024603.