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Preface & Thesis Guide

This dissertation consists of part of my research work conducted in the four years

of my doctoral studies. Broadly speaking, my research focused on problems on

Classical and Quantum Gravity and it was conducted in terms of different col-

laborations1. This thesis is concentrated on the classical part of my work and

specifically the mathematical stability of one of the three ground state solutions

to Einstein’s theory of gravity, General Relativity.

In the first chapter I will give an in depth introduction to the subject, whereas the

four subsequent chapters constitute the developments into which I was involved.

Each chapter corresponds to a published work. In chapter 2 a position-space

analysis of the problem will be presented, complementing previous studies that

where concentrated in Fourier-space analysis. Since, all of the analytical studies in

the subject rely on perturbative/approximate schemes, in chapter 3 the validity, up

to the relevant time scales, of these perturbative schemes is discussed. In chapter

4, we clarify some confusion that arises due to the gauge freedom of the problem

at hand, whereas in the next chapter the evolution of a few initial perturbations

is discussed with emphasis on the resulting phase- and amplitude-spectra. We

conclude with a short summary of the work as well as some considerations for

future directions along those lines.

This thesis is written using the pronoun “we” instead of “I”. This is both a standard

practice in the field of Theoretical Physics as well as it describes the collaborative

nature of research.

1My individual contribution to each of the published work will be clarified at the end.
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1
Introduction

The career of a young theoretical

physicist consists of treating the

harmonic oscillator in ever-increasing

levels of abstraction.

— Sidney Coleman

In this introductory chapter background material will be discussed regarding the

various concepts that are important to the rest of this thesis. We will introduce

the problem at hand and describe the state of knowledge before our involvement.

More specifically, the model of spherical symmetric perturbations in AdS and

the corresponding approximate schemes will be reviewed and both numerical and

analytical results will be discussed. Our aim is to keep this section as reader

friendly as possible, by keeping it short and minimising the amount of technical

details. Unless it is completely unavoidable, the story will be conveyed by means

of words and figures.

1.1 Overview

Historically, stability considerations and perturbation theory date back to the era

of celestial mechanics and the question of stability of the solar system over long

time scales. Between 1609 and 1618 Johannes Kepler determined the trajectories

of the planets as they revolve around the Sun. Following the work of Copernicus,

Kepler placed the Sun at the centre of the universe and based on observations

of the famous astronomer of the time Tycho Brache, he succeeded to show that

planets move in ellipses around the Sun and at the end of the revolution the planets

find themselves back to where they started.

However, this picture of a perfectly stable solar system would be soon challenged.

After Isaac Newton developed his theory about gravity, he derived the Keplerian

orbits by restricting to the interaction of a planet with the Sun alone. Although

this is the leading contribution to the gravitational force exerted to each planet, it

1



1. Introduction

is not the only one. Planets attract each other as well. When these perturbations

are taken into account they might lead to small effects which accumulate in the

course of time destroying in that way the Keplerian orbits.

The study of the stability of the solar system has led to remarkable discoveries in

Physics and Mathematics with the most prominent one being perhaps the cele-

brated Kolmogorov-Arnold-Moser (KAM) theory in which it was rigorously shown

that both stable and unstable orbits exist depending on whether the ratio of the

unperturbed frequencies is a rational number.

Newton’s theory was superseded when Albert Einstein published in 1915 his theory

of gravitation, known as General Relativity (GR). According to Einstein, gravity is

not a force but rather the manifestation of the geometry of spacetime in which the

masses move. Massive objects curve the spacetime and spacetime back-reacts to

the masses by dictating them which paths they should follow. Einstein’s equations

possess three vacuum solutions, namely three different empty spacetimes depend-

ing on whether the cosmological constant of the theory is positive (de Sitter), zero

(Minkowski) or negative (Anti-de Sitter). The most important question regarding

a vacuum state is whether it is stable under small perturbations.

The stability of the vacuum solutions of GR comes second (perhaps even first) only

to the stability of the solar system and has led to one of the greatest developments

in mathematical relativity [6]. Of the three vacuum spacetimes the two where

proven to be stable long ago [6, 7]. The stability of the third one (AdS) was not

even raised, let alone answered, until very recently [8].

Anti-de Sitter (AdS) spacetime plays a prominent role in modern Theoretical

Physics mainly due to its role in the only concrete example of a gauge/gravity du-

ality, the AdS/CFT correspondence [5]. In this picture, a Quantum Field Theory

(QFT) living on the boundary of AdS is equivalent to a String Theory in the AdS

background. Despite the great importance of (asymptotically) AdS spacetime(s),

the study of its (nonlinear) stability was initiated only very recently, albeit it was

earlier conjectured that AdS would be nonlinearly unstable [9].

The first model that was developed and has been mostly used so far is that of

spherically symmetric perturbations in the form of a (massless) scalar field [4, 8,

10–13]. One then tracks the evolution of the perturbation to determine whether

it collapses to form a Black Hole or not.

Before we explain the case of AdS, let us start by discussing the fate of small per-

turbations in Minkowski space. Consider a self-gravitating spherically symmetric

shell of a massless scalar field. If the amplitude of the shell is big enough it will

collapse to form a black hole. For sufficiently small amplitudes however, the shell

scatters and disperses to infinity and as the the gravitational interactions become

2



1.1. Overview

progressively weaker there is no black hole formation. Minkowski is therefore stable

due to dispersion of energy to infinity.

One can already see that the story for AdS will be different. Anti-de Sitter space

has a conformal boundary at spatial infinity which makes it effectively a confining

box1. Now the small perturbations that do not immediately form a black hole,

scatter at the boundary and propagate back to the interior where they have another

chance to interact. This model was first studied in detail in the seminal work of [8]

and the picture that emerged can be summarized in the figures (1.1) and (1.2).

We will give more details in the subsequent, slightly technical, section, however

the story is not very hard to explain even with no equations at all. In [8] the

evolution of spherically symmetric Gaussian wavepackets, with their amplitude

being described by the small parameter ε, was studied numerically. For large

values of the amplitude ε, the wave packet quickly collapses, which is signalled by

the formation of a horizon in the spacetime. As ε was further decreased, so did

the size of the horizon, until ε reaches a critical value ε0 for which the size of the

horizon becomes zero. When the amplitude is decreased further below this value

of ε0, a horizon will form, but after the wave packet has reflected at the boundary

once. Decreasing ε further, a second critical amplitude ε1 was found, for which

again the size of the horizon (which however now forms only after a bounce at

the boudary) shrinks to zero. Further decrease of the amplitude below this second

critical value leads to a horizon formation after two reflections at the boundary

until a third critical value ε2 is reached. Keep decreasing ε, this picture repeats

itself and the initial field profile collapses to a black hole after some number of

reflections at the AdS boundary, Fig. (1.1). Another very interesting finding is

that the time of the collapse coincides with the first nonlinear time scale of the

problem (t ∼ ε−2), Fig. (1.2).

Based on those observations, the authors of [8] conjectured that arbitrarily small

perturbations will collapse after a number of bounces. In an attempt to give an

analytic understanding to their findings, the authors suggested that black hole

formation can be understood as a turbulent cascade of energy towards modes of

higher frequency.

This picture is not far from the intuition one might have based on the AdS/CFT

correspondence2 and it was also corroborated by some follow up work [12,14, 15].

However subsequent studies on the subject revealed a much richer dynamics. Many

initial data were discovered that do not collapse and an inverse cascade towards

modes of lower frequencies was also observed [4, 10, 11, 13]. Those results casted

shadows on the initial conjecture and aroused the interest in the thermalisation

1When the standard, reflecting boundary conditions are imposed.
2It is generically expected that a strongly coupled field theory will thermalise if perturbed.

3



1. Introduction

process on the boundary [4].

Most of this work was performed using Fourier space analysis and it was based

on numerical methods, which are very powerful and can provide great intuition

but at the same time are plagued with limitations. In stability considerations

we ultimately want to address the limit where the perturbation is infinitesimally

small. Such a limit is impossible to be captured by numerical methods and one

has to resort to analytic approaches (perturbation theory) [3, 4, 8, 12].

Perturbative methods have been performed both in Fourier space [8, 11, 12], and

in Position space [4] complementing each other. Both approaches result into an

effective/truncated system of partial differential equations which possess an all

important scaling symmetry. This scaling symmetry has been invoked to draw

conclusions about the, otherwise inaccessible, limit of infinitesimal perturbations.

The most important result is that, at this limit, the non-collapsing solutions form

a set of non-zero measure [3], namely they are not rare, and hence AdS can not

be said to be generically unstable. The fate of collapsing solutions in this limit is

harder to address but studies in this direction suggest that they also form a set of

non-zero measure [2].

Those results however are based on perturbation series which are truncated to

the first nonlinear order and consequently are valid only up to the first nonlinear

timescale. What happens at longer timescales is not yet known and definitely is

worth further investigation.

Spherically symmetric perturbations, despite the fact they can lead to results

of great importance, are far from being generic. To make generic statements

regarding the stability of AdS one has to move beyond spherical symmetry, but

little work has been made to date in this direction [14–19]. A very intriguing result

of these studies is that in the non-spherically symmetric case, the perturbative

scheme doesn’t seem to possess the scaling symmetry of the spherically symmetric

problem. However, this could be just due to the fact that the non-spherically

symmetric model is far more complicated and a more sophisticated perturbative

method might be required to faithfully represent the full system, especially when

such a perturbation method is performed in Fourier space as in [14–19].

In the rest of this thesis we will describe in more detail the above story.

1.2 Spherically Symmetric Perturbations in AdS

In this section we will present the infalling spherically symmetric massless scalar

field in AdSd+1 dressed with some technical details. The model is described by

4



1.2. Spherically Symmetric Perturbations in AdS

the following action:

S =

∫
dd+1x

√
g

[
1

16πG(d+1)
(R− 2Λ) +

1

2
∂µφ∂

µφ

]
, (1.1)

with Λ = −d(d−1)
2R2

AdS
. Here, RAdS denotes the radius of the spacetime, but in most

of this thesis we will use units where RAdS = 1 and 8πG = d− 1. In AdSd+1 the

resulting equations of motions are just the Einstein’s equations with a stress energy

tensor due to the scalar field and the wave equation for φ in the asysmptoticaly

AdS background:

Gµν −
d(d− 1)

2R2
AdS

gµν = 8πG

(
∂µ∂νφ−

1

2
gµν(∂φ)2

)
gµν∇µφ∇νφ = 0. (1.2)

This system of equations can be solved either numerically, or perturbatively. In the

following we will present developments that have been achieved in both directions.

Asymptotically AdS spacetimes can be parametrised using the following ansatz:

ds2 =
R2
AdS

cos2x

(
A−1dx2 −Ae−2δdt2 + sin2xdΩ2

d−1

)
, (1.3)

where the functions A(t, x) and δ(t, x) as well as the scalar field φ(t, x) depend only

on the radial coordinate x and time t due to spherical symmetry of the problem.

Empty AdS corresponds to A = 1 and δ = 0. One thing to notice here, that

will also be discussed in more detail in chapter 3, is that there is still some gauge

freedom in the above ansatz. This can be fixed be choosing a specific normalization

for the function δ(t, x). The two most ubiquitous choices in the literature are:

δ(t, 0) = 0, t corresponds to the proper time at the center of the spacetime,

δ(t,
π

2
) = 0, t corresponds to the proper time at the boundary of the spacetime.

(1.4)

It is customary to introduce the auxiliary variables Φ = φ′ and Π = A−1eδφ̇, with

the help of which the equations of motion read:

5



1. Introduction

Φ̇ =
(
Ae−δΠ

)′
, Π̇ =

1

µ

(
µAe−δΦ

)′
,

A′ =
ν′

ν
(A− 1)− µν

(
Φ2 + Π2

)
A, δ′ = −µν

(
Φ2 + Π2

)
,

Ȧ = −2µνA2e−δΦΠ. (1.5)

For ease of notation we have adopted the convention 8πG = d − 1 and we have

introduced the variables :

µ(x) = (tanx)
d−1

, ν(x) =
1

µ′(x)
=

sinx cosx

(tanx)d−1
. (1.6)

1.2.1 Numerical results

In several works, this system of equations has been solved numerically. In this

section we will present these results.

In the seminal work of [8], the problem was studied in 3 + 1 dimensions and for

different classes of scalar field profiles. In figures (1.1) and (1.2) are presented the

results for Gaussian initial profiles of the form:

Φ(0, x) = 0, Π(0, x) =
2ε

π
exp

(
−4 tan2 x

π2σ2

)
. (1.7)

The width was fixed at the value σ = 1/16 and the amplitude ε was varied. For

large values of the amplitude ε, the wave packet quickly collapses, which is signalled

by the formation of a horizon at xH , determined by the vanishing of the function

A(t, x). As ε is further decreased, so does the horizon radius, until it becomes

zero for some critical amplitude ε0. When the amplitude is decreased further

below the value of ε0, a horizon will form, after the wave packet has reflected at

the boundary once. Decreasing ε further, we find a second critical amplitude ε1,

for which xH = 0. Further decrease of the amplitude below this value leads to

a horizon formation after two reflections at the boundary until a third critical

value ε2 is reached. Keep decreasing ε this picture repeats itself and the initial

field profile collapses to a black hole after some number of reflections at the AdS

boundary, Fig. (1.1) . Based on those observations, the authors of [8] conjectured

that arbitrarily small perturbations will collapse after a number of bounces.

A very important result of this study, is that the time of collapse scales as tH ∼ 1
ε2 ,

with the amplitude of the perturbation ε. This is depicted in Fig. (1.2), where

6



1.2. Spherically Symmetric Perturbations in AdS

Figure 1.1: The radius of the horizon xH vs the amplitude of the perturbation ε for the gaussian

data (1.7). For the given values of ε, the number of bounces at the boundary of

AdS varies from 0 to 9 [8].

the Ricci scalar at the origin R(t, 0) = −2Π2(t, 0)/R2
AdS − 12/R2

AdS is presented3.

This quantity actually oscillates and what is presented is only the upper envelope.

As we will see in the next section this is the first nonlinear time scale, namely the

earliest time scale where nonlinearities become important.

Another very interesting result of [8], that will also be explained in the next section,

is that the 1-mode data, namely scalar field profiles for which initially only one of

the modes of the spectrum is excited, do not collapse

Further studies on the subject have revealed however a much richer and more

interesting dynamics. More initial data were found for which their evolution does

not lead to a black hole formation. For example, the authors of [10] studied

numerically the same gaussian data, eq. (1.7), for different values of σ and they

showed that for small values of σ this data indeed collapses, but for σ ≥ 0.4 the

collapse is avoided. This can be seen in Fig. (1.3) in which the time of the collapse

vs the amplitude of the perturbation is depicted. For values of σ ∼ 0.5 we see an

abrupt change in tc as ε decreases.

Based on those results, the authors of [10] conjectured that Gaussian Data with

σ ≥ 0.4 are stable. However, later studies reported that the collapse is restored for

values σ ∼ 8 [11]. In [10] a complex scalar field, minimally coupled to gravity, was

studied and stable solutions were found in that system as well, dubbed as Boson

Stars.

In [20] time periodic solutions were constructed in the Einstein AdS-massless scalar

3This quantity consists of a good indicator for the onset of the instability

7



1. Introduction

Figure 1.2: (a) The time evolution of the upper envelope of Π2(t, 0) for four different values of ε

for the gaussian data (1.7) and (b) the evidence that the time of the collapse scales

as ε−2 [8].

field model for any d ≥ 2, whereas in [14,15] similar solutions (geons) where found

in pure gravity. Continuing in the direction of finding stable solutions, the work

of [12, 13] was also very fruitful. In those works a class of quasi-periodic solutions

was constructed and it was shown to be nonlinearly stable. Those solutions are

finely tuned, such that the net energy flow in each mode is zero. The ansatz for

the amplitudes of those solutions is of the form4 αj(τ) = Aje
−iBjτ .

Summarizing, the above results lead to a very interesting picture of the phase space

of initial perturbations of AdS, which is entirely different than the corresponding

phase space of asymptotically flat spacetimes. In AdS there seems to be a part of

phase space which is unstable and a part for which there is a threshold ε0, below

of which there is no black hole formation.

1.2.2 Weakly nonlinear perturbation theory

One can try and solve this system analytically in perturbation theory, expanding

the fields in powers of the amplitude ε of the initial perturbation

φ =

∞∑
j=0

ε2j+1φ2j+1(t, x), A = 1−
∞∑
j=0

ε2jA2j(t, x), δ =

∞∑
j=0

ε2jδ2j(t, x).

(1.8)

Inserting this ansatz into the equations of motion and collecting terms of the same

order of ε we obtain a set of linear equations which can be solved order by order.

To first order, we merely have a scalar filed propagating in the AdS background

φ̈1 + Lφ1 = 0. (1.9)

4See section (1.2.2) for more details.
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1.2. Spherically Symmetric Perturbations in AdS

Figure 1.3: The collapse time of various initial data of the form (1.7) vs the rescaled amplitude

σε [10].

Here, L = − 1
µ(x)∂x (µ(x)∂x) is the Laplacian of AdS with eigenvalues ωj = (2j+d)

and eigenfunctions

ej = djcosdxP
d
2−1, d2
j , dj =

2
√
j!(j + d− 1)

Γ(j + d
2 )

. (1.10)

The eigenfunctions are normalized such that (em, en) = δmn in the inner product

(f, g) :=
∫ π

2

0
f(x), g(x)µ(x)dx and the positivity of the eigenvalues implies that

AdS is linearly stable. One can use the eigenfunctions of L to expand the field φ,

where at this order is simply:

φ1(t, x) =

∞∑
j=0

c
(1)
j (t)ej(x) =

∞∑
j=0

(
αje

iωjt + ᾱje
−iωjt

)
ej(x). (1.11)

To second order in ε we obtain the back reaction on the metric

A2(t, x) = −ν(x)

∫ x

0

(
φ̇1(t, y)2 + φ′(t, y)2

)
µ(y)dy, (1.12)

δ2(t, x) =

−
∫ x

0

(
φ̇1(t, y)2 + φ′(t, y)2

)
ν(y)µ(y)dy, for δ(t, 0) = 0∫ π/2

x

(
φ̇1(t, y)2 + φ′(t, y)2

)
ν(y)µ(y)dy, for δ(t, π/2) = 0.

(1.13)

while the first non–trivial dynamics appear at the third order. One obtains the

inhomogeneous equation

φ̈3 + Lφ3 = S (φ1, A2, δ2) , (1.14)

where S = −2φ̈1 (A2 + δ2)−φ̇1

(
Ȧ2 + δ̇2

)
−φ′1 (A′2 + δ′2). We can again expand the

field as φ3(t, x) =
∑∞
j=0 c

(3)
j (t)ej(x), and projecting o the basis {em}, we obtain

9



1. Introduction

an infinite set of decoupled forced harmonic oscillators for the Fourier coefficients

c̈
(3)
j (t) + ω2

j c
(3)
j (t) = Sj , Sj ≡ (S, ej) . (1.15)

Due to the fact that the linear spectrum is highly commensurate, since the frequen-

cies are integers, there can be many resonant terms contained in Sj . Specifically,

for every triad (j1, j2, j3)5 such that ωj = ωj1 + ωj2 − ωj3 there is a resonant term

in Sj .

Let us digress a bit here and describe the issue of resonances in time dependent

perturbation theory in a slightly simpler system, the anharmonic oscillator. The

exact equation of motion is:

q̈ + q + εq3 = 0, (1.16)

where ε is a measure of the strength of nonlinearity. Let us assume the following,

simple, initial conditions

q(0) = C, q̇(0) = 0. (1.17)

We seek a solution in the form of perturbative series:

q(t) = q0(t) + εq1(t) + ε2q2(t) + . . . =

∞∑
i=0

εiqi(t). (1.18)

By plugging this ansatz into the equation of motion for q and equating terms of the

same power in ε, we obtain the following (infinite) system of coupled differential

equations:

q̈0 + q0 = 0

q̈1 + q1 = −q3
0

q̈2 + q2 = −3q2
0q1

. . . (1.19)

This set of equations has the property that if we know q0(t) we can solve for q1(t),

then we can find q2(t) and so on so forth. Therefore we can proceed order by order

to find a power series expansion of the solution. In practice, one has to truncate

this perturbative expansion to some order.

5Sj is cubic in aj at this order.

10



1.2. Spherically Symmetric Perturbations in AdS

With the given initial conditions, the solution to the O(ε0) term is simply q0(t) =

C cos t. Then we can use this result to solve for q1(t). In the second equation

of the system (1.19), q0(t) acts a (periodic) driving force for q1. One can solve

this equation by applying the Green’s function method, which for the case of the

harmonic oscillaltor yields

q1(t) =

∫ t

0

sin(t− t′)q0(t′)dt′ ⇒

q1(t) = C3

(
−3

8
t sin t− 1

32
cos t+

1

32
cos 3t

)
. (1.20)

However, the solution (1.20) is wrong! We know that the motion is periodic, yet

the solution we obtained diverges linearly with time (the first term in (1.20)).

Another issue is that the energy is not conserved for this solution. The problem

arises because the driving term q3
0 contains a term ∼ cos t, which acts as a resonant

driving term leading to non-periodic solutions in q1. Such diverging terms are often

dubbed secular terms.

A way out of this conundrum was found by Lindstedt and Poincare as they realised

that one is attempting an expansion of a function with varying period in terms

of functions with fixed periodicity 2π. Their proposal was to allow for a change

of the independent variable simultaneously with the perturbative expansion. This

would allow for the period to change with the amplitude. To be more precise let

us define the new independent variable s:

s ≡ ωt,

ω ≡ 1 + εω1ε
2ω2 + . . . . (1.21)

Then we have the power series expansion

q(s) =

∞∑
i=0

εiqi(s). (1.22)

The trick of this method is that due these extra constants ωi we can remove order

by order the secular terms. By changing independent variable t→ s, the equation

of motion for q reads:

ω2q̈ + q + εq3 = 0, q̇ ≡ dq

ds
. (1.23)

11



1. Introduction

Plugging now both the series expansions (1.21) and (1.22) and equating again the

coefficients of the same powers of ε we obtain the following system of coupled

equations:

q̈0 + q0 = 0

q̈1 + q1 = −q3
0 + 2q0ω1

q̈2 + q2 = −3q2
0q1 + 2(q1 + q3

0)ω1 + q0(2ω2 − 3ω2
1)

. . . (1.24)

The solution to the first equation is, as before, q0(s) = C cos s and inserting this

into the second one we obtain for q1:

q̈1 + q1 =

(
2Cω1 −

3

4
C3

)
cos s− C3

4
cos 3s. (1.25)

No it is obvious that we can choose ω1 = 3
8C

2 and cancel the secular term ∼ cos s!

This would lead to the solution:

q1 = −C
3

32
(cos s− cos 3s)

ω = 1 + ε
3

8
C2. (1.26)

There are no secular terms now, but the frequency has been shifted by an amount

that depends on the amplitude of the nonlinearity ε.

This procedure could be seen a bit differently as well. Let us go back to eq. (1.20)

for q1. The solution for q(t) (up to first order) would thus be:

q(t) = q0(t) + εq1(t) = C cos t+ εC3

(
−3

8
t sin t− 1

32
cos t+

1

32
cos 3t

)
= C cos

[(
1 +

3

8
εC2

)
t

]
− εC

3

32

[
cos

((
1 +

3

8
C2

)
t

)
− cos

(
3

(
1 +

3

8
C2

)
t

)]
(1.27)

In the second line we have realised and resummed the Taylor expansion (to first

order in ε):

12
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10 20 30 40 50

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Exact Solution

q0(t)

10 20 30 40 50

-2

-1

0

1

2

Exact Solution

q0(t)+q1(t) (naive) 10 20 30 40 50

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Exact Solution

q0(t)+q1(t) (resummed)

Figure 1.4: Comparison of the exact solution to eq. (1.19), with ε = 0.1 and C = 1, obtained

numerically, with the different solutions obtained from perturbation theory. Up:

The zeroth order perturbative solution. Down: The perturbative solution up to

first order, naive (left) and resummed (right).

cos(t+ ε
3

8
C2t) ' cos t− 3

8
εC2t sin t. (1.28)

To illustrate the success of this resummed perturbation theory we contrast in

Fig. (1.4) the different approximate solutions to eq. (1.16), the exact solution

obtained by numerical methods.

The case of AdS is not very different from the toy model of the anharmonic

oscillator, only a bit more intricate. A first treatment of the AdS resonances

appeared in [8] and a more sophisticated technique, the Two Time Framework

(TTF) [12, 21], was later developed and allows for a systematic procedure. The

basic idea behind TTF, is to allow for an additional, slow time dependence, of the

fields. In that case, the perturbative expansion of the fields, would become

φ = εφ1(t, τ, x) + ε3φ3(t, τ, x) +O(ε5),

A = 1− ε2A2(t, τ, x) +O(ε4),

δ2 = ε2δ2(t, τ, x) +O(ε4), (1.29)

where τ = ε2t denotes the slow time. One could go to higher orders by introducing

additional slow time variables. Substituting now the above expansion, eq. (1.29),

into the equations of motion, we obtain again a system of equations which can

be solved order by order in ε. The difference now, is that the expansion for the

13



1. Introduction

linearized field can be written as

φ1(t, τ, x) =

∞∑
j=0

(
αj(τ)e−iωjt + ᾱj(τ)e−iωjt

)
ej(x), (1.30)

where the slow time τ accounts for the energy transfer among the normal modes

(due to non–linearities), while the fast time t accounts for the oscillations of the

normal modes. To second order we have again the constraints for A2 and δ2 and

the first non-trivial dynamics appear to third order in ε

∂tφ3 + Lφ3 + 2∂t∂τφ1 = S(φ1, A2, δ2), (1.31)

where the source term reads S(φ1, A2, δ2) = (Ȧ2 − δ̇2)φ̇1 − 2(A2 − δ2)Lφ1 + (A′2 −
δ′2)φ′1. The overdots here, represent derivatives with respect to the fast time t, as

usual. Projecting again on the basis {em}, and substituting eq. (1.30) we obtain(
ej , ∂

2
t φ3 + ω2

jφ3

)
− 2iωj

(
∂ταj(τ)e−iωjt − ∂τ ᾱj(τ)eiωjt

)
= (ej , S) . (1.32)

Now we can treat the resonances separately, due to the presence of terms propor-

tional to e±iωjt on the left hand side. Setting

−2iωj∂ταj(τ) = (ej , S) [ωj ] =
∑
klm

Sjklmᾱkαlαm, (1.33)

we may cancel off the resonant terms from the rest of the eq. (1.31). These are

now entirely captured by eq. (1.33), rendering the solution φ3 bounded, and hence

of little interest to us. The result is an infinite set of coupled first order ODEs for

the Fourier coefficients of the linear expansion, which are known by the name TTF

equations. The sum, in eq. (1.33), contains only terms for which the resonance

condition j + k = l +m is satisfied.6 The TTF equations govern the evolution of

both the amplitudes and the phases of the complex coefficients aj and sometimes

can be more convenient to rewrite them using the amplitude–phase representation

αj(τ) = Aj(τ)eiBj(τ), in terms of which the TTF equations can be expressed as

2ωj
dAj
dτ

=
∑

j+k=l+m
j 6=l,j 6=m

SjklmAkAlAm sin (Bj +Bk −Bl −Bm)

2ωj
dBj
dτ

= TjA
2
j +

∑
i 6=j

RijA
2
i +A−1

j

∑
j+k=l+m
j 6=l,j 6=m

SjklmAkAlAm cos (Bj +Bk −Bl −Bm) .

(1.34)

6In principle, all the resonant channels, j = ±k ± j ± l, should appear but only the one

described here remains [21,22].
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1.2. Spherically Symmetric Perturbations in AdS

Here Tj = Sjjjj , Rji = Sijji + Sjiji, for i 6= j. The TTF system possesses an all

important scaling symmetry, αj(τ) → εαj(τ/ε
2), which means that the evolution

of a perturbation of amplitude Aj for time τ , will be the same as the evolution

of the perturbation of amplitude εAj , but for longer time τ/ε2. As mentioned

earlier, this allows us, for as long as the TTF approximations are valid [3], to draw

conclusions for the vanishing amplitude limit, from results obtained in finite ε.

This system of equations has been extensively studied, and will be of great interest

in the subsequent chapters, revealing a very interesting phenomenology with a

phase space of initial conditions containing both finite sets of stable and unstable

perturbations. However, since this is only an approximation to the full system,

many questions naturally arise. For example, up to what point are we allowed to

trust our approximations, what happens in the evolution of the perturbations after

our approximate methods are invalidated and can we remove all the resonances

by similar multi-scale methods?
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2
Position space analysis of the

AdS (in)stability problem

Nothing happens until something moves.

— Albert Einstein

In the previous chapter we analyzed the problem of the evolution of perturbations

in AdS in Fourier space. Now we will present an analysis directly in position space

that nicely complements the momentum space analysis.

2.1 Introduction

As we mentioned earlier, given a spherically symmetric perturbation of arbitrarily

small initial amplitude ε, two dramatically different behaviors have been observed

at the timescale ∼ ε−2, the earliest time on which interactions can have a signif-

icant effect [8, 10–12, 15, 16, 20, 23–28]. Sometimes a black hole forms around this

time; sometimes a long-lived quasi-periodic behavior emerges and gravity does not

become strong. This is a great puzzle concerning both the gravitational dynam-

ics in the bulk and the corresponding thermalization process in the holographic

boundary theory.

In this chapter we will focus on the bulk perspective and on the simple case of

a free massless scalar field coupled to gravity. We treat the system classically

and impose spherical symmetry. In the limit of small amplitude ε, the energy

density is proportional to ε2 and controls the strength of gravitational effects.

Therefore, behavior at the time scale ε−2 is sensitive to the leading-order effects of

gravitational interactions. One framework to study this is to analyze the nonlinear

couplings between the linearized modes induced by the gravitational interactions.

Linearized modes in AdS space all have frequencies which are integer multiples
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2. Position space analysis of the AdS (in)stability problem

of the AdS scale. A mode that is initially unexcited can be resonantly driven by

the excited modes, which allows for the possibility of efficient transfer of energy.

Such efficient energy transfer between modes generically leads to the breakdown

of näıve perturbation theory, since the true solution does not remain close to the

solution in the non-interacting theory. This resonance effect was argued to be the

cause of an energy cascade—energy spreads out into more and higher modes—in

order to explain black hole formation and the power-law spectrum observed during

such processes [8, 14, 15, 23]. It was also argued that since the AdS spectrum is

resonant, such an instability should be the generic outcome of small perturbations.

Counter-examples to the above claim in the form of the stable, quasi-periodic

solutions were initially viewed as being special. It was conjectured in [15] that these

stable solutions will shrink to a set of measure zero in the small ε limit, and the term

“stability island” was used to describe their existence in the generically unstable

sea of phase space. However, more recent evidence suggests that such a conclusion

is too strong. Numerical evidence suggests that, at finite ε, the stable and unstable

solutions both have nonzero measure in the space of initial conditions [10–12].1

One can then apply a simple scaling argument, described in more detail in Sec. 2.2,

to show that in the ε → 0 limit, the stable solutions persist. However, the same

argument fails for unstable solutions. The open question now becomes whether

there are “instability corners.” Namely, in the ε → 0 limit, do the unstable

solutions shrink to a set of measure zero, or do they also continue to have finite

measure?

There are some important misconceptions and misunderstandings in the current

literature regarding the status of the AdS (in)stability problem, due in part to

three points of confusion, which we would like to clarify here. First of all, an

energy cascade is not identical to, nor does it guarantee black hole formation.

This distinction has not been made clear enough. Both have been frequently used

interchangeably and referred to as the “instability of AdS space.” Black hole for-

mation requires energy to be focused into a small spatial region. According to the

uncertainty principle, energy flowing to high momentum is certainly a necessary

condition for that, but it is not sufficient. It is entirely possible for even unbound-

edly high momentum modes to be populated, but for the energy distribution to

stay roughly spatially homogeneous.

Therefore, here, AdS instability strictly refers to black hole formation only.

Because the AdS geometry changes dramatically in this case, such nomenclature

1Note that we are always discussing stability on the interaction time scale ε−2 in this work.

The question of the behavior on longer time scales is a fascinating one that touches on issues of

ergodicity, Arnold diffusion, and the KAM theorem. We do not know how to attack questions

on these longer time scales analytically or numerically.
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aligns with a more gravity point of view.2 This also allows us to study its impli-

cations on the boundary CFT. When we refer to a solution or initial condition as

stable or unstable, we will always be indicating whether it collapses to form black

hole or not.

The second point of confusion is the use of term “generic.” Numerical evidence

suggests that, at finite ε, the stable and unstable solutions both form sets of

nonzero measure in the space of initial conditions [10–12].3 We are interested in

the ε→ 0 limit, and in this work we use the following definition:

1. “Generic instability” means the set of stable initial conditions (not forming

black holes) shrinks to measure zero.

2. “Generic stability” means the set of unstable initial conditions (forming black

holes) shrinks to measure zero.

3. “Mixed” means that both sets have nonzero measure as ε→ 0.

Until recently, references in the literature did not clearly distinguish between (1)

and (3). For example, it was conjectured in [15] that “stability islands” shrink to

a set of measure zero in the small-ε limit, which is certainly arguing for only (1).

However, the numerical evidence in [8] showing that black holes continue to form

as ε is reduced is consistent with both (1) and (3). Since these are three physically

different cases, we think such a clear distinction is needed.

Finally, when addressing the question of instability, one needs to specify a time

scale. In this work, we will only discuss the time scale that goes to infinity as ε−2

in the ε → 0 limit.4 Indeed a näıve perturbation analysis shows that something

interesting can happen at this time scale. The physical question we will address is

whether that “something interesting” is generically black hole formation? In the

end, we will try to relate the answer to the boundary CFT: Does the boundary

system thermalize at this time scale?

2From the hydrodynamic point of view, the existence of an energy cascade might be a suitable

definition of instability. Indeed, this is the perspective taken by some authors, and we wish the

reader to see the distinction clearly.
3Strictly speaking, numerical results only cover discrete choices of initial conditions. So, it

is therefore impossible on numerical grounds alone to prove that any such set has either zero or

nonzero measure. This fact holds equally for both stable and unstable solutions. Nevertheless, if

either set really were measure-zero, unless the numerical code secretly enforced extra symmetries,

it would be extremely unlikely to find such a result even once in simulations. Thus, despite the

numerical controversy over some of the stable solutions [29], we still interpret the current evidence

that stable and unstable solutions both have nonzero measures.
4Behaviors at shorter time scales are somewhat trivial. For example, for a given fixed time,

black hole forming solutions disappear as ε→ 0, so the system is generically stable, case (2). The

behavior at longer time scales is a very deep problem that touches on issues of ergodicity, Arnold

diffusion, and the KAM theorem. We do not know how to attack those questions analytically or

numerically.
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After making all these definitions clear, in Sec. 2.2 we briefly review the recent

progress on this topic. We then present a very simple scaling argument which

shows that possibility (1) defined above, “generic instability”, is the most unlikely

given by existing evidence. This directly argues against the “stability island”

conjecture [15]. The remaining question then is whether AdS space is generically

stable (2) or mixed (3).

In Sec. 2.3 we set up our perturbative method for studying gravitational self-

interaction. This position-space approach is more directly relevant than the usual

momentum-space analysis to the question of whether or not black holes form.5 If

energy gets focused into a smaller region, then the solution is evolving toward a

black hole. If energy is defocused into a larger region, then the solution is evolving

away from a black hole. We explicitly demonstrate that in the ε→ 0 limit, the fo-

cusing/defocusing dynamics depend only on the gravitational self-interaction near

the origin of AdS, when the energy of the perturbation is maximally concentrated.

The propagation through the rest of asymptotic AdS space plays no dynamical

role.

In Sec. 2.4 we prove a one-to-one correspondence between focusing and defocusing

energy in the near-center dynamics. Heuristically, our result is shown in Fig. (2.1):

A shell of massless scalar field will become narrower, its energy focused, if it is

denser in the front. On the other hand, if it is denser in the tail, it will become

wider and energy will defocus.6 More generally, the leading-order dynamics of

focusing and defocusing are related by time reversal, so a local maximum of energy

density is also equally likely to grow or diminish within the time scale . ε−2.

In Sec. 2.5 we present the new intuition our method provides and propose a conjec-

ture on the structure of the phase space. Based on the symmetry between focusing

and defocusing dynamics, the stable, quasi-periodic solutions can be understood

as trajectories that alternate between the two. As a result, they may form quasi-

closed loops in phase space. In fact, some unstable solutions are also known to

exhibit this alternating behavior while in the weak-gravity regime. Based on this

understanding of the dynamics, we propose a conjecture on how to visualize the

phase space of small perturbations in AdS space.

We also discuss how these gravitational calculations can shed light on the general

concepts of thermalization in a closed system. In particular, contrary to conven-

5In principle, one can include all the information about relative phases in the spectral anal-

ysis to achieve the same result. Our position-space approach is simply more direct. In addition,

it technically circumvents the subtlety that the gravitational interaction imposes significant ad-

ditional constraints on possible resonances [21].
6The shell profile will change in other ways, but all changes are suppressed by ε2. The

focusing or defocusing behavior will last for a time scale . ε−2, so it is the dynamics we are

interested in here.
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narrower

r=0r=0

wider

Figure 2.1: A thin shell that has higher energy density in its front will come out narrower after

gravitational self-interactions as it bounces through r = 0. A shell with higher

energy density in its tail will come out wider after the bounce.

tional wisdom, black hole formation at the ε−2 time scale is not necessarily the

holographic dual of thermalization in the boundary field theory. If the thermal gas

phase is the equilibrium state, then black hole formation describes prethermaliza-

tion that significantly delays true thermalization [30,31].

In Sec. 2.6, we provide a quick summary of six major points of this chapter. In

Appendices 2.A and 2.B, we provide the computational details of our method

and numerical examples to demonstrate how the shape of the profile determines

whether its energy is focused or defocused.

2.2 Stability islands or instability corners?

We are interested in the perturbative stability of global AdS space. We will work

in (3 + 1) dimensions and employ the following metric for vacuum AdS4:

ds2
AdS4

= −
(

1 +
r2

R2
AdS

)
dt2 +

dr2

1 + r2

R2
AdS

+ r2dΩ2
2 (2.1)

where RAdS is the AdS radius and dΩ2
2 is the round metric on S2.7 Our pertur-

bations will take the form of a real, massless scalar field φ minimally coupled to

Einstein gravity with a negative cosmological constant:

S =

∫
d4x
√
g

(
1

16π
R+

6

R2
AdS

− 1

2
∂µφ∂

µφ

)
. (2.2)

7Our radial coordinate r is related to the radial coordinate x used in [8] by r = tanx.
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2. Position space analysis of the AdS (in)stability problem

The Planck scale has been set to one. We will consider only spherically symmetric

solutions, so both the scalar φ and the metric functions gtt and grr will only depend

on t and r.

Here we will review some existing evidence and argue that a careful interpretation

strongly supports the following conclusion for spherically symmetric perturbations

of a massless scalar field in AdS space:

In the ε → 0 limit, at the T ∼ ε−2 time scale, AdS space is either generically

stable, or stable and unstable perturbations are equally generic.

The first part of our argument is based on ample numerical evidence at small

but finite ε. The initial conditions that lead to black hole formation (unstable)

and those that lead to quasi-periodic solutions (stable) both form open sets in the

phase space of nonzero measure. Note that the phase space is infinite dimensional,

so no numerical evidence can prove that any set is really open. Nevertheless,

whatever extrapolations are being made should be applied equally to both stable

and unstable solutions, and the existing numerical evidence is quite sufficient to

show that they are on equal footing. More specifically, numerical tests can scan a

one-parameter family of initial conditions, corresponding to a line in phase space.

It has been clearly demonstrated that for a few such lines, the initial conditions

that lead to stable and unstable solutions both form finite segments [10–12]. We

will pragmatically take this as evidence that both stable and unstable sets in phase

space have nonzero measure at small but finite ε.

In particular, within the set of stable solutions, one can identify a subset for which

“gravity never becomes strong” during the ∼ ε−2 time scale; that is,

∃ φ(ε, r, t) , such that
(
φ̇2 + φ′2

)
< δ � 1 for 0 ≤ t ≤ T ∼ ε−2. (2.3)

Our next step is to show that in the ε → 0 limit, these stable solutions cannot

disappear. We can use the scaling behavior observed in [8, 12], which was trust-

worthy to leading order in ε. We will demonstrate that in the ε → 0 limit, this

scaling behavior is exact for stable, weak-gravity solutions.

The spectrum of a massless field in the AdS background is given by integer multi-

ples of the AdS energy scale R−1
AdS, meaning that the field profile is exactly periodic

in time. Heuristically, a spherical wavefront shrinks toward the origin r = 0, passes

through it, expands again to infinity, and finally bounces off the boundary back

to the original position.8 It is natural to describe the dynamics as a function of

8The periodicity of geodesics in AdS is 2πRAdS, and in that time they pass through the

origin twice. However, a shell of massless scalar field with Dirichlet boundary conditions at
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2.2. Stability islands or instability corners?

the “number of bounces” N = t
πRAdS

instead of the microscopic time t:

φ(r,N + 1) ≡ φ(r, t+ πRAdS) = φ(r,N) ≡ φ(r, t) . (2.4)

Now, introducing gravitational self-interaction, as long as the field amplitude (and

therefore the resulting back-reaction) is small, we have a small correction to the

above exactly periodic solution,

φ(r,N + 1)− φ(r,N) = A[φ, φ̇] +O(φ5) . (2.5)

The functional A describes the small, leading-order changes to the profile, which

we will analyze further in the following sections. Here we only need to know that

it scales like φ3. It is convenient to introduce the rescaled field, φ̄ ≡ φ/ε, whose

evolution is given by

φ̄(r,N + 1)− φ̄(r,N) = A[φ̄, ˙̄φ]ε2 +O(ε4) , (2.6)

Although the value of N is discrete, in the ε → 0 limit, the change due to each

bounce goes to zero. We can therefore take the continuum limit, in which eq. (2.6)

becomes
dφ̄

d(ε2N)
= A . (2.7)

Thus, the scaling behavior is exact:

φ̄ε(r,N) = φ̄ ε
α

(r, α2N) . (2.8)

Reducing the amplitude of the fluctuation simply slows down the dynamics by

α2: if ε is reduced by a factor of α, it takes α2 more bounces to reach the same

configuration. Therefore, if there is a stable solution at some finite ε and for a time

T ∼ ε−2 during which gravity never becomes strong, this must also be a stable

solution at any smaller ε, all the way to the ε→ 0 limit.9

Interestingly, this same argument is not applicable to unstable solutions. In order

to form a black hole, the scalar field profile must first evolve to have large energy

density somewhere,
(
φ̇2 + φ′2

)
∼ 1. In other words, gravity must become strong,

at which point the higher order terms in eq. (2.6) cannot be ignored. In those

cases the scaling behavior is lost. A collapsing solution at some small but finite ε

might escape that fate if we reduce ε further [34].

At this point, we are left with two possibilities:

the boundary is actually periodic in half that time, πRAdS, during which the wavefront passes

through the origin only once.
9We should note that the expansion in powers of ε is most likely asymptotic [32], but its

leading-order result has been accurate for many similar applications [33].
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2. Position space analysis of the AdS (in)stability problem

• Stable and unstable perturbations are both generic, in that they both occupy

sets of nonzero measure in the phase space.

• AdS space is perturbatively stable generically, but there are special “insta-

bility corners”, which shrink to measure zero in the limit ε→ 0.

Finally, recall that we have so far limited ourselves to spherical symmetry. Intu-

itively, spherical symmetry arranges for matter to converge at the origin, which

is helpful for gravitational collapse. So, even if the first of the above possibilities

holds within spherical symmetry, it may be that without spherical symmetry the

second is instead the case.

2.3 Weak gravitational self-interaction in posi-

tion space

2.3.1 The two-region approximation

We now present our approach to explicitly calculating the functional A in eq. (2.5).

Our result, a precise expression for A, is given in eq. (2.29). Many of its properties

will help us to better understand the dynamics and the possibility of instability

corners. Our calculation will be in position space. The advantage for this approach

is easily seen if we first picture the evolution of a thin shell of total energy E ∼ ε2,

thickness w and initial size r0, such that r0 � w. This corresponds to an initial

field profile that is roughly given by

φ0(r, t)|t∼ti ∼
−ε√w
r

f

(
−r − r0 + t− ti

w

)
. (2.9)

We will take the profile f(x) to be some function that peaks at x = 0 and has

compact support an order-one range around around this peak (i.e. f(x) = 0 for

|x| & 1).10 Note that we have carefully chosen the dependence on w such that

it does not affect the total mass, which is controlled solely by ε. The small-

perturbation limit then corresponds to ε→ 0.

Other works studying similar scenarios choose various different initial conditions

for the scalar field perturbation. Some authors take initial conditions that place

the energy near r = 0. In other cases, the perturbation originates from a quench

in the boundary CFT and appears as a wavefront coming in from r = ∞ [35].

10We choose the profile to have compact support only to make the subsequent calculations

somewhat cleaner. The shell only needs a narrow, well-defined width. Alternately, one could

take f to have, for example, Gaussian tails without affecting the results.
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2.3. Weak gravitational self-interaction in position space

Remember that in the small-ε limit, the leading-order behavior is the same as

in empty AdS space; that is, the radiation shell simply bounces back and forth

between r = 0 and r = ∞. Therefore, all of these initial positions of the shell

are related by a shift in time on the order of RAdS. Since we are interested in the

outcome at longer time scales, they are all equivalent for our purposes.

One advantage of our position-space approach is that we can choose an r0 which

implements the following “two-region” approximation:

• For r < r0, we will ignore that the background is AdS space and consider

only the back-reaction of the scalar field on Minkowski space.

• For r > r0, we will ignore the scalar field back-reaction and treat the geom-

etry as empty AdS space.

In order to justify this simplification, we first recall the general form of the

Schwarzschild-AdS metric:

ds2
SAdS4

= −
(

1− 2M(r)

r
+

r2

R2
AdS

)
dt2 +

dr2

1− 2M(r)
r + r2

R2
AdS

+ r2dΩ2
2 (2.10)

where M(r) is the total mass located inside the sphere of radius r.

For r < r0 we will ignore the r2/R2
AdS terms in gtt and grr responsible for the

AdS asymptotics and calculate M(r) due to the back-reaction of the radiation

shell. This effect is strongest when the shell is near the origin and its energy is

concentrated in a small region within r < w. We find that M(r) ∼ ε2.

At r = r0, we will start including the AdS terms and ignoring the back-reaction

terms, such that for r > r0 the metric is just that of empty AdS space. Näıvely,

this is allowed if the metric at r0 is approximately that of Minkowski space; that

is, the corrections due to both AdS and back-reaction must be small:

r2
0

R2
AdS

� 1 and
ε2

r0
� 1 . (2.11)

However, we should really ask for a stronger condition.

Our perturbative back-reaction calculation will be organized as an expansion in

powers of ε2/w, and we will work up to some power n using the Minkowski back-

ground. In order to be able to trust our results up to that order, we cannot allow

the transition at r0 to have a competing effect, meaning

r2
0

R2
AdS

�
(
ε2

w

)n
and

ε2

r0
�
(
ε2

w

)n
. (2.12)
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2. Position space analysis of the AdS (in)stability problem

For any RAdS, we can choose the shell small enough and thin enough to accom-

modate the hierarchy of scales

RAdS � r0 � w � ε2 , (2.13)

which satisfies eq. (2.12) for any choice of n.

The two-region approximation provides a very simple picture. In the ε→ 0 limit,

the dynamical evolution is totally controlled by the central Minkowski region. For

the AdS instability problem, the only meaningful calculation is the gravitational

self-interaction of a thin-shell when it passes through r < r0. The propagation

in the r > r0 region is just propagation in an empty AdS space; the shell simply

travels out, reflects off the boundary, and repeats the gravitational evolution near

the origin. Since the profile is modified by a small fraction ∼ (ε2/w) during each

bounce, we expect on the time scale ∼ ε−2 an order-one change to accumulate.

For example, the self-interaction might make the shell thinner after each bounce,

meaning that the gravitational effect becomes stronger, since more energy is squeezed

into a smaller region. If that behavior persists, then eventually the energy will

be compressed during a bounce into a region near the origin smaller than its

Schwarzschild radius. At this point, the weak-gravity approximation will break

down, and it is very likely that in the ε−2 time scale, the shell will evolve into a

black hole. On the other hand, it is also possible that the shell becomes wider

after each bounce, and energy is dispersed into a larger region. In this case, there

is no particular reason why gravitational effects would necessarily become strong

and no indication that a black hole would form in the ε−2 time scale. The main

goal here is to set up a calculation that can capture these two different behaviors.

Before moving on, we need to address the applicability of the thin-shell approx-

imation. A full dynamical picture should accommodate energy distributions of

all thicknesses. However, when w ∼ RAdS, there is no clean way to separate the

self-interaction from the effects of the AdS space. Nevertheless, our main interest

is the instability in AdS toward black hole formation. In the small-ε limit, the

energy must become concentrated into thin shells to even have a chance of even-

tually forming a black hole. Note that not all of the energy needs to be in one

thin shell. But, the evolution toward a black hole is determined by the shell with

the highest radial energy density, which is dominated by its self-interaction, so we

can ignore the influence of other energy distribution outside the shell.
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2.3. Weak gravitational self-interaction in position space

2.3.2 Near-Minkowski expansion

According to our approximation scheme, we can adopt the weak-gravity expansion

in Minkowski space [33]:

φ = εφ0 + ε3φ1 + ... (2.14)

gµν = g0
µν + ε2g1

µν + ... (2.15)

At zeroth order in ε, the background is empty Minkowski space,

∼ O(ε0) , ds2 = −dt2 + dr2 + r2dΩ2 , (2.16)

into which we put the initial shell profile. To first order, the equation of motion

for φ is just that of a free field,

∼ O(ε) , φ̈0 − φ′′0 −
2

r
φ′0 = 0 . (2.17)

At the next order, gravity responds to the stress-energy tensor of the first-order

profile. We therefore must solve the Einstein equation Gµν = 8πTµν to leading

order in small perturbations around empty Minkowski space. Spherical symmetry

excludes dynamical degrees of freedom in the metric, so we only need to solve

constraint equations. The tt and rr components suffice to provide the full answer,

and the solution is parametrized by two intuitive quantities: enclosed mass M and

gravitational potential V .

ds2 = −[1 + 2ε2V (r, t)]dt2 +

[
1 +

2ε2M(r, t)

r

]
dr2 + r2dΩ2 . (2.18)

Note that we have also explicitly extracted the ε scaling from M and V , which are

given in terms of the leading-order fields:

∼ O(ε2) ,
2M ′

r2
= 8π

φ̇2
0 + φ′20

2
, (2.19)

2

r

(
−M
r2

+ V ′
)

= 8π
φ̇2

0 + φ′20
2

, (2.20)

with boundary conditions M(0, t) = 0 and V (∞, t) = 0. Finally, the leading

nontrivial dynamics comes at the next order—the change in geometry back-reacts

on the field profile.

∼ O(ε3) , φ̈1 − φ′′1 −
2

r
φ′1 = C

(
φ̈0 + φ′′0 +

2

r
φ′0

)
+ Ċφ̇0 + C ′φ′0 . (2.21)

Here we have abbreviated C = (V −M/r). We see that the field at this order obeys

the same wave equation as in the previous order with the addition of a nontrivial

source term.

27



2. Position space analysis of the AdS (in)stability problem

The radial wave equation can be rewritten as a (1 + 1)-dimensional wave equation

by introducing u = rφ:

r

(
φ̈− φ′′ − 2

r
φ′
)

= ü− u′′ . (2.22)

This implies that the initial shell profile given in eq. (2.9) is really just the left-

moving part of an exact, leading-order solution,

rφ0(r, t) = u0(r, t) =
√
w

[
f

(
r − t
w

)
− f

(−r − t
w

)]
. (2.23)

We remind the reader that in eq. (2.14), the ε dependence has been extracted

explicitly for φ0, therefore also for u0. We have taken the liberty to choose the

initial time ti = −r0 to simplify this expression. This allows us to start this

calculation once the shell enters the r < r0 region, and the center of the shell

reflects off the origin at t = 0. Later, we will be interested in corrections to the

profile at tf = r0, when the shell is leaving the central Minkowski region.

Rewriting the system in terms of the (1+1)-dimensional function u is essentially

employing a method of images; we extend the range of r into the unphysical

r < 0 region. To implement boundary conditions at r = 0 such that all physical

quantities are finite and smooth, we require u(r, t) to be antisymmetric. Similarly,

we can extend the definition of M to negative r,

M(r, t) =

∫ r

0

dr̃
φ̇2

0 + φ′20
2

4πr̃2 , (2.24)

which is naturally an odd function of r. The same extrapolation shows that V is

an even function of r.

In terms of these new variables, the problem of a shrinking shell has been mapped

to the problem of two wavepackets colliding at r = t = 0. Note that this picture

is more realistic than it seems; antipodal points of the shell do indeed collide with

each other. When the shell is far from the origin, even the leading-order radial

energy density is approximately equal to the naive definition of energy in this

(1 + 1)-dimensional simplification:11

ρ0 = 4πr2 φ̇
2
0 + φ′20

2
≈ 4π

u̇2
0 + u′20

2
. (2.25)

To leading order, the colliding shells simply pass through each other. Our goal is

to solve the next-order nontrivial effect of such a collision by solving eq. (2.21),

11Note that the total energy E ≡ M(∞, t) =
∫∞
0 ρ(r)dr is in fact equal to the naive (1 + 1)-

dimensional energy
∫∞
−∞ 2π

u̇2
0+u

′2
0

2
dr.

28



2.3. Weak gravitational self-interaction in position space

which in terms of u is simply

ü1 − u′′1 = C (ü0 + u′′0) + Ċu̇0 + C ′
(
u′0 −

u0

r

)
≡ S(r, t) . (2.26)

This description has a striking resemblance to soliton collisions [36, 37]. The key

to this type of problem is that, before solving the equations, we should already

anticipate the physical meaning of the answer. At tf = r0, after the collision, the

leading-order solution implies that an out-going shell of the opposite sign reaches

exactly r = r0. On top of that, we can organize the next-order correction into the

following form:

u0 + ε2u1 = u0 − ε2
(
∂u0

∂r
∆r +

∂u0

∂w
∆w + ...

)
(2.27)

We have again extracted the ε dependence explicitly. The shell is actually shifted

by ε2∆r from its expected position, its width has changed by ε2∆w, and there will

be other changes orthogonal to these.

The function u1 at tf = r0 can be solved from eq. (2.26) by integrating the retarded

Green’s function:

u1(r, r0) =
1

2

∫ r0

−r0
dt

∫ r+r0−t

r−r0+t

dr′ S(r′, t) . (2.28)

Note that the lower limit of r′ can be negative, which is allowed due to our method

of images. The result, however, is the same if we replace the lower bound of the

integration range by its absolute value.

Note that this u1 is only the difference between the incoming shell at t = −r0 and

the out-going shell at t = r0, both at position r = r0. Nevertheless, as we have

argued that the propagation further to r =∞, the reflection, and the propagation

back to r = r0, can all be taken as trivial. This allows us to directly relate u1 to

the functional A from eq. (2.5), which gives the leading-order change due to one

bounce.

A

[
u0

r
,
u̇0

r

]
= −u1(r̃, t)

r̃
, (2.29)

where r̃ = 2r0 − r is the spatial reflection of r around r0. The extra minus sign

and changing to this “flipped” position are due to the trivial propagation to and

from r =∞.

The full procedure to calculate u1 and extract physical information like ∆r and

∆w are tedious but straightforward. We will present the analytical and numerical

details in Appendices 2.A and 2.B. Here we highlight two relevant features of the

results:
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2. Position space analysis of the AdS (in)stability problem

1. u1 has a ∼ log r0 contribution, which comes entirely from the position shift,

∆r = −
∫
u1∂ru0 dr∫
(∂ru0)2 dr

, (2.30)

which has a clear physical meaning. The leading-order profile u0 follows the

t = |r| trajectory, but the next-order correction to the metric modifies the

null geodesics. The shell will therefore return to r = r0 not exactly when

t = r0. However, this shift is irrelevant to the pertinent question of whether

energy gets focused.12

2. The change in the shell’s width is given by

∆w =

∫
u1∂wu0 dr∫
(∂wu0)2 dr

. (2.31)

Since we have already scaled out the ε dependence, ∆w only depends on the

shape of the shell (i.e. the function f one chooses in eq. (2.23)), and it is

independent of both ε and w.

In particular, our main result is that ∆w is just as likely to be positive as negative.

Specifically, when we flip the profile of the incoming shell, f(x) → f(−x), then

∆w → −∆w. As a special case, a symmetric profile with f(x) = f(−x) will result

in no first order ∆w during one bounce. This demonstrates that the gravitational

self-interaction in AdS is not biased toward focusing energy, and the collapse of

small perturbations into black holes is probably not the generic behavior, at least

not on time scales . ε−2.

As a complementary calculation, we also investigate how the maximum radial

energy density ρMax of the shell behaves under the same f(x) → f(−x) trans-

formation. Like the width w, we find that if for a given profile ρMax increases

with each bounce, then for the flipped profile it decreases. This provides another

indication that the weak-gravity dynamics are biased neither toward nor against

focusing energy.

In the next section, we will give general proofs of these statements. We will also

present numerical examples in Appendix 2.B.

12This position shift is related to a shift in frequency in the momentum space analysis observed

in other works [12].
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2.4. Focusing and defocusing

2.4 Focusing and defocusing

2.4.1 Antisymmetry of the field correction

As a preliminary step in proving the statements of the previous section, we need to

determine how the first-order correction u1 responds to a spatial flip of the initial

profile u0 such that f(x)→ f̃(x) = f(−x). We find that

u1(r, r0)→ ũ1(r, r0) ' −u1(r̃, r0), (2.32)

where r̃ = 2r0 − r is again the spatial reflection of r around r0. Note that this is

an approximate statement; for a shell of width w, the error in eq. (2.32) is of order

w2/r0. As we argued in Sec. 2.3, in the ε→ 0 limit, we can choose r0 to make this

error arbitrarily small.

The quantities that enter the expression (2.70) for u1 are u0 and its derivatives

and C and its derivatives. So, let us first see how these quantities transform under

the flip. From eq. (2.23), we can see that:

u0(r, t)→ ũ0(r, t) = −u0(r,−t). (2.33)

Then, simply by differentiating the two sides of the equation (either with respect

to r or t), we obtain the same transformation behavior for the derivatives of u0.

Now, to see how C transforms, all we need is to determine the transformation of

M , defined in eq. (2.24):

M(r, t) → M̃(r, t) = 2π

∫ r

0

dr′

(
˙̃u2
0(r′, t) + ũ0

′2(r′, t) +

(
ũ0(r′, t)

r′

)2

− 2
ũ0(r′, t)ũ0

′(r′, t)

r

)
= 2π

∫ r

0

dr′

(
u̇0

2(r,−t) + u
′2
0 (r,−t) +

(
u0(r,−t)

r′

)2

− 2
u0(r′,−t)u′0(r,−t)

r′

)
= M(r,−t). (2.34)

Since V has the same behavior as M , then C(r, t) = V − M
r transforms under the

flip as:

C(r, t)→ C̃(r, t) = C(r,−t). (2.35)

Again, a similar relation holds for the derivatives of C. Combining the above

results, we see that the source term S(r, t), defined in eq. (2.26), behaves as

S(r, t)→ S̃(r, t) = −S(r,−t) (2.36)
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under flipping of the initial profile. Also, by demanding regularity at the origin

r = 0, the initial profile is antisymmetric in r, which in turn implies that M(r, t)

is also antisymmetric in r; hence C(r, t) is symmetric. These properties imply the

antisymmetry of S(r, t) in its first argument, S(r, t) = −S(−r, t).
Now we are ready to prove eq. (2.32), starting from the integral expression eq. (2.70)

for u1. The integration regions are illustrated in Fig. (2.2).

We first make an approximation to eq. (2.70). The upper limit of the r′ integral

is r + r0 − t. Instead, we will extend the region of integration up to r′ = ∞.

Because the wavepacket has compact support only over a region of width w, the

error introduced by this approximation comes just from the yellow shaded triangle

in Fig. (2.2). The area of this added triangle is O(w2) and, since C(r, t) ∼ 1
r , the

integrand is of order 1
r0

. Hence, the error is suppressed by a factor of w2

r0
.

A similar, and perhaps even more physical, approximation, albeit with more cum-

bersome limits of integration, can be made by considering the area of integration

denoted by the red lines together with the orange line in Fig. (2.2). In that case,

instead of adding the extra contribution from the yellow triangle at the top, we

would subtract the area of the green triangle at the bottom. However, the results

would be the same.

After this approximation, we have:

u1(r, r0) ' 1

2

∫ r0

−r0
dt

∫ ∞
|r−r0+t|

dr′ S(r′, t) . (2.37)

Now, flipping the initial profile we get:

ũ1(r, r0) ' 1

2

∫ r0

−r0
dt

∫ ∞
|r−r0+t|

dr′ S̃(r′, t) . (2.38)

Using the flipping property of S(r, t), as discussed above, we can write:

ũ1(r, r0) ' −1

2

∫ r0

−r0
dt

∫ ∞
|r−r0+t|

dr′ S(r′,−t) . (2.39)

We can now change the dummy integration variable t to −t and use the relation

r = 2r0 − r̃ to rewrite the lower integration limit, giving

ũ1(r, r0) ' −1

2

∫ r0

−r0
dt

∫ ∞
|(2r0−r̃)−r0+t|

dr′ S(r′, t) . (2.40)

Comparing this expression to eq. (2.37), we obtain

ũ1(r, r0) = −u1(r̃, r0) . (2.41)

which is our desired result.
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r

t

(r, r0)

r0

t = r0

t = −r0

Figure 2.2: The areas of integration for the computation of u1(r, r0). The blue solid line rep-

resents the source at times t = ±r0. The red lines (solid and dashed) indicate the

actual area of integration in eq. (2.70) (i.e. the integral
∫ r0
−r0

dt
∫ r+r0−t
|r−r0+t|

dr̃), and

the green shaded region indicates where the integrand is nonzero. The solid red

lines together with the dashed green lines correspond to the region of integration∫ r0
−r0

dt
∫∞
|r−r0+t|

dr̃ used in our approximate eq. (2.37). The yellow triangle at the

top shows the extra nonzero contribution included in the second integral, which is

suppressed by w2

r0
. Alternatively, the integral can be approximated by using the

orange line instead of the horizontal red line.

2.4.2 Shell width

In this subsection we will prove eq. (2.31); that is, under a spatial flip f(x) →
f̃(x) = f(−x), the leading-order correction to the width is antisymmetric:

∆w → ∆w̃ = −∆w (2.42)

We assume the profile u0 has compact support within r0 − w/2 < r < r0 + w/2,

and evaluate ∆w at late time tf = r0, well after the collision, at which point the

left-moving and the right-moving wavepackets are far away from r = 0 and do

not interfere with each other. In that case, when computing ∆w from eq. (2.31),

we can just integrate over the right-moving wavepacket; integrating over both

wavepackets would just double both the numerator and denominator in eq. (2.31),

yielding the same result. The expression for the change in width of the flipped

profile is then

∆w̃ =

∫ r0+w/2

r0−w/2 dr ũ1(r, r0)∂wũ0(r, r0)∫ r0+w/2

r0−w/2 dr (∂wũ0)2
. (2.43)
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It is convenient to define y = r− r0, such that the spatial flip of the initial profile

is given by

u0(r0 + y, r0)→ ũ0(r0 + y, r0) = u0(r0 − y, r0) . (2.44)

Starting with the numerator of eq. (2.43) and using the properties of u0 and u1

under the flip, we can write∫ r0+w/2

r0−w/2
dr ũ1(r, r0)∂wũ0(r, r0) =

∫ w/2

−w/2
dy ũ1(r0 + y, r0)∂wũ0(r0 + y, r0)

= −
∫ w/2

−w/2
dy u1(r0 − y, r0)∂wu0(r0 − y, r0)

= −
∫ w/2

−w/2
dy u1(r0 + y, r0)∂wu0(r0 + y, r0)

(2.45)

In the third line, we changed the dummy integration variable from y to −y. The

flip therefore changes the sign of the numerator. Following these same steps with

the denominator of eq. (2.43), we can see that it is invariant under the flip. Putting

these two statements together yields the desired result, ∆w̃ = −∆w.

2.4.3 Energy density

A similar argument holds for the leading-order change in the energy density ∆ρ at

time tf = r0 due one bounce through the origin. Specifically, for f(x) → f̃(x) =

f(−x), we find

∆ρ̃(r, r0) ' −∆ρ(r̃, r0) . (2.46)

where recall r̃ = 2r0 − r. The full radial energy density far from the origin is

approximately the (1+1)-dimensional expression, as in eq. (2.25). Expanding it to

the next order, we find

ρ0 + ε2∆ρ = 4π
u̇2

0 + u′0
2

2
+ 4πε2 (u̇0u̇1 + u′0u

′
1) . (2.47)

We kept our principle of always extracting ε explicitly. The first term is the initial

energy density given in eq. (2.25), which is actually ε−2 times the actual physical

energy density. The second term is the leading change due to a single bounce.

The formula (2.32) we found for the behavior of u1 under the flip holds at the

specific time t = r0, and it is not straightforward to see that the same relation

holds for u̇1. An alternative way to proceed is to include the explicit expression
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2.4. Focusing and defocusing

for the derivatives of u1 at tf = r0:

u′1(r, r0) =
1

2

∫ r0

−r0
dt [S(r + r0 − t)− S(r − r0 + t)] (2.48)

u̇1(r, r0) =
1

2

∫ r0

−r0
dt [S(r + r0 − t) + S(r − r0 + t)] . (2.49)

Using these formulae and the expression for u0 eq. (2.23), and omitting irrelevant

constants, we can write down the explicit expression for ∆ρ.

∆ρ(r, r0) =

∫ r0

−r0
dt
[
f
′
(−r − r0)S(r + r0 − t, t)− f

′
(r − r0)S(r − r0 + t, t)

]
(2.50)

Since the function f(x) has compact support of width w around x = 0 and we

consider values of r on the order of r0, then the first term in the integrand vanishes.

We can now determine how ∆ρ behaves under f(x)→ f(−x):

∆ρ̃(r, r0) = −
∫ r0

−r0
dtf

′
(−r + r0)S(r − r0 + t,−t) . (2.51)

Changing the dummy integration variable t to −t and substituting with r = 2r0−r̃,
we obtain

∆ρ̃(r, r0) = −
∫ r0

−r0
dtf

′
(r̃ − r0)S(−r̃ + r0 − t, t).

From the antisymmetry of S in its first argument, we get

∆ρ̃(r, r0) = +

∫ r0

−r0
dtf

′
(r̃ − r0)S(r̃ − r0 + t, t)

= −∆ρ(r̃, t), (2.52)

which is indeed eq. (2.46).

eq. (2.46) relates the change in energy density at an arbitrary point r and its image

r̃ under the flip. However, we are particularly interested in how the change in the

maximum energy density is affected by the flip.

The energy density at the position of the maximum, rMax, after one bounce, can

be expanded as

ρMax ≡ ρ(rMax) = ρ(0)(rMax) + ε2∆ρ(rMax) . (2.53)

It might be tempting to directly identify this with the change of maximum energy

density. However, we should remember that in addition, the location of the max-

imum rMax is also, in general, affected by the bounce, receiving corrections at the

same order, rMax = r
(0)
Max + ε2∆rMax. So, expanding to order ε2, we find

ρ
(0)
Max + ε2∆ρMax = ρ(0)

(
r

(0)
Max

)
+ ε2ρ(0)′

(
r

(0)
Max

)
∆rMax + ε2∆ρ

(
r

(0)
Max

)
. (2.54)
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However, rMax is an extremum of ρ(0), and so ρ(0)′
(
r

(0)
Max

)
= 0. To leading-order,

the change in the maximum is due only to a change in ρ and not a shift in the

location of the maximum:

∆ρMax = ∆ρ
(
r

(0)
Max

)
. (2.55)

Now, under a flip, r
(0)
Max is mapped to r̃

(0)
Max = 2r0 − r

(0)
Max, the location of the

maximum of ρ̃; that is,

∆ρ̃Max = ∆ρ̃
(
r̃

(0)
Max

)
. (2.56)

From eq. (2.46), we can see that

∆ρ̃Max = −∆ρ
(
r

(0)
Max

)
= −∆ρMax . (2.57)

Therefore, flipping the profile reverses the direction of the change in the maximum

energy density. This result nicely complements our result regarding the the change

in width eq. (2.42). Both of these results indicate that there is no bias in the weak-

gravity dynamics toward either increasing or decreasing the energy concentration.

2.5 Discussion

2.5.1 Phase space diagram

In Sec. 2.3, we provided the recipe to compute the change in a field profile after one

bounce, and it contained all the information about the functional A in eq. (2.5).

In principle, one can add the resulting φ̄1 to the original φ̄0 to make a new initial

condition, and calculate the result of the next bounce. Choosing a small ε and

reiterating this process ∼ ε−2 times is equivalent to solving eq. (2.7). In principal,

this will directly reproduce the long term evolution. Unfortunately, there is one

technical difficulty that we have not been able to overcome.

Our method has one disadvantage: energy conservation is by definition an approx-

imation. We basically “turn on” a self-gravitational potential when a shell shrinks

below r0, let energy flow between it and the field kinetic terms, then turn it off

when the shell expands over r0. The amount of potential energy we turn on and

off differs by ∼ ε4w/r2
0. Although this is suppressed by an extra factor of w/r0

from the quantities we care about in Sec. 2.4 and so it does not invalidate our

results, it is technically difficult to control. We could näıvely go to a larger r0 for

better energy conservation, which would increase the integration range required
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Max

non-thin-shell

ρ

strong gravity

Figure 2.3: A two-dimensional projection within a constant-energy slice of the phase space. The

horizontal axis is the peak energy density, and the big, green arrows toward left and

right represent the focusing and defocusing flow due to gravitational self-interaction.

Together with the upward and downward flows represented by the small, red arrows,

the phase space has a circular flow pattern. The blue loop represents quasi-periodic

solutions that stay within the center of this circular flow.

to solve eq. (2.26). However, more numerical resources would then be necessary

in order to proceed.

Nevertheless, we might have learned enough about what happens in a single bounce

to make a reliable extrapolation. We will attempt to do so by drawing a phase-

space diagram. Since there are no gravitational degrees of freedom within spherical

symmetry, the phase space of perturbations is given by all possible scalar field pro-

files. Due to energy conservation, we can focus on one fixed-energy, co-dimension-

one surface in this infinite dimensional phase space. Within this surface, we can

draw a two-dimensional projection, Fig. (2.3) and understand its structure based

on our knowledge of the dynamics of one bounce.

One guiding principle of this diagram is that during one bounce, the profile changes

by an infinitesimal amount ∼ ε2, which is also an infinitesimal distance in the

diagram. Within the weak-gravity time scale∼ ε−2, the evolution trajectory covers

a finite distance of the diagram. In this way, the diagram directly represents the

dynamical evolution in the rescaled time as given by eq. (2.7).

The horizontal axis of this two-dimensional diagram represents “how close is this

profile to becoming a black hole”. More technically, it is quantified by the maxi-

mum radial energy density at r = 0 that is reached during one AdS time. In the

small-ε limit, the profile is basically freely propagating, so this is a well-defined

quantity. Heuristically, this maximum is reached when the highest “peak” goes

through r = 0, and its value depends on the height of this peak, ρMax.

Note that throughout this chapter, we have been referring to ρ as the rescaled

energy density. In our conventions, the actual physical energy density is given by
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2. Position space analysis of the AdS (in)stability problem

ε2ρ. It is still convenient to consider the rescaled density here, since ρMax quantifies

how much higher this peak is than the average, namely the relative concentration

of energy. Its value increases toward the right-hand-side of Fig. (2.3). For any

finite ε, there is a finite value of ρMax ∼ ε−2 that represents a density high enough

to become a black hole. It can be drawn as a vertical line. Some finite distance to

the left of this line, we have another line signifying that the energy density is high

enough to make gravity too strong to be described by the weak-gravity expansion.

To the left of this second line, gravity is weak enough that our analysis applies.

Somewhere even further to the left, our approximation starts to fail for a different

reason: we can no longer describe this peak as an isolated thin shell satisfying the

hierarchy in eq. (2.13). In the small-ε limit, the region to apply our method always

exists. This left boundary is not a very clear line. Nevertheless, in this diagram

we can roughly picture it as ρMaxRAdS ∼ 1, that the maximum peak density is

comparable to the average density. Clearly, energy is too evenly distributed in the

entire AdS space that nothing could be treated as an isolated thin shell.

The vertical axis of this diagram is not intended to represent any particular pa-

rameter of the field profile. It is merely reflecting the fact we established in Sec. 2.4

that focusing and defocusing dynamics are equally generic in one bounce. This

means one can always find some parameter such that the middle region is divided

into two halves: in the upper half, the evolution makes the peak grow higher and

moves closer to forming a black hole, and in the lower half, the peak gets lower

and moves away from forming a black hole. In App. 2.B, we give specific numer-

ical examples and argue the parameter controlling focusing and defocusing is the

asymmetry of energy distribution: focusing occurs when the shell is denser in the

leading edge, and defocusing when it is denser in the tail.

In addition to focusing and defocusing which correspond to flowing horizontally

in Fig. (2.3), what tendencies to flow in the vertical direction can we identify?

Generally speaking, when ρMax is large, on the left side of Fig. (2.3), the system will

tend to flow upwards. This is because a shrinking peak cannot remain the highest

peak forever: a growing peak with smaller initial height will eventually take over.

If that were the only vertical motion, it would lead to only two possible trajectories:

starting in the upper half, ρMax would keep increasing and flow directly toward

black hole collapse; alternatively, staring in the lower region, ρMax would first

decrease, then bounces back to become a black hole. This directly violates many

numerical results, so there must be a downward flow somewhere in Fig. (2.3).

The two numerical examples in App. 2.B provide tentative evidence for a downward

flow. What we see is that given a symmetric profile on the boundary between the

upper and lower region, after one bounce it picks up an asymmetry similar to the

profiles in the lower region—its energy becomes denser in the tail. Of course, we
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Max

non-thin-shell strong gravity

ρ

Figure 2.4: The same circular flow in the phase space, but the blue trajectory now represents

an unstable solution. Though initially it follows the circular flow, it fluctuates to

larger radius, eventually enters the strong gravity region, and collapses into a black

hole.

studied only two one-parameter slices through an infinite dimensional phase space,

so better numerical and/or analytical investigation is required to verify this. Here,

we will simply conjecture that such a downward flow exists, because the resulting

circulatory flow, shown in Fig. (2.3), explains existing numerical results very well:

• The quasi-periodic solutions stay within the circular flow near the center, as

in Fig. 2.3.

• The unstable solutions initially stay within the circular flow, but their radii

vary wildly and eventually these solutions enter the strong gravity regime,

as in Fig. (2.4).

Note that the actual motion in the true phase space is still very complicated. In

this two-dimensional projection, evolution trajectories are allowed to cross each

other. Nevertheless, this circular flow allows us to better visualize the dynamics

in the phase space.

We can also repeat the argument in Sec. 2.2 in a more pictorial manner. As one

reduces ε, most of this diagram does not change. Due to the scaling behavior, all

trajectories to the left of the strong gravity line remain the same, and so most of

the stable solutions remain stable. The trajectories for unstable solutions must

cross the strong gravity line to form black holes, so they potentially can change.

Actually, the location of the strong gravity line shifts to the right when ε decreases.

As the total energy is reduced, it needs to be increasingly focused in order for

gravity to become strong, and a collapsing solution must therefore evolve further,

across the new weak-gravity regime. In the ε → 0 limit, black hole formation is

equivalent to a weak-gravity evolution in which ρMax goes all the way to infinity.
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2. Position space analysis of the AdS (in)stability problem

Although the trajectory for a black hole collapse appears divergent, it does not

mean that we can immediately rule out such an evolution. In fact, this divergence

is an artifact of the parameter choice, and we should appreciate that ρMax = ∞
is not an infinite distance away in phase space. Recall that ∆w in one bounce

is independent of w, so the change in width need not be a small fraction of the

total. It is certainly possible to have a profile such that after ε−2 bounces, ∆w is

negative and order one, leading to a diverging ρMax.

The real advantage of this picture is that it recasts the ε→ 0 limit of the stability

problem into the global regularity problem of determining whether ρMax diverges.

Interestingly, analyzing the regularity of AdS3 perturbations at finite ε below the

black hole mass gap is similarly a question of determining whether the energy

density diverges. In that case, there is already strong evidence to support regular-

ity [38, 39]. One might hope to reproduce this AdS3 result in higher dimensions

in order to confirm that the instability corners indeed shrink to measure zero. We

should again caution that spectral analysis can only provide necessary conditions;

it can rule out an instability, but it cannot provide equally strong evidence to

support one. If the power spectrum of perturbations agrees with a diverging ρMax,

a long-time evolution of eq. (2.6) in position space is still required for the final

answer to the AdS stability problem.

2.5.2 Holographic thermalization

One motivation for studying the stability properties of AdS is to try to learn

something about the non-equilibrium dynamics of closed systems. This is due

to the AdS/CFT correspondence, which relates this classical gravitational system

to the dynamics of a strongly-coupled quantum system. Most investigations of

holographic thermalization study the Poincaré patch of AdS, which has an infinite

boundary (see, for example, [40–43]). In these cases, any nonzero energy density

in the bulk will collapse into a black hole, corresponding to thermalization on the

boundary.

Here, instead, we are considering global AdS which has a closed, spherical bound-

ary and therefore a very different thermalization behavior. Other studies of global

AdS, such as [35], implicitly assume the connection between forming a black hole

in the bulk and thermalization of the boundary system. Although that is valid in

some cases, we would like to highlight other possibilities. What are the possible

holographic dual descriptions of the bulk story presented here?

One caveat is that explicit examples of the AdS/CFT correspondence usually con-

tain compact extra dimensions whose sizes are comparable to RAdS, for example

in AdS5 × S5. In the ε → 0 limit, the five-dimensional AdS-Schwarzschild black
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hole has a horizon radius much smaller than RAdS and is therefore too small to

represent the most typical states; a ten-dimensional black hole of the same total

energy, which breaks the symmetry of the S5, has even higher entropy. There-

fore, the gravitational stability problem of AdS5 does not directly translate to the

thermalization problem in the boundary system. This might be an interesting

direction for future work, but we will set this concern aside for now. Let us take

a very optimistic point of view that the AdS/CFT correspondence can work with

extra dimensions arbitrarily smaller than RAdS, or even without them.

After limiting our attention to the AdS space and treating our classical field the-

ory as a limit of a quantum gravity theory, the ε → 0 limit leads to a different

issue. Recall the well known Hawking-Page transition [44]: A black hole does not

always dominate the micro-cannonical ensemble; given low enough energy, thermal

gas is the most typical state. In this case, forming a black hole does not imply

thermalization. This is the main issue we wish to clarify.

First of all, this issue highlights the importance of our position space approach.

Focusing on the power spectrum, initial conditions occupying only low frequency

modes must propagate to higher frequency in order to approach either a black hole

or a thermal gas state. This type of turbulent cascade is a necessary condition for

thermalization. However, without differentiating between the final states toward

which the system could be evolving, one cannot argue unequivocally for or against

thermalization.

Next, let us analyze under what circumstances the black hole or the thermal gas

state will dominate the ensemble. For simplicity, we will work via dimensional

analysis and ignore any order-one factors. First, note that the ε → 0 limit is

actually the weak-gravity limit, corresponding to

β ≡ RAdS

RBH
� 1 . (2.58)

Namely, the Schwarzschild radius of the black hole made by collapsing the scalar

field energy is much smaller than the AdS size. On the other hand, the most

straightforward standard for trusting classical gravity is

γ ≡ RBH

lPlanck
� 1 (2.59)

where we have restored the Planck scale lPlanck =
√
G~, which has been set to

one in the rest this work. This condition implies that, at the very least, if a black

hole forms, it could be described by classical gravity. For the limit we have been

considering, both β and γ have been taken to infinity. We will see that whether

the black hole or the thermal gas dominates depends on the details of how that

limit is taken.
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The entropy of a black hole with energy E is13

SBH ∼ (lPlanckE)
2 ∼

(
RBH

lPlanck

)2

. (2.60)

The entropy of a thermal gas in AdS space with the same total energy is

Sgas ∼
(
RBHRAdS

l2Planck

)3/4

. (2.61)

Thus, black hole states dominate the micro-canonical ensemble when(
RBH

lPlanck

)
>

(
RAdS

RBH

)3/2

; γ > β3/2 . (2.62)

This condition is equivalent to comparing the thermal wavelength λth of the gas

to the black hole radius; the black hole dominates the ensemble if

RBH > λth . (2.63)

We can see that whether the condition in eq. (2.62) is satisfied depends on how

the limits of large β and large γ are taken. A classical and small-ε limit does not

restrict the system to being dominated by either the thermal gas or black hole

states.

Note that whether, and for how long, classical evolution is a good approximation

depends on more details of the state. For example, even if a black hole forms

which is classical according to eq. (2.59), the process by which it formed might

not be. A simple rule of thumb for the validity of the classical limit is that the

occupation numbers in the modes of interest have to be large. If the system is in

a state where the energy is roughly equipartitioned between a number of modes

up to some maximum frequency ωmax, we require

energy per mode� ωmax . (2.64)

The thermal gas states can never satisfy this condition because modes with fre-

quency of order the temperature have occupation numbers of order one, yet con-

tribute a significant fraction of the entropy of the gas. Independent of the limiting

procedure and which states dominate, the thermal gas final state is never compat-

ible with a classical description.14

13Note that we are assuming here that the spacetime is effectively AdS4 at distance scales

of order the size of the black hole; in string constructions, such as AdS4 × S7, black holes

whose radius is small compared to the AdS radius would be eleven-dimensional rather than

four-dimensional, leading to different formulas.
14Nevertheless, from the position-space viewpoint, classical evolution may still describe the

“process of approaching” a thermal gas state, at least distinguishing it from approaching a black

hole. In the latter case energy becomes more concentrated, but in the former case it does not.
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On the other hand, a spherically symmetric collapse into a black hole can often

be completely classical. Such a process only needs to excite the radial modes from

the longest wavelength ∼ RAdS to the shortest wavelength ∼ RBH, thus

number of modes =
RAdS

RBH
. (2.65)

The condition on occupation numbers, eq. (2.64), becomes

β � γ2 . (2.66)

Comparing this to eq. (2.62), we see that eq. (2.66) is always true when the black

hole dominates the ensemble, but it can still be true even if thermal gas domi-

nates.15 Thus, the specific stability problem within classical gravity investigated in

this chapter, namely a spherically symmetric collapse into a black hole, is a valid

dual to some boundary system, independent of whether such a process is equivalent

to a efficient thermalization or not.16

Furthermore, when the thermal gas dominates, if a black hole really forms in the

time scale we investigated,

Tweak gravity = RAdS
RAdS

RBH
∝ ε−2 , (2.67)

it could represent a significant delay to thermalization. In order to confirm this,

we need to compare the näıve thermalization time Tweak gravity to the black hole

lifetime, given by the the evaporation time scale,

Tevaporation =
R3

BH

l2Planck

. (2.68)

When Tevaporation > Tweak gravity, which requires

β < γ , (2.69)

the system thermalizes only after forming a long-lived black hole, which eventually

evaporates. This process of thermalization via a quasi-stationary thermal-like

state is known as prethermalization and has been observed in finite-sized, isolated

quantum systems [30, 31]. Note that eq. (2.69) is compatible with thermal gas

domination and a classical collapse.

15Note that spherical symmetry is very important here. Without it, the number of modes

would have been
(
RAdS
RBH

)3
, and with that many modes, the black hole collapse would have failed

to remain classical in the thermal gas-dominated regime.
16Here, “efficient” means that thermalization happens in the shortest time scale allowed by the

dynamics, ∼ ε−2. One should not confuse this with, for example, the much faster thermalization

in the Poincaré patch of AdS, where, within one AdS time, perturbations cross the horizon, form

a planar black hole, and appear to thermalize.
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To summarize, spherically symmetric black hole formation within Tweak gravity can

have two different holographic interpretations:

• When γ2 > β3, it represents efficient thermalization of the boundary system.

• When β < γ < γ2 < β3, it represents prethermalization, which delays

true thermalization (to thermal gas17) at a time scale & Tevaporation >

Tweak gravity.

For the remaining possibility, when γ2 < β3 but β > γ, the implication of black

hole formation is inconclusive from a thermalization point of view. Black holes

decay too fast to be quasi-stationary intermediate states, but their evaporation

cannot guarantee reaching the thermal gas state either.

2.6 Summary

• By combining existing numerical data with our analysis, we have argued

that for a massless scalar field in AdS space, in the small-amplitude ε → 0

limit, solutions remaining stable up to the interaction time scale T ∼ ε−2

form an open set. This improves similar observations in finite-ε numerical

simulations [10,11] and argues against the conjecture that the weakly turbu-

lent instability occurs in all but a set of measure zero in the space of initial

conditions [8, 14,15].

• One important difference between our approach and previous work is that

we analyzed the problem in position space. We pointed out that only posi-

tion space properties can provide necessary and sufficient conditions for the

collapse into a black hole. Any analysis of the power spectrum can at most

provide necessary conditions for black hole formation.

• In the position space analysis, we exploited the small-amplitude ε → 0

limit and argued that the only relevant dynamics are the gravitational self-

interactions near r = 0. This argument requires a hierarchy of scales given

in eq. (2.13), which is difficult to reach in realistic numerical simulations.

• We showed that gravitational self-interaction near r = 0 obeys an exact

antisymmetry under time reversal. As a result, it is equally generic for

interactions to focus or defocus energy. This equality is consistent with

17Note that since thermal gas is never classical, we do not know exactly when will it really

form. We only know that within Tevaporation, the systems was too busy forming a black hole and

then remaining as one, so it cannot reach the thermal gas state yet.
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existing numerical results.18 We remind the readers that gravity can be

effectively repulsive: tidal forces tend to pull things apart. The possible

defocusing of a radiation shell is due to such tidal effect.

• By making use of scaling symmetry, we simplified the stability problem in

the ε→ 0 limit into a global regularity problem within a finite rescaled time.

The evolution was recast as a simple, first-order differential equation. We

hope that this point of view, combined with the other techniques in this

work and the existing literature, will allow a rigorous analysis of stability in

the vanishing amplitude limit.

• Even if black holes do form in the ε−2 time scale, we point out that it

does not always represent efficient thermalization of the boundary theory via

AdS/CFT duality. In some cases, black hole formation describes prethermal-

ization, and actual thermalization is delayed until this black hole evaporates.

2.A Analytical details

In this appendix, we will clarify some analytical details omitted in Sec. 2.3. There

we showed how to reach a simple differential equation for u1, eq. (2.26), which can

be solved simply by integrating the Green’s function:

u1(r, tf ) =
1

2

∫ r0

−r0
dt

∫ r+r0−t

r−r0+t

dr′ S(r′, t)

=
1

2

∫ r0

−r0
dt

∫ r+r0−t

r−r0+t

dr′
(
C(ü0 + u′′0) + Ċu̇0 + C ′

(
u′0 −

u0

r′

))
.(2.70)

Here we should be careful about our method of images. A physical solution φ1

is only given by a u1 that is an odd function of r, and it is not obvious that

the u1 given by the above integral will have this property. Another potentially

worrisome observation is that the lower limit of the r′ integral can be negative for

some positive r, but a physical answer should only invoke an integration over the

physical space r > 0 where the quantity C = V −M/r is naturally defined.

In this case, these concerns about the method of images can be easily resolved.

As explained in Sec. 2.3, we can generalize the definition of V and M to include

the r < 0 region. We will find that M is an odd function of r and V is even.

18More specifically, one could take any numerical simulation and pause it at a moment when

gravity is still weak. If one keeps the field profile but reverses the time derivative at this moment,

the simulation will literally evolve backward toward the original initial profile, up to the numerical

error and higher-order effects (which are small if the hierarchy of scales in eq. (2.13) is satisfied

during the process).
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Together with the fact that u0 is odd, we see that the integrand in eq. (2.70) is

odd. Any integration over negative r is canceled by an equal region with positive r,

so effectively the lower limit of the r′ integral is |r−r0 + t|. eq. (2.70) is effectively

only integrating over the physical range. It is, however, more convenient to keep

working in this form and avoid the confusion of taking an absolute value. An odd

integrand here also guarantees that u1 is an odd function which leads to a physical

φ1.

The form of eq. (2.70) clearly suggests some integrations by parts.

u1(r, tf ) = −1

2

∫ r0

−r0
dt

∫ r+r0−t

r−r0+t

dr′ C ′
u0

r′
+

1

2

∫ r0

−r0
dt

∫ r+r0−t

r−r0+t

dr′ (Cu′′0 + C ′u′0)

+
1

2

∫ r+2r0

r−2r0

dr′
∫ r0−|r−r′|

−r0
dt (Cü0 + Ċu̇0) (2.71)

= −1

2

∫ r0

−r0
dt

∫ r+r0−t

r−r0+t

dr′ C ′
u0

r′

+
1

2

∫ r0

−r0
dt C

[
(r + r0 − t), t

]
u′0

[
(r + r0 − t), t

]
−1

2

∫ r0

−r0
dt C

[
(r − r0 + t), t

]
u′0

[
(r − r0 + t), t

]
+

1

2

∫ r

r−2r0

dr′ C

[
r′, (r0 − r + r′)

]
u̇0

[
r′, (r0 − r + r′)

]
+

1

2

∫ r+2r0

r

dr′ C

[
r′, (r0 − r′ + r)

]
u̇0

[
r′, (r0 − r′ + r)

]
−1

2

∫ r+2r0

r−2r0

dr′ C(r′,−r0)u̇0(r′,−r0)

=
1

2

∫ r0

−r0
dt C

[
(r − r0 + t), t

](
u̇0

[
(r − r0 + t), t

]
− u′0

[
(r − r0 + t), t

])
+

1

2

∫ r0

−r0
dt C

[
(r + r0 − t), t

](
u̇0

[
(r + r0 − t), t

]
+ u′0

[
(r + r0 − t), t

])
−1

2

∫ r0

−r0
dt

∫ r+r0−t

r−r0+t

dr′ C ′
u0

r′
− 1

2

∫ r+2r0

r−2r0

dr′ C(r′,−r0)u̇0(r′,−r0) .

In the above equation, we first isolated two terms which should be integrated

by parts, and for one of them we interchange the order of integration so it can

be done with respect to t instead of r′. The integration by parts produces five

boundary terms as line integral along five segments which we explicitly write down.

Finally, two pairs of segments can combine with each other and be expressed as

time integrals. We collect the remaining space integral and the only non-boundary

term which cannot be integrated by parts in the end.
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Note that up to this step, we have not used any approximations. We did not even

use the property that C is sourced by φ0. In other words, this expression could

describe the change in the field profile under the influence of any other spherically

symmetric gravitational effects, either apart from or on top of its self-interaction.

Our next step is to plug in eq. (2.23) and use our assumption that it represents a

thin shell: we assume that u0 is only nonzero within two narrow packages around

r = t and r = −t. This significantly simplifies eq. (2.71) to

u1(r, tf ) = − ε√
w
f ′
(
r − r0

w

)∫ r0

−r0
dt C

[
(r − r0 + t), t

]
(2.72)

+
ε√
w
f ′
(−r − r0

w

)∫ r0

−r0
dt C

[
(r + r0 − t), t

]
−1

2

∫ r0

−r0
dt

∫ r+r0−t

r−r0+t

dr′ C ′
u0

r
− 1

2

∫ r+2r0

r−2r0

dr′ C(r′,−r0)u̇0(r′,−r0) .

Note that here the f ′ means a derivative with respect to the variable of f instead

of a r derivative, which should always be clear from the context.

Since in the end, we are only interested in the physical range r > 0, we can actually

drop the second term because the profile f is zero there. This starts to take the

promised form of eq. (2.27), and we can almost identify

∆r =

∫ r0

−r0
dt C

[
|r − r0 + t|, t

]
. (2.73)

Note that we have added an absolute value to the first variable in C. This makes

no difference since it is even, but it helps to emphasize the fact that the integral

can be strictly limited to the physical r > 0 region.

The physical meaning of eq. (2.73) now becomes clear. When the metric includes

first-order corrections, such as in eq. (2.18), a null ray actually follows(
1 +

M

r

)
|dr| = (1 + V ) dt . (2.74)

Thus an incoming null ray starting from r = r0 and ti = −r0 does not exactly

return to r = r0 at tf = r0; the amount it misses is exactly given by eq. (2.73). The

leading-order correction due to gravity, of course, includes the fact that geodesics

are changed, and the shell simply follows the new geodesic. A geometric calculation

is enough to determine how much a localized object appears to be shifted from

the position predicted by the zeroth-order theory.

For any finite-sized source, the gravitational potential at large r is proportional to

1/r, so the integral in eq. (2.73) actually had a piece proportional to log r0. Since
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2. Position space analysis of the AdS (in)stability problem

we are have taken r0 to be large, one might have worried that such a term would

the ruin perturbation expansion. However, such the log r0 term is totally expected

from the change of geodesics and does not interfere with our goal of computing

the change in width or other changes.

One last concern about the position shift in eq. (2.73) is that it is a function of r.

This turns out not to be a problem either, since the r-dependent part of ∆r is not

proportional to log r0. We can see this by taking a derivative with respect to r:

∂r∆r = ∂r

(∫ r0−r

−r0
dt C

[
(r0 − r − t), t

]
+

∫ r0

r0−r
dt C

[
(t− r0 + r), t

])
=

(
−
∫ r0−r

−r0
dt C ′

[
(r0 − r − t), t

]
+

∫ r0

r0−r
dt C ′

[
(t− r0 + r), t

])
.(2.75)

According to the Einstein’s equation, we have

C ′ = V ′ − M ′

r
+
M

r2
=

2M

r2
+
r

2
(Trr − Ttt) . (2.76)

This means that as long as we restrict the matter sources to (1) finite-sized sources

that vanish beyond some fixed r and/or (2) radiation in the radial direction,

Trr = Ttt, then the r dependence of ∆r will not have a log r0 (or any other

large r0) dependence. Furthermore, there is no small-r divergence either, since

the two terms in eq. (2.75) takes opposite signs and cancel each other near r = 0.

Pictorially, this means that different infinitesimal segments within the wavepacket

“shift” differently from one another by some finite amount.

In the last line of eq. (2.72), the first term is also finite for the same reason as

eq. (2.76), and the second term is finite because u0 has compact support. These

terms should be combined and understood as some perturbative deformations of

the wavepacket profile. They are cleanly separated from the ∆r ∼ log r0 overall

shift, which is uniquely defined by a projection:

∆r = −
∫
u1∂ru0 dr∫
(∂ru0)2 dr

. (2.77)

We can simply remove this shift mode from eq. (2.27) and study the other defor-

mations. A more physical way to understand the removal of this shift is letting the

wavepacket evolve an extra time ∆t = ∆r such that it really reaches position r0;

then it will be fair to compare with the zeroth-order profile at the same position.

In order to eventually form a black hole, we need the energy density to become

large. Since the total energy is conserved, the most trivial way to increase the

energy density is to narrow the width of the profile. The leading-order change in
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width can be extracted from u1 by the following projection:

∆w =

∫
u1∂wu0 dr∫
(∂wu0)2 dr

. (2.78)

Note that the ε dependence was already scaled out in eq. (2.14). Interestingly,

ε2 has the unit of length in our conventions, and the physical change in width is

ε2∆w. Therefore, ∆w is dimensionless. The width w is the only other dimensionful

quantity that can potentially affect ∆w in the leading order (r0 affects only the

subleading error), and so there is no way it can enter the expression for ∆w.

What we really wish is to determine the sign of ∆w. ∆w < 0 means that the

shell gets narrower, and several bounces later it might form a black hole. On the

other hand, ∆w > 0 means that the shell gets wider, and several bounces later

the energy will be more diluted, which in some sense is moving away from a black

hole in phase space.

One technical point to note here is that, given our shell profile eq. (2.23), the

mode ∂wu0 actually measures the scaling of the profile around some center. If

that center is not the center of mass, then this scaling not only changes the width

but also shifts the position. A simple projection will be contaminated by the large

∼ log r0 contribution from the position shift. We will avoid this by always defining

the profile f(x) to have its center of mass at x = 0. This means that, on top of

the normalization ∫
f ′(x)2 dx = 1 , (2.79)

we also demand that ∫
xf ′(x)2 dx = 0 . (2.80)

This guarantees that the scaling mode ∂wu0 is orthogonal to the shift mode ∂ru0.

2.B Numerical examples

2.B.1 The asymmetry-focusing correlation

In this appendix, we numerically evaluate the change to a thin-shell profile after

one bounce. Our example will be the following two one-parameter families of
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Figure 2.5: The left panel shows the energy density of the profiles with the “+” sign defined

in eq. (2.81), and the right panel shows the profiles with the “−” sign. The blue

curves are the symmetric, a = 0 profiles. The red (dashed) curves are for a = 0.5,

which is the maximally “tilted” profile in the range we scanned through. We can

see that the family with the “+” sign is more sensitive to the parameter a.

profiles.

ga(x) = (1 + ax± x2) e−x
2

, (2.81)

Na =

√∫
g′2a dx , (2.82)

Xa = N−2
a

∫
xg′2a dx , (2.83)

fa(x) ≡ N−1
a ga(x+Xa) . (2.84)

They are symmetric when a = 0, and varying a scans through two different direc-

tions of asymmetry. Note that the quadratic term is necessary. Without it, a small

a simply means an overall shift in position and the profile will be still symmetric

to leading order. Our definition of fa(x) shifts the center of mass back to x = 0

and preserves only the asymmetry generated by a.

We plot some representative profiles in Fig. (2.5). Note that for both families, we

have fa(x) = f−a(−x). Scanning through positive and negative values of a can

confirm our analytical proof in Sec. 2.4 that flipping the profiles leads to opposite

behaviors within one bounce. It will also provide a better understanding about

what physical quantity really affects whether a profile becomes focused or not.

There are infinite ways to be asymmetric, and our parameter a certainly is not

the unique parameter to quantify the asymmetry. It also has no reason to be the

asymmetry directly responsible for focusing or defocusing the profile. However, for

any family of profiles centered around a symmetric one, we can define a natural

parameter to quantify the asymmetry, at least for small values of a. Here is how it

goes. First of all, ga has a center of mass shifted by Xa from g0 by the definition
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Figure 2.6: The left panel shows the asymmetry parameter defined as the difference between

the center-of-mass shift and the field-profile shift. The blue curve is for the “+”

family and the red curve for the “−” family. The right panel shows the change is

width after one bounce, which qualitatively agrees with the asymmetry parameter.

These are done with r0 = 60 and w = 1. Recall that the physical change in width

is actually ε2∆w.

in eq. (2.83). On the other hand, one can also naturally define the shift by a

projection to the zero mode, which is exactly the way we defined ∆r in eq. (2.77).

X̄a = N−2
0

∫
[g0(x)− ga(x)]g′0(x) dx . (2.85)

These two shifts already disagree at linear order in a, therefore the amount of their

disagreement, ∆Xa = (Xa − X̄a), seems to be a reasonable way to quantify the

asymmetry.

Given these profiles, we solve eq. (2.18) for M and V , and then we can integrate

eq. (2.70). When we scan the parameter a from −0.5 to 0.5, the change in width

∆w defined in eq. (2.78) follows a pattern closely resembling the behavior of this

asymmetry parameter, ∆Xa. We compare them side-by-side in Fig. (2.6). Note

that they are not identical. For example, the relative slopes between the two

families near a = 0 are not the same. Thus, although we see a rough correlation

between them, we cannot claim that our asymmetry parameter directly controls

focusing or widening in one bounce.

In our conventions, the profiles are moving toward the right in Fig. (2.5). If we

compare their shapes in Fig. (2.5) to their behaviors in Fig. (2.6), we get the

following impression:

• When the wavepacket is denser in the front, we get ∆w < 0. The shell gets

focused into a smaller region, and gravitational effect will become stronger

in the next bounce.

• When the wavepacket is denser in the tail, we get ∆w > 0. It profile gets

wider after one bounce, and gravitational effect will become weaker in the
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Figure 2.7: Results with a = 0 and varying r0 from 30 to 90 in steps of 10. The left panel shows

∆w, which indeed goes to zero as 1/r0. The right panel shows the position shift ∆r

defined in eq. (2.77) which has the correct log r0 dependence.

next bounce.

Since the family of profiles with “+” sign is much more sensitive to the parameter

a, we will use it to test other behaviors later in App. 2.B.2.

In Fig. (2.6), one might notice that for the a = 0 symmetric profiles, the changes in

width are not exactly zero as we argued earlier. This deviation is not physical but

simply an artifact of our approximation. That is because although the physical

solution is symmetric in time, our technical choice breaks that symmetry by a

small amount. We have set the correction to the field profile at the initial time to

zero, u1(r,−r0) = 0. This is a small error since the first-order correction to the

metric in eq. (2.18) would have already modified the free field profile at that time,

by a small fraction ∼ ε2V ∼ ε2/r0.

We test this explanation by varying r0 and verifying that ∆w goes to zero in the

expected way; see Fig. (2.7). We also verified that the position shift indeed has

an r0-dependent shift ∆r ∝ log r0, as discussed in App. 2.A.

Finally, with a symmetric profile, one can ask for a prediction for the next bounce.

What we observed in these examples is that a symmetric profile will pick up a

∆Xa > 0 in one bounce. This is a very tentative evidence that in the next bounce,

they will have ∆w > 0, namely their energy become defocused. We stress again

that this is not a proof, but merely two examples we observed. A more thorough

investigation is required to support the generic downward flow we conjectured in

Sec.2.5.
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2.B.2 The effect of another object

Black hole formation does not always involve all of the energy becoming concen-

trated into a thin shell. For example, an initially smooth field profile might start

to develop one or more sharp peaks. It is possible for the energy density in these

peaks to become large enough to induce strong gravity and black hole collapse

before or even without the average density of the entire profile ever becoming

large.

In this section, we will present some evidence that sharp peaks evolve similarly

to thin shells. In the perturbative regime, one is free to separate the matter into

components in many ways. In particular, we can treat a smooth field profile with

a sharp peak as a thin shell propagating in the background of some additional

diffuse source of gravity. Our approach is convenient since eq. (2.70) and further

analysis about it do not rely on the specific metric ansatz eq. (2.18). As long

as the additional source are also spherically symmetric, we can simply repeat the

calculation in the previous appendix.

We will start by considering a simple situation in which the additional matter

sources are static. In addition to the thin shell with total mass 4πε2, we have

M0(r) = 10ε2star tanh

(
r

wstar

)2

, (2.86)

Pr ≈ 0 . (2.87)

This is a star of roughly constant density, radius wstar and total mass 10ε2star. It

does not interact with the massless field which forms the shell in any other way

other than gravitationally, so it simply enters by altering the metric in eq. (2.18).

We assume the star is stable and supports itself by a negligible amount of radial

pressure (but it can have angular pressure), so it does not add any extra term to

modify Trr.

According to the momentum space analysis, including this additional gravitational

source breaks the AdS resonance structure and should interfere with black hole

formation [28]. We show that such an interpretation is not necessary to under-

stand the dynamics of thin shells in one bounce. Remember that for a symmetric

shell profile, we argued that there cannot be a change in width due to the time-

reversal symmetry. Adding an extra, static source does not break that symmetry,

so symmetric profiles again cannot change in size. And, it is straightforward to

verify that asymmetry still focuses or defocuses in qualitatively the same way as

before.

In Fig. (2.8), we demonstrate that whether the shell gets thinner or thicker has the

same dependence on the asymmetry induced by the parameter a. Its magnitude

53



2. Position space analysis of the AdS (in)stability problem

-0.4 -0.2 0.2 0.4

a

-20

-10

10

20

Dw

-0.4 -0.2 0.2 0.4

a

-4

-2

2

4

Dw

Figure 2.8: We plot the change in width ∆w as a function of the parameter a in eq. (2.81). Both

figures are with r0 = 30. The left panel shows the effect of dialing the mass of the

additional matter source, ε2star = 0, 10, 50, 200, without changing its size wstar = 1.

The right panel shows the effect of dialing the size while keeping the same density,

wstar = 1, 5, 20, 200. We have removed the errant 1/r0 contribution by hand.

does have an interesting dependence on the additional source. In the first set of

data we fix the size of the star to be equal to the shell. The change in width turns

out to grow linearly with the additional mass. On the other hand if we keep the

same density and increase the size of the star, the change in width is not strongly

affected.
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3
Conditionally extended validity

of perturbation theory:

Persistence of stability islands

Beauty is the first test; there is no permanent place

in the world for ugly mathematics.

— Godfrey H. Hardy

3.1 Introduction and Summary

So far we have presented two approximate methods for dealing with the problem

of small perturbations. One is based on Fourier space analysis and the other one is

based on a position space analysis. The upshot is that they both result in a set of

approximate equations that possess a very important scaling symmetry. However

such approximate schemes break down after some time, which in the problem at

hand is the first nonlinear time scale t ∼ ε−2. Coincidentally, this time scale is the

the one at which black hole formation takes place [8]. Therefore one is actually

interested in what happens exactly at this time scale and if we can trust our

approximate schemes up to this long time scale. This is exactly the question that

we are engaged with in this chapter.

3.1.1 Truncated Perturbative Expansion

A linear equation of motion Dφ = 0 often has close-form analytical solutions. A

nonlinear equation, Dφ = Fnonlinear(φ), on the other hand, usually does not. One

can attempt to expand Fnonlinear when φ is small. For example,

Dφ = Fnonlinear(φ) = φ2 +O(φ3) . (3.1)

When the amplitude is small, |φ| < ε� 1, one can solve the truncated equation of

motion that includes the φ2 term as a perturbative expansion of |φ2/φ| < ε from
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the linear solutions. For a small enough choice of ε, this can be a good enough

approximation to the fully nonlinear theory. Unfortunately, this will only work for

a short amount of time. After some time T ∼ ε−1, the correction from the first

nonlinear order accumulates and becomes comparable to the original amplitude.

Thus the actual amplitude can exceed ε significantly to invalidate the expansion.1

A slightly more subtle question arises while applying such a truncated perturbation

theory. Occasionally, there can be accidental cancellations while solving it. Thus

during the process, the amplitude may stay below ε for T ∼ ε−1. In these occasions,

are we then allowed to trust these solutions?

It is very tempting to directly answer “no” to the above question. When T ∼ ε−1,

not only the accumulated contribution from φ2, which the theory does take into

account, modifies φ significantly. The φ3 term that the theory discarded also

modifies φ2, and so on so forth. Since we have truncated all those even higher

order terms which may have significant effects, the validity of the expansion process

seems to unsalvageably break down.

The above logic sounds reasonable but it is not entirely correct. In this chapter, we

will demonstrate that at exactly T ∼ ε−1 time scale, the opposite is true. These

“nice” solutions we occasionally find in the truncated theory, indeed faithfully rep-

resent similar solutions in the full nonlinear theory. This idea is not entirely new.

We are certainly inspired by the application of the two-time formalism and the

renormalization flow technique in the AdS-(in)stability problem, and both of them

operate on this same concept [12,21].2 However, one may get the impression from

those examples that additional techniques are required to maintain the approxi-

mation over the long time scale. One of the main points that we want to make

here is that the validity of truncated theory extends trivially in those occasions.

As long as the truncated theory is implemented recursively, which is the natural

way to solve any time evolution anyway, it remains trustworthy in those occasions.

In Section 3.2, we will state and prove a theorem that guarantees a truncated

perturbative expansion, implemented recursively, to approximate the full nonlinear

theory accurately in the long time scale in the relevant occasions. More concretely,

this theorem leads to the two following facts:

• If one solves the truncated theory and finds solutions in which the amplitude

remains small during the long time scale, then similar solutions exist in the

1The notion of “time” here is just to make connections to practical problems for physicists.

The general idea is valid whenever one tries to solve perturbation theory from some limited

boundary conditions to a far-extended domain.
2We thank Luis Lehner for pointing out that some Post-Newtonian expansions to General

Relativity also shows validity at this long time scale [45].
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full nonlinear theory.3

• If numerical evolution of the full nonlinear theory provides solutions in which

the amplitude remains small during the long time scale, then a truncated

theory can reproduce similar solutions.

Formally, the meaning of “similar” in the above statements means that the differ-

ence between two solutions goes to zero faster than their amplitudes in the zero

amplitude limit. This theorem provides a two-way bridge between numerical and

analytical works. Anything of this nature can be quite useful. For example, nu-

merical results are usually limited to finite amplitudes and times, while the actual

physical questions might involve taking the limit of zero amplitude and infinite

time. With this theorem, we can start from known numerical results and extend

them to the limiting case with analytical techniques.

In Section 3.3, we will prove another theorem which enables us to do just that

in the AdS (in)stability problem. The key is that the truncated theory does

not need to be exactly solved to be useful. Since its form is simpler than the

full nonlinear theory, it can manifest useful properties, such as symmetries, to

facilitate further analysis. Since it is a truncated theory, the symmetry might be

an approximation itself, and naively expected to break down at the long time scale.

Not surprisingly, using a similar process, we can again prove that such symmetry

remains trustworthy in the relevant occasions.

It is interesting to note that the conventional wisdom, which suggested an unsal-

vageable breakdown at T ∼ ε−1, is not entirely without merits. We can prove

that both theorems hold for T = αε−1 for an arbitrarily but ε-independent value

of α. However, pushing it further to a slightly longer, ε-dependent time scale, for

example T ∼ ε−1.1, the proofs immediately go out of the window. The situation

for T ∼ ε−1(− ln ε) is also delicate and will not always hold. Naturally, for time

scales longer than T ∼ ε−1, one needs to truncate the theory at an even higher

order to maintain its validity. A truncated theory up to the φm term will only be

valid up to T ∼ ε1−m.

3.1.2 The AdS (In)Stability Problem

In Section 3.4, we will apply both theorems to the AdS-(in)stability problem

[4, 8, 10–12, 14–16, 20–28, 34, 46]. Currently, the main focus of this problem is

3Be careful that sometimes, especially in gauge theories, the full nonlinear theory might

impose a stronger constraint on acceptable initial conditions. One should start from those ac-

ceptable initial conditions in order to apply our theorem. We thank Ben Freivogel for pointing

this out.
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indeed the consequence of the nonlinear dynamics of gravitational self-interaction,

at the time scale that the leading order expansion should generically break down.

Some have tried to connect such break down to the formation of black holes and

further advocate that such instability of AdS space is generic. In particular, Dias,

Horowitz, Marolf and Santos made the stability island conjecture [15]. Al-

though at finite amplitudes, there are numerical evidence and analytical arguments

to support measure-nonzero sets of non-collapsing solutions, they claimed that the

sets of these solutions shrinks to measure zero at the zero amplitude limit.

Since the relevant time scale goes to infinity at the zero amplitude limit, such con-

jecture cannot be directly tested by numerical efforts. Nevertheless, by the two

theorems we prove in this chapter, it becomes straightforward to show that such

conjecture is in conflict with existing evidence. The physical intuition of our argu-

ment was already outlined in [4], and here we establish the rigorous mathematical

structure behind it.

• Theorem I allows us to connect non-collapsing solutions [10–12, 15] to anal-

ogous solutions in a truncated theory, both at finite amplitudes.

• Theorem II allows us to invoke the rescaling symmetry in the truncated

theory and establish those solutions at arbitrarily smaller amplitudes.

• Using Theorem I again, we can establish those non-collapsing solutions in

the full nonlinear theory at arbitrarily smaller amplitudes.

Thus, if non-collapsing solutions form a set of measure nonzero at finite amplitudes

as current evidence implies, then they persist to be a set of measure nonzero when

the amplitude approaches zero. Since the stability island conjecture states that

stable solutions should shrink to sets of measure zero, it is in conflict with existing

evidence.

It is important to note that defeating the stability island conjecture is not the end

of the AdS (in)stability problem. Another important question is whether collapsing

solutions, which likely also form a set of measure nonzero at finite amplitudes, also

persist down to the zero-amplitude limit. It is easy to see why that question is

harder to answer. Truncated expansions of gravitational self-interaction, at least

all those which have been applied to the problem, do break down at a certain point

during black hole formation. Thus, Theorem I fails to apply, one cannot establish

a solid link between the truncated dynamic to the fully nonlinear one, and the

AdS (in)stability problem remains unanswered.

In order to make an equally rigorous statement about collapsing solutions, one

will first need to pose a weaker claim. Instead of arguing for the generality of

black hole formation, one should consent with “energy density exceeding certain
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bound” or something similar. This type of claim is then more suited to be studied

within the validity of Theorem I, and it is also a reasonable definition of AdS

instability. If arbitrarily small initial energy always evolves to have finite energy

density somewhere, it is a clear sign of a runaway behavior due to gravitational

attraction.4

Finally, we should note that the truncated theory is already nonlinear and may be

difficult to solve directly. If one invokes another approximation while solving the

truncated theory, such as time-averaging, then the process becomes vulnerable to

an additional form of breakdown, such as the oscillating singularity seen in [48].

Even if numerical observations in some cases demonstrate a coincident between

such breakdown and black hole formation, the link between them is not yet as

rigorous as the standard established in this chapter for non-collapsing solutions.

3.2 Theorem I: Conditionally Extended Validity

Consider a linear space H with a norm satisfying triangular inequality.

||x+ y|| ≤ ||x||+ ||y|| , for all x, y ∈ H . (3.2)

Then consider three smooth functions L, f, g all from H to itself. We require that

L(x) = 0 if and only if x = 0, and it is “semi-length-preserving”.

||L(x)|| ≤ ||x|| . (3.3)

Note that this condition on the length is at no cost of generality. Given any

smooth function L̄ meeting the first requirement, we can always rescale it to make

it exactly length-preserving and maintaining its smoothness.

L(x) ≡ ||x||
||L̄(x)|| L̄(x) , if x 6= 0 ; L(x) ≡ 0 , when x = 0 . (3.4)

f and g are supposed to be two functions that within some radius r < 1, they are

both close to L but even closer to each other.

1. Being close to L: ∀ ||x|| < r ,

||f(x)−L(x)|| < a||x||m, ||g(x)−L(x)|| < a||x||m, for some a > 0 , m > 1 .

(3.5)

4It is then natural to believe that black hole formation follows, though it is still not guaranteed

and hard to prove. For example, a Gauss-Bonnet theory can behave the same up to this point,

but its mass-gap forbids black hole formation afterward [47].
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And doing so smoothly: ∀ ||x||, ||y|| < r and some b > 0,∣∣∣∣∣∣∣∣[f(x)− L(x)]− [f(y)− L(y)]

∣∣∣∣∣∣∣∣ < b · ||x− y||Max(||x||, ||y||)m−1 ,∣∣∣∣∣∣∣∣[g(x)− L(x)]− [g(y)− L(y)]

∣∣∣∣∣∣∣∣ < b · ||x− y||Max(||x||, ||y||)m−1 .

(3.6)

2. Even closer to each other: ∀ ||x|| < r ,

||f(x)− g(x)|| < c||x||l , for some c > 0 , l > m . (3.7)

Let us make the analogy to the physical problem more transparent by an example.

Choose a finite time ∆t to evolve the linear equation of motion Dφ = 0, L is

given by L[φ(t)] = φ(t + ∆t). Similarly, evolving the full nonlinear theory Dφ =

Fnonlinear(φ) leads to a different solution φ that defines f [φ(t)] = φ(t + ∆t), and

Dφ = φ2 defines g[φ(t)] = φ(t+ ∆t). Furthermore, the norm can often be defined

as the square-root of conserved energy in the linear evolution, which satisfies both

the triangular inequality and the semi-preserving requirement.

From this analogy, evolution to a longer time scale is naturally given by applying

these functions recursively. We will thus define three sequences accordingly.

f0 = g0 = L0 = x , Ln = L(Ln−1) , fn = f(fn−1) , gn = g(gn−1) . (3.8)

We will prove a theorem which guarantees that after a time long enough for both

gn and fn to deviate significantly from Ln, they can still stay close to each other.

Theorem I: For any finite δ > 0 and α > 0, there exists 0 < ε < r such that if

||fn|| < ε for all 0 ≤ n < αε1−m, then ||fn − gn|| < δε.

Since fn is known to be of order ε, thus when its difference with gn is arbitrarily

smaller than ε, one stays as a good approximation of the other.

Proof: First of all, we define

∆n ≡ cεl
n−1∑
i=0

(1 + bεm−1)i = cεl
(1 + bεm−1)n − 1

bεm−1
. (3.9)
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Within the range of n stated in the Theorem, it is easy to see that

∆n ≤ ∆bαε1−mc < cεl
(1 + bεm−1)αε

1−m − 1

bεm−1
<
cε1+l−m

b

(
ebα − 1

)
. (3.10)

Since l > m, there is always a choice of ε such that ∆n < δε. We will choose an ε

small enough for that, and also small enough such that

||fn||+ aεm < ε+ aεm < r , (3.11)

||fn||+ ∆n < ε+ δε < r . (3.12)

Next, we use mathematical induction to prove that given such choice of ε,

||fn − gn|| ≤ ∆n . (3.13)

For n = 0, this is trivially true.

||f0 − g0|| = 0 ≤ ∆0 = 0 . (3.14)

Assume this is true for (n− 1),

||fn−1 − gn−1|| ≤ ∆n−1 . (3.15)

Combine it with eq. (3.7) and (3.6), we can derive for the next term in the sequence.

||fn − gn|| ≤ ||f(fn−1)− g(fn−1)||+ ||g(fn−1)− g(gn−1)|| (3.16)

≤ cεl + (1 + bεm−1)∆n−1 = ∆n .

Thus by mathematical induction, we have proven the theorem.

Note that although in the early example for physical intuitions, we took f as

the full nonlinear theory and g as the truncated theory, their roles are actually

interchangeable in Theorem I. Thus we can use the theorem in both ways. If a

fully nonlinear solution, presumably obtained by numerical methods, stays below

ε, then Theorem I guarantees that a truncated theory can reproduce such solution.

The reverse is also true. If the truncated theory leads to a solution that stays below

ε, then Theorem I guarantees that this is a true solution reproducible by numerical

evolution of the full nonlinear theory.

Also note that the truncated theory might belong to an expansion which does not

really converge to the full nonlinear theory. This is quite common in field theories

that a näıve expansion is only asymptotic instead of convergent. Theorem I does

not care about whether such full expansion is convergent or not. It only requires

that the truncated theory is a good approximation to the full theory up to some
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specified order, as stated in eq. (3.7). Divergence of an expansion scheme at higher

orders does not invalidate our result.5

Finally, if one takes a closer look at eq. (3.9), one can see that if n is allowed to

be larger than the ε1−m time scale, for example n ∼ ε−s with s > m − 1, then

∆n fails to be bounded from above in the ε → 0 limit. Since the upperbound

we put is already quite optimal, we believe that the truncated theory does break

down at any longer time scale. In particular, this does not care about l. Namely,

independent of how small the truncated error is, accumulation beyond the ε1−m

time scale always makes the truncated dynamic a bad approximation for the full

theory. Thus, the conventional wisdom only requires a small correction. Usually,

the truncated theory breaks down at the ε1−m time scale. Occasionally, it can still

hold at exactly this time scale but breaks down at any longer time scale.

3.3 Theorem II: Conditionally Preserved Sym-

metry

We will consider an example that the truncated theory has an approximate scaling

symmetry. Let L(x) = x, g(x) = L(x) +G(x), such that for all ||x||, ||y|| < r,

||G(x)|| < a||x||m , (3.17)

||G(x)−G(y)|| < b · ||x− y||Max(||x||, ||y||)m−1 , (3.18)

||G(x)−NmG(x/N)|| < d||x||p , (3.19)

for a given p > m and any N > 1. Namely, the linear theory is trivial that Ln = x

does not evolve with n. The only evolution for gn comes from the function G(x),

which is for many purposes effectively “an xm term”. In this case, it is reasonable

to expect a rescaling symmetry: reducing the amplitude by a factor of N , but

evolve for a time longer by a factor of Nm−1, leads to roughly the same result.

Theorem II: For any finite δ > 0 and α > 0, there exists 0 < ε < r such that if

||gn(x)|| < ε for all 0 ≤ n < αε1−m, then

||Ngn(x/N)− (1− β)gn′(x)− βgn′+1(x)|| < δε . (3.20)

Here n′ = b(nN1−m)c is the largest integer smaller than or equal to (nN1−m),

and β = (nN1−m) − n′. This should be valid for any N > 1 and for 0 ≤ n <

5We thank Jorge Santos for pointing out the importance to stress this point.
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α(ε/N)1−m.

The physical intuition is the following. Every term in the rescaled sequence stays

arbitrarily close to some weighted average of the terms in the original sequence,

which exactly corresponds to the appropriate “time” (number of steps) of the

rescaling. We will first prove this for a special case, N = 2
1

m−1 . This case is

particularly simple, since such rescaling exactly doubles the length of the sequence,

and β will be either 0 or 1/2 which leads to two specific inequalities to prove:

∣∣∣∣∣∣∣∣2 1
m−1 g2n−1(x/2

1
m−1 )− gn−1(x) + gn(x)

2

∣∣∣∣∣∣∣∣ ≤ C · εq , (3.21)∣∣∣∣∣∣∣∣2 1
m−1 g2n(x/2

1
m−1 )− gn(x)

∣∣∣∣∣∣∣∣ ≤ C · εq , (3.22)

for some C > 0 and q > 1. This will again be done by a mathematical induction.

During the process, it should become clear that the proof can be generalized to any

N > 1. We will not present such proof, because the larger variety of β values makes

it more tedious, although it is still straightforward. However, for self-completeness

what we need in the next session is only that N can be arbitrarily large. Through

another mathematical induction, we can easily prove Theorem II for N = 2
k

m−1

for arbitrarily positive integer k. It is still a bit tedious, so we will present that in

Appendix 3.A.

Proof for N = 2
1

m−1

We start by defining the monotonically increasing function

∆n =

(
d

b
2m−1εp−m+1 +

a

2
εm
)[(

1 +
b

2
(2ε)m−1

)n
− 1

]
, (3.23)

with the properties

∆n < ∆α(ε/N)1−m (3.24)

=

(
d

b
2m−1εp−m+1 +

a

2
εm
)[(

1 +
b

2
(2ε)m−1

)α(ε/N)1−m

− 1

]
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<

(
d

b
2m−1εp−m+1 +

a

2
εm
)[

e2m−1αb/4 − 1
]
< C · εq ,

∆n+1 = ∆n

(
1 +

b

2
(2ε)m−1

)
+
d

2
εp +

ab

4
εm(2ε)m−1 . (3.25)

The meaning of eq. (3.24) is that, in the range we care about, ∆n is bounded from

above by a power of ε higher than one, since q =Min{p−m+ 1,m}. Given that,

we can always choose ε small enough such that∣∣∣∣gn(x)
∣∣∣∣+ ∆n < ε+ C · εq < r . (3.26)

Given our choice of ε, we can employ mathematical induction to prove that∣∣∣∣∣∣Ng2n−1(x/N)− gn−1(x) + gn(x)

2

∣∣∣∣∣∣ ≤ ∆2n−1 (3.27)∣∣∣∣∣∣Ng2n(x/N)− gn(x)
∣∣∣∣∣∣ ≤ ∆2n , (3.28)

which prove eq. (3.21) and (3.22).

First, we observe that for n = 0,∣∣∣∣∣∣Ng0(x/N)− g0(x)
∣∣∣∣∣∣ =

∣∣∣∣∣∣n x
N
− x
∣∣∣∣∣∣ = 0 < C · εq , (3.29)

is obviously true. Then, we assume that eq. (3.28) is true for n in the original

sequence and 2n in the rescaled sequence. We can prove for the next term, the

(2n+ 1) term in the rescaled sequence.∣∣∣∣∣∣Ng2n+1(x/N)− gn(x) + gn+1(x)

2

∣∣∣∣∣∣
=

∣∣∣∣∣∣Ng2n(x/N) +NG
(
g2n(x/N)

)
− gn(x)− 1

2
G
(
gn(x)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣Ng2n(x/N) +NG
(
g2n(x/N)

)
− gn(x)− 1

2
G
(
gn(x)

)
+ NG

(
gn(x)/N

)
−NG

(
gn(x)/N

)∣∣∣∣∣∣
<

∣∣∣∣∣∣Ng2n(x/N)− gn(x)
∣∣∣∣∣∣+N

∣∣∣∣∣∣G(g2n(x/n)
)
−G

(
gn(x)/N

)∣∣∣∣∣∣
+

1

Nm−1

∣∣∣∣∣∣G(gn(x)
)
−NmG

(
gn(x)/N

)∣∣∣∣∣∣
< ∆2n + ∆2n

b

Nm−1

(∣∣∣∣∆2n

∣∣∣∣+
∣∣∣∣gn(x)

∣∣∣∣)m−1
+
d

2
εp

< ∆2n + ∆2n
b

2
(∆2n + ε)

m−1
+
d

2
εp

< ∆2n + ∆2n
b

2
(2ε)m−1 +

d

2
εp < ∆2n+1. (3.30)
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Similarly we can prove for the (2n+ 2) term in the rescaled sequence, which is the

(n+ 1) term in the original sequence.∣∣∣∣∣∣Ng2n+2(x/N)− gn+1(x)
∣∣∣∣∣∣

=
∣∣∣∣∣∣Ng2n+1(x/N) +NG

(
g2n+1(x/N)

)
− 1

2
gn+1(x)

− 1

2
gn(x)− 1

2
G
(
gn(x)

)
+NG

(
gn(x) + gn+1(x)

Nm

)
−NG

(
gn(x) + gn+1(x)

Nm

)
+ NG

(
gn(x)

N

)
−NG

(
gn(x)

N

) ∣∣∣∣∣∣
<

∣∣∣∣∣∣Ng2n+1(x/N)− gn+1(x) + gn(x)

2

∣∣∣∣∣∣
+ N

∣∣∣∣∣∣G(g2n+1(x/N)
)
−G

(
gn(x) + gn+1(x)

Nm

) ∣∣∣∣∣∣
+ N

∣∣∣∣∣∣G(gn(x) + gn+1(x)

Nm

)
−G

(
gn(x)

N

) ∣∣∣∣∣∣+N
∣∣∣∣∣∣G(gn(x)

N

)
− 1

Nm−1
G
(
gn(x)

)∣∣∣∣∣∣
< ∆2n+1 + ∆2n+1

b

2
(2ε)m−1 +

d

2
εp +

ab

4
εm(2ε)m−1 = ∆2n+2 . (3.31)

This completes the mathematical induction.

eq. (3.25) takes basically the same form as eq. (3.9). Thus, Theorem II also only

holds up to exactly the ε1−m time scale, but not any longer.

3.4 Application: Persistence of Stability Islands

First, we review the “stability island conjecture” argued by Dias, Horowitz, Marolf

and Santos in [15]. Numerical simulations suggest that given a small but finite ini-

tial amplitude φinit. ∼ ε in AdS space with Dirichlet boundary condition, dynami-

cal evolution can lead to black hole formation at the long time scale T ∼ ε−2 [8]6.

In the meanwhile, some initial conditions do not lead to black holes at the same

time scale. In particular, there are special solutions (set of measure zero) which

not only do not collapse, they stay exactly as they are. These especially sta-

ble solutions are called geons (in pure gravity) or Boson-stars/Oscillons (scalar

field) [10, 14, 20]7. At finite amplitudes, they are not only stable themselves, but

also stabilize an open neighborhood in the phase space, forming stability islands

which prevent nearby initial conditions from collapsing into black holes in the

∼ ε−2 time scale.
6Note that for this purpose, m = 3, thus ε−2 is the relevant time scale.
7There are also quasi-periodic solutions which do not stay exactly the same but demonstrate

a long-term periodic behavior and the energy density never gets large [12].
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non-collapsing

geon

non-collapsing

Figure 3.1: Phase space diagrams of small initial perturbations around empty AdS (central

black dot) according to the stability island conjecture. The radial direction repre-

sents field amplitude (total energy), and the angular direction represents field profile

shape (energy distribution). Initial perturbations in the shaded (blue) region will

collapse into black holes at the ∼ ε−2 time scale, while the unshaded region, around

the exactly stable geons (thick black line), will not. The unshaded region is cuspy,

showing that according to the conjecture, the angular span of non-collapsing per-

turbations goes to zero as amplitude goes to zero. The right panel demonstrate the

usage of both Theorems we proved in this chapter. We can transport the known,

non-collapsing solutions, directly in the radial direction, to an arc of identical an-

gular span at an arbitrarily smaller radius. It is a direct contradiction to the cuspy

nature of the unshaded region.

Dias, Horowitz, Marolf and Santos argued that such stabilization effect can be

understood as breaking the AdS resonance.8 It should lose strength as the geon’s

own amplitude decreases. Thus, such stability islands go away in the limit of zero

amplitude. The easiest way to summarize their conjecture is by the cuspy phase-

space diagram in Fig. (3.1). Other than the measure-zero set of exact geons/Boson-

stars, non-collapsing solutions at finite amplitude will all end up collapsing as

amplitude goes to zero.

Next, we will show that the requirements of both Theorem I and II are applicable

to the AdS (in)stability problem. For simplicity, we present the analysis on a

massless scalar field in global AdS space of Dirichlet boundary condition. Metric

fluctuation in pure gravity will also meet the requirements [15, 16]. We will avoid

going into specific details of the AdS dynamics, but only provide the relevant works

where those can be found.

• The linear space H we used to state both Theorems (see the beginning of

8In some sense, this argument [15] provides a stronger support for non-collapsing solutions to

have a nonzero measure, because it goes beyond spherical symmetry. Current numerical results

are limited to spherical symmetry, thus strictly speaking cannot establish a nonzero measure

for either collapsing or non-collapsing results. This is why controversies over some numerical

results [29,49] should not undermine the belief that non-collapsing solutions form a set of nonzero

measure at finite amplitude.
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Sec.3.2) contains all smooth functions φ(~r) on the domain of the entire spatial

slice of the AdS space at one global time between.

• The function L evolves one such function forward for one “AdS period”,

namely T = 2πRAdS in the explanation right below eq. (3.7), using the fixed

background equation of motion. It includes no gravitational self-interaction

and is a linear function. Actually, since the AdS spectrum has integer eigen-

values, the evolution is exactly periodic [50, 51]. L(x) = x is trivial, au-

tomatically conserves length and also meets the requirement for Theorem

II.

• The definition of the norm is trickier. We first evolve x, using the fixed-

background evolution, for exactly 2πRAdS, and examine the maximum local

energy density ever occurred during such evolution. The norm is defined

to be the square-root of this value,
√
ρMax. The evolution is linear, and

the quantity is both a maximum and effectively an absolute value, thus it

satisfies the triangular inequality.9

• The actual dynamic, including Einstein equations, is clearly nonlinear. When

the maximum energy density is always small, the gravitational back-reaction

is well-bounded. One can perform a recursive expansion in which the leading

order correction to the linear dynamic comes from coupling to its own energy,

ρφ ∝ φ3 [4, 8, 33]. A theory truncated at this order and the full nonlinear

theory can be our f and g, interchangeably, in Theorem I with m = 3. 10

• The φ3 contribution calculated in different approximation methods might be

different [4, 8, 33], but they all satisfy the approximate rescaling symmetry

required for the function G in Theorem II.

Now we have established the applicability of both Theorems in this chapter, the

stability island conjecture can be disproved in three simple steps.

1. At a small but finite amplitude where measure nonzero sets of non-collapsing

solutions exist (the outermost thick arc in Fig. (3.1), apply Theorem I to

translate them into solutions in the truncated theory.

2. Use Theorem II to scale down the above solutions to arbitrarily small ampli-

tudes. That means projecting radially in Fig. (3.1) into an arc of the same

angular span.

9The reason why we adopt this tortuous definition of norm is to guarantee that gravitational

interaction during one AdS time stays weak when the norm is small, thus we can apply both

theorems. Note that defining total energy as the norm would fail such purpose.
10Such expansion, continued to higher orders, is likely only asymptotic instead of convergent.

As explained in Sec.3.2, that does not cause a problem for our theorems.
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3. Use Theorem I again to translate these rescaled solution in the truncated

theory back to the full nonlinear theory. This establishes the existence of

non-collapsing solutions as a set of measure non-zero (an arc of finite angular

span in Fig. (3.1). 11

Thus, we have established that the measure-non-zero neighborhood stabilized by

a geon at finite amplitude, if never evolves to high local energy density during the

long time scale, directly guarantees the same measure-non-zero, non-collapsing

neighborhood at arbitrarily smaller amplitudes. This directly contradicts the sta-

bility island conjecture.

It is interesting to note that the collapsing solutions always have energy density

large at a certain point, thus neither theorems we proved here are applicable

to them. As a result, one cannot establish their existence at arbitrarily small

amplitudes through a similar process. Therefore, the opposite possibility to the

stability island conjecture, that collapsing solutions disappear into a set of measure

zero at zero amplitude, is still consistent with current evidence.

3.A Arbitrarily small rescaling

In Sec.3.3, we have proven Theorem II for N = 2
1

m−1 . Now, we will generalize it

to arbitrary N ′ = 2
k

m−1 = Nk, for any k ∈ N+ :∣∣∣∣∣∣Nkgn(x/Nk)− (1− βk(n)) gb n
2k
c(x)− βk(n)gb n

2k
c+1(x)

∣∣∣∣∣∣ ≤ C ′ · εq, (3.32)

where we have written down explicitly the dependence of β on k and n:

βk(n) =
2

nk
−
⌊ n

2k

⌋
, (3.33)

which possesses the following properties for positive integers j and l:

βk+1(2l) = βk(l) , this is always true ; (3.34)

βk+1(2l + 1) =
1

2
βk(l) +

1

2
βk(l + 1), for l + 1 6= j · 2k ; (3.35)

βk+1(2l + 1) =
1

2
βk(l) +

1

2
[1− βk(l + 1)], for l + 1 = j · 2k . (3.36)

These follow naturally from the properties of the floor function that⌊
2l + 1

2k+1

⌋
=

⌊
l

2k

⌋
, is always true , (3.37)

11The only works for rescaling down to smaller amplitudes. Rescaling to larger amplitudes

can easily exceed the radius of validity of perturbative expansion even at short time scales.
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and ⌊
2l + 1

2k+1

⌋
=

⌊
l + 1

2k

⌋
, when l 6= j · 2k − 1 ; (3.38)⌊

2l + 1

2k+1

⌋
=

⌊
l + 1

2k

⌋
− 1, when l = j · 2k − 1 . (3.39)

We now define:

Fk ≡ C · εq
k∑
i=0

N i(1−q) =
C · εq

1−N1−q

(
1−Nk(1−q)

)
≤ C ′ · εq , (3.40)

for C ′ = C/(1 −N1−q). This converges as k → ∞, since 1 − q < 0, and satisfies

the recursive relation:

Fk+1 = Fk + C ·Nk(1−q). (3.41)

Now we will prove eq. (3.32) by induction. We have already shown that it holds

for k = 1 in Sec.3.3, hence assuming that it holds for arbitrary k, we want to show

that it holds for k + 1 as well.

It is helpful to split the proof in three parts, one for n = 2l, one for n = 2l + 1,

with l 6= j · 2k − 1 and one for n = 2l + 1, with l = j · 2k − 1.

1. Part 1: n = 2l

∣∣∣∣∣∣Nk+1g2l(x/N
k+1)− (1− βk+1(2l)) gb 2l

2k+1 c(x)− βk+1(2l)gb 2l

2k+1 c+1(x)
∣∣∣∣∣∣

=
∣∣∣∣∣∣N ·Nkg2l

(
x/Nk

N

)
− (1− βk(l)) gb 2l

2k+1 c(x)− βk(l)gb 2l

2k+1 c+1(x)
∣∣∣∣∣∣

< Nk
∣∣∣∣∣∣Ng2l

(
x/Nk

N

)
− gl

(
x/Nk

) ∣∣∣∣∣∣
+

∣∣∣∣∣∣Nkgl
(
x/Nk

)
−
(
1− βk(l)

)
gb l

2k
c(x)− βk(l)gb l

2k
c+1(x)

∣∣∣∣∣∣
< C ·Nk(1−q) + Fk = Fk+1. (3.42)

2. Part 2: n = 2l + 1, with l 6= j · 2k − 1

∣∣∣∣∣∣Nk+1g2l+1(x/Nk+1)− (1− βk+1(2l + 1)) gb 2l+1

2k+1 c(x)

− βk+1(2l + 1)gb 2l+1

2k+1 c+1(x)
∣∣∣∣∣∣
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islands

=
∣∣∣∣∣∣N ·Nkg2l+1

(
x/Nk

N

)
−
(

1− 1

2
βk(l)− 1

2
βk(l + 1)

)
gb 2l+1

2k+1 c(x)

− 1

2
(βk(l) + βk(l + 1)) gb 2l+1

2k+1 c+1(x)
∣∣∣∣∣∣

< Nk
∣∣∣∣∣∣Ng2l+1

(
x/Nk

n

)
− gl(x/N

k) + gl+1(x/Nk)

2

∣∣∣∣∣∣
+

1

2

∣∣∣∣∣∣Nkgl(x/N
k)− (1− βk(l)) gb 2l+1

2k+1 c(x)− βk(l)gb 2l+1

2k+1 c+1(x)
∣∣∣∣∣∣

+
1

2

∣∣∣∣∣∣Nkgl+1(x/Nk)− (1− βk(l + 1)) gb 2l+1

2k+1 c(x)− βk(l + 1)gb 2l+1

2k+1 c+1(x)
∣∣∣∣∣∣

< C ·Nk(1−q) + 2
1

2
Fk = Fk+1. (3.43)

3. Part 3: n = 2l + 1, with l = j · 2k − 1

∣∣∣∣∣∣Nk+1g2l+1(x/Nk+1)− (1− βk+1(2l + 1)) gb 2l+1

2k+1 c(x)

− βk+1(2l + 1)gb 2l+1

2k+1 c+1(x)
∣∣∣∣∣∣

=
∣∣∣∣∣∣N ·Nkg2l+1

(
x/Nk

N

)
−
(

1− 1

2
βk(l)− 1

2

(
1− βk(l + 1)

))
gb 2l+1

2k+1 c(x)

− 1

2

(
βk(l) +

(
1− βk(l + 1)

))
gb 2l+1

2k+1 c+1(x)
∣∣∣∣∣∣

< Nk
∣∣∣∣∣∣Ng2l+1

(
x/Nk

)
− gl(x/N

k) + gl+1(x/Nk)

2

∣∣∣∣∣∣
+

1

2

∣∣∣∣∣∣Nkgl(x/N
k)− βk(l)gb l

2k
c+1(x)−

(
1− βk(l)

)
gb l

2k
c(x)

∣∣∣∣∣∣
+

1

2

∣∣∣∣∣∣Nkgl+1(x/Nk)− βk(l + 1)gb l+1

2k
c−1(x)−

(
1− βk(l + 1)

)
gb l+1

2k
c(x)

∣∣∣∣∣∣
< C ·Nk(1−q) + 2

1

2
Fk = Fk+1. (3.44)

We have used here the fact:

βk(l + 1)gb l+1

2k
c−1(x) = βk(l + 1)gb l+1

2k
c+1(x), (3.45)

since βk(j · 2k) = 0.
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4
Gauge dependence of the AdS

(in)stability problem

How wonderful that we have met with a

paradox. Now we have some hope of making

progress.

— Niels Bohr

4.1 Introduction

The two-time framework (TTF) is a well-established tool that reduces the full

gravitational dynamics into the “slow-time” evolution of complex amplitudes of

approximate eigenstates. It operates on two approximations:

• The deviation from empty AdS metric is small, so we can keep only the

leading order gravitational back-reaction.

• The evolution can be averaged over a “fast” time scale set by the AdS radius,

reducing to the dynamics in a “slow” time scale.

One can simply follow the two-time evolution and observe whether the first ap-

proximation breaks down. If it does not, then the metric stays near empty AdS

and an instability is not triggered. If it does break down, then it implies an order

one deviation from empty AdS, thus triggering an instability.

In the previous chapter we saw how one can use the perturbative schemes, such as

TTF, to establish the persistence of a non-zero measure of stable solutions in the

limit of infinitesimal amplitude ε→ 0. One might want to use these approximate

systems to do a similar statement for the phase space of collapsing solutions in the

same limit. This case is however a little bit trickier, since we have to be careful

on how to interpret the breakdown of our approximations. For example if one

witnesses a breakdown of TTF, he can not be directly certain whether it is the

weak gravity or some other approximation that breaks down.
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4. Gauge dependence of the AdS (in)stability problem

In [48], numerical results suggested that gravitational instability seems to coincide

with a breakdown of TTF from an oscillating singularity—the complex amplitudes

all start to acquire infinite phases. However, a direct logical link between the two

was missing, because the physical interpretation of the oscillating singularity re-

mained unclear. That is because a breakdown of TTF could be due to failure of

either one of the two approximations, but only the breakdown of the first approx-

imation has direct implications for the instability.1 Later, in [52], was suggested

that TTF might not suffer from an oscillating singularity if one chooses a different

gauge, a fact that was subsequently verified numerically in [53]. Those results

appeared to add more confusion.

In this chapter, after we summarize the results of [48] and [52, 53], we point out

that their combination actually eliminates the confusion. A diverging difference2

between the results in two different gauges implies a diverging redshift between

two different locations in AdS, which in turn implies a diverging deviation in the

metric. Alternatively, one could have used only the result in the boundary gauge

where the TTF solutions stays finite [53]. Explicitly calculating its geometric

back-reaction demonstrates the same divergence [54].

Note that the actual geometric back-reaction is the TTF result multiplied by the

amplitude squared of the initial perturbation. A diverging TTF redshift means

that linearized gravity breaks down for arbitrarily small initial amplitude, which

triggers a genuine instability of global AdS.

4.2 An oscillating singularity

It was already stated in chapter 1 that in the ansatz eq. (1.3) there is some remain-

ing gauge freedom, which can be eliminated by choosing a normalization condition

for the function δ(x, t). In [48], the two-mode, equal energy data in AdS5 were nu-

merically evolved both in full GR, as well as in the TTF system. The authors of

this work chose the normalization δ(0, t) = 0, which is commonly dubbed as the

interior time gauge. With this choice, t corresponds to the proper time at the

center of the spacetime.

The initial data evolved are

φ(x, 0) = ε

(
1

4
e0(x) +

1

6
e1(x)

)
, Π(x, 0) = 0, (4.1)

1Some may have the intuition that the breakdown of the second approximation also can only

come from large deviations from the AdS metric, but such statement is never proven explicitly.
2We will specify what this means in the subsequent sections.
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4.2. An oscillating singularity

Figure 4.1: Amplitude spectrum An, for different values of τ . Solid lines correspond to a 100

mode truncation, while dashed lines correspond to a 200 mode truncation. [48]

which they correspond to the following mode amplitudes:

α0(0) = 1/8, α1(0) = 1/12, αn≥2(0) = 0. (4.2)

The system was truncated at nmax = 175 modes and the results are presented

in Fig. (4.1). The outcome is that an oscillating singularity was observed. This

can be understood better in the so-called amplitude-phase representation, αn =

An(t)eiBn(t). Evolving the aformentioned data leads to a logarithmic blow-up of

the slow time derivative of the phases at some finite slow time τ? ∼ 0.5.

To give better evidence for the results, we can employ the analyticity strip method

[57], which uses Fourier asymptotics to diagnose the formation of a singularity. Let

us consider an evolution equation with a solution denoted by α(t, x). If we analyt-

ically continue this solution to the complex plane, then this analytically continued

solution α(t, z) will typically have complex singularities. If a complex singularity

hits the real axis in finite time, then α(t, x) becomes singular. This can become

more rigorous if we denote the location of the pair of complex singularities closest

to the real axis by z = x± iρ, so that ρ denotes the width of the analyticity strip

around the real axis. Using this notation we can say that α(t, x) becomes singular

if ρ(t) vanishes in finite time. The analyticity strip width ρ(t) is encoded in an

exponential decay of the asymptotic Fourier coefficients of the solution α(t, x). In

the problem at hand, this consists of making the following asymptotic ansatz for

the amplitudes

An(τ) ∼ n−γ(τ)e−ρ(τ)n (4.3)
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4. Gauge dependence of the AdS (in)stability problem

Figure 4.2: The radius of analyticity ρ(τ) obtained by fitting eq. (4.3) to the data (left) and

numerical evidence for the logarithmic blowup of the derivative for the sample phase

B96 (right) [48]

and fitting this formula to the data we can obtain the time dependence of the pawer

law γ(τ) and the analyticity radius ρ(τ). The numerical results of [48] suggest that

ρ(τ) tends to zero at finite slow time τ? and the value of γ approaches γ → 2 at

the same time. Therefore one can assume the following behavior for τ → τ?

An(τ) ∼ n−2e−ρ0(τ?−τ). (4.4)

Plugging in this result and solving for the phases yields

dBn
dτ
∼
∑
j 6=n

RjnA
2
j ∼ n2ln(τ − τ?), (4.5)

which blows up logarithmically at the same time τ? at which the analyticity strip

width ρ(τ) becomes zero. In Fig. (4.2) numerical evidence that supports this

analysis is presented.

This result however is gauge dependent. As it was first argued in [52] and it

was later verified numerically in [53], this oscillating singularity is not present in

the boundary time gauge, defined by δ(π/2, t) = 0.

As can be seen in Fig. (4.3), the derivatives of the phases don’t blow up in the

boundary gauge. The reason for this different behavior in the two gauges can be

traced back in the slighlty different behavior of the interaction coefficients Sijkl in

the two gauges [52,55]
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Figure 4.3: Numerical evidence that the logarithmic divergence of the phases is a gauge depen-

dent effect. [53]

4.3 Comparing the two gauges

In this section we compare the results in the two gauges and we show that within

the validity of TTF, they indeed describe the same physical evolution. The relation

between the two gauges has also been studied in [56] and some of the results can

be found there as well. We will follow similar notations, but our attention lies

on oscillating singularities that occur in one gauge and not the other. With some

extra care we show what goes wrong as TTF breaks down when such a singularity

develops in the central gauge.

The gauge choice should not affect any physical quantities. However, the two

different gauges do lead to two different sets of differential equations, which were

numerically evaluated to very different results. In [48] the case of the two–mode

equal energy data in AdS5 was studied and an oscillating singularity was reported.

Namely, the derivatives of the phases blow up. In [53] it was shown that this

singularity does not appear in the boundary gauge and therefore the singular

behaviour of the system might be only an artefact of the gauge choice.

On top of just numerical results, one can also see this difference from the asymp-

totic scaling of the Rij coefficients as was first suggested in [52]. It was shown

that for AdS5 the Rij coefficients scale in the central gauge as RCGij ∼ i3j2 and

therefore, for a power-law spectrum An ∼ n−2 as observed in [48], the sum in

the second term of eq. (1.34) diverges logarithmically. On the other hand, the

asymptotic scaling of these coefficients in the boundary gauge was shown to be

RBGij ∼ i2j2, thus although the evolution leads to the same power-law spectrum

the same sum converges. One can check that the rest of the sums do not diverge.

Despite this apparent difference, these results do not contradict each other. The

oscillating singularity observed in [48], combined with the absence of that in [53],

has an obvious physical meaning. It implies an infinite gravitational redshift be-
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4. Gauge dependence of the AdS (in)stability problem

tween the boundary and the center of the spacetime.

From the metric (1.3), one can see that the two gauge choices are related as:

dtBG = e−δ(tCG,
π
2 )dtCG. (4.6)

Integrating and keeping terms only up to order O(ε2) we get :

tBG = tCG − ε2
∫ tCG

0

dtδ2(t, τ, 0) +O(ε4) (4.7)

Neglecting terms that oscillate in the fast time scale t, we can approximate δ2(t, τ, 0)

by the time averaged quantity δ2(τ, 0). For completeness we will present the com-

putation of this quantity in section (4.3.1). We then get:

tBG ≈ tCG − ε2
∫ tCG

0

dtδ2(τ, 0) +O(ε4)

= tCG + 2ε2
∫ tCG

0

dt
∑
j

(
Ajj + ω2

jVjj
)
A2
j +O(ε4), (4.8)

Now, using the fact that the field φ(t, τ, x) transforms as a scalar under such a

gauge transformation one can derive the relation for the complex coefficients αj(τ)

in the two gauges from eq. (1.11):

φCG(tCG) = φBG(tBG)⇒
αCGj (τCG) eiωjtCG = αBGj (τBG) eiωjtBG (4.9)

The relation of the slow time in the gauges is obtained simply by multiplying

eq. (4.8) by ε2 to obtain

τBG = τCG + 2ε2
∫ τCG

0

dτ
∑
j

(
Ajj + ω2

jVjj
)
A2
j +O(ε4) (4.10)

Substituting in the right hand side of the above equation, Taylor expanding and

neglecting terms that are of order O(ε2) we obtain:

αCGj (τCG) eiωjtCG ≈
[
αBGj (τCG) + ε2α̇BG (τCG)

∫ τCG

0

δ2dτ

]
× exp

(
iωjtCG + iωj

∫ τCG

0

δ2dτ

)
(4.11)

Therefore, we find that the complex coefficients in the two gauges are related by:

αCGj (τ) = αBGj (τ) exp

(
iωj

∫ τ

0

δ2(τ ′, 0)dτ ′
)

+O(ε2) (4.12)
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as is also explained in [56]. This result can also be expressed in the amplitude–

phase representation, yielding:

ACGj (τ) = ABGj (τ) (4.13)

BCGj (τ) = BBGj (τ)− ωj
∫ τ

0

dτ ′
∑
i

(
Aii + ω2

i Vii
)
A2
i (τ
′) (4.14)

That the amplitudes and the phases are related as above can be directly checked

by applying eq. (4.12) to the corresponding evolution equation in the two gauges,

eq. (1.34), and recalling that the difference is entirely contained in the coefficients

[56]:

TBGj = TCGj + ω2
j

(
Ajj + ω2

jVjj
)
, (4.15)

RBGij = RCGij + ω2
j

(
Aii + ω2

i Vii
)
. (4.16)

In [54] it was shown that a large geometric back–reaction is related to the amplitude

spectra and the coherence of the phases, where a phase–coherent cascade is defined

by a spectrum of phases that (for large j) is linear in the mode number j:

Bj(τ) = γ(τ)j + δ(τ) + . . . , (4.17)

This is an asymptotic3 statement and the ellipsis represent terms that are sub-

leading in j. The reader should be aware here that the function δ(τ) in the above

equation is not the same function appearing in eq. (1.3). From eq. (4.13) we see

that the evolution of the amplitudes is not affected by the choice of the gauge so

what remains is to show that phase coherence is also unaffected and hence the

physical conclusions will be independent of the choice of the gauge. Starting from

eq. (4.17) for the central gauge we have:

BCGj (τ) ≈ γCG(τ)j + δCG(τ), (4.18)

and applying eq. (4.14) we can obtain the corresponding expression for the bound-

ary gauge. This reads:

BBGj (τ) −ωj
∫ τ

0

dτ ′
∑
i

(
Aii + ω2

i Vii
)
A2
i (τ
′) ≈ γCG(τ)j + δCG(τ)⇒

BBGj (τ) ≈
(
γCG(τ) +

∫ τ

0

dτ ′
∑
i

(
Aii + ω2

i Vii
)
A2
i (τ
′)

)
j + δCG(τ).

(4.19)

3Recall also that asymptotically holds ωj ≈ j, a fact that we use in eq.(4.19).
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4. Gauge dependence of the AdS (in)stability problem

We see that the phase spectrum in the boundary gauge takes the form of eq. (4.17)

:

BBGj (τ) ≈ γBG(τ)j + δBG(τ), (4.20)

with the functions γ(τ) and δ(τ) in the two gauges being related as:

γBG(τ) = γCG(τ) +

∫ τ

0

dτ ′
∑
i

(
Aii + ω2

i Vii
)
A2
i (τ
′) (4.21)

δBG(τ) = δCG(τ) (4.22)

4.3.1 The oscillating singularity as an infinite gravitational

redshift

Having clarified that physical conclusions can not be affected by the choice of

the gauge, the next step is to reconcile the two different numerical results in the

two gauges. In this section we will argue that the fact that Ḃj diverges in the

one gauge and not in the other can be interpreted as an infinite gravitational

redshift between the boundary and the center of the spacetime. Recall that the

gravitational redshift between a source and an observer is given by the formula:

1 + z =

√
gtt(obs)

gtt(source)
. (4.23)

We can compute this quantity in one of the two gauges. Let us choose the nonsin-

gular boundary gauge and compute the redshift between the boundary (x = π/2)

and the center (x = 0) of the spacetime. Using the metric (1.3), the normalization

δ(t, π/2) = 0 and keeping terms only up to the order of O(ε2), the quantity under

the square root reads:

gtt(t, 0)

gtt(t, π/2)
∼ 1− ε2δ2(t, τ, 0) +O(ε4). (4.24)

The expression for δ2(t, τ, 0), eq. (1.13), yields4:

δ2(t, τ, 0) =

∫ π/2

0

(
φ̇1(t, x)2 + φ′1(t, x)2

)
µ(x)ν(x)dx

=

∫ π/2

0

∑
ij

(
ċ
(1)
i (t)ċ

(1)
j (t)ei(x)ej(x) + c

(1)
i (t)c

(1)
j (t)ei(x)ej(x)

)
µ(x)ν(x)dx

=
∑
ij

(
ċ
(1)
i ċ

(1)
j Vij + c

(1)
i c

(1)
j Aij

)
. (4.25)

4For ease of notation we have omitted to write explicitly the slow time dependence in some

cases, but it is implicitly assumed.
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To go to the second line, we simply used the expansion in eigenmodes φ1(t, x) =∑
j c

(1)
j (t)ej(x) and in the third line we defined the interaction coefficients:

Aij ≡
∫ π/2

0

e′i(x)e′j(x)µ(x)ν(x)dx (4.26)

Vij ≡
∫ π/2

0

ei(x)ej(x)µ(x)ν(x)dx. (4.27)

The expansion coefficients c
(1)
j are related to the complex coefficients αj as5:

c
(1)
j = αje

iωjt + ᾱje
−iωjt (4.28)

dc
(1)
j

dt
= iωj

(
αje

iωjt − ᾱje−iωjt
)
. (4.29)

Substituting eq. (4.28) in the above expression for δ2(t, τ, 0) we will get several

terms of the form eiΩt, where Ω = ωi ± ωj . Keeping only terms with Ω = 0, the

so called resonant terms6, we finally obtain the following expression:

δ2(t, τ, 0) ≈ 2
∑
i

(
Aii + ω2

i Vii
)
A2
i (τ) ≡ δ2(τ, 0). (4.30)

By differentiating eq. (4.14), we can see that this quantity, the time–averaged δ2,

which was first mentioned in eq. (4.8), is precisely the difference of the slow time

derivatives of the phases in the two gauges. Therefore, by comparing the results in

the boundary and the central time gauge we can draw conclusions about geometric

quantities, and in particular the gravitational redshift. In the case of interest,

where the derivatives of the phases diverge in one gauge but not in the other, one

concludes that δ2(τ, 0) diverges, and so does the redshift, eq. (4.24). This large

back-reaction in turn implies the breakdown of linearized gravity. On the other

hand if the derivatives are finite in both gauges there is no divergence, while the

case is not clear if an oscillating singularity appears both in the boundary as well

as in the central gauge. In that case δ2(τ, 0) could be either finite or infinite.

4.4 Conclusions

In this chapter we presented an explicit derivation on the anticipated fact that

physical results can not be affected by the different gauge choices. We demon-

strated that gauge-invariant quantities are related to the amplitude spectrum and

5As we have stated below eq. (1.34) these are also related to Aj and Bj coefficients as:

Aj = |αj | and Bj = Arg(αj).
6These are are the terms that are proportional to e±i(ωi−ωj)δij . This procedure is equivalent

to time–averaging over the fast time t.
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4. Gauge dependence of the AdS (in)stability problem

the coherence of the phases in the TTF solution, and both properties are unaf-

fected by the gauge choice. This result holds even when the difference between the

two gauges diverges. Furthermore we established that the oscillating singularity

observed in [48] is indeed a physical singularity, by showing that it is related to an

infinite redshift between the boundary and the center of the spacetime.

This means that the breakdown of the TTF observed in [48] is due to large grav-

itational effects which lead to the breakdown of the weak gravity approximation.

Such a conclusion cannot be deduced by the observed singularity in the central time

gauge alone. In that case is not clear whether the breakdown of the perturbation

theory is caused by strong gravity or by the breakdown of other approximations.

Therefore, with our analysis we establish that the singular solution is a genuine

singular solution of the gravitational problem. Due to the scaling symmetry of the

TTF system the solution will survive in the ε → 0 limit, and thus provide a way

to address the phase space of initial conditions in this limit.

An interesting thing to point out here is that for this conclusion we need to compare

the derivatives of the phases in the two gauges. Therefore, the fact that in higher

dimensions a discrepancy between the two gauges has not been observed [53] is

rather intriguing. However since in both gauges an oscillating singularity was ob-

served, and actually in the central time gauge this divergence was more prominent

than in the boundary time gauge, it might still signal a diverging redshift, since

these results are compatible with a diverging δ2(τ, 0), as we explained in Section

4.3.1.
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5
Fast and Slow Coherent

Cascades in AdS

Physics is about questioning, studying, probing

nature. You probe, and, if you’re lucky, you get

strange clues.

— Lene Hau

5.1 Introduction

One could hope for a resolution of the AdS instability problem in terms of a

theorem. A preliminary attempt for such a theorem was presented in [54]. We

will discuss the details of this work in the next section, but for now it suffices

to say that it conjectures that the cascade of energy towards higher modes takes

place in a coherent way. Namely, the higher frequency modes are turned on with

their phases coherently aligned. The theory of [54] also makes predictions for the

resulting power-law of this cascade.

In this chapter we study the evolution of the phases and the amplitudes of the

Fourier modes, in the Two Time Framework (TTF) approximation, for a variety of

initial conditions, and we find that the phases are not excited in a random way, as

in the standard theory of weak turbulence, but in a quite coherent way, supporting

the coherent phase ansatz of [54]. However, we observe small deviations from a

strictly coherent phase spectrum, suggesting that the conjecture [54] should be

refined.

We also study the evolution of the two-mode, equal energy initial data, that are

considered minimal for the onset of the instability, and we provide a combination

of numerical and analytic evidence to support the conjecture that they belong

to a class of initial conditions that collapse in infinite slow time1. We show

analytically that solutions dominated by the two lowest modes obey a simple

1At the vanishing amplitude limit, ε→ 0.
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speed limit on the rate of energy transfer to higher frequencies. The speed limit

depends on the frequency; we show that in 3 + 1 dimensions it takes infinite time

to transfer energy to arbitrarily high frequency, while in higher dimensions it takes

finite time.

A nice way to track energy transfer in this system is the so-called analyticity

strip method [38, 48, 57], which diagnoses at what time the amplitude spectrum

ceases to decrease exponentially at large mode numbers. We find numerically

that, for the two-mode initial data, the width of the analyticity strip goes to zero

exponentially in time. There has been a long-lasting dispute about the ultimate

fate of this initial data [12,29,58] and we hope we settle the issue with this work.2

We also study initial data that has a Gaussian profile. We find that this data

collapses in finite slow time. In addition, we find that at the time of the collapse

the amplitudes An of the normal modes approach a power-law spectrum of the

form An ∼ n−γ with γ ≈ 3/2, which modifies slightly the result γ = 8/5 reported

in [11].3 This amplitude spectrum corresponds to an energy spectrum En ∼ 1/ωn.

5.2 Phase coherent turbulent cascades

In this section we present a minimal introduction to the work of [54] and we will

mainly focus on what is necessary for the comprehension of the rest of this chapter.

We have seen so far, that the Fourier analysis of the black hole formation in

AdS, points towards a cascade of energy from lower frequency to higher frequency

modes. This process is known as turbulence and when the cascade is driven by

nonlinearities it is dubbed as weak turbulence. Despite the striking resemblance

with the case of AdS it needs to be clarified that in the standard theory of weak

turbulence, as developed by Kolmogorov and Zakharov for example, the effect

of the phases was not taken into account. The phases of the eigenmodes where

drawn from random distributions and therefore their effect averages to zero. An

imporant consequence of this choice is that, for a system with quartic interactions4

there is no energy transfer in the first nonlinear time scale (t ∼ ε−2) and the first

non-trivial dynamics appears at t ∼ ε−4.

2The fact that this data might collapse in infinite slow time was suggested earlier to us by

Andrzej Rostworowski, as we understand, based on simulations of full General Relativity in AdS.

It is our understanding that A. Rostworowski and collaborators have also obtained interesting

results about this 3 + 1-dimensional problem, and we look forward to comparing them to our

results.
3The fact that the exponent might be smaller than 8/5 was also conveyed to us in a discussion

with A. Rostworowski and collaborators.
4As it is the case for AdS.
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5.2. Phase coherent turbulent cascades

The basic idea in [54] is to establish a class of solutions to the TTF, that are

stationary and have a power-law spectrum5

5.2.1 Geometric deviation and phases

As it was first mentioned in chapter 2, when the energy is very small (approaching

zero), the only way to have a large back reaction is focus this energy into a very

small small region. This region can then be described locally by the Minkowski

metric for which the perturbative expansion for a small back reaction is well known:

ds2 = −
(

1 +
2M

rd−2
+ 4V

)
dt2 +

(
1 +

2M

rd−2

)
dr2 + r2dΩ2

d−1, (5.1)

where M and V are the enclosed mass and the gravitational potential respectively.

The enclosed mass is given by

M(r) ∼
∫ r

0

dr′
φ̇2 + φ′2

2
(5.2)

and if we assume a power law spectrum in the form

An = A0(n+ 1)−α, (5.3)

we obtain for M

M(r) ∼
∫ r

0

dr′r′d−1

( ∞∑
n=0

wnAnen(r′) cos(wnt+Bn)

)2

∼
∫ r

0

dr′r′d−1

 ∞∑
n=r−1

w2
nA

2
ne

2
n(r′) +

r−1∑
n=0

wnAnen(0) cos(wnt+Bn)

2


(5.4)

The importance of the phases in the back-reaction is apparent already in the second

term of the above expression. Modes of higher frequency (n > r−1) oscillate

5In contrast to the quasi periodic solutions [12] that are stationary but with an exponential

spectrum.
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rapidly within the integration range and thus the cross terms vanish. On the

other hand, modes of lower frequency (n < r−1) are basically constant within the

integration range and if their phases are coherent, then the cross terms have a

significant contribution to M .

The phases are considered coherent if there is a time during one AdS period where

all of the modes are in phase. The phase θn of a particular mode is related to the

slow phase Bn as

θn(τ, t) = Bn(τ) + ωnt = Bn(τ) + (2n+ d)t (5.5)

Therefore, the phase coherence of two modes n and m is defined in the usual way

as

θn − θm = 2πNnm, (5.6)

where Nnm are integers which in principle can depend on the modes involved.

Coherence requires that we can solve this equation for the fast time t over one

period 0 < t < 2, at the same t for all modes. Plugging in the formula for the

phases θn, we obtain

Bn(τ)−Bm(τ) = 2πNnm + 2(n−m)t

= (n−m)θ(τ). (5.7)

To go to the second line, we dropped the the first term, since the phases are only

defined mod 2π and for ease of notation we set θ(τ) ≡ 2t. A solution to the above

equation for every n and m is

Bn(τ) = nγ(τ) + δ(τ), (5.8)

where γ and δ are functions of the slow time τ , but independent of the mode

number n. In the problem at hand, one is interested in describing the asymptotic

spectrum, namely large values of n. Therefore one should, in principle allow for

corrections to the above solution that are subleading in n.

The effect of the phases in the backreaction, for different values of the resulting

power-law α, is summarized in Fig. (5.1).

However, this phase coherent ansatz needs to be maintained during the time evo-

lution and according to the results of [54] this happens only when α = d
2 . This

predicted power-law leads to a spectrum of energies of the form En ∼ n2−d. The

resulting energy spectrum and the phase coherent cascade for a variety of initial

conditions will be a part of our studies in the following sections.
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5.3. The two–mode data

Figure 5.1: The effect of the phases for different values of the power-law α and for different

spatial dimensions dimensions d [54].

5.3 The two–mode data

We will start by looking at two mode–initial data, which is parametrized as follows:

An =
ε

3

(
δ0
n + κδ1

n

)
. (5.9)

This is the case where we initially excite the lowest two modes with no relative

phase. Here, ε denotes the amplitude of the perturbation, while κ parametrizes the

amount of energy in the second lowest mode. For concreteness, we have considered

data with ε = 1 and different values of κ. However, as discussed before, the

TTF equations are invariant under the scaling symmetry αn(τ) → εαn(τ/ε2).

Therefore, the solution for different values of ε would be completely equivalent to

the case ε = 1 but evolved to a different time τmax.

5.3.1 Numerical results

Equal energy:

Setting κ = 3/5 corresponds to a situation where the energy is equally distributed

between the two modes. This case is very interesting since it has been argued

to be in the borderline of one of the stability islands [12, 29, 58]. Here, instead

of looking at the value of Π at the origin,6 we would like to concentrate on the

spectrum of the amplitudes and the phases, hoping to shed some light from a

different perspective and clarify the fate of this initial condition.

In order to detect the formation of singularities from the spectrum we use the

so-called analyticity strip method, introduced in [57], and employed for the first

time in the context of the AdS instability problem in [38]. The idea here is to

6The value of Π(t, 0) at the origin corresponds to the Ricci scalar and therefore is a good

indicator of singularity.
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Figure 5.2: Amplitude spectrum An, for different values of τ . Solid lines correspond to a 100

mode truncation, while dashed lines correspond to a 200 mode truncation.

consider the analytic extension of φ(t, z) into the complex plane of the radial

variable r → z ∈ C. The function φ(t, z) will typically have complex singularities

moving in time; if one of these singularities hits the real axis, φ(t, r) becomes

singular. The pair of singularities closest to the real axis are denoted as z = x±iρ,

so that ρ determines the width of the analyticity strip around the real axis. Thus,

if ρ vanishes at some point during the evolution then φ(t, r) will be singular. Now,

ρ is encoded in the exponential decay of the Fourier coefficients An ∼ e−ρn (at

large n), so it can be obtained from the asymptotics of a given numerical solution.

In order to evolve the system of equations (1.34)-(1.34) we need to fix the gauge

and find the coefficients Sijkl up to a maximum number i = j = k = l = nmax.

We choose to work in the boundary gauge, where δ(t, π/2) = 0, since in this

gauge the evolution of the phases is regular [2,52,53] (and therefore, the numerical

integration is easier). In order to estimate the effect of the cutoff nmax we evolve

the system for two different cases, first for nmax = 99 and then for nmax = 199. In

Fig. (5.2) we show the amplitude spectrum in the two cases, for different values

of τ . In general they agree over a wide range of n, but differ mildly in the range

n ∈ (79, 99). Next, we fit the amplitudes using the following ansatz

An(τ) ∼ α(τ)n−γ(τ)e−ρ(τ)n . (5.10)

We exclude the modes n ∈ (70, 99) for nmax = 99 and n ∈ (140, 199) for nmax = 199

to avoid any cutoff effect. Also, since the analyticity strip method applies only

asymptotically, we also exclude the first modes, n ∈ (0, 29) for nmax = 99 and

n ∈ (0, 59) for nmax = 199. Comparing the two fittings should then provide a

good test of our numerics, since the two ranges of n barely intersect with each

other.
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Figure 5.3: Left: Evolution of ρ(τ) for nmax = 99 and nmax = 199. We define τmax ∼ 0.485 as

the maximum time such that |ρ199 − ρ99| ≤ 1/nmax; beyond this point we do not

trust our numerical evolution. We have also included the best fit up to this time,

using the ansatz ρ(τ) = ρ0e−ατ + ρ∞. This yields ρ∞ ∼ 5× 10−5 � 1/nmax which

strongly supports the idea that ρ → 0 as τ → ∞. Right: Evolution of dρ/dτ for

nmax = 99 and nmax = 199. The behavior of the derivative for τ < τmax shows that

the exponential function is indeed a good fit for ρ.

In Fig. (5.3) we plot the evolution of ρ and its derivative as a function of τ for

the two cases considered, nmax = 99 and nmax = 199. In general, they are in

excellent agreement for the first part of the evolution, but eventually they start

to differ. Since ρ is the most robust parameter in the fitting (since it appears

in the exponential), we define τmax ∼ 0.485 as the maximum time such that

|ρ199 − ρ99| ≤ 1/nmax; beyond this point the two ρ start to differ substantially

and we cannot trust our numerical evolution. We see that up to τmax ∼ 0.485, ρ

decays almost exponentially, so we fit it as

ρ(τ) ∼ ρ0e
−ατ + ρ∞ . (5.11)

Interestingly, we find that ρ∞ ∼ 5 × 10−5 � 1/nmax strongly supporting the

idea that ρ → 0 at infinite τ ! The value of γ varies very little before τmax —see

Fig. (5.4)— but fluctuates quite a lot after this time. This makes it impossible

to extrapolate its value to τ → ∞. We also plot the fitting function (5.10) at

τ = τmax, finding an excellent agreement even outside of the range of n that

we considered for the fits. This suggests that the formula (5.10) is actually quite

robust, at least for the times at which we can trust our numerical results, τ ≤ τmax.

It is also interesting to put to test the validity of the phase coherent conjecture [54],

which states that the asymptotic spectrum of phases align coherently as in (4.17).

In order to see if this is actually true, we plot in Fig. (5.5) Bn as a function of n for

various values of τ .7 Interestingly, we see an almost perfect line for τ ≤ τmax, with

deviations from linearity being indistinguishable to the naked eye. To quantify the

7Since Arg[αn] = Bn ∈ (−π, π) we first unwrap the phases before plotting the actual values.

This amounts to shift Bn → Bn + 2πk, k ∈ Z every time that ∆Bn = Bn+1 −Bn changes sign.
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Figure 5.4: Left: Evolution of γ(τ) up to τmax ∼ 0.485. Beyond this point γ(τ) behaves

quite erratically, also indicating the breakdown of our numerical solution. It seems

difficult to extrapolate γ for τ →∞. Right: Fitting of the amplitude spectrum at

τ = τmax ∼ 0.485 according to the formula (5.10).
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Figure 5.5: Left: Unwrapped phases Bn as a function of n for various values of τ . In all cases

we see that the phases are perfectly aligned to form a straight line as in (4.17).

Right: The difference between the fitted and the actual values as a function of n.

linearity of the spectrum we subtract the fitted values from the actual data. The

results are presented in Fig. (5.5) as well. We observe a very good agreement with

the linear, especially in the range of values used for the fit, 60 ≤ n < 140.

Non-equal energy:

For other values of κ, (5.9) implies that the initial energy of the two modes is

different. We evolved the system for a wide range of κ and repeated the analysis

that we presented for the case κ = 3/5. In extreme cases where most of the energy

is deposited in one of the modes, the system can be though of a perturbation of a

single mode solution, which is actually the center of one of the stability islands for

AdS perturbations [3,13,49]. In such cases we do not expect black hole formation.

On the other hand, values of κ close to κ = 3/5 should behave similarly to the

equal energy data and are expected to collapse.
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Figure 5.6: The evolution of the analyticity strip width ρ(τ), for different ratios of the energy

in the first two modes.

In Fig. (5.6) we plot the analyticity strip width ρ(τ) as a function of τ for various

values of κ, showing different kind of behaviors. For κ = {1/5, 4/5, 5/5} ρ(τ)

develops oscillations and never reach zero. These initial conditions are not exactly

periodic as the single–mode solutions but exibith revivals at time scales of order

1/ε2 [35, 59]. For κ = 2/5 we do not see oscillations before τmax but by doing the

fit we find that ρ∞ is marginally above 1/nmax. We conjecture that this case is

close to the borderline of a subspace of solutions that collapse at infinite τ , which

for the two-mode initial data (5.9) is given by an open set with κ ∈ (κmin, κmax).

We further studied the phase spectrum of all these initial data, and found always

good agreement with the coherent phase ansatz.

5.3.2 A speed limit for energy transfer

It is interesting and surprising that some initial data appears to cascade to arbi-

trarily high frequencies in finite time, while other initial conditions take an infinite

time. To really convince ourselves that the energy cascade takes infinite slow time

for some initial conditions, we need an analytic argument. In this section, we give

a simple argument showing that for solutions where two low modes dominate the

spectrum, the remaining modes obey a simple speed limit in how fast energy can

propagate to high frequencies. Our result rests on a strong assumptions that the

solution is dominated by two low modes, and it would be very interesting to relax

this assumption.

For this purpose it is convenient to write the equations of motion for the truncated

resonant system in terms of complex amplitudes αn ≡ An exp(iBn). The equations
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of motion become

2iωn
dαn
dτ

=
∑

i+j=k+n

Cijknαiαjᾱk (5.12)

Now we will assume that the solution is dominated by two low modes; for defi-

niteness, take modes n = 0, 1, but the basic structure of our results will remain

unchanged. In this case, we can keep only terms in the sum where two of the indices

take the values 0, 1. Since we have to obey the resonance condition i+ j = k + n,

for n > 2 this means that k = 0, 1, leaving the equation

2iωn
dαn
dτ

= 2C1(n−1)0n α1αn−1ᾱ0+2C0n0nα0αnᾱ0+2C1n1nα1αnᾱ1+2C0(n+1)1nα0αn+1ᾱ1

(5.13)

Collecting terms and using the symmetries of the C coefficients, we get

iωn
dαn
dτ
−(C0n0nα0ᾱ0 + C1n1nα1ᾱ1)αn = C1(n−1)0n α1ᾱ0αn−1+C1n0(n+1)α0ᾱ1αn+1

(5.14)

Despite the complicated coefficients, this equation has two simplifying features:

• It is linear in the amplitudes αn.

• It is local: a given mode is only influenced by its nearest neighbors (in

addition to modes 0 and 1, which we think of as a background.)

We are interested in large mode numbers n. Since the C coefficients are smooth

functions, and n is large, we take C1n0(n+1) ≈ C1(n−1)0n ≡ Cn. We treat the

dominant modes α0,1 as constants (it would be interesting to allow for time de-

pendence).

As discussed above, the overall phase and the relative phase between any two

modes is unphysical, so we are free to choose convenient phases for α0,1. We

use this freedom to take the product α0ᾱ1 to be pure imaginary for convenience,

leading to the equation

iωn
dαn
dτ
−
(
C0n0nA

2
0 + C1n1nA

2
1

)
αn = iC1(n−1)0n A1A0(αn−1 − αn+1) (5.15)

This equation can be written in the simpler notation

dαn
dτ

+ idnαn +
1

2
cn(αn+1 − αn−1) = 0 (5.16)

with the definitions

dn ≡
C0n0nA

2
0 + C1n1nA

2
1

ωn
cn ≡

2C1(n−1)0n A1A0

ωn
(5.17)
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Since a given mode couples to nearest neighbors, we would like to identify the

speed at which signals can propagate in frequency space. To estimate this, take a

continuum limit of the above equation, treating n as a continuous variable, to get

∂α

∂τ
+ idnα+ cn

∂α

∂n
= 0 (5.18)

We have not fully analyzed this equation, but the speed of propagation can be

read off by comparing the coefficient of the time derivative to the space derivative,

yielding a speed of propagation that depends on the mode number

speed =
dn

dτ
= cn (5.19)

It is now interesting to ask whether energy can propagate to arbitrarily large mode

numbers in finite time. The time to reach infinitely large mode numbers is

∆τ =

∫ ∞ dn

cn
(5.20)

Whether this is infinite depends on the function cn, which depends on the dimen-

sion. In all dimensions, ωn ∼ n. In 3+1 dimensions, the interaction coefficient

C1(n−1)0n ∼ n2 [52, 55]. Therefore, in 3+1 dimensions, cn ∼ n, and the integral

is logarithmically divergent, and the cascade cannot reach infinity in finite time.

The maximum excited mode number as a function of time can increase at most as

nmax ∼ exp(aτ). This agrees well with the observation in our numerical evolution

that the spectrum has an exponential form exp(−ρn) with ρ ∼ exp(−aτ).

In higher than 3+1 bulk dimensions, we expect the interaction coefficients to scale

with larger powers of n, leading to a scaling cn ∼ np with p > 1. This renders

the integral convergent, meaning that energy can reach infinite mode number in

finite time. This is in good agreement with the results obtained in [48] in 4+1

dimensions, where the spectrum was observed to approach a power law in finite

time.

As a reminder, we were able to reach this strong conclusion by making a strong

assumption that modes 0 and 1 dominate throughout the evolution. We expect

a similar result whenever we assume that the evolution is dominated by a finite

number of low-frequency modes: the equation for the high modes will still become

linear and quasi-local, with the degree of nonlocality in frequency space determined

by the frequency of the low modes that are excited.

On the other hand, the assumption that the solution is dominated by a few low

modes can clearly break down as energy is transferred to higher modes. For this

reason, it is not at all clear that the ‘speed limit’ found under this assumption is

a robust result, although it is intriguing that it appears to agree with numerical

results. It would be very interesting to derive a more generally valid speed limit

on the rate of energy transfer.
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Figure 5.7: The evolution of the analyticity strip width ρ(τ) for Gaussian data with σ = 0.25

and σ = 0.15. In both cases ρ becomes zero in finite slow time τ? ∼ 0.625.

5.4 Gaussian Data

In this section we study scalar fields with Gaussian profiles of the form φ(0, x) =

2exp
(
− tan2x

σ2

)
in TTF where previous simulations, in the full GR system, reported

that the collapse depends on the width of profile [10,11]. We concentrate our study

on profiles with widths σ < 0.3. We present results for two cases, with σ = 0.15

and σ = 0.25. We follow the same analysis as the one of Sec.(5.3), so we will not

repeat the details here. One thing we would like to mention is that here the case is

more clear since this initial data approach a power-law spectrum in finite time and

therefore we only use the truncation of nmax = 200. One other thing is that now

we have τmax = τ?, namely, we trust the evolution up to the time of the collapse

τ?.

In Fig (5.7) we plot the evolution of the analyticity strip width, for the two above-

mentioned data to make precise the contrast with the 2–mode data. Here ρ(τ) goes

to zero in finite slow time τ? ∼ 0.625. Our results agree with the observation

of [10], that collapse happens for narrow profiles (σ < 0.3), but disagree with [11]

on the resulting power-law of the energy cascade. We find that by the time of the

collapse, or equivalently when the analyticity strip width ρ(τ) goes to zero, the

power γ(τ) approaches a value very close to 3/2 and not 8/5.

In Fig. (5.8) and Fig. (5.9) we present the evolution of the amplitude spectra for

Gaussian initial data with σ = 0.15 and σ = 0.25 respectively, towards a power

law and we contrast the two above-mentioned values. We see that indeed the

value γ(τ?) = 3/2 is a better fit. We would like to mention at this point that

the numerics are very subtle in AdS4 and although our results strongly suggest a
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Figure 5.8: Left: The evolution of the amplitude spectra for Gaussian data with σ = 0.15

towards a power law γ(0.625) ∼ 3/2 in the TTF system. Right: Comparison of the

two power-laws with the actual data at the time of collapse, τ? = 0.625.
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Figure 5.9: Left: The evolution of the amplitude spectra for Gaussian data with σ = 0.25

towards a power law γ(0.63) ∼ 3/2 in the TTF system. The evolution is almost

identical to the case of σ = 0.15. Right: Comparison of the two power-laws with

the actual data at the time of collapse, τ? ∼ 0.63.

power law of 3/2, another value for γ very close to this one is still a possibility.

To illustrate the subtleties of the numerical methods we now study into more

detail the fitting methods for the case of the σ = 0.15 Gaussian data close to the

collapse point τ? ∼ 0.625. We fit the data in the range 30 ≤ n ≤ 110 in order to

to take into account only the asymptotic form of the spectrum and avoid cut-off

effects. In Table 5.1 we present the fitting functions for three different values of

τ = {0.62, 0.625, 0.63} and we fit both a power law spectrum and a power law

spectrum with an exponential decay. We observe that the analyticity strip width

turns from positive, at τ = 0.625 to negative, at τ = 0.63 which means that it hits

zero in finite slow time. Also, at τ = 0.625 it has the smallest value, and we believe

that this is the most relevant time. However we don’t have exact data for which

ρ = 0. Two things that we would like to notice here is that although the value of

the exponent is very small, it plays a significant role in estimating the exact value

of the power γ and that the exact range of data that we use for the fitting affect

93



5. Fast and Slow Coherent Cascades in AdS

τ = 0.62 τ = 0.625 τ = 0.63

Parameter Error Parameter Error Parameter Error

An ∼ αn−γe−ρn

Log(α) -2.17944 0.02399 -2.18595 0.0301 -2.20568 0.03769

γ 1.51033 0.0077 1.51579 0.00966 1.517 0.012

ρ 0.000754 0.00012 0.000205 0.000151 -0.000272 0.000189

An ∼ αn−γ

Log(α) -2.03288 0.00649 -2.14604 0.00672 -2.25847 0.00843

γ 1.55796 0.00154 1.52876 0.0016 1.49985 0.002

Table 5.1: The fitting values and the corresponding errors for three different times very close to

the collapse time τ? ∼ 0.625, in the case of a power law with an exponential (up)

and a power law alone (down).

the result as well8. The fits, in both cases suggest a power law very close to 3/2,

however as we mentioned earlier, values close to this one are also possible.

In Fig. (5.10) we present again the phase-spectrum as a function of the mode

number n for different slow times. As we did earlier, we unwrap the phases, and

we fit the data in the range9 60 ≤ n < 140 to a linear function and we quantify the

deviation from linearity by subtracting the fitting value from the actual data. We

see once more that the linear fit is a very good approximation, however interesting

patterns appear, especially for late times, that might suggest towards a slight

improvement to the perfectly coherent spectrum. We hope we will come back to

this issue in a future work.

5.5 Conclusion

In this work we presented strong evidence that the turbulent cascade of energy

towards modes of higher frequency in the problem of the instability of global AdS,

happens in a phase–coherent way, as it was initially conjectured in [54]. Our results

however leave room for possible small improvements on this idea and we believe

it is something worth looking at in the future. On top of that, the perturbations

that we studied here are also initially phase coherent and one might think that this

could play a role in the later-time coherence of the phases. A natural generalization

would be to study the development of phase coherence in perturbations that are

8We chose the above-mentioned range, n ∈ [30, 110], since it represents the most linear part

of the plot and neglects the cut-off effect.
9As usual, we do so in order to address the large n limit and to avoid cut-off effects.
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Figure 5.10: Left: The phases of the modes as a function of the mode number n when unwraped

for different slow times τ . Right: The difference between the fitted and actual

values as a function of n.

not initially phase coherent10.

We have also studied the evolution of the amplitude spectra for the controversial

two mode data and our work, combining numerical and analytical results, suggests

that the collapse will happen in infinite slow time τ? →∞. For the Gaussian initial

data with σ < 0.3 we observed that the spectrum of the amplitudes approaches a

power-law at finite slow time τ? ∼ 0.625, and the results suggest the power at the

time of the collapse being very close to γ(τ?) ∼ 3/2. It would be very interesting to

determine the power-law in the case of the two mode data and see if it agrees with

the above-mentioned value, as well as to obtain a definite answer for the precise

value in the case of the Gaussian data, perhaps through analytic techniques.

10We will come back to this issue in future work, but some preliminary results that we have

suggest that even in data for which the phases are initially randomly distributed, the higher

modes are excited coherently
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6
Outlook

The end of a melody is not its goal: but

nonetheless, had the melody not reached its end

it would not have reached its goal either.

— F. Nietzsche

In this final chapter, the main results of this work are summarized and considera-

tions for possible future directions are presented.

A position space analysis

In chapter 2 we studied the problem of the stability of AdS under small perturba-

tions directly in position space. Previous work on the subject had focused on the

Fourier analysis of the problem, namely the exchange of energy between the differ-

ent normal modes in which the scalar field can be decomposed. Here instead, we

took a different route by studying directly an infalling spherical shell of a massless

scalar field. We resorted to perturbation theory, where we used the so called near

Minkowski expansion according to which all of the interesting dynamics takes place

near the center of the spacetime, which is approximately of Minkowski type. The

role of AdS is simply to confine the shell due to a reflecting boundary at spatial

infinity. Two important results of our perturbative analysis, which we truncate at

the first nonlinear order, are that the resulting approximate equations possess a

scaling symmetry similar to the one obtained from Fourier analysis and that the

first order correction to the scalar field profile has a reflection anti-symmetry. The

latter means that if the initial profile is asymmetric and the first order correction

leads towards a focusing (defocusing) of the energy, then if we would start with a

profile that is a reversed version of the initial profile, then its first order correction

would have the opposite effect. Namely it would defocus (respectively focus) the

energy. We conclude this chapter by clarifying the interpretation of the black hole

formation in the bulk in terms of thermalization of the boundary field theory. We

argue that black hole formation in AdS doesn’t always correspond to an efficient

thermalization of the field theory. Whether this is the case or not depends on the

way in which one takes the limits of classical and weak gravity.
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Extended validity of perturbation theory

Since all analytical results we have obtained so far rely on first order perturbation

theory, it is natural to worry up to what time scales are our approximate schemes

reliable. Organising our perturbation theory in terms of the amplitude of the per-

turbation ε, common lore suggests that naive first order perturbation theory will

be valid for time scales of the order t < ε−2, whereas from numerical results of

the full nonlinear system we know that black hole is expected to form at t ∼ ε−2.

It seems therefore that naive perturbation theory is not capable of capture the

actual dynamics at the relevant time scales and one might need to consider more

elaborate perturbative expansions, like TTF. In chapter 3 we prove however that

this is not always the case. In particular, when a first order perturbation the-

ory is applied recursively, like the one of [4], it can faithfully describe solutions

of the full nonlinear theory, up to the first nonlinear time scale, as long as those

solutions have amplitudes that remain sufficiently small during the evolution. In

the context of scalar field collapse in AdS, this means that recursive perturbation

theory faithfully describes the non-collapsing solutions up to t ∼ ε−2. One can

then employ the scaling symmetry of the approximate equations to establish the

existence of these solutions at the vanishing amplitude limit (ε→ 0), establishing

this way an open set of stable solutions.

Gauge dependence of the problem

If one wants to establish, in a similar manner, an open set of collapsing solutions,

at the vanishing amplitude limit, he would have to find an open set of singular

solutions of the approximate/perturbative equations of motion. However, in that

case one should be very careful about how to interpret the observed blow up. It

could represent either a genuine singular solution to the full theory or it could

merely signal the breakdown of the perturbative expansion by invalidating one

of the approximations used during the derivation. A first attempt towards this

direction appeared in the work of [48] in which they studied numerically the TTF

system and reported a solution with an oscillating singularity. Although it was

conjectured that this represents a genuine singular solution of the full theory, a

physical understanding was missing. Later on, it was argued [52] and then nu-

merically shown [53] that this oscillating singularity is a gauge artefact, raising

doubts about the initial conjecture. In chapter 4 we show however that actually

the combination of those results clarifies the situation and the observed singular-

ity actually represents a large backreaction to the full nonlinear theory since it

corresponds to a diverging redshift between the boundary and the center of the

spacetime.
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Fast and slow coherent cascades

In momentum space the formation of the black hole is realised as a cascade of en-

ergy towards modes of higher frequency. This behaviour bears resemblance to the

Kolmogorov’s theory of turbulence with one crucial difference however. In Kol-

mogorov’s theory with a random phase ansatz, there is no transfer of energy at the

t ∼ ε−2 time scale and any interesting dynamics appears at the next order t ∼ ε−4.

An alternative was therefore proposed in [54] where a coherent phase ansatz was

assumed and the corresponding power laws of the cascade were derived. In chapter

5 we studied numerically this phase ansatz by looking both at the resulting power

laws or at the phase spectrum directly. Our results are in good agreement with the

predictions of [54] but they leave open room for small corrections. In this chapter

we also studied the disputed two mode data in AdS4 and we conjectured, based

on both numerical and analytical results, that they collapse in infinite slow time

τ = ε2t.

Future directions

Until now, almost all of the studies have been concentrated to the spherically

symmetric case and to first order in perturbation theory. The natural subsequent

steps would be to move beyond spherical symmetry as well as to higher orders

in perturbation theory. One might hope for example to unequivocally answer for

or against the stability of AdS at the next time scale t ∼ ε−4. A perhaps more

ambitious expectation would be to have a resolution of the problem in terms of a

theorem, either along the lines of the coherent cascade conjecture of [54] or some

form of ergodic theorem for AdS.

Other possible directions would be to understand the nature of the problem outside

the context of AdS. Namely whether the resulting phenomenological picture is

unique to AdS or can be found in other systems as well? It is also very interesting

to understand the case from the AdS/CFT perspective. As it was noted earlier

in this work, the formation of the black hole in the bulk theory can be interpreted

as the evolution towards thermal equilibrium for the boundary field theory. The

fact that some excitations would thermalize, whereas some others would not, seems

very puzzling. From this point of view the apparent relation of oscillating solutions

to quantum revivals of the initial state in the boundary field theory [59] is also

very interesting
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Summary

NONLINEAR DYNAMICS AND THE

(IN)STABILITY OF AdS

Context

Historically, stability considerations and perturbation theory date back to the era

of celestial mechanics and the question of stability of the solar system over long

time scales. Between 1609 and 1618 Johannes Kepler determined the trajectories

of the planets as they revolve around the Sun. Following the work of Copernicus,

Kepler placed the Sun at the centre of the universe and based on observations

of the famous astronomer of the time Tycho Brache, he succeeded to show that

planets move in ellipses around the Sun and at the end of the revolution the planets

find themselves back to where they started.

However, this picture of a perfectly stable solar system would be soon challenged.

After Isaac Newton developed his theory about gravity, he derived the Keplerian

orbits by restricting to the interaction of a planet with the Sun alone. Although

this is the leading contribution to the gravitational force exerted to each planet, it

is not the only one. Planets attract each other as well. When these perturbations

are taken into account they might lead to small effects which accumulate in the

course of time destroying in that way the Keplerian orbits.

The study of the stability of the solar system has led to remarkable discoveries in

Physics and Mathematics with the most prominent one being perhaps the cele-

brated Kolmogorov-Arnold-Moser (KAM) theory in which it was rigorously shown

that both stable and unstable orbits exist depending on whether the ratio of the

unperturbed frequencies is a rational number.

Newton’s theory was superseded when Albert Einstein published in 1915 his theory

of gravitation, known as General Relativity (GR). According to Einstein, gravity is

not a force but rather the manifestation of the geometry of spacetime in which the
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masses move. Massive objects curve the spacetime and spacetime back-reacts to

the masses by dictating them which paths they should follow. Einstein’s equations

possess three vacuum solutions, namely three different empty spacetimes depend-

ing on whether the cosmological constant of the theory is positive (de Sitter), zero

(Minkowski) or negative (Anti-de Sitter). The most important question regarding

a vacuum state is whether it is stable under small perturbations.

Motivation of research

The stability of the vacuum solutions of GR comes second (perhaps even first) only

to the stability of the solar system and has led to one of the greatest developments

in mathematical relativity [6]. Of the three vacuum spacetimes the two where

proven to be stable long ago [6, 7]. The stability of the third one (AdS) was not

even raised, let alone answered, until very recently [8].

Anti-de Sitter (AdS) spacetime plays a prominent role in modern Theoretical

Physics mainly due to its role in the only concrete example of a gauge/gravity du-

ality, the AdS/CFT correspondence [5]. In this picture, a Quantum Field Theory

(QFT) living on the boundary of AdS is equivalent to a String Theory in the AdS

background. Despite the great importance of (asymptotically) AdS spacetime(s),

the study of its (nonlinear) stability was initiated only very recently, albeit it was

earlier conjectured that AdS would be nonlinearly unstable [9].

Results

Chapter 2 :

In this chapter we presented an alternative and complementary method of study-

ing the problem of the stability of AdS, directly in position space. We derived

an approximate/perturbative equation of motion which has a similar scaling sym-

metry, as the one observed in Fourier space methods (TTF equations). We also

showed that the gravitational interaction near the center of the spacetime obeys an

exact antisymmetry under time reversal and therefore it is equally likely that the

energy be focused or defocused. Finally, we touched on the thermalization process

of the boundary field theory and we argued that even if black holes form in the

first nonlinear time scale (ε−2), it doesn’t always represent efficient thermalization

of the boundary theory.

Chapter 3 :

Approximating nonlinear dynamics with a truncated perturbative expansion may

be accurate for a while, but it in general breaks down at a long time scale that
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is one over the small expansion parameter (in our case, t ∼ ε−2). In this chapter

we presented cases where such a break down doesn’t happen and the perturbation

theory is valid up to this time scale, as long as it is applied recursively. There are

cases where one can try and guess the form of the (regular) solution and then set

up a smarter perturbation theory that reproduces this solution. Such is the case

of the Two Time Framework (TTF) for example. As we argue in this chapter, if

one uses for example a perturbation theory similar to the one of [4], the regular

solutions of this approximate equation are valid up to t ∼ ε−2 and not only for

t < ε−2, as conventional wisdom would suggest. Using these results we then

establish the existence of an open set of initial conditions that do not collapse up

to this long time scale.

Chapter 4 :

An effort to establish collapsing solutions at the vanishing amplitude limit ε → 0

was made in [48] where solutions of the TTF that develop an oscillating singularity

were reported. However this singularity is merely a gauge artefact. One can work

in a different gauge and not observe this blow up of the derivatives of the phases.

In this chapter we showed that these solution are genuine singular solutions and

the discrepancy of the results in the two gauges was realized as a diverging redshift

between the boundary and the center of the spacetime.

Chapter 5 :

In this chapter we studied the amplitude and the phase dynamics of small pertur-

bations in AdS4 using the Two Time Framework approximation. Our intention

was to test the phase coherent cascade conjecture of [54] for different initial data.

This is done in two ways; either by directly checking the phase coherent ansatz,

eq. (5.8) or by studying the resulting power-law for the spectrum of collapsing

solutions. Our results suggest that this ansatz works pretty well, however small

modifications/improvements might be necessary. We found that the energy spec-

trum of narrow Gaussian wavepackets scales as En ∼ n−1 and also the phases

are coherently aligned (Bn ∼ n), although some small divergences from this linear

behaviour were seen.

We also studied the contentious two-mode equal energy data, and we conjectured

that they belong to a new class of solutions that collapse at infinite slow time τ ,

at the vanishing amplitude limit.

Outlook

Stability considerations have led to tremendous discoveries in Theoretical Physics

and Mathematics and the stability of AdS could not be an exception to this rule.
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Although the question has not yet been unequivocally answered, and perhaps

there is a long way to go, the studies so far have already unveiled a very rich

phenomenology. However there are still many questions to be answered, like what

happens for example if we abolish spherical symmetry, or what is the fate of the

perturbations at longer time scales.

The problem at hand is not only interesting from the pure mathematical point

of view of GR, but can shed light to understanding the thermalization process of

the boundary theory via the AdS/CFT correspondence. There have already been

very interesting developments in this direction [4,12], as well as interesting results

in relating quantum revivals (of the boundary QFT) with bouncing geometries in

the bulk [59].
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Niet-lineaire dynamica and de (in)stabiliteit van

anti-de Sitter

Context

Historisch gezien gaan stabiliteitsoverwegingen en storingsrekening terug naar de

tijd van de klassieke mechanica en toen men vragen ging stellen over de stabiliteit

van het zonnestelsel voor grote tijdschalen. Voortbordurend op het werk van

Copernicus, plaatste Johannes Kepler de zon in het midden van het zonnestelsel

om vervolgens de banen van onze planeten te bepalen. Met de observaties van

de bekende astronoom Tycho Brache, kon hij laten zien dat de banen van onze

planeten ellipsen zijn en dat de planeten weer terugkomen bij hun begin positie

na elke omlooptijd.

Dit plaatje zou echter snel op de proef gesteld worden. Nadat Newton zijn wet-

ten had geformuleerd en de ellips banen van Kepler had afgeleid door alleen de

interactie van de zon met de planeten mee te nemen, begon het ook duidelijk te

worden dat de aantrekkende kracht van de planeten onderling ook een belangrijk

effect zou kunnen zijn. Hoewel de zon de grootste zwaartekracht levert, kunnen

deze onderlinge interacties voor kleine veranderingen zorgen die groeien in de tijd

en zo grote verandering kunnen worden die de Kepler-banen kunnen vernietigen.

De studie naar dit soort vraagstukken over stabiliteit onder kleine verstoringen

heeft tot buitengewone ontdekkingen geleidt in zowel natuur- en wiskunde. Het

belangrijkste resultaat is waarschijnlijk het bekende Kolmogorov-Arnold-Moser

(KAM) theorema waarin werd aangetoond dat stabiele of instabiele planeet banen

kunnen bestaan afhankelijk van of de verhouding tussen de onverstoorde frequen-

ties een rationaal getal is.

De vraagstukken over stabiliteit kregen een nieuwe twist toen Albert Einstein in

1915 zijn theorie van gravitatie, de Algemene Relativiteitstheorie publiceerde. Vol-
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gens de theorie van Einstein, is gravitatie geen kracht, maar een manifestatie van

de meetkunde van de ruimtetijd waarin massas bewegen. Massieve objecten krom-

men ruimtetijd en de ruimtetijd reageert hierop door de massas voor te schrijven

in welke paden zij moeten bewegen. De vergelijkingen van Einstein laten drie

vacuum oplossingen toe, namelijk drie verschillende lege ruimtetijden die gekarak-

teriseerde worden door de kosmologische constante. Bij een positieve (negatieve)

constante spreken we over de Sitter (anti-de Sitter) ruimtetijd en een ruimtetijd

met een kosmologische constante gelijk aan nul noemen we Minkowski. Bij het

bestuderen van deze vacuum oplossingen, is een van de belangrijkste vragen of ze

stabiel zijn onder kleine verstoringen.

Motivatie van het onderzoek

Stabiliteit van vacuum oplossingen van Einsteins theorie van gravitatie is, na de

stabiliteit van ons zonnestelsel, een van de belangrijkste vraagstukken en heeft

voor een van de grootste ontwikkelingen in de wiskunde achter de algemene rela-

tiviteitstheorie gezorgd [6]. Stabiliteit van twee van de drie vacuum oplossingen

was een lange tijd geleden al bewezen [6,7]. De stabiliteit van de derde oplossing,

anti-de Sitter (AdS) werd niet eens beschouwd, laat staan werd zijn stabiliteit

bewezen, tot vrij recentelijk [8].

Anti-de Sitter ruimtetijd speelt een belangrijke rol in de moderne theoretische

natuurkunde. Dit komt doordat het terugkomt in een concreet voorbeeld van de

ijk/gravitatie dualiteit, de AdS/CFT correspondentie. In deze dualiteit is een

quantum velden theorie die leeft op de rand van AdS volkomen gelijk aan een

snaartheorie in de AdS ruimtetijd. Ondanks deze reden is er pas recentelijk in

detail gekeken naar (niet-lineaire) stabiliteit van AdS, ook al vermoedde men eerder

al dat AdS niet-lineair instabiel zou zijn [9].

Resultaten

Hoofdstuk 2:

In dit hoofdstuk presenteren we een alternatieve en complementaire methode om

het probleem van de stabiliteit van AdS direct in reele ruimte te bestuderen. We

leiden een benaderende/perturbatieve bewegingsvergelijkingen af welke een zelfde

schalingssymmetrie heeft als die gezien wordt door de Fourier ruimte methoden

(TTF vergelijkingen) te gebruiken. We laten ook zien dat de gravitationele in-

teractie nabij het centrum van de ruimtetijd een exacte antisymmetie onder tijds-

omkering heeft en daarom zal focusering of defocusering van energie met gelijke

kansen optreden. Tenslotte, beschouwen we in het kort de thermalisatie van de

randtheorie en beargumenteren we dat zelfs als zwarte gaten gevormd worden in
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de eerste niet-lineaire tijdschalden (ε−2), er niet altijd effectieve thermalisatie in

de randtheorie is.

Hoofdstuk 3:

Het benaderen van niet-lineaire dynamica met een beperkte perturbatieve expan-

sie is accuraat voor een tijdje, maar verliest in het algemeen precisie bij lange

tijdschalen die inverse proportioneel is aan de expansie parameter (in ons geval,

t ∼ ε−2). In dit hoofdstuk laten we een aantal gevallen zien waarbij zon verlies van

precisie niet optreedt en de perturbatieve expansie ook geldt bij deze tijdschalen,

zolang het recursief wordt toegepast. Er zijn gevallen waarbij men kan proberen

een vorm van de (oppassende) oplossing te gebruiken om een slimmere storings-

theorie op te zetten die deze oplossing kan reproduceren. Dit is bijvoorbeeld het

geval bij het Two Time Framework (TTF). We laten inderdaad zien in dit hoofd-

stuk dat als men een storingsrekening opzet lijkend op die van [4], dan zijn de

oppassend oplossingen van deze benadering geldig voor tijden tot t ∼ ε−2 and niet

alleen voor t < ε−2 zoals men zou verwachten. Door deze resultaten te gebruiken

kunnen we het bestaan van een open verzameling van begincondities bevestigen

die niet ineenstorten tot deze lange tijdschaal.

Hoofdstuk 4:

Bij pogingen om ineenstortende oplossingen bij de verdwijnende amplitude limiet

ε → 0 te construeren [48] werden oplossingen van de TTF gevonden die een os-

cillerende singulariteit hadden. Echter is deze singulariteit een ijk-artefact; in een

andere ijk keuze wordt deze singulariteit van afgeleiden van de fasen niet geob-

serveerd. In dit hoofdstuk laten we zien dat deze oplossingen echte singuliere

oplossingen zijn en dat de tegenstrijdigheid van de resultaten in de twee ijk keu-

zes gerealiseerd werd als een divergerende roodverschuiving tussen de rand en het

centrum van de ruimtetijd.

Hoofdstuk 5:

In dit hoofdstuk onderzoeken we de amplitude en fase van de dynamica van de

kleine verstoringen in AdS4 door gebruik te maken van de Two Time Framework

benadering. Onze intentie was het testen van een vermoeden, het phase cohe-

rent cascade vermoeden, van [54] voor verschillende begincondities. Dit hebben

we op twee manieren gedaan; ofwel door direct de fase coherente ansatz te ve-

rifieren, verg. (5.8) dan wel door het machtsverband van het spectrum van de

ineenstortende oplossingen te bestuderen. De resultaten suggereren dat deze an-

satz best wel goed werkt, maar dat kleine aanpassingen eventueel nodig zijn. Wij

vinden dat het energie spectrum van smalle Gaussiaanse golfpakketjes schaalt als

En ∼ n−1 en ook dat de fasen coherent uitgelijnd zijn (Bn ∼ n), hoewel enkele

kleine divergenties van het lineaire gedrag ook gezien werden.
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We hebben ook de omstreden two-mode equal energy data onderzocht en wij ver-

moeden dat zij tot een nieuwe klasse van oplossingen behoren die ineenstorten bij

een oneindige slow time τ , in de verdwijnende amplitude limiet.

Vooruitblik

Stabiliteitsvraagstukken hebben tot waanzinnige ontdekkingen in de theoretische

natuurkunde en wiskunde geleidt en de stabiliteit van AdS is hierop geen uitzon-

dering. Hoewel de vraag nog niet ondubbelzinnig beantwoord is, en misschien is

er nog een lange weg te gaan, maar het onderzoek tot dusver heeft al een zeer

rijke fenomenologie laten zien. Toch zijn er nog steeds veel vragen die beantwoord

moeten worden, zoals wat er gebeurt als er bijvoorbeeld geen sferische symmetrie

wordt aangenomen, of wat het lot is van kleine verstoringen op grote tijdschalen.

De stabiliteit van AdS is niet alleen interessant vanuit de puur wiskundige aspecten

van de algemene relativiteitstheorie, maar kan ook helpen bij het begrijpen van

thermalisatie van de randtheorie via de AdS/CFT correspondentie. Er zijn al

enkele zeer interessante ontwikkelingen gaande in deze richting [4, 12], alsmede

een interessante connectie tussen quantum opwekkingen (van de randtheorie) en

stuiterende meetkundes in de binnenkant van AdS [59] .
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