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Abstract We consider a Lorentz violating scalar field cos-
mological model given by the modified Einstein-æther the-
ory defined in Weyl integrable geometry. The existence of
exact and analytic solutions is investigated for the case of a
spatially flat Friedmann–Lemaître–Robertson–Walker back-
ground space. We show that the theory admits cosmological
solutions of special interests. In addition, we prove that the
cosmological field equations admit the Lewis invariant as a
second conservation law, which indicates the integrability of
the field equations.

1 Introduction

A plethora of modified or alternative theories to Einstein’s
gravity [1,2] have been proposed during the last years in
order to explain the cosmological observations. There is a
family of theories which violate the Lorentz symmetry. The
main representatives of the Lorentz violating gravitational
theories are the Hořava–Lifshitz theory [3] and the Einstein-
æther theory [4,5].

Hořava–Lifshitz gravity is a power-counting renormaliz-
able theory with consistent ultra-violet behaviour exhibiting
an anisotropic Lifshitz scaling between time and space at the
ultra-violet limit [3]. On the other hand, in Einstein-æther
theory, the quadratic invariants of the kinematic quantities of
a unitary time-like vector field, which is called æther field,
are introduced in the gravitational Action integral; modifying
the Einstein–Hilbert Action [4]. The Einstein-æther action is
the most general second-order theory which is defined by the
spacetime metric and the æther field involving no more than
two derivatives [6] (not including total derivatives). There are
several gravitational and cosmological applications for both
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of these theories in the literature, for instance see [7–24] and
references therein.

Scalar fields play a significant role in the explanation of
the early acceleration phase of the universe known as infla-
tion. Lorentz violating scalar field theories have been stud-
ied in Hořava–Lifshitz gravity [25–28] and in the Einstein-
æther theory [5,29–36]. In [29] it has been proposed an
Einstein-æther scalar field model in which the coupling coef-
ficients of the æther field with gravity are functions of the
scalar fields. From the latter an interaction between the scalar
field and the æther field it follows. For that model it was
found that the inflationary era is divided into two parts, a
Lorentz-violating stage and the standard slow-roll stage. In
the Lorentz-violating stage the universe expands as an exact
de Sitter spacetime, although the inflaton field is rolling down
the potential.

In this work we are interest on the existence of exact and
analytic solutions for a Lorentz-violating scalar field cosmo-
logical model. We consider the Einstein-æther theory defined
in Weyl integrable geometry [37]. In this specific theory the
Action Integral of the Einstein-æther is modified such that a
scalar field coupled to the æther field is introduced in a geo-
metric way. The global dynamics of the background space
were studied in [37] for various cosmological models in the
absence or in the presence of matter. It was found that the
model provides several cosmological eras in agreement with
the cosmological history. In addition, a Weyl manifold is a
conformal manifold equipped with a connection which pre-
serves the conformal structure and is torsion-free. In Weyl
integrable theory the geometry is supported by the metric
tensor and a connection structure which differs from the con-
formally equivalent metric by a scalar field [38,39]. Cosmo-
logical and gravitational applications of the Weyl geometry
can be found for instance in [48–57]. The novelty of the Weyl
geometry is that the scalar field in the gravitational Action
integral is introduced by the geometry.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09031-w&domain=pdf
http://orcid.org/0000-0002-1152-6548
mailto:anpaliat@phys.uoa.gr
mailto:genly.leon@ucn.cl


  255 Page 2 of 10 Eur. Phys. J. C           (2021) 81:255 

The context of integrability is essential in all areas of
physics. A set of differential equations describing a physical
system is said to be integrable if there exist a sufficient num-
ber of invariant functions such that the dynamical system can
be written in algebraic form. When the latter algebraic system
is explicitly solved the solution of the dynamical system can
be expressed in closed-form [59,60]. The study of integrabil-
ity properties of nonlinear dynamical systems is important,
because analytical techniques can be applied for the better
understanding of the physical phenomena. Although, nowa-
days we have powerful computers and numerical techniques
to solve nonlinear differential equations, as Arscott discussed
on the preface of his book [61] “[...] fall back on numerical
techniques savours somewhat of breaking a door with a ham-
mer when one could, with a little trouble, find the key”.

The plan of the paper is as follows. In Sect. 2 we present
the cosmological model under consideration which is that of
Einstein-æther defined in Weyl integrable geometry assum-
ing a spatially flat Friedmann–Lemaître–Robertson–Walker
(FLRW) background space without any matter source terms.
In Sect. 3 we present for the first time analytic and exact solu-
tions for this cosmological model, we focus on the existence
of exact solutions where the scale factor describes inflation-
ary models of special interests. We obtain those solutions
which are determined as the general analytic solutions for
the corresponding scalar field potentials. In Sect. 4 we show
that this is possible because the cosmological field equations
form an integrable dynamical system, where the conserva-
tion laws are the constraint cosmological equation, i.e. the
modified first Friedmann’s equation and the Lewis invariant.
The later invariant is essential for the study of integrability
of time-dependent classical or quantum systems. We show
that the field equations form an integrable dynamical sys-
tem for an arbitrary potential function. Finally, in Sect. 5 we
summarize our results and we draw our conclusions.

2 Einstein-æther-Weyl theory

The Einstein-æther-Weyl gravitational model is an extension
of the Lorentz violating Einstein-æther theory in Weyl inte-
grable geometry. It is a scalar field Lorentz violating theory
where there is a coupling between the scalar field and the
æther field. The corresponding gravitational Action integral
has the form of Einstein-æther gravity, thus it is general-
ized in Weyl integrable geometry. The latter generalization
provides a geometric mechanism for the introduction of the
scalar field into the gravitational theory.

Weyl geometry is a generalization of Riemannian geom-
etry where the metric tensor and the covariant derivative
{
gμν,∇μ

}
, are generalized to

{
g̃μν, ∇̃μ

}
, where ∇̃μ is not

defined by the Levi-Civita connection of gμν , but by the affine
connection �̃κ

μν (g̃) with the property [62]

∇̃κgμν = ωκgμν, (1)

and g̃μν is the metric compatible with ∇̃μ. We study Weyl
integrable geometry, where the gauge vector field ωμ which
defines the geometry is a gradient vector field, i.e., it sat-
isfies ωμ = φ,μ for a scalar field φ. Then, it is defined
the new metric tensor g̃μν = e−φgμν as the conformally
related metric compatible with the covariant derivative ∇̃μ,
i.e., ∇̃κ g̃μν = 0. Connections �̃κ

μν can be constructed from
the Christoffel symbols �κ

μν (g) of the metric tensor gμν as
follows [58]:

�̃κ
μν = �κ

μν − φ,(μδκ
ν) + 1

2
φ,κgμν. (2)

The gravitational integral of the Einstein-æther-Weyl the-
ory is [37]:

SAEW
(
gμν, �̃

κ
μν; uμ

)
= SW

(
gμν, �̃

κ
μν

)

+SAE
(
gμν, �̃

κ
μν; uμ

)
, (3)

where SW
(
gμν, �̃

κ
μν

)
is the extension of the Einstein–

Hilbert action in Weyl geometry [58]:

SW
(
gμν, �̃

κ
μν

)
=

∫
dx4√−g

(
R̃ + ξ

(
∇̃ν

(
∇̃μφ

))
gμν

)
, (4)

with R̃ denoting the Weylian scalar curvature

R̃ = R − 3√−g

(
gμν√−gφ

)
,μν

+ 3

2

(
∇̃μφ

) (
∇̃νφ

)
, (5)

and ξ is an arbitrary coupling constant. SAE
(
g̃μν, �̃

κ
μν; uμ

)

is the Action Integral for the æther field uμ defined in Weyl
geometry, that is:

SAE
(
gμν, �̃

κ
μν; uμ

)
=

∫
d4x

√−g̃
(
K̃ αβμν∇̃αuμ∇̃βuν

+λ
(
g̃μνu

μuν + 1
))

, (6)

where g̃μν = e−φgμν is the conformally related metric asso-
ciated with the covariant derivative ∇̃μ.

Parameters c1, c2, c3 and c4 are dimensionless constants
and define the coupling between the æther field and the con-
formal metric through a kinetic term. Lagrange multiplier
λ ensures the unitarity of the æther field, i.e. g̃μνuμuν = −1,

while the fourth-rank tensor K̃ αβμν is defined as

K̃ αβμν ≡ c1g̃
αβ g̃μν + c2 g̃

αμg̃βν

+c3g̃
αν g̃βμ + c4g̃

μνuαuβ. (7)

Equivalently, the Action Integral (6) can expressed in

terms of the kinematic quantities
{
θ̃ , σ̃μν, ω̃μν, α̃

μ
}

as fol-

lows

SAE
(
gμν, �̃

κ
μν; uμ

)

=
∫ √−g̃dx4

(cθ

3
θ̃2 + cσ σ̃ 2 + cωω̃2 + cαα̃2

)
, (8)
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where the new parameters cθ , cσ , cω, ca are functions of
c1, c2, c3 and c4, that is, cθ = (c1 + 3c2 + c3) , cσ =
c1+c3 , cω = c1−c3 , ca = c4−c1. The kinematic quantities
giving the expansion rate θ̃ , the shear σ̃ 2 = σ̃μν σ̃

μν , the
vorticity ω̃2 = ω̃μνω̃

μν and the acceleration, α̃μ of the æther
field are defined as

θ̃ = ∇̃νuμh
μν , σ̃μν = ∇̃(λuκ)

(
hκ

μh
λ
ν − 1

3
θ̃hμν

)
,

ω̃μν = ∇̃[λuκ]hκ
μh

λ
ν and α̃μ = uν∇̃νuμ, (9)

in which hμν = gμν − (uκuκ) uμuν is the projective tensor
for the field uμ.

From (3) we find the gravitational field equations to be

G̃μν + ∇̃ν

(
∇̃μφ

)
− (2ξ − 1)

(
∇̃μφ

) (
∇̃νφ

)

+ ξgμνg
κλ

(
∇̃κφ

) (
∇̃λφ

)
− gμνU (φ) = T ae

μν , (10)

where T ae
ab is the energy momentum tensor which corre-

sponds to the aether field and G̃μν is the Einstein tensor in
Weyl theory, that is, G̃μν = R̃μν − 1

2 R̃gμν . The right-hand
side of Eq. (10) corresponds to the energy-momentum tensor
of the æther field:

T ae
μν = 2c1(∇̃μu

α∇̃νuα − ∇̃αuμ∇̃βuν g̃
αβ)

+ 2λuμuν + K̃μβ
αμ∇̃μu

α∇̃βu
μg̃μν

− 2[∇̃α(u(μ J
α

ν)) + ∇̃α(uα J(aν)) − ∇̃α(u(μ Jν)
α)]

− 2c4

(
∇̃αuμu

α
) (

∇̃βuνu
β
)

, (11)

where Jμ
ν = −K̃μβ

να∇̃βu
α.

2.1 FLRW spacetime

In the case of a spatially flat FLRW geometry, with line ele-
ment

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
, (12)

for the comoving aether field uμ = δ
μ
t and for the line ele-

ment (12) we calculate

θ̃ = θ − φ̇, σ̃ 2 = 0, ω̃2 = 0 and α̃2 = 0, (13)

where θ is the Riemannian expansion rate defined as θ = 3 ȧ
a .

The gravitational field equations are expressed as follows.
The 00 component of the field equations is

θ2

3
− ρφ − ρæ = 0, (14)

while the rest of the nonzero components of the field equa-
tions are expressed as

θ̇ + θ2

3
+ 1

2

(
ρφ + 3pφ

) + 1

2

(
ρæ + 3pæ) = 0, (15)

where ρφ , pφ are the energy density and pressure of the scalar
field, that is,

ρφ

(
φ, φ̇

) = ζ

2
φ̇2 −U (φ), pφ

(
φ, φ̇

) = ζ

2
φ̇2 +U (φ),(16)

where parameter ζ := 2ξ − 3
2 is a coupling parameter

between the scalar field and the gravity. Furthermore, ρæ, pæ

are the density and pressure of the æther field, defined as

ρæ = −cθ

3
θ̃2, pæ = cθ

3

(
2θ̃,t + θ̃2

)
, (17)

that is,

ρæ = − cθ

3

(
θ − φ̇

)2
, pæ = cθ

3

(
2

(
θ̇ − φ̈

) + (
θ − φ̇

)2
)

.

(18)

By replacing in (14), (15) we derive the gravitational field
equations

(1 + cθ )
θ2

3
− 2

3
cθ θφ̇ −

(
ζ

2
− cθ

3

)
φ̇2 −U (φ) = 0,

(19)

(1 + cθ ) θ̇ + (1 + cθ )

3
θ2 − 2

3
cθ θφ̇

+
(
ζ + cθ

3

)
φ̇2 − cθ φ̈ −U (φ) = 0, (20)

while the equation of motion for the scalar field is

(2cθ − 3 (1 + cθ ) ζ ) φ̈ + 3ζcθ φ̇
2

−3 (1 + cθ ) ζ θφ̇ − 3 (1 + cθ )U,φ = 0. (21)

In the following we investigate the existence of analytic
solutions for the dynamical system (19)–(21). It is impor-
tant to mention that the three equations are not independent,
indeed equation (19) is a conservation law for the higher-
order Eqs. (20), (21).

It is important to mention that in the latter dynamical sys-
tem for ζ = 0 the system is degenerated and it has only one
dependent variable, hence, in the following we consider that
ζ �= 0.

3 Exact solutions

Before proceeding with the derivation of the exact solu-
tion we perform the following change of variable φ (t) =
− 2

3
cθ
ζ

ln ψ (t), and define V (ψ) = U (− 2
3
cθ
ζ

ln ψ (t)), where
now the gravitational field equations become

(1 + cθ )
θ2

3
+ 4

9

(cθ )
2

ζ

ψ̇

ψ
θ

+2 (cθ )
2 (2cθ − 3ζ )

27ζ 2

(
ψ̇

ψ

)2

− V (ψ) = 0, (22)

(1 + cθ )

(
θ̇ + 1

3
θ2

)
+ 4

9

(cθ )
2

ζ

ψ̇

ψ
θ

123
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+2 (cθ )
2 (2cθ − 3ζ )

27ζ 2

(
ψ̇

ψ

)2

+ 2

3

(cθ )
2

ζ

ψ̈

ψ
− V (ψ) = 0, (23)

4c2
θ (3(cθ + 1)ζ − 2cθ )

27(cθ + 1)ζ 2

ψ̈

ψ
+ 4c2

θ (2cθ − 3ζ )

27ζ 2

(
ψ̇

ψ

)2

+4c2
θ

9ζ

ψ̇

ψ
θ + ψV ′(ψ) = 0. (24)

We remark that in order for the field Eqs. (22)–(24) to be
equivalent with those of (19)–(21) for a real field φ (t) , we
remark that by the definition of the coordinate transformation

ψ (t) = exp
(
− 3ζ

2cθ
φ (t)

)
it follows that ψ (t) ≥ 0. Point

transformations does not affect the existence of solutions and
the dynamical behaviour.

Finally, after some algebra, the gravitational equations
(22), (23), (24) are reduced to

V (ψ) = 2c2
θ (2cθ − 3ζ )ψ̇2

27ζ 2ψ2 + 4c2
θ θψ̇

9ζψ
+ 1

3
(cθ + 1)θ2,

(25)

V ′(ψ) = 4c2
θ (3ζ − 2cθ )ψ̇

2

27ζ 2ψ3 − 4c2
θ θψ̇

9ζψ2

+ 2(3(cθ + 1)ζ − 2cθ )θ̇

9ζψ
, (26)

ψ̈ = −3(cθ + 1)ζψθ̇

2c2
θ

. (27)

We proceed by study the existence of exact solution for
the scalar field for specific forms of the scalar factor a (t)
which describes exact solutions of special interests.

3.1 Power-law solution

Consider the power-law solution θ (t) = 2c2
θ

3(1+cθ )ζ
θ0
t , which

describes a universe dominated by an ideal gas with con-
stant equation of state parameter w and scale factor a (t) =
a0t

2
3(1+w) , with w = −1 + 3ζ (1+cθ )

θ0c2
θ

, the solution describes

an inflationary universe when w < − 1
3 , while in the special

cases where θ0 = 3ζ (1+cθ )

c2
θ

, θ0 = 9ζ (1+cθ )

4c2
θ

or θ0 = 3ζ (1+cθ )

2c2
θ

,

the ideal gas is that of dust fluid, radiation or stiff fluid respec-
tively.

By replacing in (22) and (23) we calculate for the scalar
field

ψ (t) = ψ1t
p+ + ψ2t

p− , p± = 1

2

(
1 ± √

1 + 4θ0

)
,

(28)

27 (1 + cθ ) ζ 2

2c2
θ

t2ψV (ψ (t))

= 2 (cθ )
2 (

ψ1 (p+ + θ0) t
p+ + ψ2 (p− + θ0) t

p−)

+ (2cθ − 3 (1 + cθ ) ζ )
(
p1ψ1t

p+ + p2ψ2t
p−)2

. (29)

Fig. 1 Qualitative behaviour of the scalar field potential V (ψ) for
various values of the free parameters ψ1, ψ2. Solid line is for
(ψ1, ψ2) = ( 1

2 , 1
2

)
, dotted line is for (ψ1, ψ2) = ( 1

2 , 0
)
, dashed line is

for (ψ1, ψ2) = ( 1
2 ,− 1

2

)
. From the plots we observe that the potential

behaves like a power-law function. The plots are for θ0 = 1, ζ = 1 and
cθ = 6 where the power-law solution describes an accelerated universe.
The potentials are for the power-law scale factor

In Fig. 1, we present the parametric plot for the scalar field
potential V (ψ) as it is expressed by (29). In the special lim-
iting case where ψ1ψ2 = 0, lets say that ψ2 = 0, the exact

solution for the scalar field potential becomes V (ψ) = V A
0
t2

with V A
0 = 2c2

θ ζ 2
(
cθ p+(2−3ζ )−3p2+ζ+2c2

θ (p1+θ0)
)

27(1+cθ )
; thus, we end

up with the power-law potential

V (ψ) = V A
0 (ψ1)

2
p+ ψ

− 2
p+ . (30)

3.2 de Sitter spacetime

We assume now that the expansion rate θ (t) is a constant,
i.e. θ (t) = θ0. That solution describes the de Sitter universe

with scale factor a (t) = a0e
θ0
3 t . Hence from (22) and (23)

we find the closed-form solution for the scalar field

ψ (t) = ψ1 (t − t0) , (31)

where ψ1, t0 are integration constants; for the scalar field
potential it follows

V (ψ (t)) = (1 + cθ )

3
θ2

0 + 4c2
θ

9ζ

θ0

(t − t0)

+2 (cθ )
2 (2cθ − 3ζ )

27ζ 2 (t − t0)2 . (32)

123
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Finally we end up with the functional form of the potential

V (ψ (t)) = V B
0 + V B

1 ψ−1 + VC
1 ψ−2. (33)

where V B
0 = (1+cθ )

3 θ2
0 , V B

1 = 4c2
θ

9ζ
ψ1θ0 and VC

1 =
2(cθ )2(2cθ−3ζ )

27ζ 2 (ψ1)
2.

3.3 Quadratic Lagrangian inflation

Let us consider the scale factor a (t) = a0 exp
(−a1t2

)

which describes an exact solution of Einstein’s General
Relativity with quadratic corrections terms [63]. This solu-
tion can also be recovered by a modified Chaplygin gas in
General Relativity [64]. For this scale factor we calculate

θ (t) = − 2θ0
3(1+cθ )ζ

t , where we have set a1 = − θ0c2
θ

9(1+cθ )ζ
.

Therefore, from the field Eqs. (22) and (23) it follows

ψ (t) = ψ1e
√

θ0t + ψ2e
−√

θ0t , (34)

27 (1 + cθ ) ζ 2

2θ0c2
θ

(
e2

√
θ0tψ1 + ψ2

)2
V (ψ (t))

= 2c2
θ

(
e2

√
θ0t

(√
θ0t − 1

)
ψ1 + ψ2

(√
θ0t + 1

))2

+ (3 (1 + cθ ) ζ − 2cθ )
(
e2

√
θ0tψ1 − ψ2

)2
. (35)

For ψ2 = 0, the scalar field potential is written as

V (ψ) = VC
0 + VC

1 ln

(
ψ

ψ1

)
+ VC

2

(
ln

(
ψ

ψ1

))2

, (36)

where VC
0 = 2θ0(2cθ (1+cθ )−3ζ )

27(1+cθ )ζ 2 , VC
1 = − 8θ0c4

θ

27(1+cθ )ζ 2 and

VC
2 = 4θ0c4

θ

27(1+cθ )ζ 2 .

3.4 Scale factor a (t) = a0tα1eα2t

Scale factor of the form a (t) = a0tα1eα2t has been studied
before in [64]. For this solution we find θ (t) = 3

( a1
t + a2

)
,

and θ̇ (t) = 3 a1
t . For simplicity we replace a1 = θ0c2

θ

9ζ (1+cθ )
,

while for the scalar field it follows

ψ (t) = ψ1t
q+ + ψ2t

q− , q± = 1

2

(
1 + √

1 + 2θ0

)
, (37)

27t2ζ 2V (ψ (t)) = 4c3
θq

2− − 6c2
θq− (q− − 6a2t) ζ

+81a2 (1 + cθ ) t2ζ 2 +
2c2

θ

(
2c2

θq− + 9a2 (1 + cθ ) tζ
)

1 + cθ
θ0

+ c4
θ

1 + cθ
+

+
4c2

θ (q+ − q−) tq+
(
(1 + cθ ) (2cθq− − 3q−ζ + 9a2tζ ) + θ0c

2
θ

)

(1 + cθ ) ψ (t)
ψ1

+ 2c2
θ (q+ − q−) t2q1 (2cθ − 3ζ )

ψ (t)2 ψ2
1 . (38)

Fig. 2 Qualitative behaviour of the scalar field potential V (ψ) for
various values of the free parameters ψ1, ψ2. Solid line is for
(ψ1, ψ2) = ( 1

2 , 1
2

)
, dotted line is for (ψ1, ψ2) = ( 1

2 , 0
)
, dashed line is

for (ψ1, ψ2) = ( 1
2 ,− 1

2

)
. From the plots we observe that the potential

behaves like a power-law function. The plots are for θ0 = 1, ζ = 1 and
cθ = 6 anda2 = 1. The potential is for the scale factora (t) = a0tα1eα2t

For ψ2 = 0, it follows

V (φ) = V D
0 + V D

1

(
ψ

ψ1

)− 1
q+ + V D

2

(
ψ

ψ2

)− 2
q+

, (39)

where V D
0 = 3a2

2 (1 + cθ ), V D
1 = 2a2c2

θ (2q++θ0)

3ζ
and V D

2 =
2c2

θ (1+cθ )q2+(2cθ−3ζ )+4c4
θq+θ0+c4

θ θ2
0

27(1+cθ )ζ 2 . The parametric plot of the
scalar field potential V (ψ) is presented in Fig. 2 for various
values of the free parameters.

3.5 Intermediate inflation

Consider the power-law solution θ (t) = 1
3 A f t

−(1− f ), A >

0, 0 < f < 1 which describes intermediate inflation with
deceleration parameter q = −1 + (1− f )

A f t− f and scale factor

a (t) = a0eAt
f
. The solution describes an inflationary uni-

verse [40–42]. The expansion of the universe with this scale

factor is slower than the de Sitter inflation (a (t) = a0e
θ0
3 t ),

but faster than the power law inflation (a(t) = a0tq where
q > 1). It was shown that the intermediate inflation arises
as the slow-roll solution to potentials which fall off asymp-
totically as an inverse power law inflation in the standard
canonical framework and can be modelled by an exact cos-
mological solution [41,42]. The intermediate inflation has
also been studied in some warm inflationary scenarios in

123
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order to examine its predictions for inflationary observables
[43–46]. With these assumptions the field equations (22),
(23), (24) becomes:

V (ψ(t)) = 1

27
A2(cθ + 1) f 2t2 f −2 + 4Ac2

θ f t
f −1ψ̇

27ζψ(t)

+ 2c2
θ (2cθ − 3ζ )ψ̇2

27ζ 2ψ2 , (40)

V ′(ψ) = −4Ac2
θ f t

f −1ψ̇

27ζψ2

+ 2A( f − 1) f (3(cθ + 1)ζ − 2cθ )t f−2

27ζψ

+ 4c2
θ (3ζ − 2cθ )ψ̇

2

27ζ 2ψ3 , (41)

ψ̈ = − A(cθ + 1)( f − 1) f ζ t f −2ψ

2c2
θ

. (42)

Choosing 0 < f < 1, A > 0, we obtain the exact solution

ψ = 2− 1
2 f

√
t(cθ f )

−1/ f
(
−A2( f − 1) f ζ

) 1
2 f |cθ + 1| 1

2 f

×
[
ψ1�

(
f − 1

f

)

× I− 1
f

(√
2At f/2√−( f − 1) f ζ

√|cθ + 1|
cθ f

)

+ ψ2(−1)
1
f �

(
1 + 1

f

)

× I 1
f

(√
2At f/2√−( f − 1) f ζ

√|cθ + 1|
cθ f

) ]
, (43)

where ψ1, ψ2 are integration constants and I−1/ f and I1/ f

denote Bessel functions. Considering the condition 0 < f <

1 we set ψ1 = 0 to obtain real solutions. In Fig. 3 the qualita-
tive behaviour of the latter scalar field potential is presented.

3.6 Log-mediate inflation

Consider the solution θ (t) = Aλ lnλ−1(t)
3t , where λ and A

are dimensionless constant parameters such that λ > 1 and

A > 0, with deceleration parameter q = −1 + ln1−λ(t)
Aλ

−
(λ−1) ln−λ(t)

Aλ
and scale factor a(t) = exp[A(ln t)λ]. This gen-

eralized model of the expansion of the universe is called
log-mediate inflation [42,46]. Note that for the special case
in which λ = 1, A = p, the log-mediate inflation model
becomes a power-law inflation model [47].

With these assumptions the field Eqs. (22), (23), (24)
becomes:

V (ψ(t)) = A2(cθ + 1)λ2 ln2λ−2(t)

27t2

Fig. 3 Qualitative behaviour of the scalar field potential V (ψ) for
the intermediated inflation model, plot is for (ψ1, ψ2, cθ , ζ, f, A) =
(0, 2, 1,−1, 1/2, 1)

+ 4Ac2
θ λ lnλ−1(t)ψ̇

27ζ tψ

+ 2c2
θ (2cθ − 3ζ )ψ̇2

27ζ 2ψ2 , (44)

V ′(ψ(t)) = −4Ac2
θλ lnλ−1(t)ψ̇

27ζ tψ2

+ 2Aλ(3(cθ + 1)ζ − 2cθ )(λ − ln(t) − 1) lnλ−2(t)

27ζ t2ψ

+ 4c2
θ (3ζ − 2cθ )ψ̇

2

27ζ 2ψ3 , (45)

ψ̈ = A(cθ + 1)ζλψ lnλ−2(t)(−λ + ln(t) + 1)

2c2
θ t

2
. (46)

However, Eq. (46) is not integrable in closed form. We pro-
pose the asymptotic expansion

ψ(t) ∼ c0t
α ln(t) + ε (ψ2t + ψ1)

tα− 1
2 + O

(
ε2

)
, for tε < B for some B > 0, and 0 < ε 	 1.

(47)

The Eq. (46) becomes

0 = R(t, α; ε, λ, ζ )

:= c0tα−2
(
Aζλ(λ − ln(t) − 1) lnλ(t) + ln(t)(2α + (α − 1)α ln(t) − 1)

)

ln(t)

+ εtα− 5
2

(
Aζλ (ψ2t + ψ1) (λ − ln(t) − 1) lnλ−2(t)

+ 1

4
(2α − 1) ((2α − 3)ψ1 + (2α + 1)ψ2t)

)
+ O

(
ε2

)
, (48)
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For α ∈
{

1, 1
2 , 0,− 1

2 ,− 5
2 , 1

2

(
1 − √

1 + 4λ
)}

, it is verified

lim
t→∞ R(t, α; ε, λ, ζ ) = 0.

Moreover, setting α = 3
2 − k, k > 0, it follows

R(t, α; ε, λ, ζ ) := c0t−k− 1
2
(
4Aζλ(λ − ln(t) − 1) lnλ(t) + ln(t)((4(k − 2)k + 3) ln(t) − 8k + 8)

)

4 ln(t)

+ εt−k−1
(
Aζλ (ψ2t + ψ1) (λ − ln(t) − 1) lnλ(t) + (k − 1) ln2(t) (ψ2(k − 2)t + ψ1k)

)

ln2(t)
+ O

(
ε2

)
, (49)

lim
t→∞ R(t, α; ε, λ, ζ ) = 0. (50)

Hence, the gravitational field equations in Einstein-æther-
Weyl theory in a spatially flat FLRW background space
described by the set of differential Eqs. (19), (20), (21) with
scale factor a(t) = exp[A(ln t)λ] admits an asymptotic solu-
tion

ψ(t) ∼ c0t
α ln(t), (51)

V (ψ(t)) ∼ A2(cθ + 1)ζ 2λ2 ln2λ(t) + 4Ac2
θ ζλ(α ln(t) + 1) lnλ(t) + 2(2cθ − 3ζ )(αcθ ln(t) + cθ )

2

27ζ 2t2 ln2(t)
, (52)

as t → ∞, for any α < 3
2 .

That, is

V ∼ O

((
1

t

)2
) (

ln2λ(t) + lnλ(t) + 1
)

, (53)

ψ ∼ tα
(

−c0 ln

(
1

t

)
+ O

((
1

t

)2
))

. (54)

3.7 �CDM universe

As a final application we consider the scale factor which

describes the �-cosmology, i.e. a (t) = a0 sinh
2
3 (ωt). Thus,

for this exact solution the scalar field is found to be expressed
in terms of the hypergeometric function

ψ (t) = ψ1 (tanh (ωt))
1
2 −μ

× 2F1

(
1

4
− μ

2
,

3

4
− μ

2
; 1 − μ; tanh2 (ωt)

)

+ ψ2 (tanh (ωt))
1
2 +μ

× 2F1

(
1

4
+ μ

2
,

3

4
+ μ

2
; 1 + μ; tanh2 (ωt)

)
, (55)

where μ =
√
c2
θ+12ζ (1+cθ )

2cθ
, and ψ1, ψ2 are two integration

constants. For simplicity we omit the presentation of the exact
form of the scalar field potential V (ψ). Thus for specific val-
ues of the free parameters we present the parametric evolution
of V (ψ) in Fig. 4.

4 Integrability of the gravitational field equations

In Sect. 3 we solved the gravitational field equations for dif-
ferent scale factors, which are of interests as cosmological
solutions. The exact solutions of our analysis have the suf-
ficient number of initial constants of integration, they are
the constants ψ1, ψ2 and the non-essential constant of the
time translation t → t + t1 which we have omitted. Hence,
the solutions that we have found are the general analytic

solutions of the nonlinear dynamical system which provide
these specific scale factors. Note, that we have not consid-
ered any functional form for the scalar field potential but
for all the cases that we have studied, a scalar field poten-
tial can be found. Our analysis is motivated by the original
work on cosmological solutions in scalar field theory by Ellis
and Madsen [65]. There, the solutions that have been found
are exact solutions and particularly, they are special solutions
and not the complete solution of the dynamical system. Some
analytic solutions in scalar field cosmology can be found by
using techniques of analytic mechanics such is the theory
of invariant transformations [66–68]. However in this study
we have not applied any symmetry in order to find the solu-
tions, that indicates that except from the constraint equation
another conservation law should always exists for any func-
tional form of the scalar field potential.

The new scalar field ψ (t) = exp
(
− 3ζ

2cθ
φ (t)

)
that we

defined it was not an ad hoc selection. Indeed, in these coor-
dinates by replacing V (ψ) from (22) in (23) we end up with
the second-order differential equation of the form

ψ̈ + ω (t) ψ = 0, (56)
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Fig. 4 Qualitative behaviour of the scalar field potential V (ψ) for
various values of the free parameters ψ1, ψ2. Solid line is for
(ψ1, ψ2) = ( 1

2 , 1
2

)
, dotted line is for (ψ1, ψ2) = ( 1

2 , 0
)
, dashed line is

for (ψ1, ψ2) = ( 1
2 ,− 1

2

)
. From the plots we observe that the potential

behaves like a power-law function. The plots are for ω = 1, ζ = 1 and
cθ = 20. The axes has been normalized. The potential is for the �CDM
scale factor

where ω (t) =
(

3
2

(1+cθ )

c2
θ

ζ θ̇

)
.

The second-order differential equation is a linear equa-
tion also known as the time-dependent oscillator [69]. The
differential equation (56) admits the conservation law [70]

I = 1

2

(
(
yψ̇ − ẏψ

)2 +
(

ψ

y

)2
)

, (57)

where y = y (t) is any solution of the Ermakov-Pinney equa-
tion

ÿ + ω (t) y − y−3 = 0. (58)

Conservation law (57) it is known as Lewis invariant and
it was derived for the first time as an adiabatic invariant [71].
Alternatively, the conservation law (57) can be constructed
through a set of canonical transformations [72] or with the
use of Noether’s theorem [69]. The set of equations (56)–(58)
it is also known as the Ermakov system which can be found
in many applications in physical science [73–76].

Hence, for the gravitational field equations (19)–(21) the
following theorem holds.

Theorem The gravitational field equations in Einstein-
æther-Weyl theory in a spatially flat FLRWbackground space
described by the set of differential equations (19)–(20) form
an integrable dynamical system for arbitrary potential. The

two conservation laws are the constraint equation (19) and
the Lewis invariant

I
(
φ, φ̇, y

) = 1

2
e
− 3ζ

cθ
φ

((
3ζ

2cθ

yφ̇ + ẏ

)2

+ y−2

)

, (59)

where y (t) satisfies the Ermakov–Pinney equation (58).

It is important to mention at this point that in another lapse
function dt = N (τ ) dτ in the metric tensor (12) our results
are valid. In such a case, the equivalent equation (56) is of
the form

d2ψ

dτ 2 + α (τ)
dψ

dτ
+ β (τ) ψ = 0, (60)

which also admits an invariant function [72] similar to the
Lewis invariant.

Except from the Lewis invariant, the linear differential
equation (60) is maximally symmetric and admits eight Lie
point symmetries which form the SL (3, R) Lie algebra [77],
for arbitrary functions α (τ) and β (t). Hence, according to S.
Lie theorem the differential equation (60) is equivalent to the
free particle Y ′′ = 0 and there exists a point transformation
{τ, ψ (τ)} → {χ,Y (χ)} which transforms equation (60)
into that of the free particle. For more details, we refer the
reader to the review article [78]. That is an alternative way
to prove the integrability of the gravitational field equations
for the cosmological model of our consideration.

5 Conclusions

In this work we considered a spatially flat FLRW background
space in Einstein-æther theory defined in Weyl integrable
geometry. The novelty of this approach is that a scalar field
coupled to the æther field is introduced in a geometric way.
For this model we investigated the existence of exact solu-
tions of special interests, in particular we focused on exact
solutions which can describe the inflationary epoch of our
universe.

Indeed, we proved that the cosmological model of our con-
sideration can provide exact solutions such as the power-law
inflation, de Sitter expansion, quadratic Lagrangian inflation
and others. For these specific scale factors we were able to
calculate the closed-form expression of the scalar field solu-
tion and of the scalar field potential.

Moreover, we investigate also the possibility of Einstein-
æther-Weyl cosmological model to admit a cosmological
solution where the scalar field unify the dark matter and the
dark energy of the universe, and for that investigation we
proved that there exists a scalar field potential which can
describe explicitly the �CDM universe. Scalar field models
which unify the dark components of the universe have been
drawn the attention of the academic society because they
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provide a simple mechanism for the observable universe, see
[79–83] and references therein.

However, the main result of this work is that we were able
to prove the integrability of the field equations of our cos-
mological model for arbitrary potential function. In particular
we found a point transformation which reduce one of the two
equations to the linear equation of the time-dependent oscil-
lator, and to prove that the Lewis invariant is a conservation
law for the field equations for arbitrary scalar field potential.
This is an interesting result which we did not expect it, assum-
ing the nonlinearity form of the field equations and mainly
that according to our knowledge there is not any effective
Lagrangian description for the cosmological field equations
in order to apply techniques for the investigation of conserva-
tion laws similar with that applied before for the quintessence
or the scalar tensor theories.

From this work it is clear that in the background space the
Einstein-æther-Weyl cosmological model is cosmologically
viable. Thus in a future work we plan to investigate further the
physical properties of this theory as an inflationary model and
as a unified model for the dark components of the universe.
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