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Abstract

Quantum Machine Learning (QML) has attracted significant attention for its potential
to deliver exponential advantages over classical machine learning approaches,
particularly in classification and recognition tasks. Quantum Generative Adversarial
Networks (QGANSs), a form of quantum machine learning, provide promising
advantages in image processing and generation tasks when compared to classical
technologies. However, the limitations of current quantum devices have led to
suboptimal image quality and limited robustness in earlier methods. To overcome
these challenges, we developed a hybrid quantum-classical approach, introducing
CAQ, a quantum-classical Generative Adversarial Network (GAN) framework.
Leveraging the latest WGAN-gradient penalty (GP) strategy, we trained and optimized
the quantum generator, reduced the complexity of parameters, and implemented an
adaptive noise input system that dynamically adjusts noise levels, thereby improving
the model’s robustness. Additionally, we employed a remapping technique to
transform the original image’s multimodal distribution into a unimodal one, thereby
reducing the complexity of the learned distribution. Experiments on MNIST and
Fashion-MNIST datasets show that CAQ generates grayscale images effectively,
demonstrating its feasibility on near-term intermediate-scale quantum (NISQ)
computers.

Keywords: Machine learning algorithms; Quantum circuit; Quantum computing

1 Introduction

Generative Adversarial Networks (GANSs) are a type of neural network model used in com-
puter vision and machine learning. They represent one of the successful applications of
deep learning in generative modeling [1]. A classical GAN consists of two components:
the generator and the discriminator. These two components compete against each other
in a game-theoretic manner, enabling the generator to produce increasingly realistic data.
The generator attempts to produce realistic data to “deceive” the discriminator, while the
discriminator seeks to distinguish between real data and data generated by the generator,
acting as a “quality inspector,” thereby creating an adversarial competition between the
two. Due to its outstanding performance in areas such as image generation [2], data aug-
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mentation [3], and future visual prediction [4], classical GANs have garnered widespread
attention since their inception.

Consequently, this has sparked significant interest in the quantum computing commu-
nity in developing a quantum-enhanced GAN. Quantum GANSs have already made some
groundbreaking progress, indicating that efforts to develop quantum GANs are worth-
while. However, we have identified issues in early quantum GANSs, such as training in-
stability [5] and mode collapse [6], indicating significant room for improvement. This is
particularly relevant in the context of generating high-resolution images on current noisy
intermediate-scale quantum (NISQ) devices.

1.1 For the current state of research on quantum generative adversarial networks
The emergence of Variational Quantum Circuits (VQCs) provides a bridge, combining
classical machine learning methods with quantum computing. VQCs have already been
applied to various tasks, including quantum machine learning [7], optimization problems
[8], pattern recognition [9], classification, and regression. This suggests that quantum
generative models may have stronger expressive power than classical generative models.
Consequently, in 2018, the Quantum Generative Adversarial Network (QGAN) [10] was
first proposed. Dallaire-Demers et al. [11] successfully trained a QGAN based on Param-
eterized Quantum Circuits (PQC) and conducted basic data analysis experiments. Maria
Schuld et al. [12] combined the concepts of quantum variational inference and autoen-
coders, proposing the idea of Quantum Variational Autoencoders (QVAEs). Benedetti et
al. [13] used two PQC:s, leveraging quantum feature space to produce approximately pure
states. Situ et al. [14] utilized Quantum Hybrid Generative Adversarial Networks to ad-
dress the generation of discrete distributions, a problem that classical GANs cannot di-
rectly solve. Huang et al. [15] implemented Quantum Generative Adversarial Learning
in superconducting quantum circuits, with the quantum generator achieving high fidelity
(average 98.8) output. In 2020, Huang et al. [16] proposed a QGAN based on a patch strat-
egy and conducted experiments in superconducting quantum circuits. In 2022, Kiani et
al. [17] proposed a Quantum Wasserstein Generative Adversarial Network (QWGAN)
based on the Quantum Earth Mover (EM) and effectively learned quantum data. Agliardi
et al. [18] optimized the QGAN model by adjusting parameters to generate multivari-
ate distributions, further enhancing the performance of Quantum Generative Adversarial
Networks.

2 Related work

2.1 Wasserstein generative adversarial networks (WGAN)

During the training process of classical GANs, minimizing JS and KL divergences of-
ten leads to instability and issues like mode collapse [20-24]. To address these prob-
lems, researchers introduced alternative objectives to redefine GAN training strategies.
WGAN [25], for instance, utilizes the Wasserstein distance to optimize the network by
minimizing it. The objective function is:

minmax Bxp, [D()] - Eo~p, [D(G(2))] @

Here, D represents the set of all 1-Lipschitz functions. Instead of outputting a binary
classification probability, D provides a score reflecting the distance between the generated
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distribution Pg and the true distribution P,,,, making it a critic. Minimizing the Wasser-
stein distance offers advantages over JS and KL divergences, which are only defined when
the two distributions share the same support. In contrast, Wasserstein distance can mea-
sure the distance between any two distributions and remains valid even when JS and KL
divergences fail. It also helps prevent vanishing gradients, improving training stability [26].

However, WGAN has limitations. Arjovsky et al. implemented Lipschitz constraints by
clipping the weights of the critic’s parameters within a fixed range, but this approach leads
to issues like slow convergence and vanishing gradients [27]. To address these drawbacks,
Gulrajani et al. proposed WGAN-GP [28, 29], which adds a gradient penalty (GP) term to
enforce 1-Lipschitz continuity. The modified objective function is:

min X Bopyy [DO)] — Epp, [D(G(2))] + AE:[(I| ViD@) [l2 —1)*1 2)

The gradient penalty term ensures that the gradient at the interpolated point  remains
within a reasonable range. In WGAN-GP, the critic continuously applies the condition in
the equation, preventing vanishing gradients and ensuring smoother training. The use of
Wasserstein distance leads to more stable gradients, reducing mode collapse and improv-
ing both generator and critic training. WGAN-GP has been widely applied to tasks such
as image generation and synthetic data augmentation for deep learning models.

2.2 Gate-model quantum neural networks

Gate-based quantum computers are built upon a sequence of quantum logic gates, each
represented by a unitary matrix U € C*"*?", acting on quantum states in a Hilbert space.
The general evolution of a quantum state |1;,) through a gate-based circuit is expressed
as:

[Vour) = Ui(Ok) - - - Ua(G2) U1 (O1) [ Wrin)

where U;(0;) denotes a parameterized quantum gate (often a rotation gate such as
Ry, Ry, R;) with a tunable parameter 6;. These parameters serve as trainable weights in
the quantum neural network.

The Gate-Model Quantum Neural Network (Gate-QNN) adopts this principle to con-
struct a learnable model [35]. A QNN is defined as a sequence of parameterized unitaries
followed by a measurement, producing a classical label prediction y. The goal is to mini-
mize the deviation from the true label y using a loss function L:

L(8) = Egy~p [£ (5,50, 2))]

where 0 = (61,0, ...,0) are the gate parameters and ¢ is typically a cross-entropy or mean
square loss depending on the encoding and task.

The measurement step applies a positive operator-valued measure (POVM) or a pro-
jective measurement in the computational basis, giving outcome probabilities p(y|0, x).
In binary classification tasks, the prediction can be based on the expectation value of a
Hermitian observable M, such as:

(M) = (wout M| I//out)
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This value is post-processed into classical prediction labels. Furthermore, a Recurrent
Gate-QNN (RQNN) extends this model by allowing quantum or classical side information
to propagate backward, effectively encoding temporal dependencies. The RQNN can be
modeled as a sequence of parameterized unitaries U;(6;, i;_1), where h;_; denotes infor-
mation from the previous time step, giving the recurrence:

Wft) = U0y, ht—1)|‘//t—1>

This structure enables the modeling of sequential or time-dependent quantum data,
similar to classical recurrent neural networks (RNNs), but implemented within the quan-
tum framework.

The cited work proposes a constraint-based optimization framework for training both
non-recurrent and recurrent Gate-QNNs [36], taking into account the availability and di-
rection of side information, and proving that optimal learning strategies vary significantly
across these architectures. These studies provide a new theoretical foundation for train-
ing quantum neural networks, especially in addressing the challenges of quantum data
processing and temporal dependencies in quantum computing.

2.3 Parametric quantum circuit (PQC)

The variational quantum circuit (PQC) [30] is usually organized as a quantum neural net-
work, which is a circuit consisting of a series of parameterized quantum gates, where the
parameters of the quantum gates in the circuit are controlled by 6, and these parameters
can be adjusted by classical optimization algorithms in order to minimize the objective
function. The PQC generally consists of an initial state, quantum gates with the param-
eter 0, and a measurement operation. The initial state is |0)®”, and this initial quantum
state will be used as the input of the PQC. The initial quantum state can be transformed
into a new state by continuously adjusting the parameter 6 of the quantum gate through
the optimization algorithm, until the convergence condition is satisfied. Finally, the expec-
tation value of the quantum circuit, obtained through the measurement operation, can be

expressed as:
E®)= (0| U'(0)MU©)|0) 3

Where U represents the youngest positive transformation of the gate, M represents the
measurement operation of the expectation value, and 0 represents the parameter set of a
series of quantum gates. The optimization objective of a quantum circuit is often to solve a
specific task by finding the optimal set of gate parameters 6 such that the expectation value
E(0) is minimized or a specific objective condition is satisfied. The optimization process
of PQC is shown in Fig. 1.

3 Design of the CAQ algorithm model

In this section, we introduce the CAQ framework for generating high-quality images in
NISQ. CAQ consists of a generator and a critic, and the method of WGAN-GP [19] was
chosen for training because of better convergence compared to weight clipping. To ad-
dress scalability and quantum resource bottlenecks in generating high-resolution images,
CAQ utilizes a remap to transform the image dataset, simplifying the complex generation
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Figure 2 CAQ’s overall model architecture

task. Meanwhile, CAQ adds an automatic noise input system to mitigate the risk of pattern
collapse. To reduce the hardware cost and circuit depth, CAQ uses a simplified version of
the PQC circuit with greatly reduced parameters and no performance degradation. Un-
like classical GAN, the variational quantum generator does not need to map a priori noise
distributions into a high-dimensional space, but instead obtains different results through
the randomness of quantum measurements.CAQ introduces the design and implemen-
tation of a quantum-classical hybrid Generative Adversarial Network (GAN) for image

generation on real quantum computers, as illustrated in Fig. 2.

3.1 Automatic noise reloading system

In a generator composed of classical neural networks, a GAN requires the input of a noise
vector “z” to obtain different samples G(z). Similarly, in quantum circuits, noise vectors
are crucial for the training of quantum generators, which cannot be successfully trained
for stable performance by the randomness of quantum circuits alone. In fact, there are
no experiments showing that quantum generators can be trained to converge adversarial
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networks to optimal distributions without noisy inputs. In addition, ineffective utilization
of noisy inputs can cause the generator to always omit some training samples and assign
too high a probability to others, thus failing to generate a variety of images in the same
class, a problem also known as “pattern collapse”.

In order to solve the above problem, in the QPatch framework [16], a noise input with a
fixed range in the interval of [0, %] is used to a certain extent, the noise is utilized to train
the generator and increase the stability of learning the correct distribution, Lp, and Lg,
due to the fact that its noise is always distributed in the range, it can not cope with the
various conditions in the training process to make the adjustment. A noise input system is
proposed in MasaiQ [41] to automatically adjust the noise range. Within the adaptive noise
regulation framework, CAQ builds upon the foundational principles of MasaiQ, leverag-
ing dynamic noise range adjustment to enhance the stability of QGAN training. However,
CAQ further refines this approach by optimizing both the noise parameter range and the
choice of activation functions, ensuring improved adaptability and training efficiency.

In contrast to MasaiQ, which employs a fixed noise adjustment strategy, CAQ lever-
ages i—g as the core noise adjustment metric and introduces an adaptive noise control
mechanism wherein the minimum noise level is elevated to ¥ and the maximum is dy-
namically modulated, initially set at 2?” Unlike MasaiQ’s fixed noise range, CAQ enables
smooth, data-driven variation through a Sigmoid + Leaky ReLU transformation, facilitat-
ing more effective noise adaptation across different learning phases. Additionally, CAQ
replaces MasaiQ’s Tanh + ReLU activation scheme, which is susceptible to gradient van-
ishing, with Sigmoid for smoother transitions and Leaky ReLU to mitigate gradient stagna-
tion. Crucially, CAQ integrates a training-aware noise adaptation strategy that varies noise
magnitudes across different learning phases—allowing greater noise levels for early-stage
diversity exploration and progressively refining the generator’s precision in later training
iterations. We denote the auto-tuned noise system based on the maximum threshold as:

Noise,ux = 2—7T * [LeakyReLU (Sigmoid <L—C — Lﬂ))] (4)
3 Le L
Where Lg, and Lc, are the values of the generator and critic’s loss functions after one
iteration of training. As shown in the above equation, the auto-adjustment range will not
exceed the threshold of ZT” Although the lower bound is fixed not to go below %, the
upper bound will adaptively adjust the noise range according to the conditions in time
and efficiently to adapt to different training conditions.
CAQ introduces the Sigmoid function, which is a smooth, continuous function, imply-

ing that it is differentiable throughout its domain of definition, with the functional ex-
1

pression Sigmoid(x) = 17 =-

As x approaches positive infinity, the function value tends to
1; as x approaches negative infinity, the function value tends to 0. Thus, it can restrict the
output to between the range [0, 1]. Since the output of the Sigmoid function is not zero-
centered, it means that the input data are not normalized, and the output may deviate
in a certain direction to a value less than zero. Further, CAQ introduces the Leaky ReLU
function which is defined as Leaky ReLU(x) = max(ax, x), where « is a constant [32, 33]. It
provides a non-linear activation by normalizing all negative values to zero, which allows a
small, non-zero output for negative input values compared to the standard ReLU function,
preventing the activation function from being completely inactive for negative inputs. The

activation functions used by CAQ, the Sigmoid function and the ReLU function, mainly
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Figure 3 The scoring of CDF scores proves that Adaptive noise systems in CAQ play an effective role

perform their functions of normalizing and scaling the data so that the outputs are dis-
tributed within a reasonable range and the noise is reduced [37]. A reasonable range so
that the noise is more adapted to the training conditions of the generator.

In order to verify the effectiveness of the automatic noise suppression mechanism, we
designed simulation experiments to evaluate its adaptability and stability under different
training conditions. In the experiments, we set different upper and lower noise limits re-
spectively, and observe the generator’s training performance and the diversity of generated
samples under different conditions [34, 38]. As shown in the Fig. 3, we use the CDF score
well to verify its effectiveness. And the experimental results show that: When the noise
input can be adaptively adjusted, the generator can maintain high image generation qual-
ity at different training stages and avoid the occurrence of pattern collapse. Dynamically
adjusting the upper and lower limits of the noise enables the generator to generate more
diverse images and the quality of the generated samples is significantly higher than that of
the generator with fixed noise input.

3.2 Remapping of processed images
CAQ introduces a method to remap the gray values of pixels in the original image [39],
which greatly reduces the difficulty of the image generation task by transforming the multi-
peaked distribution in the original image into the easier-to-learn single-peaked distribu-
tion in the task of generating an adversarial network to learn a discrete distribution.

First, the gray values of the pixels in the original image are sorted from largest to small-
est, and the distribution positions of the original gray values are adjusted to form a new
gray image. In the new image, the first pixel corresponds to the position of the lowest gray
value in the original image, which is sequentially distributed upwards, and the last pixel
corresponds to the position of the highest gray value in the original image. This results in
a new grayscale image where the order of the pixels depends on the gray value sorted po-
sition of the pixels in the original image. The process of remapping is shown schematically
in Fig. 4.

The grayscale values of the input image are converted into a state representation suitable
for quantum computation, after which Amplitude Encoding is applied to load the data into
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20t

Original image Remapped image

Figure 4 Remapping rearranges the image process pixel by pixel

the quantum state as it can efficiently represent the normalized pixel data. We can map
the normalized pixel gray values to the quantum state. Given a N-pixel grayscale image
with each pixel grayscale value x; belonging to [0, 255], we first perform normalization:

~ Xi
e ®)
Do i
The normalized gray values are then mapped to quantum states:

N-1 %

¥) =) aili), where o= ——— (6)
— ZNfl 72
=0 j=0 %

The |y) is trained by a quantum circuit: the quantum generator produces a new distribu-
tion of pixel gray values (still in the quantum state), the pixel values are obtained and the
image is reconstructed by measuring the quantum state, the classical discriminator eval-
uates the similarity between the generated image and the real image and calculates the
loss, and the loss function is applied to continuously adjust the parameterized quantum
gates and perform the reverse mapping to recover the original data features. The remap-
ping method can be considered a simplified alternative to Principal Component Analysis
(PCA), as both techniques share the fundamental objective of reducing data complexity,
optimizing data distribution, and facilitating the training of Quantum Generative Adver-
sarial Networks (QGANS) or other generative models. However, their underlying mecha-
nisms and effects on image generation differ significantly.

MosaiQ [41] utilizes PCA-based dimensionality reduction to preprocess input im-
ages, effectively reducing data dimensionality and computational overhead. However,
this transformation may inadvertently attenuate high-frequency components, potentially
leading to a loss of fine details in the generated images. In contrast, the remapping method
eschews linear transformations and instead reorders pixel intensity values, reshaping the
statistical distribution into a more learnable form. This approach enhances the training ef-
ficiency of QGANSs while mitigating quantum circuit depth requirements, making it par-
ticularly well-suited for near-term quantum computing architectures. To quantitatively
compare these methods, we adopt the Fréchet Inception Distance (FID), where lower FID
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Figure 5 In the MNIST handwriting dataset for digits 0-8, CAQ uses a remapping method to consistently
generate lower FID scores, corresponding to higher quality images, compared to the PCA method

values indicate higher fidelity to real data. As shown in Fig. 5, the remapping method (blue)
achieves a lower FID than PCA (orange), confirming its advantage in preserving the distri-
butional characteristics of real images while improving training efficiency. These findings
highlight the potential of the remapping method as a lightweight yet effective preprocess-
ing technique, making it particularly beneficial for quantum generative models operating

within the limitations of Noisy Intermediate-Scale Quantum (NISQ) devices.

3.3 Structure of simolidied generator
In the classical generative task, the generator samples random probabilities to perform
quantum measurements of the ground state. Given that the initial input state is |0)®”, only
a rotational layer is required, primarily composed of R, and R, gates. In our simplified
quantum generator, after encoding via R, gates, we apply an additional R, gate to each
qubit, i.e., Ug = ]_[:’=1 Rx(O;). This reduces the number of parameters and resource usage
significantly compared to more complex rotational layers.

To explore the effect of two-qubit gates, we tested CZ, CNOT, and ISWAP gates. No-
tably, CNOT performed worse than the other two. The best results were achieved with
the CZ gate, yielding a fidelity of 0.946, suggesting better trainability of entanglement.

Page 9 of 19
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Figure 6 The structure of each sub-generator of CAQ. The orange blocks represent RY () gates, which
initialize the quantum state and introduce superposition. The grey blocks correspond to RX(6;) rotations
along the X-axis, modulating both amplitude and phase distributions. The green blocks denote additional
RY(6,) operations, enhancing the expressivity of the quantum state

Given the lower hardware overhead, we propose using duplicated CZ gates in the CAQ
for entanglement.

All sub-generators in CAQ follow the same structure, with parameterized quantum cir-
cuits (PQC) on five qubits. Each sub-generator’s circuit, shown in Fig. 6, noisily encodes
data into angles via R, and R, gates, with adjacent qubits entangled through CZ gates. Af-
ter several layers, parametric weights are optimized, and measurements on ancilla qubits
perform nonlinear transformations. This design reduces PQC depth, mitigating hardware
errors, minimizing parameter counts, and still generating high-quality images. Further ex-
perimental validation is provided in Sect. 5.

The generator samples an N-dimensional noise vector L = (I3, /,, ..., ) from some prior
distribution P, (e.g., Gaussian distribution [22]). Immediately after, the components of the
noise vector L are input to the R, layer rotational encoding that is parameterized in the
subgenerator. From the input |0)& to the generator, we obtain the state by encoding the

circuit:
L) = Ry (IDRy(L) ... RY (In)|0)®N @

Where R(A,0,¢) can be denoted as R;(A)R,(9)R.(¢), the aim is to change a quantum bit
into an arbitrary quantum state on the Bloch sphere using the Mississippi transformation.
This youngest-positive transformation we denote by a U(%,0, ¢), and the quantum state
of the ith subgenerator after passing through the youngest-positive operation evolves as:
10)

[¥i) = UL (Ai, 60, i) IL) 8)
In general, here we choose the measurement operator M = (|0) (0[)®4 for the projection
measurements, so that the resultant quantum state |,) after tracking the Ancilla quantum

bit is:

)

(loyop®4 ®I|¢i)<¢fl)

=T
W = T4 <<vu|<|0> OD%A ®11¥7)
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Figure 7 The working process of the generator of CAQ

This probability Pi is interpreted as the pixel value of the target image, and we form
the target image by listing all the outputs of all the sub-generators together. Its working
process is shown in Fig. 7.

3.4 Structure of discriminator

In generative adversarial learning, which is usually the case when NISQ devices and clas-
sical computers are working together, the critic we chose for classical neural networks for
CAQ meets the requirements and is more suitable for NISQ devices. The critic here is the
same as in the classical WGAN-GP; the critic receives the image output from the generator
and produces an estimate of the Wasserstein distance measuring the difference between
the generated distribution and the true distribution, contributing to a more stable train-
ing process. In addition, the gradient penalty (GP) introduces an additional loss that limits
the gradient paradigm of the criteric, specifically, for each generator output, its gradient is
computed and its paradigm is forced to approximate 1. This helps prevent gradient explo-
sion and gradient vanishing [6], and motivates smoother learning in the criteric. However,
quantum circuits still have some limitations; loading high-dimensional data into quantum
circuits consumes a lot of quantum resources, which is difficult to do in practice. Secondly,
the learning process of quantum circuits is more difficult to understand compared to clas-
sical neural networks, and there are problems such as barren plateaus [30, 31] in quantum
circuits, for which there is still no complete set of solutions. Unlike other classical discrim-
inators, the critic in CAQ has a nonlinear terminal layer with multiple activation functions
(e.g., RELU, Sigmoid function, etc.), which enables the network to learn more complex dis-
tributions. At the critic end as a classifier outputs its discriminator, i.e., real data or false
data, represented by a value. The whole working process of generator and discriminator

is shown in Fig. 8.

4 CAQ algorithm model implementation and training
4.1 Parameters and training details
The CAQ employs parameters aligned with the classical WGAN-GP learning process,

optimized using the ADAM optimizer, with both generator and critic learning rates set



Tian et al. EPJ Quantum Technology (2025) 12:80 Page 12 of 19

Real Sample Concatenate and Recoeder Quantum: Generators

/\

4—.
| ( n—m
| Generator Loss )
——
Discriminator Loss

I Random Noise
Remapped image
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Table 1 Summary of CAQ Model Parameters and Settings

Parameter/Setting Description

Learning Rate (Generator) 0.01

Learning Rate (Critic) 0.0002

Regularization Parameter (A) 10

Number of Classes (n¢) 5

Optimization Algorithm Adam, 81 =0, , =09

Datasets Used MNIST and Fashion MNIST

Image Resolution 28x%28 grayscale images

Sample Size for Training 800 samples per category

Batch Size 25

Total Training Iterations 600 (equivalent to 3000 batches)

Epochs (2-Class) 375

Epochs (3-Class) 25

Implementation Libraries PyTorch (classical ML), PennyLane (quantum ML)
Discriminator Architecture Fully connected neural network with 2 hidden layers (ReLU)
Output Layer Neurons Number of neurons equal to activated pixels
Quantum Bits Utilized 4 for MNIST (including 1 Ancilla); 5 for Fashion MNIST
Prior Distribution Uniform prior in [0, 1) for enhanced learning
Adaptive Noise Reloading Automatically adjusts noise input during training
Quantum Circuit Parameters

Parameter Initialization Random initialization within specified ranges
Optimization Algorithm ADAM optimizer for efficient convergence
Hyperparameter Settings Fine-tuned based on performance metrics

to 0.0002, chosen after extensive training sessions. Each generator utilizes measured An-
cilla quantum bits to produce multiple patches from several sub-generators, each repre-
senting a row of pixels in the generated image. We find that the Gaussian prior distribu-
tion effectively restricts the range to [-7, ), enhancing the quantum generators’ learning
capability; thus, we adopt it for our experiments, with plans to explore alternative prior
distributions in future work. An adaptive noise reloading system adjusts the noise input
range automatically based on generator and critic losses during each training iteration. A
detailed description about the initialization of quantum circuit parameters, optimization
algorithm selection and hyperparameter setting is made and a table is listed in Table 1.

4.2 Training strategies and resource consumption
To train the CAQ, we implement the WGAN-GP strategy, where the difference between
generated and true distributions is quantified by the Wasserstein distance. Unlike tradi-
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tional WGAN-GP, our generator output stems from multiple sub-generators, necessitat-
ing distinct parameter calculations for each sub-generator relative to a given loss function.
We denote the parameters of the generator and critic as # and A, respectively, and express
the combined loss function as f(6, ).

For parameter updates, we utilize the gradient descent algorithm, traditionally used in
neural networks, to derive gradients of the loss function. However, in quantum circuits,
the gradient information is complex and often treated as a black box. To compute partial
derivatives within variational quantum circuits, we apply the parameter shift rule, modi-

fying the parameters of the PQC twice. The partial derivative is approximated by:

0L L6 +68)—L(O-9)

30 " (10)

Here, § represents a small offset (bounded by 7) applied to circuit parameters, while
¢ depends on the specific quantum gate. The change in loss function values before and
after the shift allows us to estimate the gradient for the PQC within the same quantum
circuit. Denoting the total parameters of our generator as n, we express the gradient of

the calculated parameter j of the i-th sub-generator with respect to the loss function f(6)

accordingly.
afO,») 1 T
T = §<f(|:91'1"“,6l’] + El""en],k))

4 (11)
b3
- (f(l:el,lwu»ei,j - Ew- -19}1]))"»

In the CAQ model, the use of quantum resources was successfully balanced by opti-
mizing the number of quantum bits, the depth of quantum circuits and the number of
operations. In the experiments on the MNIST dataset, four quantum bits (including one
Ancilla quantum bit) were used to assist in error correction and optimization of the gener-
ated images. In the more complex Fashion-MNIST dataset, the number of quantum bits
was increased to 5 to better cope with the complexity of the dataset. While increasing
quantum bits enhances the expressive power of the model, it also increases quantum re-
source consumption and operational complexity. Therefore, the choice of quantum bits
needs to be a trade-off between computational power and resource consumption.

CAQ experiments show that 4-5 quantum bits are the best choice for generating 28x28
pixel grayscale images, which can effectively generate high-quality images. To reduce the
circuit depth and ensure the generation quality, the CAQ model uses a simplified rotating
layer and entanglement operation. In the simplified circuit, only the necessary R, and R,
operations are retained, reducing the number of parameters and circuit depth. The CZ
gate is chosen as the main entanglement operation, as it exhibits higher entanglement ca-
pability and lower hardware overhead during training, and is superior in performance and
resource consumption compared to the classical CNOT gate. Ultimately, the use of five
quantum bits and CZ operations in CAQ significantly reduces the number of operations
and resource consumption while ensuring the generation quality, improves the maneuver-
ability of the model on Noise-Intermediate Scale Quantum (NISQ) devices, and provides

a reliable solution for quantum resource management of complex tasks in the future.
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Figure 9 Accuracy of different layers of the generator

5 Simulation analysis

5.1 Comparison of simplified generators

In order to validate the advantage of simplified parameterized quantum circuits in the
ability to generate images, we compared them with classical quantum circuits without
simplification under two datasets (MNIST, FMNIST). Here the 28x28 generated image
size scheme trained and used for each of the two different quantum circuit models.

In the MNIST handwritten digit generation task we use the subgenerator consisting of
eight layers, each layer consisting of five quantum bits, one of which is an Ancilla quantum
bit. In the apparel category generation task from FMNIST, due to the increased complexity
of the dataset, the subgenerator consists of ten layers, each consisting of seven quantum
bits, one of which is an Ancilla quantum bit.

We set the rotational layer of the unsimplified quantum circuit as Ug = []~; Ry(é’;;s) X
R.(6],)R,(6},), and the rotational layer of the simplified circuit as L = [ 7, R,(6;3)R.(6},).
The parameters are reduced by 3/1 compared to the previous ones, and for the two-
bit quantum gate for the entanglement function, the classical CNOT gate is used in the
unsimplified circuit, and as a comparison, the CZ gate is used in our circuit. We com-
pared the results of the two sets of experiments in terms of two metrics, accuracy and KL
(Kullback-Leibler) scatter [24]. The results produced are shown in Fig. 9,10 as a function
of the number of iterative training sessions.

As expected, the accuracy of the simplified quantum circuit components used by CAQ
is also maximized more quickly, and the convergence maxima of the accuracy of the two
quantum circuits are not significantly different, indicating that the simplified circuits do
not underperform the complex circuits in generating images in the generator. Moreover,
due to the reduction of the rotational layer, the cost of the hardware used is greatly re-
duced.

5.2 Comparison with SOTA’'s quantum GANS

In this subsection, we compare images generated by CAQ with those from state-of-the-
art (SOTA) quantum GAN:S, specifically evaluating their visual quality and detail on the
MNIST and FMNIST datasets. The results are presented in Fig. 11.

First, we simulated HQCGAN [40] to generate grayscale images. However, for complex
image shapes, particularly in the FMNIST dataset, HQCGAN'’s output often falls short,
making it challenging to distinguish between garments and shoes. We then compared
CAQ with QGPatch [16], the first quantum adversarial network to implement a patch
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Figure 11 CAQ can generate high quality images on MNIST and FMNIST compared to real samples and
SOTA's

strategy. While QGPatch effectively generates clear handwritten digits, its performance
on FMNIST remains inadequate, with indistinct images.

Both HQCGAN and QGPatch suffer from quantum gate errors due to circuit depth,
which diminishes their generation capabilities. In contrast, CAQ’s simplified circuit de-
sign yields a notable improvement in image quality. CAQ-generated handwritten digits
closely resemble real samples, and although dresses and shoes in the FMNIST dataset are
clearly distinguishable, a gap with real images persists, highlighting the challenges quan-
tum generators face with complex samples.

We attribute the high quality of images generated by CAQ to two key designs: first, we
implemented an auto-adaptive noise reloading system to enhance the training of the gen-
erator; second, we pre-processed the target image using a remapping method. In contrast
to models like HQCGAN and QGPatch, which rely on a fixed noise range, our approach
dynamically adjusts the noise levels in response to environmental conditions. This adapt-
ability effectively addresses the issue of mode collapse commonly encountered in genera-

tive adversarial networks.
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The use of an automatically adapted noise range allows the generator to better accom-
modate environmental influences, thereby enhancing the stability of the generated images.
This method enables the model to fully learn the details of the image feature distribution
and to recognize variations across different distributions, resulting in greater diversity in
the generated outputs. The adjustable noise range facilitates training in more optimal con-
ditions, ultimately improving the quality and stability of the generated images.

However, quantum generators may still produce errors or defects in the generation of
certain complex images, especially when dealing with high complexity datasets such as
EMNIST. The generator may respond to complex contours or details with blurred or inac-
curate images due to the accumulation of noise caused by the increased depth of quantum
gates, which affects the clarity of the image. For example, the boundaries of footwear and
apparel may not be clearly distinguishable, indicating that the optimization of quantum
circuit parameters for depth and entanglement operations has not yet reached an ideal
state.

To further improve these generation defects in the future, firstly, the effect of noise accu-
mulation can be reduced by optimizing the depth and gate operation of quantum circuits.
Second, the tuning of the number of quantum bits and entanglement operations can also
help the generator to better capture image features, especially in higher dimensional im-
age space. In addition, the introduction of more post-processing techniques, e.g., through
further optimization of quantum states, can reduce the computational burden of the gen-
erator, resulting in clearer and more accurate images.

5.3 Comparison with classic WGAN

In this subsection, CAQ uses a simplified generator structure and an automatic noise
reloading system, as well as adding a pre-processing session for remapping, and as a com-
parison, the classical WGAN-GP model is chosen, and still the generative task is evaluated
on two datasets, MNIST and FMNIST, and the generated images are shown in Fig. 12. For
both classical and quantum versions the target image was successfully generated, but the
images generated in both cases still have some defects.

For MNIST, the images generated by CAQ exhibited vignetting and occasional super-
position of digits, attributed to the limited training cycles due to quantum bit constraints.
While CAQ trained for only a few hundred iterations, classical WGAN-GP underwent
tens of thousands of iterations, resulting in clearer outputs. Despite this, CAQ demon-
strated potential in learning key features with significantly fewer parameters. However, the
quantum-generated images showed increased blurriness due to non-deterministic pixel
values derived from Ancilla qubits, whereas the classical model produced sharper im-
ages overall. The Wasserstein distance curve indicated that as the number of iterations in-
creased, both models showed gradual image quality improvement, with classical WGAN-
GP achieving better clarity.

For FMNIST, the more complex dataset, both models were able to generate images,
though defects such as blurriness and vignetting were more pronounced due to the higher
complexity. Interestingly, CAQ showed superior detail representation for certain cate-
gories, such as pants and dresses, hinting at quantum advantages in capturing underlying
feature spaces. The Wasserstein distance progression was slower for the FMNIST dataset,
especially for CAQ, indicating that more iterations and training are needed for better re-
sults in complex tasks.
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Figure 12 The WGAN-GP, CAQ, and QGAN models show a gradual smoothing of Wasserstein’s distance as the
number of trainings increases. CAQ achieves a significantly higher threshold than the other models

6 Conclusions and outlook

The advancement of quantum Generative Adversarial Networks (GANSs) is remarkable.
While they currently lag behind classical GANs, quantum computing harbors substantial
computational potential. Our proposed CAQ represents a significant step in this field. We
introduce a simplified quantum generator with fewer layers and parameters, maintain-
ing performance by employing multiple sub-generators alongside a patching strategy for
collaborative image generation. To enhance generator stability, we implement a tunable
adaptive noise reloading system, improving interactions between the quantum generator
and its elements.

Recent progress in quantum networking and quantum Internet infrastructure provides
a promising foundation for distributed quantum machine learning systems, enabling low-
latency, entangled communication between quantum devices across distances [42, 43].
This technological leap may soon support scalable training and deployment of quantum
GANs in networked quantum environments. Inspired by the classical Wasserstein GAN
(WGAN), our model, comprising a generator and a critic, utilizes the WGAN-GP strategy
to optimize the quantum generator through Wasserstein distance while remapping im-
ages to learn distributions. We successfully trained on the MNIST and FMNIST datasets,
demonstrating that our CAQ outperforms existing state-of-the-art methods.

Our current critic is based on classical neural networks, but future work could explore
quantum discriminators to establish a fully quantum GAN framework. Such a framework
may be more adept at modeling complex data and capturing intrinsic features. As quantum
machine learning theory progresses, we aim to develop more suitable circuit designs and
training methodologies, enhancing image generation capabilities. Additionally, advance-
ments in quantum resources will facilitate the processing of larger datasets, enabling ex-
ploration of color images and intricate details, with the goal of generalization to real-world

applications.
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