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Preface & Thesis Guide

This dissertation consists of part of my research work conducted in the four years
of my doctoral studies. Broadly speaking, my research focused on problems on
Classical and Quantum Gravity and it was conducted in terms of different col-
laborations!. This thesis is concentrated on the classical part of my work and
specifically the mathematical stability of one of the three ground state solutions
to Einstein’s theory of gravity, General Relativity.

In the first chapter I will give an in depth introduction to the subject, whereas the
four subsequent chapters constitute the developments into which I was involved.
Each chapter corresponds to a published work. In chapter 2 a position-space
analysis of the problem will be presented, complementing previous studies that
where concentrated in Fourier-space analysis. Since, all of the analytical studies in
the subject rely on perturbative/approximate schemes, in chapter 3 the validity, up
to the relevant time scales, of these perturbative schemes is discussed. In chapter
4, we clarify some confusion that arises due to the gauge freedom of the problem
at hand, whereas in the next chapter the evolution of a few initial perturbations
is discussed with emphasis on the resulting phase- and amplitude-spectra. We
conclude with a short summary of the work as well as some considerations for
future directions along those lines.

This thesis is written using the pronoun “we” instead of “I”. This is both a standard
practice in the field of Theoretical Physics as well as it describes the collaborative
nature of research.

My individual contribution to each of the published work will be clarified at the end.
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Introduction

The career of a young theoretical
physicist consists of treating the
harmonic oscillator in ever-increasing
levels of abstraction.

— Sidney Coleman

In this introductory chapter background material will be discussed regarding the
various concepts that are important to the rest of this thesis. We will introduce
the problem at hand and describe the state of knowledge before our involvement.
More specifically, the model of spherical symmetric perturbations in AdS and
the corresponding approximate schemes will be reviewed and both numerical and
analytical results will be discussed. Our aim is to keep this section as reader
friendly as possible, by keeping it short and minimising the amount of technical
details. Unless it is completely unavoidable, the story will be conveyed by means
of words and figures.

1.1 Overview

Historically, stability considerations and perturbation theory date back to the era
of celestial mechanics and the question of stability of the solar system over long
time scales. Between 1609 and 1618 Johannes Kepler determined the trajectories
of the planets as they revolve around the Sun. Following the work of Copernicus,
Kepler placed the Sun at the centre of the universe and based on observations
of the famous astronomer of the time Tycho Brache, he succeeded to show that
planets move in ellipses around the Sun and at the end of the revolution the planets
find themselves back to where they started.

However, this picture of a perfectly stable solar system would be soon challenged.
After Isaac Newton developed his theory about gravity, he derived the Keplerian
orbits by restricting to the interaction of a planet with the Sun alone. Although
this is the leading contribution to the gravitational force exerted to each planet, it
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is not the only one. Planets attract each other as well. When these perturbations
are taken into account they might lead to small effects which accumulate in the
course of time destroying in that way the Keplerian orbits.

The study of the stability of the solar system has led to remarkable discoveries in
Physics and Mathematics with the most prominent one being perhaps the cele-
brated Kolmogorov-Arnold-Moser (KAM) theory in which it was rigorously shown
that both stable and unstable orbits exist depending on whether the ratio of the
unperturbed frequencies is a rational number.

Newton’s theory was superseded when Albert Einstein published in 1915 his theory
of gravitation, known as General Relativity (GR). According to Einstein, gravity is
not a force but rather the manifestation of the geometry of spacetime in which the
masses move. Massive objects curve the spacetime and spacetime back-reacts to
the masses by dictating them which paths they should follow. Einstein’s equations
possess three vacuum solutions, namely three different empty spacetimes depend-
ing on whether the cosmological constant of the theory is positive (de Sitter), zero
(Minkowski) or negative (Anti-de Sitter). The most important question regarding
a vacuum state is whether it is stable under small perturbations.

The stability of the vacuum solutions of GR comes second (perhaps even first) only
to the stability of the solar system and has led to one of the greatest developments
in mathematical relativity [6]. Of the three vacuum spacetimes the two where
proven to be stable long ago [6,7]. The stability of the third one (AdS) was not
even raised, let alone answered, until very recently [8].

Anti-de Sitter (AdS) spacetime plays a prominent role in modern Theoretical
Physics mainly due to its role in the only concrete example of a gauge/gravity du-
ality, the AdS/CFT correspondence [5]. In this picture, a Quantum Field Theory
(QFT) living on the boundary of AdS is equivalent to a String Theory in the AdS
background. Despite the great importance of (asymptotically) AdS spacetime(s),
the study of its (nonlinear) stability was initiated only very recently, albeit it was
earlier conjectured that AdS would be nonlinearly unstable [9].

The first model that was developed and has been mostly used so far is that of
spherically symmetric perturbations in the form of a (massless) scalar field [4,8,
10-13]. One then tracks the evolution of the perturbation to determine whether
it collapses to form a Black Hole or not.

Before we explain the case of AdS, let us start by discussing the fate of small per-
turbations in Minkowski space. Consider a self-gravitating spherically symmetric
shell of a massless scalar field. If the amplitude of the shell is big enough it will
collapse to form a black hole. For sufficiently small amplitudes however, the shell
scatters and disperses to infinity and as the the gravitational interactions become
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progressively weaker there is no black hole formation. Minkowski is therefore stable
due to dispersion of energy to infinity.

One can already see that the story for AdS will be different. Anti-de Sitter space
has a conformal boundary at spatial infinity which makes it effectively a confining

box!.

Now the small perturbations that do not immediately form a black hole,
scatter at the boundary and propagate back to the interior where they have another
chance to interact. This model was first studied in detail in the seminal work of [8]

and the picture that emerged can be summarized in the figures (1.1) and (1.2).

We will give more details in the subsequent, slightly technical, section, however
the story is not very hard to explain even with no equations at all. In [8] the
evolution of spherically symmetric Gaussian wavepackets, with their amplitude
being described by the small parameter €, was studied numerically. For large
values of the amplitude €, the wave packet quickly collapses, which is signalled by
the formation of a horizon in the spacetime. As ¢ was further decreased, so did
the size of the horizon, until € reaches a critical value ¢y for which the size of the
horizon becomes zero. When the amplitude is decreased further below this value
of €y, a horizon will form, but after the wave packet has reflected at the boundary
once. Decreasing € further, a second critical amplitude ¢; was found, for which
again the size of the horizon (which however now forms only after a bounce at
the boudary) shrinks to zero. Further decrease of the amplitude below this second
critical value leads to a horizon formation after two reflections at the boundary
until a third critical value e, is reached. Keep decreasing ¢, this picture repeats
itself and the initial field profile collapses to a black hole after some number of
reflections at the AdS boundary, Fig. (1.1). Another very interesting finding is
that the time of the collapse coincides with the first nonlinear time scale of the
problem (t ~ e72), Fig. (1.2).

Based on those observations, the authors of [8] conjectured that arbitrarily small
perturbations will collapse after a number of bounces. In an attempt to give an
analytic understanding to their findings, the authors suggested that black hole
formation can be understood as a turbulent cascade of energy towards modes of
higher frequency.

This picture is not far from the intuition one might have based on the AdS/CFT
correspondence? and it was also corroborated by some follow up work [12,14,15].
However subsequent studies on the subject revealed a much richer dynamics. Many
initial data were discovered that do not collapse and an inverse cascade towards
modes of lower frequencies was also observed [4,10,11,13]. Those results casted
shadows on the initial conjecture and aroused the interest in the thermalisation

1When the standard, reflecting boundary conditions are imposed.
21t is generically expected that a strongly coupled field theory will thermalise if perturbed.
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process on the boundary [4].

Most of this work was performed using Fourier space analysis and it was based
on numerical methods, which are very powerful and can provide great intuition
but at the same time are plagued with limitations. In stability considerations
we ultimately want to address the limit where the perturbation is infinitesimally
small. Such a limit is impossible to be captured by numerical methods and one
has to resort to analytic approaches (perturbation theory) [3,4,8,12].

Perturbative methods have been performed both in Fourier space [8,11,12], and
in Position space [4] complementing each other. Both approaches result into an
effective/truncated system of partial differential equations which possess an all
important scaling symmetry. This scaling symmetry has been invoked to draw
conclusions about the, otherwise inaccessible, limit of infinitesimal perturbations.
The most important result is that, at this limit, the non-collapsing solutions form
a set of non-zero measure [3], namely they are not rare, and hence AdS can not
be said to be generically unstable. The fate of collapsing solutions in this limit is
harder to address but studies in this direction suggest that they also form a set of
non-zero measure [2].

Those results however are based on perturbation series which are truncated to
the first nonlinear order and consequently are valid only up to the first nonlinear
timescale. What happens at longer timescales is not yet known and definitely is
worth further investigation.

Spherically symmetric perturbations, despite the fact they can lead to results
of great importance, are far from being generic. To make generic statements
regarding the stability of AdS one has to move beyond spherical symmetry, but
little work has been made to date in this direction [14-19]. A very intriguing result
of these studies is that in the non-spherically symmetric case, the perturbative
scheme doesn’t seem to possess the scaling symmetry of the spherically symmetric
problem. However, this could be just due to the fact that the non-spherically
symmetric model is far more complicated and a more sophisticated perturbative
method might be required to faithfully represent the full system, especially when
such a perturbation method is performed in Fourier space as in [14-19].

In the rest of this thesis we will describe in more detail the above story.

1.2 Spherically Symmetric Perturbations in AdS

In this section we will present the infalling spherically symmetric massless scalar
field in AdSg4y1 dressed with some technical details. The model is described by

4
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the following action:

1 1
S=[d"zyg R —2A) + =~0,00" 1.1
/ 167TG(d+1( )+2“¢ o) (1.1)
with A = g(g Dy Here, Raq4s denotes the radius of the spacetime, but in most

of this thesis we will use units where Rags =1and 87G =d— 1. In AdS441 the
resulting equations of motions are just the Einstein’s equations with a stress energy

tensor due to the scalar field and the wave equation for ¢ in the asysmptoticaly
AdS background:

d(d —
#guu = 871G (3 Oy — guV(a¢) >
AdS

AV ) 0. (1.2)

Guy —

This system of equations can be solved either numerically, or perturbatively. In the
following we will present developments that have been achieved in both directions.

Asymptotically AdS spacetimes can be parametrised using the following ansatz:

2
ds® = cRoii‘g; (A dz? — Ae”2dt? + sin®zdQ3_,) , (1.3)

where the functions A(t, x) and (¢, z) as well as the scalar field ¢(t, z) depend only
on the radial coordinate z and time ¢ due to spherical symmetry of the problem.
Empty AdS corresponds to A = 1 and § = 0. One thing to notice here, that
will also be discussed in more detail in chapter 3, is that there is still some gauge
freedom in the above ansatz. This can be fixed be choosing a specific normalization
for the function (¢, ). The two most ubiquitous choices in the literature are:

6(t,0) = 0, ¢t corresponds to the proper time at the center of the spacetime,
t,—) = 0, t corresponds to the proper time at the boundary of the spacetime.

(1.4)

It is customary to introduce the auxiliary variables ® = ¢’ and II = A_165¢37 with
the help of which the equations of motion read:
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b= (A1),  T= i (nAc—)
/
A’:%(A—l)—uu(¢2+ﬂ2) A, o' = —pv (‘1)2+H2)7
i = —2uwA%eOBIL (1.5)

For ease of notation we have adopted the convention 87G = d — 1 and we have
introduced the variables :

_ 1 i
)d 17 v(z) = _ sinzcosw (1.6)

p(z) = (tanz 7@~ (tana)T

1.2.1 Numerical results

In several works, this system of equations has been solved numerically. In this
section we will present these results.

In the seminal work of [8], the problem was studied in 3 4+ 1 dimensions and for
different classes of scalar field profiles. In figures (1.1) and (1.2) are presented the
results for Gaussian initial profiles of the form:

2

2 4tan®
®(0,z) =0, T(0,2) = ;eexp (:‘2;”) . (1.7)

The width was fixed at the value o = 1/16 and the amplitude € was varied. For
large values of the amplitude €, the wave packet quickly collapses, which is signalled
by the formation of a horizon at xg, determined by the vanishing of the function
A(t,z). As e is further decreased, so does the horizon radius, until it becomes
zero for some critical amplitude €¢y. When the amplitude is decreased further
below the value of €g, a horizon will form, after the wave packet has reflected at
the boundary once. Decreasing e further, we find a second critical amplitude €,
for which zy = 0. Further decrease of the amplitude below this value leads to
a horizon formation after two reflections at the boundary until a third critical
value €5 is reached. Keep decreasing e this picture repeats itself and the initial
field profile collapses to a black hole after some number of reflections at the AdS
boundary, Fig. (1.1) . Based on those observations, the authors of [8] conjectured
that arbitrarily small perturbations will collapse after a number of bounces.

A very important result of this study, is that the time of collapse scales as tg ~ 6%,
with the amplitude of the perturbation e. This is depicted in Fig. (1.2), where

6
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0.04

0.035 - k
0.03 /,

- A
°°°§{§Jz§fé/; i f ’

2 25 30 35 40 45
€

XH

——e

Figure 1.1: The radius of the horizon xp; vs the amplitude of the perturbation € for the gaussian
data (1.7). For the given values of €, the number of bounces at the boundary of
AdS varies from 0 to 9 [8].

the Ricci scalar at the origin R(¢,0) = —2II2(t,0)/R? ;5 — 12/R? 5 is presented®.
This quantity actually oscillates and what is presented is only the upper envelope.
As we will see in the next section this is the first nonlinear time scale, namely the
earliest time scale where nonlinearities become important.

Another very interesting result of [8], that will also be explained in the next section,
is that the I-mode data, namely scalar field profiles for which initially only one of
the modes of the spectrum is excited, do not collapse

Further studies on the subject have revealed however a much richer and more
interesting dynamics. More initial data were found for which their evolution does
not lead to a black hole formation. For example, the authors of [10] studied
numerically the same gaussian data, eq. (1.7), for different values of o and they
showed that for small values of o this data indeed collapses, but for ¢ > 0.4 the
collapse is avoided. This can be seen in Fig. (1.3) in which the time of the collapse
vs the amplitude of the perturbation is depicted. For values of o ~ 0.5 we see an
abrupt change in ¢, as € decreases.

Based on those results, the authors of [10] conjectured that Gaussian Data with
o > 0.4 are stable. However, later studies reported that the collapse is restored for
values o ~ 8 [11]. In [10] a complex scalar field, minimally coupled to gravity, was
studied and stable solutions were found in that system as well, dubbed as Boson
Stars.

In [20] time periodic solutions were constructed in the Einstein AdS-massless scalar

3This quantity consists of a good indicator for the onset of the instability

7
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(a) . c:s'z‘”2 105 b (b)
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2
et
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t

Figure 1.2: (a) The time evolution of the upper envelope of TI2(t,0) for four different values of €
for the gaussian data (1.7) and (b) the evidence that the time of the collapse scales
—2
as e * [8].

field model for any d > 2, whereas in [14,15] similar solutions (geons) where found
in pure gravity. Continuing in the direction of finding stable solutions, the work
of [12,13] was also very fruitful. In those works a class of quasi-periodic solutions
was constructed and it was shown to be nonlinearly stable. Those solutions are
finely tuned, such that the net energy flow in each mode is zero. The ansatz for
the amplitudes of those solutions is of the form* a;(7) = Aje~ 15T,

Summarizing, the above results lead to a very interesting picture of the phase space
of initial perturbations of AdS, which is entirely different than the corresponding
phase space of asymptotically flat spacetimes. In AdS there seems to be a part of
phase space which is unstable and a part for which there is a threshold ¢y, below
of which there is no black hole formation.

1.2.2 Weakly nonlinear perturbation theory

One can try and solve this system analytically in perturbation theory, expanding
the fields in powers of the amplitude € of the initial perturbation

¢ = Z €2j+1¢2j+1(t,$), A=1- Z €2jA2j(ta Z‘), 0= Z€2j52j(t7$)'
=0

§=0 §=0
(1.8)

Inserting this ansatz into the equations of motion and collecting terms of the same
order of € we obtain a set of linear equations which can be solved order by order.
To first order, we merely have a scalar filed propagating in the AdS background

b1+ Loy = 0. (1.9)

4See section (1.2.2) for more details.
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Figure 1.3: The collapse time of various initial data of the form (1.7) vs the rescaled amplitude
oe [10].

Here, L = —ﬁ@m (u(z)0y) is the Laplacian of AdS with eigenvalues w; = (2j+d)
and eigenfunctions

d_q1d 24/ (G +d -1
e; = djcosdxp-g 1,37 d; = ](‘7,—+d).
LG+ %)

J
The eigenfunctions are normalized such that (e, e,) = dmn in the inner product
(f,9) = J;2 f(z),9(x)pu(x)dz and the positivity of the eigenvalues implies that
AdS is linearly stable. One can use the eigenfunctions of L to expand the field ¢,
where at this order is simply:

(1.10)

o1(t,x) = Z cg-l)(t)ej (z) = Z (aje™it + aje™ ") e;(x). (1.11)
7=0 =0

J

To second order in € we obtain the back reaction on the metric
Auto) = oo [ (6100 + 8 0.)) o), (112)
0

— [ (1(t.9)* + ¢/ () ) v(yuly)dy,  for 3(2,0) =0
w2 2 s 2 (1.13)
ST (1190 + ¢/ (4,)° ) vw)n(y)dy, o d(t,m/2) = 0.

while the first non—trivial dynamics appear at the third order. One obtains the

52(t, fﬂ) =

inhomogeneous equation

$3+L¢3 :S(¢17A2a62)7 (114)

where S = —2¢ (Ag + 82)— (Ag + 52) — ¢} (A5 + d%). We can again expand the

field as ¢3(t,2) = 72, cg-g) (t)ej(z), and projecting o the basis {e,,}, we obtain

9



1. Introduction

an infinite set of decoupled forced harmonic oscillators for the Fourier coefficients
(3 3
&) +widP (1) =85, S;=(Se)). (1.15)

Due to the fact that the linear spectrum is highly commensurate, since the frequen-
cies are integers, there can be many resonant terms contained in S;. Specifically,
for every triad (j1, j2,73)° such that w; = wj, + w;, —wj, there is a resonant term
in Sj.

Let us digress a bit here and describe the issue of resonances in time dependent
perturbation theory in a slightly simpler system, the anharmonic oscillator. The
exact equation of motion is:

j+q+e® =0, (1.16)
where € is a measure of the strength of nonlinearity. Let us assume the following,
simple, initial conditions

q(0)=C,  4(0)=0. (1.17)
We seek a solution in the form of perturbative series:
a(t) = qo(t) + equ(t) + aat) +... = Y 'qi(t). (1.18)
i=0

By plugging this ansatz into the equation of motion for ¢ and equating terms of the
same power in €, we obtain the following (infinite) system of coupled differential
equations:

Ggo+q = 0
ii+qa = —q
B+e = —3@a

(1.19)

This set of equations has the property that if we know ¢o(t) we can solve for g1 (t),
then we can find ¢2(t) and so on so forth. Therefore we can proceed order by order
to find a power series expansion of the solution. In practice, one has to truncate
this perturbative expansion to some order.

55’j is cubic in a; at this order.

10



1.2. Spherically Symmetric Perturbations in AdS

With the given initial conditions, the solution to the O(e") term is simply go(t) =
C'cost. Then we can use this result to solve for ¢;(¢). In the second equation
of the system (1.19), go(t) acts a (periodic) driving force for g¢;. One can solve
this equation by applying the Green’s function method, which for the case of the
harmonic oscillaltor yields

t
at) = / sin(t — t')qo(t')dt’ =
0
t) = 3 —§tsint— icost—!— icos3t (1.20)
= 8 32 32 ' '

However, the solution (1.20) is wrong! We know that the motion is periodic, yet
the solution we obtained diverges linearly with time (the first term in (1.20)).
Another issue is that the energy is not conserved for this solution. The problem
arises because the driving term g§ contains a term ~ cost, which acts as a resonant
driving term leading to non-periodic solutions in ¢;. Such diverging terms are often
dubbed secular terms.

A way out of this conundrum was found by Lindstedt and Poincare as they realised
that one is attempting an expansion of a function with varying period in terms
of functions with fixed periodicity 27. Their proposal was to allow for a change
of the independent variable simultaneously with the perturbative expansion. This
would allow for the period to change with the amplitude. To be more precise let
us define the new independent variable s:

s = wt,

w = 14 ewi€ws+.... (1.21)

Then we have the power series expansion

as) = 3 €'ails). (1.22)

The trick of this method is that due these extra constants w; we can remove order
by order the secular terms. By changing independent variable t — s, the equation
of motion for ¢ reads:

&‘&
Cl:.bQ

Wi+ q+eq® =0, (1.23)

Q.
If

11



1. Introduction

Plugging now both the series expansions (1.21) and (1.22) and equating again the
coefficients of the same powers of ¢ we obtain the following system of coupled
equations:

Ggo+q = 0
Gi+q = —q+ 2w
G + o =3¢3q1 + 2(q1 + g)w1 + qo(2w2 — 3wi)

(1.24)

The solution to the first equation is, as before, go(s) = C coss and inserting this
into the second one we obtain for ¢;:

.. 3 3 c3
G1+q =(2Cw; — ZC cos § — T cos 3s. (1.25)
No it is obvious that we can choose w; = %Cz and cancel the secular term ~ cos s!
This would lead to the solution:
CS
n = -5 (cos s — cos 3s)
3
w = 1+e§c2. (1.26)

There are no secular terms now, but the frequency has been shifted by an amount
that depends on the amplitude of the nonlinearity e.

This procedure could be seen a bit differently as well. Let us go back to eq. (1.20)
for ¢;. The solution for ¢(¢) (up to first order) would thus be:

1 1
qt) = qo(t) +eq(t) = Ccost + eC? (—Zt sint — 33 cost + 35 008 3t>

- o[- o (20 ) oo 2

(1.27)

In the second line we have realised and resummed the Taylor expansion (to first
order in €):

12



1.2. Spherically Symmetric Perturbations in AdS

Exact Solution

Exact Solution Exact Solution

""" Qo(t)+q1(t) (naive) G(t)+1(1) (resummed)

Figure 1.4: Comparison of the exact solution to eq. (1.19), with ¢ = 0.1 and C = 1, obtained
numerically, with the different solutions obtained from perturbation theory. Up:
The zeroth order perturbative solution. Down: The perturbative solution up to
first order, naive (left) and resummed (right).

3 3
cos(t + egCQt) ~ cost — §602t sint. (1.28)

To illustrate the success of this resummed perturbation theory we contrast in
Fig. (1.4) the different approximate solutions to eq. (1.16), the ezact solution
obtained by numerical methods.

The case of AdS is not very different from the toy model of the anharmonic
oscillator, only a bit more intricate. A first treatment of the AdS resonances
appeared in [8] and a more sophisticated technique, the Two Time Framework
(TTF) [12,21], was later developed and allows for a systematic procedure. The
basic idea behind T'TF, is to allow for an additional, slow time dependence, of the
fields. In that case, the perturbative expansion of the fields, would become

¢ = epi(t,T,x) +Eps(t, T, x) + O(e°),
A = 1—EA(t,1,x)+ 0(eh),
P 205 (t, 7, 1) + O(e), (1.29)

where 7 = €2t denotes the slow time. One could go to higher orders by introducing
additional slow time variables. Substituting now the above expansion, eq. (1.29),
into the equations of motion, we obtain again a system of equations which can
be solved order by order in €. The difference now, is that the expansion for the

13



1. Introduction

linearized field can be written as

1(t7w) = (a(T)e ™! + a(r)e” ") e (), (1.30)

Jj=0

where the slow time 7 accounts for the energy transfer among the normal modes
(due to non-linearities), while the fast time ¢ accounts for the oscillations of the
normal modes. To second order we have again the constraints for As and J, and
the first non-trivial dynamics appear to third order in €

03 + Lps + 20,0:¢1 = S(¢1, Az, 02), (1.31)

where the source term reads S(¢1, Az, d2) = (A2 — 52)&1 —2(Ag — 62) Loy + (A} —
04)#}. The overdots here, represent derivatives with respect to the fast time ¢, as
usual. Projecting again on the basis {e,,}, and substituting eq. (1.30) we obtain

(¢, 8205 + w20s) — 2ito; (Dray (r)e ™" — 9,6, (1)) = (1, 5).  (1.32)

Now we can treat the resonances separately, due to the presence of terms propor-
tional to e*™it on the left hand side. Setting

—2iw;0r (1) = (€5, 5) lw;] = Z Skim 0 0 Ot (1.33)
klm

we may cancel off the resonant terms from the rest of the eq. (1.31). These are

now entirely captured by eq. (1.33), rendering the solution ¢3 bounded, and hence
of little interest to us. The result is an infinite set of coupled first order ODEs for
the Fourier coefficients of the linear expansion, which are known by the name TTF
equations. The sum, in eq. (1.33), contains only terms for which the resonance
condition j + k = | + m is satisfied.® The TTF equations govern the evolution of
both the amplitudes and the phases of the complex coefficients a; and sometimes
can be more convenient to rewrite them using the amplitude—phase representation
(1) = Aj(7)e’Bi(T) in terms of which the TTF equations can be expressed as

dA;
QOJjTJ = Z SjklmAkAlAm sin (Bj + B, — B, — Bm>
T jH+k=l+m
J#LIFEM
dB;
2wjd77_j = T]A? + ZRZ]AZQ + A;1 Z Sjk‘lmAkAlAm CcOS (B] —+ Bk — Bl _
i#] jtk=l+m

AL j#m

SIn principle, all the resonant channels, j = 4k 4 j & I, should appear but only the one
described here remains [21,22].
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1.2. Spherically Symmetric Perturbations in AdS

Here T; = Sjjj5, Rji = Sijji + Sjijs, for i # j. The TTF system possesses an all
important scaling symmetry, a;(7) — ea;(7/€?), which means that the evolution
of a perturbation of amplitude A; for time 7, will be the same as the evolution
of the perturbation of amplitude €A;, but for longer time 7/€2. As mentioned
earlier, this allows us, for as long as the TTF approximations are valid [3], to draw

conclusions for the vanishing amplitude limit, from results obtained in finite e.

This system of equations has been extensively studied, and will be of great interest
in the subsequent chapters, revealing a very interesting phenomenology with a
phase space of initial conditions containing both finite sets of stable and unstable
perturbations. However, since this is only an approximation to the full system,
many questions naturally arise. For example, up to what point are we allowed to
trust our approximations, what happens in the evolution of the perturbations after
our approximate methods are invalidated and can we remove all the resonances
by similar multi-scale methods?
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Position space analysis of the
AdS (in)stability problem

Nothing happens until something mowves.

— Albert Einstein

In the previous chapter we analyzed the problem of the evolution of perturbations
in AdS in Fourier space. Now we will present an analysis directly in position space
that nicely complements the momentum space analysis.

2.1 Introduction

As we mentioned earlier, given a spherically symmetric perturbation of arbitrarily
small initial amplitude €, two dramatically different behaviors have been observed
at the timescale ~ €2, the earliest time on which interactions can have a signif-
icant effect [8,10-12,15,16,20,23-28]. Sometimes a black hole forms around this
time; sometimes a long-lived quasi-periodic behavior emerges and gravity does not
become strong. This is a great puzzle concerning both the gravitational dynam-
ics in the bulk and the corresponding thermalization process in the holographic
boundary theory.

In this chapter we will focus on the bulk perspective and on the simple case of
a free massless scalar field coupled to gravity. We treat the system classically
and impose spherical symmetry. In the limit of small amplitude e, the energy
density is proportional to €2 and controls the strength of gravitational effects.
Therefore, behavior at the time scale €2 is sensitive to the leading-order effects of
gravitational interactions. One framework to study this is to analyze the nonlinear
couplings between the linearized modes induced by the gravitational interactions.
Linearized modes in AdS space all have frequencies which are integer multiples

17



2. Position space analysis of the AdS (in)stability problem

of the AdS scale. A mode that is initially unexcited can be resonantly driven by
the excited modes, which allows for the possibility of efficient transfer of energy.
Such efficient energy transfer between modes generically leads to the breakdown
of naive perturbation theory, since the true solution does not remain close to the
solution in the non-interacting theory. This resonance effect was argued to be the
cause of an energy cascade—energy spreads out into more and higher modes—in
order to explain black hole formation and the power-law spectrum observed during
such processes [8,14,15,23]. It was also argued that since the AdS spectrum is
resonant, such an instability should be the generic outcome of small perturbations.

Counter-examples to the above claim in the form of the stable, quasi-periodic
solutions were initially viewed as being special. It was conjectured in [15] that these
stable solutions will shrink to a set of measure zero in the small € limit, and the term
“stability island” was used to describe their existence in the generically unstable
sea of phase space. However, more recent evidence suggests that such a conclusion
is too strong. Numerical evidence suggests that, at finite €, the stable and unstable
solutions both have nonzero measure in the space of initial conditions [10-12].!
One can then apply a simple scaling argument, described in more detail in Sec. 2.2,
to show that in the e — 0 limit, the stable solutions persist. However, the same
argument fails for unstable solutions. The open question now becomes whether
there are “instability corners.” Namely, in the ¢ — 0 limit, do the unstable
solutions shrink to a set of measure zero, or do they also continue to have finite
measure?

There are some important misconceptions and misunderstandings in the current
literature regarding the status of the AdS (in)stability problem, due in part to
three points of confusion, which we would like to clarify here. First of all, an
energy cascade is not identical to, nor does it guarantee black hole formation.
This distinction has not been made clear enough. Both have been frequently used
interchangeably and referred to as the “instability of AdS space.” Black hole for-
mation requires energy to be focused into a small spatial region. According to the
uncertainty principle, energy flowing to high momentum is certainly a necessary
condition for that, but it is not sufficient. It is entirely possible for even unbound-
edly high momentum modes to be populated, but for the energy distribution to
stay roughly spatially homogeneous.

Therefore, here, AdS instability strictly refers to black hole formation only.
Because the AdS geometry changes dramatically in this case, such nomenclature

INote that we are always discussing stability on the interaction time scale e~2 in this work.
The question of the behavior on longer time scales is a fascinating one that touches on issues of
ergodicity, Arnold diffusion, and the KAM theorem. We do not know how to attack questions
on these longer time scales analytically or numerically.
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2.1. Introduction

aligns with a more gravity point of view.? This also allows us to study its impli-
cations on the boundary CFT. When we refer to a solution or initial condition as
stable or unstable, we will always be indicating whether it collapses to form black
hole or not.

The second point of confusion is the use of term “generic.” Numerical evidence
suggests that, at finite €, the stable and unstable solutions both form sets of
nonzero measure in the space of initial conditions [10-12].> We are interested in
the € — 0 limit, and in this work we use the following definition:

1. “Generic instability” means the set of stable initial conditions (not forming
black holes) shrinks to measure zero.

2. “Generic stability” means the set of unstable initial conditions (forming black
holes) shrinks to measure zero.

3. “Mixed” means that both sets have nonzero measure as ¢ — 0.

Until recently, references in the literature did not clearly distinguish between (1)
and (3). For example, it was conjectured in [15] that “stability islands” shrink to
a set of measure zero in the small-e limit, which is certainly arguing for only (1).
However, the numerical evidence in [8] showing that black holes continue to form
as € is reduced is consistent with both (1) and (3). Since these are three physically
different cases, we think such a clear distinction is needed.

Finally, when addressing the question of instability, one needs to specify a time
scale. In this work, we will only discuss the time scale that goes to infinity as e 2
in the ¢ — 0 limit.* Indeed a naive perturbation analysis shows that something
interesting can happen at this time scale. The physical question we will address is
whether that “something interesting” is generically black hole formation? In the
end, we will try to relate the answer to the boundary CFT: Does the boundary

system thermalize at this time scale?

2From the hydrodynamic point of view, the existence of an energy cascade might be a suitable
definition of instability. Indeed, this is the perspective taken by some authors, and we wish the
reader to see the distinction clearly.

3Strictly speaking, numerical results only cover discrete choices of initial conditions. So, it
is therefore impossible on numerical grounds alone to prove that any such set has either zero or
nonzero measure. This fact holds equally for both stable and unstable solutions. Nevertheless, if
either set really were measure-zero, unless the numerical code secretly enforced extra symmetries,
it would be extremely unlikely to find such a result even once in simulations. Thus, despite the
numerical controversy over some of the stable solutions [29], we still interpret the current evidence
that stable and unstable solutions both have nonzero measures.

4Behaviors at shorter time scales are somewhat trivial. For example, for a given fixed time,
black hole forming solutions disappear as € — 0, so the system is generically stable, case (2). The
behavior at longer time scales is a very deep problem that touches on issues of ergodicity, Arnold
diffusion, and the KAM theorem. We do not know how to attack those questions analytically or
numerically.
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2. Position space analysis of the AdS (in)stability problem

After making all these definitions clear, in Sec. 2.2 we briefly review the recent
progress on this topic. We then present a very simple scaling argument which
shows that possibility (1) defined above, “generic instability”, is the most unlikely
given by existing evidence. This directly argues against the “stability island”
conjecture [15]. The remaining question then is whether AdS space is generically
stable (2) or mixed (3).

In Sec. 2.3 we set up our perturbative method for studying gravitational self-
interaction. This position-space approach is more directly relevant than the usual
momentum-space analysis to the question of whether or not black holes form.® If
energy gets focused into a smaller region, then the solution is evolving toward a
black hole. If energy is defocused into a larger region, then the solution is evolving
away from a black hole. We explicitly demonstrate that in the € — 0 limit, the fo-
cusing/defocusing dynamics depend only on the gravitational self-interaction near
the origin of AdS, when the energy of the perturbation is maximally concentrated.
The propagation through the rest of asymptotic AdS space plays no dynamical
role.

In Sec. 2.4 we prove a one-to-one correspondence between focusing and defocusing
energy in the near-center dynamics. Heuristically, our result is shown in Fig. (2.1):
A shell of massless scalar field will become narrower, its energy focused, if it is
denser in the front. On the other hand, if it is denser in the tail, it will become
wider and energy will defocus.® More generally, the leading-order dynamics of
focusing and defocusing are related by time reversal, so a local maximum of energy
density is also equally likely to grow or diminish within the time scale < e2.

In Sec. 2.5 we present the new intuition our method provides and propose a conjec-
ture on the structure of the phase space. Based on the symmetry between focusing
and defocusing dynamics, the stable, quasi-periodic solutions can be understood
as trajectories that alternate between the two. As a result, they may form quasi-
closed loops in phase space. In fact, some unstable solutions are also known to
exhibit this alternating behavior while in the weak-gravity regime. Based on this
understanding of the dynamics, we propose a conjecture on how to visualize the
phase space of small perturbations in AdS space.

We also discuss how these gravitational calculations can shed light on the general
concepts of thermalization in a closed system. In particular, contrary to conven-

5In principle, one can include all the information about relative phases in the spectral anal-
ysis to achieve the same result. Our position-space approach is simply more direct. In addition,
it technically circumvents the subtlety that the gravitational interaction imposes significant ad-
ditional constraints on possible resonances [21].

6The shell profile will change in other ways, but all changes are suppressed by €2. The
focusing or defocusing behavior will last for a time scale < €72, so it is the dynamics we are
interested in here.
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2.2. Stability islands or instability corners?

r=0 / r=0 i

narrower wider

Figure 2.1: A thin shell that has higher energy density in its front will come out narrower after
gravitational self-interactions as it bounces through r = 0. A shell with higher
energy density in its tail will come out wider after the bounce.

tional wisdom, black hole formation at the =2 time scale is not necessarily the
holographic dual of thermalization in the boundary field theory. If the thermal gas
phase is the equilibrium state, then black hole formation describes prethermaliza-
tion that significantly delays true thermalization [30,31].

In Sec. 2.6, we provide a quick summary of six major points of this chapter. In
Appendices 2.A and 2.B, we provide the computational details of our method
and numerical examples to demonstrate how the shape of the profile determines
whether its energy is focused or defocused.

2.2 Stability islands or instability corners?

We are interested in the perturbative stability of global AdS space. We will work
in (34 1) dimensions and employ the following metric for vacuum AdSy:

it = — (14 -2 Yaz+ —P 20z 2.1
SAds, = + 72 + = trodll (2.1)
AdS 1+ R

where Rags is the AdS radius and df22 is the round metric on S2.7 Our pertur-
bations will take the form of a real, massless scalar field ¢ minimally coupled to
Einstein gravity with a negative cosmological constant:

_ [ a 1 6 1, .,
S—/dac\/ﬁ(mﬂRﬁ—RQAdS S0u00"5 ) (2.2)

7Our radial coordinate r is related to the radial coordinate z used in [8] by r = tanz.

21



2. Position space analysis of the AdS (in)stability problem

The Planck scale has been set to one. We will consider only spherically symmetric
solutions, so both the scalar ¢ and the metric functions gy and g, will only depend
on t and 7.

Here we will review some existing evidence and argue that a careful interpretation
strongly supports the following conclusion for spherically symmetric perturbations
of a massless scalar field in AdS space:

In the € — 0 limit, at the T ~ €2 time scale, AdS space is either generically
stable, or stable and unstable perturbations are equally generic.

The first part of our argument is based on ample numerical evidence at small
but finite e. The initial conditions that lead to black hole formation (unstable)
and those that lead to quasi-periodic solutions (stable) both form open sets in the
phase space of nonzero measure. Note that the phase space is infinite dimensional,
so no numerical evidence can prove that any set is really open. Nevertheless,
whatever extrapolations are being made should be applied equally to both stable
and unstable solutions, and the existing numerical evidence is quite sufficient to
show that they are on equal footing. More specifically, numerical tests can scan a
one-parameter family of initial conditions, corresponding to a line in phase space.
It has been clearly demonstrated that for a few such lines, the initial conditions
that lead to stable and unstable solutions both form finite segments [10-12]. We
will pragmatically take this as evidence that both stable and unstable sets in phase
space have nonzero measure at small but finite .

In particular, within the set of stable solutions, one can identify a subset for which
“oravity never becomes strong” during the ~ e~2 time scale; that is,

3 ¢(e, 7, t) , such that ((bQ + (/)’2) <d<lfor0<t<T~e 2. (2.3)

Our next step is to show that in the ¢ — 0 limit, these stable solutions cannot
disappear. We can use the scaling behavior observed in [8,12], which was trust-
worthy to leading order in e. We will demonstrate that in the ¢ — 0 limit, this
scaling behavior is exact for stable, weak-gravity solutions.

The spectrum of a massless field in the AdS background is given by integer multi-
ples of the AdS energy scale Rggw meaning that the field profile is exactly periodic
in time. Heuristically, a spherical wavefront shrinks toward the origin » = 0, passes
through it, expands again to infinity, and finally bounces off the boundary back
to the original position.® It is natural to describe the dynamics as a function of

8The periodicity of geodesics in AdS is 2rRaqs, and in that time they pass through the
origin twice. However, a shell of massless scalar field with Dirichlet boundary conditions at
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2.2. Stability islands or instability corners?

the “number of bounces” N = — RtAds instead of the microscopic time t:

¢(r,N+1) = ¢(r,t + mRaag) = o(r,N) = ¢(r, 1) . (2.4)

Now, introducing gravitational self-interaction, as long as the field amplitude (and
therefore the resulting back-reaction) is small, we have a small correction to the
above exactly periodic solution,

¢(r, N + 1) — ¢(r,N) = Alp, ¢] + O(¢°) . (2.5)

The functional A describes the small, leading-order changes to the profile, which
we will analyze further in the following sections. Here we only need to know that
it scales like ¢®. It is convenient to introduce the rescaled field, ¢ = ¢/¢, whose
evolution is given by

d(r,N +1) — ¢(r, N) = A[g, d|e* + O(e*) , (2.6)

Although the value of N is discrete, in the e — 0 limit, the change due to each
bounce goes to zero. We can therefore take the continuum limit, in which eq. (2.6)
becomes

d¢

=A. 2.
d(e2N) 2.7)
Thus, the scaling behavior is exact:
¢e(r,N) = ¢<(r,a’N) . (2.8)

Reducing the amplitude of the fluctuation simply slows down the dynamics by
a?: if € is reduced by a factor of a, it takes a® more bounces to reach the same
configuration. Therefore, if there is a stable solution at some finite € and for a time
T ~ €2 during which gravity never becomes strong, this must also be a stable
solution at any smaller e, all the way to the € — 0 limit.”

Interestingly, this same argument is not applicable to unstable solutions. In order
to form a black hole, the scalar field profile must first evolve to have large energy
density somewhere, (d)2 + ¢'2> ~ 1. In other words, gravity must become strong,
at which point the higher order terms in eq. (2.6) cannot be ignored. In those
cases the scaling behavior is lost. A collapsing solution at some small but finite €
might escape that fate if we reduce e further [34].

At this point, we are left with two possibilities:

the boundary is actually periodic in half that time, mRaqs, during which the wavefront passes
through the origin only once.

9We should note that the expansion in powers of € is most likely asymptotic [32], but its
leading-order result has been accurate for many similar applications [33].
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2. Position space analysis of the AdS (in)stability problem

e Stable and unstable perturbations are both generic, in that they both occupy
sets of nonzero measure in the phase space.

e AdS space is perturbatively stable generically, but there are special “insta-
bility corners”, which shrink to measure zero in the limit € — 0.

Finally, recall that we have so far limited ourselves to spherical symmetry. Intu-
itively, spherical symmetry arranges for matter to converge at the origin, which
is helpful for gravitational collapse. So, even if the first of the above possibilities
holds within spherical symmetry, it may be that without spherical symmetry the
second is instead the case.

2.3 Weak gravitational self-interaction in posi-
tion space

2.3.1 The two-region approximation

We now present our approach to explicitly calculating the functional A in eq. (2.5).
Our result, a precise expression for A, is given in eq. (2.29). Many of its properties
will help us to better understand the dynamics and the possibility of instability
corners. Our calculation will be in position space. The advantage for this approach
is easily seen if we first picture the evolution of a thin shell of total energy F ~ €2,
thickness w and initial size rq, such that ro > w. This corresponds to an initial
field profile that is roughly given by

Do (1, )]emt; ~ _G;/E f (—T —rotl- ti) : (2.9)

w

We will take the profile f(x) to be some function that peaks at x = 0 and has
compact support an order-one range around around this peak (i.e. f(z) = 0 for
|z| > 1).1° Note that we have carefully chosen the dependence on w such that
it does not affect the total mass, which is controlled solely by e. The small-
perturbation limit then corresponds to € — 0.

Other works studying similar scenarios choose various different initial conditions
for the scalar field perturbation. Some authors take initial conditions that place
the energy near » = 0. In other cases, the perturbation originates from a quench
in the boundary CFT and appears as a wavefront coming in from r = oo [35].

10We choose the profile to have compact support only to make the subsequent calculations
somewhat cleaner. The shell only needs a narrow, well-defined width. Alternately, one could
take f to have, for example, Gaussian tails without affecting the results.
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2.3. Weak gravitational self-interaction in position space

Remember that in the small-¢ limit, the leading-order behavior is the same as
in empty AdS space; that is, the radiation shell simply bounces back and forth
between r = 0 and 7 = oco. Therefore, all of these initial positions of the shell
are related by a shift in time on the order of Raqgs. Since we are interested in the
outcome at longer time scales, they are all equivalent for our purposes.

One advantage of our position-space approach is that we can choose an ry which
implements the following “two-region” approximation:

e For r < rp, we will ignore that the background is AdS space and consider
only the back-reaction of the scalar field on Minkowski space.

e For r > 1y, we will ignore the scalar field back-reaction and treat the geom-
etry as empty AdS space.

In order to justify this simplification, we first recall the general form of the
Schwarzschild-AdS metric:

2M (r) r2 ) 9 dr?
+ dt® +
R%4s 1— 20 4 _r

r Rias

+r2dQ3  (2.10)

2

ds%AdS4 == <1 -

where M (r) is the total mass located inside the sphere of radius r.

For r < ry we will ignore the r?/R% ;4 terms in gi+ and g, responsible for the
AdS asymptotics and calculate M (r) due to the back-reaction of the radiation
shell. This effect is strongest when the shell is near the origin and its energy is

concentrated in a small region within r < w. We find that M(r) ~ €.

At r = rg, we will start including the AdS terms and ignoring the back-reaction
terms, such that for » > ry the metric is just that of empty AdS space. Naively,
this is allowed if the metric at ry is approximately that of Minkowski space; that
is, the corrections due to both AdS and back-reaction must be small:

2 2

0«1 and S <1, (2.11)
RAdS To

However, we should really ask for a stronger condition.

Our perturbative back-reaction calculation will be organized as an expansion in
powers of €2/w, and we will work up to some power n using the Minkowski back-
ground. In order to be able to trust our results up to that order, we cannot allow
the transition at ro to have a competing effect, meaning

2 2\ " 2 2\ "
0 <<<6> and €<<<;> . (2.12)

2
R% 4 w 70
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2. Position space analysis of the AdS (in)stability problem

For any Raqs, we can choose the shell small enough and thin enough to accom-
modate the hierarchy of scales

Rags > 1o > w > €, (2.13)

which satisfies eq. (2.12) for any choice of n.

The two-region approximation provides a very simple picture. In the e — 0 limit,
the dynamical evolution is totally controlled by the central Minkowski region. For
the AdS instability problem, the only meaningful calculation is the gravitational
self-interaction of a thin-shell when it passes through r < rg. The propagation
in the r > rg region is just propagation in an empty AdS space; the shell simply
travels out, reflects off the boundary, and repeats the gravitational evolution near
the origin. Since the profile is modified by a small fraction ~ (¢2/w) during each

2

bounce, we expect on the time scale ~ €% an order-one change to accumulate.

For example, the self-interaction might make the shell thinner after each bounce,
meaning that the gravitational effect becomes stronger, since more energy is squeezed
into a smaller region. If that behavior persists, then eventually the energy will
be compressed during a bounce into a region near the origin smaller than its
Schwarzschild radius. At this point, the weak-gravity approximation will break
down, and it is very likely that in the =2 time scale, the shell will evolve into a
black hole. On the other hand, it is also possible that the shell becomes wider
after each bounce, and energy is dispersed into a larger region. In this case, there
is no particular reason why gravitational effects would necessarily become strong
and no indication that a black hole would form in the e~2 time scale. The main
goal here is to set up a calculation that can capture these two different behaviors.

Before moving on, we need to address the applicability of the thin-shell approx-
imation. A full dynamical picture should accommodate energy distributions of
all thicknesses. However, when w ~ Ragqs, there is no clean way to separate the
self-interaction from the effects of the AdS space. Nevertheless, our main interest
is the instability in AdS toward black hole formation. In the small-e limit, the
energy must become concentrated into thin shells to even have a chance of even-
tually forming a black hole. Note that not all of the energy needs to be in one
thin shell. But, the evolution toward a black hole is determined by the shell with
the highest radial energy density, which is dominated by its self-interaction, so we
can ignore the influence of other energy distribution outside the shell.
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2.3. Weak gravitational self-interaction in position space

2.3.2 Near-Minkowski expansion

According to our approximation scheme, we can adopt the weak-gravity expansion
in Minkowski space [33]:

¢ = eho+Ed+ ... (2.14)
G = 921/ + ezg}w + ... (2.15)

At zeroth order in e, the background is empty Minkowski space,
~O(),  ds® = —dt? +dr* +r2dQ? (2.16)

into which we put the initial shell profile. To first order, the equation of motion
for ¢ is just that of a free field,

~ O, do—dh - 26y =0. (27)
At the next order, gravity responds to the stress-energy tensor of the first-order
profile. We therefore must solve the Einstein equation G, = 87T}, to leading
order in small perturbations around empty Minkowski space. Spherical symmetry
excludes dynamical degrees of freedom in the metric, so we only need to solve
constraint equations. The ¢t and rr components suffice to provide the full answer,
and the solution is parametrized by two intuitive quantities: enclosed mass M and
gravitational potential V.

2
ds? = —[1 + 262V (r, t)]dt> + [1 + MM} dr? +r2d0? | (2.18)
T

Note that we have also explicitly extracted the e scaling from M and V', which are
given in terms of the leading-order fields:

2M/ 12 /2

~ O(%) = g 20 ‘; % , (2.19)
2( M, $ + o5
ol — 2.2
. < . +V) 8 5 , (2.20)

with boundary conditions M(0,¢) = 0 and V(co,t) = 0. Finally, the leading
nontrivial dynamics comes at the next order—the change in geometry back-reacts
on the field profile.

. 2 . 2 ..
~ O, 1 —¢f — ;d)ﬁ =C (% + 95 + r¢6> +Coo+ C'¢y . (2.21)

Here we have abbreviated C = (V —M/r). We see that the field at this order obeys
the same wave equation as in the previous order with the addition of a nontrivial
source term.
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2. Position space analysis of the AdS (in)stability problem

The radial wave equation can be rewritten as a (1 + 1)-dimensional wave equation
by introducing u = r¢:

r <¢5 — ¢ - iqﬁ’) =i—u". (2.22)

This implies that the initial shell profile given in eq. (2.9) is really just the left-
moving part of an exact, leading-order solution,

w

rqso(r,t)_uo(r,t)_ﬁ[f (th> _f(’"tﬂ . (2.23)

We remind the reader that in eq. (2.14), the ¢ dependence has been extracted
explicitly for ¢, therefore also for uy. We have taken the liberty to choose the
initial time t; = —rg to simplify this expression. This allows us to start this
calculation once the shell enters the r < ry region, and the center of the shell
reflects off the origin at ¢ = 0. Later, we will be interested in corrections to the
profile at £y = rg, when the shell is leaving the central Minkowski region.

Rewriting the system in terms of the (141)-dimensional function w is essentially
employing a method of images; we extend the range of r into the unphysical
7 < 0 region. To implement boundary conditions at r» = 0 such that all physical
quantities are finite and smooth, we require u(r,t) to be antisymmetric. Similarly,
we can extend the definition of M to negative r,
r 12 /2
M (r,t) :/ di D090 4z : (2.24)
0
which is naturally an odd function of r. The same extrapolation shows that V is
an even function of r.

In terms of these new variables, the problem of a shrinking shell has been mapped
to the problem of two wavepackets colliding at » = t = 0. Note that this picture
is more realistic than it seems; antipodal points of the shell do indeed collide with
each other. When the shell is far from the origin, even the leading-order radial
energy density is approximately equal to the naive definition of energy in this
(1 + 1)-dimensional simplification:!*

DR, iRt up

5 5 (2.25)

po = 4nr

To leading order, the colliding shells simply pass through each other. Our goal is
to solve the next-order nontrivial effect of such a collision by solving eq. (2.21),

1 Note that the total energy E = M(co,t) = Jo7 p(r)dr is in fact equal to the naive (1 + 1)-

22 12
. . un+u,
dimensional energy [ 2m=05-0- dr.
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2.3. Weak gravitational self-interaction in position space

which in terms of u is simply

iy — uf = C (iig + uy) + Cig + C’ (%, %) = S(r,t) . (2.26)

This description has a striking resemblance to soliton collisions [36,37]. The key
to this type of problem is that, before solving the equations, we should already
anticipate the physical meaning of the answer. At ¢ty = ry, after the collision, the
leading-order solution implies that an out-going shell of the opposite sign reaches
exactly r = rg. On top of that, we can organize the next-order correction into the
following form:

6u0 8u0
WAT S0 —Aw + .. ) (2.27)

u0+62u1:u0—62<

We have again extracted the ¢ dependence explicitly. The shell is actually shifted
by €2Ar from its expected position, its width has changed by e Aw, and there will
be other changes orthogonal to these.

The function u; at t; = ro can be solved from eq. (2.26) by integrating the retarded

r+ro—t
(r,70) / dt/ dr’ S(r't) . (2.28)
—To T—

ro+t

Green’s function:

Note that the lower limit of ' can be negative, which is allowed due to our method
of images. The result, however, is the same if we replace the lower bound of the
integration range by its absolute value.

Note that this u is only the difference between the incoming shell at ¢ = —rg and
the out-going shell at ¢ = rg, both at position r = rg. Nevertheless, as we have
argued that the propagation further to » = oo, the reflection, and the propagation
back to r = rg, can all be taken as trivial. This allows us to directly relate u; to
the functional A from eq. (2.5), which gives the leading-order change due to one

bounce. _
4 [Uo uo} __w(nt)

i

: (2.29)

9

r r

<

where 7 = 2rg — r is the spatial reflection of r around ry. The extra minus sign
and changing to this “flipped” position are due to the trivial propagation to and
from r = oc.

The full procedure to calculate u; and extract physical information like Ar and
Aw are tedious but straightforward. We will present the analytical and numerical
details in Appendices 2.A and 2.B. Here we highlight two relevant features of the
results:
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2. Position space analysis of the AdS (in)stability problem

1. u; has a ~ logrg contribution, which comes entirely from the position shift,

_fularuo dr

Ap = 2 1o &
" [ (9rug)? dr’

(2.30)

which has a clear physical meaning. The leading-order profile ug follows the
t = |r| trajectory, but the next-order correction to the metric modifies the
null geodesics. The shell will therefore return to » = ry not exactly when
t = ro. However, this shift is irrelevant to the pertinent question of whether
energy gets focused.!?

2. The change in the shell’s width is given by

B [ w1dwug dr
A= (2.31)

Since we have already scaled out the € dependence, Aw only depends on the
shape of the shell (i.e. the function f one chooses in eq. (2.23)), and it is
independent of both € and w.

In particular, our main result is that Aw is just as likely to be positive as negative.
Specifically, when we flip the profile of the incoming shell, f(z) — f(—z), then
Aw — —Aw. As a special case, a symmetric profile with f(z) = f(—z) will result
in no first order Aw during one bounce. This demonstrates that the gravitational
self-interaction in AdS is not biased toward focusing energy, and the collapse of
small perturbations into black holes is probably not the generic behavior, at least
not on time scales < e2.

As a complementary calculation, we also investigate how the maximum radial
energy density pumax of the shell behaves under the same f(z) — f(—z) trans-
formation. Like the width w, we find that if for a given profile pyrax increases
with each bounce, then for the flipped profile it decreases. This provides another
indication that the weak-gravity dynamics are biased neither toward nor against
focusing energy.

In the next section, we will give general proofs of these statements. We will also
present numerical examples in Appendix 2.B.

12This position shift is related to a shift in frequency in the momentum space analysis observed
in other works [12].
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2.4. Focusing and defocusing

2.4 Focusing and defocusing

2.4.1 Antisymmetry of the field correction

As a preliminary step in proving the statements of the previous section, we need to
determine how the first-order correction u; responds to a spatial flip of the initial
profile ug such that f(x) — f(z) = f(—x). We find that

up(r,ro) = 1(r,ro) ~ —ui (7, ro), (2.32)

where 7 = 2r¢ — r is again the spatial reflection of r around ry. Note that this is
an approximate statement; for a shell of width w, the error in eq. (2.32) is of order
w? /rg. As we argued in Sec. 2.3, in the € — 0 limit, we can choose rg to make this
error arbitrarily small.

The quantities that enter the expression (2.70) for u; are ug and its derivatives
and C and its derivatives. So, let us first see how these quantities transform under
the flip. From eq. (2.23), we can see that:

uo(r,t) = ao(r, t) = —uo(r, —t). (2.33)

Then, simply by differentiating the two sides of the equation (either with respect
to r or t), we obtain the same transformation behavior for the derivatives of ug.
Now, to see how C transforms, all we need is to determine the transformation of
M, defined in eq. (2.24):

i r . , ao(r,1)\ 2

M(r,t) — M(rt) = 27r/ dr’ <u~(2)(7'/,t) + g 2(r' ) + (0(/))
0 T
2do(r’,t)d0’(r’,t))
r

r — 2
= 27r/ dr’ (u'02(7", —t) + U:)2(7“» —t) + (W)
0

T
uo(r', —t)ug(r, —t)>
r!

= M(r,—t). (2.34)

- 2

Since V has the same behavior as M, then C(r,t) = V — 2 transforms under the
flip as:
C(r,t) = C(r,t) = C(r, —t). (2.35)

Again, a similar relation holds for the derivatives of C. Combining the above
results, we see that the source term S(r,t), defined in eq. (2.26), behaves as

S(r,t) — S(r,t) = —S(r,—t) (2.36)
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2. Position space analysis of the AdS (in)stability problem

under flipping of the initial profile. Also, by demanding regularity at the origin
r = 0, the initial profile is antisymmetric in r, which in turn implies that M (r,t)
is also antisymmetric in r; hence C(r,t) is symmetric. These properties imply the
antisymmetry of S(r,t) in its first argument, S(r,t) = —S(—r, ).

Now we are ready to prove eq. (2.32), starting from the integral expression eq. (2.70)
for u;. The integration regions are illustrated in Fig. (2.2).

We first make an approximation to eq. (2.70). The upper limit of the 7’ integral
is r + rg — t. Instead, we will extend the region of integration up to r’ = ooc.
Because the wavepacket has compact support only over a region of width w, the
error introduced by this approximation comes just from the yellow shaded triangle
in Fig. (2.2). The area of this added triangle is O(w?) and, since C(r,t) ~ %, the
integrand is of order L. Hence, the error is suppressed by a factor of I:—j

To

A similar, and perhaps even more physical, approximation, albeit with more cum-
bersome limits of integration, can be made by considering the area of integration
denoted by the red lines together with the orange line in Fig. (2.2). In that case,
instead of adding the extra contribution from the yellow triangle at the top, we
would subtract the area of the green triangle at the bottom. However, the results
would be the same.

After this approximation, we have:

(r,ro) / dt/ dr’ S(r',t) . (2.37)
—ro |[r—ro+t|

Now, flipping the initial profile we get:

1 T0 o0 -
ay(r,ro) =~ 5/ dt/l o dr’ S(r't) . (2.38)
—To r—"7ro

Using the flipping property of S(r,t), as discussed above, we can write:

ay(ryrg) =~ —f/ dt/ dr’ S, —t) . (2.39)
—ro |r—ro+t|

We can now change the dummy integration variable ¢ to —t and use the relation
r = 2rg — 7 to rewrite the lower integration limit, giving

1 T0 o0
Uy (r,ro) = ——/ dt/ dr’ S(r',t) . (2.40)
2 —To |(2r9—7)—ro+t|

Comparing this expression to eq. (2.37), we obtain
a1 (r,r0) = —u1(7, 7o) - (2.41)

which is our desired result.
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2.4. Focusing and defocusing

t:77"0

Figure 2.2: The areas of integration for the computation of ui(r,70). The blue solid line rep-
resents the source at times t = £rg. The red lines (solid and dashed) indicate the

actual area of integration in eq. (2.70) (i.e. the integral fi?"o dt ‘Ztrr‘(’):il dr), and

the green shaded region indicates where the integrand is nonzero. The solid red
lines together with the dashed green lines correspond to the region of integration
figo dt f|io—r0+t\ dF used in our approximate eq. (2.37). The yellow triangle at the
top shows the extra nonzero contribution included in the second integral, which is
suppressed by 1;’—02. Alternatively, the integral can be approximated by using the
orange line instead of the horizontal red line.

2.4.2 Shell width

In this subsection we will prove eq. (2.31); that is, under a spatial flip f(z) —
f(z) = f(—=x), the leading-order correction to the width is antisymmetric:

Aw — Aw = —Aw (2.42)

We assume the profile ug has compact support within ro — w/2 < r < 19 + w/2,
and evaluate Aw at late time ¢y = ro, well after the collision, at which point the
left-moving and the right-moving wavepackets are far away from r = 0 and do
not interfere with each other. In that case, when computing Aw from eq. (2.31),
we can just integrate over the right-moving wavepacket; integrating over both
wavepackets would just double both the numerator and denominator in eq. (2.31),
yielding the same result. The expression for the change in width of the flipped
profile is then
frt)oj;u//;
AW fr0+’w/2 dr (Duiig)?

ro—w/2

dr @y (r,10)0wlo(r, 7o)

(2.43)
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2. Position space analysis of the AdS (in)stability problem

It is convenient to define y = r — rg, such that the spatial flip of the initial profile
is given by

uo(ro +¥,7r0) = Uo(ro +y,70) = uo(ro — ¥, 70) - (2.44)

Starting with the numerator of eq. (2.43) and using the properties of ug and wu;
under the flip, we can write

ro+w/2 w/2
/ dr 1 (r,70)0wlo(r,70) = / dy 11 (ro + y,70)Owlio (o + Y, 70)
ro—w/2 —w/2
w/2
= —/ dy Ul(To - yvro)awuo(ro - yﬂ”o)
—w/2
w/2
= —/ , dy ui(ro +y,70)Owto(ro + Y, 70)
—w/2

(2.45)

In the third line, we changed the dummy integration variable from y to —y. The
flip therefore changes the sign of the numerator. Following these same steps with
the denominator of eq. (2.43), we can see that it is invariant under the flip. Putting
these two statements together yields the desired result, Aw = —Aw.

2.4.3 Energy density

A similar argument holds for the leading-order change in the energy density Ap at
time t; = ro due one bounce through the origin. Specifically, for f(z) — f(z) =
f(=z), we find

Aﬁ(’f’, TO) =~ _Ap(fv 7AO) . (246)

where recall 7 = 2rg — r. The full radial energy density far from the origin is
approximately the (141)-dimensional expression, as in eq. (2.25). Expanding it to
the next order, we find

a2 + ul?

po+ 2 Ap = 471% + 4me? (toty + upuh) (2.47)
We kept our principle of always extracting e explicitly. The first term is the initial
energy density given in eq. (2.25), which is actually e~2 times the actual physical

energy density. The second term is the leading change due to a single bounce.

The formula (2.32) we found for the behavior of u; under the flip holds at the
specific time ¢t = rg, and it is not straightforward to see that the same relation
holds for ;. An alternative way to proceed is to include the explicit expression
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for the derivatives of uy at ty = ro:

1 [

uy(r,ro) = 5] dt [S(r+ro—1t)—=S(r—ro+1t)] (2.48)
i (rre) = %/_ dt[S(r+70— )+ S(r—ro+1)] . (2.49)

Using these formulae and the expression for ug eq. (2.23), and omitting irrelevant
constants, we can write down the explicit expression for Ap.

Ap(r,rg) = /0 dt |:fl(*T’*T0)S(7’+TO7t,t)7f/(’l"77’0)s(’l"77’0+t,t)

—70

(2.50)

Since the function f(x) has compact support of width w around x = 0 and we
consider values of r on the order of ry, then the first term in the integrand vanishes.
We can now determine how Ap behaves under f(z) — f(—x):

T0
Ap(r,ro) = 7/ dtf (—=r+ro)S(r—re+1t,—t) . (2.51)
—ro
Changing the dummy integration variable t to —t and substituting with r = 2r¢—7,
we obtain o

Ap(rro) = — | dtf (7 —r0)S(—F + 1o — t,1).

)

From the antisymmetry of S in its first argument, we get

Aﬁ(r, 7’0) = +/T0 dtf/(f — To)S(’F — 70 +t, t)

—7g

which is indeed eq. (2.46).

eq. (2.46) relates the change in energy density at an arbitrary point r and its image
7 under the flip. However, we are particularly interested in how the change in the
maximum energy density is affected by the flip.

The energy density at the position of the maximum, ry.x, after one bounce, can
be expanded as

PMax = p(rMax) = P(O) (TMax) + €2AP(TMax) . (253)

It might be tempting to directly identify this with the change of maximum energy
density. However, we should remember that in addition, the location of the max-
imum 7.y is also, in general, affected by the bounce, receiving corrections at the

0 .
same order, Tyax = 7”1(\/[;)( + €2Arpax. So, expanding to order €2, we find

/
pl(&;x + 2 Aprax = p(o) (rﬁix) + €2p(0) (Tl(\/?;x) Aryiax + €Ap (7‘1(\2;)(> . (2.54)
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However, ryax is an extremum of p(o), and so p(o)l (rl(v([);x> = 0. To leading-order,
the change in the maximum is due only to a change in p and not a shift in the
location of the maximum:

Aprax = Ap (7"1(\2;)() . (2.55)

Now, under a flip, rl(\gix is mapped to ,Fl(\/?ix = 2rg — rl(\gix, the location of the

maximum of p; that is,
Apniae = A7 (7 - (2.56)

From eq. (2.46), we can see that

Apriax = —Ap (rﬁggx) = —ApPMax - (2.57)

Therefore, flipping the profile reverses the direction of the change in the maximum
energy density. This result nicely complements our result regarding the the change
in width eq. (2.42). Both of these results indicate that there is no bias in the weak-
gravity dynamics toward either increasing or decreasing the energy concentration.

2.5 Discussion

2.5.1 Phase space diagram

In Sec. 2.3, we provided the recipe to compute the change in a field profile after one
bounce, and it contained all the information about the functional A in eq. (2.5).
In principle, one can add the resulting ¢; to the original ¢y to make a new initial
condition, and calculate the result of the next bounce. Choosing a small ¢ and
reiterating this process ~ e~2 times is equivalent to solving eq. (2.7). In principal,
this will directly reproduce the long term evolution. Unfortunately, there is one
technical difficulty that we have not been able to overcome.

Our method has one disadvantage: energy conservation is by definition an approx-
imation. We basically “turn on” a self-gravitational potential when a shell shrinks
below ¢, let energy flow between it and the field kinetic terms, then turn it off
when the shell expands over ry. The amount of potential energy we turn on and
off differs by ~ e*w/r3. Although this is suppressed by an extra factor of w/rg
from the quantities we care about in Sec. 2.4 and so it does not invalidate our
results, it is technically difficult to control. We could naively go to a larger rq for
better energy conservation, which would increase the integration range required
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non-thin-shell strong gravity

Figure 2.3: A two-dimensional projection within a constant-energy slice of the phase space. The
horizontal axis is the peak energy density, and the big, green arrows toward left and
right represent the focusing and defocusing flow due to gravitational self-interaction.
Together with the upward and downward flows represented by the small, red arrows,
the phase space has a circular flow pattern. The blue loop represents quasi-periodic
solutions that stay within the center of this circular flow.

to solve eq. (2.26). However, more numerical resources would then be necessary
in order to proceed.

Nevertheless, we might have learned enough about what happens in a single bounce
to make a reliable extrapolation. We will attempt to do so by drawing a phase-
space diagram. Since there are no gravitational degrees of freedom within spherical
symmetry, the phase space of perturbations is given by all possible scalar field pro-
files. Due to energy conservation, we can focus on one fixed-energy, co-dimension-
one surface in this infinite dimensional phase space. Within this surface, we can
draw a two-dimensional projection, Fig. (2.3) and understand its structure based
on our knowledge of the dynamics of one bounce.

One guiding principle of this diagram is that during one bounce, the profile changes
by an infinitesimal amount ~ €2, which is also an infinitesimal distance in the
diagram. Within the weak-gravity time scale ~ e =2, the evolution trajectory covers
a finite distance of the diagram. In this way, the diagram directly represents the
dynamical evolution in the rescaled time as given by eq. (2.7).

The horizontal axis of this two-dimensional diagram represents “how close is this
profile to becoming a black hole”. More technically, it is quantified by the maxi-
mum radial energy density at r = 0 that is reached during one AdS time. In the
small-e limit, the profile is basically freely propagating, so this is a well-defined
quantity. Heuristically, this maximum is reached when the highest “peak” goes
through r = 0, and its value depends on the height of this peak, pyrax.

Note that throughout this chapter, we have been referring to p as the rescaled
energy density. In our conventions, the actual physical energy density is given by
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€2p. It is still convenient to consider the rescaled density here, since pyrax quantifies
how much higher this peak is than the average, namely the relative concentration
of energy. Its value increases toward the right-hand-side of Fig. (2.3). For any
finite €, there is a finite value of pyrayx ~ €2 that represents a density high enough
to become a black hole. It can be drawn as a vertical line. Some finite distance to
the left of this line, we have another line signifying that the energy density is high
enough to make gravity too strong to be described by the weak-gravity expansion.

To the left of this second line, gravity is weak enough that our analysis applies.
Somewhere even further to the left, our approximation starts to fail for a different
reason: we can no longer describe this peak as an isolated thin shell satisfying the
hierarchy in eq. (2.13). In the small-€ limit, the region to apply our method always
exists. This left boundary is not a very clear line. Nevertheless, in this diagram
we can roughly picture it as pumaxRads ~ 1, that the maximum peak density is
comparable to the average density. Clearly, energy is too evenly distributed in the
entire AdS space that nothing could be treated as an isolated thin shell.

The vertical axis of this diagram is not intended to represent any particular pa-
rameter of the field profile. It is merely reflecting the fact we established in Sec. 2.4
that focusing and defocusing dynamics are equally generic in one bounce. This
means one can always find some parameter such that the middle region is divided
into two halves: in the upper half, the evolution makes the peak grow higher and
moves closer to forming a black hole, and in the lower half, the peak gets lower
and moves away from forming a black hole. In App. 2.B, we give specific numer-
ical examples and argue the parameter controlling focusing and defocusing is the
asymmetry of energy distribution: focusing occurs when the shell is denser in the
leading edge, and defocusing when it is denser in the tail.

In addition to focusing and defocusing which correspond to flowing horizontally
in Fig. (2.3), what tendencies to flow in the vertical direction can we identify?
Generally speaking, when pypax is large, on the left side of Fig. (2.3), the system will
tend to flow upwards. This is because a shrinking peak cannot remain the highest
peak forever: a growing peak with smaller initial height will eventually take over.
If that were the only vertical motion, it would lead to only two possible trajectories:
starting in the upper half, pyrax would keep increasing and flow directly toward
black hole collapse; alternatively, staring in the lower region, pyax would first
decrease, then bounces back to become a black hole. This directly violates many
numerical results, so there must be a downward flow somewhere in Fig. (2.3).

The two numerical examples in App. 2.B provide tentative evidence for a downward
flow. What we see is that given a symmetric profile on the boundary between the
upper and lower region, after one bounce it picks up an asymmetry similar to the
profiles in the lower region—its energy becomes denser in the tail. Of course, we
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non-thin-shell strong gravity

Figure 2.4: The same circular flow in the phase space, but the blue trajectory now represents
an unstable solution. Though initially it follows the circular flow, it fluctuates to
larger radius, eventually enters the strong gravity region, and collapses into a black
hole.

studied only two one-parameter slices through an infinite dimensional phase space,
so better numerical and/or analytical investigation is required to verify this. Here,
we will simply conjecture that such a downward flow exists, because the resulting
circulatory flow, shown in Fig. (2.3), explains existing numerical results very well:

e The quasi-periodic solutions stay within the circular flow near the center, as
in Fig. 2.3.

e The unstable solutions initially stay within the circular flow, but their radii
vary wildly and eventually these solutions enter the strong gravity regime,
as in Fig. (2.4).

Note that the actual motion in the true phase space is still very complicated. In
this two-dimensional projection, evolution trajectories are allowed to cross each
other. Nevertheless, this circular flow allows us to better visualize the dynamics
in the phase space.

We can also repeat the argument in Sec. 2.2 in a more pictorial manner. As one
reduces €, most of this diagram does not change. Due to the scaling behavior, all
trajectories to the left of the strong gravity line remain the same, and so most of
the stable solutions remain stable. The trajectories for unstable solutions must
cross the strong gravity line to form black holes, so they potentially can change.

Actually, the location of the strong gravity line shifts to the right when e decreases.
As the total energy is reduced, it needs to be increasingly focused in order for
gravity to become strong, and a collapsing solution must therefore evolve further,
across the new weak-gravity regime. In the ¢ — 0 limit, black hole formation is
equivalent to a weak-gravity evolution in which pyax goes all the way to infinity.
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2. Position space analysis of the AdS (in)stability problem

Although the trajectory for a black hole collapse appears divergent, it does not
mean that we can immediately rule out such an evolution. In fact, this divergence
is an artifact of the parameter choice, and we should appreciate that pyax = 00
is not an infinite distance away in phase space. Recall that Aw in one bounce
is independent of w, so the change in width need not be a small fraction of the
total. It is certainly possible to have a profile such that after e=2 bounces, Aw is
negative and order one, leading to a diverging pniax-

The real advantage of this picture is that it recasts the e — 0 limit of the stability
problem into the global regularity problem of determining whether pyax diverges.
Interestingly, analyzing the regularity of AdSs perturbations at finite e below the
black hole mass gap is similarly a question of determining whether the energy
density diverges. In that case, there is already strong evidence to support regular-
ity [38,39]. One might hope to reproduce this AdS;3 result in higher dimensions
in order to confirm that the instability corners indeed shrink to measure zero. We
should again caution that spectral analysis can only provide necessary conditions;
it can rule out an instability, but it cannot provide equally strong evidence to
support one. If the power spectrum of perturbations agrees with a diverging pyax,
a long-time evolution of eq. (2.6) in position space is still required for the final
answer to the AdS stability problem.

2.5.2 Holographic thermalization

One motivation for studying the stability properties of AdS is to try to learn
something about the non-equilibrium dynamics of closed systems. This is due
to the AdS/CFT correspondence, which relates this classical gravitational system
to the dynamics of a strongly-coupled quantum system. Most investigations of
holographic thermalization study the Poincaré patch of AdS, which has an infinite
boundary (see, for example, [40-43]). In these cases, any nonzero energy density
in the bulk will collapse into a black hole, corresponding to thermalization on the
boundary.

Here, instead, we are considering global AdS which has a closed, spherical bound-
ary and therefore a very different thermalization behavior. Other studies of global
AdS, such as [35], implicitly assume the connection between forming a black hole
in the bulk and thermalization of the boundary system. Although that is valid in
some cases, we would like to highlight other possibilities. What are the possible
holographic dual descriptions of the bulk story presented here?

One caveat is that explicit examples of the AdS/CFT correspondence usually con-
tain compact extra dimensions whose sizes are comparable to Raqs, for example
in AdSs x Ss. In the € — 0 limit, the five-dimensional AdS-Schwarzschild black
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hole has a horizon radius much smaller than Raqs and is therefore too small to
represent the most typical states; a ten-dimensional black hole of the same total
energy, which breaks the symmetry of the S°, has even higher entropy. There-
fore, the gravitational stability problem of AdS5 does not directly translate to the
thermalization problem in the boundary system. This might be an interesting
direction for future work, but we will set this concern aside for now. Let us take
a very optimistic point of view that the AdS/CFT correspondence can work with
extra dimensions arbitrarily smaller than Raqg, or even without them.

After limiting our attention to the AdS space and treating our classical field the-
ory as a limit of a quantum gravity theory, the ¢ — 0 limit leads to a different
issue. Recall the well known Hawking-Page transition [44]: A black hole does not
always dominate the micro-cannonical ensemble; given low enough energy, thermal
gas is the most typical state. In this case, forming a black hole does not imply
thermalization. This is the main issue we wish to clarify.

First of all, this issue highlights the importance of our position space approach.
Focusing on the power spectrum, initial conditions occupying only low frequency
modes must propagate to higher frequency in order to approach either a black hole
or a thermal gas state. This type of turbulent cascade is a necessary condition for
thermalization. However, without differentiating between the final states toward
which the system could be evolving, one cannot argue unequivocally for or against
thermalization.

Next, let us analyze under what circumstances the black hole or the thermal gas
state will dominate the ensemble. For simplicity, we will work via dimensional
analysis and ignore any order-one factors. First, note that the ¢ — 0 limit is
actually the weak-gravity limit, corresponding to

5= Raas

= > 1. 2.58
R (2.58)

Namely, the Schwarzschild radius of the black hole made by collapsing the scalar
field energy is much smaller than the AdS size. On the other hand, the most
straightforward standard for trusting classical gravity is

Rpn

>1 (2.59)

lPlanck

where we have restored the Planck scale lplanck = \/ﬁ, which has been set to
one in the rest this work. This condition implies that, at the very least, if a black
hole forms, it could be described by classical gravity. For the limit we have been
considering, both 5 and 7 have been taken to infinity. We will see that whether
the black hole or the thermal gas dominates depends on the details of how that
limit is taken.
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2. Position space analysis of the AdS (in)stability problem

The entropy of a black hole with energy E is'3

Rpn \°
S ~ () ~ (20 (2.60)
Planck
The entropy of a thermal gas in AdS space with the same total energy is
Ren R 3/4
Sgas ~ < }32H AdS) . (261)
Planck

Thus, black hole states dominate the micro-canonical ensemble when

R R 3/2 )
< BH > > ( Ads) Loy > B2 (2.62)
IP1anck Rpn
This condition is equivalent to comparing the thermal wavelength Ay of the gas
to the black hole radius; the black hole dominates the ensemble if

Rpu > An - (2.63)

We can see that whether the condition in eq. (2.62) is satisfied depends on how
the limits of large § and large v are taken. A classical and small-e limit does not
restrict the system to being dominated by either the thermal gas or black hole
states.

Note that whether, and for how long, classical evolution is a good approximation
depends on more details of the state. For example, even if a black hole forms
which is classical according to eq. (2.59), the process by which it formed might
not be. A simple rule of thumb for the validity of the classical limit is that the
occupation numbers in the modes of interest have to be large. If the system is in
a state where the energy is roughly equipartitioned between a number of modes
up to some maximum frequency wpy.x, we require

energy per mode > wWyax - (2.64)

The thermal gas states can never satisfy this condition because modes with fre-
quency of order the temperature have occupation numbers of order one, yet con-
tribute a significant fraction of the entropy of the gas. Independent of the limiting
procedure and which states dominate, the thermal gas final state is never compat-
ible with a classical description.™

13Note that we are assuming here that the spacetime is effectively AdSy at distance scales
of order the size of the black hole; in string constructions, such as AdSs4 x Sy, black holes
whose radius is small compared to the AdS radius would be eleven-dimensional rather than
four-dimensional, leading to different formulas.

14Nevertheless, from the position-space viewpoint, classical evolution may still describe the
“process of approaching” a thermal gas state, at least distinguishing it from approaching a black
hole. In the latter case energy becomes more concentrated, but in the former case it does not.
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2.5. Discussion

On the other hand, a spherically symmetric collapse into a black hole can often
be completely classical. Such a process only needs to excite the radial modes from
the longest wavelength ~ Raq4s to the shortest wavelength ~ Rpy, thus

Raas

number of modes = (2.65)
BH
The condition on occupation numbers, eq. (2.64), becomes
B, (2.66)

Comparing this to eq. (2.62), we see that eq. (2.66) is always true when the black
hole dominates the ensemble, but it can still be true even if thermal gas domi-
nates.'® Thus, the specific stability problem within classical gravity investigated in
this chapter, namely a spherically symmetric collapse into a black hole, is a valid
dual to some boundary system, independent of whether such a process is equivalent

to a efficient thermalization or not.'

Furthermore, when the thermal gas dominates, if a black hole really forms in the
time scale we investigated,

Raas P
x € 2.67
Ao (2.67)

Tweak gravity — RAdS

it could represent a significant delay to thermalization. In order to confirm this,
we need to compare the naive thermalization time Tieak gravity to the black hole
lifetime, given by the the evaporation time scale,

R
chaporation = l2 . (268)
Planck
When Tevaporation > Tweak gravity, which requires
B <7, (2.69)

the system thermalizes only after forming a long-lived black hole, which eventually
evaporates. This process of thermalization via a quasi-stationary thermal-like
state is known as prethermalization and has been observed in finite-sized, isolated
quantum systems [30,31]. Note that eq. (2.69) is compatible with thermal gas
domination and a classical collapse.

15Note that spherical symmetry is very important here. Without it, the number of modes

3
would have been I;{Ast ) , and with that many modes, the black hole collapse would have failed

to remain classical in the thermal gas-dominated regime.

16Here, “efficient” means that thermalization happens in the shortest time scale allowed by the
dynamics, ~ e~2. One should not confuse this with, for example, the much faster thermalization
in the Poincaré patch of AdS, where, within one AdS time, perturbations cross the horizon, form
a planar black hole, and appear to thermalize.
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2. Position space analysis of the AdS (in)stability problem

To summarize, spherically symmetric black hole formation within Tyeak gravity can
have two different holographic interpretations:

e When v2 > 33, it represents efficient thermalization of the boundary system.

e When 8 < v < 72 < B3, it represents prethermalization, which delays
true thermalization (to thermal gas'”) at a time scale > Tevaporation >

Twcak gravity -

For the remaining possibility, when 72 < 32 but 3 > «, the implication of black
hole formation is inconclusive from a thermalization point of view. Black holes
decay too fast to be quasi-stationary intermediate states, but their evaporation
cannot guarantee reaching the thermal gas state either.

2.6 Summary

e By combining existing numerical data with our analysis, we have argued
that for a massless scalar field in AdS space, in the small-amplitude ¢ — 0
limit, solutions remaining stable up to the interaction time scale T ~ €2
form an open set. This improves similar observations in finite-¢ numerical
simulations [10,11] and argues against the conjecture that the weakly turbu-
lent instability occurs in all but a set of measure zero in the space of initial
conditions [8, 14, 15].

e One important difference between our approach and previous work is that
we analyzed the problem in position space. We pointed out that only posi-
tion space properties can provide necessary and sufficient conditions for the
collapse into a black hole. Any analysis of the power spectrum can at most
provide necessary conditions for black hole formation.

e In the position space analysis, we exploited the small-amplitude ¢ — 0
limit and argued that the only relevant dynamics are the gravitational self-
interactions near r = 0. This argument requires a hierarchy of scales given
in eq. (2.13), which is difficult to reach in realistic numerical simulations.

e We showed that gravitational self-interaction near r = 0 obeys an exact
antisymmetry under time reversal. As a result, it is equally generic for
interactions to focus or defocus energy. This equality is consistent with

17Note that since thermal gas is never classical, we do not know exactly when will it really
form. We only know that within Tevaporation, the systems was too busy forming a black hole and
then remaining as one, so it cannot reach the thermal gas state yet.
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2.A. Analytical details

existing numerical results.'® We remind the readers that gravity can be
effectively repulsive: tidal forces tend to pull things apart. The possible
defocusing of a radiation shell is due to such tidal effect.

e By making use of scaling symmetry, we simplified the stability problem in
the € — 0 limit into a global regularity problem within a finite rescaled time.
The evolution was recast as a simple, first-order differential equation. We
hope that this point of view, combined with the other techniques in this
work and the existing literature, will allow a rigorous analysis of stability in
the vanishing amplitude limit.

e Even if black holes do form in the €2 time scale, we point out that it
does not always represent efficient thermalization of the boundary theory via
AdS/CFT duality. In some cases, black hole formation describes prethermal-
ization, and actual thermalization is delayed until this black hole evaporates.

2.A Analytical details

In this appendix, we will clarify some analytical details omitted in Sec. 2.3. There
we showed how to reach a simple differential equation for uy, eq. (2.26), which can
be solved simply by integrating the Green’s function:

r+ro—t
ui(r,ty) = / dt/ dr’ S(r',t)
—70 r—ro+t

r+ro— t . U
_ / dt/ v (uo +ul) + Cig + C (u() - 7)92..70)
—To T—

ro+t

Here we should be careful about our method of images. A physical solution ¢
is only given by a w; that is an odd function of 7, and it is not obvious that
the u; given by the above integral will have this property. Another potentially
worrisome observation is that the lower limit of the r’ integral can be negative for
some positive r, but a physical answer should only invoke an integration over the
physical space r > 0 where the quantity C =V — M/r is naturally defined.

In this case, these concerns about the method of images can be easily resolved.
As explained in Sec. 2.3, we can generalize the definition of V and M to include
the r < 0 region. We will find that M is an odd function of r and V is even.

18 More specifically, one could take any numerical simulation and pause it at a moment when
gravity is still weak. If one keeps the field profile but reverses the time derivative at this moment,
the simulation will literally evolve backward toward the original initial profile, up to the numerical
error and higher-order effects (which are small if the hierarchy of scales in eq. (2.13) is satisfied
during the process).

45



2. Position space analysis of the AdS (in)stability problem

Together with the fact that ug is odd, we see that the integrand in eq. (2.70) is
odd. Any integration over negative r is canceled by an equal region with positive r,
so effectively the lower limit of the ' integral is |r —rg +t|. eq. (2.70) is effectively
only integrating over the physical range. It is, however, more convenient to keep
working in this form and avoid the confusion of taking an absolute value. An odd
integrand here also guarantees that u; is an odd function which leads to a physical

b1
The form of eq. (2.70) clearly suggests some integrations by parts.

r+ro—t U r+ro— t
ur(r,ty) = —7/ dt/ dr' ¢'=2 ; / dt/ Cug + C'uy)
—70 r—ro+t r —T0 r—ro+t

1 r+2rg ro—|r—r'| .
+*/ d?’// dt (CUO + C’ll()) (271)

2 27‘0 —To

- AL
/_mdtC[(r+r0—t),t}ug[(r+ro—t),t]
/To dtC{(rroth) }u [(Troth) ]

0

/ dr’ C[r’,(ro —7"+7‘/)] U {7’/,(7“0 —T+7”I)}
r—27r9

r42rg
/ dr' C [r', (ro —r"+ 7“)] U {Tl, (ro —1"+ 7")}

r42rg
/ dr’ C(r', —ro)uo(r’, —ro)

—2'[‘0

_|_

N =

33

_|_

+
NI N= N = N =

) % o dtO[“_’"oH)’t] (uo[(r—ro+t),t]—ui){(r—row),tb

—rg

+%/ dt C|:(7'+7”0t),t:| <ﬂ0{(r+rot),t} +u6[(r+rot),t]>
r+ro—t 1 r+2rg
_,/ dt/ dr’ C/% — 5/ dr’ C(’I“/, —7"0)@0(7"’,-7“0) .
—ro r— T

ro+t —27r9

In the above equation, we first isolated two terms which should be integrated
by parts, and for one of them we interchange the order of integration so it can
be done with respect to t instead of r’. The integration by parts produces five
boundary terms as line integral along five segments which we explicitly write down.
Finally, two pairs of segments can combine with each other and be expressed as
time integrals. We collect the remaining space integral and the only non-boundary
term which cannot be integrated by parts in the end.
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Note that up to this step, we have not used any approximations. We did not even
use the property that C' is sourced by ¢g. In other words, this expression could
describe the change in the field profile under the influence of any other spherically
symmetric gravitational effects, either apart from or on top of its self-interaction.

Our next step is to plug in eq. (2.23) and use our assumption that it represents a
thin shell: we assume that ug is only nonzero within two narrow packages around
r =t and r = —t. This significantly simplifies eq. (2.71) to

wi(rty) = —ﬁ f (T ZUTO)/TU dtC{(r—ro—i—t),t} (2.72)

+ﬁ f (—rw—ro) /_:0 dt C’[(r—l—ro —t)ﬂf}

1 [To r+ro—t , ug 1 r+2ro , , .y
75/ dt/ dr' C 7 — i/ dr C(T 3 *TO)UO(T afro) .
—To0 T T

—ro+t —2ro

—7g

Note that here the f’ means a derivative with respect to the variable of f instead
of a r derivative, which should always be clear from the context.

Since in the end, we are only interested in the physical range r > 0, we can actually
drop the second term because the profile f is zero there. This starts to take the
promised form of eq. (2.27), and we can almost identify

To
Ar = / dt C[|r—7‘0+t|,t] . (2.73)
—ro
Note that we have added an absolute value to the first variable in C'. This makes
no difference since it is even, but it helps to emphasize the fact that the integral
can be strictly limited to the physical r > 0 region.

The physical meaning of eq. (2.73) now becomes clear. When the metric includes
first-order corrections, such as in eq. (2.18), a null ray actually follows

(1 + ]\f) dr| = (14 V) dt . (2.74)

Thus an incoming null ray starting from r = rg and t; = —ry does not exactly
return to r = g at t; = 7o; the amount it misses is exactly given by eq. (2.73). The
leading-order correction due to gravity, of course, includes the fact that geodesics
are changed, and the shell simply follows the new geodesic. A geometric calculation
is enough to determine how much a localized object appears to be shifted from
the position predicted by the zeroth-order theory.

For any finite-sized source, the gravitational potential at large r is proportional to
1/r, so the integral in eq. (2.73) actually had a piece proportional to logrg. Since
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2. Position space analysis of the AdS (in)stability problem

we are have taken rg to be large, one might have worried that such a term would
the ruin perturbation expansion. However, such the log g term is totally expected
from the change of geodesics and does not interfere with our goal of computing
the change in width or other changes.

One last concern about the position shift in eq. (2.73) is that it is a function of r.
This turns out not to be a problem either, since the r-dependent part of Ar is not
proportional to logry. We can see this by taking a derivative with respect to r:

o, Ar = 9, (/_To—rdtc[(ro_r—t),t} +/T::dt0[(t—ro+¢),tD
(_ /_TO_T dt ¢’ [(ro —r—t)ﬂf} +/T:0_T dt ¢’ {(t—ro—f—r),t} 92“75)

According to the Einstein’s equation, we have

!/
=V - MT + % - i—ﬂf % (Trr — Ty) (2.76)
This means that as long as we restrict the matter sources to (1) finite-sized sources
that vanish beyond some fixed r and/or (2) radiation in the radial direction,
T, = Ty, then the r dependence of Ar will not have a logry (or any other
large rg) dependence. Furthermore, there is no small-r divergence either, since
the two terms in eq. (2.75) takes opposite signs and cancel each other near r = 0.
Pictorially, this means that different infinitesimal segments within the wavepacket
“shift” differently from one another by some finite amount.

In the last line of eq. (2.72), the first term is also finite for the same reason as
eq. (2.76), and the second term is finite because uy has compact support. These
terms should be combined and understood as some perturbative deformations of
the wavepacket profile. They are cleanly separated from the Ar ~ logry overall
shift, which is uniquely defined by a projection:

[ w10rug dr

ar = _f(aruo)Q dr

(2.77)

We can simply remove this shift mode from eq. (2.27) and study the other defor-
mations. A more physical way to understand the removal of this shift is letting the
wavepacket evolve an extra time At = Ar such that it really reaches position r¢;
then it will be fair to compare with the zeroth-order profile at the same position.

In order to eventually form a black hole, we need the energy density to become
large. Since the total energy is conserved, the most trivial way to increase the
energy density is to narrow the width of the profile. The leading-order change in
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width can be extracted from u; by the following projection:

- fulawuo dr
Aw = T dr (2.78)

Note that the e dependence was already scaled out in eq. (2.14). Interestingly,
€2 has the unit of length in our conventions, and the physical change in width is
€2 Aw. Therefore, Aw is dimensionless. The width w is the only other dimensionful
quantity that can potentially affect Aw in the leading order (rq affects only the
subleading error), and so there is no way it can enter the expression for Aw.

What we really wish is to determine the sign of Aw. Aw < 0 means that the
shell gets narrower, and several bounces later it might form a black hole. On the
other hand, Aw > 0 means that the shell gets wider, and several bounces later
the energy will be more diluted, which in some sense is moving away from a black
hole in phase space.

One technical point to note here is that, given our shell profile eq. (2.23), the
mode O,ug actually measures the scaling of the profile around some center. If
that center is not the center of mass, then this scaling not only changes the width
but also shifts the position. A simple projection will be contaminated by the large
~ log ry contribution from the position shift. We will avoid this by always defining
the profile f(z) to have its center of mass at = 0. This means that, on top of
the normalization

/f’(z)2 de =1, (2.79)
we also demand that

/xf’(ar;)2 dx =0. (2.80)

This guarantees that the scaling mode 0,,uq is orthogonal to the shift mode 0,ug.

2.B Numerical examples

2.B.1 The asymmetry-focusing correlation

In this appendix, we numerically evaluate the change to a thin-shell profile after
one bounce. Our example will be the following two one-parameter families of
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Figure 2.5: The left panel shows the energy density of the profiles with the “+” sign defined
in eq. (2.81), and the right panel shows the profiles with the “—” sign. The blue
curves are the symmetric, a = 0 profiles. The red (dashed) curves are for a = 0.5,
which is the maximally “tilted” profile in the range we scanned through. We can
see that the family with the “+” sign is more sensitive to the parameter a.

profiles.
go(z) = (1+azx+2?) e (2.81)
N, = 1//9(’12 dx | (2.82)
Xa = N, /:ﬂga (2.83)
fa®) = Ni'ga(z+ X,) . (2.84)

They are symmetric when a = 0, and varying a scans through two different direc-
tions of asymmetry. Note that the quadratic term is necessary. Without it, a small
a simply means an overall shift in position and the profile will be still symmetric
to leading order. Our definition of f,(x) shifts the center of mass back to x = 0
and preserves only the asymmetry generated by a.

We plot some representative profiles in Fig. (2.5). Note that for both families, we
have f,(x) = f_o(—x). Scanning through positive and negative values of a can
confirm our analytical proof in Sec. 2.4 that flipping the profiles leads to opposite
behaviors within one bounce. It will also provide a better understanding about
what physical quantity really affects whether a profile becomes focused or not.

There are infinite ways to be asymmetric, and our parameter a certainly is not
the unique parameter to quantify the asymmetry. It also has no reason to be the
asymmetry directly responsible for focusing or defocusing the profile. However, for
any family of profiles centered around a symmetric one, we can define a natural
parameter to quantify the asymmetry, at least for small values of a. Here is how it
goes. First of all, g, has a center of mass shifted by X, from go by the definition
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Figure 2.6: The left panel shows the asymmetry parameter defined as the difference between
the center-of-mass shift and the field-profile shift. The blue curve is for the “+”
family and the red curve for the “—” family. The right panel shows the change is
width after one bounce, which qualitatively agrees with the asymmetry parameter.
These are done with rg = 60 and w = 1. Recall that the physical change in width
is actually €2 Aw.

in eq. (2.83). On the other hand, one can also naturally define the shift by a
projection to the zero mode, which is exactly the way we defined Ar in eq. (2.77).

X, = N5 [lon(a) = ga(@lgh(a) d (2.85)

These two shifts already disagree at linear order in a, therefore the amount of their
disagreement, AX, = (X, — X,), seems to be a reasonable way to quantify the
asymmetry.

Given these profiles, we solve eq. (2.18) for M and V, and then we can integrate
eq. (2.70). When we scan the parameter a from —0.5 to 0.5, the change in width
Aw defined in eq. (2.78) follows a pattern closely resembling the behavior of this
asymmetry parameter, AX,. We compare them side-by-side in Fig. (2.6). Note
that they are not identical. For example, the relative slopes between the two
families near a = 0 are not the same. Thus, although we see a rough correlation
between them, we cannot claim that our asymmetry parameter directly controls
focusing or widening in one bounce.

In our conventions, the profiles are moving toward the right in Fig. (2.5). If we
compare their shapes in Fig. (2.5) to their behaviors in Fig. (2.6), we get the
following impression:

e When the wavepacket is denser in the front, we get Aw < 0. The shell gets
focused into a smaller region, and gravitational effect will become stronger
in the next bounce.

e When the wavepacket is denser in the tail, we get Aw > 0. It profile gets
wider after one bounce, and gravitational effect will become weaker in the
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Figure 2.7: Results with a = 0 and varying ro from 30 to 90 in steps of 10. The left panel shows
Aw, which indeed goes to zero as 1/rg. The right panel shows the position shift Ar
defined in eq. (2.77) which has the correct logro dependence.

next bounce.

Since the family of profiles with “+” sign is much more sensitive to the parameter
a, we will use it to test other behaviors later in App. 2.B.2.

In Fig. (2.6), one might notice that for the a = 0 symmetric profiles, the changes in
width are not exactly zero as we argued earlier. This deviation is not physical but
simply an artifact of our approximation. That is because although the physical
solution is symmetric in time, our technical choice breaks that symmetry by a
small amount. We have set the correction to the field profile at the initial time to
zero, uy(r,—rg) = 0. This is a small error since the first-order correction to the
metric in eq. (2.18) would have already modified the free field profile at that time,
by a small fraction ~ €2V ~ €2 /rg.

We test this explanation by varying rg and verifying that Aw goes to zero in the
expected way; see Fig. (2.7). We also verified that the position shift indeed has
an ro-dependent shift Ar o log rg, as discussed in App. 2.A.

Finally, with a symmetric profile, one can ask for a prediction for the next bounce.
What we observed in these examples is that a symmetric profile will pick up a
AX, > 0in one bounce. This is a very tentative evidence that in the next bounce,
they will have Aw > 0, namely their energy become defocused. We stress again
that this is not a proof, but merely two examples we observed. A more thorough
investigation is required to support the generic downward flow we conjectured in
Sec.2.5.
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2.B.2 The effect of another object

Black hole formation does not always involve all of the energy becoming concen-
trated into a thin shell. For example, an initially smooth field profile might start
to develop one or more sharp peaks. It is possible for the energy density in these
peaks to become large enough to induce strong gravity and black hole collapse
before or even without the average density of the entire profile ever becoming
large.

In this section, we will present some evidence that sharp peaks evolve similarly
to thin shells. In the perturbative regime, one is free to separate the matter into
components in many ways. In particular, we can treat a smooth field profile with
a sharp peak as a thin shell propagating in the background of some additional
diffuse source of gravity. Our approach is convenient since eq. (2.70) and further
analysis about it do not rely on the specific metric ansatz eq. (2.18). As long
as the additional source are also spherically symmetric, we can simply repeat the
calculation in the previous appendix.

We will start by considering a simple situation in which the additional matter

sources are static. In addition to the thin shell with total mass 47e?, we have

2
10€2,,, tanh (wT ) , (2.86)
star

P~ 0. (2.87)

Mo(r)

This is a star of roughly constant density, radius wsta, and total mass 10€Z,,. It
does not interact with the massless field which forms the shell in any other way
other than gravitationally, so it simply enters by altering the metric in eq. (2.18).
We assume the star is stable and supports itself by a negligible amount of radial
pressure (but it can have angular pressure), so it does not add any extra term to

modify T;...

According to the momentum space analysis, including this additional gravitational
source breaks the AdS resonance structure and should interfere with black hole
formation [28]. We show that such an interpretation is not necessary to under-
stand the dynamics of thin shells in one bounce. Remember that for a symmetric
shell profile, we argued that there cannot be a change in width due to the time-
reversal symmetry. Adding an extra, static source does not break that symmetry,
so symmetric profiles again cannot change in size. And, it is straightforward to
verify that asymmetry still focuses or defocuses in qualitatively the same way as
before.

In Fig. (2.8), we demonstrate that whether the shell gets thinner or thicker has the
same dependence on the asymmetry induced by the parameter a. Its magnitude
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Aw Aw
¢ ° 20’ ° . 4t
° 8 s ;
.. 10 I
I e ; H
‘ ‘ ‘ : a ‘ ‘ ! ! a
-04 -02 0201 -04 -02 § 02 04
-10¢ ° -2r ! i . .
L] ° = :
_o0t . _al . .

Figure 2.8: We plot the change in width Aw as a function of the parameter a in eq. (2.81). Both
figures are with ro = 30. The left panel shows the effect of dialing the mass of the

additional matter source, Egtar =0, 10, 50, 200, without changing its size wstar = 1.

The right panel shows the effect of dialing the size while keeping the same density,
Wstar = 1, 5,20,200. We have removed the errant 1/rq contribution by hand.

does have an interesting dependence on the additional source. In the first set of
data we fix the size of the star to be equal to the shell. The change in width turns
out to grow linearly with the additional mass. On the other hand if we keep the
same density and increase the size of the star, the change in width is not strongly
affected.
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Conditionally extended validity
of perturbation theory:
Persistence of stability islands

Beauty is the first test; there is no permanent place
in the world for ugly mathematics.
— Godfrey H. Hardy

3.1 Introduction and Summary

So far we have presented two approximate methods for dealing with the problem
of small perturbations. One is based on Fourier space analysis and the other one is
based on a position space analysis. The upshot is that they both result in a set of
approximate equations that possess a very important scaling symmetry. However
such approximate schemes break down after some time, which in the problem at
hand is the first nonlinear time scale t ~ e~2. Coincidentally, this time scale is the
the one at which black hole formation takes place [8]. Therefore one is actually
interested in what happens exactly at this time scale and if we can trust our
approximate schemes up to this long time scale. This is exactly the question that
we are engaged with in this chapter.

3.1.1 Truncated Perturbative Expansion

A linear equation of motion D¢ = 0 often has close-form analytical solutions. A
nonlinear equation, D¢ = Fyonlinear(®), on the other hand, usually does not. One
can attempt to expand Fjonlinear when ¢ is small. For example,

D¢ = Fnonlinear(¢) = ¢2 + O((b?)) . (31)

When the amplitude is small, |¢| < € < 1, one can solve the truncated equation of
motion that includes the ¢? term as a perturbative expansion of |¢?/¢| < € from
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the linear solutions. For a small enough choice of €, this can be a good enough
approximation to the fully nonlinear theory. Unfortunately, this will only work for
a short amount of time. After some time T ~ €', the correction from the first
nonlinear order accumulates and becomes comparable to the original amplitude.
Thus the actual amplitude can exceed e significantly to invalidate the expansion.’

A slightly more subtle question arises while applying such a truncated perturbation
theory. Occasionally, there can be accidental cancellations while solving it. Thus
during the process, the amplitude may stay below e for T ~ ¢~!. In these occasions,
are we then allowed to trust these solutions?

It is very tempting to directly answer “no” to the above question. When T’ ~ €1,
not only the accumulated contribution from ¢2?, which the theory does take into
account, modifies ¢ significantly. The ¢ term that the theory discarded also
modifies ¢?, and so on so forth. Since we have truncated all those even higher
order terms which may have significant effects, the validity of the expansion process
seems to unsalvageably break down.

The above logic sounds reasonable but it is not entirely correct. In this chapter, we
will demonstrate that at exactly T ~ e~ ! time scale, the opposite is true. These
“nice” solutions we occasionally find in the truncated theory, indeed faithfully rep-
resent similar solutions in the full nonlinear theory. This idea is not entirely new.
We are certainly inspired by the application of the two-time formalism and the
renormalization flow technique in the AdS-(in)stability problem, and both of them
operate on this same concept [12,21].2 However, one may get the impression from
those examples that additional techniques are required to maintain the approxi-
mation over the long time scale. One of the main points that we want to make
here is that the validity of truncated theory extends trivially in those occasions.
As long as the truncated theory is implemented recursively, which is the natural
way to solve any time evolution anyway, it remains trustworthy in those occasions.

In Section 3.2, we will state and prove a theorem that guarantees a truncated
perturbative expansion, implemented recursively, to approximate the full nonlinear
theory accurately in the long time scale in the relevant occasions. More concretely,
this theorem leads to the two following facts:

e If one solves the truncated theory and finds solutions in which the amplitude
remains small during the long time scale, then similar solutions exist in the

IThe notion of “time” here is just to make connections to practical problems for physicists.
The general idea is valid whenever one tries to solve perturbation theory from some limited
boundary conditions to a far-extended domain.

2We thank Luis Lehner for pointing out that some Post-Newtonian expansions to General
Relativity also shows validity at this long time scale [45].
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full nonlinear theory.?

e If numerical evolution of the full nonlinear theory provides solutions in which
the amplitude remains small during the long time scale, then a truncated
theory can reproduce similar solutions.

Formally, the meaning of “similar” in the above statements means that the differ-
ence between two solutions goes to zero faster than their amplitudes in the zero
amplitude limit. This theorem provides a two-way bridge between numerical and
analytical works. Anything of this nature can be quite useful. For example, nu-
merical results are usually limited to finite amplitudes and times, while the actual
physical questions might involve taking the limit of zero amplitude and infinite
time. With this theorem, we can start from known numerical results and extend
them to the limiting case with analytical techniques.

In Section 3.3, we will prove another theorem which enables us to do just that
in the AdS (in)stability problem. The key is that the truncated theory does
not need to be exactly solved to be useful. Since its form is simpler than the
full nonlinear theory, it can manifest useful properties, such as symmetries, to
facilitate further analysis. Since it is a truncated theory, the symmetry might be
an approximation itself, and naively expected to break down at the long time scale.
Not surprisingly, using a similar process, we can again prove that such symmetry
remains trustworthy in the relevant occasions.

It is interesting to note that the conventional wisdom, which suggested an unsal-
vageable breakdown at T ~ e !
that both theorems hold for T = ae~! for an arbitrarily but e-independent value

, is not entirely without merits. We can prove

of a. However, pushing it further to a slightly longer, e-dependent time scale, for
example T ~ e 11, the proofs immediately go out of the window. The situation
for T ~ e *(—1Ine) is also delicate and will not always hold. Naturally, for time
scales longer than T ~ ¢!
order to maintain its validity. A truncated theory up to the ¢™ term will only be

, one needs to truncate the theory at an even higher

1-m

valid up to T ~ €

3.1.2 The AdS (In)Stability Problem

In Section 3.4, we will apply both theorems to the AdS-(in)stability problem
[4,8,10-12, 14-16, 20-28, 34, 46]. Currently, the main focus of this problem is

3Be careful that sometimes, especially in gauge theories, the full nonlinear theory might
impose a stronger constraint on acceptable initial conditions. One should start from those ac-
ceptable initial conditions in order to apply our theorem. We thank Ben Freivogel for pointing
this out.
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indeed the consequence of the nonlinear dynamics of gravitational self-interaction,
at the time scale that the leading order expansion should generically break down.
Some have tried to connect such break down to the formation of black holes and
further advocate that such instability of AdS space is generic. In particular, Dias,
Horowitz, Marolf and Santos made the stability island conjecture [15]. Al-
though at finite amplitudes, there are numerical evidence and analytical arguments
to support measure-nonzero sets of non-collapsing solutions, they claimed that the
sets of these solutions shrinks to measure zero at the zero amplitude limit.

Since the relevant time scale goes to infinity at the zero amplitude limit, such con-
jecture cannot be directly tested by numerical efforts. Nevertheless, by the two
theorems we prove in this chapter, it becomes straightforward to show that such
conjecture is in conflict with existing evidence. The physical intuition of our argu-
ment was already outlined in [4], and here we establish the rigorous mathematical
structure behind it.

e Theorem I allows us to connect non-collapsing solutions [10-12,15] to anal-
ogous solutions in a truncated theory, both at finite amplitudes.

e Theorem II allows us to invoke the rescaling symmetry in the truncated
theory and establish those solutions at arbitrarily smaller amplitudes.

e Using Theorem I again, we can establish those non-collapsing solutions in
the full nonlinear theory at arbitrarily smaller amplitudes.

Thus, if non-collapsing solutions form a set of measure nonzero at finite amplitudes
as current evidence implies, then they persist to be a set of measure nonzero when
the amplitude approaches zero. Since the stability island conjecture states that
stable solutions should shrink to sets of measure zero, it is in conflict with exristing
evidence.

It is important to note that defeating the stability island conjecture is not the end
of the AdS (in)stability problem. Another important question is whether collapsing
solutions, which likely also form a set of measure nonzero at finite amplitudes, also
persist down to the zero-amplitude limit. It is easy to see why that question is
harder to answer. Truncated expansions of gravitational self-interaction, at least
all those which have been applied to the problem, do break down at a certain point
during black hole formation. Thus, Theorem I fails to apply, one cannot establish
a solid link between the truncated dynamic to the fully nonlinear one, and the
AdS (in)stability problem remains unanswered.

In order to make an equally rigorous statement about collapsing solutions, one
will first need to pose a weaker claim. Instead of arguing for the generality of
black hole formation, one should consent with “energy density exceeding certain
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3.2. Theorem I: Conditionally Extended Validity

bound” or something similar. This type of claim is then more suited to be studied
within the validity of Theorem I, and it is also a reasonable definition of AdS
instability. If arbitrarily small initial energy always evolves to have finite energy
density somewhere, it is a clear sign of a runaway behavior due to gravitational
attraction.*

Finally, we should note that the truncated theory is already nonlinear and may be
difficult to solve directly. If one invokes another approximation while solving the
truncated theory, such as time-averaging, then the process becomes vulnerable to
an additional form of breakdown, such as the oscillating singularity seen in [48].
Even if numerical observations in some cases demonstrate a coincident between
such breakdown and black hole formation, the link between them is not yet as
rigorous as the standard established in this chapter for non-collapsing solutions.

3.2 Theorem I: Conditionally Extended Validity

Consider a linear space H with a norm satisfying triangular inequality.
lz +yll < llzll + [yl , forallz, y e . (3.2)

Then consider three smooth functions L, f, g all from H to itself. We require that
L(z) =0 if and only if x = 0, and it is “semi-length-preserving”.

IL(2)]] < [Jl] - (3:3)

Note that this condition on the length is at no cost of generality. Given any
smooth function L meeting the first requirement, we can always rescale it to make
it exactly length-preserving and maintaining its smoothness.

L) = el

:mi(m), if ©#£0; L(x)=0, when 2=0. (3.4)

f and g are supposed to be two functions that within some radius r» < 1, they are
both close to L but even closer to each other.

1. Being close to L: V ||z|]| <7,

[f(z)—L(z)]| <allz]|™, [lg(z)—L(z)|| < allz||™, for some a >0, m>1.
(3.5)

41t is then natural to believe that black hole formation follows, though it is still not guaranteed
and hard to prove. For example, a Gauss-Bonnet theory can behave the same up to this point,
but its mass-gap forbids black hole formation afterward [47].
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And doing so smoothly: V ||z, ||y|| < r and some b > 0,
H[f(m) L)) - ) L(y)]H <b-[Jz — ylIMax(la], )™ |

H[g@c) L) - o) — L(y)]H < bl — ylMax(|Ja]l, Iyl )™ -

(3.6)

2. Even closer to each other: V ||z|| <7,

I1f(z) — g(2)|| < ¢||z||', for some ¢>0, I>m. (3.7

Let us make the analogy to the physical problem more transparent by an example.
Choose a finite time At to evolve the linear equation of motion D¢ = 0, L is
given by L[¢(t)] = ¢(t + At). Similarly, evolving the full nonlinear theory D¢ =
Fhonlinear (@) leads to a different solution ¢ that defines f[¢(t)] = &(t + At), and
D¢ = ¢? defines g[¢(t)] = ¢(t + At). Furthermore, the norm can often be defined
as the square-root of conserved energy in the linear evolution, which satisfies both
the triangular inequality and the semi-preserving requirement.

From this analogy, evolution to a longer time scale is naturally given by applying
these functions recursively. We will thus define three sequences accordingly.

fo=go=Lo=x, Ln:L(Ln—l) v fn=f(fam1) gn:g(gn—l) . (3'8)

We will prove a theorem which guarantees that after a time long enough for both
gn and f, to deviate significantly from L, they can still stay close to each other.

Theorem I: For any finite § > 0 and « > 0, there exists 0 < € < r such that if
|| full < € for all 0 <n < ael™™, then ||f, — gu|| < de.

Since f,, is known to be of order €, thus when its difference with g, is arbitrarily
smaller than €, one stays as a good approximation of the other.

Proof: First of all, we define

n—1
) 1 b m—1\n __ 1
A, = ce Z(l +bemT) = cel( + beem—l) (3.9)
=0
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Within the range of n stated in the Theorem, it is easy to see that

m

(1 + bemfl)aelf -1 - celti-m

ATL S ALQ€177nJ < ce bemfl b

(e —1) . (3.10)

Since [ > m, there is always a choice of € such that A, < de. We will choose an €
small enough for that, and also small enough such that

1full +ae™ < etae™ <r, (3.11)
fall + A0 < edde<r. (3.12)

Next, we use mathematical induction to prove that given such choice of e,

[fn = gnll < An . (3.13)

For n = 0, this is trivially true.
[fo=g0ll =0<Ag=0. (3.14)

Assume this is true for (n — 1),
[ frn—1 = gnall < Ap1 . (3.15)

Combine it with eq. (3.7) and (3.6), we can derive for the next term in the sequence.

fn=gnll < Nf(fa1) = 9(fu-DIl + [lg(fr-1) — g(gn-D)Il  (3.16)
< cé + 1+ bem_l)An,l =A, .

Thus by mathematical induction, we have proven the theorem.

Note that although in the early example for physical intuitions, we took f as
the full nonlinear theory and ¢ as the truncated theory, their roles are actually
interchangeable in Theorem I. Thus we can use the theorem in both ways. If a
fully nonlinear solution, presumably obtained by numerical methods, stays below
€, then Theorem I guarantees that a truncated theory can reproduce such solution.
The reverse is also true. If the truncated theory leads to a solution that stays below
€, then Theorem I guarantees that this is a true solution reproducible by numerical
evolution of the full nonlinear theory.

Also note that the truncated theory might belong to an expansion which does not
really converge to the full nonlinear theory. This is quite common in field theories
that a nalve expansion is only asymptotic instead of convergent. Theorem I does
not care about whether such full expansion is convergent or not. It only requires
that the truncated theory is a good approximation to the full theory up to some
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specified order, as stated in eq. (3.7). Divergence of an expansion scheme at higher
orders does not invalidate our result.’

Finally, if one takes a closer look at eq. (3.9), one can see that if n is allowed to
be larger than the €!~™ time scale, for example n ~ ¢~* with s > m — 1, then
A, fails to be bounded from above in the ¢ — 0 limit. Since the upperbound
we put is already quite optimal, we believe that the truncated theory does break
down at any longer time scale. In particular, this does not care about /. Namely,
independent of how small the truncated error is, accumulation beyond the e!~™
time scale always makes the truncated dynamic a bad approximation for the full
theory. Thus, the conventional wisdom only requires a small correction. Usually,
the truncated theory breaks down at the €'~™ time scale. Occasionally, it can still

hold at exactly this time scale but breaks down at any longer time scale.
3.3 Theorem II: Conditionally Preserved Sym-
metry

We will consider an example that the truncated theory has an approximate scaling
symmetry. Let L(x) =z, g(z) = L(x) + G(z), such that for all ||z]|, ||y|| < r,

G < allzl[™ (3.17)
1G@) =Gl < b [lo—ylMax(|lz]]. [[y)™ ", (3.18)
IG(z) = N"G(z/N)|| < dll=|", (3.19)

for a given p > m and any N > 1. Namely, the linear theory is trivial that L,, = x
does not evolve with n. The only evolution for g, comes from the function G(z),
which is for many purposes effectively “an ™ term”. In this case, it is reasonable
to expect a rescaling symmetry: reducing the amplitude by a factor of N, but
evolve for a time longer by a factor of N™~1, leads to roughly the same result.

Theorem II: For any finite § > 0 and « > 0, there exists 0 < € < r such that if
[lgn(z)|| < € for all 0 < n < ael™™, then

INgn(z/N) = (1= B)gw (%) — Bgn+1(2)|| < de . (3.20)

Here n’ = [(nN1=™)] is the largest integer smaller than or equal to (nN1=™),
and 8 = (nN'=™) —n/. This should be valid for any N > 1 and for 0 < n <

5We thank Jorge Santos for pointing out the importance to stress this point.
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a(e/N)t—m.

The physical intuition is the following. Every term in the rescaled sequence stays

arbitrarily close to some weighted average of the terms in the original sequence,

which exactly corresponds to the appropriate “time” (number of steps) of the

rescaling. We will first prove this for a special case, N = 271, This case is

particularly simple, since such rescaling exactly doubles the length of the sequence,

and 8 will be either 0 or 1/2 which leads to two specific inequalities to prove:
2ﬁ92n—1(x/2ﬁ

for some C' > 0 and ¢ > 1. This will again be done by a mathematical induction.

SIORAC)
2

’ < C-é, (3.21)

27T gop (/271 ) — g (2)

’ < C-él, (3.22)

During the process, it should become clear that the proof can be generalized to any
N > 1. We will not present such proof, because the larger variety of g values makes
it more tedious, although it is still straightforward. However, for self-completeness
what we need in the next session is only that IV can be arbitrarily large. Through
another mathematical induction, we can easily prove Theorem II for N = 9T
for arbitrarily positive integer k. It is still a bit tedious, so we will present that in
Appendix 3.A.

Proof for N = 2ﬁ

We start by defining the monotonically increasing function

A, = (Ggm=tep-mi1 L @om ) [ (14 Biogm-1)" 4] (3.23)
b 2 2
with the properties

A, < Aa(e/N)lf'rn (324)

d b a(e/N)t—™
— (me—leP—mH + ;e’”) (1 + 2(26)'”—1) -1
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< (Z2m—16p—m+l 4 ;em) |:62m71ab/4 1] < C . 7

b d b
Anp = Ay <1 + 2(26)’”‘1> +oe+ %em(ze)m—l . (3.25)

The meaning of eq. (3.24) is that, in the range we care about, A,, is bounded from
above by a power of € higher than one, since ¢ =Min{p — m + 1, m}. Given that,
we can always choose € small enough such that

l|gn(@)|| +An < e+ C el <r. (3.26)

Given our choice of €, we can employ mathematical induction to prove that

[N g2n-r(a/) - MH < Ao (3.27)
HNggn x/N) — H < Agy, (3.28)
which prove eq. (3.21) and (3.22).
First, we observe that for n = 0,
HNgo (z/N) — go(z H—Hn——xH—O<C el (3.29)

is obviously true. Then, we assume that eq. (3.28) is true for n in the original
sequence and 2n in the rescaled sequence. We can prove for the next term, the
(2n + 1) term in the rescaled sequence.

Ngont1(z/N) — MH

2

= || Noan(e/N) + NGg2n(a/N)) ~ guw) ~ 5C (o0 (2)) |
= || Nom(@/N) + NG gan(e/N)) ~ ga(@) ~ 5G (o0 (x)
+ NG(ga(@)/N) = NG(ga(x)/N) |

< N%@W%—@M+MW@WWW—W%@WM

| [Gn@) — NG (gnta)/N)|
b m—1 d
< o a2l o)™ 4
< A277,"|'A2n (A2n+6) 1+g€p
< Aoy +Agy— (2e)m 1+@6P<A2n+1. (3.30)

2
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Similarly we can prove for the (2n+2) term in the rescaled sequence, which is the
(n+ 1) term in the original sequence.

HN92n+2(l‘/N) - 9n+1(93)H
= HNQQnJrl(x/N) + NG(gans1(z/N)) — %gn+1(x)

_ %gn(x) B *G(gn +NG In () +gn+1 )) _ NG <gn(x)]+vrgnn+l(z)>

(
¢ () ()

n +7l
< [ty - Ere )

; NHG@W(m/N»—G(f’”( ]|

) + 9n+1( ) gn I gn(l’) 1
* NHG( Nm G N H+NHG N ) Nm- 1G(9"(I))H
< A2n+1 + A2n+1g(26)m71 + gﬁp + azbtfm(2€)m71 = A2n+2 . (331)

This completes the mathematical induction.

eq. (3.25) takes basically the same form as eq. (3.9). Thus, Theorem II also only
holds up to exactly the e! ™ time scale, but not any longer.

3.4 Application: Persistence of Stability Islands

First, we review the “stability island conjecture” argued by Dias, Horowitz, Marolf
and Santos in [15]. Numerical simulations suggest that given a small but finite ini-
tial amplitude ¢y, ~ € in AdS space with Dirichlet boundary condition, dynami-
cal evolution can lead to black hole formation at the long time scale T' ~ ¢~2 [8]S.
In the meanwhile, some initial conditions do not lead to black holes at the same
time scale. In particular, there are special solutions (set of measure zero) which
not only do not collapse, they stay exactly as they are. These especially sta-
ble solutions are called geons (in pure gravity) or Boson-stars/Oscillons (scalar
field) [10,14,20]7. At finite amplitudes, they are not only stable themselves, but
also stabilize an open neighborhood in the phase space, forming stability islands
which prevent nearby initial conditions from collapsing into black holes in the
~ €72 time scale.

SNote that for this purpose, m = 3, thus €2 is the relevant time scale.
"There are also quasi-periodic solutions which do not stay exactly the same but demonstrate
a long-term periodic behavior and the energy density never gets large [12].
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non-collapsing non-collapsing

geon

Figure 3.1: Phase space diagrams of small initial perturbations around empty AdS (central
black dot) according to the stability island conjecture. The radial direction repre-
sents field amplitude (total energy), and the angular direction represents field profile
shape (energy distribution). Initial perturbations in the shaded (blue) region will
collapse into black holes at the ~ €2 time scale, while the unshaded region, around
the exactly stable geons (thick black line), will not. The unshaded region is cuspy,
showing that according to the conjecture, the angular span of non-collapsing per-
turbations goes to zero as amplitude goes to zero. The right panel demonstrate the
usage of both Theorems we proved in this chapter. We can transport the known,
non-collapsing solutions, directly in the radial direction, to an arc of identical an-
gular span at an arbitrarily smaller radius. It is a direct contradiction to the cuspy
nature of the unshaded region.

Dias, Horowitz, Marolf and Santos argued that such stabilization effect can be
understood as breaking the AdS resonance.® It should lose strength as the geon’s
own amplitude decreases. Thus, such stability islands go away in the limit of zero
amplitude. The easiest way to summarize their conjecture is by the cuspy phase-
space diagram in Fig. (3.1). Other than the measure-zero set of exact geons/Boson-
stars, non-collapsing solutions at finite amplitude will all end up collapsing as
amplitude goes to zero.

Next, we will show that the requirements of both Theorem I and IT are applicable
to the AdS (in)stability problem. For simplicity, we present the analysis on a
massless scalar field in global AdS space of Dirichlet boundary condition. Metric
fluctuation in pure gravity will also meet the requirements [15,16]. We will avoid
going into specific details of the AdS dynamics, but only provide the relevant works
where those can be found.

e The linear space H we used to state both Theorems (see the beginning of

81n some sense, this argument [15] provides a stronger support for non-collapsing solutions to
have a nonzero measure, because it goes beyond spherical symmetry. Current numerical results
are limited to spherical symmetry, thus strictly speaking cannot establish a nonzero measure
for either collapsing or non-collapsing results. This is why controversies over some numerical
results [29,49] should not undermine the belief that non-collapsing solutions form a set of nonzero
measure at finite amplitude.
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3.4. Application: Persistence of Stability Islands

Sec.3.2) contains all smooth functions ¢(7) on the domain of the entire spatial
slice of the AdS space at one global time between.

e The function L evolves one such function forward for one “AdS period”,
namely T' = 2w Raqs in the explanation right below eq. (3.7), using the fixed
background equation of motion. It includes no gravitational self-interaction
and is a linear function. Actually, since the AdS spectrum has integer eigen-
values, the evolution is exactly periodic [50,51]. L(z) = « is trivial, au-
tomatically conserves length and also meets the requirement for Theorem
11

e The definition of the norm is trickier. We first evolve z, using the fixed-
background evolution, for exactly 2w Raqs, and examine the maximum local
energy density ever occurred during such evolution. The norm is defined
to be the square-root of this value, ,/pmax. The evolution is linear, and
the quantity is both a maximum and effectively an absolute value, thus it
satisfies the triangular inequality.’

e The actual dynamic, including Einstein equations, is clearly nonlinear. When
the maximum energy density is always small, the gravitational back-reaction
is well-bounded. One can perform a recursive expansion in which the leading
order correction to the linear dynamic comes from coupling to its own energy,
pd < ¢° [4,8,33]. A theory truncated at this order and the full nonlinear
theory can be our f and g, interchangeably, in Theorem I with m = 3. 1°

e The ¢3 contribution calculated in different approximation methods might be
different [4,8,33], but they all satisfy the approximate rescaling symmetry
required for the function G in Theorem II.

Now we have established the applicability of both Theorems in this chapter, the
stability island conjecture can be disproved in three simple steps.

1. At a small but finite amplitude where measure nonzero sets of non-collapsing
solutions exist (the outermost thick arc in Fig. (3.1), apply Theorem I to
translate them into solutions in the truncated theory.

2. Use Theorem II to scale down the above solutions to arbitrarily small ampli-
tudes. That means projecting radially in Fig. (3.1) into an arc of the same
angular span.

9The reason why we adopt this tortuous definition of norm is to guarantee that gravitational
interaction during one AdS time stays weak when the norm is small, thus we can apply both
theorems. Note that defining total energy as the norm would fail such purpose.

10Such expansion, continued to higher orders, is likely only asymptotic instead of convergent.
As explained in Sec.3.2, that does not cause a problem for our theorems.
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islands

3. Use Theorem I again to translate these rescaled solution in the truncated
theory back to the full nonlinear theory. This establishes the existence of
non-collapsing solutions as a set of measure non-zero (an arc of finite angular
span in Fig. (3.1). 11

Thus, we have established that the measure-non-zero neighborhood stabilized by
a geon at finite amplitude, if never evolves to high local energy density during the
long time scale, directly guarantees the same measure-non-zero, non-collapsing
neighborhood at arbitrarily smaller amplitudes. This directly contradicts the sta-
bility island conjecture.

It is interesting to note that the collapsing solutions always have energy density
large at a certain point, thus neither theorems we proved here are applicable
to them. As a result, one cannot establish their existence at arbitrarily small
amplitudes through a similar process. Therefore, the opposite possibility to the
stability island conjecture, that collapsing solutions disappear into a set of measure
zero at zero amplitude, is still consistent with current evidence.

3.A Arbitrarily small rescaling

In Sec.3.3, we have proven Theorem II for N = 2T, Now, we will generalize it
to arbitrary N’ = 2m=1 = N*, for any k € NT :
[V gu /%) = (1= Bun)) g . | (@) = Bu(mg| s | 2 @)]| S C7-er, (332)
2k 2
where we have written down explicitly the dependence of 5 on k and n:
2 n
Brn) = = = | 3% . (3.33)

which possesses the following properties for positive integers j and I:

Brr1(2) = Br(D), this is always true ; (3.34)
Bena@41) = LA+ AT, forltl£52%;  (339)
Brs1(20+1) = %5k(l) + %[1 —Bp(l4+1)], forl+1=75-2%. (3.36)

These follow naturally from the properties of the floor function that

20+ 1 l
LQ;LJ = {%J , is always true , (3.37)

" The only works for rescaling down to smaller amplitudes. Rescaling to larger amplitudes
can easily exceed the radius of validity of perturbative expansion even at short time scales.
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3. A. Arbitrarily small rescaling

and
20+ 1 [+1
20+1 [+1
bktlJ - {;J_l’ when 1=j.2°-1. (3.39)

We now define:

k
szc.quNi(l—q) -«

= —— (1-N*kC ‘”) <O e (3.40)
- ( = ;
pard 1— Nl-«

for C' = C/(1 — N'=9). This converges as k — oo, since 1 — ¢ < 0, and satisfies
the recursive relation:

Foy1 = F+C- N9, (3.41)

Now we will prove eq. (3.32) by induction. We have already shown that it holds
for £ = 1 in Sec.3.3, hence assuming that it holds for arbitrary k, we want to show
that it holds for k£ 4 1 as well.

It is helpful to split the proof in three parts, one for n = 2, one for n = 2] + 1,
with [ # j-2F — 1 and one for n =20 + 1, with [ = j - 2 — 1.

1. Part 1: n =2l

[V g/ NF4Y) = (1= B (20)) 9|, (@) = Bresa(2Dg) 12 @)]|

v Vg (225) - -

21
2k+

1

1) = g g @)

EYES

< Vg (ER5) o) |
+ ||V (/) = (L= Be)g) 1) (@) = BeDg) 1)1 )|
< C-NFO=D L B = By (3.42)

2. Part 2: n=21+1, withl #j-2F -1

HNngzHl(x/NkH) = (1= B (2 + 1)) == (z)

- 5k+1(21+1)9LﬁJ+1(1')H
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islands

HN'ng2l+l <x/]i,\[k> - (1 - %ﬂk(l) - %ﬁk(l+ 1)) 9| 201 | (@)

— S B+ B+ D) gz ||

N[ Ngaria (x/iv> _ ale/NY) +291+1(33/Nk) H

+ %H]ngl(l'/Nk) - (1 —Bk(l))gL%J (1') _ﬂk(l)gtzl+lJ+1(x)“

+ %HN’Cng(x/Nk) -1 —5k(l+1))9LMJ(x) — Bl + l)gL21+1J+1(az)H

1
< C-NkOI-9 4 25 Fi = Fip1. (3.43)

3. Part 3: n=21+1, withl=j-2F -1

HNkﬂngl(fE/NkH) = (1= B (204 1)) == (z)
— 5k+1(2l + 1 21+1 H

= HN - N*gar41 <x/]<[\[k> - <1 - %Bk(l) - %(1 — Bl + 1))) QL%J(I)

_ %(Bk(l)Jr(1—ﬁk(l+1)))gL%J+l(x)H

< NkHNngl (w/Nk) - gu(/N*) +291+1(x/N’€) H

+ 5|V ) = 8D @)~ (1= By @

+ %Hngl-H(l'/Nk) = Brl+1)g| a4 (2) — (1= Brll+1)g| ) (x)H

1
< C-NFO-9 4 25 Fiy = Fraa. (3.44)

We have used here the fact:
Brll +1)g 11| 1 (2) = Bl +1)g| a4 (2), (3.45)

since B (7 -2%) = 0.
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Gauge dependence of the AdS
(in)stability problem

How wonderful that we have met with a
paradox. Now we have some hope of making
progress.

— Niels Bohr

4.1 Introduction

The two-time framework (TTF) is a well-established tool that reduces the full
gravitational dynamics into the “slow-time” evolution of complex amplitudes of
approximate eigenstates. It operates on two approximations:

e The deviation from empty AdS metric is small, so we can keep only the
leading order gravitational back-reaction.

e The evolution can be averaged over a “fast” time scale set by the AdS radius,
reducing to the dynamics in a “slow” time scale.

One can simply follow the two-time evolution and observe whether the first ap-
proximation breaks down. If it does not, then the metric stays near empty AdS
and an instability is not triggered. If it does break down, then it implies an order
one deviation from empty AdS, thus triggering an instability.

In the previous chapter we saw how one can use the perturbative schemes, such as
TTF, to establish the persistence of a non-zero measure of stable solutions in the
limit of infinitesimal amplitude € — 0. One might want to use these approximate
systems to do a similar statement for the phase space of collapsing solutions in the
same limit. This case is however a little bit trickier, since we have to be careful
on how to interpret the breakdown of our approximations. For example if one
witnesses a breakdown of TTF, he can not be directly certain whether it is the
weak gravity or some other approximation that breaks down.
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4. Gauge dependence of the AdS (in)stability problem

In [48], numerical results suggested that gravitational instability seems to coincide
with a breakdown of TTF from an oscillating singularity—the complex amplitudes
all start to acquire infinite phases. However, a direct logical link between the two
was missing, because the physical interpretation of the oscillating singularity re-
mained unclear. That is because a breakdown of TTF could be due to failure of
either one of the two approximations, but only the breakdown of the first approx-
imation has direct implications for the instability.! Later, in [52], was suggested
that TTF might not suffer from an oscillating singularity if one chooses a different
gauge, a fact that was subsequently verified numerically in [53]. Those results
appeared to add more confusion.

In this chapter, after we summarize the results of [48] and [52,53], we point out
that their combination actually eliminates the confusion. A diverging difference?
between the results in two different gauges implies a diverging redshift between
two different locations in AdS, which in turn implies a diverging deviation in the
metric. Alternatively, one could have used only the result in the boundary gauge
where the TTF solutions stays finite [53]. Explicitly calculating its geometric
back-reaction demonstrates the same divergence [54].

Note that the actual geometric back-reaction is the TTF result multiplied by the
amplitude squared of the initial perturbation. A diverging TTF redshift means
that linearized gravity breaks down for arbitrarily small initial amplitude, which
triggers a genuine instability of global AdS.

4.2 An oscillating singularity

It was already stated in chapter 1 that in the ansatz eq. (1.3) there is some remain-
ing gauge freedom, which can be eliminated by choosing a normalization condition
for the function §(z,t). In [48], the two-mode, equal energy data in AdSs were nu-
merically evolved both in full GR, as well as in the TTF system. The authors of
this work chose the normalization §(0,¢) = 0, which is commonly dubbed as the
interior time gauge. With this choice, ¢t corresponds to the proper time at the
center of the spacetime.

The initial data evolved are

o(x,0) =€ (ieg(l') + éel(x)> , II(z,0) =0, (4.1)

1Some may have the intuition that the breakdown of the second approximation also can only
come from large deviations from the AdS metric, but such statement is never proven explicitly.
2We will specify what this means in the subsequent sections.
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4.2. An oscillating singularity

3x107° [ — & |dgg|
[ — Rovos
0

—-3x107% |

cos ( Byg)

0 0.25 0.5

Figure 4.1: Amplitude spectrum A, for different values of 7. Solid lines correspond to a 100
mode truncation, while dashed lines correspond to a 200 mode truncation. [48]

which they correspond to the following mode amplitudes:

ap(0) =1/8, a1(0) =1/12, an>2(0) =0. (4.2)

The system was truncated at n,,.., = 175 modes and the results are presented
in Fig. (4.1). The outcome is that an oscillating singularity was observed. This
can be understood better in the so-called amplitude-phase representation, o, =
A, (t)e!B»®) . Evolving the aformentioned data leads to a logarithmic blow-up of
the slow time derivative of the phases at some finite slow time 7, ~ 0.5.

To give better evidence for the results, we can employ the analyticity strip method
[57], which uses Fourier asymptotics to diagnose the formation of a singularity. Let
us consider an evolution equation with a solution denoted by a(¢, x). If we analyt-
ically continue this solution to the complex plane, then this analytically continued
solution «(t, z) will typically have complex singularities. If a complex singularity
hits the real axis in finite time, then «(¢,z) becomes singular. This can become
more rigorous if we denote the location of the pair of complex singularities closest
to the real axis by z = x £ ip, so that p denotes the width of the analyticity strip
around the real axis. Using this notation we can say that «(t,x) becomes singular
if p(t) vanishes in finite time. The analyticity strip width p(¢) is encoded in an
exponential decay of the asymptotic Fourier coefficients of the solution a(t, z). In
the problem at hand, this consists of making the following asymptotic ansatz for
the amplitudes

Ay (1) ~ Y (Dempln (4.3)
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4. Gauge dependence of the AdS (in)stability problem
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Figure 4.2: The radius of analyticity p(t) obtained by fitting eq. (4.3) to the data (left) and
numerical evidence for the logarithmic blowup of the derivative for the sample phase
Bygg (right) [48]

and fitting this formula to the data we can obtain the time dependence of the pawer
law (7) and the analyticity radius p(7). The numerical results of [48] suggest that
p(7) tends to zero at finite slow time 7, and the value of v approaches v — 2 at
the same time. Therefore one can assume the following behavior for 7 — 7,

Ap (1) ~n2emPolme =), (4.4)

Plugging in this result and solving for the phases yields

dB,,
dr

~ Z RjnA3 ~n?In(t —7,), (4.5)
i#n

which blows up logarithmically at the same time 7, at which the analyticity strip
width p(7) becomes zero. In Fig. (4.2) numerical evidence that supports this
analysis is presented.

This result however is gauge dependent. As it was first argued in [52] and it
was later verified numerically in [53], this oscillating singularity is not present in
the boundary time gauge, defined by &(m/2,t) = 0.

As can be seen in Fig. (4.3), the derivatives of the phases don’t blow up in the
boundary gauge. The reason for this different behavior in the two gauges can be
traced back in the slighlty different behavior of the interaction coeflicients S;;; in
the two gauges [52,55]
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4.8. Comparing the two gauges

(X ITG AdS; & BTG AdS;
|4 ITGAdS, v BTG AdS,

|dByso/dt|
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Figure 4.3: Numerical evidence that the logarithmic divergence of the phases is a gauge depen-
dent effect. [53]

4.3 Comparing the two gauges

In this section we compare the results in the two gauges and we show that within
the validity of TTF, they indeed describe the same physical evolution. The relation
between the two gauges has also been studied in [56] and some of the results can
be found there as well. We will follow similar notations, but our attention lies
on oscillating singularities that occur in one gauge and not the other. With some
extra care we show what goes wrong as TTF breaks down when such a singularity
develops in the central gauge.

The gauge choice should not affect any physical quantities. However, the two
different gauges do lead to two different sets of differential equations, which were
numerically evaluated to very different results. In [48] the case of the two—mode
equal energy data in AdSs was studied and an oscillating singularity was reported.
Namely, the derivatives of the phases blow up. In [53] it was shown that this
singularity does not appear in the boundary gauge and therefore the singular
behaviour of the system might be only an artefact of the gauge choice.

On top of just numerical results, one can also see this difference from the asymp-
totic scaling of the R;; coefficients as was first suggested in [52]. It was shown
that for AdSs the R;; coefficients scale in the central gauge as RiCjG ~ 352 and
therefore, for a power-law spectrum A, ~ n~2
the second term of eq. (1.34) diverges logarithmically. On the other hand, the
asymptotic scaling of these coefficients in the boundary gauge was shown to be
RgG ~ 252, thus although the evolution leads to the same power-law spectrum

the same sum converges. One can check that the rest of the sums do not diverge.

as observed in [48], the sum in

Despite this apparent difference, these results do not contradict each other. The
oscillating singularity observed in [48], combined with the absence of that in [53],
has an obvious physical meaning. It implies an infinite gravitational redshift be-
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4. Gauge dependence of the AdS (in)stability problem

tween the boundary and the center of the spacetime.
From the metric (1.3), one can see that the two gauge choices are related as:

5(tce. %)

dtpg = e~ dtoa. (4.6)

Integrating and keeping terms only up to order O(€?) we get :
tca
tee = tog — €2 / dtos(t,7,0) + 0(64) (4.7
0
Neglecting terms that oscillate in the fast time scale ¢, we can approximate d5 (¢, 7, 0)

by the time averaged quantity do(7,0). For completeness we will present the com-
putation of this quantity in section (4.3.1). We then get:

Q

tca
tpe ~ tog — ¢ / dtd2(7,0) + O(Y)
0

tca
= tog + 262/0 dt Y (Aj; +wiVj,) A7 + O(), (4.8)
i

Now, using the fact that the field ¢(¢,7,z) transforms as a scalar under such a
gauge transformation one can derive the relation for the complex coefficients a; ()
in the two gauges from eq. (1.11):

¢°“(tcc) = ¢°“(tpc) =

of€ (reg) €1 = af (rpg) eitr (49)

The relation of the slow time in the gauges is obtained simply by multiplying
eq. (4.8) by €2 to obtain

TcG
TBG = TCa + 262/0 dTZ (Ajj + w?‘/”) AJZ + 0(64) (410)

J

Substituting in the right hand side of the above equation, Taylor expanding and
neglecting terms that are of order O(e?) we obtain:

) TCcG
af% (rog) €990 ~ {afg (tcq) + €2aB¢ (TCG)/O 52d7}

TCG
X exp (iwjtcg + iw; / §2d7') (4.11)
0

Therefore, we find that the complex coeflicients in the two gauges are related by:

ajCG (r) = afG (1) exp (iwj /OT 52(7",0)d7') + O(é%) (4.12)
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4.8. Comparing the two gauges

as is also explained in [56]. This result can also be expressed in the amplitude—
phase representation, yielding:

ATC(r) = A7) (4.13)

BSC(r) = BPC(r)—w; /0 dr' Y (Aii + wiVi) AF(T) (4.14)
That the amplitudes and the phases are related as above can be directly checked
by applying eq. (4.12) to the corresponding evolution equation in the two gauges,
eq. (1.34), and recalling that the difference is entirely contained in the coefficients
[56]:

TPY = TFC+w?(Aj; +wiVy), (4.15)

BG ca 2 2
Rij = Rij =+ wj (Aii + w; V;l) . (416)

In [54] it was shown that a large geometric back—reaction is related to the amplitude
spectra and the coherence of the phases, where a phase—coherent cascade is defined
by a spectrum of phases that (for large j) is linear in the mode number j:

Bi(r)=~(r)j+d(r) +..., (4.17)

This is an asymptotic® statement and the ellipsis represent terms that are sub-
leading in j. The reader should be aware here that the function §(7) in the above
equation is not the same function appearing in eq. (1.3). From eq. (4.13) we see
that the evolution of the amplitudes is not affected by the choice of the gauge so
what remains is to show that phase coherence is also unaffected and hence the
physical conclusions will be independent of the choice of the gauge. Starting from
eq. (4.17) for the central gauge we have:

BYYr) ~ 9%1)j+59%), (4.18)

and applying eq. (4.14) we can obtain the corresponding expression for the bound-
ary gauge. This reads:

B]BG(T) —wj/o dr’ Z (Aji + wiVy) A2 (7)) ~ 7CC ()] 4 69Y(T) =

i

BBG(r) =~ (WG(TH/T dT/Z(Aiier?‘/ii)A?(T/)) j+069C(r).
0 i

(4.19)

3Recall also that asymptotically holds wj ~ j, a fact that we use in eq.(4.19).
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4. Gauge dependence of the AdS (in)stability problem

We see that the phase spectrum in the boundary gauge takes the form of eq. (4.17)

BG ~ ~BG( \:. sBG
By7(r) ~ 77 (r)j+ 677 (), (4.20)
with the functions v(7) and d(7) in the two gauges being related as:
VEG(r) = 4CG(r) 4 / ar' S (As + w?Vii) A2(7) (4.21)
0 i
6BG(7_) _ 5CG(T) (4.22)

4.3.1 The oscillating singularity as an infinite gravitational
redshift

Having clarified that physical conclusions can not be affected by the choice of
the gauge, the next step is to reconcile the two different numerical results in the
two gauges. In this section we will argue that the fact that Bj diverges in the
one gauge and not in the other can be interpreted as an infinite gravitational
redshift between the boundary and the center of the spacetime. Recall that the
gravitational redshift between a source and an observer is given by the formula:

git(0bs)

14 2= T2
g+ (source)

(4.23)
We can compute this quantity in one of the two gauges. Let us choose the nonsin-
gular boundary gauge and compute the redshift between the boundary (z = 7/2)
and the center (z = 0) of the spacetime. Using the metric (1.3), the normalization
§(t,7/2) = 0 and keeping terms only up to the order of O(€?), the quantity under
the square root reads:

g1:(t,0)
gtt(t7 7T/2)

The expression for d3(t,7,0), eq. (1.13), yields*:

1— €255(t,7,0) + O(eh). (4.24)

/2
B(t.r0) = [ (it + 0 (t0)?) plopvle)ds
/2
= / > (e Wesla)es @) + eV O (Deiw)e; (@) pe)v(e)da

= 3 (Ve + VeV ay). (4.25)

ij

4For ease of notation we have omitted to write explicitly the slow time dependence in some
cases, but it is implicitly assumed.
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To go to the second line, we simply used the expansion in eigenmodes ¢1(t,z) =

> c;l)(t)ej () and in the third line we defined the interaction coefficients:

/2
Ay = / e(x)e(x)p(x)v(r)de (4.26)
0
w/2
Vi, = / ei(z)ej(x)pu(z)v(x)de. (4.27)
0
The expansion coefficients cgl) are related to the complex coefficients «; as®:
AV = et 4 g e it (4.28)
5 = Gy J ‘
dcgl) . .
djt = iw; (o€t — aze "t (4.29)

Substituting eq. (4.28) in the above expression for do(t, 7,0) we will get several

9 where Q = w; + wj. Keeping only terms with 2 = 0, the
6

terms of the form e

so called resonant terms®, we finally obtain the following expression:

52(t, T, O) ~ 2 Z (Au + (.%2‘/”) A?(T) = 52(7', O) (430)

By differentiating eq. (4.14), we can see that this quantity, the time-averaged ds,
which was first mentioned in eq. (4.8), is precisely the difference of the slow time
derivatives of the phases in the two gauges. Therefore, by comparing the results in
the boundary and the central time gauge we can draw conclusions about geometric
quantities, and in particular the gravitational redshift. In the case of interest,
where the derivatives of the phases diverge in one gauge but not in the other, one
concludes that d2(7,0) diverges, and so does the redshift, eq. (4.24). This large
back-reaction in turn implies the breakdown of linearized gravity. On the other
hand if the derivatives are finite in both gauges there is no divergence, while the
case is not clear if an oscillating singularity appears both in the boundary as well
as in the central gauge. In that case d5(7,0) could be either finite or infinite.

4.4 Conclusions

In this chapter we presented an explicit derivation on the anticipated fact that
physical results can not be affected by the different gauge choices. We demon-
strated that gauge-invariant quantities are related to the amplitude spectrum and

5As we have stated below eq. (1.34) these are also related to A; and B; coefficients as:
q J J
Aj = |aj| and Bj = Arg(a;). .
SThese are are the terms that are proportional to eil(wi_wj)éij. This procedure is equivalent
to time—averaging over the fast time t.
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4. Gauge dependence of the AdS (in)stability problem

the coherence of the phases in the TTF solution, and both properties are unaf-
fected by the gauge choice. This result holds even when the difference between the
two gauges diverges. Furthermore we established that the oscillating singularity
observed in [48] is indeed a physical singularity, by showing that it is related to an
infinite redshift between the boundary and the center of the spacetime.

This means that the breakdown of the TTF observed in [48] is due to large grav-
itational effects which lead to the breakdown of the weak gravity approximation.
Such a conclusion cannot be deduced by the observed singularity in the central time
gauge alone. In that case is not clear whether the breakdown of the perturbation
theory is caused by strong gravity or by the breakdown of other approximations.
Therefore, with our analysis we establish that the singular solution is a genuine
singular solution of the gravitational problem. Due to the scaling symmetry of the
TTF system the solution will survive in the ¢ — 0 limit, and thus provide a way
to address the phase space of initial conditions in this limit.

An interesting thing to point out here is that for this conclusion we need to compare
the derivatives of the phases in the two gauges. Therefore, the fact that in higher
dimensions a discrepancy between the two gauges has not been observed [53] is
rather intriguing. However since in both gauges an oscillating singularity was ob-
served, and actually in the central time gauge this divergence was more prominent
than in the boundary time gauge, it might still signal a diverging redshift, since
these results are compatible with a diverging d5(7,0), as we explained in Section
4.3.1.
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Fast and Slow Coherent
Cascades in AdS

Physics is about questioning, studying, probing
nature. You probe, and, if you’re lucky, you get
strange clues.

— Lene Hau

5.1 Introduction

One could hope for a resolution of the AdS instability problem in terms of a
theorem. A preliminary attempt for such a theorem was presented in [54]. We
will discuss the details of this work in the next section, but for now it suffices
to say that it conjectures that the cascade of energy towards higher modes takes
place in a coherent way. Namely, the higher frequency modes are turned on with
their phases coherently aligned. The theory of [54] also makes predictions for the
resulting power-law of this cascade.

In this chapter we study the evolution of the phases and the amplitudes of the
Fourier modes, in the Two Time Framework (TTF) approximation, for a variety of
initial conditions, and we find that the phases are not excited in a random way, as
in the standard theory of weak turbulence, but in a quite coherent way, supporting
the coherent phase ansatz of [54]. However, we observe small deviations from a
strictly coherent phase spectrum, suggesting that the conjecture [54] should be
refined.

We also study the evolution of the two-mode, equal energy initial data, that are
considered minimal for the onset of the instability, and we provide a combination
of numerical and analytic evidence to support the conjecture that they belong
to a class of initial conditions that collapse in infinite slow time!. We show
analytically that solutions dominated by the two lowest modes obey a simple

LAt the vanishing amplitude limit, e — 0.
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speed limit on the rate of energy transfer to higher frequencies. The speed limit
depends on the frequency; we show that in 3 4+ 1 dimensions it takes infinite time
to transfer energy to arbitrarily high frequency, while in higher dimensions it takes
finite time.

A nice way to track energy transfer in this system is the so-called analyticity
strip method [38,48,57], which diagnoses at what time the amplitude spectrum
ceases to decrease exponentially at large mode numbers. We find numerically
that, for the two-mode initial data, the width of the analyticity strip goes to zero
exponentially in time. There has been a long-lasting dispute about the ultimate
fate of this initial data [12,29,58] and we hope we settle the issue with this work.?

We also study initial data that has a Gaussian profile. We find that this data
collapses in finite slow time. In addition, we find that at the time of the collapse
the amplitudes A,, of the normal modes approach a power-law spectrum of the
form A,, ~n~7 with v &~ 3/2, which modifies slightly the result v = 8/5 reported
in [11].> This amplitude spectrum corresponds to an energy spectrum E,, ~ 1/w,,.

5.2 Phase coherent turbulent cascades

In this section we present a minimal introduction to the work of [54] and we will
mainly focus on what is necessary for the comprehension of the rest of this chapter.

We have seen so far, that the Fourier analysis of the black hole formation in
AdS, points towards a cascade of energy from lower frequency to higher frequency
modes. This process is known as turbulence and when the cascade is driven by
nonlinearities it is dubbed as weak turbulence. Despite the striking resemblance
with the case of AdS it needs to be clarified that in the standard theory of weak
turbulence, as developed by Kolmogorov and Zakharov for example, the effect
of the phases was not taken into account. The phases of the eigenmodes where
drawn from random distributions and therefore their effect averages to zero. An
imporant consequence of this choice is that, for a system with quartic interactions?
there is no energy transfer in the first nonlinear time scale (t ~ ¢~2) and the first

non-trivial dynamics appears at t ~ e 4.

2The fact that this data might collapse in infinite slow time was suggested earlier to us by
Andrzej Rostworowski, as we understand, based on simulations of full General Relativity in AdS.
It is our understanding that A. Rostworowski and collaborators have also obtained interesting
results about this 3 4+ 1-dimensional problem, and we look forward to comparing them to our
results.

3The fact that the exponent might be smaller than 8/5 was also conveyed to us in a discussion

with A. Rostworowski and collaborators.
4As it is the case for AdS.
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The basic idea in [54] is to establish a class of solutions to the TTF, that are

stationary and have a power-law spectrum®

5.2.1 Geometric deviation and phases

As it was first mentioned in chapter 2, when the energy is very small (approaching
zero), the only way to have a large back reaction is focus this energy into a very
small small region. This region can then be described locally by the Minkowski
metric for which the perturbative expansion for a small back reaction is well known:

oM
ds?® = <1 + ==+ 4V> dt® + (1

where M and V are the enclosed mass and the gravitational potential respectively.

M
)dr +r2dQ3_,, (5.1)

The enclosed mass is given by
r 12 2
M(r) ~ / dﬂ% (5.2)
0

and if we assume a power law spectrum in the form

we obtain for M

M(T) ~ /0 / /d 1 (Z wn ne’n cos(wnt-l-B ))

2
<>o

/ dp' i1 w2 A2e2 (v anA en(0) cos(wy,t + By,)

—r— 1

(5.4)

The importance of the phases in the back-reaction is apparent already in the second
term of the above expression. Modes of higher frequency (n > r~!) oscillate

5In contrast to the quasi periodic solutions [12] that are stationary but with an exponential
spectrum.
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rapidly within the integration range and thus the cross terms vanish. On the
other hand, modes of lower frequency (n < r~!) are basically constant within the
integration range and if their phases are coherent, then the cross terms have a
significant contribution to M.

The phases are considered coherent if there is a time during one AdS period where
all of the modes are in phase. The phase #,, of a particular mode is related to the
slow phase B,, as

0, (7,t) = B (7) + wnt = B (1) + (2n + d)t (5.5)

Therefore, the phase coherence of two modes n and m is defined in the usual way
as

O — O = 27 Ny, (5.6)

where N,,, are integers which in principle can depend on the modes involved.
Coherence requires that we can solve this equation for the fast time t over one
period 0 < t < 2, at the same ¢ for all modes. Plugging in the formula for the
phases 6,,, we obtain

B, (1) = Bn(7) = 27Npm +2(n—m)t
= (n—m)o(7). (5.7)

To go to the second line, we dropped the the first term, since the phases are only
defined mod 27 and for ease of notation we set §(7) = 2¢. A solution to the above
equation for every n and m is

B, (1) = nvy(1) + (1), (5.8)

where v and § are functions of the slow time 7, but independent of the mode
number n. In the problem at hand, one is interested in describing the asymptotic
spectrum, namely large values of n. Therefore one should, in principle allow for
corrections to the above solution that are subleading in n.

The effect of the phases in the backreaction, for different values of the resulting
power-law «, is summarized in Fig. (5.1).

However, this phase coherent ansatz needs to be maintained during the time evo-

lution and according to the results of [54] this happens only when o = 4. This
predicted power-law leads to a spectrum of energies of the form E,, ~ n?~?. The
resulting energy spectrum and the phase coherent cascade for a variety of initial

conditions will be a part of our studies in the following sections.
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regular | naked curvature | naked redshift | black hole
d=3 singularity singularity
incoherent phases | a > % % >a> % a< % never
coherent phases a>3 3>2a>2 a =2 a<?2
d>3
incoherent phases | a > dzﬂ % > o> % a= o< %
coherent phases | a > dzﬁ % >a> % =41 a < ‘izll

Figure 5.1: The effect of the phases for different values of the power-law « and for different
spatial dimensions dimensions d [54].

5.3 The two—mode data

We will start by looking at two mode—initial data, which is parametrized as follows:

Ay = 5 (824 3)). (5.9)
This is the case where we initially excite the lowest two modes with no relative
phase. Here, € denotes the amplitude of the perturbation, while x parametrizes the
amount of energy in the second lowest mode. For concreteness, we have considered
data with ¢ = 1 and different values of k. However, as discussed before, the
TTF equations are invariant under the scaling symmetry o, (7) — ea,(7/€2).
Therefore, the solution for different values of € would be completely equivalent to

the case € = 1 but evolved to a different time 7,x.

5.3.1 Numerical results

Equal energy:

Setting k = 3/5 corresponds to a situation where the energy is equally distributed
between the two modes. This case is very interesting since it has been argued
to be in the borderline of one of the stability islands [12,29, 58]. Here, instead
of looking at the value of II at the origin,® we would like to concentrate on the
spectrum of the amplitudes and the phases, hoping to shed some light from a
different perspective and clarify the fate of this initial condition.

In order to detect the formation of singularities from the spectrum we use the
so-called analyticity strip method, introduced in [57], and employed for the first
time in the context of the AdS instability problem in [38]. The idea here is to

6The value of TI(t,0) at the origin corresponds to the Ricci scalar and therefore is a good
indicator of singularity.
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Figure 5.2: Amplitude spectrum Ay, for different values of 7. Solid lines correspond to a 100
mode truncation, while dashed lines correspond to a 200 mode truncation.

consider the analytic extension of ¢(t,z) into the complex plane of the radial
variable r — z € C. The function ¢(¢, z) will typically have complex singularities
moving in time; if one of these singularities hits the real axis, ¢(t,r) becomes
singular. The pair of singularities closest to the real axis are denoted as z = z£ip,
so that p determines the width of the analyticity strip around the real axis. Thus,
if p vanishes at some point during the evolution then ¢(t,r) will be singular. Now,
p is encoded in the exponential decay of the Fourier coefficients A4,, ~ e~*" (at
large n), so it can be obtained from the asymptotics of a given numerical solution.

In order to evolve the system of equations (1.34)-(1.34) we need to fix the gauge
and find the coefficients S;jr; up to a maximum number i = j = k = | = npax.
We choose to work in the boundary gauge, where 6(¢,7/2) = 0, since in this
gauge the evolution of the phases is regular [2,52,53] (and therefore, the numerical
integration is easier). In order to estimate the effect of the cutoff ny,., we evolve
the system for two different cases, first for nya.x = 99 and then for nya.x = 199. In
Fig. (5.2) we show the amplitude spectrum in the two cases, for different values
of 7. In general they agree over a wide range of n, but differ mildly in the range
n € (79,99). Next, we fit the amplitudes using the following ansatz

Ap (1) ~ a(r)n =Y Me=rmn (5.10)

We exclude the modes n € (70,99) for npmax = 99 and n € (140, 199) for nmax = 199
to avoid any cutoff effect. Also, since the analyticity strip method applies only
asymptotically, we also exclude the first modes, n € (0,29) for np.x = 99 and
n € (0,59) for nyax = 199. Comparing the two fittings should then provide a
good test of our numerics, since the two ranges of n barely intersect with each
other.
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Figure 5.3: Left: Evolution of p(7) for nmax = 99 and nmax = 199. We define Tmax ~ 0.485 as
the maximum time such that |p199 — pog| < 1/nmax; beyond this point we do not
trust our numerical evolution. We have also included the best fit up to this time,
using the ansatz p(1) = poe™*" + poo. This yields poo ~ 5 X 107° <« 1/Nmax which
strongly supports the idea that p — 0 as 7 — oco. Right: Evolution of dp/dr for
Nmax = 99 and nmax = 199. The behavior of the derivative for T < Tmax shows that
the exponential function is indeed a good fit for p.

In Fig. (5.3) we plot the evolution of p and its derivative as a function of 7 for
the two cases considered, nmax = 99 and npax = 199. In general, they are in
excellent agreement for the first part of the evolution, but eventually they start
to differ. Since p is the most robust parameter in the fitting (since it appears
in the exponential), we define Tpax ~ 0.485 as the maximum time such that
|p199 — pog| < 1/Mmax; beyond this point the two p start to differ substantially
and we cannot trust our numerical evolution. We see that up to muax ~ 0.485, p
decays almost exponentially, so we fit it as

p(7) ~ poe” " + poo - (5.11)

Interestingly, we find that poo ~ 5 x 1075 < 1/npmax strongly supporting the
idea that p — 0 at infinite 7! The value of ~ varies very little before T, —see
Fig. (5.4)— but fluctuates quite a lot after this time. This makes it impossible
to extrapolate its value to 7 — co. We also plot the fitting function (5.10) at
T = Tmax, Nnding an excellent agreement even outside of the range of n that
we considered for the fits. This suggests that the formula (5.10) is actually quite
robust, at least for the times at which we can trust our numerical results, 7 < Tynax.

It is also interesting to put to test the validity of the phase coherent conjecture [54],
which states that the asymptotic spectrum of phases align coherently as in (4.17).
In order to see if this is actually true, we plot in Fig. (5.5) B,, as a function of n for
various values of 7.7 Interestingly, we see an almost perfect line for 7 < Tyax, wWith
deviations from linearity being indistinguishable to the naked eye. To quantify the

"Since Arglan] = Bp € (—m, ) we first unwrap the phases before plotting the actual values.
This amounts to shift B,, = By, + 27k, k € Z every time that AB,, = By, +1 — By changes sign.
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Figure 5.4: Left: Evolution of ¥(T) up to Tmax ~ 0.485. Beyond this point ~v(7) behaves
quite erratically, also indicating the breakdown of our numerical solution. It seems
difficult to extrapolate v for 7 — co. Right: Fitting of the amplitude spectrum at
T = Tmax ~ 0.485 according to the formula (5.10).
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Figure 5.5: Left: Unwrapped phases By, as a function of n for various values of . In all cases
we see that the phases are perfectly aligned to form a straight line as in (4.17).
Right: The difference between the fitted and the actual values as a function of n.

linearity of the spectrum we subtract the fitted values from the actual data. The
results are presented in Fig. (5.5) as well. We observe a very good agreement with
the linear, especially in the range of values used for the fit, 60 < n < 140.

Non-equal energy:

For other values of &, (5.9) implies that the initial energy of the two modes is
different. We evolved the system for a wide range of x and repeated the analysis
that we presented for the case k = 3/5. In extreme cases where most of the energy
is deposited in one of the modes, the system can be though of a perturbation of a
single mode solution, which is actually the center of one of the stability islands for
AdS perturbations [3,13,49]. In such cases we do not expect black hole formation.
On the other hand, values of k close to kK = 3/5 should behave similarly to the
equal energy data and are expected to collapse.
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Figure 5.6: The evolution of the analyticity strip width p(t), for different ratios of the energy
in the first two modes.

In Fig. (5.6) we plot the analyticity strip width p(7) as a function of 7 for various
values of k, showing different kind of behaviors. For x = {1/5,4/5,5/5} p(7)
develops oscillations and never reach zero. These initial conditions are not exactly
periodic as the single-mode solutions but exibith revivals at time scales of order
1/€% [35,59]. For k = 2/5 we do not see oscillations before 7., but by doing the
fit we find that po, is marginally above 1/nmax. We conjecture that this case is
close to the borderline of a subspace of solutions that collapse at infinite 7, which
for the two-mode initial data (5.9) is given by an open set with k € (Kmin, Kmax)-
We further studied the phase spectrum of all these initial data, and found always
good agreement with the coherent phase ansatz.

5.3.2 A speed limit for energy transfer

It is interesting and surprising that some initial data appears to cascade to arbi-
trarily high frequencies in finite time, while other initial conditions take an infinite
time. To really convince ourselves that the energy cascade takes infinite slow time
for some initial conditions, we need an analytic argument. In this section, we give
a simple argument showing that for solutions where two low modes dominate the
spectrum, the remaining modes obey a simple speed limit in how fast energy can
propagate to high frequencies. Our result rests on a strong assumptions that the
solution is dominated by two low modes, and it would be very interesting to relax
this assumption.

For this purpose it is convenient to write the equations of motion for the truncated
resonant system in terms of complex amplitudes «,, = A,, exp(iB,,). The equations
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of motion become
do,

QiMnW = | Z C’ijknaiaj@k (5.12)
i+j=k4+n

Now we will assume that the solution is dominated by two low modes; for defi-
niteness, take modes n = 0,1, but the basic structure of our results will remain
unchanged. In this case, we can keep only terms in the sum where two of the indices
take the values 0, 1. Since we have to obey the resonance condition i + j = k + n,
for n > 2 this means that £ = 0, 1, leaving the equation

. da _ _ _ _
QM"T: = 201 (n-1)0n @100 —-100+2C0n0n 00000 +2C 101001 A @1 +2C0 (14 1) 1n VO An+1 01
(5.13)
Collecting terms and using the symmetries of the C' coefficients, we get

day, 7

dr

W, (Conono®o + Crnina1n) an = Ci(n_1yon @1000n—1+Clpo(n+1) X001 Ont1
(5.14)

Despite the complicated coefficients, this equation has two simplifying features:
e It is linear in the amplitudes «,.

e It is local: a given mode is only influenced by its nearest neighbors (in
addition to modes 0 and 1, which we think of as a background.)

We are interested in large mode numbers n. Since the C coefficients are smooth
functions, and n is large, we take Cino(n+1) = Cin—1)on = Cn. We treat the
dominant modes g1 as constants (it would be interesting to allow for time de-
pendence).

As discussed above, the overall phase and the relative phase between any two
modes is unphysical, so we are free to choose convenient phases for ap;. We
use this freedom to take the product ap@; to be pure imaginary for convenience,
leading to the equation

dau,

iw”? (CononAf + C1n1n A7) an = iCi(n—1)0n A1Ao(0n_1 — any1) (5.15)

This equation can be written in the simpler notation

doy, . 1
o + idy o + §cn(an+1 —Qp-1)=0 (5.16)
with the definitions
CononA2 + CininA? 2C (n—1y0n A1A
d, = ononAj + Cinin A7 e, = 1(n—1)on A1A0 (5.17)
wn w'l’L
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Since a given mode couples to nearest neighbors, we would like to identify the
speed at which signals can propagate in frequency space. To estimate this, take a
continuum limit of the above equation, treating n as a continuous variable, to get

?Ti 4 id o + cng—z =0 (5.18)
We have not fully analyzed this equation, but the speed of propagation can be
read off by comparing the coefficient of the time derivative to the space derivative,
yielding a speed of propagation that depends on the mode number
speed = dn =cp (5.19)
dr
It is now interesting to ask whether energy can propagate to arbitrarily large mode
numbers in finite time. The time to reach infinitely large mode numbers is
o0
AT = / dn (5.20)
C’I’L
Whether this is infinite depends on the function ¢,, which depends on the dimen-
sion. In all dimensions, w, ~ n. In 341 dimensions, the interaction coefficient
Cin-1)0n ~ n? [52,55]. Therefore, in 3+1 dimensions, ¢, ~ n, and the integral
is logarithmically divergent, and the cascade cannot reach infinity in finite time.
The maximum excited mode number as a function of time can increase at most as
Nmax ~ €xp(a7). This agrees well with the observation in our numerical evolution
that the spectrum has an exponential form exp(—pn) with p ~ exp(—ar).

In higher than 341 bulk dimensions, we expect the interaction coefficients to scale
with larger powers of n, leading to a scaling ¢, ~ n? with p > 1. This renders
the integral convergent, meaning that energy can reach infinite mode number in
finite time. This is in good agreement with the results obtained in [48] in 4+1
dimensions, where the spectrum was observed to approach a power law in finite
time.

As a reminder, we were able to reach this strong conclusion by making a strong
assumption that modes 0 and 1 dominate throughout the evolution. We expect
a similar result whenever we assume that the evolution is dominated by a finite
number of low-frequency modes: the equation for the high modes will still become
linear and quasi-local, with the degree of nonlocality in frequency space determined
by the frequency of the low modes that are excited.

On the other hand, the assumption that the solution is dominated by a few low
modes can clearly break down as energy is transferred to higher modes. For this
reason, it is not at all clear that the ‘speed limit’ found under this assumption is
a robust result, although it is intriguing that it appears to agree with numerical
results. It would be very interesting to derive a more generally valid speed limit
on the rate of energy transfer.
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Figure 5.7: The evolution of the analyticity strip width p(7) for Gaussian data with o = 0.25
and o = 0.15. In both cases p becomes zero in finite slow time T4 ~ 0.625.

5.4 Gaussian Data

In this section we study scalar fields with Gaussian profiles of the form ¢(0,x) =

2exp —ta;‘# in TTF where previous simulations, in the full GR system, reported
that the collapse depends on the width of profile [10,11]. We concentrate our study
on profiles with widths o < 0.3. We present results for two cases, with o = 0.15
and o = 0.25. We follow the same analysis as the one of Sec.(5.3), so we will not
repeat the details here. One thing we would like to mention is that here the case is
more clear since this initial data approach a power-law spectrum in finite time and
therefore we only use the truncation of n,,,, = 200. One other thing is that now
we have T4 = Tx, namely, we trust the evolution up to the time of the collapse

Ty-

In Fig (5.7) we plot the evolution of the analyticity strip width, for the two above-
mentioned data to make precise the contrast with the 2-mode data. Here p(7) goes
to zero in finite slow time 7, ~ 0.625. Our results agree with the observation
of [10], that collapse happens for narrow profiles (¢ < 0.3), but disagree with [11]
on the resulting power-law of the energy cascade. We find that by the time of the
collapse, or equivalently when the analyticity strip width p(7) goes to zero, the
power ~y(7) approaches a value very close to 3/2 and not 8/5.

In Fig. (5.8) and Fig. (5.9) we present the evolution of the amplitude spectra for
Gaussian initial data with ¢ = 0.15 and o = 0.25 respectively, towards a power
law and we contrast the two above-mentioned values. We see that indeed the
value v(1,) = 3/2 is a better fit. We would like to mention at this point that
the numerics are very subtle in AdS; and although our results strongly suggest a
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Figure 5.8: Left: The evolution of the amplitude spectra for Gaussian data with ¢ = 0.15
towards a power law v(0.625) ~ 3/2 in the TTF system. Right: Comparison of the
two power-laws with the actual data at the time of collapse, 74 = 0.625.
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Figure 5.9: Left: The evolution of the amplitude spectra for Gaussian data with o = 0.25
towards a power law v(0.63) ~ 3/2 in the TTF system. The evolution is almost
identical to the case of o = 0.15. Right: Comparison of the two power-laws with
the actual data at the time of collapse, 74« ~ 0.63.

power law of 3/2, another value for v very close to this one is still a possibility.

To illustrate the subtleties of the numerical methods we now study into more
detail the fitting methods for the case of the o = 0.15 Gaussian data close to the
collapse point 7, ~ 0.625. We fit the data in the range 30 < n < 110 in order to
to take into account only the asymptotic form of the spectrum and avoid cut-off
effects. In Table 5.1 we present the fitting functions for three different values of
7 = {0.62,0.625,0.63} and we fit both a power law spectrum and a power law
spectrum with an exponential decay. We observe that the analyticity strip width
turns from positive, at 7 = 0.625 to negative, at 7 = 0.63 which means that it hits
zero in finite slow time. Also, at 7 = 0.625 it has the smallest value, and we believe
that this is the most relevant time. However we don’t have exact data for which
p = 0. Two things that we would like to notice here is that although the value of
the exponent is very small, it plays a significant role in estimating the exact value
of the power v and that the exact range of data that we use for the fitting affect
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T = 0.62 T = 0.625 T =0.63
Parameter Error Parameter Error Parameter Error
A, ~an Ye "
Log(a) -2.17944  0.02399 -2.18595 0.0301 -2.20568 0.03769
¥ 1.51033 0.0077 1.51579 0.00966 1.517 0.012
P 0.000754  0.00012 0.000205 0.000151 -0.000272  0.000189
A, ~an™ 7
Log(a) -2.03288  0.00649 -2.14604 0.00672 -2.25847 0.00843
¥ 1.55796  0.00154 1.52876 0.0016 1.49985 0.002

Table 5.1: The fitting values and the corresponding errors for three different times very close to
the collapse time 7, ~ 0.625, in the case of a power law with an exponential (up)
and a power law alone (down).

the result as well®. The fits, in both cases suggest a power law very close to 3/2,
however as we mentioned earlier, values close to this one are also possible.

In Fig. (5.10) we present again the phase-spectrum as a function of the mode
number n for different slow times. As we did earlier, we unwrap the phases, and
we fit the data in the range” 60 < n < 140 to a linear function and we quantify the
deviation from linearity by subtracting the fitting value from the actual data. We
see once more that the linear fit is a very good approximation, however interesting
patterns appear, especially for late times, that might suggest towards a slight
improvement to the perfectly coherent spectrum. We hope we will come back to
this issue in a future work.

5.5 Conclusion

In this work we presented strong evidence that the turbulent cascade of energy
towards modes of higher frequency in the problem of the instability of global AdS,
happens in a phase—coherent way, as it was initially conjectured in [54]. Our results
however leave room for possible small improvements on this idea and we believe
it is something worth looking at in the future. On top of that, the perturbations
that we studied here are also initially phase coherent and one might think that this
could play a role in the later-time coherence of the phases. A natural generalization
would be to study the development of phase coherence in perturbations that are

8We chose the above-mentioned range, n € [30, 110], since it represents the most linear part
of the plot and neglects the cut-off effect.
9 As usual, we do so in order to address the large n limit and to avoid cut-off effects.
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Figure 5.10: Left: The phases of the modes as a function of the mode number n when unwraped
for different slow times 7. Right: The difference between the fitted and actual
values as a function of n.

not initially phase coherent!©.

We have also studied the evolution of the amplitude spectra for the controversial
two mode data and our work, combining numerical and analytical results, suggests
that the collapse will happen in infinite slow time 7, — oco. For the Gaussian initial
data with o < 0.3 we observed that the spectrum of the amplitudes approaches a
power-law at finite slow time 7, ~ 0.625, and the results suggest the power at the
time of the collapse being very close to y(74) ~ 3/2. It would be very interesting to
determine the power-law in the case of the two mode data and see if it agrees with
the above-mentioned value, as well as to obtain a definite answer for the precise
value in the case of the Gaussian data, perhaps through analytic techniques.

10We will come back to this issue in future work, but some preliminary results that we have
suggest that even in data for which the phases are initially randomly distributed, the higher
modes are excited coherently
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Outlook

The end of a melody is not its goal: but
nonetheless, had the melody not reached its end
it would not have reached its goal either.

— F. Nietzsche

In this final chapter, the main results of this work are summarized and considera-
tions for possible future directions are presented.

A position space analysis

In chapter 2 we studied the problem of the stability of AdS under small perturba-
tions directly in position space. Previous work on the subject had focused on the
Fourier analysis of the problem, namely the exchange of energy between the differ-
ent normal modes in which the scalar field can be decomposed. Here instead, we
took a different route by studying directly an infalling spherical shell of a massless
scalar field. We resorted to perturbation theory, where we used the so called near
Minkowski expansion according to which all of the interesting dynamics takes place
near the center of the spacetime, which is approximately of Minkowski type. The
role of AdS is simply to confine the shell due to a reflecting boundary at spatial
infinity. Two important results of our perturbative analysis, which we truncate at
the first nonlinear order, are that the resulting approximate equations possess a
scaling symmetry similar to the one obtained from Fourier analysis and that the
first order correction to the scalar field profile has a reflection anti-symmetry. The
latter means that if the initial profile is asymmetric and the first order correction
leads towards a focusing (defocusing) of the energy, then if we would start with a
profile that is a reversed version of the initial profile, then its first order correction
would have the opposite effect. Namely it would defocus (respectively focus) the
energy. We conclude this chapter by clarifying the interpretation of the black hole
formation in the bulk in terms of thermalization of the boundary field theory. We
argue that black hole formation in AdS doesn’t always correspond to an efficient
thermalization of the field theory. Whether this is the case or not depends on the
way in which one takes the limits of classical and weak gravity.
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Extended validity of perturbation theory

Since all analytical results we have obtained so far rely on first order perturbation
theory, it is natural to worry up to what time scales are our approximate schemes
reliable. Organising our perturbation theory in terms of the amplitude of the per-
turbation e, common lore suggests that naive first order perturbation theory will
be valid for time scales of the order ¢t < €2, whereas from numerical results of
the full nonlinear system we know that black hole is expected to form at ¢ ~ ¢~ 2.
It seems therefore that naive perturbation theory is not capable of capture the
actual dynamics at the relevant time scales and one might need to consider more
elaborate perturbative expansions, like TTF. In chapter 3 we prove however that
this is not always the case. In particular, when a first order perturbation the-
ory is applied recursively, like the one of [4], it can faithfully describe solutions
of the full nonlinear theory, up to the first nonlinear time scale, as long as those
solutions have amplitudes that remain sufficiently small during the evolution. In
the context of scalar field collapse in AdS, this means that recursive perturbation

theory faithfully describes the non-collapsing solutions up to t ~ 2.

One can
then employ the scaling symmetry of the approximate equations to establish the
existence of these solutions at the vanishing amplitude limit (¢ — 0), establishing

this way an open set of stable solutions.

Gauge dependence of the problem

If one wants to establish, in a similar manner, an open set of collapsing solutions,
at the vanishing amplitude limit, he would have to find an open set of singular
solutions of the approximate/perturbative equations of motion. However, in that
case one should be very careful about how to interpret the observed blow up. It
could represent either a genuine singular solution to the full theory or it could
merely signal the breakdown of the perturbative expansion by invalidating one
of the approximations used during the derivation. A first attempt towards this
direction appeared in the work of [48] in which they studied numerically the TTF
system and reported a solution with an oscillating singularity. Although it was
conjectured that this represents a genuine singular solution of the full theory, a
physical understanding was missing. Later on, it was argued [52] and then nu-
merically shown [53] that this oscillating singularity is a gauge artefact, raising
doubts about the initial conjecture. In chapter 4 we show however that actually
the combination of those results clarifies the situation and the observed singular-
ity actually represents a large backreaction to the full nonlinear theory since it
corresponds to a diverging redshift between the boundary and the center of the
spacetime.
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Fast and slow coherent cascades

In momentum space the formation of the black hole is realised as a cascade of en-
ergy towards modes of higher frequency. This behaviour bears resemblance to the
Kolmogorov’s theory of turbulence with one crucial difference however. In Kol-
mogorov’s theory with a random phase ansatz, there is no transfer of energy at the
t ~ €72 time scale and any interesting dynamics appears at the next order ¢t ~ e %.
An alternative was therefore proposed in [54] where a coherent phase ansatz was
assumed and the corresponding power laws of the cascade were derived. In chapter
5 we studied numerically this phase ansatz by looking both at the resulting power
laws or at the phase spectrum directly. Our results are in good agreement with the
predictions of [54] but they leave open room for small corrections. In this chapter
we also studied the disputed two mode data in AdS, and we conjectured, based
on both numerical and analytical results, that they collapse in infinite slow time
T =€t

Future directions

Until now, almost all of the studies have been concentrated to the spherically
symmetric case and to first order in perturbation theory. The natural subsequent
steps would be to move beyond spherical symmetry as well as to higher orders
in perturbation theory. One might hope for example to unequivocally answer for
or against the stability of AdS at the next time scale t ~ ¢~*. A perhaps more
ambitious expectation would be to have a resolution of the problem in terms of a
theorem, either along the lines of the coherent cascade conjecture of [54] or some
form of ergodic theorem for AdS.

Other possible directions would be to understand the nature of the problem outside
the context of AdS. Namely whether the resulting phenomenological picture is
unique to AdS or can be found in other systems as well? It is also very interesting
to understand the case from the AdS/CFT perspective. As it was noted earlier
in this work, the formation of the black hole in the bulk theory can be interpreted
as the evolution towards thermal equilibrium for the boundary field theory. The
fact that some excitations would thermalize, whereas some others would not, seems
very puzzling. From this point of view the apparent relation of oscillating solutions
to quantum revivals of the initial state in the boundary field theory [59] is also
very interesting
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Summary

NONLINEAR DYNAMICS AND THE
(IN)STABILITY OF AdS

Context

Historically, stability considerations and perturbation theory date back to the era
of celestial mechanics and the question of stability of the solar system over long
time scales. Between 1609 and 1618 Johannes Kepler determined the trajectories
of the planets as they revolve around the Sun. Following the work of Copernicus,
Kepler placed the Sun at the centre of the universe and based on observations
of the famous astronomer of the time Tycho Brache, he succeeded to show that
planets move in ellipses around the Sun and at the end of the revolution the planets
find themselves back to where they started.

However, this picture of a perfectly stable solar system would be soon challenged.
After Isaac Newton developed his theory about gravity, he derived the Keplerian
orbits by restricting to the interaction of a planet with the Sun alone. Although
this is the leading contribution to the gravitational force exerted to each planet, it
is not the only one. Planets attract each other as well. When these perturbations
are taken into account they might lead to small effects which accumulate in the
course of time destroying in that way the Keplerian orbits.

The study of the stability of the solar system has led to remarkable discoveries in
Physics and Mathematics with the most prominent one being perhaps the cele-
brated Kolmogorov-Arnold-Moser (KAM) theory in which it was rigorously shown
that both stable and unstable orbits exist depending on whether the ratio of the
unperturbed frequencies is a rational number.

Newton’s theory was superseded when Albert Einstein published in 1915 his theory
of gravitation, known as General Relativity (GR). According to Einstein, gravity is
not a force but rather the manifestation of the geometry of spacetime in which the
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masses move. Massive objects curve the spacetime and spacetime back-reacts to
the masses by dictating them which paths they should follow. Einstein’s equations
possess three vacuum solutions, namely three different empty spacetimes depend-
ing on whether the cosmological constant of the theory is positive (de Sitter), zero
(Minkowski) or negative (Anti-de Sitter). The most important question regarding
a vacuum state is whether it is stable under small perturbations.

Motivation of research

The stability of the vacuum solutions of GR, comes second (perhaps even first) only
to the stability of the solar system and has led to one of the greatest developments
in mathematical relativity [6]. Of the three vacuum spacetimes the two where
proven to be stable long ago [6,7]. The stability of the third one (AdS) was not
even raised, let alone answered, until very recently [8].

Anti-de Sitter (AdS) spacetime plays a prominent role in modern Theoretical
Physics mainly due to its role in the only concrete example of a gauge/gravity du-
ality, the AdS/CFT correspondence [5]. In this picture, a Quantum Field Theory
(QFT) living on the boundary of AdS is equivalent to a String Theory in the AdS
background. Despite the great importance of (asymptotically) AdS spacetime(s),
the study of its (nonlinear) stability was initiated only very recently, albeit it was
earlier conjectured that AdS would be nonlinearly unstable [9)].

Results

Chapter 2 :

In this chapter we presented an alternative and complementary method of study-
ing the problem of the stability of AdS, directly in position space. We derived
an approximate/perturbative equation of motion which has a similar scaling sym-
metry, as the one observed in Fourier space methods (TTF equations). We also
showed that the gravitational interaction near the center of the spacetime obeys an
exact antisymmetry under time reversal and therefore it is equally likely that the
energy be focused or defocused. Finally, we touched on the thermalization process
of the boundary field theory and we argued that even if black holes form in the
first nonlinear time scale (¢~2), it doesn’t always represent efficient thermalization
of the boundary theory.

Chapter 3 :

Approximating nonlinear dynamics with a truncated perturbative expansion may
be accurate for a while, but it in general breaks down at a long time scale that
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is one over the small expansion parameter (in our case, t ~ ¢~2). In this chapter
we presented cases where such a break down doesn’t happen and the perturbation
theory is valid up to this time scale, as long as it is applied recursively. There are
cases where one can try and guess the form of the (regular) solution and then set
up a smarter perturbation theory that reproduces this solution. Such is the case
of the Two Time Framework (TTF) for example. As we argue in this chapter, if
one uses for example a perturbation theory similar to the one of [4], the regular

2 and not only for

solutions of this approximate equation are valid up to ¢t ~ €~
t < €2, as conventional wisdom would suggest. Using these results we then
establish the existence of an open set of initial conditions that do not collapse up

to this long time scale.
Chapter 4 :

An effort to establish collapsing solutions at the vanishing amplitude limit ¢ — 0
was made in [48] where solutions of the TTF that develop an oscillating singularity
were reported. However this singularity is merely a gauge artefact. One can work
in a different gauge and not observe this blow up of the derivatives of the phases.
In this chapter we showed that these solution are genuine singular solutions and
the discrepancy of the results in the two gauges was realized as a diverging redshift
between the boundary and the center of the spacetime.

Chapter 5 :

In this chapter we studied the amplitude and the phase dynamics of small pertur-
bations in AdSy using the Two Time Framework approximation. Our intention
was to test the phase coherent cascade conjecture of [54] for different initial data.
This is done in two ways; either by directly checking the phase coherent ansatz,
eq. (5.8) or by studying the resulting power-law for the spectrum of collapsing
solutions. Our results suggest that this ansatz works pretty well, however small
modifications/improvements might be necessary. We found that the energy spec-
trum of narrow Gaussian wavepackets scales as F,, ~ n~! and also the phases
are coherently aligned (B,, ~ n), although some small divergences from this linear
behaviour were seen.

We also studied the contentious two-mode equal energy data, and we conjectured
that they belong to a new class of solutions that collapse at infinite slow time T,
at the vanishing amplitude limit.

Outlook

Stability considerations have led to tremendous discoveries in Theoretical Physics
and Mathematics and the stability of AdS could not be an exception to this rule.

111



Summary

Although the question has not yet been unequivocally answered, and perhaps
there is a long way to go, the studies so far have already unveiled a very rich
phenomenology. However there are still many questions to be answered, like what
happens for example if we abolish spherical symmetry, or what is the fate of the
perturbations at longer time scales.

The problem at hand is not only interesting from the pure mathematical point
of view of GR, but can shed light to understanding the thermalization process of
the boundary theory via the AdS/CFT correspondence. There have already been
very interesting developments in this direction [4,12], as well as interesting results
in relating quantum revivals (of the boundary QFT) with bouncing geometries in
the bulk [59].
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Samenvatting

Niet-lineaire dynamica and de (in)stabiliteit van
anti-de Sitter

Context

Historisch gezien gaan stabiliteitsoverwegingen en storingsrekening terug naar de
tijd van de klassieke mechanica en toen men vragen ging stellen over de stabiliteit
van het zonnestelsel voor grote tijdschalen. Voortbordurend op het werk van
Copernicus, plaatste Johannes Kepler de zon in het midden van het zonnestelsel
om vervolgens de banen van onze planeten te bepalen. Met de observaties van
de bekende astronoom Tycho Brache, kon hij laten zien dat de banen van onze
planeten ellipsen zijn en dat de planeten weer terugkomen bij hun begin positie
na elke omlooptijd.

Dit plaatje zou echter snel op de proef gesteld worden. Nadat Newton zijn wet-
ten had geformuleerd en de ellips banen van Kepler had afgeleid door alleen de
interactie van de zon met de planeten mee te nemen, begon het ook duidelijk te
worden dat de aantrekkende kracht van de planeten onderling ook een belangrijk
effect zou kunnen zijn. Hoewel de zon de grootste zwaartekracht levert, kunnen
deze onderlinge interacties voor kleine veranderingen zorgen die groeien in de tijd
en zo grote verandering kunnen worden die de Kepler-banen kunnen vernietigen.

De studie naar dit soort vraagstukken over stabiliteit onder kleine verstoringen
heeft tot buitengewone ontdekkingen geleidt in zowel natuur- en wiskunde. Het
belangrijkste resultaat is waarschijnlijk het bekende Kolmogorov-Arnold-Moser
(KAM) theorema waarin werd aangetoond dat stabiele of instabiele planeet banen
kunnen bestaan afhankelijk van of de verhouding tussen de onverstoorde frequen-
ties een rationaal getal is.

De vraagstukken over stabiliteit kregen een nieuwe twist toen Albert Einstein in
1915 zijn theorie van gravitatie, de Algemene Relativiteitstheorie publiceerde. Vol-
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gens de theorie van Einstein, is gravitatie geen kracht, maar een manifestatie van
de meetkunde van de ruimtetijd waarin massas bewegen. Massieve objecten krom-
men ruimtetijd en de ruimtetijd reageert hierop door de massas voor te schrijven
in welke paden zij moeten bewegen. De vergelijkingen van Einstein laten drie
vacuum oplossingen toe, namelijk drie verschillende lege ruimtetijden die gekarak-
teriseerde worden door de kosmologische constante. Bij een positieve (negatieve)
constante spreken we over de Sitter (anti-de Sitter) ruimtetijd en een ruimtetijd
met een kosmologische constante gelijk aan nul noemen we Minkowski. Bij het
bestuderen van deze vacuum oplossingen, is een van de belangrijkste vragen of ze
stabiel zijn onder kleine verstoringen.

Motivatie van het onderzoek

Stabiliteit van vacuum oplossingen van Einsteins theorie van gravitatie is, na de
stabiliteit van ons zonnestelsel, een van de belangrijkste vraagstukken en heeft
voor een van de grootste ontwikkelingen in de wiskunde achter de algemene rela-
tiviteitstheorie gezorgd [6]. Stabiliteit van twee van de drie vacuum oplossingen
was een lange tijd geleden al bewezen [6,7]. De stabiliteit van de derde oplossing,
anti-de Sitter (AdS) werd niet eens beschouwd, laat staan werd zijn stabiliteit
bewezen, tot vrij recentelijk [8].

Anti-de Sitter ruimtetijd speelt een belangrijke rol in de moderne theoretische
natuurkunde. Dit komt doordat het terugkomt in een concreet voorbeeld van de
ijk/gravitatie dualiteit, de AdS/CFT correspondentie. In deze dualiteit is een
quantum velden theorie die leeft op de rand van AdS volkomen gelijk aan een
snaartheorie in de AdS ruimtetijd. Ondanks deze reden is er pas recentelijk in
detail gekeken naar (niet-lineaire) stabiliteit van AdS, ook al vermoedde men eerder
al dat AdS niet-lineair instabiel zou zijn [9].

Resultaten

Hoofdstuk 2:

In dit hoofdstuk presenteren we een alternatieve en complementaire methode om
het probleem van de stabiliteit van AdS direct in reele ruimte te bestuderen. We
leiden een benaderende/perturbatieve bewegingsvergelijkingen af welke een zelfde
schalingssymmetrie heeft als die gezien wordt door de Fourier ruimte methoden
(TTF vergelijkingen) te gebruiken. We laten ook zien dat de gravitationele in-
teractie nabij het centrum van de ruimtetijd een exacte antisymmetie onder tijds-
omkering heeft en daarom zal focusering of defocusering van energie met gelijke
kansen optreden. Tenslotte, beschouwen we in het kort de thermalisatie van de
randtheorie en beargumenteren we dat zelfs als zwarte gaten gevormd worden in
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de eerste niet-lineaire tijdschalden (¢~2), er niet altijd effectieve thermalisatie in
de randtheorie is.

Hoofdstuk 3:

Het benaderen van niet-lineaire dynamica met een beperkte perturbatieve expan-
sie is accuraat voor een tijdje, maar verliest in het algemeen precisie bij lange
tijdschalen die inverse proportioneel is aan de expansie parameter (in ons geval,
t ~ e~2). In dit hoofdstuk laten we een aantal gevallen zien waarbij zon verlies van
precisie niet optreedt en de perturbatieve expansie ook geldt bij deze tijdschalen,
zolang het recursief wordt toegepast. Er zijn gevallen waarbij men kan proberen
een vorm van de (oppassende) oplossing te gebruiken om een slimmere storings-
theorie op te zetten die deze oplossing kan reproduceren. Dit is bijvoorbeeld het
geval bij het Two Time Framework (TTF). We laten inderdaad zien in dit hoofd-
stuk dat als men een storingsrekening opzet lijkend op die van [4], dan zijn de
oppassend oplossingen van deze benadering geldig voor tijden tot t ~ €2 and niet
alleen voor t < €2 zoals men zou verwachten. Door deze resultaten te gebruiken
kunnen we het bestaan van een open verzameling van begincondities bevestigen
die niet ineenstorten tot deze lange tijdschaal.

Hoofdstuk 4:

Bij pogingen om ineenstortende oplossingen bij de verdwijnende amplitude limiet
€ — 0 te construeren [48] werden oplossingen van de TTF gevonden die een os-
cillerende singulariteit hadden. Echter is deze singulariteit een ijk-artefact; in een
andere ijk keuze wordt deze singulariteit van afgeleiden van de fasen niet geob-
serveerd. In dit hoofdstuk laten we zien dat deze oplossingen echte singuliere
oplossingen zijn en dat de tegenstrijdigheid van de resultaten in de twee ijk keu-
zes gerealiseerd werd als een divergerende roodverschuiving tussen de rand en het
centrum van de ruimtetijd.

Hoofdstuk 5:

In dit hoofdstuk onderzoeken we de amplitude en fase van de dynamica van de
kleine verstoringen in AdS4 door gebruik te maken van de Two Time Framework
benadering. Onze intentie was het testen van een vermoeden, het phase cohe-
rent cascade vermoeden, van [54] voor verschillende begincondities. Dit hebben
we op twee manieren gedaan; ofwel door direct de fase coherente ansatz te ve-
rifieren, verg. (5.8) dan wel door het machtsverband van het spectrum van de
ineenstortende oplossingen te bestuderen. De resultaten suggereren dat deze an-
satz best wel goed werkt, maar dat kleine aanpassingen eventueel nodig zijn. Wij
vinden dat het energie spectrum van smalle Gaussiaanse golfpakketjes schaalt als
E, ~ n~! en ook dat de fasen coherent uitgelijnd zijn (B, ~ n), hoewel enkele
kleine divergenties van het lineaire gedrag ook gezien werden.
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We hebben ook de omstreden two-mode equal energy data onderzocht en wij ver-
moeden dat zij tot een nieuwe klasse van oplossingen behoren die ineenstorten bij
een oneindige slow time 7 , in de verdwijnende amplitude limiet.

Vooruitblik

Stabiliteitsvraagstukken hebben tot waanzinnige ontdekkingen in de theoretische
natuurkunde en wiskunde geleidt en de stabiliteit van AdS is hierop geen uitzon-
dering. Hoewel de vraag nog niet ondubbelzinnig beantwoord is, en misschien is
er nog een lange weg te gaan, maar het onderzoek tot dusver heeft al een zeer
rijke fenomenologie laten zien. Toch zijn er nog steeds veel vragen die beantwoord
moeten worden, zoals wat er gebeurt als er bijvoorbeeld geen sferische symmetrie
wordt aangenomen, of wat het lot is van kleine verstoringen op grote tijdschalen.

De stabiliteit van AdS is niet alleen interessant vanuit de puur wiskundige aspecten
van de algemene relativiteitstheorie, maar kan ook helpen bij het begrijpen van
thermalisatie van de randtheorie via de AdS/CFT correspondentie. Er zijn al
enkele zeer interessante ontwikkelingen gaande in deze richting [4,12], alsmede
een interessante connectie tussen quantum opwekkingen (van de randtheorie) en
stuiterende meetkundes in de binnenkant van AdS [59] .
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