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1
Introduction

Electrons in a piece of material are very different from their lonesome counter-
parts considered in particle physics. In being surrounded by billions of other
electrons and atomic cores, they may change their effective mass, charge, and
spin. More interestingly, along the lines of the Aristotelian cliché that the whole
is greater than the sum of its parts, the collective behaviour of electrons (and
atoms) is much richer than that of the individual particles. All electronics used
today rely on this collective behaviour, and society is always on the look-out
for new functional devices which are more efficient, smaller, and/or have new
functionalities. This is one of the motivations for the multitude of research in
spintronics [10–13], functional heterostructures [14–16], multiferroics [17–24],
and high-temperature superconductivity [25–31]. Importantly, interesting elec-
tronic phases of matter can be found even in the absence of more exotic features
like magnetism or superconductivity.

All of these functional phases are demonstrated most clearly in materials
with a nicely ordered atomic structure, called crystals. In this thesis, we ask the
fundamental question of what the effect is of the interplay between electrons
and the atomic lattice they reside in. What types of electronic order do they
induce?

In Part I, we delve into how the symmetries of a crystal determine how elec-
tronic wavefunctions can be ‘twisted’ into distinct configurations, and allow for
exotic phases with symmetry-protected electron states that are bound to the
edges or corners of the material. These states are determined by the inherent
topology of the system, something that will be explained in detail in Chap-
ter 2. At present, the field of topology in condensed matter is edging towards
completing the full topological classification of crystalline insulators, including
the topological phases stabilised by lattice symmetries. While at this point it
is known how many topological phases are possible, we still have not found a
way to distinguish between all of them. In Chapter 3, we present a unifying
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2 1. Introduction

framework with which we believe all crystalline topological invariants may be
identified. We demonstrate it for two-dimensional insulators with three-fold
rotational symmetry, and discuss the generalisation of our method to other
crystal symmetries.

In Part II, we move away from topological insulators and instead consider
how the interactions between electrons and the crystal lattice they reside in
can lead to symmetry-breaking ordered electronic phases. In these phases, va-
lence electrons spontaneously form standing waves called charge density waves
(CDWs), with wavelengths on the order of a few lattice parameters. The inter-
actions between the electrons and the lattice result in the electrons overcoming
their mutual Coulombic repulsion, something you’d never expect for the bare
electrons discussed in particle physics. Upon the transition to a CDW state,
materials change their atomic structure and their conductivity, which may be
relevant for applications. In Chapter 4 we introduce the most common mecha-
nism driving charge order, and demonstrate the limitations of the conventional
wisdom in this field, which is primarily derived from a simple, one-dimensional
toy model. We also introduce a generally applicable field-theoretical method
for describing charge order, which we use in Chapters 5 and 6 to analyse the
CDWs in the real material VSe2.

Whether crystal symmetries are tying electronic states into topological
knots, or electrons interacting with the lattice break symmetries by settling
into a joint ground state, it is the unique environment provided by the crystal
that allows for electronic order on a macroscopic scale. Conceptually, this is a
beautiful manifestation of quantum mechanics made noticable on a large scale
by symmetry. More practically, almost all ‘useful’ electronic phases of matter
that may lead to novel functional devices also rely on a crystalline environment.
Understanding the more complex phases of matter arising in the presence of
multiple types of interactions starts with understanding how to tackle the most
fundamental types of order arising from the interplay between electrons and
the lattice: topology and charge order.



I
Lattice symmetries and

topology
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2
Introduction to topology

Topology studies whether objects can be transformed continuously into each
other. In the field of geometry, one can imagine objects made out of a soft clay;
in this case, ‘continuous transformations’ include squeezing and indenting the
clay, but not sticking two parts together or poking a hole through it.1 In this
way, a ball and a bowl are topologically equivalent, because indenting the ball
transforms it into a bowl shape. This is different from a mug, because forming
the ear of the mug requires forming a hole in the clay. Because changing the
number of holes can only be done by what we define to be a non-continuous
transformation, we can distinguish between different topological phases of clay
objects by counting the number of holes they have; this number constitutes a
topological invariant. Note that an invariant is necessarily something countable,
or quantised, because this enforces that one cannot go smoothly from one
topological phase to another.

In the context of quantum physics, we can instead ask whether the Hamil-
tonians of two quantum systems are topologically equivalent. As a simple ex-
ample, consider a small, ‘zero-dimensional’ quantum object2 with N electronic
energy levels. Its Hamiltonian is then an N × N matrix that is Hermitian
(H = H†) whose real eigenvalues En correspond to the allowed electron ener-
gies:

H |n⟩ = En |n⟩ , (2.1)

with corresponding eigenstates |n⟩. Since these are electronic states, they can
only host a single electron of each spin type,3 and at zero temperature the
electronic states will be occupied until the Fermi energy EF. We can compare
1Transformations that leave the shape of an object intact – such as rotating it in space, or
even reflecting it in a mirror – also leave the topology unchanged.

2This could be an atom, molecule, or quantum dot.
3We do not explicitly include the spin label here, but assume that n counts all individual
states for both spins; an atom with M atomic orbitals will have N = 2M states.
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the Hamiltonian of one such quantum object to the Hamiltonian of another
with the same total number of states. One way to topologically distinguish the
two systems is to simply count the number of occupied states, i.e. the number
of states below EF. Changing the number of occupied states in an isolated
quantum system entails adding or removing electrons, something that we do
not consider to be a continuous transformation. In contrast, any changes in
positions of energy levels that do not cross EF do not change the topological
phase.

What distinguishes condensed matter physics from pure quantum mechan-
ics is that the systems we consider consist of many particles. This allows for
much richer (topological) structures, because the systems in question may have
internal symmetries that strongly affect the structure of the electronic states.
Importantly, the atoms in crystalline materials are arranged in a periodic lat-
tice. This means crystals are translationally symmetric in a discrete manner:
shifting the whole material by one unit cell returns the exact same atomic
structure. Energy eigenstates for an electron in a crystalline lattice can be
described by Bloch states:

|ψnk(r)⟩ = eik·r |unk(r)⟩ (2.2)

where |unk(r)⟩ is a periodic function with the same periodicity as the lattice,
n is the electronic band index, and k is the crystal momentum which arises
from taking the Fourier transform of the real-space position [32]. Notably,
|ψnk(r)⟩ = |ψnk(r + R)⟩, where R is a lattice vector. The Bloch states |ψnk(r)⟩
are eigenstates of the Bloch Hamiltonian h(k).4 Rather than a series of energy
levels labelled only by n, the electronic states in a crystal may now also vary as
a function of k. Correspondingly, the eigenvalues of h(k) define n energy bands
(En(k)) that collectively form a periodic-in-k band structure. In direct analogy
with the zero-dimensional quantum systems discussed before, we could use the
number of occupied bands as a topological invariant, as long as no band crosses
EF for any k. In this case, we say that the electronic spectrum is gapped, and
the material is an insulator. While there is much to be said about the topology
of metals (see e.g. [33]), we will only discuss insulating systems in this Part of
the thesis.

At this point, topology might seem like a rather abstract concept that is
either trivial or something that only mathematicians may need to worry about.
However, we will see in this chapter that topology in condensed matter sys-
tems can have very real and physical concequences. There are two main rea-
sons for this. First, what we have not considered thus far is the phase that
any quantum-mechanical state may have. This is an inherent gauge freedom
in quantum mechanics; adding a phase factor to any Bloch state eiθ |ψnk(r)⟩
will not change the associated eigenenergy En(k). While this is generally in-
4We use a lower-case ‘h’ for the Bloch Hamiltonian to distinguish it from the full Hamiltonian,
which includes a sum over all crystal momenta k. Throughout this thesis, we will denote
vectors in bold.
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consequential for single particles,5 the periodicity of the crystal momentum
can enforce certain restrictions on the variation of this phase, which in turn
determine the allowed topological phases. Second, there may be symmetries
present that pose additional constraints on the electronic band structure and
the associated eigenvectors. These, in turn, determine how many different topo-
logical phases there are, in the sense that topologically distinct Hamiltonians
cannot be continuously transformed into one another; in this case, continuous
transformations are those that do not close the energy gap at EF nor break
a symmetry of the Hamiltonian. A topologically non-trivial insulating crystal
is called a topological insulator. Excitingly, when two finite-sized crystals with
different topological indices are brought together, the difference in topology
may enforce a local gap closing at the interface between them. These interface
states are then topologically protected by the symmetries of the two crystals.
The same holds for a topological insulator coming in contact with the (always
topologically trivial) vacuum.

In the following sections, we will elucidate this step by step. First, in
Section 2.1 we introduce the concepts of a Berry connection and Berry curva-
ture. We will use these concepts to define the Chern number, which is perhaps
the most famous topological invariant, and is related to the Integer Quantum
Hall Effect (IQHE) and the Quantum Anomalous Hall Effect (QAHE). In Sec-
tion 2.2, we describe how time-reversal, particle-hole and chiral symmetries
prescribe the famous ‘tenfold way’ classification of topological insulators and
superconductors. In Section 2.3 we explain how to generalise the Chern number
to time-reversal invariant systems. Lastly, in Section 2.4 we discuss the addi-
tional constraints imposed by lattice symmetries, and the classification scheme
derived in refs. [35, 36].

Before moving on, we would like to give a shout out to ref. [37], which
offers an excellent pedagogical introduction to topology in condensed matter,
and which inspired much of this chapter. Aside from this, refs. [38–40] are also
excellent introductory resources on topological insulators and the concept of
the Berry connection.

2.1. The Berry connection
A central concept of topology in condensed matter systems, and one that makes
a direct link to the mathematical field of algebraic topology, is that of a ge-
ometric phase. This is a purely path-dependent type of phase factor that an
object acquires when adiabatically transported over a cycle in parameter space.
A simple classical example of this phenomenon can be seen by considering a
vector tangential to the surface of a sphere. Taking a path where the vector is
moved – without rotating with respect to the surface – from the north pole to
the equator, then moving one fourth of the way along the equator, and then
back to the north pole, the vector will have rotated by 90° in the tangent plane
5With the exception of some interference effects such as that of Aharonov-Bohm [34].
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Figure 2.1: A classical example of a geometric phase. Parallel transporting a tangent vector
(dark red to red arrows) along the surface of the sphere along a closed path (red curves) will
rotate it by a Hannay angle (90° in this example). The right image shows the top view of
the left image, with the initial and final arrows showing. The left sphere wireframe is taken
from [42].

(see Figure 2.1). You can try this yourself by holding out your arm with your
thumb pointing perpendicular to your arm; rotating your arm from the shoul-
der in a closed loop allows you to rotate the direction of your thumb without
ever moving your wrist or elbow. The angle rotated over is called the Hannay
angle [41]. In general, it captures the curvature enclosed by the path of a par-
allel transported tangential vector on any closed manifold living in R3. What
the vectors and manifold represent physically depends on the system at hand.

In fact, the classical Hannay angle was described only after the discovery
of the quantum-mechanical geometric phase known as the Berry phase.6 As
already mentioned above, quantum-mechanical eigenvectors are only defined
up to a phase. While this phase amounts to a gauge freedom, a geometric
phase may be found when a quantum state is adiabatically transported over a
closed cycle. In this sense, Bloch states are interesting because they are defined
in k-space, which happens to be a periodic, closed manifold. The ‘unit cell’ of
this space is called the Brillouin zone (BZ). We can identify the BZ with a circle
in spatial dimension d = 1; a torus in d = 2; and a hypertorus in d = 3. If you
vary a single component of k far enough, you will necessarily return to a point
that is equivalent to your starting location: you will have made a closed loop.
Below, we will demonstrate how this leads to a Berry phase, largely following
the derivation in ref. [40].

To begin with, imagine moving along a path in k-space in a single, isolated
band En(k). If we divide the path up into small enough step sizes dk, the
overlap between neighbouring Bloch states along this path is approximately
unity times a phase factor corresponding to the phase difference of the states
∆θ:

e−i∆θ = ⟨un(k1)|un(k2)⟩, (2.3)
6The quantum-mechanical geometric phase is commonly known as the Berry phase or Zak
phase, as it was described by Berry in 1984 in the context of a quantum particle travelling
adiabatically through (real) space [43], and first applied to the context of crystalline ma-
terials by Zak, a few years later [44]. However, the phenomenon of a geometric phase had
already been independently discovered many years earlier by Kato in 1950 [45], Pancharat-
nam in 1956 [46] and Longuet-Higgins et al. in 1958 [47].
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where k2 = k1 +dk. This becomes exact in the continuum limit, where dk → 0
or equivalently the number of steps along the path taken goes to infinity. The
above quantity is gauge-dependent, but if the path we consider is a closed loop,
any gauge-dependent phases will cancel out and only a gauge-independent,
geometric phase (γ) may remain:

eiγn =
L∏
l=1

e−i∆θl =
L∏
l=1

⟨un(kl )|un(kl+1)⟩, (2.4)

where k1 = kL+1 up to a reciprocal lattice vector. We include the minus sign
to stay in line with the convention used in [40].

To obtain the geometric phase itself, we must take the log of Equation 2.4.
Let us first do this for a single element of the discrete product above. We
take the continuum limit, and parameterise the wavevectors in the path by a
real-valued parameter λ, such that |un(λ)⟩ traverses the path as λ evolves from
0 to 1. We assume that |un(λ)⟩ are smooth and differentiable functions of λ.
Then, we can Taylor expand the log of a single inner product as follows:

ln ⟨un(λ)|un(λ+ dλ)⟩ = ln ⟨un(λ)|
(

|un(λ)⟩ + dλ
d |un(λ)⟩

dλ
+ O(dλ2)

)
= ln

(
1 + dλ ⟨un(λ)| ∂λ|un(λ)⟩ + O(dλ2)

)
= dλ ⟨un(λ)| ∂λ|un(λ)⟩ + O(dλ2).

(2.5)

In taking the continuum limit, all terms of second order and higher in dλ can
be discarded. We used that to first order, ln(1+x) = x. What we have derived
is that the imaginary part of the log of a single inner product in Equation 2.4
is equal to

An(k) = −Im
[
⟨un(k)| ∇k |un(k)⟩

]
= i ⟨un(k)| ∇k |un(k)⟩ , (2.6)

now written in its general vector-form. This is known as the Berry connection.
‘Connection’ is a term taken from differential geometry, but A(k) can also be
interpreted as a vector potential in analogy to the one known from electro-
magnetism. We can also write An(k) back in terms of a set of discrete steps,
as

An(k) = lim
dk→0

i
⟨un(k)|un(k + dk)⟩ − ⟨un(k)|un(k)⟩

dk . (2.7)

In terms of this potential, the geometric phase is given by the closed-loop
integral

γn =
∮

C
An(k) · dk. (2.8)

By Stokes’ theorem, we can rewrite the above again as an integral over the
surface enclosed by loop C:

γn =
∫
S

Fn(k) · d2k, (2.9)
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where the gauge-invariant field F(k) = ∇k×A(k) is called the Berry curvature.
By analogy to electromagnetism, the curvature is similar to a magnetic field,
and a non-zero curvature can be related to a kind of flux perpendicular to the
surface integrated over. Of course, the curl is strictly only defined in three
dimensions (R3), where F(k) is a vector. The concept of curvature does not
exist for one-dimensional (d = 1) systems, although Equation 2.8 still applies.
In two dimensions, the curvature is given by the scalar ∂yAx − ∂xAy where
x and y label the components of k and A(k); in this case, F (k) = γk where
the latter is calculated using Equation 2.8 for an infinitesimal loop enclosing a
single k-point.

Having defined the Berry phase, one can immediately see the connection
with the classical Hannay angle: the classical tangent vector that was trans-
ported over a curved two-dimensional manifold is replaced by A(k), and the
curvature of the classical manifold is replaced by the Berry curvature, which is
a type of curvature within the phase of the quantum-mechanical wavefunction.
From the fact that γ and F(k) are gauge-independent, it follows that they
should be measurable. Any non-zero value indicates an anholonomy in the
parallel transport of the vector |unσ(k)⟩: when transported along a closed loop
in k-space, the state does not return to itself.7 One can then ask the question if
they can constitute a topological invariant. As already mentioned, topological
invariants are necessarily quantised. A quantised Berry phase indicates that
the geometric phase is only allowed to wind a certain amount across the closed
loop in question; because of this, we can say that we are looking for a quantised
winding number. In the absence of other symmetries, γ for a generic closed loop
in the BZ will not be quantised.8 However, by Chern’s theorem [48], the Berry
curvature integrated over a closed two-dimensional manifold such as the BZ (in
d = 2) is necessarily quantised in units of 2π. This defines the so-called (first)
Chern number of the nth band:

Wn = 1
2π

∫
BZ
Fn(k) · d2k ∈ Z. (2.10)

The Chern number is not just a mathematical curiosity; it also leads to
physically relevant effects. Another name for it is the TKNN invariant, after
Thouless, Kohmoto, Nightingale and den Nijs, who identified it as the invariant
describing the number of chiral edge channels participating in (and dominating)
the transport in the Integer Quantum Hall Effect (IQHE) [49].9 This effect
arises when a two-dimensional electron gas is placed in a strong out-of-plane
magnetic field at low temperatures. It originally came as an experimental
7Something is anholonomic when its state depends on the path taken in order to achieve it.
8γ will be quantised in the presence of some symmetries. An example is inversion symmetry
in a 1D crystal [44], where γn = 0 or π. We will discuss the role of crystal symmetries in
Section 2.4.

9The original derivation by Thouless et al. was for non-interacting Bloch electrons, but it
was later shown to be valid also for general multi-particle Schrödinger Hamiltonians, even
in the presence of electron-electron interactions or without a lattice periodicity [50].
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Figure 2.2: A comparison of several types of ‘Hall effect’ in 2D materials. The original (top
left) describes the charge accumulation on opposite sides of a metal, in the presence of an
out-of-plane magnetic field Hz and in-plane current Ix. The transverse Hall voltage Vy that
builds up is linearly proportional to Hz . For large Hz , electrons in the bulk are localised
in Landau levels, and only chiral edge currents contribute to the quantized transverse Hall
conductivity σxy (top right). In magnetic materials, a Hall voltage may be induced by
the intrinsic magnetisation Mz , giving the Anomalous Hall Effect (bottom left). Spin-orbit
coupling in magnetic topological insulators induces the Quantum Anomalous Hall Effect
(bottom right), in which quantised chiral edge currents dominate σxy .

surprise, measured by von Klitzing et al., that the Hall conductance – this is
the conductance perpendicular to both the magnetic field direction and the
direction in which an in-plane electric field is applied to the piece of material
– showed discrete steps [51]:

σxy = e2

h
ν = e2

h

∑
Nocc

Wn. (2.11)

Because of the strong out-of-plane magnetic field, the electronic states are
no longer plane-wave-like Bloch states, instead being forced into quantised
cyclotron orbits known as Landau levels. When EF lies between two Landau
levels, the bulk carriers are localised, but electrons can still propagate along
the edges of the sample. ν describes the number of Landau levels that are
occupied, or equivalently the number of chiral edge states contributing to the
Hall conductance.

While the setup for von Klitzing’s experiment – which requires a strong
magnetic field – might seem awfully specific, the same chiral edge states may
be found in 2D ferromagnetic insulators without the presence of an exter-
nal magnetic field. In this case, it is called the Quantum Anomalous Hall
Effect (QAHE). These types of topological insulators have a magnetization
M = Mspin + Morb, made up of a (usually dominating) spin component which
describes the excess population of spin-up versus spin-down electrons, as well
as an orbital component that can be thought of (semi-classically) as arising
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from the circular currents of electrons orbiting around the atoms in the crys-
tal. The latter effect can be induced by spin-orbit coupling (SOC), with the
effective form HSOC = ξL · S where L and S are the orbital and spin angular
momentum operators on each site. An orbital magnetisation will result in a
surface current Isurf = cMorb × n̂, where n̂ is the surface normal and the speed
of light c arises from using Gaussian units [40]. Because Morb is a well-defined
bulk property of the material, the surface (or edge, in d = 2) currents that it
generates are independent of the specific way that the crystal is cut or termi-
nated. Additionally, we call these currents ‘chiral’ because the SOC enforces
that electrons of opposite spin circulate the boundary in opposite directions.
This feature protects the currents from back-scattering, because such a process
would require flipping the electron spin.

∑
Nocc

Wn describes the difference in
the number of left- and right-circulating edge currents. We can say that the
edge currents are protected by the topology of the bulk, making them robust
against dissipation. This relation between a bulk and surface property is known
as the bulk-boundary correspondence.

A famous, Nobel prize-winning two-band tight-binding model demonstrat-
ing the QAHE is the Haldane model [52]. Its mathematical simplicity has made
this model a kind of ‘hydrogen atom of the topological insulators’ [40]. The
model replaces the external magnetic field by an imaginary second-nearest-
neighbour hopping on a honeycomb lattice.10 This imaginary hopping acts
like a local magnetic field: an effective Mz . In its simplest form, the second
quantised Hamiltonian in real space is given by

HHal = m
∑
i

(−1)τi c†
i ci + t1

∑
⟨ij⟩

(
c†
i cj + c†

jci

)
+ it2

∑
⟨⟨ij⟩⟩

(
c†
i cj + c†

jci

)
, (2.12)

where i, j label the unit cells, m is an on-site potential known as the Haldane
mass which breaks the sublattice symmetry, τi = {1, 2} is the sublattice index
within the unit cell, t1 is the nearest-neighbour hopping amplitude and t2
the second-nearest neighbour hopping amplitude. Importantly, at the high-
symmetry points K = 1

3 b1 + 2
3 b2 and K ′ = 2

3 b1 + 1
3 b2 with bi the reciprocal

lattice vectors, the contribution of t1 to the Bloch Hamiltonian drops out, and
the two states above and below EF at these locations are purely of τ = 1 and
τ = 2 character, respectively. The eigenenergies at these points are given by

Ek = ±

{
m− 3

√
3t2 at K

m+ 3
√

3t2 at K ′ (2.13)

from which it is clear that by tuning t2, we can close and reopen a gap selectively
at either the K or the K ′ point, thereby also switching the sublattice character
of the states above and below EF. Remember that by closing the band gap we
10This is the lattice of the famous 2D material graphene, and that of boron nitride. It has

two atoms per unit cell, making it a bipartite lattice.
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can change the topological state of our system; this kind of band inversion is
what leads to the formation of a chiral edge state.

Despite having a theoretical understanding of the QAHE since the 1980s, it
took until 2013 to experimentally realise this phase [53]. An important reason
that it has proven so difficult to find material realisations of a topological Chern
insulator is that it requires magnetism. 2D insulators with a ferromagnetic
moment perpendicular to the plane are exceedingly rare, and the additional
requirement of a strong SOC to induce a band inversion (as seen in the Haldane
model) reduces the number of candidates further [54].

To conclude, we’ve seen that we can use the Berry connection to define a
topological invariant for 2D magnetic systems which determines the number
of chiral edge states that the system hosts. This explains the IQHE in strong
magnetic fields as well as the QAHE ferromagnetic insulators. Most materials
are not magnetic, which means they have the extra symmetry known as time-
reversal symmetry (TRS). We cannot describe these systems with a Chern
number, but we will demonstrate in Section 2.3 that a similar Berry curvature-
based invariant exists for TRS systems. First, let us discuss the general effect
that symmetries have on topology.

2.2. The tenfold way
Usually, one considers a Hamiltonian to have a symmetry if there is a unitary
operator U that commutes with the Hamiltonian:

UHU† = H where UU† = UU−1 = 1. (2.14)

The presence of such a symmetry implies that the Hamiltonian is subject to
a conservation law, and can be broken down into a block-diagonal form. This
is useful because it means we need only study a single block, reducing the
dimension of the problem at hand. However, even when all unitary symmetries
have been used to reduce a Hamiltonian to an irreducible form, there are three
other types of fundamental symmetries that may impose further constraints.
They are described by the following symmetry operators:

• T is an anti-unitary operator which commutes with the Hamiltonian:
THT−1 = H∗

• P is an anti-unitary operator which anti-commutes with the Hamiltonian:
PHP−1 = −H∗

• C is a unitary operator which anti-commutes with the Hamiltonian:
CHC−1 = −H

These three fundamental symmetries have a stong influence on topology. Let us
introduce them one by one, before moving on to how these define ten symmetry
classes which strongly constrain topology.
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Figure 2.3: An example of an electronic band structure En(kx, 0, 0) with all three fundamen-
tal symmetries present: time-reversal (T ), particle-hole (P ) and chiral (C). EF is the Fermi
energy. On the kx-axis we mark the high-symmetry TRIMs Γ = (0, 0, 0) and X = (π/a, 0, 0)
with lattice parameter a.

Let us consider T first, which describes the previously mentioned time-
reversal symmetry (TRS). This symmetry operator is generically given by T =
UK, where K is the operator of complex conjugation. For systems of spin-
half particles (like electrons), T = iσyK with Pauli matrix σy in spin space,
from which it is clear that it flips the electron spin. T 2 = −1 for spin-half
particles and T 2 = 1 for spinless particles. Aside from flipping the spin, T
acting on a Bloch state will send k to −k. However, at certain high-symmetry
points in the BZ, known as time-reversal invariant momenta (TRIMs), k =
−k, such that spin-up and spin-down electron states must be degenerate at
these points.11 This means that electron bands come in Kramers pairs (see
Figure 2.3) [55]. This is problematic for the Chern number we discussed in the
previous section, because (1) our derivation assumed the bands to be separated
and, more importantly, (2) two bands in a Kramers pair will necessarily have
equal and opposite Chern numbers, such that they cancel out exactly. We will
return to this point in the next section. In the absence of magnetism or an
external magnetic field, crystals typically have TRS.

Next, we have P = UK, which describes particle-hole symmetry (PHS). This
symmetry exchanges electrons and holes, enforcing the electronic dispersion to
be mirrored in EF. This is seen in superconducting systems, in which only
the parity of the particle number is conserved because the Hamiltonian allows
for the creation and annihilation of bounded pairs of electrons called Cooper
pairs. While effective model Hamiltonians may have PHS, this symmetry is
rarely (possibly never) truly satisfied by real insulating crystals when all Bloch
bands are considered. Just like with TRS, a Hamiltonian can behave in three
ways under P : it either doesn’t have this symmetry, or P 2 = ±1.

Finally, C describes a chiral symmetry. This type of symmetry is not en-
tirely independent of TRS and PHS; if a Hamiltonian has both of these sym-
11In the presence of SOC, Bloch states generically will not have a well-defined spin-up or

spin-down character; the Hamiltonian will not be block-diagonal. At TRIMs, however, the
SOC necessarily goes to zero, and there will necessarily be a degenerate pair of states.
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symmetry symmetries spatial dimensions
class T P C 0 1 2 3

A Z Z
AI 1 Z
AII -1 2Z Z2 Z2
AIII 1 Z Z
BDI 1 1 1 Z2 Z
CII -1 -1 1 2Z Z2
D 1 Z2 Z2 Z
C -1 2Z

DIII -1 1 1 Z2 Z2 Z
CI 1 -1 1 2Z

Table 2.1: The periodic table of topological insulators, also called the tenfold way [61, 62].
The first column indicates the symmetry class in the Cartan nomenclature for symmetric
spaces. The next three rows show whether these classes have time-reversal (T ), particle-hole
(P ) and/or chiral (C) symmetry, and whether these symmetry operators square to plus or
minus one. The remaining rows show the homotopy groups, related to the type of topological
index per spatial dimension.

metries, then it automatically has chiral symmetry C = P · T (see Figure 2.3).
Conversely, if a system has exactly one of the other two symmetries, it cannot
have a chiral symmetry. On the other hand, if neither of the other two sym-
metries are present, then the system may or may not have a chiral symmetry.
Unlike P and T , a Hamiltonian may have multiple anti-commuting unitary
symmetries. Also unlike the other two, C always squares to +1. A common
example of a chiral symmetry is a sublattice symmetry in a bipartite lattice.

These three fundamental symmetries together define ten distinct symmetry
classes. Historically, three classes were initially identified, based on the presence
or absence of TRS and spin rotation symmetry (which determines whether
T 2 = ±1) [56, 57]. Next, chiral classes were identified in the context of QCD
Dirac operators [58, 59], which extended the number of symmetry classes to six.
Finally, the tenfold classification was completed by Altland and Zirnbauer [60],
who found the remaining classes by considering a model system of a metallic
quantum dot in contact (via a barrier) with a superconductor. These ten
symmetry classes are listed in order of their discovery in Table 2.1.

This classification was found to be particularly useful for identifying what
topological phases are possible, given the symmetry class of a Hamiltonian.
That is, it specifies the number of topologically distinct ground states that are
possible for non-interacting systems of particles. To identify the topological
phases, a link is made between the homotopy group of the different classes –
used in algebraic topology to classify topological spaces – and the allowed topo-
logical invariant distinguishing Hamiltonians with these symmetries [61, 62].
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These homotopy groups are given either by Z (any integer); 2Z (any even in-
teger); or Z2 = Z/2Z (any integer modulo 2, i.e. 0 or 1). The full ‘periodic
table of topological insulators and superconductors’ was built up by considering
massive Dirac Hamiltonians12 in arbitrary spatial dimensions d [61, 62], but
generalises to any gapped Bloch Hamiltonian. Different dimensionalities are
linked, because one can always add a new momentum kd+1 to the Hamiltonian
in such a way that the gap does not close for any value of kd+1 in the BZ. This
way the topological invariant should remain the same, while adding a momen-
tum may change the symmetry class. In this way, the topological classification
of different groups for different value of d can be derived. A mathematically
beautiful feature is that the entire periodic table is periodic over 8 dimensions,
but spatial dimensions beyond d = 3 are usually not relevant in the context of
condensed matter physics.

2.3. Topology with TRS
Now that we have identified the allowed homotopy groups per symmetry class,
let us consider what these actually mean in terms of topological invariants. In
the top row of the table, in class A, we can already identify the Z-valued Chern
number for d = 2. As already mentioned in the previous section, real materials
are not expected to have true PHS; this is because Bloch electron bands can
be understood to arise from linear combinations of atomic orbitals centred on
atoms in the crystal [63], and there is no reason for these orbitals to have PHS.
Meanwhile, any non-magnetic material can be expected to have TRS. Adding
TRS and no other symmetries means that we go from class A to class AII.
As already mentioned, TRS enforces bands to come in Kramers pairs, within
which the bands necessarily have equal and opposite Chern numbers. In d = 2
(and d = 3), the invariant is Z2, different from the Z Chern number. The
question then, is how to generalise the concept of a Chern number to class AII.

The Z2 invariant we use is conventionally known as the FKM invariant,
after Fu, Kane and Mele, who defined it as a product over all TRIMs (k = Γi )
in the 2D or 3D BZ of a parameter called δi :

(−1)ν =
TRIMs∏
i=1

δi (2.15)

In 2D the BZ has four TRIMs while in 3D there are eight.13 In the original
works, the parameter was defined in two ways. The first employs a unitary ma-
trix relating time-reversed wavefunctions wmn(k) = ⟨um(−k)|T |un(k)⟩, which
12A Dirac Hamiltonian has a linear-in-k dispersion, and describes relativistic particles.

Adding an independent-of-k mass term opens a gap at the Dirac point k = 0.
13In three dimensions, one can identify one ‘strong’ topological invariant, given by Equa-

tion 2.15, and three ‘weak’ topological invariants corresponding to products taken over
TRIMs in three sets of perpendicular planes within the BZ [64]. We will not go into the
weak invariants here.
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is anti-symmetric at k = Γi [64, 65]. The second way is valid for any system
with inversion symmetry, whose operator I relates a state at k to a state at −k
without affecting the spin, and whose eigenvalues at the TRIMs equal δi [66].
These two definitions are given by

δi =

√
det[w(Γi )]

Pf[w(Γi )]
=
Nocc/2∏
n

⟨u2n(Γi )| I |u2n(Γi )⟩ = ±1. (2.16)

Later, it was shown that the FKM invariant for 2D systems can be equiv-
alently found using an integral over a non-Abelian Berry connection, given
by [67–70]:

Amn(k) = i ⟨um(k)| ∇k |un(k)⟩

= lim
dk→0

i
⟨um(k)|un(k + dk)⟩ − ⟨um(k)|un(k)⟩

dk ,
(2.17)

where m and n are band labels. The second line shows the discrete form of
the gradient. In the case of N bands that are entirely isolated from one an-
other, only Abelian Berry connections Ann(k) will be non-zero. However, when
bands cross one another, curvature in the Berry connection may be exchanged,
and off-diagonal terms (where m ̸= n) will appear. Using the non-Abelian
Berry connection, one can define a U(Nocc) matrix known as a Wilson loop by
integrating the non-Abelian Berry connection over a closed loop C:

W[C] = P exp
(
i

∮
C

A · dk
)
, (2.18)

where P indicates path ordering. Much like the Berry phase, the eigenvalues of
the Wilson loop are equal to gauge-invariant phase factors eiθj . The fact that
the eigenvalues are phases means that the spectrum is only defined modulo 2π.
In fact, in most cases one can continuously transform a TRS Hamiltonian –
without going through a topological phase transition – such that all Kramers
pairs are separate from each other,14 and we can consider the U(2) Wilson loop
per (occupied) Kramers pair. This means we need only consider two eigenvalues
at a time, which is easier to work with than Nocc eigenvalues; from now on we
will consider only such U(2) Wilson loops. The eigenvalues of a generic loop
will not be quantised, but if the loop taken is invariant under TRS, then each
Kramers pair will necessarily have a degenerate pair of phases θ.

To obtain the FKM invariant, we have to somehow integrate Amn(k) over
the 2D BZ, rather than just across a single loop. One way to do this is to
consider a set of loops Ckx that cycle over the BZ along ky from −π to π through
0,15 at a fixed values of kx. Plotting the Wilson loop eigenvalues as a function of
14Only some special symmetries, such as non-symmorphic lattice symmetries, are able to

stick Kramers pairs together.
15We assume the lattice parameter is unity here.



2

18 2. Introduction to topology
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Figure 2.4: Example U(2) Wilson loop spectra, showing the eigenvalues θj of W[Ckx ] with
the loops going from ky = −π to π at fixed values of kx. On the left, we show the relevant
series of Ckx (in blue) for an example BZ with a two-fold lattice symmetry. On the right, we
plot the θj on a cylinder (gluing θj = π and −π together) for kx ranging from 0 to π. The
symmetries present ensure that eigenvalues are degenerate at the ends of the cylinders. Away
from these values of kx, crossings of the eigenvalues are not protected by TRS, and may be
gapped as shown in blue. The FKM invariant ν is given by the parity of the winding of θj

around the cylinder; ν = 0 for the left two spectra, and 1 for the right two spectra. We have
set all lattice parameters to unity here.

kx for a whole series of these loops, we obtain a Wilson loop spectrum (WLS).
If we consider a system with TRS and any two-fold unitary symmetry that
sends ky → −ky – such as two-fold rotation, a mirror, or inversion symmetry
– then the loops at kx = 0 or ±π are invariant under the symmetries, and the
eigenvalues of those Wilson loops are necessarily degenerate [68–70]. This is
useful, because it means we can ensure that our WLS starts and ends with
degenerate eigenvalues. In this case, the series of Wilson loops need to cover
only half of the BZ, because the symmetries ensure that the other half will be
the same. As kx is varied, then, the eigenvalues may wind, or not. Any crossing
between eigenvalue pairs for Ckx away from kx = 0 or ±π are not protected by
any symmetries, and may open up a gap upon a smooth deformation of the
Hamiltonian [68–70]. This means that in the absence of additional symmetries,
only the parity of the winding of the Wilson loop eigenvalues matters, and this
parity equals the FKM invariant (ν) as given by Equation 2.15. This may be
demonstrated by plotting θj on a cylinder (gluing together θj = π and −π) as
shown in Figure 2.4.

That a non-zero FKM invariant may have physical implications was also
demonstrated by Kane and Mele [71, 72]. In this case, we find a Quantum Spin
Hall (QSH) insulator, which hosts an odd number of pairs of opposite-spin edge
states that are topologically protected in the sense that they are robust against
backscattering (which would require a spin flip) and small perturbations. Kane
and Mele demonstrated this QSH effect using a model based on two time-
reversed copies of the Haldane model. Unlike in the IQHE and QAHE, the
edge spin-Hall conductivity σsxy is not generally quantised. We can express it
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Figure 2.5: Two types of ‘spin Hall effect’ in 2D materials. The normal effect (left) describes
the spin accumulation on opposite sides of a material with an in-plane current Ix, due to
spin-dependent Mott scattering or an intrinsic spin-orbit interaction. The Quantum Spin
Hall (QSH, right) effect is a topological phase where two edge currents of opposite spin flow
in opposite directions. A QSH insulator can be understood as being composed of two time-
reversed copies of a QAH insulator (Figure 2.2). The currents are not necessarily quantised.

as
σsxy = e

h

(
⟨Sz⟩L − ⟨Sz⟩R

) ∣∣∣
EF

, (2.19)

where ⟨Sz⟩L corresponds to the spin expectation value (along the z-axis) for
left-moving edge states, and R labels the right-moving edge states. Because
the edge states are not necessarily eigenstates of Sz , the difference need not be
an integer.16 Nonetheless, the topological protection of these spin-dependent
edge states makes them an interesting candidate for spintronic applications
(see e.g. [73]). The QSH effect was first experimentally detected by König et
al. in a HgTe/CdTe quantum well structure in 2007 [74], after being predicted
theoretically by Bernevig, Hughes and Zhang the year before [75].

2.4. The importance of lattice symmetries
Now, let us consider the role of lattice symmetries. These include point-group
symmetries (rotations, reflections, inversions) as well as non-symmorphic sym-
metries (glide planes and screw axes). That these symmetries may constrain
the topology can be made clear by some examples. In the absence of TRS, the
Chern number is necessarily zero in the presence of a reflection symmetry, due
to the anti-symmetric nature of the Berry curvature [76]; for a 2D crystal with
a mirror plane along x, we find that Fn(kx,−ky) is equal to −Fn(kx, ky) such
that the integral of the Berry curvature over the entire BZ gives exactly zero.
With TRS present, the relation between topology and lattice symmetries is ex-
emplified by the fact that the FKM invariant may be expressed in terms of the
eigenvalues of the inversion operator at high-symmetry points (Equation 2.16).
This procedure can be generalised to include any space group symmetry in two
and three spatial dimensions [77]. In many cases, the extra constraints that
lattice symmetries impose lead to the possibility of new topological invariants,
protected by the symmetries of the lattice. These invariants cannot be changed
without breaking a (lattice) symmetry or closing a gap at the Fermi level, and
16Note that TRS ensures that the sum ⟨Sz⟩L + ⟨Sz⟩R = 0.
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go beyond the classification given by the tenfold way. This has lead to the
concept of ‘topological crystalline insulators’ [78]. Excitingly, the fact that
lattice symmetries may be broken at some surfaces and edges of crystals, but
protected at others, allows for exotic surface, edge and corner states, leading
to higher-order and hybrid-order topological phases [79–84].

Recent years have seen various efforts to expand and complete the classifi-
cation of crystalline topological phases [77, 85–88]. A mathematically robust
way to determine what phases are allowed is to use what is known as (twisted
equivariant) K-theory [88–92]. However, in class AII, K-theoretic calculations
are exceedingly difficult to perform except for a few specific cases [91]. In-
stead, we will outline here the more intuitive classification scheme outlined by
refs. [35, 36].

To begin with, it is useful to make the distinction between two types of
invariants, which we will call torsion invariants and representations. The first
describes the invariants derived from curvature in the Berry connection, and
includes the Chern number and FKM invariants. The second is a set of integers
that characterise the representation of the occupied bands of a topological phase
in the corresponding crystal symmetry group.17 To understand the latter, note
that the Bloch functions on the BZ must transform under crystal symmetries in
a particular way, in a manner which depends on the value of k [93]. The crystal
symmetries in real space do not apply to all k-points in the BZ, instead being
restricted to certain high-symmetry points and lines. At such high-symmetry
locations, the transformations of the Bloch functions must satisfy certain gluing
conditions, as determined by the crystal symmetries that are present.

As an example, consider a square lattice with lattice spacing a = 1 in wall-
paper group p4mm (in the Hermann-Mauguin notation [94]), or equivalently
dihedral point group D4. This is the symmetry group generated by a reflection
t about the x-axis and an in-plane 90° rotation r. Because of these symme-
tries, many regions of the BZ map onto one another, and to describe it we
need only consider the fundamental BZ domain, shown in Figure 2.6. The
high-symmetry points Γ = (0, 0) and M = (π, π) are left invariant by all oper-
ations in D4. The point X = (π, 0) is only left invariant by the little co-group
GX = {1, r2, t, r2t}, which can be specified by two binary numbers Z2 × Z2.
The high-symmetry lines li have a lower symmetry, described by Z2 little co-
groups: Gl1 = {1, t}; Gl2 = {1, r2t}; Gl3 = {1, rt}. Finally, any other generic
point in the interior of the fundamental domain is only invariant under the
identity operation.

Importantly, the little co-groups may necessitate bands at high-symmetry
points to become degenerate. This can be seen by considering the action of the
17The number of occupied states in d = 0 is also a type of representation invariant. This is

simply Z-valued, because there are no internal symmetries that allow for more than one
representation.
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Figure 2.6: The fundamental BZ domain (shaded red) in wallpaper group p4mm. It contains
only points that are not related to each other by transformations in the point group D4. Γ, X
and M label high-symmetry points, and li label high-symmetry lines. Figure taken from [35].

crystal symmetries on the Bloch Hamiltonian:

ρ(R)h(k)ρ(R)−1 = h(R · k);
[ρ(R), h(k)] = 0 if R · k = k,

(2.20)

where ρ(R) is a matrix representation of the point group element R. h(k)
commutes with the little co-group at high-symmetry points and lines, such
that the eigenstates of the Bloch Hamiltonian are also eigenstates of the ele-
ments of the little co-group. This means that the collection of occupied Bloch
states at momentum k forms a representation of the the little co-group Gk,
consisting of irreducible representations of Gk. These representations are the
eigenvalues of symmetry operators in Gk; for a Z2 group, these are just equal
to ±1, so eigenstates may be either even (+) or odd (−) under the symmetry
transformations.

We can now write down a set of integers nk
i , indicating the number of bands

at some momentum k with symmetry representations i, e.g. nX
1 is the number of

bands at the X-point with the set of symmetry eigenvalues labelled by 1. Impor-
tantly, the representations along high-symmetry lines li must connect continu-
ously to representations at their end-points. This means that the eigenvalue of
a certain symmetry transformation is conserved along all high-symmetry lines,
and restricts the choice of representations on the high-symmetry points, where
multiple li meet. These restrictions relate different nk

i together, and provide a
recipe for constructing the entire set of occupied bands at high-symmetry loca-
tions. In the case of wallpaper group p4mm, we end up with five independent
relations between 14 integers nk

i , such that we need to specify nine integers in
total to completely characterise the set of valence bands; the representation is
thus classified by elements of Z9.

In ref. [35], Kruthoff et al. use this method to obtain the complete topo-
logical classification for all 17 wallpaper groups (2D crystal symmetry groups)
in class A, listed in Table 2.2, and note that this classification scheme can be
extended to all three-dimensional crystals. The torsion invariant in this case
is the Chern number, which can only be non-zero in wallpaper groups without
any reflection symmetries present [76]; this is why all groups with a mirror
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group p1 p2 pm pg cm p2mm p2mg p2gg c2mm
reps Z Z5 Z3 Z Z2 Z9 Z4 Z3 Z6

Chern no. Z Z 0 0 0 0 0 0 0
group p4 p4mm p4gm p3 p3m1 p31m p6 p6mm
reps Z8 Z9 Z6 Z7 Z5 Z5 Z9 Z8

Chern no. Z 0 0 Z 0 0 Z 0

Table 2.2: The complete classification of topological phases in class A (without any anti-
commuting or anti-unitary symmetries), for all 2D crystals [35]. The first and fourth rows
list the 17 wallpaper groups in Hermann-Mauguin notation [94]. The rows labelled by ‘reps’
list the number of integers that need to be specified to classify the representation of the
occupied bands. The remaining rows indicate whether a Chern number is present. The
full classification is given by the direct sum of the representation and the Chern number
invariants.

plane (indicated by m) or non-symmorphic glide reflections (g) have zero as
their Chern number index. The full classification is given by the direct sum of
the representation invariants and the Chern number. From this we learn that
the number of topological indices needed to classify the topological phase in
2D materials without TRS varies from Z in wallpaper group pg, to Z10 in p6.
Clearly, the lattice symmetry matters!

Of course, many materials have TRS, and therefore belong to class AII. The
classification for this class is determined in ref. [36]. An important difference
is that in this class, all bands must come in Kramers pairs composed of states
related by TRS, and the transformations of a Kramers pair under (lattice)
symmetry operations now produce a pairs of related eigenvalues. This greatly
reduces the number of allowed representations; in the example of p4mm, TRS
reduces the number or representation invariants from nine to three.

More interestingly, in class AII there are more allowed types of torsion
invariants. We have already introduced the FKM invariant, but the presence
of lattice symmetries also allows for additional ‘line invariants’ which describe
integrals of the non-Abelian Berry connection along certain high-symmetry
directions in the crystal, which are quantised by the combination of (at least
two) symmetries that are present. An example in 1D is the LBO invariant
introduced by Lau, van den Brink and Ortix [95], which corresponds to the
Wilson loop eigenvalues that are quantised by the combination of TRS and
a mirror symmetry in the lattice. This invariant may be generalised to 2D,
where Wilson loop eigenvalues along lines that are invariant under TRS and
any two-fold lattice symmetry are also necessarily quantised [69, 70, 96], as
mentioned in the previous section. In fact, this is equivalent to computing the
FKM invariant for a subset of TRIM points along a single line 2D or within a
single plane in 3D [64, 66].

To determine how many torsion invariants are allowed per wallpaper group,
ref. [36] considers the restrictions upon where vortices in the U(1) (Abelian)
Berry connection are allowed by the symmetries present. Such vortices cor-
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Figure 2.7: (a) The typical band structure of a Kramers pair close to a high-symmetry point.
Also shown schematically is two band inversions, related by TRS, which generate vortices in
the Berry connection as indicated by the yellow and orange arrows. (b) A more schematic
representation of two bands containing states |ψ⟩ and T |ψ⟩, which are necessarily degenerate
at the TRIMs Γ and M. (c) Time-reversed pairs of vortices in the Berry connection, depicted
by + and −, may be moved throughout the BZ without annihilating. (d) An even number
of vortices, generated by band inversions within a single Kramers pair, do not change the
topological index, such that having 0 vortices in a band is topologically equivalent to having
2. (e) In the same way, having a single vortex in a band is equivalent to having a single
antivortex. Figure taken from [36].

respond to peaks in the Berry curvature, which may be generated by a band
inversion. In the absence of TRS, the Chern number simply measures the num-
ber of vortices in each individual band. With TRS, any vortex generated by
a band inversion at some momentum k must be associated with an antivortex
(which has opposite handedness) at the time-reversed momentum −k. Vortices
in TRS materials thus necessarily come in vortex-antivortex pairs, as shown in
Figure 2.7, and the total Chern number of any Kramers pair of bands is neces-
sarily zero, as already noted in the previous section. At TRIMs, time-reversed
pairs of vortices cannot annihilate, due to the orthogonality of the states [97].
Since band inversions within a single Kramers pair do not close the gap at EF,
and do not break any symmetries, we can only distinguish (using the Z2 FKM
invariant) between and odd and an even number of vortices in the U(1) Berry
connection of a single band.

Just like TRS, lattice symmetries can impose further restrictions on where
and how vortices are allowed to appear in the BZ. In the presence of n-fold
rotational symmetries, for example, any vortex in the interior of the BZ must
be accompanied by n−1 other ones at the symmetry-related momenta. Notice,
however, that these symmetry-related vortices all have the same handedness,
in contradiction to what is required by TRS. The combination of TRS with
any even-fold rotational symmetry actually enforces that vortices in the Berry
connection may only appear at TRIMs, or at points in the bulk of the BZ
where two states are degenerate. Vortices in the bulk of the BZ are usually
unimportant to the topological phase, because they necessarily come in pairs
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Figure 2.8: (a) Topologically nontrivial vortex configurations with p4 symmetry in class AII,
with a nontrivial FKM invariant but different line invariants along ΓX. (b) A band inversion
between two Kramers pairs may generate extra vortices, but will not change the overall FKM
invariant. (c) A different allowed vortex configuration, with trivial FKM invariant but non-
trivial line invariants. Figure taken from [36].

group p1 p2 pm pg cm p2mm p2mg p2gg c2mm
reps Z Z Z Z Z Z Z Z Z
torsion Z2 Z4

2 Z2
2 Z2 Z2 Z4

2 Z2
2 Z2

2 Z3
2

group p4 p4mm p4gm p3 p3m1 p31m p6 p6mm
reps Z3 Z3 Z2 Z4 Z4 Z3 Z4 Z4

torsion Z3
2 Z3

2 Z2
2 Z2

2 Z2
2 Z2

2 Z3
2 Z3

2

Table 2.3: The complete classification of topological phases in class AII (with TRS), for all
2D crystals [36]. The first and fourth rows list the 17 wallpaper groups in Hermann-Mauguin
notation [94]. The rows labelled by ‘reps’ list the number of integers that need to be specified
to classify the representation of the occupied bands. The remaining rows indicate the torsion
invariants. The full classification is given by the direct sum of the representation and the
torsion invariants.

due to TRS, and therefore do not change the parity of the total curvature in
the BZ (see Figure 2.7d,e).

Depending on the lattice symmetries present, the problem of identifying
what topological phases are possible reduces to the problem of counting the
number of distinct ways in which you can place vortex-antivortex pairs in the
BZ. Additionally, line invariants (such as LBO) simply count the parity of
the number of vortices along a high-symmetry line, which will constitute a
topological invariant in the presence of the correct symmetries. Depending
on the wallpaper group, there will be a limited number of independent line
invariants that one can consider. Figure 2.8 demonstrates some example vortex
configurations for wallpaper group p4. The resulting complete classification for
2D crystals in class AII is listed in Table 2.3. The generalisation to 3D is also
explained in ref. [36], but will not be discussed here.

With the completion of the topological classification of 2D crystals, it be-
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came immediately clear that not all topological invariants had been identified.
Notably in class AII, wallpaper groups p2, p2mm, p4, p4mm, p3, p6 and p6mm
all require an invariant that is not given by the known FKM and LBO invari-
ants. This is the starting point of Chapter 3, in which we demonstrate how to
identify a new invariant in p3, with a method that is generalisable to the other
rotationally symmetric wallpaper groups.





3
The topological invariants
of rotationally symmetric

crystals
Recent formal classifications of crystalline topological insulators predict that the com-
bination of time-reversal and rotational symmetry gives rise to topological invariants
beyond the ones known for other lattice symmetries. Although the classification
proves their existence, it does not indicate a way of calculating the values of those
invariants. Here, we show that a specific set of concentric Wilson loops and line in-
variants yields the values of all topological invariants in two-dimensional systems with
three-fold rotational symmetry in class AII. The same method can also be applied
to other rotation groups. We find a new invariant that relates to the presence of
higher-order topology and corner charges. This chapter is based on ref. [1].

As we’ve demonstrated in Chapter 2, the presence or absence of symmetries
in crystalline topological insulators allows for the emergence of a wide variety
of topological phases. These are labelled by an equally wide variety of topo-
logical invariants, ranging from the Chern number [49], to the Fu-Kane-Mele
(FKM) invariants [64–66, 68, 69, 71, 72], the Lau-Brink-Ortix (LBO) or line
invariants [95], as well as invariant features of the Wilson loop spectrum de-
scribing higher-order and fragile topological insulators [70, 81, 96, 98–101]. A
unified, symmetry-based approach describing all of these topological phases
was recently proposed [35, 36, 77, 102, 103]. This shows that the FKM, LBO,
higher order, and similar invariants may all be extracted from an algorithmic
analysis of lattice symmetries and their effect on the structure of Berry curva-
ture. Moreover, being a complete classification of all possible such invariants
(as guaranteed by the underlying K-theory), it predicts that additional, as yet
unidentified, invariants of the same type exist in various crystals, for example
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those with rotational symmetries and time-reversal symmetry (TRS) in two
dimensions [36]. Explicitly: in wallpaper groups p2, p3, p4, and p6 we expect
to find 4, 2, 3, and 3 Z2 invariants, of which only 3, 1, 2 and 2 invariants are
known.

Although the classification predicts the existence of topological invariants
for systems with a given symmetry, it does not give a way of identifying or
evaluating them in any specific system. Here, we demonstrate how to find all
topological invariants for wallpaper group p3 in class AII, including the thus
far unidentified one. The same method can be applied to all other rotationally
symmetric wallpaper groups, if we assume that there are no degenerate states
away from time-reversal invariant momenta (TRIMs). Our analysis employs
a spectrum of concentric Wilson loops rather than the usual spectrum of par-
allel Wilson loops [68–70, 96, 104]. The concentric loops are tailored to the
rotational symmetry of the crystal lattice, allowing them to capture the full
influence of symmetry on the topological structure.

Below, we will first introduce these concentric Wilson loops, their symmetry
properties, and how to identify the new invariant. In Section 3.2, we show
an example of our analysis in a model based on the Haldane model, which
hosts three distinct topological phases. In Section 3.3, we demonstrate that
depending on the topological phase, our model Hamiltonian hosts either no
in-gap states, topologically protected edge states, or in-gap corner charges. We
conclude with a discussion of the implications of our results in Section 3.4.

3.1. The concentric Wilson loop spectrum
The gauge invariant eigenvalues of (non-Abelian) Wilson loops can be inter-
preted as generalising the (Abelian) Berry phase to systems with internal and
lattice symmetries [81]. As a reminder, the eigenvalues of any Wilson loop W[C]
are restricted to being a pure phase factor exp(iθj), where j denotes the eigen-
value index. From here on, we use the term ‘eigenvalue’ to indicate the phase
θj . A U(1) Wilson loop eigenvalue for a single (isolated) band is equivalent to
the Berry phase (γn) on a closed loop, as introduced in Section 2.1. Here we
consider systems with TRS, in which Bloch states necessarily come in Kramers
pairs; because Kramers degeneracies can not be separated from one another,
a natural object to consider is the U(2) Wilson loop for two bands within a
Kramers pair. We assume here that there are no other symmetries present
(like non-symmorphic ones [105]) that enforce degeneracies between different
Kramers pairs. Then, one can always continuously deform the Hamiltonian –
without going through any topological phase transition – such that all Kramers
pairs are separated from one another. We will restrict our attention to the U(2)
Wilson loops relevant for TRS crystals from here on.

In Section 2.3, we demonstrated how considering a series of parallel Wilson
loops that cycle the Brillouin zone (BZ) torus at a fixed value of kx gives one a
Wilson loop spectrum (WLS) of eigenvalues θj , and the parity of the winding of



3.1. The concentric Wilson loop spectrum

3

29

these eigenvalues is equal to the FKM invariant. As a side note, this winding is
only well-defined in the presence of two-fold lattice symmetries, which together
with TRS enforce that the Wilson loop eigenvalues along high-symmetry lines
are degenerate and quantised. Here, we will introduce a different set of con-
centric loops, which allows us to not only evaluate the generic FKM invariant
(for any wallpaper group), but also the newly-predicted invariant specific to
topological insulators with rotational symmetry.

In general, a non-Abelian Berry connection is an N×N skew-Hermitian ma-
trix with vector-valued components defined as Amn(k) = i ⟨um(k)|∇k|un(k)⟩.
Here, |un(k)⟩ indicates an occupied Bloch state at momentum k with band
index n ∈ {1, . . . , N}. The Wilson loop W[C] on a closed contour C in the BZ
is then given by:

Wmn[C] =
[
P exp

(
i

∮
C

A · dk
)]

mn

, (3.1)

with P indicating path ordering. This is a U(N) matrix, and satisfies W[C]W[C]† =
W[C]W[Cr ] = 1, with Cr the orientation-reversed loop. Our goal is to derive
(new) topological invariants from a WLS by exploiting the symmetry proper-
ties of W[C]. In the presence of TRS and additional symmetries, two types of
C are noteworthy. These are non-contractible cycles around the BZ seen earlier
(the type most commonly considered in the literature [68–70, 96]) and non-
contractible1 loops that enclose high symmetry points (see e.g. [70]). Either
type can be chosen to be invariant under time-reversal symmetry.

To see how TRS and other symmetries affect the Wilson loop operators
along these two types of loops, we first discretise the Wilson loop, implementing
the path-ordering explicitly. To do so, we use the discrete form of Amn(k)
(Equation 2.17) to rewrite the Wilson loop operator as

Wmn[C] = lim
L→∞

⟨um(k0)|
L∏
l=1

P (kl )|un(kL+1)⟩, (3.2)

where the product is path-ordered around C, and we defined the projectors
P (kl ) =

∑
j |uj(kl )⟩ ⟨uj(kl )|.2 For a closed loop, k0 = kL+1 up to a reciprocal

lattice vector. Expressing the Wilson loop explicitly in terms of Bloch states
is useful, because we know how various symmetries act on these states.

Let us first consider the action of TRS on this representation of the Wilson
loop. Recall that time-reversal maps states at k onto states at −k. We may
therefore write a Bloch state at −k in terms of time-reversed Bloch states at
k:

|un(−k)⟩ =
∑
m

Dnm(k)T |um(k)⟩ . (3.3)

1The loops around high-symmetry points can be considered non-contractible, because the
high-symmetry points are fixed points of the spatial symmetries.

2Note the similarity to Equation 2.4!
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Loops and their time-reversed partners

Figure 3.1: Three examples of closed loops in a BZ, and their time-reversed partners. The
‘linear’ loops (left two diagrams) obey TW(k0, C)T−1 = W(−k0, Cr) = W(−k0, C)†, while
the right-most example obeys TW(k0, C)T−1 = W(−k0, C) = W(k0, C).

The time reversal operator T includes complex conjugation and D is a unitary
matrix. Using this relation, the projectors P at −k can also be related to ones
at k:

P (−k) =
∑
j,m,m′

Djm(k)T |um(k)⟩ ⟨um′(k)|T †(Dm′j)∗(k)

= −
∑
m

T |um(k)⟩ ⟨um(k)|T−1

= −TP (k)T−1.

Here we used the fact that T is anti-unitary, such that T † = −T−1. Examples
of how different loops transform under TRS are shown in Figure 3.1. If we
consider a generic ‘linear’ loop at constant value of kx, TRS will reverse the
direction of the loop, and move the starting point to −k0. This tells us that

TW(k0, C)T−1 = W(−k0, Cr) = W(−k0, C)† (3.4)

This can be contrasted with a loop C that encloses Γ in a time-reversal
symmetric manner (TCT−1 = C, right-hand plot of Figure 3.1), in which case:

TW(k0, C)T−1 = W(−k0, C) = W(k0, C). (3.5)

To see this explicitly, take for example four equally spaced points kj , j = [0, 3],
on a unit circle in k-space around k = 0. T then maps kj → kj+2, so the
discrete Wilson loop W = P (k0)P (k1)P (k2)P (k3) gets mapped to:

TWT−1 =TP (k0)T−1TP (k1)T−1TP (k2)T−1TP (k3)T−1

=P (k2)P (k3)P (k0)P (k1) = W.
(3.6)

This is the same discrete Wilson loop, with the four points rotated but their
order remaining the same.

Unlike TRS, lattice symmetries are always unitary. Under a general unitary
symmetry g ∈ G, the Wilson loop matrix elements of a loop C with base point
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k0 transform as:

g : Wij(k0, C) → Dl
i(g,k0)Wlk(g · k0, g · C)Dk

j (g,k0)∗. (3.7)

Here Dl
i(g,k0) is the representation of the symmetry g, which may depend on

k0. Invariance under a unitary symmetry thus means

Wij(k0, C) = Dl
i(g,k0)Wlk(g · k0, g · C)Dk

j (g,k0)∗. (3.8)

In the present chapter, we are interested in systems that have a discrete, n-fold
rotation symmetry Cn.3 In this case, we analogously find:

CnW(k0, C)C−1
n = W(g · k0, g · C), (3.9)

where g is now a rotation operator.
As an example of how we can use these symmetry properties, consider a

crystal with TRS in wallpaper group p3. The hexagonal Brillouin zone (de-
picted in Figure 3.2) hosts four time-reversal invariant momenta (TRIMs),
namely Γ and Mi (with i = 1, 2, 3; mapped onto one another by C3). The K-
points are equivalent and symmetric under C3 , but mapped onto the K′-point
under the action of the TRS operator T . Notice that T 2 = (C3)3 = −1, be-
cause of the spin-half nature of electrons. Unlike with any evenfold rotational
symmetry, there is no combination of C3 and T that maps a generic k-point
onto itself.4 Nonetheless, what we demonstrate here generalises to any discrete
rotational symmetry Cn.

The symmetry-based classification of crystalline topological insulators pre-
dicts two Z2 invariants5 for three-fold symmetric systems [36], which is what
we would like to extract using a smartly chosen series of Wilson loops. To do
so, consider a path Ch, which traces out an equilateral hexagon centered at Γ
with side length |k0|. Ch is invariant under both C3 and T , such that we obtain
the following constraints on Wh(k0) = W(|k0|, Ch):

TWh(k0)T−1 = Wh(k0); C3Wh(k0)C−1
3 = Wh(k0). (3.10)

We choose a gauge in which T = iσyK and C3 = eσziπ/3, and consider the U(2)
Wilson loop of a single Kramers pair. Wh(k0) can then be written as:

Wh(k0) =
(
a(k0) b(k0)
c(k0) d(k0)

)
. (3.11)

3The subscript n should not be confused with the band index!
4That is, neglecting trivial combinations such as C3

3T
2.

5This corrects a statement in [36]: although U(1) vortices at K cannot be moved, they can
be smeared in a C3 and time-reversal invariant fashion, leaving two rather than three Z2
invariants. Note that K is not a TRIM point, and there is no Kramers degeneracy there.
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The symmetry constraints on the matrix elements are given by:

a(k0) = d∗(−k0), b(k0) = −c∗(−k0),
a(k0) = a(g · k0), b(k0) = b(g · k0)e−2πi/3,

(3.12)

where g is the action of the three-fold rotation symmetry on k-space. The first
two constraints come from TRS, while the latter two arise from the three-fold
rotational symmetry. The Wilson loop under consideration only depends on
the length of k0, and since |g · k0| = |k0|, b must vanish in our chosen gauge.
This means c also vanishes, and d = a∗. Furthermore, since the matrix W(k0)
must be unitary, the a(|k0|) must be a pure phase eiθ(|k0|). The Wilson loop
operator thus reduces to:

Wh(k0) =
(
eiθ(|k0|) 0

0 e−iθ(|k0|)

)
= eiσzθ(|k0|). (3.13)

Because the Wilson loop operator is the exponent of only a single Pauli ma-
trix, its eigenvalues are always complex conjugates. This means that choosing
a series of concentric hexagonal Wilson loops, which are invariant under both
TRS and C3 , enforces that the resulting WLS will necessarily be ‘particle-hole’
symmetric in the sense that the Wilson loop eigenvalues always have the same
magnitude with opposite sign. The cyclic nature of the eigenvalues θj impose
that they will necessarily be degenerate at θ = 0 and π. Near these crossing
points (denoted by k×), we can expand the spectrum as

θ(|k ≈ k×|) = A+B(k − k×) + . . . (3.14)

with A ∈ {0,±π}. These crossings can only be gapped by adding additional
Pauli matrices that break either the T or C3 symmetry, or by having the
coefficient B vanish. The latter mechanism requires either two linear crossings
to merge and annihilate, or a complete vanishing of the k-dependence of θ(k).

Importantly, a full hexagonal Wilson loop contains redundant information
due of the symmetries of the system, such that not all protected degeneracies
in its spectrum are relevant. To extract meaningful topological information
from a concentric WLS based on these types of loops, we need to consider the
concentric WLS of a single fundamental domain of the BZ, as defined by the
symmetries.6 To determine what constitutes a fundamental domain, it is help-
ful to consider an infinitesimal Wilson loop, whose two eigenvalues describe the
U(2) Berry curvature Fj (j = {1, 2}), at an arbitrary point k in the BZ. The
eigenvalues are not constrained to be particle-hole symmetric. However, three-
fold rotational symmetry ensures that Fj (k) = Fj (g · k), while TRS imposes
that Fj (k) = Fj (−k)† = −Fj+1(−k). That is, the curvature eigenvalues of
either of the two states in the Kramers pair considered are three-fold symmet-
ric, and the curvature of one of the two bands is inverted with respect to the
6We’ve demonstrated the concept of a fundamental domain already, in Section 2.4.
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Figure 3.2: (a) Concentric Wilson loops covering the fundamental domain of a three-fold
rotationally symmetric BZ. (b) The corresponding four elementary spectra (schematic), with
topological indices indicated as w = (wFKM, wπ). Spectra with higher winding can be
reduced to elementary ones upon addition of a topologically trivial Kramers pair with w =
(0, 0).

other. It then follows that a series of concentric loops covering two neighbour-
ing sextants of the BZ captures all the symmetry-allowed information. From
this we conclude that the fundamental domain of a p3 system consists of one
third of the BZ, and the relevant topological information can be extracted from
a WLS as shown in Figure 3.2. More generally, for a system with (only) n-fold
rotational symmetry, the fundamental domain constitutes 1/nth of the BZ. As
a side note, considering the full Ch loops may in some cases be favourable for
minimising numerical error. You can determine the 1/3-BZ spectrum from the
full-BZ one by unfolding the Ch spectrum (to access eigenvalues of magnitude
larger than ±π) and dividing the resulting values by three. The same applies
to any T and Cn symmetric loop around Γ in other rotationally symmetric
groups.

Now that we have introduced the concept of a concentric WLS, let us sum-
marise their generic features. First, we’ve already mentioned that the eigen-
values of each of the loops in the spectrum come in pairs of opposite sign. A
convenient feature of the loops we consider is that – because they enclose a
finite region of the BZ – it is clear that they simply measure the U(2) Berry
curvature enclosed. Just like the U(1) Berry curvature for single bands, the to-
tal U(2) curvature in the BZ is quantised in multiples of 2π. A concentric WLS
will always trivially start at zero (no curvature enclosed), and end at a value
corresponding to ±(1/n)th of the total U(2) Berry curvature present in the BZ.
The total winding of the spectrum, times n, modulo 4π, therefore equals the
FKM invariant. Additionally, we have already noted that linear crossings at
θj = π can only be gapped by pair-wise annihilation. The parity of the number
of times the spectrum crosses θj = π therefore constitutes a second topological
invariant. Crossings through θj = 0 do not carry the same protection. To see
this, consider a spectrum starting and ending at θj = 0 with one additional
zero crossing in between. This spectrum may be reduced to a completely flat
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full-BZ U(2) WLS winding invariants U(1) vortex
naïve −12π +12π (wFKM, wπ) locations

0 12π 12π (0, 0) 0
2π 10π 14π (1, 0) Γ
6π 6π 18π (1, 1) M
8π 4π 20π (0, 1) Γ + M

Table 3.1: How the winding of a U(2) full-BZ concentric WLS is allowed to vary in p3.
Without changing the topological phase, curvature in the bulk of the BZ is allowed to change
by a multiple of 12π. On the left, we list three sets of topologically equivalent WLS windings
per phase. Because all Wilson loop eigenvalues come in conjugate pairs, only the absolute
value has any meaning. The middle column shows the associated invariants, and the right
column indicates the corresponding vortices in the U(1) Berry connection at the TRIMs, as
discussed in [36].

spectrum (θj = 0 for all loops in the spectrum) by transformations of the
Hamiltonian that do not break any symmetries or constraints. Because the
starting point of a concentric spectrum is fixed to θ = 0, this flattening does
not apply to π-crossings.

The right half of Figure 3.2 shows the four distinct types of WLS that one
may obtain with the concentric loops indicated on the left half of the figure. We
call these ‘elementary spectra’, because although spectra with higher windings
are possible, they do not describe distinct topological phases. This is because
in p3, U(2) curvature can be created or annihilated within a single Kramers
pair in steps of 12π without closing any gaps between distincts Kramers pairs.
This does not change the value of the FKM invariant, nor the parity of the
number of π-crossings in the 1/3-BZ concentric WLS. In Table 3.1 we list sev-
eral equivalent amounts of winding, and their corresponding pair of invariants,
listed as w = (wFKM, wπ). We also list the corresponding locations of U(1)
vortices at TRIM points, as envisioned in ref. [36]. Although the U(1) curva-
ture is ill-defined in the presence of TRS, and there is no way to measure these
supposed U(1) vortices, it is still a valid way of counting the number of distinct
topological phases.

So far, we have only considered a single occupied Kramers pair, but the same
method of concentric WLS works with multiple occupied Kramers pairs. U(2)
Wilson loops are only well-defined if all pairs of bands are separated from each
other, but as already mentioned above, we can in principle smoothly deform the
Hamiltonian (without closing the gap at EF or breaking any symmetries) such
that none of the Kramers pairs overlap, and then simply sum the invariants
obtained from the U(2) spectrum per pair. Because occupied Kramers pairs
are allowed by symmetry to hybridise, we note that they can also exchange
Berry curvature. We can imagine detecting this with a U(2) WLS by com-
paring the spectrum before and after allowing two separated Kramers pairs to
overlap, exhange curvature, and separate again. In this process, they can only
exchange discrete amounts of curvature, which is again easiest to count by go-
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ing to the framework of vortices in the U(1) Berry connection; each U(1) vortex
will add 2π worth of Berry curvature to the BZ (of which our 1/3-BZ concentric
WLS would pick up 2π/3). Such an exchange of curvature between occupied
Kramers pairs will never change the parity of the sum of the topological in-
variants, such that our classification is robust. This is in contrast to recently
identified ‘fragile topology’, which describes apparent topological features that
are not robust upon the adding of trivial bands [70, 96, 99, 106, 107]. Such fea-
tures have been identified in for instance (linear) WLS and so-called ‘Wannier
obstructions’, which means that occupied bands cannot be represented in terms
of exponentially localised Wannier functions [70, 96, 99, 106, 107]. Their lack
of robustness make them both conceptually less interesting, and significantly
less likely to be relevant for any practical applications.

3.2. The extended Haldane model
Let us now apply our method to a model Hamiltonian with p3 symmetry. As
explained in the previous section, we can describe all allowed topological phases
in C3-symmetric class AII systems by pairs of numbers w = (wFKM, wπ). The
first of these corresponds to the FKM invariant, equal to the parity of 3/(2π)
times the winding of the 1/3-BZ concentric WLS value, and a new invariant
given by the parity of the number of π crossings in the spectrum. The latter
has, to the best of our knowledge, not been identified in any model systems
on the basis of phenomenological observations, and the complete and rigorous
K-theory classification for TRS systems with three-fold rotational symmetry is
also not known.

The Hamiltonian we consider is a TRS generalization of the Haldane model
we introduced in Section 2.1, with hopping up to third-nearest neighbours [52,
108, 109]:

H =
(
H+

Hal 0
0 H−

Hal

)
H±

Hal =
∑

k

d1(k)τx + d2(k)τy + d±
3 (k)τz .

(3.15)

Here, τi are Pauli matrices for the sublattice degree of freedom, so that for
example τx = a†

σbσ + b†
σaσ, with a†

σ and b†
σ creation operators for electrons
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with spin σ on different sublattices. We define

d1 =
3∑
j=1

[t1 cos(k · aj) + t3 cos(k · cj)];

d2 =
3∑
j=1

[−t1 sin(k · aj) − t3 sin(k · cj)];

d±
3 =m±

6∑
j=1

t2(−1)j sin(k · bj).

(3.16)

The vectors aj , bj and cj connect first, second, and third-nearest neighbours.7
The inclusion of hopping integrals up to third-nearest neighbours allows for
phases of HHal with Chern numbers larger than one [108, 109]. To lift the de-
generacies between time-reversed states away from TRIMs,8 we add a Rashba-
type spin-orbit coupling connecting the time-reversed elements H±

Hal:

HR = iλR

∑
k

3∑
j=1

∑
σ ̸=σ′

(cj × s)σσ
′

z eik·c
ja†
σbσ′ + h.c. (3.17)

Here σ is a spin index, s is the vector of Pauli matrices, and a† and b† are again
creation operators for electrons on different sublattices. The extended Haldane
model Hamiltonian, Hp3 = H +HR, is invariant under TRS (T = iσy ⊗ τ0 K)
and three-fold rotational symmetry (C3 = exp

(
iπσz/3

)
⊗ τ0 ).

To begin with, in Figure 3.3 we plot the U(2) Berry curvature (Fj (k)) for
this model, for a specific set of parameters. As mentioned in Section 3.1, TRS
and C3 symmetry impose that the curvature is three-fold symmetric and has op-
posite signs in for the two states in a Kramers pair. We computed the curvature
by considering small Wilson loops surrounding a single ‘pixel’ in our plot, such
that we obtain two eigenvalues per pixel. In such a numerical calculation, we
cannot a priori assign a band label to each eigenvalue. However, by requiring
that the Berry curvature is a continuous function (within the resolution of our
computation), we can identify which sets of eigenvalues belong together.9 This
results in the figure, which beautifully demonstrates the symmetry-constrained
structure of the U(2) curvature.
7Explicitly: aj = (R3)j(0, 1)T, bj = (R6)j(

√
3, 0)T and cj = (R3)j(0,−2)T, where R3 and

R6 are three and six-fold rotation matrices, respectively, and the inter-atomic distance is
set to unity.

8This is not strictly necessary for determining the topological invariants from the concentric
WLS, which for p3 is valid regardless of the number of degenerate states within a single
Kramers pair of bands. However, it is useful for enlarging the gap in the finite-size compu-
tations described in Section 3.3.

9This is not always easy to do. It is often helpful to compare the magnitude of the U(2)
Berry curvature to a concentric WLS, in which this continuity condition is generally easier
to identify.
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Figure 3.3: U(2) Berry curvature of the extended Haldane model. The black hexagons
indicate the size of the BZ. The parameters chosen here correspond to the red circle in Figure
3.4a. The curvature was computed as a grid of 200 × 200 square Wilson loops covering the
area shown above.

We can compare this plot of the U(2) curvature to what we see in a concen-
tric WLS covering 1/3-BZ. The parameter set used in Figure 3.3 corresponds
to the red curve in Figure 3.4b. This shows that despite the presence of some
curvature in the bulk of the BZ, the total curvature sums to zero, such that the
WLS does not wind. In terms of topological indices, this phase corresponds to
w = (0, 0). By varying the second- and third-nearest neighbour hopping am-
plitudes (t2 and t3), we see that the total winding of the WLS changes. This
gives us two other topological phases, with topological indices w = (1, 0) (blue)
and w = (0, 1) (green). The fact that we find topologically non-trivial phases
in this model doesn’t come as a big surprise, because the underlying Haldane
models have non-zero Chern numbers for the same regions of parameter space
(aside from some changes induced by HR) [108, 109]; the Chern numbers equal
wFKM modulo 2. The full phase diagram of the extended Haldane model, along
with the magnitude of the Chern numbers of the individual H±

Hal Hamiltonians,
is shown in Figure 3.4a.

3.3. Edge states and corner charges
Now that we have demonstrated that we have a model with three distinct topo-
logical phases, one might wonder whether they host any interesting physical
features. The bulk-boundary correspondence requires edge states to be present
in finite-sized materials whose bulk Hamiltonian has a non-trivial FKM in-
variant. Those derived from subsystems with even (non-zero) Chern numbers
(wFKM = 0) on the other hand, have no protection against their edge states
being gapped. Additionally, a recent proposal suggests a bulk-corner corre-
spondence in rotationally-symmetric topological insulators [84]. Intuitively,
one expects a minimal requirement for topological corner charges to appear to
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Figure 3.4: (a) The phase diagram of the extended Haldane model Hp3 with t1 = 1, m = 0.1,
λR = 0.3. The red phase has trivial values for all topological indices, i.e. w = 0. The blue
and green phases are non-trivial with their respective w = (wFKM, wπ) indicated alongside
the magnitude of the Chern numbers for H±

Hal in each phase. In the white region the phase
could not be unambiguously determined due to (the proximity to) a gap closing. (b) The
concentric WLS over one third of the BZ for the three points indicated by corresponding
symbols in the phase diagram.

be the presence of a winding WLS – indicating the presence of a non-trivial
topology – with a trivial FKM invariant such that there are no protected edge
states. Such a situation corresponds precisely to the (wFKM, wπ) = (0, 1) phase
as seen in the extended Haldane model. To see if this phase indeed hosts cor-
ner charges, we consider the extended Haldane model both on a finite-sized
hexagon and in ribbon configurations, for the same sets of parameter values as
highlighted by symbols in Figure 3.4. These were computed using the Pybind-
ing Python package [110].

Let us consider the finite-sized case first, shown in Figure 3.5. As expected,
the w = (0, 0) phase is a trivial insulator, and exhibits no edge or corner
states. The (1, 0) phase hosts topological edge states, as expected for a non-
trivial FKM invariant. Interestingly, infinitely long ribbons with zigzag edges in
the (0, 1) phase exhibit fully localised corner charges for the chosen parameter
values. However, varying the parameters while staying within the same topo-
logical phase demonstrates that in some cases, these states begin to delocalise
around the edges of the hexagon. The corner charges are thus demonstrably
able to hybridise with other states, and are thereby not entirely robust.

We can gather more insight from ribbon band structures. A ‘ribbon’ is con-
structed by making the lattice finite in one real-space direction, while main-
taining an infinite lattice (or one with periodic boundary conditions) in the
other, leaving a system with well-defined k-values in only one dimension. The
honeycomb lattice structure of the model allows for two different (clean) termi-
nations, commonly known as armchair or zigzag edges, which are constructed
by breaking translational symmetry along the x or y directions, respectively.
This distinction is important to make, because the two atoms in the unit cell
(A and B) have different on-site energies (±m). While armchair edges host
equal numbers of each of the A and B atoms on the edge, the two types of
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Figure 3.5: Exemplary states of the extended Haldane model in a finite-sized hexagon with
armchair edges, for the three topological phases with parameter values as indicated by the
symbols in Figure 3.4. The (0, 0) phase hosts no in-gap states, while the (1, 0) phase hosts in-
gap edge states and the (0, 1) phase hosts in-gap corner states. The colour scale indicates the
local density of states, normalised to one in each panel. The states shown lie at E/t1 = −0.2,
0, and −0.05, respectively.

sites making up the zigzag edge will have different species of outermost atoms,
breaking this sublattice symmetry. Figure 3.6 shows numerically evaluated
one-dimensional band structures for systems with both armchair and zigzag
edges [110], where we considered widths of 49 and 28 unit cells respectively,
so that the ribbons have equal real-space width when the lattice geometry is
taken into account.

In all three topological phases, the bulk system is an insulator, while edge
states should show up in the ribbon geometry as in-gap states. In Figure 3.6,
we highlight the four states closest to E = 0 in red. In the w = (0, 0) phase,
these red states do not cross the gap and act like bulk states. For zigzag-edged
ribbons, two of these bands become almost completely flat, which is likely
due to charge localisation on the outermost atoms in the zigzag edges. This
is made possible by the different on-site energies on A and B-type atoms in
the unit cell. In contrast, the (1, 0) phase contains edge states crossing the
band gap, as expected for a system with non-trivial FKM invariant. Note
that these edge states are two-fold degenerate in the armchair-edged ribbons,
while this degeneracy is broken in the zigzag-edged ribbons. Finally, in the
(0, 1) phase, we find that the in-gap armchair edge states become gapped,
while the zigzag edge states remain. The energies of corner states seen for
this phase in Figure 3.5 lie within the spectral gap between the armchair edge
states. However, the corner state energies may be moved away from this small
spectral gap and hybridise with other states, allowing them to spread out along
the edges and potentially even into the bulk. We conclude from this that even
if the system has a gap in both the bulk and edge state spectrum, the existence
of corner charges additionally requires their energies to lie within this gap. A
non-trivial value of the newly identified invariant (wπ = 1) thus signals the
possibility of corner charges emerging, but whether they are realised in any
specific finite-sized system depends on its detailed configuration.
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An interesting area to further explore would be the protection of edge states
against gapping in the various ribbon geometries. For the (1, 0) phase, the
armchair edge states form a two-fold degenerate crossing, while the breaking
of sublattice symmetry in the zigzag-edged ribbon splits the edge states into
two non-degenerate crossings. Each such crossing contains two edge states,
localised on opposite edges of the ribbon. These crossings are thus protected
from opening a gap by the suppression of their overlap due to the large real-
space distance between edges. States in different crossings on the other hand,
are time-reversed partners, and cannot scatter into one another without break-
ing time-reversal symmetry. Edge states in the (1, 0) phase are thereby always
topologically protected.

In the (0, 1) phase, the number of zero energy crossings is doubled as com-
pared to the (1, 0) phase. In this case, each side of the ribbon hosts two pairs
of edge states connected by time-reversal symmetry. If two states on the same
side of the ribbon that are not time-reversed partners can be brought together
in kx-space, they can be gapped. This happens in the armchair geometry. For
the zigzag-edged ribbon in Figure 3.6, states with the same real-space local-
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isation that are not time-reversed partners are still separated in momentum,
and therefore not gapped. It may be possible to move the edge state crossings
in kx space by tuning model parameters until they meet and open a gap by
hybridising. Similarly, the addition of impurities that break the translational
symmetry along the ribbon edge and allow scattering without conserving kx
may also lead to a gap opening in the edge spectrum. In the presence of such
a gap, it may be expected that corner charges could be stabilised also for finite
hexagon-shaped systems with zigzag edges.

3.4. Discussion and conclusion
To conclude, we have shown that the concentric Wilson loop spectrum serves
as a simple diagnostic allowing the simultaneous evaluation of both the well-
known FKM invariant, and a new topological invariant given by the parity
of the number of π-crossings in the spectrum. The latter was predicted to
exist in rotationally symmetric systems based on K-theoretical arguments [36,
91], but this is the first demonstration of an explicit way to calculate it. We
demonstrated our method using an extended, time-reversal invariant version of
the famous Haldane model with three-fold rotational symmetry, but stress that
the approach is general and can also be applied to cases with other rotational
symmetries. In even-fold rotationally symmetric systems, we can complement
the concentric Wilson loop spectrum with LBO line invariants, which are given
by the eigenvalues of Wilson loops along linear high-symmetry lines in the BZ.
Combining rotations with additional symmetries, including non-symmorphic
ones, may be expected to further enrich the analysis.

In wallpaper group p3, we showed our new invariant (wπ) signals the possi-
bility of localised corner charges appearing in finite-sized samples. This may ex-
plain the recent observation of corner charges in specific rotationally symmetric
systems, which were suggested to be related to a form of fragile topology [84].
Because the parity of π-crossings in the concentric Wilson loop spectrum is
unaffected by the addition of topologically trivial Kramers pairs, the present
analysis in fact suggests the bulk-corner correspondence in these systems to
be stable and described by a true, rather than fragile, topological invariant.
While further investigation is required, the existence of this stable invariant is
not visible in the usual linear Wilson loop spectrum, underlining the utility of
the concentric Wilson loops.

With this, we conclude Part I of this thesis. We have demonstrated that a
non-trivial winding of the phase of Bloch wavefunctions in crystalline insulators
can lead to topological phases of matter, which can result in interesting effects
such as edge states and corner charges via a bulk-boundary correspondence.
Historically, our understanding of topology has been predominantly based on
the concepts of a geometric Berry phase and Chern number, which are valid
for isolated electronic bands. In this chapter, we have focussed on how to
generalise these concepts using a non-Abelian form of the Berry connection
and U(2) Wilson loops. Additionally, this brings us closer to a more complete
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understanding of the role of lattice symmetries, which can strongly constrain
the allowed structure of the (U(1) and U(2)) Berry curvature.

Of course, we are far from done. The method of concentric Wilson loops
presented here generalises to all rotational symmetry groups, but we note that
in the presence of an even-fold rotational symmetry, the picture of U(1) vortices
as introduced in ref. [36] is complicated by the fact that vortices are allowed
to sit at any (accidental) degeneracies within a single Kramers pair, in the
bulk of the BZ. In p3 this isn’t an issue, because TC3 doesn’t map a k-point
back onto itself, and therefore one can only introduce or remove two U(1)
vortex-antivortex pairs at a time within the fundamental BZ domain; this only
allows changes of 12π to the full-BZ WLS winding. In any wallpaper group
with C2 symmetry, the fundamental domain can host single extra U(1) vortex-
antivortex pairs, which means the winding in a full-BZ concentric WLS of an
n-fold rotationally symmetric system is allowed to change by 2πn. While this
won’t affect the FKM invariant nor LBO invariants along high-symmetry lines,
an extra degeneracy in the BZ bulk may change the value of wπ. As it stands,
our new invariant is thus only well-defined in even-fold rotational wallpaper
groups in the absence of accidental degeneracies in the BZ bulk. Conversely,
one can use a concentric WLS to detect such extra degeneracies, by comparing
the FKM and LBO invariants with the winding of the spectrum.

An important next step is to find a way to circumvent such restrictions.
Ideally, we would like to have a diagnostic that is directly applicable to the
bandstructure of any real material, regardless of how many band crossings
there are within individual Kramers pairs and between Kramers pairs. While
we can easily compute a full U(Nocc) WLS, the symmetry-imposed restrictions
on the eigenvalues are much less powerful than the restrictions on U(2) spec-
tra. An important future direction is thus to determine what, if any, topological
invariants we can extract from a U(Nocc) spectrum. A different, complemen-
tary direction is to generalise the present method to wallpaper groups with
additional symmetries present, such as reflections and inversion symmetry. Us-
ing the same analysis of symmetry constraints as presented in Section 3.1, we
expect that concentric WLS will be useful in all two-dimensional crystals. Fi-
nally, we would like to generalise our methods to all 230 three-dimensional space
groups. Intuitively, one might expect that for a system in e.g. space group P3,
one could simply compute the U(2) concentric WLS for a series of different
kz-values; however, away from high-symmetry planes (kz = 0 and π), the loops
will no longer be symmetric under TRS, such that we should be careful when
considering the symmetry restrictions. More generally, the assumption that
a three-dimensional quantum spin Hall (QSH) insulator may be built up by
stacking two-dimensional QSH planes also has some caveats, as demonstrated
recently in ref. [111].

All in all, we have found a new topological invariant, which completes the
topological classification of wallpaper group p3. While the story is far from
being done, the general approach of searching for symmetry restrictions on the
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(U(2)) Berry curvature is a clear way forward in this field. Importantly, the
use of Wilson loops precludes the need for any gauge-fixing of Bloch states in
the BZ (which was an issue for invariants derived from so-called ‘partial polari-
sations’ [65, 95]), and establishes a clear, intuitive link between the symmetries
of the system and Berry curvature. This paves a way forward in which it is
easier to define and compare different types of invariants.
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4
Introduction to charge

order
In Part I of this thesis, we considered the influence of lattice symmetries on
the topological phases of electrons in a crystal. The approach used there as-
sumes that electrons do not interact among themselves, nor do they interact
directly with the vibrational modes of the lattice (collective excitations known
as phonons). In this Part, we will move away from topology and consider
electronic ordered phases made possible by such interactions. Unlike topolog-
ical phases, of which there may be many within a single symmetry class, the
phases we consider here are always delineated by phase transitions that change
the symmetries of the system. Specifically, the transition to a charge-ordered
phase always breaks the translational symmetry of the lattice.

Density waves of charge, spin, or orbital occupation play a central role in de-
termining the physical properties of many materials, ranging from elements [7,
112], to cuprate high-TCDW superconductors [113–115], pnictides [116, 117],
complex oxides [118–120], and (multi)ferroics [17, 20, 23, 121]. Understanding
the mechanisms driving density wave formation is important for understanding
their interplay with other types of order, and is key in tuning phases of matter
to obtain ideal properties for applications [122–124].

Before moving on to two specific case studies of charge density waves (CDWs)
in a real material in the next two chapters, this chapter will first introduce the
general concept of charge order, and how to describe it. Throughout this chap-
ter, we will focus on the most common mechanism underlying CDW order,
based on the combination of an electronic instability and atomic distortions
cooperatively driving the CDW formation. To do so, we start by introducing
the Peierls model, in Section 4.1. After a brief discussion of the limitations of
this model, we continue in Section 4.2 by generalising the Peierls model to a
set of models with more than one atom per unit cell. Doing so, we demonstrate
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what features allow for CDWs that go beyond the simple Peierls description.
Finally, in Section 4.3, we move on to introducing field-theoretical methods
that can be used to (quantitatively) describe charge order. It is these methods
that we will use in Chapters 5 and 6.

4.1. The Peierls model
Let us begin with the most basic model for charge order, named after Rudolph
Peierls. This model is based on the simplest possible one-dimensional (1D)
crystal, which Peierls found to be inherently unstable to the formation of a
CDW [125, 126]. That is, electrons in this 1D lattice, when coupled to phonons,
prefer to spontaneously break the lattice symmetry to form plane waves of
charge density. The transition to the CDW state is associated with the opening
of an energy gap around the Fermi level in the electronic spectrum, as well as
the softening (energy going to zero) of a phonon mode at the wavevector1 of
the CDW.

The 1D lattice considered by Peierls has a single atom per unit cell, and lat-
tice spacing a. It is depicted in Figure 4.1. From a simple tight-binding model
in which electrons are allowed to tunnel from one atomic site to a neighbouring
atom, we obtain the ‘bare’ electron Hamiltonian2

He =
∑
j

[
µ c†

jcj − t
(
c†
jcj+1 + c†

j+1cj

)]
. (4.1)

Here, c†
j creates an electron on site j, µ is the on-site potential and t is

the hopping amplitude. We can diagonalise this Hamiltonian by applying the
Fourier transform cj = (1/

√
N)
∑
k e

ikjack, from which we obtain the bare
electron energies

ϵk = −2t cos(ka) + µ. (4.2)
From here on, we will set µ = 0, such that the single electronic band is half-filled
and crosses the Fermi level (EF) at kF = ± π

2a .
Above, we implicitly used the Born-Oppenheimer approximation, in which

the atomic cores that make up the lattice are assumed to be unaffected by the
motion of electrons, and so remain stationary. Conversely, we can consider the
classical equation of motion for the atomic cores from a simple ball-and-spring
model:

M
∂2uj
dt2

= K
[(
uj+1 − uj

)
+
(
uj−1 − uj

)]
, (4.3)

with M the mass of the atoms, K the effective spring constant of the chemical
bonds connecting them, and uj the displacement along the chain of atom j.
1In 1D, the CDW technically has a wavenumber rather than a wavevector. Because much
of the present discussion will generalise to systems of higher dimensions, I prefer to use the
term ‘wavevector’ throughout.

2By ‘bare’ we mean non-interacting, free. In the presence of interactions, quasiparticles get
‘dressed’ and fields get ‘renormalised’.
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Figure 4.1: The 1D atomic chain considered in the Peierls model. This system hosts both
electrons and phonons. If we first neglect the interaction between the two, we can derive
a ‘bare’ electron dispersion from a tight-binding model (left) and a bare phonon dispersion
from a classical ball-and-spring model (right). 1 rlu = 2π/a is a reciprocal lattice unit.

We can solve this using the Ansatz uj = u eiqja−iΩqt, by which we find the bare
phonon dispersion3

Ωq = ω0

∣∣∣sin(qa2 )∣∣∣, (4.4)

where ω0 = 2
√
K/M . Throughout this thesis, we will use k to denote electron

momenta, and q to denote phonon (or other bosonic) momenta.
Since atomic displacements will directly affect the likelihood of an electron

to tunnel from one atom to another (described by t), we expect electrons and
phonons to couple to one another. This coupling can be described by a Fröhlich
Hamiltonian [128, 129]:

H =
∑
k

ϵkc
†
kck +

∑
q

ℏΩqb†
qbq + 1√

N

∑
k

∑
q

gk,k+qc
†
kck+q(b

†
q + b−q). (4.5)

The first term describes the bare electrons with creation operators c†
k, the

second the bare phonons with creation operators b†
q, and the final term describes

the interaction, assuming N lattice sites per unit length and electron-phonon
coupling (EPC) matrix element gk,k+q. The interaction can be understood
as follows: upon annihilating a phonon with wavevector −q, or upon creating
a phonon with wavevector q, an electron will scatter from wavevector k + q
to a state at wavevector k, with scattering amplitude gk,k+q. Generically,
the (largest) phonon energy will be two orders of magnitude smaller than the
bandwidth of the electronic band (4t), such that phonons can only scatter
electrons in states near EF.
3The bare phonon dispersion can also be derived quantum-mechanically, giving the same
result. See for instance ref [127], Chapter 1.
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Now that we have a Hamiltonian, we can use mean-field (MF) theory to
determine how electrons and phonons are affected by the coupling [128, 130,
131]. To do so, we treat the electrons as living in the MF background provided
by the phonons, and vice versa. Note that this kind of treatment assumes gk,k+q
to be small, i.e. we are in the weak-coupling regime. Because we know that
only the electronic states near the Fermi level can be scattered by phonons, we
consider the limit in which only the phonons with momentum Q = 2kF = π/a
play a role.4 This corresponds to taking the zero-temperature limit. We then
obtain two new MF Hamiltonians as follows:

HMF
e =

∑
k

ϵkc
†
kck + 1√

N

∑
k

gk,k+Qc
†
kck+Q(⟨b†

Q⟩ + ⟨b−Q⟩);

HMF
ph =

∑
q

ℏΩqb†
qbq + 1√

N

∑
k

gk,k+Q⟨c†
kck+Q⟩(b†

Q + b−Q).
(4.6)

Above, ⟨. . . ⟩ indicates the expectation value.
HMF

e is straightforwardly diagonalised as follows:

E±(k) =
ϵk + ϵk+Q

2 ±

√(
ϵk − ϵk+Q

2

)2
+ |∆|2, (4.7)

where we have identified the order parameter

∆ = 1√
N
gk,k+Q(⟨b†

Q⟩ + ⟨b−Q⟩). (4.8)

Conventionally, one actually neglects the k-dependence of gk,k+Q, such that
the order parameter is – as is expected – a simple scalar. We will return to this
point later. When plotting E±(k), it is immediately clear that the two bands
correspond to the upper and lower halves of ϵk and ϵk+Q, with an energy gap
of size 2∆ at EF (see Figure 4.2). Opening a gap here corresponds to an
overall lowering of energy, as (at low temperatures) occupied electronic states
are pushed down in energy while only unoccupied states are pushed up.

To diagonalise the MF phonon Hamiltonian, we consider HMF
ph (q=Q). (The

remaining q-values of the phonon dispersion remain unchanged from the bare
phonon Ωq.) Using the transformation bQ = aQ + α with α some scalar, we
can rewrite it as

HMF
ph (q=Q) = ℏΩQ(a†

QaQ − α2), (4.9)

where we have identified

α = −
∑
k gk,k+Q⟨c†

kck+Q⟩
√
NℏΩQ

. (4.10)

4In this special case of the half-filled chain, Q = −Q.
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Notice that by coupling to electrons, the ground state energy is reduced. Im-
portantly, because we have identified a diagonal basis in terms of the number
of phonons (|n⟩ = (n!)− 1

2 (a†
Q)n |0⟩), we can now evaluate

⟨b†
Q⟩ = ⟨a†

Q⟩ + α =
∑
n ⟨n| a†

Q |n⟩ e−βEn∑
n e

−βEn
+ α = 0 + α, (4.11)

and similarly ⟨b−Q⟩ = α. Filling this result back into Equation 4.8, we find

∆ = − 2√
N
gk,k+Q

∑
k′

gk′,k′+Q⟨c†
k′ck′+Q⟩, (4.12)

or, if we neglect the k-dependence of g:

∆ = − 2√
N
g2
Q

∑
k′

⟨c†
k′ck′+Q⟩ = −2g2

Q⟨ρQ⟩. (4.13)

Here, ρQ ≡ 1√
N

∑
k c

†
kck+Q is the Fourier transform of the real-space (charge)

density operator ρ(x) = c†
xcx. The size of the gap in the electronic spectrum

thus correlates with the expectation value of a periodic modulation of charge
density with wavevector Q. This is also reflected in that our derivation demon-
strates that ⟨b†

QbQ⟩ = α2 ̸= 0 at zero absolute temperature.
Putting all we’ve seen together, we conclude that inducing a periodic mod-

ulation of charge density – a CDW – with the specific wavevector Q = 2kF will
result in the opening of a gap around EF in the electronic spectrum, thereby
lowering the total energy of the system. Importantly, the wavevector of the
CDW is determined by the Fermi momenta; if we would change the chemical
potential µ, the Fermi momenta would change, and the system would natu-
rally prefer a CDW with a different wavevector.5 The formation of the CDW
is driven by EPC, and as such it is always accompanied by a periodic lattice
distortion. While everything so far has been derived for T = 0 K, we note that
at the CDW ordering temperature TCDW, the energy of the phonons dressed by
electron-phonon interactions will go to zero for wavevector Q. At this temper-
ature, the energy gain of forming a CDW exactly counters the elastic energy
cost of displacing atoms in the periodic lattice distortion. This lowering of the
dressed phonon energy is called the Kohn anomaly [132], an effect we return
to in Section 4.3.1. We summarise all of this in Figure 4.2.

This concludes the MF treatment of the Peierls model. It is widely assumed
that the general mechanism behind the CDW formation in the Peierls model is
the same as what drives CDW formation in many real materials. To make such
a generalisation, it is important to be aware of the specific assumptions made
in the present model. For one, we implicitly assumed here that the EPC was
5In a MF treatment, going away from half-filling complicates the maths slightly, but the
results are essentially the same. See for instance refs. [128, 130, 131].
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Figure 4.2: The formation of a charge density wave (CDW) and associated periodic lat-
tice distortion (PLD) results in a doubling of the unit cell, and a gap opening in the elec-
tronic spectrum (E±(k)). At the CDW ordering temperature, the dressed phonon energy
at wavevector Q goes to zero. This is not captured by the zero-temperature MF treatment
presented thus far; we will derive this phonon softening effect in Section 4.3. 1 rlu = 2π/a.

weak, such that despite the electron-phonon interactions, we have (relatively)
long-lived and well-defined quasiparticles. Otherwise, our second-quantised op-
erators would no longer be meaningful. Importantly, we also assumed here that
the EPC matrix elements gk,k+q don’t depend on momentum k. We will demon-
strate in Section 4.3 and Chapter 5 that this is a crude approximation to make,
and certainly doesn’t hold generically – even for ‘weak-coupling’ materials!

Second, the Peierls model is purely one-dimensional. This means there are
only two Fermi momenta, which can always be connected by a single wavevector
Q. However, ungapped systems in two dimensions will have one or more lines
of Fermi momenta, and three-dimensional metals have a Fermi surface (FS,
which may consist of multiple parts). From here on, we will call the set of
Fermi momenta a FS, regardless of its dimensionality. For phonons of a single
wavevector Q6 to be able to scatter electrons from a significant number of
states at the Fermi level to another state at the Fermi level requires the FS
to have large parallel sections. If this is so, then the FS is nested, with Q the
nesting vector. While (partial) nesting occurs in a small subset of materials,
it is never perfect. This means that in real materials there is a more delicate
energy balance at play – the total energy gained by opening a (localised) gap
should be compared to the elastic energy cost of displacing atoms.

Another feature that makes the Peierls model so simple is that it assumes
that the only interaction is EPC. However, electron-electron interactions may
also play a role. That Coulomb interactions might be relevant for charge or-
6Now an actual wavevector.
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der is clear from the idealised example of a half-filled 1D chain with nearest-
neighbour Coulomb interactions (without EPC). In this system – the Coulomb-
interaction analogy to the Peierls model – electrons will localise on every second
atom, forming a so-called Mott insulator. (Notice that in this case, as there
is no coupling to phonons, the charge order has no associated periodic lattice
distortion.) In Chapter 6, we will see that electron-electron interactions are
also important to consider in real, low-dimensional materials. The low dimen-
sionality is relevant, because when there is less material to screen the electric
field, the Coulomb interaction will be stronger. One can imagine that the field
travels through the vacuum or air outside the material, bypassing the screening
effect of all the electrons bound to the material.

Lastly, the Peierls model only has a single site per unit cell. Most materials
are composed of more than one type of element, and even those made of a
single type of atom may have more than one type of valence orbital. Orbital
order, in which a CDW is accompanied by a modulation of orbital occupation
throughout the crystal, has been shown in various materials, including elemen-
tal chalcogens [7]. In this specific example, the combined charge and orbital
order can be understood as arising from interactions between three concomi-
tant CDWs, each involving charge transfers between specific orbital species in
neighbouring unit cells. More generally, systems with multiple atomic sites
per unit cell may host charge (and orbital) order that involves specific charge
transfers within a unit cell, rather than between unit cells. Furthermore, the
anisotropic nature of atomic orbitals means that such orbital-specific charge
transfers may naturally lead to atomic displacements that do not align with
the CDW propagation direction; this is evidenced by e.g. TiSe2 [133]. The
Peierls model does not provide a clear roadmap for treating charge order in
multi-band systems; we will explore this in the following section.

4.2. Multi-band charge order
Having discussed charge order in the simplest possible 1D crystal, let us con-
sider what can change upon going to more complex lattices. We’re not inter-
ested in performing extensive calculations, but we aim to obtain a qualitative
picture by systematically building up from the Peierls model. Here, we will not
discuss the role of the momentum- and orbital structure of the EPC, as this
will be discussed at length in Section 4.3 and Chapter 5. We will also not delve
into the role of dimensionality, nor interactions beyond EPC. Instead, we will
demonstrate that even in simple 1D lattices, a single CDW may arise which
involves charge transfers unlike the plane-wave form seen in the Peierls model.

To begin with, we can consider coupling several vertically aligned Peierls
chains together, as shown in Figure 4.3. Assuming all atoms to be identical,
and to host a single type of (isotropic) orbital, the non-interacting tight-binding



4

54 4. Introduction to charge order

Hamiltonian for such a system with n coupled chains is given by:

He =
∑
j

n∑
ν=1

[
µ c†

j,νcj,ν − t1

(
c†
j,νcj+1,ν + c†

j+1,νcj,ν

)]

+
∑
j

n−1∑
ν=1

[
−t2

(
c†
j,νcj,ν+1 + c†

j,ν+1cj,ν

)]
,

(4.14)

where we assumed that electrons can only hop to their nearest neighbours. j
labels the site index along the chains (i.e. the unit cell), ν labels the different
chains (i.e. the site within the unit cell), µ indicates the on-site potential, t1
describes hopping along the chains and t2 describes interchain hopping. Notice
that for n = 1, the above reduces to Equation 4.1. Taking the Fourier transform
of this Hamiltonian, one obtains a tridiagonal n × n Bloch Hamiltonian with
ϵk = µ− 2t1 cos(ka) on the diagonal, sandwiched between elements of −t2:

He =
(
c†
k,1 c†

k,2 c†
k,3 · · ·

)


ϵk −t2 0 · · ·

−t2 ϵk −t2
. . .

0 −t2 ϵk
. . .

... . . . . . . . . .




ck,1
ck,2
ck,3

...

 (4.15)

Diagonalising these matrices, the bare electronic spectrum of n coupled Peierls
chains has n bands identical to that of the original Peierls chain, offset from
one another in energy by some factor proportional to t2. To simplify a direct
comparison to the previous section, we’ll only consider the half-filled case by
setting µ = 0 from here on. As can be seen in Figure 4.3, we find that no
matter how many Peierls chains we couple,7 states at the Fermi level always
come in pairs, lying exactly Q = π/a apart. In direct analogy to the original
Peierls model, this suggests that these systems are susceptible to the formation
of a CDW with wavevector Q.

While we won’t perform a full MF calculation as in the previous section,
we will use intuition from what we’ve seen so far to predict a lattice distortion
corresponding to the type of CDW we expect. For any such distorted lattice, we
can again use a tight-binding model to find the electronic spectrum.8 Any valid
CDW Ansatz must open a gap around the Fermi level. In the present case, we
know to expect a CDW with period 2, such that the unit cell must double. If we
simply assume a Peierls-like CDW will form in every chain, we can obtain the
CDW band structures shown in the bottom two panels of Figure 4.3. The tight-
binding Hamiltonians for the distorted lattices are derived in Appendix A.1.
Indeed, we find that the entire FS is gapped out!
7We assume here that n is small enough for the system to still be effectively one-dimensional;
otherwise we’d have to consider the shape of the two-dimensional FS.

8Notice that this approach only works for commensurate CDWs.



4.2. Multi-band charge order

4

55

… …

… …

a

b-t1 -t2

… …

… …

… …

-3

-1

0

1
2

-2

3

0.50.250-0.25-0.5
k (rlu)

En
er
gy

/t
1

Bare band structure

-3

-1

0

1
2

-2

3

0.50.250-0.25-0.5
k (rlu)

En
er
gy

/t
1

CDW band structure

-3

-1
0
1
2

-2

3

0.50.250-0.25-0.5
k (rlu)

En
er
gy

/t
1

Bare band structure

-3

-1
0
1
2

-2

3

0.50.250-0.25-0.5
k (rlu)

En
er
gy

/t
1

CDW band structure

Figure 4.3: Two (left) and three (right) vertically aligned, coupled Peierls chains. At half-
filling, Fermi momenta of the bare electronic spectra (highlighlighted by green shapes in the
middle plots) always come in pairs, lying exactly Q = π/a apart. This means a single period-
2 CDW can gap out the entire Fermi surface, in direct analogy with the Peierls model. The
grey circles indicate the CDW-induced periodic lattice distortion that was used to calculate
the band structure in the CDW phase (bottom plots). The plot parameters are t1 = t2 = 1;
µ = 0; 1 rlu = 2π/a.

One thing to notice is that neighbouring chains necessarily host period-2
CDWs that are π out of phase. The alternative Ansatz where all chains host
in-phase distortions does not open a gap at EF.9 This means that as soon as
there is more than one site per unit cell, the charge-density modulations in
these Peierls-like models are no longer described by an overall, single scalar
plane-wave modulation as depicted in Figure 4.2. Instead, each chain has its
own distinct CDW modulation. That the neighbouring chains prefer to have
CDWs that are out of phase with one another shouldn’t come as a big surprise,
considering that a phonon of wavevector Q will scatter electrons from one band
into another (note the pairwise matching shapes in Figure 4.3). The bands
consist of (orthogonal) linear combinations of the original atomic orbitals. In
9This alternative Ansatz does open gaps, but above and below EF in the middle of each
individual band; these are precisely the regions within each band that are connected by Q.
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the case of n = 2, the original two bands correspond to the dispersions of the
bonding and antibonding states within each unit cell; the eigenvectors of the
two bands are (1/

√
2,±1/

√
2), independent of momentum k. A Q-phonon will

thus always scatter an electron from a bonding to an anti-bonding state, or vice
versa. This naturally results in a CDW displacement in opposite directions for
the two types of atom in the unit cell. For n = 3, it’s slightly more convoluted
– the middle band has eigenvector (1/

√
2, 0,−1/

√
2), while the outer bands

have eigenvectors (1/2,±1/
√

2, 1/2) – but the principle remains the same.
One pertinent question is to what extent this type of order deviates from

the standard Peierls description. In Section 4.1, we started with the Fröhlich
Hamiltonian describing EPC, and found that the MF CDW order parameter
∆ is proportional to

∑
k⟨c†

kck+Q⟩. In multiband systems, the Fröhlich Hamil-
tonian generalises to

H = He +Hph + 1√
N

∑
k,q,ν,λ,η

gν,λ,ηk,k+qc
†
k,νck+q,λ(b†

q,η + b−q,η), (4.16)

where we have introduced the electron band labels ν, λ and the phonon mode
label η. Note that here, the c and b operators indicate the relevant electron and
phonon normal modes. That is, they represent operators for those orthogonal
linear combinations of orbitals and atomic displacements that one obtains after
diagonalising the Bloch Hamiltonian and dynamical matrix, respectively.

Importantly, the relevant electron-phonon interaction may now consist of
pairings of different species of electrons and phonons, each with their relevant
scattering amplitude gν,λ,ηk,k+q. This is something not described by the overly
simplified Peierls model, and not easy to systematically describe within the
current framework. For the specific models considered above, however, we can
easily determine the relevant electronic modes. For the Peierls-like models
described by the Hamiltonian in Equation 4.14, we can relate each band with
a specific combination of site-specific orbitals using the eigenvectors. For n=2,
the interband scattering generated by a wavevector Q is described by(

1√
2
c†
k,1 + 1√

2
c†
k,2

)( 1√
2
ck+Q,1 − 1√

2
ck+Q,2

)
+
(

1√
2
c†
k,1 − 1√

2
c†
k,2

)( 1√
2
ck+Q,1 + 1√

2
ck+Q,2

)
= c†

k,1ck+Q,1 − c†
k,2ck+Q,2.

(4.17)
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For n=3 we obtain(
1√
2
c†
k,1 − 1√

2
c†
k,3

)( 1√
2
ck+Q,1 − 1√

2
ck+Q,3

)
+
(

1
2c

†
k,1 + 1√

2
c†
k,2 + 1

2c
†
k,3

)(1
2ck,1 − 1√

2
ck,2 + 1

2ck,3
)

+
(

1
2c

†
k,1 − 1√

2
c†
k,2 + 1

2c
†
k,3

)(1
2ck,1 + 1√

2
ck,2 + 1

2ck,3
)

= c†
k,1ck+Q,1 − c†

k,2ck+Q,2 + c†
k,3ck+Q,3.

(4.18)

On the electronic side of things, it is thus immediately clear that for such a
system of n coupled Peierls chains, the order parameter will be proportional to∑

n

(−1)n+1
∑
k

⟨c†
k,nck+Q,n⟩. (4.19)

Although the bands are of mixed orbital composition, phonons effectively only
couple electronic states within the same chain. As such, all atomic displace-
ments in the periodic lattice distortion will lie along the chain direction.

What we’ve demonstrated so far is that adding more atoms to a unit cell
naturally generates multiple concomitant CDWs, but it does not automatically
lead to any physics that goes ‘beyond Peierls’. That is, the charge transfers
within each chain are each exactly the same as those in the original model.
It is no surprise that we have not found anything interesting, because in the
multiband models considered above all sites within a unit cell were essentially
equal to one another. We will now consider a different minimal model, in which
we impose an explicit difference between different types of sites.

Our new minimal model consists of three coupled Peierls chains, but with
several key adjustments compared to n = 3 model discussed above. First, the
middle chain is laterally shifted with respect to the outer chains, such that the
three chains form (the beginnings of) a triangular lattice. Second, all sites on
the outer chains host a single px orbital, while the sites on the middle chain
host dxy orbitals. This results in a sign difference between horizontal hopping
t1 and interchain hopping t2. Lastly, we impose that the d-orbital sites have a
positive on-site energy µd = 2, and p-orbital sites have negative on-site energy
µp = −2. This enforces that charge transfer between the outer and middle
chains becomes favourable. The bare tight-binding Bloch Hamiltonian of this
new ‘diamond-chain’ model is given by

he(k) =

 ϵk,p −t2(1 + eika) 0
−t2(1 + e−ika) ϵk,d −t2(1 + eika)

0 −t2(1 + e−ika) ϵk,p

, (4.20)

where ϵk,p = µp−2t1 cos(ka) and similarly for ϵk,d, and we used the same basis
as before. This gives us a strongly orbitally anisotropic, semimetallic bare band
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Figure 4.4: A minimal model for beyond-Peierls charge order. The triple-chain has px

orbitals on the outer chains, and dxy orbitals on the middle chain. We impose an on-site
potential of µp = −2 on the p-orbital sites, and µd = 2 on the d-orbital sites. The hopping
parameters are t1 = −1, t2 = 1. As can be seen on the top right, the bare band structure
has a state of 100% d-orbital character at k = π/a, and a p-orbital state at k = 0. We can
impose different period-2 CDW distortions. Two interesting ones which both open a gap at
EF are shown in the bottom two rows of the figure. On the left, we highlight the primary
atomic displacement directions by red arrows, as well as short (bonding, dark blue) and long
(anti-bonding, light blue) d-p bonds. As before, 1 rlu = 2π/a.

structure, as shown in the top right panel of Figure 4.4. A single (antibonding)
band of p-orbital character touches EF from below at k = 0, while a single band
of d-orbital character touches EF at k = π/a. Notably, the two kF lie exactly
Q apart, as in all models considered above, and a single period-2 CDW should
be able to gap out the entire FS. Considering the nature of the interband
scattering, we expect that the main charge displacements in this CDW will
relate to the interchain p-d bonds, rather than the intrachain bonds that were
relevant in the Peierls-like models. Additionally, due to the antibonding nature
of the relevant p-orbital band, we expect the atoms in the upper and lower
chains to respond to the CDW by displacing in opposite directions.
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Within these expectations, we consider two CDW Ansatzes, that are both
found to open a gap at EF. In the first of of these, the primary structural
change is that the atoms in the middle chain wiggle up and down, displacing
perpendicular to the chain direction (red arrows in Figure 4.4).10 Interest-
ingly, this implies that there is no net charge displacement between unit cells.
Considering the direction of charge transfer between atoms (from light blue to
dark blue bonds), we label this first Ansatz as a (transverse) ‘dipole CDW’.
The second CDW Ansatz we consider is one in which the d-orbital sites remain
stationary, while the p-orbital sites wiggle up and down in a π-out-of-phase
fashion. Interestingly, the resulting pattern of charge transfers resembles a
quadrupole around the d-orbital sites. And as in the dipole CDW case, there
is no net displacement of charge between unit cells. The Hamiltonians for the
distorted lattices are derived in Appendix A.1.

In these models, we are not making any claims as to what the preferred
charge order will be. Of the two Ansatzes considered, the dipole CDW would
be more energetically favourable, as it opens a larger gap in the electronic
spectrum. Intuitively, these atomic displacements also make more sense, seeing
as the d-ortibal states lie at k = π/a in the bare band structure, which is
suggestive of finding a ‘breathing mode’ in these atoms rather than in the p-
orbital sites. However, it is interesting to note that, in principle, quadrupolar
charge displacements are possible, and do open up a gap.

To make the difference with the earlier models more concrete, let us once
again consider what states are being scattered between. The orbital composi-
tion of the bands is k-dependent, but the relevant states at EF are thankfully
very simple. The interband scattering at EF is described by(

c†
Q,2

)( 1√
2
c0,1 − 1√

2
c0,3

)
= 1√

2
c†
Q,2c0,1 − 1√

2
c†
Q,2c0,3.

(4.21)

Importantly, this demonstrates that the order parameter for this system is
purely proportional to charge transfers from the p-orbitals to the d-orbitals.
Such inter-chain transfers lie beyond the scope of the Peierls model.

We’ve now seen examples of two extremes: model systems hosting CDWs
that are entirely Peierls-like, and systems that fall entirely outside the scope
of the Peierls model. Real materials will generically lie somewhere in between
these two extremes. Going from the present minimal models to treating a real
material is non-trivial, but this serves as a reminder to be cautious of assuming
we fully understand a phenomenon purely based on a single toy model.

As an example of non-trivial charge order in a real system, there is evidence
that both dipolar and quadrupolar charge order are realised in the material 1T -
10In response to this, the p-orbital sites will also displace along the chain direction. However,

this is a secondary effect that we do not directly consider.
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TiSe2. Its near-EF band structure closely resembles that of our diamond-chain
model: it has Se p-orbital states at k = 0, and Ti d-orbital states at the edge
of the Brillouin zone. Our model thus serves as a 1D approximation of the 3D
lattice of TiSe2. Excitingly, a Ginzburg-Landau theory for this material dating
from 2011 predicts that in going from high to low temperature, the material
first transitions to a transverse dipolar CDW state – in analogy to the one in
our minimal model but with three symmetry-related CDW vectors – followed
by a second transition to a state with quadrupolar charge displacements on top
of the dipolar ones [133]. The quadrupolar phase breaks inversion symmetry,
because of which it has commonly been dubbed ‘chiral’.11 The transition to this
phase can be understood to arise due to interactions between the three con-
comitant (dipolar) CDWs [133], an effect that is clearly not captured by our 1D
minimal model. While the TCDW ≈ 200 K transition to (2×2×2) dipolar charge
order has been detected experimentally with many different probes going back
to the 1970s (see e.g. [136–139]), the existence and chiral nature of the second
transition has been a matter of debate in the last decade [135, 140–143]. How-
ever, recent experimental results based on the photogalvanic effect [144] and
resonant X-ray scattering [145] confirm the existence of this second transition
to a state with chiral orbital order in TiSe2.

Of course, one could argue that TiSe2 is something of an outlier. Its
semimetallic band structure is qualitatively very different from that of most
CDW materials, which are generically metallic at high temperatures with many
states crossing the Fermi level. On top of this, the CDW transition in TiSe2
has been shown to be partially driven by the formation and condensation of
excitons (bound electron-hole pairs) which are made possible by this same un-
usual band structure [146, 147]. However, there are plenty of examples of more
‘Peierls-like’ CDW materials that do not neatly follow what one might naively
expect using intuition gained from the Peierls model, as already alluded to at
the end of Section 4.1.

Something that appears to have both helped and hindered our collective un-
derstanding of charge order is the numerous ways in which discrepances between
conventional wisdom and observations in real materials have been explained in
the literature. Many attempts have been made to distinguish between distinct
mechanisms driving charge order, with often the implicit assumption being
made that one or the other mechanism is dominant. A distinction has histor-
ically been made between Peierls-inspired ‘nesting-driven’ CDWs, and those
where the charge order arises due to the momentum-structure of the EPC (see
e.g. [148]). Additionally, there have been proposals that because the conven-
tional FS nesting picture in reciprocal space is demonstrably incomplete, one
should consider the real-space shape and overlaps of atomic orbitals, leading
11In fact, the Ginzburg-Landau theory in ref. [133] was inspired by the claim of scanning

tunnelling microscope (STM) measurements of ‘chiral’ CDWs in TiSe2 [134]. However,
such measurements only probe the surface, and were later dismissed as being inconclusive
with regards to the inversion symmetry breaking between subsequent Se-Ti-Se layers within
the material; see e.g. [135].
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to concepts such as ‘hidden nesting’ [149–152]. This effectively corresponds to
including an orbital-dependent EPC. Other mechanisms that have been pro-
posed to drive CDW order include a Jahn-Teller effect, which encourages lat-
tice distortions in certain (usually octahedral) lattice structures [153, 154], the
aforementioned exciton condensation [146, 155], and an instability of saddle
points in the band structure [156, 157].12

In reality, while some of these mechanisms only apply to materials with
certain specific features in their (band) structures, it is misleading to distin-
guish between any of them in an either-or fashion. While other factors may
contribute, it is safe to assume that all CDWs are at least partially driven by
electron-phonon coupling, as evidenced by the periodic lattice distortions that
universally accompany (long-range) charge order. As we are gaining ever more
computational power, and our experiments are becoming ever more precise,
the time has come to start making more realistic models by improving upon
existing frameworks. This is what we’ll demonstrate in the following section.

4.3. Quantum field theory
Having gained some intuition from analysing toy models, let us move on to
more generally applicable field-theoretical methods with which we can deal
with charge order in real materials. We will refer back to the half-filled Peierls
model as an example, but the present description in terms of quantum fields
will hold for multi-band as well as higher-dimensional systems. This has been
demonstrated explicitly for 2H-NbSe2 [158, 159], 1H-TaS2 [160] and 1T -VSe2
(Chapters 5 and 6 [2, 3]). This section is based on the more extensive discus-
sions in refs. [127, 161, 162].

In the following introduction, we will consider a system of electrons and
phonons which couple to one another.13 This means we can define a partition
function

Z =
∫

D[ψ,ψ]D[ϕ, ϕ]e−S[ψ,ψ,ϕ], (4.22)

where the action S is a functional of the electron field ψk and phonon displace-
ment field ϕq.14 I will use the general notation that k is the electron momentum
wavevector of the relevant number of space dimensions, while k = (iωn,k). Sim-
ilarly, for phonons I define the four-momentum q = (iΩn,q). ωn and Ωn are
Matsubara frequencies, which arise from Wick rotating from real to imaginary
time [161]. In the absence of interactions, and assuming normal-ordering of the
fields, we can identify the electron creation operator c†

k with ψk and the elec-
tron annihilation operator ck with ψk. Similarly, we can identify the phonon
field ϕq with (b†

q + b−q), where we note that ϕq = ϕ−q. In the presence of
12References here are the original proposal and an example of a more recent article discussing

this mechanism. They are not comprehensive lists of relevant publications.
13We neglect Coulomb (electron-photon) interactions here.
14We use units in which ℏ = 1. The bar in ψ indicates complex conjugation.
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Dq gk,k+qGk

Figure 4.5: The diagrammatic representation of the bare electron propagator Gk and the
bare phonon propagator Dq , and how these couple to one another as captured by Sint. At
the interaction vertex lies the electron-phonon coupling matrix element gk,k+q. Here, we
have ommitted the electron band and phonon mode labels.

interactions, the original quasiparticles are no longer well-defined, but their
respective fields are. In this notation, the precise form of the action is

S =
∑
k,ν

ψk,ν(Gk,ν)−1ψk,ν+
∑
q,η

ϕq,η(Dq,η)−1ϕq,η+
∑

k,q,λ,ν,η

gλ,ν,ηk,k+qψk+q,νψk,λϕq,η.

(4.23)
The above is written in full generality, applying to a system of any dimension
and with any number of sites/orbitals per unit cell. ν and λ indicate (bare)
electron band indices, and η indicates a bare phonon mode. The bare electron
propagator Gk,ν has the standard Schrödinger form [161]:

Gk,ν = (iωn − ϵνk)−1, (4.24)

with fermionic Matsubara frequencies ωn = (2n+1)π/β and electron dispersion
ϵνk in band ν. We have absorbed the chemical potential µ into ϵνk. The bare
phonon propagator is defined as

Dq,η = −2Ωηq
(iΩn)2 − (Ωηq)2

(4.25)

with bosonic Matsubara frequencies Ωn = 2nπ/β and bare phonon frequencies
Ωηq of bare phonon mode η. We represent these propagators diagrammatically
as shown in Figure 4.5. The bare electron and phonon fields are coupled to
one another in the final term in the action, which allows for an electron to
be scattered from state k in band λ to state k + q in band ν by a phonon of
type η and momentum q. As introduced at the end of the previous section,
gλ,ν,ηk,k+q is the generalised form of the EPC matrix element seen in Section 4.1.
The attentive reader might have already noted that the action above describes
the same physics as the Fröhlich Hamiltonian discussed earlier (Equations 4.5
and 4.16). In the following, we will drop the band and phonon mode indices,
under the assumption that all the relevant (combinations of) modes are summed
over.

To proceed, we must ‘integrate out’ one of the two fields. That is, we per-
form the functional integral over either ψ or ϕ to obtain an effective action
in terms of the remaining degrees of freedom. Using perturbation theory, we
can derive from this how bare electron or phonon fields become ‘renormalised’
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due to EPC. This is the quantum field theory-equivalent of the MF treatment
applied earlier to obtain Equations 4.6. In the language of quasiparticles, this
corresponds to deriving how the free particles become ‘dressed’ by interactions.
We will perform this procedure for phonons in Section 4.3.1. Importantly, this
perturbative approach starting from the uncoupled fields only works for describ-
ing the renormalisation of fields in the high-temperature normal state. Within
the CDW phase, the bare electrons and phonons are no longer a valid starting
point to perturb from. In Section 4.3.2 we will discuss the renormalisation of
electrons. Here, we include a different method, borrowed from the context of
superconductivity, for describing the renormalisation of electrons within the
CDW phase, while still using the high-temperature bare electrons as a starting
point. We end with some general conclusions regarding the field-theoretical
methods introduced, in Section 4.3.3.

4.3.1. Phonon renormalisation
Let us first derive how phonons renormalise, by integrating out the electron
fields. To do so, we begin by Taylor expanding the interacting part of the
action:

Z =
∫

D[ψ,ψ]D[ϕ, ϕ]s−S
ψe−S

ϕ

(
1 − Sint + 1

2S
2
int − . . .

)
, (4.26)

where Sψ and Sϕ are the bare electron and phonon actions, respectively. The
first-order contribution of the interaction vanishes, leaving us with the quadratic
term:

S2
int =

∑
k,k′,q,q′

gk,k+qgk′,k′+q′ψk+qψk′+q′ψk′ψkϕqϕq′ . (4.27)

To evaluate what remains of Equation 4.26, we recognise several things. First,
the electrons are fermions, which means that their field operators are Grass-
mann variables, defined by the anticommutation relations{

ψk, ψk′

}
= 0 and

{
ψk, ψk′

}
=
{
ψk, ψk′

}
= 0. (4.28)

Second, we note that the functional (free) average over the electron field of
some functional O[ψ] is defined as

⟨O[ψ]⟩ = Z−1
0

∫
D[ψ,ψ]e−S

ψO[ψ], (4.29)

with the free partition function Z0 =
∫

D[ψ,ψ]e−S
ψ . This allows us to perform

the functional integral over ψ and rewrite Equation 4.26 as

Z ≈
∫

D[ϕ, ϕ]e−S
ϕ

1 + 1
2
∑

k,k′,q,q′

gk,k+qgk′,k′+q′⟨ψk+qψk′+q′ψk′ψk⟩ϕqϕq′

.
(4.30)
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D2(q)

Figure 4.6: The diagrammatic representation of the structured electronic susceptibility
D2(q). We indicate the EPC matrix elements gk,k+q by dots at the vertices, and the red
lines indicate that the phonon legs are amputated. The diagram for the Lindhard function
χ(q) looks the same, but assumes that gk,k+q = 1.

We have redefined the measure of the integral to include a factor Z0 . Next, we
apply Wick’s theorem, which states that (time-ordered) averages of products of
fields can be replaced by the sum of all possible pairwise contractions of those
fields [161]. That is, we can rewrite

⟨ψk+qψk′+q′ψk′ψk⟩ = −⟨ψk+qψk′⟩⟨ψk′+q′ψk⟩ + ⟨ψk+qψk⟩⟨ψk′+q′ψk′⟩. (4.31)

We assume that there is no superconducting order, such that there are no
Cooper pairs, and ⟨ψkψk′⟩ = ⟨ψkψk′⟩ = 0. The two-point correlator can be
derived from the action [161, 162], from which we obtain

⟨ψkψk′⟩ = Gkδk,k′ . (4.32)

That is, all pairwise contractions of two (conjugate) field operators with match-
ing indices are equal to the bare electron propagator Gk. If the indices don’t
match, the contractions are exactly zero. In the first term of Equation 4.31,
this enforces that k′ = k + q and q′ = −q, while in the second term it requires
that q = q′ = 0. Noting that q = 0 phonons would correspond to displacements
of the entire crystal – something which cannot be included in our theory – the
second term in our Wick expansion disappears and we are left with

Z ≈
∫

D[ϕ, ϕ]e−S
ϕ

1 − 1
2
∑
k,q

gk,k+qgk+q,kGk+qGkϕqϕ−q

. (4.33)

By Hermiticity of the interaction Hamiltonian, we require that gk+q,k = g∗
k,k+q.

In the above, we can identify what we will call the ‘structured electronic sus-
ceptibility’:

D2(q) =
∑
k

|gk,k+q|2GkGk+q. (4.34)

Diagrammatically, this corresponds to a single electron-hole bubble – including
the EPC matrix element gk,k+q at the vertices – with two amputated phonon
legs, the latter being what the subscript refers to (see Figure 4.6). This notation
is adopted from refs. [158, 163, 164]. The inclusion of the factors gk,k+q means
that the structure of the EPC is included, unlike in the more traditionally
defined ‘(bare) electronic susceptibility’ or ‘Lindhard function’ in which it is
assumed that g = 1 [161]:

χ(q) =
∑
k

GkGk+q. (4.35)
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In the definitions above, the Green’s functions may each carry their own band
label.

We note that gλ,ν,ηk,k+q may vary upon changing (electron or phonon) mo-
mentum, electronic band (relating also to orbital character and electron spin),
and the phonon mode under consideration. Forgetting this dependence is con-
venient because it is hard to compute g directly. As was shown previously
in the case of NbSe2 [158, 159] and will be demonstrated in Chapter 5 for
VSe2, neglecting the structure of g is, however, not generically a valid assump-
tion to make. One can approximate (the structure of) g either using ab initio
methods, as reviewed at length in ref. [165], or using various approximations
whose applicability depends on the system being studied. For systems with
d-orbital character at the Fermi level, such as the CDW-hosting transition
metal dichalcogenides (TMDCs), a known and well-tested approximation is
that of Varma et al. [159, 166]. Starting with a chosen set of atomic orbitals
φλ on a lattice, one can construct a tight-binding Hamiltonian H with elements
⟨φν |H |φλ⟩ describing the hopping amplitudes between orbitals, and an orbital
overlap matrix S with elements ⟨φν |φλ⟩. The latter is included because the
chosen set of atomic orbitals need not all be orthogonal. Then, we can solve
the Schrödinger equation H |λ⟩ = EλS |λ⟩, where λ labels the band index, for
the eigenenergies Eλ and a matrix of eigenvectors which we’ll denote by A.
Then, the approximation states that the EPC matrix elements can be found
using the relation

gλ,νk,k′ ∝ ∂ϵλk
∂k

[
A†

kSkAk′

]λν
−
[
A†

kSk′Ak′

]λν ∂ϵνk
∂k′ . (4.36)

Importantly, this tight-binding-based approximation removes all phonon mode-
dependence (η) from the coupling, making it conveniently easy to solve. In
systems where a single band of (roughly) single orbital character makes up
the FS, we can also neglect the A and S matrices, and the approximated g
reduces to the difference in slope of the band at k and k + q. Finally, the
expression above is vector-valued. To obtain a scalar, one should project this
onto the relevant axis. If the CDW formation involves longitudinal phonons
(as is usually the case), one can simply project onto the direction of the phonon
wavevector: gλ,νk,k+q = gλ,νk,k+q · q/|q|.

In Appendix A.2, we perform the sum over Matsubara frequencies ωn in
the susceptibility expressions to obtain

Dλ,ν,η
2 (q) = lim

Ω→0

(
−
∑

k

|gλ,ν,ηk,k+q|2
f(ϵλk) − f(ϵνk+q)
ϵλk − ϵνk+q + iΩ

)
; (4.37)

χλ,ν(q) = lim
Ω→0

(
−
∑

k

f(ϵλk) − f(ϵνk+q)
ϵλk − ϵνk+q + iΩ

)
, (4.38)

where we have reintroduced the band and phonon mode labels and f(ϵ) is
the Fermi-Dirac distribution function. Ω, which arises in the derivation from
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…

1

Figure 4.7: In the Random Phase Approximation, we compute the renormalised phonon
propagator (indicated by double lines) perturbatively, as an infinite series with an increasing
number of uncorrelated electron-hole loops. We can rewrite this series in the form of a self-
consistent relation, and then into a form we can solve directly.

the phononic Matsubara frequency, can be understood as the frequency of an
externally applied strain used to probe the linear response of the system. While
in the present context we are interested in the intrinsic susceptibility of a system
towards charge-ordering – without any external fields applied – introducing an
infinitesimal factor iΩ serves to regularise the sum over k. In this case, one
should consider only the real part of D2(q,Ω).

Thus far, we have considered the lowest-order-in-g effect of EPC on the bare
phonon fields, and found that this is described by the structured electronic
susceptibility D2(q). To extend this to infinite order in g, we can use the
‘Random Phase Approximation’ (RPA). In this approximation, one considers
the renormalisation of the bare phonon propagator by perturbatively expanding
it with an infinite series of electron-hole loops. We assume these loops – each
equivalent precisely to D2(q) – to be uncorrelated with one another, hence the
name ‘random phase’. The renormalised propagator is then given by

DRPA = D +DD2D +DD2DD2D + . . . (4.39)

Figure 4.7 shows this expansion diagrammatically. Because the series goes on
ad infinitum, one can rewrite it in the following way:

DRPA = D +DD2

(
D +DD2D +DD2DD2D + . . .

)
= D +DD2DRPA.

(4.40)

This type of recursion relation is commonly called a Dyson equation [161]. We
can solve it by subtracting DD2DRPA from both sides:

(1 −DD2)DRPA = D

DRPA = D/(1 −DD2) = (D−1 −D2)−1.
(4.41)
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Within the approximations made so far, coupling to electrons has changed the
phonon spectrum from the bare one (Ωq) to a new, renormalised one [159]:

Ω2
RPA = Ω2

q − ΩqD2. (4.42)

Notably, because Ωq and D2 are both necessarily positive, ΩRPA ≤ Ωq. For
every q where there is a peak in the structured electronic susceptibility, there
will be an associated dip in the renormalised phonon spectrum. We thus once
again encounter the Kohn anomaly [129, 132], mentioned before in Section 4.1.
This time, however, we have derived a general expression that is valid for all
wavevectors q, and for T > TCDW. The renormalised phonon dispersion in
Figure 4.2 was computed using this expression.

At this point, it is useful to consider what could generate a peak in D2(q).
On the one hand, one expects a peak whenever the denominator ϵλk −ϵνk+q → 0.
This effect is balanced by the numerator of the expression, f(ϵλk) − f(ϵνk+q). A
peak in the susceptibility thus requires that the two states connected by q have
a different (statistical) occupation. Considering also the sum over k, we expect
maxima in the Lindhard function χ (and therefore also in D2) at wavevectors
Q which connect a significant portion of states near the Fermi level to other
states near EF; this occurs for Fermi surfaces that are nested. Lastly, let us
not forget the structured EPC (gλ,ν,ηk,k+q); its structure can selectively enhance
or diminish peaks in χ(q). From Equation 4.36 we know that for systems with
d-orbital character at EF, coupled states with a large and opposite slope are
generically more important than others. This effect has been demonstrated
explicitly for e.g. NbSe2 [158], TaS2 [160] and VSe2 [2] (Chapter 5).

The temperature dependence of f(ϵ) also gives D2 a temperature depen-
dence. As a general rule, at higher temperatures any peaks in D2 are lowered
and broadened. This agrees with our intuition that the effect of interactions is
diminished at high temperatures. Conversely, any phonon softening in ΩRPA
will be enhanced as the temperature is lowered. As already mentioned, one
expects a CDW with wavevector Q to form at the ordering temperature TCDW
for which ΩRPA(Q) → 0. When this occurs, it effectively costs zero energy to
generate phonons with wavevector Q: what used to be excitations of the lat-
tice become ‘frozen’ distortions at Tc , resulting in a periodic lattice distortion.
For temperatures below TCDW, ΩRPA(Q) becomes imaginary (its square being
negative), indicating that a new field theory should be used. In other words,
the bare electron and phonon propagators used in the original perturbative
expansion are no longer a valid starting point inside the CDW phase.

As a demonstration, in Figure 4.8 we compare χ and D2 of the half-filled
Peierls chain for various temperatures, as well as the resulting renormalised
phonon spectra ΩRPA. The latter are found using Equation 4.42, with either
g2

effχ or D2 with the structured coupling given by Equation 4.36. The thermal
broadening effect is clear, which is in turn reflected in the degree of phonon
softening seen in the phonon dispersion. Importantly, however, this figure
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Figure 4.8: The electronic susceptibility, computed as the Lindhard function times an ef-
fective EPC squared (g2

effχ, left) and the structured electronic susceptibility (D2, right),
and resulting renormalised phonon spectra of a half-filled Peierls chain (lower two plots), for
various temperatures. The phonon energy goes to zero at TCDW = 50 K, at which point
we expect charge order to set in with a CDW wavevector of Q = π/a. Parameters used:
geff ≈ 100.3meV; structured coupling gk,k+q = 8.72(vk − vk+q) meV with vk = dϵk/dk; hop-
ping amplitude t = 0.5 eV; maximum phonon energy ω0 = 20 meV; regulator Ω = 10−4 meV.
1 rlu = 2π/a.

highlights the weakness of the Lindhard function χ: while both χ and D2
host a prominent peak at Q = π/a, χ does not go to zero away from q = Q,
even at high temperatures. This is problematic, because it means that there
is always a range of momenta (around q = 0 and q = 2π/a) where ΩRPA
becomes imaginary. Imaginary phonon energies imply an instability in the
lattice; assuming a constant electron-phonon scattering amplitude geff thus
leads to the prediction that the Peierls chain will always melt! A structured
EPC is therefore a necessary ingredient even for this simple toy model.

Before moving on to the treatment of the electrons, let us briefly reflect
on what we’ve done. Integrating out the electrons from the partition function
describing coupled electron and phonon fields, we found that effective, lowest-
order-in-g effect of the interaction on the phonon fields was renormalisation via
the formation of a electron-hole bubbles (D2). If we consider this the only type
of renormalisation allowed, as done in RPA, then we find that D2 is indeed
the relevant quantity needed to describe phonon renormalisation (and CDW
formation), all the way up to infinite order in g. Notably, D2 allows us to (1)
predict the wavevector of the CDWs that a system is susceptible to, based on
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Figure 4.9: The Feynman diagrams constituting the Mode-Mode coupling Approximation
(MMA). These are the simplest diagrams accounting for renormalization contributions from
the phonon field, which may be considered on top of RPA. From left to right: a vertex
correction, a bubble with electron self-energy, and a sixth-order diagram.

its non-interacting electronic spectrum; and (2) predict how phonons soften as
a function of temperature. Luckily, both of these predictions can be directly
compared to experimental data.

Of course, a full expansion of Sint would contain various other types of di-
agrams at higher order, such as vertex corrections and those with electronic
self-energies. These other diagrams may certainly play a role, notably in sys-
tems where g is larger or strongly structured. By ‘structured’, we mean strongly
dependent on k, q or orbital character. In that case, we must move beyond the
weak-coupling limit we’ve considered so far (i.e. RPA), and include other types
of diagrams in our expansion. This has been done for example for TaS2 [167],
TiSe2 [168] and NbSe2 [158, 159], where the so-called Mode-Mode coupling
Approximation (MMA, see Figure 4.9) was employed to capture the effect of
phonon fluctuations suppressing the temperature at which long-range CDW or-
der sets in. In many materials, however, there are no (significant) fluctuations,
and the weak-coupling RPA description suffices to capture the physics at play.

4.3.2. Electron renormalisation
Just like the phonons, electrons are also renormalised by the electron-phonon
interaction. Above TCDW, we can use the same approach as described for
phonons in the previous section. Within the RPA, the electronic fields get
renormalised as

GRPA =G+GΣG+GΣGΣG+GΣGΣGΣG+ . . .

=G+GΣGRPA

→ GRPA = (G−1 − Σ)−1.

(4.43)

This is yet another Dyson equation. Σ indicates the electronic self-energy.
While the self-energy may be composed of a sum over various (higher-order)
diagrams [127, 161], we will consider the case with a single phonon line, as
depicted in Figure 4.10 or written out in full as:

Σλ,ν,ηk =
∑
q

|gλ,ν,ηk,k−q|2Gλk−qD
η
q , (4.44)
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1

GRPA Gk Σk

…

Figure 4.10: In the Random Phase Approximation, we compute the renormalised electron
propagator (GRPA, indicated by double lines) perturbatively, as an infinite series with an
increasing number of uncorrelated electronic self-energy interactions (Σk, highlighted in blue).
As done earlier for phonons, we can rewrite this series in the form of a self-consistent relation,
and then into a form we can solve directly.

where ν indicates the electron mode of the two external (amputated) electron
legs, λ the electron mode of the scattered electron, and η the phonon mode
coupled to. This can be understood as renormalisation by generating and
reabsorbing a (virtual) phonon. We perform the Matsubara summation in
Equation 4.44 in Appendix A.3.

Here we considered only a simple form of coupling between electrons and
phonons. Incorporating higher-order diagrams, or instead considering also
electron-photon (i.e. Coulomb) interactions would result in a different kind
of electronic self-energy. This will complicate the mathematics, but won’t
change the qualitative outcome: including interactions, electron propagators
are renormalised as

GΣ(k, iωn) = (iωn − ϵk − Σk)−1, (4.45)

where we’ve absorbed the chemical potential into ϵk, and the self-energy Σk =
Σ′
k + iΣ′′

k is some complex-valued function of k.15

To see the effect that such a self-energy has on the electrons, let us first
re-express the electron propagator in what’s known as the Lehmann represen-
tation:

GΣ(k, iωn) = − 1
π

∫ ∞

−∞
dϵ

Im
[
GΣ(k, ϵ)

]
iωn − ϵ

. (4.46)

15In Fermi liquid theory – which is a good approximate description for many weakly cor-
related electron systems – we note that the imaginary part of the self-energy must go to
zero at the Fermi level, at zero temperature: Σ′′(k, ϵ) → 0 as k → kF and ϵ → 0 [127].
This means that quasi-electrons at the Fermi energy are infinitely long-lived, well-defined
particles. From this it also follows that we can expand Σ′′ as a power series in energy
(∼ ϵ2 + . . . ) and that the self-energy must be a smooth function for energies close to the
Fermi level.
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The above (general) identity follows from the Kramers Kronig relation. Within
this representation, we identify what’s known as the ‘spectral function’

A(k, ϵ+ iδ) = − 1
π

Im
[
GΣ(k, ϵ+ iδ)

]
, (4.47)

where we’ve introduced an infinitessimal imaginary part iδ.16 The spectral
function can be understood as a probability measure for finding a (quasi)electron
with energy ϵ at momentum k [161]. If Σk = 0, the spectral function is given
by

A(k, ϵ+ iδ) = − 1
π

δ(
ϵ− ϵk

)2 + δ2
. (4.48)

In the limit δ → 0+, this reduces to the delta function δ(ϵ− ϵk) [162]. That is,
in the absence of electron-electron interactions, the spectral function returns
a series of delta functions at the positions of the bare, single-particle electron
dispersion (including chemical potential) ϵk. If instead Σk ̸= 0, we obtain the
Lorentzian form

A(k, ϵ+ iδ) = − 1
π

δ − Σ′′
k(

ϵ− ϵk − Σ′
k

)2 +
(
δ − Σ′′

k

)2 . (4.49)

From this expression it is immediately clear that the real part Σ′
k of the self-

energy shifts the energies at which quasi-electrons are most likely to be found,
while the imaginary part Σ′′

k broadens the spectral function from a delta func-
tion (in the limit δ → 0) to a Lorentzian of finite width. This is a general
feature, independent of what interactions induce an electronic self-energy. Fig-
ure 4.11 demonstrates the broadening effect in the spectral function of the
Peierls model, assuming a constant imaginary self-energy.
The spectral function is interesting from an experimental standpoint, because
it can be (more or less) directly probed using Angle-Resolved Photoemission
Spectroscopy (ARPES).17 Here, we will briefly recap the most relevant features
of this experimental technique; for a more complete introduction, we refer the
reader to refs. [169, 170], on which the present summary is based. In this
technique, photoemitted electrons from a material are collected in an energy
and angle-resolved manner. In this process, the conserved in-plane crystal mo-
mentum k∥ can be determined from the angle at which the electrons exit the
material. The out-of-plane component of the crystal momentum may be probed
by varying the photon energy ν. The photoelectron intensity one measures may
be described by

IARPES(k, ϵ) = I0(k, ν,A)f(ϵ)A(k, ϵ), (4.50)
16We have performed the Wick rotation iωn → ϵ+ iδ.
17There are other techniques that probe the spectral function, but we focus on ARPES here

because it is the most commonly used k-resolved probe, and will feature in Chapters 5 and
6.
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Figure 4.11: The spectral function A(k, ϵ) of the half-filled Peierls chain, assuming that the
electronic self-energy Σk is some imaginary constant iΣ′′. The larger Σ′′, the more peaks
in the spectral function are broadened. Plot parameters: hopping amplitude t = 0.5 eV,
chemical potential µ = 0. 1 rlu= 2π/a.

where I0(k, ν,A) is proportional to the squared one-electron dipole matrix
element |Mk

f,i|2, which in turn depends on the electron momentum and on
the energy and polarisation of the incoming photon; A is the electromagnetic
vector potential. The Fermi-Dirac distribution function f(ϵ) enters because
only occupied electronic states can be probed. In the relation above, we neglect
the presence of any extrinsic background, which should be subtracted from
the measured spectrum, as well as the effects of the energy and momentum
resolution of the equipment used, which typically results in a Gaussian-like
broadening effect.

Experimentally probing the spectral function is useful in two ways. On
the one hand, in non- or weakly interacting systems, A(k, ϵ) approximates the
electronic band structure, such that ARPES spectra can be directly compared
to tight-binding or ab initio calculations. Conversely, a significant discrepancy
between band structure calculation predictions and an ARPES spectrum, or
the measurement of a linewidth in an ARPES spectrum that is broader than
the experimental resolution of the equipment used, are both direct indicators
of interactions.

Importantly, the electron renormalisation described so far – via the elec-
tron self-energy – will not result in a gap opening in the spectrum as a result
of charge order18 as described earlier in this chapter. This means that the
description thus far only holds for temperatures above TCDW. Once a material
has transitioned to a CDW state, the original, hypothetical bare electron and
phonon propagators used as a starting point for our perturbative approach have
different symmetries than the quasi-electrons and quasi-phonons you expect to
find. Notably, translational symmetry has broken down in such a way that, in
the normal state basis, states with momentum k are now equivalent to states
18Or any other symmetry-breaking order in the system.
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at any momentum k+nQ , where n ∈ Z and Q the wavevector of the CDW.19

The resolution of this problem is to define a new set of bare electron and
phonon propagators, with the symmetries present in the ordered state. A
rather ingenious approach to doing this – at least for the electrons – is to use
the same bare propagators as before, but to impart the breaking of translational
symmetry by defining a matrix-valued bare electron propagator with copies of
the original bare propagators, each lying at momenta shifted by all multiples
of Q that still lie (at distinct positions) within the original Brillouin zone. We
require that Q is commensurate with the lattice; i.e. we require that NQ equals
a reciprocal lattice vector, with N ∈ Z. If there are multiple concomitant CDW
wavevectors Qj , we consider all linear combinations

∑
j njQj that shift k to

a different position within the original Brillouin zone (with nj ∈ Z). For the
period-2 CDW mode in the Peierls chain, N = 2 and we can define a new bare
electron propagator as:

Ĝk =
(
Gk 0
0 Gk+Q

)
. (4.51)

That this is an N×N matrix reflects the fact that there will be N renormalised
electron ‘bands’ in the CDW state.20 In the bare propagator defined above,
these different bands do not interact with one another at all; this can be seen
from the fact that the matrix is diagonal.

Now that we have a new bare propagator, we are ready to determine how
EPC may allow these different bands to interact and open up a gap. To do
this, we should note that inter-band interactions require that the renormalised
electron propagator has off-diagonal elements. The question then is: what
should we put there? It should be something like an electron propagator, but
one for which the electron momentum is both k and k + Q at the same time.
Here, we can use a method developed in the context of superconductivity by
Nambu [171] and Gor’kov [172].21 The superconducting state is characterised
by the formation of Cooper pairs, which breaks the conservation of particle
number. That is, the expectation value of F † = ⟨ψ†

k,↑ψ
†
−k,↓⟩ ≠ 0, and likewise

for F = ⟨ψ−k,↓ψk,↑⟩; these define new ‘anomalous’ propagators that create and
annihilate one Cooper pair, respectively [162]. Similarly, the breaking of mo-
mentum conservation in the presence of charge order means that ⟨ψkψ

†
k+Q⟩ ≠ 0.

19In crystals of dimension higher than one, it is common that there is more than one plane-
wave CDW mode, with the different modes related via a crystal symmetry (e.g. rotation).
In this case, Q should be replaced with any linear combination (with integer prefactors) of
the wavevectors of the CDWs that are present.

20Electron bands are really only defined for purely non-interacting electrons, where A(k, ϵ)
is composed of a set of delta functions lying along ϵk. The ‘bands’ that we mean here are
the interaction-broadened peaks in A(k, ϵ) that will lie at roughly the same positions as
long as the interactions are not too strong.

21The work of Nambu and Gor’kov was built on foundations laid by Bogoliubov [173], and
popularised in the West by de Gennes [174]. It is commonly called the ‘Bogoliubov-de
Gennes method’ [175]. We adopt the notation used in ref. [162].
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k+QFk+QGk
CDWGk+Q

k+QFk+Q
Δk+Q
kΣk

Figure 4.12: In the Random Phase Approximation, we compute the renormalised electron
propagator (GCDW

k , indicated by double lines) and the momentum-non-conserving anomalous
propagator (Fk

k+Q, indicated by double lines and double arrows) perturbatively. There are
two types of interactions included: electronic self-energy interactions (Σk, highlighted in
blue); and new interactions that include a momentum shift of one CDW wavevector (∆k

k+Q,
highlighted in green). We can rewrite these series as a set of self-consistent relations.

This allows us to define anomalous propagators that change momentum by one
CDW wavevector Q:

F kk+Q = ⟨ψkψ
†
k+Q⟩. (4.52)

This anomalous propagator starts with momentum k and ends with momentum
k +Q. We note that F k+Q

k = (F kk+Q)∗. As before, in the presence of multiple
CDW wavevectors, the upper and lower indices of F would correspond to any
integer linear combination k1 = k+

∑
j njQj and k2 = k+

∑
jmjQj , where the

sums include any combinations that still reside within the first Brillouin zone
and k1 − k2 is one CDW wavevector. In the case of the half-filled Peierls chain
the notation is conveniently simple, and we denote the renormalised electron
propagator in matrix form as:

ĜCDW =
(
GCDW
k F kk+Q
F k+Q
k GCDW

k+Q

)
, (4.53)

with renormalised electron propagators GCDW
k .

The last ingredient we need is an interaction matrix. We will assume for
now that the electron fields only interact with bare phonon fields described by
propagator Dq. Much like before, we can derive the form of the renormalised
propagator perturbatively. Within RPA, we find a set of self-consistent rela-
tions for the propagators in ĜCDW, shown diagrammatically in Figure 4.12.
We can write this concisely in a matrix form of the Dyson equation:

ĜCDW = Ĝ+ ĜΣ̂ĜCDW. (4.54)

The interaction matrix Σ̂ consists of two types of interaction processes. On
the diagonal, there are the self-energies as described by Equation 4.44, while
away from the diagonal there are interaction terms of the form

∆k
k+Q =

∑
q

gk,k−qgk−q+Q,k+QF
k−q
k−q+QDq. (4.55)

These terms thus describe an electron-phonon interaction between two electron
fields with momenta k and k + Q, lying exactly one CDW wavevector apart,
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Figure 4.13: The spectral function A(k, ϵ) ∝ Im[GCDW
k ] (left) and anomalous spectrum

Im[F q
k+q

] (right) of the half-filled Peierls chain in the CDW phase, assuming a electronic self-
energy Σk = 10imeV and a constant gap ∆ = 100 meV, and using Equation 4.57. The two
plots use the same (symmetric) colour scale. Plot parameters: t = 0.5 eV; µ = 0. 1 rlu= 2π/a.

via the generation and reabsorption of a (virtual) anomalous propagator and
phonon. In the case of the Peierls model, the interaction matrix is given by

Σ̂ =
(

Σk ∆k
k+Q

∆k+Q
k Σk+Q

)
. (4.56)

As was the case for the anomalous propagators, ∆k+Q
k = (∆k

k+Q)∗, such that
Σ̂ is Hermitian.

Now that we have a self-consistent matrix equation, let us address how to
solve it. We can rearrange the matrix Dyson equation as follows:

ĜCDW = Ĝ+ ĜΣ̂ĜCDW

(1̂ − ĜΣ̂)ĜCDW = Ĝ

ĜCDW = (1̂ − ĜΣ̂)−1Ĝ.

(4.57)

Depending on the dimensions of the matrices involved, performing the required
matrix inversion may be computationally expensive. In the case of the half-
filled Peierls chain, however, the last line of the above can easily be rewritten
as

ĜCDW = 1
det(1̂ − ĜΣ̂)

(
Gk −Gk+QΣk+QGk Gk∆k

k+QGk+Q
Gk+Q∆k+Q

k Gk Gk+Q −GkΣkGk+Q

)
. (4.58)

The above demonstrates the interaction between the bare electron propagators
at k and k+Q, as expected in the CDW phase. It is also immediatedly clear that
the anomalous spectral functions are directly proportional to the gap function:
F kk+Q ∝ ∆k

k+Q. The anomalous propagators are thus necessarily zero when the
CDW gap disappears.
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Now that we have an expression for ĜCDW, how can we use it? The top
left element of the matrix is the renormalised equivalent of the bare electron
propagator Gk; this is the propagator that enters the spectral function, di-
rectly probed by ARPES. Figure 4.13 demonstrates what the spectral function
A(k, ϵ) = (−1/π)Im

[
GCDW
k

]
and the spectral function of the anomalous prop-

agator F kk+q look like for the Peierls model, assuming a constant self-energy and
gap function. Although these are not realistic parameters, they are instructive.
First, the gapped spectral function primarily maintains intensity around the
bare electron dispersion. This contrasts with the naïve tight-binding CDW
band structures that we showed in Sections 4.1 and 4.2; while the bare dis-
persions get folded back into the smaller Brillouin zone, the back-folded bands
generically get less intensity in the renormalised spectral function [129].

Second, we imposed a constant gap, and a gap naturally opened at posi-
tions in the spectrum lying exactly momentum Q apart. Of course, this is
by construction, because our calculation imposes that momentum is only not
conserved up to one CDW wavevector, so that interactions are only allowed
between states that are separated by this wavevector. While it may seem sim-
ple, this makes such a calculation a powerful tool for predicting where (partial)
gaps may open in the spectrum of real materials, given the wavevector(s) of the
charge order that forms. We include the word ‘may’ here, because the struc-
ture of the EPC may partially suppress gaps in some regions and some bands.
It cannot, however, open gaps at positions other than those predicted by the
simple gap prediction described here. We use this technique in Chapter 5 for
the material VSe2, whose three-dimensional, poorly nested FS makes such a
prediction useful.

Finally, any Dyson equation, including Equation 4.57, can in principle be
solved self-consistently. That means that we can solve for all elements of Equa-
tion 4.56 to find the self-consistent values for Σk and the CDW gap ∆k

k+Q. Let
us demonstrate this procedure with the Peierls model. We start with a seed
self-energy matrix with the elements a chosen set of (possibly complex-valued)
functions:

Σ̂(0) =
(

Σ(0)
k (∆k

k+Q)(0)

(∆k+Q
k )(0) Σ(0)

k+Q

)
. (4.59)

Note that there are only two distinct input functions: Σ(0)
k = Σ(0)(k, ϵ + iδ),

which prescribes Σ(0)
k+Q; and (∆k

k+Q)(0) = ∆(0)(k, ϵ + iδ), which is the com-
plex conjugate of (∆k+Q

k )(0).22 Using Equation 4.58 we then find the ‘0-loop’
expression for ĜCDW, given by

(ĜCDW)(0) =
(

G(0)(k, ϵ) F (0)(k, ϵ)
(F (0)(k, ϵ))∗ G(0)(k + Q, ϵ)

)
. (4.60)

22We use bold font for the one-dimensional momentum k to distinguish it from the (d+ 1)-
momentum k = (iωn,k).



4.3. Quantum field theory

4

77

This we can then plug into the ‘1-loop’ expressions derived in Appendix A.3:

Σ(1)(k, ϵ+ iδ) = − 1
π

∑
q

(
|gk,k−q|2

∫
dϵ′ Im

[
G(0)(k − q, ϵ′)

]
(4.61)

×

(
nB(Ωq) − f(ϵ′) + 1
ϵ− ϵ′ − Ωq + iδ

+ nB(Ωq) + f(ϵ′)
ϵ− ϵ′ + Ωq + iδ

))
;

∆(1)(k, ϵ+ iδ) = − 1
π

∑
q

(
gk,k−qgk−q+Q,k+Q

×
∫
dϵ′ Im

[
F (0)(k − q, ϵ′)

]
(4.62)

×

(
nB(Ωq) − f(ϵ′) + 1
ϵ− ϵ′ − Ωq + iδ

+ nB(Ωq) + f(ϵ′)
ϵ− ϵ′ + Ωq + iδ

))
.

The outcomes of these relations can then be used as input for Σ̂(1), to compute
(ĜCDW)(1). Going on to find Σ̂(2) and iterating further is very computationally
expensive. A much faster way to find the self-consistent solution is to plot the
outcomes Σ(1) and ∆(1) against the seed input values; the intercepts Σ(0) = Σ(1)

and ∆(0) = ∆(1) then constitute the self-consistent outcome. If Σk and ∆k
k+Q

are both non-zero, their self-consistent values should be found simultaneously.
Such a method can also be applied to real materials, as was done for finding

the self-consistent, momentum-dependent gap function in NbSe2 [159, 162].
In practice, some approximations must be made for such a calculation to be
feasible. In the case of NbSe2, the band structure was approximated to be
two-dimensional, Σk was set to zero, the gap was assumed to be real and
independent of energy (assuming the value at ϵ = 0), and the gap function
was found self-consistently at several high-symmetry points in the Brillouin
zone and then fit to a tight-binding expression with the symmetries of the
(2D) lattice. Despite these approximations, the predicted self-consistent gap
function opened partial gaps at the correct locations of the FS, reproducting
what is measured by ARPES, and was able to reproduce the suppression of
density of states around EF, as measured by STM experiments [159, 162]. This
definitively resolved the preceding confusion and discussion in the literature
surrounding the partial CDW gap in NbSe2 which only opens in one of the
two bands making up the FS [157, 176–178]; something which can only be
understood with the consideration of a structured EPC.

4.3.3. Conclusion
This concludes our introduction to field-theoretical methods for describing
charge order. We have seen how to describe the renormalisation of electrons
and phonons in the normal state (T > TCDW) of a CDW material using the
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Random Phase Approximation. This gives us the structured electronic suscep-
tibility D2(q), which we can use to predict at what wavevector phonons will
soften, and thereby the wavevector(s) with which we expect CDWs to form.
Additionally, we can make predictions regarding how the electronic spectrum is
renormalised by interactions, and where gaps will open in the electronic spec-
trum inside the CDW phase (T < TCDW), and compare these predictions with
the spectral function as experimentally probed by ARPES.

Aside from generating more complete predictions than the much-simplified
Peierls MF theory (Section 4.1) and the toy models discussed in Section 4.2,
the present framework highlights the importance of considering not only the
shape of the Fermi surface but also a structured electron-phonon coupling.
The latter, which may depend on the slope and orbital character of the bands,
is needed for a complete understanding of charge order in real materials. The
need for including it has in fact long been argued for in the literature [129, 158–
160, 164, 179, 180]. Hopefully, modern computational power will allow for it
to become the standard.

In the following chapters, we will apply the methods discussed here to the
real material VSe2. In Chapter 5, we show that the bulk material hosts three-
dimensional CDWs whose properties can only be understood when the struc-
tured EPC is considered. In Chapter 6 we turn to monolayer VSe2. In a
combined experimental and theoretical study, we demonstrate that the two-
dimensional material hosts two distinct CDWs. One of these is a modified ver-
sion of the bulk charge order, while the other is cannot be described by EPC
alone, being largely driven by Coulomb interactions. The latter constitutes,
to the best of our knowledge, the first example of a Coulomb-driven CDW in
a real material.23 In both cases, the charge order goes decidedly beyond the
simplified picture of the Peierls model.

23We don’t consider Mott insulators as constituting a CDW phase, because they are usually
associated with antiferromagnetic order and highly localised electrons.
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Charge order from

structured coupling in VSe2

Charge order – ubiquitous among correlated materials – is customarily described
purely as an instability of the electronic structure. However, the resulting theoretical
predictions often do not match high-resolution experimental data. A pertinent case
is 1T -VSe2, whose single-band Fermi surface and weak-coupling nature make it qual-
itatively similar to the Peierls model underlying the traditional approach. Despite
this, its Fermi surface is poorly nested, the thermal evolution of its charge density
wave (CDW) ordering vectors displays an unexpected jump, and the CDW gap itself
evades detection in direct probes of the electronic structure. We demonstrate that the
thermal variation of the CDW vectors is naturally reproduced by the electronic sus-
ceptibility when incorporating a structured, momentum-dependent electron-phonon
coupling, while the evasive CDW gap presents itself as a localized suppression of spec-
tral weight centered above the Fermi level. Our results showcase the general utility
of incorporating a structured coupling in the description of charge ordered materials,
including those that appear unconventional. This chapter is based on ref. [2].

In the previous chapter, we introduced a theoretical framework for describ-
ing charge order, based on quantum field theory. In line with what has long
been argued for in the literature, this framework allows for taking into ac-
count the structured, momentum-dependent electron-phonon coupling (EPC)
to supplement the traditional analysis based solely on nesting of the elec-
tronic structure and yields quantitative agreement with experimental observa-
tions [129, 158, 159, 164, 179, 180]. Going beyond the strongly-coupled settings
considered before, we show here that including a structured EPC resolves sev-
eral paradoxes surrounding the CDW phase in the weakly-coupled compound
1T -VSe2.

Let us begin by summarising what is known about the CDWs in this com-
pound. The CDW gap in VSe2 was found in recent scanning tunnelling spec-

79
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troscopy (STS) measurements to be 2∆ = 24 ± 6 meV at a temperature of 5 K
[124], while the CDW ordering temperature is approximately TCDW ≈ 110 K
[122, 181–183]. This is close to the BCS ratio of 2∆(T =0) = 3.52 kBTCDW [129],
which together with the lack of evidence for charge-order fluctuations above
TCDW places VSe2 firmly within the weak-coupling regime [124]. Electron-
ically, a single band of predominantly single-orbital character makes up the
Fermi surface (FS), consistent with a model Peierls description. Despite this
apparent best-case scenario for a weak-coupling CDW, several experimental
observations appear to be paradoxical and inconsistent with the customary
interpretation of ‘nesting-driven’ charge order.

Angle-resolved photoemission spectroscopy (ARPES) studies, for example,
do not show clear gaps in the spectral function at low temperatures, such that
the CDW gap structure remains unclear [184–188]. This is in stark contrast to
other transition metal dichalcogenides (TMDCs) with CDW instabilities, such
as 2H-NbSe2, 2H-TaSe2 and 1T -TaS2 [177, 189]. Furthermore, while the in-
plane components of the three simultaneous CDW wavevectors Qi (i = 1, 2, 3)
in VSe2 are commensurate (periodicity 4a with lattice parameter a), it was
determined via X-ray diffraction that their common out-of-plane component is
incommensurate and varies from qz = 0.314 c∗ at 105 K to qz = 0.307 c∗ below
85 K with c∗ the reciprocal lattice vector along kz [181].

The thermal evolution of the ordering wavevector was deemed anomalous,
and led to the suggestion that this material hosts two distinct CDW phases [181,
190]. This is unusual, since both phases remain incommensurate, and the
transition between them is therefore not of the common lock-in type.1 Phase
contrast in satellite dark field images led to the suggestion that the transition
may be between a high-T , three-component CDW and a low-T phase with only
two of the three symmetry-related Qi , a so-called 2Q phase [190]. Although
theoretically allowed, such a 2Q phase would be unusual, as it can only be
stable in a small region of phase space and requires fine-tuned contributions
from sixth order terms in a Landau expansion of the free energy [159, 190].
Various scanning tunnelling microscopy (STM) experiments (down to 4.2 K)
report a 3Q CDW phase [122, 124, 191, 192], while others observe an enhanced
intensity of one or two CDW wavevectors [193, 194]. The latter could be the
effect of an anisotropic STM tip [124] and/or spatial variations in the relative
phases of the three CDW components [192]. Concrete evidence for a phase
transition around 85 K is also absent in thermodynamic probes [122, 182, 183].

1To ‘lock in’ means that an incommensurate CDW becomes commensurate with the lattice,
thereby moving away from the preferred ordering wavevector as determined by the electronic
susceptibility.
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Figure 5.1: (a) The ab initio band structure of VSe2 with the orbital character of the bands
indicated. Orange corresponds to Se character, and blue indicates V character. The single
band crossing the Fermi level was used to compute the electronic susceptibility. (b) Sketch
of the layered atomic structure of 1T -VSe2, in which layers of vanadium atoms (blue) are
sandwiched between two layers of selenium (orange).

5.1. Structured electronic susceptibility
To determine the nature of the CDW instability in VSe2, we first compute its
electronic structure using an ab initio calculation within the local density ap-
proximation (LDA), based on the all-electron full-potential linear augmented
plane wave Elk code [195].2 We used the experimental lattice parameters of
a = 3.356 Å, c = 6.104 Å, and the relative distance of the Se planes from
the V planes zSe = 0.25 [196]. Relaxation of the Se position did not signif-
icantly affect the band structure or the computed value of the Fermi energy
(E = 0). We used a mesh of 32 × 32 × 24 k-points in the full Brillouin zone
(> 2000 in the irreducible wedge) to achieve convergence. In agreement with
earlier computations, our ab initio calculations show only a single band cross-
ing the Fermi level, of predominantly vanadium, 3d-orbital character, which
significantly disperses along kz (see Figure 5.1). We evaluated the energies for
this band on a 100 × 100 × 400 k-point mesh for subsequent calculations of
the Lindhard response function, as well as the structured susceptibility, which
includes a momentum-dependent EPC. Because ab initio predictions of the
Fermi energy may vary slightly from experimentally observed levels, and be-
cause non-stoichiometry and self-intercalation in VSe2 samples are known to
affect the precise value of the Fermi energy [197], we shift all of our obtained
eigenenergies up by 20 meV to obtain a best-fit value for EF compared to the
experimental Fermi level.

For the EPC matrix elements, we use the expression derived by Varma et
al. [166], introduced in Section 4.3. In the case of a single band crossing EF,
the expression simplifies to:

gk,k+q ∝
∂ϵk
∂k −

∂ϵk+q

∂k . (5.1)

Here, ϵk is the electronic dispersion taken from the density-functional theory
2The density functional theory calculations were performed by Jude Laverock (University of
Bristol).
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calculation. The direction of the vector gk,k+q indicates the polarisation of the
phonons coupled to. The displacements of vanadium atoms associated with the
CDW transition are known to be purely in-plane and longitudinal [198]. From
here on, we therefore consider only the component of the EPC vector parallel
to the in-plane phonon momentum: gk,k+q = gk,k+q · q∥/|q∥|.

Using this form of gk,k+q, we can compute the structured electronic sus-
ceptibility introduced in Section 4.3.1. Since VSe2 falls in the weak-coupling
regime, it is sufficient to use the random phase approximation (RPA), and ne-
glect vertex corrections, which should be small [199]. The renormalised phonon
propagator is then described by DRPA = (D−1

0 − D2)−1, with bare phonon
propagator D0 and structured electronic susceptibility D2, given by [158, 164]:

D2(q) = −
∑

k∈BZ

|gk,k+q|2
f(ϵk) − f(ϵk+q)
ϵk − ϵk+q + iδ

. (5.2)

Here, f(ϵ) is the Fermi-Dirac distribution function and we use a small regulator
δ = 0.1 meV. The Lindhard function χ(q) is defined as the above, but taking
gk,k+q = 1:

χ(q) = −
∑

k∈BZ

f(ϵk) − f(ϵk+q)
ϵk − ϵk+q + iδ

. (5.3)

The full gk,k+q enters the renormalised phonon dispersion via D2 in the RPA
calculation: Ω2

RPA(q) = Ω2
0(q) − Ω0(q)D2(q). Here, Ω0(q) is the bare (high-

temperature) phonon dispersion [159]. At TCDW, phonons will exhibit a Kohn
anomaly such that ΩRPA(Qi ) = 0. As long as Ω0(q ≈ Qi ) has no sharp
features, the maximum of D2(q) close to TCDW will lie at q = Qi .

In Figure 5.2 we show χ(q) and D2(q) for three values of qz, while qx and
qy span one reciprocal lattice vector each. We set the temperature to 100 K,
close to TCDW. D2(q) is not periodic across Brillouin zones, because of the
projection of gk,k+q onto the in-plane radial direction of q. It is clear from
Figure 5.2 that χ disperses significantly less than D2, and is far-removed from
a divergence. This is indicative of the small degree of nesting in VSe2. We find
that the maxima of both χ and D2 at qz = 0.31 lie close to (qx, qy) = (0, 0.25)
(in reciprocal lattice units, rlu), in agreement with the experimentally observed
in-plane value [181].

In Figure 5.3, we take a closer look at the out-of-plane variation of χ(q)
and D2(q) at qx = 0, for five different values of qy. To get a more complete
picture, we also see what happens when we artificially shift the Fermi level
by 10 or 20 meV. We note that at EF, the highest peak in the susceptibility
actually lies at qy = 0.26 rlu.3 Deviations of the peak position of the order
3Notice that we are limited by the resolution of the band structure calculation, δqx = δqy =
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Figure 5.2: (a) The Lindhard function χ(q) (left) and the structured susceptibility D2(q)
(right) at T = 100 K as a function of in-plane q∥ (with q∥ = 0 indicated by the black dot),
at various values of qz . Both graphs are normalised to their respective maxima, which lie
around q = (0, 0.25, 0.31) rlu and symmetry-related positions (black arrows). (b) Line cuts
of the Lindhard function and structured susceptibility at qz = 0.31c∗, varying q∥ along a line
through the black arrows in (a).

of the in-plane k-mesh resolution of 0.01 rlu are not expected to have observ-
able consequences, because as long as the peak is close to commensurate, the
coupling between the CDW order parameter and the lattice (neglected here)
is prone to locking the in-plane component of the CDW wavevector into the
lattice-preferred commensurate value [200, 201]. We expect no lock-in effect
in the out-of-plane direction, because the peak in susceptibility is further from
low-period commensurate values, inter-layer coupling is weak [124], and the
atomic displacements are purely in-plane [198]. This agrees with the observed
values of Qz remaining incommensurate at all temperatures [181].

Aside from this, Figure 5.3 demonstrates several things. First, the peaks lie
close to the experimentally determined wavevectors in all cases, even allowing
for small shifts of the Fermi energy. This is a good sign, because it indicates
that our theory is capturing the correct physics. The fact that the peaks
remain relatively broad is not unexpected, because the band structure of VSe2
is highly 3D and poorly nested, and we are considering T = 100 K. Often in the
literature, the electronic susceptibility is only computed at low temperatures,
which naturally makes any peaks in the susceptibility sharper. However, χ and
D2 are strictly only valid above TCDW, and the effect of the thermal occupation
of states may be non-trivial. Finally, by comparingD2 and χ we can see that the
structure of the electron-phonon coupling selectively amplifies and suppresses
the various sub-peaks that make up the Lindhard function. These sub-peaks
arise from similar wavevectors connecting pairs of states in different regions of
the Fermi surface, so that they generically have different associated electron-
phonon coupling strengths. The inclusion of a structured EPC is therefore able
to shift the peak positions in the susceptibility.

Finally, we have repeatedly stated that the FS is poorly nested, based on

0.01 rlu, and δqz = 0.0025 rlu.
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FFF

Figure 5.3: The structured susceptibility (top row) and Lindhard function (bottom row)
along qz , at qx = 0 and for various values of qy , and varying the chemical potential. The two
closely-spaced vertical dashed lines correspond to the two experimentally observed values of
the out-of-plane component of the CDW wave vector [181]. As before, we have set T = 100 K.
Curves are normalised per panel.

the lack of pronounced, sharp peaks in (the real part of) the Lindhard function.
To quantify the degree of nesting, one can also consider the so-called nesting
function [179]

lim
ω→0

Im[χ(q, ω)]/ω. (5.4)

This function is expected to diverge at vectors q that nest the FS. In the limit
of T = 0 K, the nesting function reduces to

∑
k δ(ϵk − EF)δ(ϵk+q − EF) [179].

We are interested in the arguably more physically relevant degree of nesting
at T = 100 K, so we will instead use the form given above, the results of
which are plotted in Figure 5.4. Numerically, a finite value for ω is required;
considering ω = 1 meV corresponds to computing the degree of nesting between
states around the Fermi level separated in energy by 1 meV. The absence of
pronounced peaks in these plots, and the fact that the maximum in Figure 5.4
does not coincide with the experimentally observed CDW propagation vector,
show once again that VSe2 is not a well-nested material.
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Figure 5.4: (a) The magnitude of the nesting function Im[χ]/ω, with χ(q, ω) the Lindhard
function and ω = 1 meV. The rectangular figure is in the qyqz-plane, with qx = 0, while
the hexagonal figure shows the function in the qxqy-plane for three different values of qz .
The ticks on the axes of the rectangular figure indicate the location of the observed CDW
ordering wavevector, also indicated by black arrow in the hexagonal figure. Note the lack
of a significant peak at this position. (b) The nesting function for q along the black arrow
shown in (a), at qz = 0.31, for different values of ω. There is no clear nesting peak.

max[ ]
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Tsutsumi

Figure 5.5: The temperature dependence of the position of the maximum of χ (crosses) and
D2 (circles) along the line q = (0, 0.25, qz), plotted alongside experimental data reproduced
from ref. [181] (squares and dashed line fits).

5.2. Thermally dependent CDW wavevector
Tsutsumi’s key experimental observation, which has lead to much specula-
tion regarding the existence of a second, CDW-to-CDW transition in VSe2,
is that the out-of-plane component of the CDW wavevector determined by
X-ray diffraction changes from qz = 0.314 c∗ at 105 K to qz = 0.307 c∗ be-
low 85 K [181]. In this experiment, X-rays are diffracted by a single crystal
of VSe2, and the positions of the diffraction peaks indicate the periodicities
present in the crystal lattice. Because the formation of a CDW changes the
crystal symmetries, new peaks arise once the charge order sets in; whose posi-
tions correspond to the CDW wavevectors.

We can compare these experimental results to the positions of the peaks
in our computed electronic susceptibility at different temperatures. This is
equivalent to predicting the CDW ordering wavevector of VSe2 if we were
to quench the system from its high-temperature state directly to the chosen
temperature. In Figure 5.5, we plot the maximum of D2 and χ along the line
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Figure 5.6: The temperature dependence of the maxima of the Lindhard function χ and
structured susceptibility D2 along the line q = (0, 0.25, qz), varying the chemical potential.
EF is the experimentally determined Fermi level, which lies 20 meV below the zero energy
level of the computed ab initio band structure shown in Figure 5.1. The grey data points
indicate the experimentally determined charge ordering wavevectors from [181], and the grey
dashed lines indicate qz = 0.307c∗ and qz = 0.314c∗. While D2 shows a clear trend in its
temperature dependence, χ does not.

q = (0, 0.25, qz) as a function of temperature. We find remarkable agreement
between the thermal evolution of the peak position of D2 from 50-105 K and the
qz values observed by Tsutsumi [181]. Importantly, it shows a smooth variation
with temperature that quantitatively fits the experimental data points without
requiring any discontinuous phase transition.

As mentioned before, variations in the chemical potential may arise from
the non-stoichiometry of crystal samples, and might lead to small variations
in the experimentally determined CDW wavevectors. Nonetheless, the smooth
downward trend in the peak position of D2 as the temperature is lowered is
stable under variation of the chemical potential, as shown in Figure 5.6. In
contrast, although the Lindhard function χ in Figure 5.5 shows a temperature
variation similar to D2 for this specific value of EF, even minute changes in
the chemical potential yield a qualitatively different thermal evolution. Fig-
ure 5.6 demonstrates that the structure of the electron-phonon coupling can
significantly affect not only the position of the maximum of the susceptibility,
but also its temperature-dependence.

5.3. The CDW gap
Having established the smooth thermal evolution of the CDW propagation vec-
tor in VSe2, we next turn to its CDW gap structure. Two practical issues con-
tributing to its elusiveness are the small gap size (2∆ ≈ 24 meV [124]) and the
three-dimensional nature of the electron dispersion, which necessitate experi-
ments with high energy- and kz-resolution. Several low-temperature ARPES
measurements are suggestive of a gap around kz ≈ 0.5c∗ [184, 186–188]. The
reported gap size of 80-100 meV in ref. [184], however, refers to a shift in peak
positions of energy dispersion curves, while the CDW gap is more closely re-
lated to the leading edge shift [202]. Refs. [186–188], on the other hand, show
spectral weight suppression in Fermi pockets around the L-point even above
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Figure 5.7: The spectral function of VSe2 at 20 meV above EF, where the effect of the CDW
gap is most pronounced. The four plots correspond to different values of kz . In each, the
left(right) side shows the ungapped(gapped) phase above(below) TCDW. All plots employ the
same colour scale. We employed a spectral broadening of Σ = 15imeV, and a constant gap
∆ = 15 meV. The blue circles highlight two gapped regions separated by Q = (0, 0.25, 0.33).

TCDW, while ref. [185] has a lower resolution and reports no gaps. The location
and shape of the partial CDW gaps in VSe2 thus remain to be determined
conclusively.

Based on the energy dispersion of the band that makes up the FS, we can
compute the spectral function A(k, ϵ) probed by photoemission experiments
in a numerically inexpensive way [159]. This method was introduced in Sec-
tion 4.3.2, but we will summarise it again here. The electron propagator in the
normal state is G (k, iωn) =

(
iωn − ϵk − Σk − µ

)−1
, where iωn are Matsub-

ara frequencies and µ is the chemical potential. The complex-valued electron
self-energy is given by Σk = Σ′

k + iΣ′′
k, and has a real part that shifts the

energy of the state at k, while the imaginary part broadens its linewidth. Wick
rotating iωn to an energy ϵ and an infinitesimal imaginary part iδ, we obtain
the spectral function,

A (k, ϵ) = − 1
π

Im
[
G (k, ϵ+ iδ)

]
. (5.5)

We assume Σ′
k = 0 and for Σ′′

k, which describes the experimental resolution, we
use a constant value of 15 meV. We obtain the normal-state spectral function
at EF (ϵ = 0) shown in the left halves of the hexagonal plots in Figure 5.7.

To predict where gaps will open up in the spectral function as the CDW
order sets in, we use a similar method to that developed in the context of
superconductivity by Nambu [171] and Gor’kov [172]. Rather than constructing
a new field theory starting from propagators with the symmetries of the ordered
state, we complement the disordered propagators with additional, anomalous
electron propagators

F
k1
k2

= ⟨ψ
k1
ψ

k2
⟩ (5.6)

that do not conserve momentum up to one CDW wavevector. ψk creates
an electron with momentum k, and k1 − k2 = ±Qi , with Q1,2,3 the three
CDW wavevectors. Since the CDWs in VSe2 are incommensurate, an infinite
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number of different Fk1
k2

could be constructed. For the sake of computation, we

approximate Qzi = 1
3 c∗ for all propagation vectors. Further noting that 12Qi =

0 and
∑
i Qi = c∗, we can represent all possible k1 and k2 by k +mQ1 +nQ2

(with m,n ∈ [0, 11]). Doing so, we generate a matrix ĜCDW whose elements are
the renormalised electron propagators GCDW(k+mQ1 +nQ2) on the diagonal,
and anomalous propagators Fk1

k2
and (Fk1

k2
)† for any off-diagonal element with

k1 and k2 differing by exactly one Qi . We then construct a matrix Dyson
equation:

ĜCDW = Ĝ+ ĜΣ̂ĜCDW ⇒ ĜCDW =
(
Î − ĜΣ̂

)−1
Ĝ. (5.7)

Ĝ is a diagonal matrix of bare propagators evaluated at momenta k +mQ1 +
nQ2; Σ̂ is a matrix with self-energies on the diagonal and gaps ∆ in off-diagonal
elements connected by one Qi ; and Î is the identity matrix. Solving this
equation for the top left element of ĜCDW, we find GCDW(k), and hence the
spectral function in the presence of a CDW gap (using Equation 5.5). This
method provides an inexpensive way to predict the gap structure of any CDW
system, given only the band structure and the ordering wavevectors.

We find that some portions of the spectral function are suppressed from
around approximately 20 meV above EF, as shown in Figure 5.7. For com-
pleteness, in Figure 5.8 we contrast the gap structure at EF + 20 meV to what
we find at EF. The offset of this CDW gap from EF is not surprising, since the
structuring of the EPC will generically stabilise a CDW with wave vectors that
do not nest the Fermi surface, and therefore do not necessitate any particle-
hole symmetry (in contrast, for example, to a superconducting gap). Indeed,
asymmetric CDW gaps have been observed in various TMDCs before [203].
The positive offset found here is consistent with STS results, which show a
suppression of the density of states with width 2∆ = (24 ± 6) meV centered at
10 meV above EF [124].

The clearest gaps in the computed spectral function appear on the long
sides of the oval-shaped lobes around the L point (kz = 0.5c∗). These gaps
are connected to others at kz = 0.17c∗ by a CDW wavevector, as indicated
by blue circles in Figure 5.7. Planes at other kz values are either unaffected
by the CDW or experience a moderate loss of spectral weight. It is probable
that the true gap function ∆(k) in VSe2 depends on k. Obtaining a self-
consistent solution for the gap function, which explicitly incorporates the EPC
structure, is possible in principle [159], but the three-dimensional nature of
the electron dispersion implies a significant computational cost. Moreover,
including momentum dependence in ∆(k) can only change the relative sizes of
gaps and will not allow additional gaps to open on top of those already observed
in Figure 5.7. The locations highlighted by blue circles in Figure 5.7 are thus
the primary candidates for observing the elusive CDW gap in VSe2.
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Figure 5.8: The spectral function of VSe2, for various values of kz . The left(right) side of
each plot shows the ungapped(gapped) phase above(below) TCDW. The top(bottom) half
of each plot shows the spectral function 20 meV above EF (at EF). All plots employ the
same colour scale. We employed a spectral broadening of Σ = 15imeV, and a constant gap
∆ = 15 meV. The blue circles highlight regions regions separated by one CDW wavevector.

5.4. Discussion and conclusion
We have shown that the structured susceptibility in 1T -VSe2, which includes
the momentum-dependence of the electron-phonon coupling, shows a sharp
peak at the experimentally observed CDW ordering vector. Moreover, its tem-
perature dependence reproduces the thermal evolution of the CDW wavevec-
tors observed by X-ray diffraction experiments. Our results demonstrate that
this thermal variation is an intrinsic effect, whose observation does not neces-
sitate a description in terms of multiple consecutive CDW phases. Addition-
ally considering the error margins of the reported X-ray diffraction data (see
Figure 5.5), the lack of indicators for a second transition in thermodynamic
probes [122, 182, 183], and the fact that satellite dark-field phase contrast
may be due to a natural phase variation of the CDWs [192], we suggest that
VSe2 hosts a single CDW phase. The resolution of this discussion by the ef-
fect of a structured electron-phonon coupling brings VSe2 in line with more
strongly coupled CDW materials in which temperature-dependent incommen-
surate CDW ordering wavevectors are commonly observed [200].

Based on a computation of the spectral function, we predict the elusive
CDW gap in VSe2 to appear as localized suppressions of spectral weight cen-
tered above EF, most pronounced on the sides of the Fermi surface lobes around
kz = 0.17c∗ and kz = 0.5c∗. The degree of localization and offset from the Fermi
energy reflect the weakness of the nesting in this system. High-resolution, kz-
resolved ARPES at varying temperature should be able to resolve the opening
of the predicted CDW gaps.

The results reported here for the specific CDW material VSe2 fit into a
larger picture of structured electron-phonon coupling being essential to the
quantitative understanding of any charge ordered material. That is, in an
ideal single-band, one-dimensional (1D) model for a metal, a Peierls transi-
tion may be signalled in the Lindhard function, which describes the (bare)
electronic susceptibility and which diverges in 1D metals at the wavevector
Q = 2kF connecting the two Fermi surface points [126, 129]. In real materi-
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als, however, perfect FS nesting never occurs, and inspection of the Lindhard
function commonly indicates either no clear peak, or a dominant peak at a
wavevector inconsistent with the observed CDW [179]. Examples of suppos-
edly nesting-driven density wave materials for which this was demonstrated
explicitly include 2H-NbSe2 and 2H-TaSe2 [158, 159, 179, 204], TbTe3 and
other rare-earth tellurides [152, 179, 205, 206], blue bronze (K0.3MoO3) [180],
and chromium [207]. Even for materials with electronic band structures that
are considered well-nested, the assumption that density waves arise purely from
FS nesting is thus demonstrably incomplete.

In contrast, the structured susceptibility, which includes the momentum
and orbital dependent electron-phonon coupling, has been shown to agree with
experimental observations in a range of real CDW materials. We have al-
ready mentioned the example of the prototypical strong-coupling, quasi-two-
dimensional CDW compound 2H-NbSe2, for which incorporating the momen-
tum and orbital-dependence of the EPC was shown to correctly predict the
wavevector of its electronic instability [158, 159, 164, 208]. Similarly, the con-
cept of ‘hidden nesting’, taking into account the real-space shape and orienta-
tion of valence orbitals in CDW formation, effectively corresponds to including
an orbital-dependent EPC [149–152]. The need for including a coupling struc-
ture more generally, however, is typically associated with the strong-coupling
nature of specific materials, and is far from standard practice [129, 179, 180,
205, 206, 209].

The results presented here for the weakly coupled, single-band material
VSe2 highlight the need for considering the structure of the electron-phonon
coupling in quantitative models for any density wave material, regardless of its
dimensionality, coupling strength or degree of nesting. Besides the momentum-
dependence considered here, the coupling may in general also depend on or-
bital character and even spin.4 All of these contribute to the physical prop-
erties of density wave materials, and understanding their quantitative impact
is indispensable in understanding the emergence of and interaction between
charge, orbital, and magnetic order throughout (unconventional) superconduc-
tors, magnets, and (multi)ferroics.

4A spin-dependent EPC could arise in magnetic systems with spin-polarised electron bands.
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Coexisting charge-ordered

states in ML-VSe2

Bulk materials hosting charge density waves (CDWs), when reduced to ultrathin
films, have shown CDW enhancement and tunability. Systematic scanning tunnelling
microscopy experiments reveal that bilayer VSe2 largely retains the bulk electronic
structure, hosting a tri-directional CDW. However, monolayer (ML-)VSe2 – consis-
tently across distinct substrates – exhibits a dimensional crossover, hosting two CDWs
with distinct wavelengths and transition temperatures. Electronic structure calcula-
tions reveal that while one CDW is bulk-like and arises from the well-known Peierls
mechanism, the other is decidedly unconventional. The observed CDW-lattice de-
coupling and the emergence of a flat band suggest that the second CDW could arise
from enhanced electron-electron interactions in the 2D limit. These findings establish
ML-VSe2 as a host of coexisting charge orders with distinct origins, and demonstrate
emergent interactions in a 2D material. This chapter is adapted from ref. [3].

In layered materials, CDWs often exist in proximity to other ordered phases,
e.g. superconductivity and magnetism [210], due to a precarious balance be-
tween competing interactions. Approaching the two-dimensional (2D) limit en-
hances the potential for such interplay [211], while providing new knobs to tune
electronic phases, such as electric fields and strain [212–215]. Notably, electron-
electron interactions in the 2D limit are expected to induce competition among
different CDW driving mechanisms as well as other ordered states [216–218].
In practice, however, a crossover towards electronic charge order driven by
dimensional reduction remains to be discovered.

Transition metal dichalcogenides (TMDCs) are well-studied hosts of con-
ventional and unconventional CDWs [129, 146, 158, 200, 210]. The tunabil-
ity of CDWs in the ultrathin limit of several TMDCs is particularly rele-
vant to practical electronic applications [213–215, 219, 220]. In Chapter 5
we discussed the TMDC 1T -VSe2. Bulk VSe2 is paramagnetic, with a three-
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dimensional (3D) Fermi surface (FS). Below temperature T bulk
CDW ∼ 110 K, it

hosts a triple-Q (triangular) CDW with 3D character. The CDW periodicity
λCDW ≃ 4a × 4a × 3c + δ is commensurate with the in-plane lattice constant
a, but incommensurate with the inter-layer distance c. The 3D nature of the
FS makes nesting in this material extremely weak, and we demonstrated in the
previous chapter that understanding the CDW phase in this system requires
consideration of a structured electron-phonon coupling (EPC) [2, 185].

In this chapter, we consider what happens to this system when we reduce
its dimensionality. It has been demonstrated that for thicknesses below 20 nm,
the FS of 1T -VSe2 transitions to 2D character, while maintaining triple-Q, 4a
CDW order [122]. However, monolayer (ML)-VSe2, grown epitaxially in several
recent works, purportedly hosts a ground state with concomitant charge and
spin orders, the nature of which is controversial [188, 221, 222]. First, while
some claim the 4a CDW to be absent even at low temperatures [188, 221],
others indicate its persistence to well above room temperature [222]. Second,
several works report incommensurate superstructures with varying periodici-
ties, viz.

√
3a × 2a,

√
3a ×

√
7a, and ∼ 2a × 3a [188, 221–223], whose pur-

ported origins vary from structural distortions to nested CDWs. The relation
of all these superstructures – identified via electronic density distributions over
small real-space regions – to any long-ranged charge order remains unclear.
Finally, magnetism is suggested to emerge in ML-VSe2 despite its absence in
the bulk [221, 224], but both its existence and interplay with charge order are
actively debated [225, 226]. Disentangling these apparently conflicting obser-
vations is paramount to revealing the true nature of charge order in ML-VSe2,
its driving mechanism, and its ramifications on other phases. This requires a
controlled and systematic study of the CDW under varying thermodynamic
conditions.

To remedy this, we performed a comprehensive experimental and theoret-
ical investigation of charge order in ultrathin epitaxial 1T -VSe2.1 Scanning
Tunnelling Microscopy (STM) and non-contact Atomic Force Microscopy (nc-
AFM) experiments show that while the CDW in bilayer (BL)-VSe2 is closely
related to that in bulk, charge order in ML-VSe2 is qualitatively different.
By systematically varying substrates, film thickness, and temperature, we find
that ML-VSe2 consistently hosts two unidirectional (single-Q) CDWs with pe-
riods 4a and 2.8a, with strikingly distinct phenomenologies. Band structure
calculations elucidate that while the 4a CDW is stabilized by conventional FS
nesting and EPC, the 2.8a CDW cannot be explained by such mechanisms. In-
stead, we find the 2.8a instability to originate from a flat band region, wherein
electron-electron interactions are expected to be strongly enhanced. Our re-
sults establish ML-VSe2 as a host of coexisting CDWs with distinct driving
mechanisms, demonstrating the potential of correlations for tuning electronic
1My part in this collaborative project included constructing a tight-binding model, computing
and analysing the electronic susceptibility based on this model, and aiding in the overall
interpretation of the combined experimental and theoretical results.
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Figure 6.1: (a) Top view (top) and side view (bottom) of the atomic structure of 1T -VSe2 on
graphite substrate. (b) Large field-of-view STM topograph (150×150 nm2, bias voltage Vtip =
0.7 V, current setpoint Iset = 100 pA) of MBE-grown epitaxial VSe2 on a HOPG substrate.
The average thickness of 1.5 VSe2 layers resulted in monolayer (ML) and bilayer (BL) VSe2
regions identified within the image. Inset shows the height profile across layers, with the
respective step heights indicated. (c-d) Atomically resolved STM topographs (5 × 5 nm2,
Vtip = −0.2 V, Iset = 200 pA) of BL (c) and ML (d) VSe2 at 78 K. Both topographs show a
hexagonal lattice with visibly distinct superstructures.

phases in the 2D limit.

6.1. Experimental Results
The scanning probe microscopy experiments for this project were performed
by Rebekah Chua, Yuli Huang, Jian Gou, and Xiaoyue He at the National
University of Singapore. In STM, a sharp metallic tip is brought close to
the surface of a material, and the tunnelling current between the tip and the
sample is measured. With this method, we probe the local density of states,
and are able to ‘see’ individual atoms as well as charge density modulations on
the surface of the material probed. In nc-AFM, an oscillating cantilever with a
sharp tip at the end is brought close to the surface of a material, such that local
force interactions allow one to determine the surface structure. Importantly,
AFM is predominantly sensitive to the atomic positions, rather than CDWs.
For a more extensive introduction to these methods, we refer the reader to
refs. [227, 228].

6.1.1. STM and nc-AFM Imaging Experiments
Thin 1T -VSe2 films were grown on highly oriented pyrolytic graphite (HOPG)
and MoS2 substrates in a home-made, ultrahigh-vacuum molecular beam epi-
taxy (MBE) system, the growth chamber of which has a base pressure of
2 × 10−9 mbar. Both substrates are known to stabilize the 1T polymorph
of VSe2 [221] whose crystal structure is shown in Figure 6.1a. The substrates
were exfoliated ex-situ, immediately transferred into the MBE chamber, and
then outgassed at 420°C for 3 hours before MBE growth. The VSe2 samples
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Figure 6.2: Comparison of atomic resolution topographs (4 × 4 nm2) of ML-VSe2 on HOPG
at T = 78 K acquired by (a) STM (Vtip = −0.7 V, Itip = 220 pA), and (b) non-contact AFM
techniques. Superstructures are visible in (a), but not in (b).

were grown by simultaneously evaporating V and Se using an electron-beam
evaporator and a Knudsen cell, respectively, onto the substrates maintained
at 360°C. The Se/V ratio was high, and Se was controlled to be in excess. A
selenium capping layer was deposited onto the VSe2 surface to prevent direct
ambient contamination during ex-situ transport to the varying temperature
STM/nc-AFM system for subsequent measurements. The capping layer was
removed by annealing at 240°C for 30 minutes in the microscope chamber.

STM and nc-AFM measurements were performed over 78-204 K in an Omi-
cron UHV system interfaced to a Nanonis controller equipped with STM/qPlus
sensor and an electrical local heater. To reduce thermal drift during data ac-
quisition, the STM was first allowed to stabilise at each temperature. Elec-
trochemically etched tungsten tips were used with bias voltage applied to the
tip, while the sample holder was grounded. STM images were acquired using
constant current mode. For nc-AFM imaging, the constant-height mode with
an oscillation amplitude of 10 nm was used to record the frequency shift of the
qPlus resonator (sensor frequency f0 ≈ 24 kHz, Q ≈ 8000). A lock-in technique
was used to measure dI/dV spectra, with a modulation of 625 Hz and 30 mV.

The films were characterized in-situ using STM over temperatures of 77-
200 K. As shown in Figure 6.1b, controlled growth of an average thickness of 1.5
layers resulted in the formation of both ML- and BL-VSe2 regions (on HOPG)
within fields-of-view accessible to STM imaging. Topographic characterization
of a terraced region at 78 K (Figure 6.1b: inset) reveals step heights of 0.9 nm
and 0.6 nm for the first and second VSe2 layers respectively, in line with values
reported previously [222].

Figure 6.1c-d display atomic resolution topographs obtained in the BL and
ML regions, respectively. As expected, both cases show a hexagonal arrange-
ment of atoms, with lattice constant a ≃ 0.34 nm [221, 222]. Meanwhile, the
atomic-scale superstructures seen on ML- and BL-VSe2 appear starkly dif-
ferent. For BL-VSe2 (Figure 6.1c), the superstructure is tri-directional, i.e.
it manifests along all three lattice directions with a single lengthscale. This
is very similar to that of the triple-Q CDW reported in bulk and thinned 1T-
VSe2 crystals [122]. In contrast, for ML-VSe2 (Figure 6.1d), the superstructure
appears unidirectional, and has multiple lengthscales, consistent with recent re-
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Figure 6.3: Comparison of CDWs in BL and ML-VSe2. (a-d) STM topographs (a, c: 10 ×
10 nm2, Vtip = −0.2 V, Itip = 200 pA) and their respective Fourier Transforms (FTs: b, d)
acquired at 78 K on BL- (a-b) and ML- (c-d) VSe2 from adjacent terraces with no observable
grain boundary. Dashed colour-coded lines in (a, c) represent the real space CDW wavefronts,
and corresponding circles in (b, d) denote the respective CDW wavevectors Q1 (b, d: green)
and Q2 (d: magenta), whose magnitudes are indicated in reciprocal lattice units (rlu). Red
circles denote atomic Bragg peaks in all FT images. (e) FT of STM topograph acquired
on ML-VSe2 at 116 K. Magenta circle denotes the Q2 peak, while the Q1 peak is absent.
Dashed lines indicate the orientation of Q2 and its harmonics with respect to the Bragg peak
(red circle). (f) Annotated FT of ML-VSe2 at 78 K (cf. data in d). Green (Q1) and magenta
(Q2) circles identify the primary CDW peaks. Color-coded arrows indicate the positions of
harmonics with respect to primary and Bragg peaks. All peaks can be accounted for this
way.

sults reported by other groups [221, 222].
Crucially, complementary imaging of the ML using non-contact atomic force

microscopy under similar conditions, shown in Figure 6.2, shows no corru-
gations beyond those of the atomic lattice. This contradicts a statement in
ref. [222], where it was claimed that the superstructures that could be seen
on top of the expected modulation with period 4a were purely structural dis-
tortions. Meanwhile, the expected magnitude of a periodic lattice distortion
associated with CDWs is ∼ 10−2 a, i.e. well below the resolution of available
microscopy techniques. Based on our data, we conclude that the superstruc-
tures observed in STM imaging of ML-VSe2 are more likely of electronic origin,
and putatively regard them as CDWs.

In light of conflicting reports on the CDW phenomenology in ultrathin
VSe2, we systematically examine the CDW modulations from larger STM to-
pographs obtained for both BL and ML cases, in Figure 6.3. For BL-VSe2,
Figure 6.3b shows the Fourier transform (FT) of a typical STM topograph.
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BL-VSe21T-VSe2 on 2H-MoS2 ML-VSe2
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Figure 6.4: (a) Large-scale STM topograph (200 × 200 nm2; Vtip = 2.4 V, Itip = 100 pA) of
ultrathin 1T -VSe2 grown on 2H-MoS2. Inset: line profile showing that the first VSe2 layer
is ∼ 7.8 Å above the substrate. (b-e) Atomic resolution low-temperature) STM topographs
(10 × 10 nm2) of BL- (b) and ML-VSe2 (c) at 78 K, and their respective Fourier transforms
(FTs). Itip = 180 pA in (b, d), Vtip = 10 mV in (b) and −10 mV (d). Figure adapted
from [226].

Here we find prominent peaks at Q1 ≃ 0.25a∗ (green circles), where a∗ is the
reciprocal lattice vector, with C6 symmetry, i.e. along all three Bragg direc-
tions. Meanwhile, the anisotropy of Bragg peak intensities may indicate either
local uniaxial strain within the sample, or asymmetry in the tip shape. Re-
gardless, these observations are consistent with the triple-Q, 4a CDW reported
in bulk and thinned 1T−VSe2 crystals [122].

In contrast, the FT for ML-VSe2 shown in Figure 6.3d appears more com-
plex, with only C2 symmetry present. The ML shows the persistence of the
Q1 ≃ 0.25a∗ peak (green circle) along a single Bragg direction, corresponding
to a single-Q, 4a CDW. However, the most prominent Fourier peak for the ML
is seen at |Q2|, of length ≃ 0.36 rlu2 at an angle θ12 ∼ 30° relative to the Bragg
direction (magenta circle). As shown in Figure 6.3f, a careful inspection of
the FT for the ML suggests that all remaining Fourier peaks can be assigned
to higher harmonics or Bragg reflections of Q1 and Q2, including previously
reported multiplet superstructures [188, 222, 223]. While such superstructures
may, in principle, be identified with several distinct wavelengths over small
topographic regions, such identifications are not consistent over length scales
above 5 nm in any of the reported data [188, 222, 223]. Instead, we propose
that these apparent supercells are merely the result of superposing two single-Q
CDWs, one of which is aligned away from a high-symmetry direction and also
incommensurate with the atomic lattice.

Finally, the STM data shown so far corresponds to VSe2 grown on a HOPG
21 rlu = |a∗|; this is one reciprocal lattice unit.
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substrate. To ensure that our findings are substrate-independent, we compare
these results to samples grown in similar conditions on 2H-MoS2, previously
reported in ref. [226]. A large-scale STM topograph, shown in Figure 6.4a,
indicates that the first VSe2 layer lies 7.8 Å above the substrate. The remaining
panels in Figure 6.4 show atomic resolution zoom-ins of defect-free regions
corresponding to BL- and ML-VSe2. The slight lattice mismatch between VSe2
and the substrate generates a hexagonal moiré superstructure, which is clearly
visible in the topographs (Figure 6.4b,d). The new supercell consists of 17×17
VSe2 unit cells atop 18×18 MoS2 unit cells [226]. In contrast, no moiré pattern
was observed for ultrathin VSe2 on HOPG for any setpoint. The FTs of the
zoomed-in topographs demonstrate, however, that aside from the difference in
moiré intensity, the same CDW peaks are present for VSe2 grown on 2H-MoS2
as seen for VSe2 grown on HOPG. This agreement limits the potential role of
substrate-induced strain effects in driving CDW formation. We conclude that
BL-VSe2 hosts a triple-Q, 4a CDW phase just like the bulk (green circles in
Figures 6.3b and 6.4c), while ML-VSe2 hosts two unidirectional CDWs with
|Q1| = 0.25 rlu and |Q2| = 0.36 rlu (green and magenta circles, respectively).

6.1.2. Temperature Dependence
To further establish the character of CDW(s), we study the evolution of CDW
peaks in BL- and ML-VSe2 with temperature. Notably, the FT of ML-VSe2
recorded at higher temperatures (Figure 6.3e) reveal only a single modulation
with magnitude Q2, as well as its harmonics and reflections. This further
evidences the presence of only two principal CDWs – Q1 and Q2 – and suggests
that they may have independent origins. At the same time, the slight thermal
variation in the direction of Q2 with respect to the lattice shows that the
Q2 CDW is not strongly coupled to the lattice. It also suggests a potential
interplay between the two CDWs, which may lower the energetic cost of the
charge ordered state when harmonics and reflections of Q2 are connected by
Q1 (Figure 6.3f).

The thermal evolution of the CDW intensity in STM topographs is an
established thermodynamic marker of the CDW transition [203, 229]. In Fig-
ure 6.5, we show representative STM topographs for ML-VSe2 on HOPG for
different temperatures. While the data were recorded over varying fields-of-
view, we emphasize that, within our experiments, none of the CDWs exhibit
any macroscopic spatial variation across atomically smooth regions. For ease
of comparison, the CDW peak intensities plotted in Figure 6.5 are normalised
to the corresponding Bragg peak intensities for each STM topograph. Consis-
tently across BL- and ML-VSe2, we find that the intensity of Q1 (4a CDW)
drops sharply at ∼ 110 K to a negligible magnitude, consistent with the ther-
mal evolution of its bulk counterpart [122]. The small, finite magnitude of
Q1 in BL-VSe2 at higher temperatures likely arises from small CDW pockets
near defects, similar to defect-pinned CDWs at T ≫ TCDW reported in other
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Figure 6.5: Thermal evolution of intensities of the CDW peaks, normalised to the averaged
intensities of the six primary Bragg peaks at that temperature, as measured from FTs of
10 × 10 nm2 STM topographs acquired on (a) BL- and (b) ML-VSe2. Error bars show the
standard deviation, incorporating the variance in Bragg and CDW peak intensities at each
temperature. The bottom row shows STM topographs at selected temperatures for BL (left)
and ML (right).

TMDCs [203, 229]. Meanwhile, for ML-VSe2, the intensity of Q2 – in sharp
contrast to Q1 – remains sizable well above ∼ 110 K, and drops to nearly zero
at ∼ 140 K. Finally, no CDW signatures are observed in the 204 K topographs
(Figure 6.5c,g), precluding the persistence of either CDW to room tempera-
ture [222].

Overall, our systematic analysis sheds much-needed light on the presence,
character, and robustness of charge order in ML-VSe2 in view of conflicting re-
ports in literature [188, 198, 222, 230, 231]. First, our AFM-STM comparison
confirms the purely electronic (CDW) origin of all observed superstructures on
ML- and BL-VSe2 (cf. ref. [222]). Second, T -dependent experiments conclu-
sively establish the presence of two, and only two, independent single-Q CDWs
in ML-VSe2: Q1 ≃ 0.25a∗ (i.e. λ1 ≃ 4a) and |Q2| ≃ 0.36 rlu (i.e. λ2 ≃ 2.8a).
The Q1 CDW is identical in magnitude, orientation, and transition tempera-
ture to the triple-Q CDW observed in BL-VSe2, and to (the in-plane projection
of) the CDW reported in bulk crystals. Meanwhile, the Q2 CDW persists at
temperatures well beyond Q1 and exhibits thermal variations in its orientation
with respect to the atomic lattice. Finally, the observed consistency of Q1
and Q2 across distinct substrates (cf. ref. [230, 231]), and of BL-VSe2 with
the bulk material (cf. ref. [198]), strongly constrains the potential influence
of substrate-induced strain effects on the CDW characteristics reported here.
To understand the origin of this observed dichotomy in CDW characteristics
within the same material, we conduct a detailed examination of the electronic
structure of ultrathin VSe2.



6.2. Theoretical Results

6

99

6.2. Theoretical Results
6.2.1. Band Structure Calculations
To investigate the atomic and electronic structure of ultrathin 1T -VSe2, density
functional theory (DFT) calculations were performed by Surabhi Saha and
Tanmoy Das (Indian Institute of Science, Bangalore, India) using the Vienna
Ab initio Simulation Package (VASP) [232] with a plane-wave basis up to a cut-
off of 500 eV. The Perdew-Burke-Ernzerhof (PBE) [233] form was used for the
exchange-correlation functional. The Γ-centred k-mesh was set to 25 × 25 × 1
points in the Brillouin zone for the self-consistent calculation. To simulate
the monolayer, we artificially set the distance between two layers of VSe2 to
25 Å. Then, the atomic positions in a 4 × 4 supercell structure were allowed to
relax, both with and without the symmetry constraints of the underlying P 3̄m1
space group [234]. In both cases, the resulting lattice is purely hexagonal,
and free of any structural distortions. This further points to the electronic
origin of superstructures observed in ML-VSe2, in line with our experimental
findings. Subsequently, the electronic band structure was computed, both with
and without including spin polarization. The resulting energies are nearly equal
for both cases. This suggests, in conjunction with the absence of spin splitting
in angle-resolved photoemission spectroscopy (ARPES) results [188, 222, 224,
225, 235–237], that magnetic order, even if present in ML-VSe2, is unlikely to
play a significant role in the energetics of charge ordered states.

The DFT band structure (Figure 6.6a) is broadly in agreement with the
ARPES spectral function reported in ref. [235]. This data provides a valu-
able benchmark given its high quality, large momentum range, and qualitative
agreement with other ARPES reports, including data acquired on our samples
(reported in ref. [224]). Both techniques find a single band of predominantly
d-orbital character crossing the Fermi energy EF. Previous works have em-
phasised the importance of the nesting of the sides of the FS lobes at the BZ
edge [188, 222, 238]. The DFT electronic structure, however, underestimates
kF along M − K and suggests a ‘nesting vector’ along a∗ of length 0.21 rlu.
This falls short of the vector extracted from ARPES data (0.54 ± 0.04 Å−1),
which corresponds to 0.25 ± 0.02 rlu [225, 235]. The DFT band along Γ − M
also appears more dispersive than that in ARPES, while along Γ − K the DFT
band is higher (50-200 meV) than the magnitude expected from the high pho-
toelectron count around Γ [188, 222, 224, 225, 235, 236]. These discrepancies
are likely due to the inability to duly account for electronic correlations [237].
As a result, our ab initio calculations may not capture the electronic structure
near EF with sufficient quantitative accuracy to describe CDW energetics.

We therefore complement the DFT calculation with a tight-binding (TB)
fit to the ARPES data in ref. [235]. To obtain this fit, we used an expansion
of the dispersion ϵk in functions respecting the lattice symmetries. Including
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Figure 6.6: (a) Electronic band structure of ML-VSe2 obtained from DFT calculations (red
line), compared to published ARPES measurements of the spectral function for epitaxially
grown ML-VSe2 at T = 170 K (shaded yellow, crosses: peak positions, lines: full width at
half maximum). The linewidth of the experimental data greatly exceeds the experimental
resolution [235]. Blue line is a tight-binding (TB) fit to the ARPES-measured, near-EF
band structure, where EF is the Fermi energy. (b) Fermi surface (FS) of ML-VSe2, obtained
from the TB fit in (a) by plotting states within ±1 meV (dark blue) and ±10 meV (≈ k

b
T

for T = 100 K, light blue) of EF. Dotted red line shows the DFT FS, which qualitatively
deviates from the TB fit. Hexagon shows the Brillouin zone, and the arrows indicate FS
regions visually appearing to be nested by the experimentally determined CDW wavevectors.

terms to fifth order, the fit can be expressed as:

ϵk = t0 + t1

(
2 cos(ξ) cos(η) + cos(2ξ)

)
+ t2

(
2 cos(3ξ) cos(η) + cos(2η)

)
+ t3

(
2 cos(2ξ) cos(2η) + cos(4ξ)

)
+ t4

(
cos(ξ) cos(3η) + cos(5ξ) cos(η) + cos(4ξ) cos(2η)

)
+ t5

(
2 cos(3ξ) cos(3η) + cos(6ξ)

)
,

(6.1)

where ξ = kx/2 and η =
√

3ky/2, and kx, ky are given in units of 2π/a, with
a the lattice parameter. ti are the (in-plane) hopping amplitudes. This ex-
pression was fitted using a least-squares fit procedure to the peak positions of
the ARPES spectrum of ML-VSe2 on bilayer graphene reported in ref. [235].
The resulting best fit is shown in 6.6. In agreement with reported ARPES
spectra, the TB fit shows a flat band region around the Γ-point, an indicator
of strong correlations.3 The difference in topology between the DFT and TB
FS (Figure 6.6b) is due to the proximity of a van Hove singularity to EF [235].
Overlaying the CDW vectors extracted from our STM data onto the FS visu-
ally suggests that Q1 corresponds to nesting between the sides of neighbouring
3An intuitive argument for this is that a flat band describes electrons with a small group
velocity (given by the slope of the band). When the kinetic energy of electrons is reduced,
we can expect other interactions to become more dominant.



6.2. Theoretical Results

6

101

298 K

Figure 6.7: The TB fit overlaid on an azimuthally averaged ARPES spectrum acquired on an
ultrathin VSe2 sample grown on HOPG, reported previously [224]. The sample is from the
same batch as that used for the STM measurements reported in the present chapter. Curves
show TB fits for a sequence of k-directions in steps of 10°, from along Γ − M (dark blue) to
Γ − K (white).

triangular FS pockets at the BZ edge, while Q2 connects the flat-band region
around Γ to the pocket corners around K.

To ensure that the fitted spectrum is also consistent with the samples used
in the present study, we compare our tight-binding fit to the ARPES spectrum
of a sample from the same batch of ML-VSe2 grown on HOPG, previously re-
ported in ref. [224]. As the macroscopic photon beam used in these experiments
averages over ML-VSe2 grains of multiple orientations, the resulting spectrum
corresponds to an azimuthal average over reciprocal space. While this limits a
direct experimental determination of the k-resolved Fermi surface for the sam-
ples studied by STM, we can still compare the tight-binding fit band structure
with the azimuthally averaged ARPES data. To account for the azimuthal
averaging, we plot the tight-binding spectrum (Figure 6.7) for a sequence of
different k-directions, rotated 10° from one another, lying along Γ − M (dark
blue) to Γ − K (white). We find a good agreement between the two.

6.2.2. Nesting and Correlated Instabilities
As already discussed at length in the previous two chapters, a conventional
CDW instability at wavevector QCDW results from a maximum in its structured
electronic susceptibility D2(q) for q = QCDW [164, 179]. In the weak electron-
phonon coupling (EPC) limit, D2(q) is given by:

D2(q) = −
∑

k∈BZ

|gk,k+q|2
f(ϵk) − f(ϵk+q)
ϵk − ϵk+q + iδ

. (6.2)

As before, f(ϵ) is the Fermi-Dirac function, ϵk is the bare electronic dispersion
(given by the TB model), and δ is a small regulator that we set to 0.1 meV in this
work. For the EPC matrix elements, gk,k+q, we again use the approximation
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Figure 6.8: (a) The normalised Lindhard susceptibility χ and (b) structured electronic sus-
ceptibility D2 of ML-VSe2, derived from the TB band structure. Circles highlight the posi-
tions of the susceptibility maximum (0, 0.28) ≈ Q1 (green) and experimentally determined
Q2 = (0.182, 0.315) (magenta), with the latter being located on an intensity plateau.

of Varma et al. [166], seen in earlier chapters. If we instead set gk,k+q = 1, we
obtain the Lindhard function χ(q).

The green circle in Figure 6.8a(b) indicates the maximum of the bare (struc-
tured) susceptibility, which lies at Q = (0, 0.28) ≈ Q1. Its proximity to a
commensurate value suggests that the corresponding CDW will lock to 0.25 rlu
(λ1 = 4a) due to CDW-lattice interactions [200]. Although its periodicity is
the same as that of the CDW observed in bulk and BL-VSe2, the FS for the
ML is strictly 2D, and the parts of the FS involved in CDW formation may be
different.

To elucidate the role of the FS in the observed CDWs, we plot in Fig-
ure 6.9 the k-resolved contributions to χ(q) and D2(q) for q = Q1 and Q2.
To compute this, we define

D2(k,Q) = −|gk,k+Q|2
f(ϵk) − f(ϵk+Q)
ϵk − ϵk+Q + iδ

, (6.3)

and similarly for χ(k,Q). Notice that we simply removed the sum over k,
and are computing what the contribution to the susceptibility is of a specific
wavevector Q. Regions of intensity in such a diagnostic indicate which regions
of the BZ contribute to the susceptibility, i.e. which electronic states can be
scattered by the chosen wavevector Q. As anticipated in Figure 6.6b, the dom-
inant contributions to χ(Q1) arise from the parallel edges of the K-centred
pockets, while the Γ-centred FS region plays a negligible role. The well-nested
K-pocket edges with opposite group velocities are therefore inherently unstable
to a Peierls-like CDW. The EPC matrix elements further enhance the contri-
bution of these Q1-connected regions to D2(Q1), thereby confirming the con-
ventional origin of the Q1 CDW in ML-VSe2.

In contrast, the phenomenology for q = Q2 does not fit the conventional
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Figure 6.9: Momentum space diagnostics of ML-VSe2 CDWs, indicating the BZ regions
contributing to the two susceptibilities χ and D2, given a chosen wavevector Q1 (a,b) or Q2
(c,d). Blue lines denote FS contours in the right half of the images, while black hexagons
indicate the BZ. Q1 (green) and Q2 (magenta) arrows indicate the regions with prominent
contributions to the susceptibilities as deduced from the diagnostics.

CDW framework. As highlighted by the magenta circles in Figure 6.8, this
wavevector lies in the middle of a susceptibility plateau, and lacks a well-defined
maximum. The dominant contribution to the bare susceptibility at q = Q2
comes from the Γ-centered flat band region, with smaller contributions from the
K-centred pockets (see Figure 6.9c). However, the corresponding D2(k,Q2) in
Figure 6.9d shows that the EPC matrix elements strongly suppress the intensity
in these regions, and the remaining contributions are insufficient to drive the Q2
CDW according to an EPC-assisted Peierls scenario. While the perturbative
expansion used for the structured susceptibility calculations [2, 159, 164, 166]
may not fully capture EPC in flat bands, that the origin of the Q2 CDW
lies beyond the Peierls description of CDWs is consistent with its empirical
characteristics: its varying orientation with respect to the lattice, absence in
BLs (and beyond), and the lack of a discernible peak in χ(q).

In the 2D limit of layered TMDCs like 1T -VSe2, the screening of Coulomb
interactions between electrons is much reduced [239]. The relative importance
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of the unscreened interactions is further enhanced within flat bands associated
with a van Hove singularity, such as at the near-Γ region in ML-VSe2 (Fig-
ure 6.6) [222, 235–237]. Indeed, the measured linewidth, or self-energy, of the
band near EF is much larger than the experimental resolution [235], supporting
the presence of strong electronic correlations [169]. Such interactions can con-
siderably renormalise electron and phonon properties, and enable CDW order
at momenta that do not correspond to peaks in the conventional susceptibility
(χ(q) or D2(q)). Indeed, such correlation-driven CDWs have been predicted
to exist in TMDCs [210], including in ML-VSe2 [238], and are consistent with
the unusual characteristics of the Q2 CDW. Crucially, a correlation-driven
mechanism for the Q2 CDW offers the only viable explanation of its preva-
lence over a well-nested counterpart (Q1), and the complete gapping of the
FS [222, 235–237], despite the absence of any associated feature in suscepti-
bility calculations based on models of non-interacting electrons. Further, we
conjecture that the single-Q character of the Q2 CDW, which breaks the three-
fold rotational symmetry of the lattice, makes it energetically favourable for
the Q1 CDW (nominally triple-Q) to also order in a single-Q configuration.
The interplay of these CDWs could be examined in future theoretical works by
iteratively incorporating the resulting lattice distortions.

6.3. Discussion and conclusion
In summary, our systematic experimental and theoretical efforts elucidate that
1T -VSe2 undergoes a dimensional crossover as its thickness is reduced to a
single layer. While BL-VSe2, akin to bulk, hosts a conventional triple-Q CDW,
ML-VSe2 hosts two distinct single-Q CDWs with contrasting characteristics.
One, with λ1 ≃ 4a, behaves similarly to its BL/bulk counterpart, and arises
from a weak-coupling Peierls-like mechanism utilising nested FS regions. In
contrast, the dominant CDW, with λ2 ≃ 2.8 a, cannot be explained within the
conventional EPC-assisted Peierls framework. Instead, the observed thermal
evolution and the calculated susceptibility suggest that this CDW – unique
to the ML – arises from a flat region of the electronic band structure, where
interactions and correlation effects are expected to dominate.

Monolayer VSe2 stands apart in hosting two coexisting charge orders with
distinct physical origins. Conventional electronic materials are typecast by
the mechanisms and phenomena they host. Our work suggests that ML-VSe2
transcends such labelling, and hosts coexisting ordered states originating from
contrasting coupling mechanisms. The prospect of such emergent electron cor-
relations and ensuing ordered states presenting themselves in 2D TMDCs more
generally is particularly promising given their predominance in the plethora
of proposed designs for heterogeneous layered materials [212, 240, 241]. Their
potential for tunability and their interplay with conventional charge and spin
orders in the ultrathin limit is promising for realising exotic ordered states on
the one hand, and for applications in multifunctional electronics on the other.
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With this, we also conclude Part II of this thesis. We have now seen how
electrons, coupled to the lattice they live in, may form charge-ordered states
that change the symmetry and other properties of their host material. The
limitations of the conventional description of CDWs by analogy to the Peierls
model has historically complicated the discussion in the literature, by encour-
aging the creation of distinct mechanisms and models to explain apparent ‘un-
conventional’ (by which we mean non-Peierls-like) features of CDWs in real
materials. By describing the effects of electron-phonon coupling in a general
framework that allows for the inclusion of a structured EPC (as well as strong-
coupling extensions [159]), it becomes much easier to determine whether charge
order in specific materials should be deemed unusual, or not. In the case of
bulk VSe2, we demonstrated that all the apparently unconventional features
are well-described by a theory with weak, structured EPC. Conversely, in ML-
VSe2 this same framework was able to demonstrate that one of the two CDWs
it hosts is decidedly unusual, and requires additional coupling mechanisms be-
yond EPC.

As demonstrated by Part II of this thesis, it has taken a concerted effort to
understand the subtleties behind the formation of CDWs, even when restrict-
ing ourselves to only considering electron-phonon interactions. Now that we
understand EPC-driven charge order, we should turn to the unknown. There
are many systems which, like ML-VSe2, host multiple types of interactions.
Many also host multiple order parameters – be it electronic, magnetic, struc-
tural, superconducting, or otherwise – which may compete or complement each
other. The need to take into account multiple types of interactions and phases
is precisely what makes exotic beasts like cuprates, pnictides, complex oxides
and (multi)ferroics so interesting.

In the grand scheme of things, it will always remain impossible to take into
account, well, everything. In some cases, we might need to let go of the entire
concept of quasiparticles and the starting point of hypothetical non-interacting
quantum fields, and start using entirely new frameworks like holography [242].
In many other cases, however, we should be able to make significant progress
by pushing the limits of (often already existing) methods. Note that Doran
already demonstrated the need for considering a structured EPC to describe
the charge order in NbSe2 back in 1978 [164]. Now, 44 years later, having
demonstrated that by including a structured EPC we can obtain quantitative
agreement with experiments on real CDW materials, we appear to finally have
reached the point that this might become more standard practice. With today’s
computational power, we should be able to reconsider many other standardised
– but ultimately unphysical – approximations in the theories we use. With a
bit of luck, this will further our understanding of exotic phases of matter; and
where it fails, we might learn what we’re missing.
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Appendix

A.1. Multiband CDW Hamiltonians
In Section 4.2, we plot several electronic band structures within possible CDW
phases of the models considered. These are derived by considering the lattice
distortion generated by the CDW, and then defining a new tight-binding model
with a larger unit cell and modified hopping parameters. Let us demonstrate
how this works with the system of two coupled Peierls chains (see Figure 4.3).
In the normal phase, this has Hamiltonian

He =
∑
j

[
µcc

†
jcj + µdd

†
jdj − t1

(
c†
jcj+1 + c†

j+1cj + d†
jdj+1 + d†

j+1dj

)
− t2

(
c†
jdj + d†

jcj

) ]
=
∑

k

(
c†
k d†

k

)( µc − 2t1 cos(ka) −t2
−t2 µd − 2t1 cos(ka)

)(
ck
dk

)
,

(A.1)

where we have relabelled ck,1 = ck and ck,2 = dk. We set µc = µd = 0 and
t1 = t2 = 1. The periodic lattice distortion that we impose consists of an
out-of-phase dimerisation in the two chains. This can be described in real
space by defining uj = α(−1)j and vj = −α(−1)j , which describe the lateral
displacements of the c and d atoms from their original positions, respectively.
We take α to be small compared to a; the plots in Figure 4.3 assume an
exaggerated α = 0.1a. To first order, the t1-hopping is modified by these
displacements because of this addition to the Hamiltonian:

−t1
∑
j

α
[(
uj − uj+1

)(
c†
jcj+1 + c†

j+1cj

)
+
(
vj − vj+1

)(
d†
jdj+1 + d†

j+1dj

)]
.

(A.2)
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Overall, this means the t1 hopping amplitude is modified by a factor (1 ±
2α). For simplicity, we assume the atoms are allowed to relax their positions
perpendicular to the chain direction, in such a way that t2 remains unchanged.

At this point, we define a new Hamiltonian, which has a unit cell that is
twice the size of the original. Let us define new electron operators for the nth

unit cell:

cn = c2j ; c̃n = c2j+1; dn = d2j ; d̃n = d2j+1. (A.3)

In this basis, the Hamiltonian is given by (setting all on-site potentials µν to
zero)

He =
∑
n

[
− t1(1 + 2α)

(
c†
nc̃n + c̃†

ncn + d̃†
n+1dn + d†

nd̃n+1

)
− t1(1 − 2α)

(
c†
n+1c̃n + c̃†

ncn+1 + d̃†
ndn + d†

nd̃n

)
− t2

(
c†
ndn + d†

ncn + c̃†
nd̃n + d̃†

nc̃n
)]
.

(A.4)

Finally, using the Fourier transform cn =
√

2
N

∑
k e

2iknack (and similarly for
the other operators), where k takes N/2 values in the range −π/2a to +π/2a,
we obtain the Bloch Hamiltonian

he(k) =


0 −t̃ −t2 0

−t̃∗ 0 0 −t2
−t2 0 0 −t̃∗

0 −t2 −t̃ 0

, (A.5)

written in the basis |ψ⟩ = (c†
k, c̃

†
k, d

†
k, d̃

†
k). We defined t̃ = t1(1 + 2α) + t1(1 −

2α)e−2iak. Diagonalising this matrix gives the eigenvalues shown in the bottom
left plot of Figure 4.3.

Adding a third (vertically aligned) Peierls chain has the following CDW
Bloch Hamiltonian:

he(k) =



0 −t̃ −t2 0 0 0
−t̃∗ 0 0 −t2 0 0
−t2 0 0 −t̃∗ −t2 0
0 −t2 −t̃ 0 0 −t2
0 0 −t2 0 0 −t̃
0 0 0 −t2 −t̃∗ 0


, (A.6)

which results in the CDW band structure in the bottom right of Figure 4.3.
In the case of the ‘diamond-chain’ model, we consider periodic lattice dis-

tortions in which the atoms move perpendicular to the chain directions. In
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… …
… …

… …
‘Dipole charge order’
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Figure A.1: The two sets of lattice distortions considered in the CDW Ansatzes for the
‘diamond-chain’ model. At the top, the distorted lattices are shown, with atomic displace-
ments indicated as red arrows, and bonds colour-coded by their length. Dark green bonds
have (unchanged) length a; light green bonds are slightly lengthened to ll1; light blue bonds
are stretched to length ll2, and dark blue bonds are shortened to length ls2. The triangles
in the bottom row indicate how we can determine the new bond lengths using Pythagoras’
theorem. h =

√
3

2 a.

this case, there are multiple changes to bond lengths which we must consider.
As before, we can use the first-order approximation that a small displacement
which changes a bond length will linearly affect the hopping parameter for this
bond length. All initial bond lengths are set to a, such that the original lattice
is made up of equilateral triangles. Vertical displacements thus change the bond
lengths in a way that can be determined by trigonometry. Figure A.1 indicates
all bond length changes considered in the two CDW Ansatzes demonstrated in
Figure 4.4. We can calculate the length of the light green bonds as

ll1 =
√
a2 + 4α2 = a

√
1 + 4α2

a2 ≈ a

(
1 + 2α2

a2

)
, (A.7)

where in the last step we used
√

1 + x ≈ 1 + x/2. The length of the light and
dark blue bonds is derived as

ll2 =

√
a2

4 +
(√

3
2 a+ α

)2

= a

√
1 +

√
3α
a

+ α2

a2 ≈ a

(
1 +

√
3α

2a + α2

2a2

)
;

ls2 =

√
a2

4 +
(√

3
2 a− α

)2

= a

√
1 −

√
3α
a

+ α2

a2 ≈ a

(
1 −

√
3α

2a + α2

2a2

)
.

(A.8)
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This gives us the new hopping parameters

tl1 =
(

1 − 2α2

a2

)
;

tl2 =
(

1 −
√

3α
2a − α2

2a2

)
;

ts2 =
(

1 +
√

3α
2a − α2

2a2

)
.

(A.9)

We then obtain the following Bloch Hamiltonian for the dipole CDW phase:

he(k) =



0 −t1γ −ts2 −tl2 0 0
−t1γ∗ 0 −ts2β∗ −tl2 0 0
−ts2 −ts2β 0 −tl1γ −tl2 −tl2β
−tl2 −tl2 −tl1γ∗ 0 −ts2 −ts2
0 0 −tl2 −ts2 0 −t1γ
0 0 −tl2β∗ −ts2 −t1γ∗ 0


, (A.10)

where we defined β = e−2ika and γ = 1 + e−2ika. Finally, for the quadrupole
CDW phase we obtain the Bloch Hamiltonian

he(k) =



0 −tl1γ −ts2 −ts2 0 0
−tl1γ∗ 0 −tl2β∗ −tl2 0 0
−ts2 −tl2β 0 −t1γ −ts2 −tl2
−ts2 −tl2 −t1γ∗ 0 −ts2β∗ −tl2
0 0 −ts2 −ts2β 0 −tl1γ
0 0 −tl2 −tl2 −tl1γ∗ 0


. (A.11)

A.2. Matsubara sum: electronic susceptibility
In this section, we perform the Matsubara summation in D2(q,Ω) and χ(q,Ω),
to obtain Equations 4.37 and 4.38. The relevant summation in both cases is∑

ωn

GkGk+q =
∑
ωn

1
iωn − ϵk

1
iωn − ϵk+q + iΩn

, (A.12)

where I omitted the band labels and absorbed the chemical potential µ into ϵk.
The following describes the standard method for computing such summations;
see for instance refs. [161, 162].

The fermionic Matsubara frequencies in Equation A.12 constitute an infi-
nite set, defined by ωn = (2n + 1)π/β with n ∈ Z. (The bosonic Matsubara
frequencies are given by Ωn = 2nπ/β.) To compute the sum over ωn, we use
Cauchy’s theorem. This theorem equates the infinite sum over a function of
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discrete frequencies to a contour integral in the complex plane over a weight
function with poles at the same frequencies. For fermions, a convenient choice
for this weight function is the Fermi-Dirac distribution function

f(z) = 1
eβz + 1 . (A.13)

Explicitly, a generic sum over fermionic Matsubara frequencies can be rewritten
as ∑

ωn

h(iωn) = 1
2πi

∮
C
dz h(z)f(z). (A.14)

In this expression, we can identify h(iωn) = GkGk+q:∑
ωn

GkGk+q = 1
2πi

∮
C
dz

1
z − ϵk

f(z)
z − ϵk+q + iΩn

. (A.15)

A convenient feature of contour integrals in the complex plane is that the
outcome of the integral over a closed contour is equal to the sum of the residues
of the poles enclosed by that contour. This is known as the residue theorem.
The integrand in the above expression has the infinite set of poles in f(z), which
are enclosed by the contour C, as well as two simple poles at z1 = ϵk+q − iΩn
and z2 = ϵk, respectively. By the residue theorem, we know that we can
deform the contour without changing the outcome of the contour integral, so
long as the deformed contour does not enclose the two other poles at z1 and z2.
Additionally, since h(z)f(z) → 0 faster than 1/|z| → 0 as we take |z| → ∞ in
all directions in the complex plane, any line integral lying at infinity will give
zero, regardless of how many poles it encloses. As is sketched in Figure A.2, we
can equate the integral over the anti-clockwise1 contour C enclosing all poles at
Matsubara frequencies z = iωn with an integral over two clockwise contours γ1,2
surrounding the poles at z1,2, plus an anti-clockwise contour lying at infinity
(which necessarily gives zero). And, by the residue theorem, this means that

∑
ωn

GkGk+q = −
∑
j

Res
[
f(z)
z − ϵk

1
z − ϵk+q + iΩn

]
z=zj

. (A.16)

Finally, the residues of the simple poles at zj are given by [(z − zj)h(z)f(z)]z=zj ,
such that we obtain∑

ωn

GkGk+q = − f(ϵk)
ϵk − ϵk+q + iΩn

− f(ϵk+q − iΩn)
ϵk+q − iΩn − ϵk

= − f(ϵk) − f(ϵk+q)
ϵk − ϵk+q + iΩn

.

(A.17)

1The direction in which the contour is integrated over is important, because changing from
anti-clockwise to clockwise gives a minus sign.
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Figure A.2: The sum over electronic Matsubara frequencies ωn can be calculated as a
line integral in the complex plane of a function (h(z)f(z)) containing simple poles at z =
iωn (blue crosses) over the anti-clockwise contour C (which stretches to Im(z) → ±∞),
shown on the left. As shown on the right, we can deform this contour into two clockwise
contours surrounding the poles of h(z) = GkGk+q : γ1 surrounding z1 = ϵk+q − iΩn and γ2
surrounding z2 = ϵk. The integrals along the dashed lines all give zero.

In the last line, we used that f(ϵ − iΩn) = f(ϵ − 2πin/β) = f(ϵ). Thus, we
conclude that

Dλ,ν,η
2 (q,Ω) =

∑
k

|gλ,ν,ηk,k+q|2GλkGνk+q = −
∑

k

|gλ,ν,ηk,k+q|2
f(ϵλk) − f(ϵνk+q)
ϵλk − ϵνk+q + iΩ

;

(A.18)

χλ,ν(q,Ω) =
∑
k

GλkG
ν
k+q = −

∑
k

f(ϵλk) − f(ϵνk+q)
ϵλk − ϵνk+q + iΩ

. (A.19)

A.3. Matsubara sum: electronic self-energy
In this section, we perform the Matsubara summation over bosonic frequencies
Ωn = 2nπ/β to obtain an expression for the electronic self-energy. For sim-
plicity, we consider only interactions via bare phonon fields here, although the
same method can be applied using renormalised phonons, as demonstrated in
e.g. ref. [162]. The electronic self-energy is given by

Σk = Σ(k, iωn) =
∑

q

∑
Ωn

(
|gk,k−q|2D(q, iΩn)G(k − q, iωn − iΩn

)
. (A.20)
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Writing out the bare phonon propagator D, and expressing the electron prop-
agator in the Lehmann representation, we obtain

Σ(k, iωn) = − 1
π

∑
q

(
|gk,k−q|2

∫
dϵ′ Im [G(k − q, ϵ′]

×
∑
Ωn

(
−2Ωq

(iΩn)2 − Ω2
q

1
iωn − iΩn − ϵ′

))
.

(A.21)

We can perform the Matsubara sum on the second line by rewriting it as a
contour integral ∑

Ωn

h(iΩn) = 1
2πi

∮
dz nB(z)h(z), (A.22)

where h(iΩn) is the function in the parentheses on the second line of Equa-
tion A.21, and

nB(z) = 1
eβz − 1 (A.23)

is the Bose-Einstein distribution function. We note that nB(z) has simple poles
at iΩn, while h(z) has three poles lying at z1 = Ωq, z2 = −Ωq and z3 = iωn−ϵ′.
As such, we can replace the contour integral by the sum over residues of the
poles enclosed: ∑

Ωn

h(iΩn) = −
∑
j

Res
[
nB(z)h(z)

]
z=zj

= nB(Ωq)
iωn − ϵ′ − Ωq

−
nB(−Ωq)

iωn − ϵ′ + Ωq

−
2ΩqnB(iωn − ϵ′)

(iωn − ϵ′ − Ωq)(iωn − ϵ′ + Ωq)
.

(A.24)

Using the properties nB(−Ωq) = −nB(Ωq) − 1 and nB(iωn − ϵ′) = −f(−ϵ′) =
f(ϵ′) − 1, we can rewrite this as∑

Ωn

h(iΩn) = nB(Ωq) − f(ϵ′) + 1
iωn − ϵ′ − Ωq

+ nB(Ωq) + f(ϵ′)
iωn − ϵ′ + Ωq

(A.25)

Finally, we Wick rotate iωn → ϵ + iδ, and fill it back into Equation A.21 to
obtain

Σ(k, ϵ+ iδ) = − 1
π

∑
q

(
|gk,k−q|2

∫
dϵ′ Im [G(k − q, ϵ′)] (A.26)

×

(
nB(Ωq) − f(ϵ′) + 1
ϵ− ϵ′ − Ωq + iδ

+ nB(Ωq) + f(ϵ′)
ϵ− ϵ′ + Ωq + iδ

))
.
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Because Im [G(k − q, ϵ′)] depends on the electronic self-energy, this equation
is self-consistent, and we can solve it recursively. Starting with a seed value of
the self-energy (Σ0), the first order expression is given by

Σ1(k, ϵ+ iδ) = − 1
π

∑
q

(
|gk,k−q|2

∫
dϵ′ Im

[
1

ϵ′ − ϵk−q − Σ0 + iδ

]
(A.27)

×

(
nB(Ωq) − f(ϵ′) + 1
ϵ− ϵ′ − Ωq + iδ

+ nB(Ωq) + f(ϵ′)
ϵ− ϵ′ + Ωq + iδ

))
.

Continuing to higher order expressions is computationally expensive, since each
order requires an integral over energies and a sum over momenta q, and there
is no telling how many iterations will be necessary. A more efficient way to
find the self-consistent solution is to test a range of seed values Σ0, and plot
these against the “1-loop” result Σ1. The resulting curve should be a contin-
uous, smooth function, such that the intercept Σ1 = Σ0 is the self-consistent
self-energy.

Within the charge-ordered phase, we have a self-energy matrix Σ̂, rather
than a function. The diagonal elements are the same self-energies as discussed
above, while the off-diagonal elements of the matrix are the CDW gap functions
∆k1
k2

. In this case, the elements m,n of Σ̂ are described by

Σmn (k, ϵ+ iδ) = − 1
π

∑
q

(
gk+mQ,k−q+mQgk−q+nQ,k+nQ

×
∫
dϵ′ Im [Gmn (k − q, ϵ′)] (A.28)

×

(
nB(Ωq) − f(ϵ′) + 1
ϵ− ϵ′ − Ωq + iδ

+ nB(Ωq) + f(ϵ′)
ϵ− ϵ′ + Ωq + iδ

))
,

where Gmn denote the elements of the electron propagator matrix Ĝ, comprised
of Gk+mQ on the diagonal and anomalous propagators F k+mQ

k+nQ away from the
diagonal.



Summary
Electronic order:

Topology in crystals and symmetry-breaking from
interactions

The electron was the first subatomic particle to be found experimentally, by
J.J. Thomson in 1897 [243]. This carrier of negative charge has a mass of only
9.1 × 10−31 kg, but where would we be without it? Electrons form the basis of
all electronics (the clue is in the name), so without it we would have no electric
lighting, no computers, no internet, . . . Most important of all,1 without it
this thesis would not have been possible. That’s not just because much of
the work presented in the present manuscript was dependent on the use of
computers, but also because the (collective) behaviour of electrons makes for
such an interesting topic of study. While we have measured the properties of
the subatomic particle to extremely high precision, and we can easily predict
what electrons in vacuum will do, electrons inside materials show beautiful and
often tuneable emergent behaviour about which we still have much to learn.
The focus of this thesis is precisely this collective behaviour.

The first thing one should note about electrons in matter, is that they’re
actually nothing like the subatomic particle. Interactions between an electron
and the billions of particles that surround it in a material mean that it may
for instance behave as if it has a completely different (effective) mass. We
say the fundamental, ‘bare’ electrons are ‘dressed’ by interactions, becoming
quasiparticles.2 In fact, we can go a step further than this. In many materials,
the atomic cores are arranged in a neat, orderly fashion, forming a periodic
lattice; we call such materials crystals. The (quasi)electrons of the atoms in a
crystal live in a periodic electric field generated by the positively charged atomic
cores, and can move around by effectively hopping (or quantum-mechanically
tunnelling) from one atom to the next. From this it follows that the atomic
structure can have a huge influence on the behaviour of electrons in a material.
In this thesis, we pose the question of what electronic phases of matter are
made possible by the influence of the atomic lattice on the electrons that they
host.

In Part I, we delve into the role of the symmetries of a crystal lattice. An
example of this is the discrete translational symmetry generated by the period-
icity of the lattice, which enforces that the quantum-mechanical wavefunctions
1;)
2In some cases, even this quasiparticle picture breaks down.
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describing electronic states3 are also periodic. Importantly, it imposes that
electronic wavefunctions may only be ‘twisted’ in certain ways, where twisting
refers to how the phase of the wavefunction varies as you cycle through one
period. A twisted wavefunction can only be untwisted by breaking a symmetry
or changing the number of electrons in the system. These twisting conditions
are a so-called topological feature, with the degree of twisting indicating the
topological phase of the crystal. This leads to exotic phases such as topological
insulators, which do not conduct electricity through the bulk, but host exotic
electronic states on their surfaces that are protected by symmetry.

At present, the field of topology in condensed matter is edging towards
completing the full topological classification of crystalline insulators, includ-
ing the topological phases stabilised by all other possible lattice symmetries.
This includes symmetries such as discrete rotations, reflections, and inversions,
whose presence further constrains the electronic wavefunctions. While at this
point it is known how many topological phases are possible, we still have not
found a way to distinguish between all of them. In Chapter 3, we present a
unifying framework with which we believe all crystalline topological invariants
(which distinguish topological phases) may be identified. We demonstrate it
for two-dimensional crystals with three-fold rotational symmetry, and discuss
the generalisation of our method to other crystal symmetries.

In Part II of this thesis, we move away from topological insulators, and
instead show how the interactions between electrons and the lattice they reside
in can lead to ordered electronic phases that actually change the crystal sym-
metries. In these phases, electrons spontaneously form standing waves called
charge density waves (CDWs), with wavelengths on the order of a few unit cells
of the lattice. Electrons bunching up like this is something you’d never expect
from bare electrons, because their negative charges mean they repel each other.
The CDW is made possible by the fact that electrons also interact with vibra-
tional modes of the crystal lattice, called phonons. By coupling together, the
quasielectrons and dressed phonons find a new lowest-energy state, in which
the CDW is accompanied by displacements of the positively charged atomic
cores with the same periodicity as the CDW. Because materials change their
atomic structure and their conductivity upon the transition to a CDW state,
this type of charge order may be relevant for applications.

Most of the conventional wisdom regarding CDWs is derived from a simple,
one-dimensional toy model. An important feature that this model neglects is
that the strength of the coupling between electrons and phonons will depend on
their momenta, as well as the orbital character and potentially even the spin of
the electron. In this sense, we say that the electron-phonon coupling is struc-
tured. To incorporate such a structured coupling, we use a generally applicable
method for describing charge order based on quantum field theory. We apply
this method to analyse the CDWs in the real material VSe2. This material is
3More formally, a wavefunction ψ(r) describes the probability amplitude of finding an electron
at position r.
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unusual, in that its three-dimensional electronic structure does not make it a
likely candidate for hosting CDWs using the conventional wisdom. Addition-
ally, the wavevectors of the CDWs it hosts were determined experimentally to
vary with temperature, leading to the suggestion that the material might in
fact host two distinct CDW phases. We show that both of these apparently
anomalous features are easily explained by considering a structured coupling.
Next, we consider what happens to this material when we thin it down to two
dimensions. We demonstrate that when we go down to two layers of VSe2,
it still hosts CDWs with the same in-plane periodicity as the bulk material.
However, in the monolayer limit, we encounter a dimensional crossover: the
CDWs stop respecting the three-fold rotational symmetry of the lattice, and
we can identify two distinct CDW types. One of these is still similar to the bulk
CDW, while the other cannot be explained by electron-phonon coupling alone.
The latter is most likely induced by Coulomb interactions, making monolayer
VSe2 the first material known to simultaneously host two types of CDWs with
different driving mechanisms.

This thesis constitutes a step towards a complete understanding of the inter-
play between electrons and the lattice, and indicates a clear direction for future
research. The unique environment provided to electrons by a crystal lattice lies
at the heart of almost all exotic phases of matter, including those in which there
are many different types of interactions that are difficult to disentangle. While
we focussed on the two most fundamental types of electronic order, namely
topology and charge order, our conclusions are general. We expect that the
approaches demonstrated here, combined with modern computing power, will
contribute to a more complete understanding of other, and perhaps even more
exotic, phases of matter.





Samenvatting
Elektronische orde:

Topologie in kristallen en symmetriebreking door
interacties

Het elektron is het eerste subatomaire deeltje dat experimenteel werd ontdekt,
door J.J. Thomson in 1897 [243]. Deze drager van negatieve lading heeft een
massa van slechts 9.1×10−31 kg, maar is van onmisbaar belang in ons dagelijks
leven. Zonder elektronen zouden we geen elektrische verlichting hebben, geen
computers, geen internet, . . . En, als allerbelangrijkste,1 zonder elektronen
was dit proefschrift niet mogelijk geweest. Dat komt niet alleen omdat veel
van het werk gepresenteerd in dit manuscript afhankelijk is van het gebruik van
computers, maar ook omdat het (collectieve) gedrag van elektronen ons blijft
verrassen en verwonderen. Hoewel we de eigenschappen van het subatomaire
deeltje tot extreme precisie hebben gemeten, en we precies kunnen voorspellen
wat een elektron in vacuüm zal doen, tonen elektronen in materialen bijzonder
en vaak afstembaar gedrag waar we nog veel over kunnen leren. Dit laatste
vormt de focus van dit proefschrift.

Het eerste wat je moet weten van elektronen in materie is dat ze weinig lijken
op de ‘vrije’ elektronen waar deeltjesfysici het over hebben. Wisselwerkingen
tussen een elektron en de miljarden atoomkernen en andere elektronen die hem
in een materiaal omringen kunnen hem doen gedragen alsof hij bijvoorbeeld een
compleet andere (effectieve) massa heeft. De wisselwerkingen toveren zo het
vrije elektron om naar een quasideeltje.2 In veel materialen zijn de atoomkernen
netjes gerangschikt, zodat ze een periodiek rooster vormen; we noemen deze
materialen kristallen. De (quasi)elektronen van de atomen in een kristal bevin-
den zich in een periodiek elektrisch veld gegenereerd door de positief geladen
atoomkernen, en kunnen rondbewegen door van de ene atoomkern naar de
volgende te springen (oftewel quantum-mechanisch te tunnellen). Hieruit is
meteen duidelijk dat de structuur van het kristalrooster het gedrag van elek-
tronen in het kristal sterk kan beïnvloeden. In dit proefschrift onderzoeken we
welke soorten elektronische fases mogelijk worden gemaakt door de invloed van
het atoomrooster op de elektronen in dat rooster.

In Deel I verdiepen we ons in de rol van de symmetrieën van het kristal-
rooster. Een voorbeeld hiervan is de discrete translatiesymmetrie die gegenereerd
1;)
2In sommige gevallen, zoals bij sterke wisselwerkingen, werkt de beschrijving in termen van
quasideeltjes ook niet meer.
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wordt door de periodiciteit van het rooster. Deze zorgt ervoor dat de quantum-
mechanische golffuncties die elektronische toestanden beschrijven3 ook peri-
odiek zijn. Belangrijk is dat dergelijke symmetrieën bepalen op welke manieren
elektronische golffuncties ‘gedraaid’ mogen worden, waarbij draaien verwijst
naar hoe de fase van de golffunctie varieert over een gesloten cyclus. Een
gedraaide golffunctie kan zijn draaiing niet veranderen zonder een symmetrie
te breken of het aantal elektronen in het systeem te veranderen. Hiermee
vormt de draaiing van de golffunctie een zogeheten topologische eigenschap,
waarbij de hoeveelheid draaiing een indicator is van de topologische fase van
het kristal. Dit leidt tot exotische fases zoals topologische isolatoren: mate-
rialen die alleen elektriciteit geleiden via speciale, door-symmetrie-beschermde
elektronische toestanden op hun oppervlakten.

Op dit moment naderen we de voltooiing van de volledige topologische clas-
sificatie van kristallijne isolatoren, inclusief de topologische fases die worden
gestabiliseerd door (naast translatiesymmetrie) alle andere mogelijke rooster-
symmetrieën. Dit omvat symmetrieën zoals discrete rotaties, reflecties en inver-
sies, waarvan de aanwezigheid de draaiing van elektronische golffuncties verder
beperkt. Hoewel we nu weten hoeveel topologische fases er moeten bestaan,
kunnen we ze nog niet allemaal van elkaar onderscheiden. In Hoofdstuk 3 pre-
senteren we een verenigend raamwerk waarmee we geloven dat alle kristallijne
topologische invarianten (die topologische fases onderscheiden) kunnen worden
geïdentificeerd. We demonstreren dit voor tweedimensionale kristallen met
drievoudige rotatiesymmetrie, en bespreken de generalisatie van onze methode
naar andere symmetriegroepen.

In Deel II van dit proefschrift laten we zien hoe de interacties tussen elektro-
nen en het rooster waarin ze zich bevinden kunnen leiden tot geordende elektro-
nische fases die de kristalsymmetrieën juist doen veranderen. We bestuderen
fases waarin elektronen staande golven vormen, geheten ladingsdichtheidsgol-
ven (CDWs), met golflengtes van enkele eenheidscellen van het rooster. Dat de
elektronen zo ophopen is iets dat je nooit van vrije elektronen zou verwachten,
omdat ze elkaar afstoten met hun negatieve lading. Een CDW wordt mogelijk
gemaakt doordat elektronen wisselwerken met trillingsmodi van het atoom-
rooster, zogeheten fononen. Door aan elkaar te koppelen, vinden de quasielek-
tronen en fononen een nieuwe grondtoestand, waarin de CDW gepaard gaat met
verplaatsingen van de positief geladen atoomkernen met dezelfde periodiciteit
als de CDW. Omdat de overgang naar een CDW-toestand de atoomstructuur
en geleidingseigenschappen van een materiaal veranderen, kan deze soort elek-
tronische orde ook relevant zijn voor technologische toepassingen.

Bijna alle conventionele wijsheid met betrekking tot CDWs is afgeleid van
een eenvoudig, eendimensionaal model van een kristal. Iets belangrijks dat dit
model verwaarloost is dat de sterkte van de koppeling tussen elektronen en
fononen zal afhangen van hun impuls, evenals in welke atomaire orbitaal het
3Formeler gezegd: een golffunctie ψ(r) beschrijft de waarschijnlijkheidsamplitude dat je op
positie r een elektron zult treffen.
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elektron zich bevindt, en mogelijk zelfs zijn spin. In die zin zeggen we dat de
elektron-fononkoppeling gestructureerd is. Om zo’n gestructureerde koppeling
mee te kunnen nemen, gebruiken wij een algemeen toepasbare methode om de
vorming van CDWs te beschrijven, gebaseerd op quantumveldentheorie. We
passen deze methode toe op het materiaal VSe2. Dit is een merkwaardig ma-
teriaal, omdat het een driedimensionale elektronenstructuur heeft die het geen
typische kandidaat maakt voor het vormen van CDWs, als we de conventionele
wijsheid zouden toepassen. Daarbovenop hebben experimenten aangetoond dat
de golfvectoren van de CDWs veranderen met de temperatuur, wat leidde tot
de suggestie dat het materiaal in feite twee verschillende CDW-fases zou kun-
nen bevatten. Wij laten zien dat beide ogenschijnlijk afwijkende kenmerken
gemakkelijk kunnen worden verklaard door een gestructureerde koppeling te
beschouwen. Vervolgens bekijken we wat er met dit materiaal gebeurt als we
het verdunnen tot twee dimensies. Wanneer we het kristal reduceren tot een
dikte van twee lagen, vormen er CDWs met dezelfde periodiciteit als in het
bulkmateriaal. Dit verandert echter in de limiet van een enkele laag van VSe2:
de CDWs houden op met het respecteren van de drievoudige rotatiesymmetrie
van het rooster, en we kunnen twee verschillende CDW-soorten identificeren.
Één daarvan lijkt op de bulk-CDWs, terwijl de andere niet verklaard kan wor-
den met alleen elektron-fononkoppeling. Deze laatste wordt hoogstwaarschijn-
lijk veroorzaakt door Coulomb-interacties, waardoor monolaag-VSe2 het eerste
materiaal is waarvan bekend is dat het twee soorten CDWs herbergt met hun
oorsprong in verschillende mechanismen.

Dit proefschrift vormt een stap in de richting van een volledig begrip van het
samenspel van elektronen en het rooster, en geeft een duidelijke richting aan
voor toekomstig onderzoek – zowel theoretisch als in het belang van mogelijke
toepassingen. De unieke omgeving die door een kristalrooster aan elektronen
wordt geboden, vormt de kern van bijna alle exotische fases van materie, in-
clusief die waarin er veel verschillende soorten interacties bestaan die moeilijk
te ontwarren zijn. Hoewel we ons hebben geconcentreerd op de twee meest
fundamentele soorten elektronische orde, namelijk topologie en de vorming van
ladingsdichtheidsgolven, zijn onze conclusies algemeen. We verwachten dat de
hier gedemonstreerde benaderingen, gecombineerd met moderne rekenkracht,
zullen bijdragen aan een vollediger begrip van nog vele andere, en allicht nog
exotischere, fases der materie.
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