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Abstract: As a fundamental concept, geometry is widely used in understanding physical phenomena.

In quantum mechanics, geometry is related to the system’s quantum state and can be characterized

by the quantum geometric tensor (QGT), whose real part is referred to as the quantum metric tensor

(QMT), which defines the distance between two neighboring quantum states in the projected Hilbert

space. Several pieces of research based on discrete variables have been proposed to extract the QMT,

but research with the use of continuous variables is lacking. Here, we propose a method to extract

the QMT of a continuous variable system, specified here as a cat-qubit. The method is developed by

constructing the Kerr nonlinear parametric oscillator (KNPO) and by modulating it with external

drives to induce adiabatic dynamics process within the state subspace spanned by the even and

odd Schödinger cat states. The method paves the way for exploring the geometry for continuous

variable systems.

Keywords: quantum metric tensor; continuous variable systems; cat-qubit

1. Introduction

Geometry is a critical concept for describing fundamental principles of nature. In
the quantum world, quantum states are presented by the wavefunctions in Hilbert space
with specific dimensions, quantum geometry builds the geometric construction in this
space [1–3].

The quantum geometric tensor (QGT) [4–8] provides a powerful tool to outline the
geometry of Hilbert space. On one hand, its imaginary part, Berry curvature, is widely
explored for understanding various physical phenomena, such as the Aharonov–Bohm
effect [9], the Berry phase [10–14] and the topology of condensed matter [15–20]. On the
other hand, the real part defines the quantum metric tensor (QMT), which reflects the
quantum distance between two neighboring quantum states in the parametric space. What
is more, as a gauge invariable, the QMT has been widely exploited in various studies,
such as quantum fluctuations [21–24], quantum phase transition [25–29] and topological
matter [30]. It is also associated with a topological invariant, the Euler characteristic
number [2,6,31–33], for describing the topology of the state manifold. So, it is pivotal to
measure the QMT for analyzing the geometry of the quantum system.

So far, theoretical and experimental studies have been conducted to measure the QMT
in different physical systems [33–41]. However, schemes to measure this intriguing quantity
in a continuous variable system are still lacking. Here, we propose a scheme to measure
the QMT in a continuous variable system with cat-qubit encoding [42–46]. We consider
a superconducting quantum interference device (SQUID) array [47] to construct the Kerr
nonlinear parametric oscillator (KNPO) [48–52] for stabilizing the Schrödinger cat states,
together by inducing two modulated drives and controlling the detuning of the oscillator to
realize an effective and modulated two-level system, with a pair of continuous variable even
and odd schrödinger cat states as the encoding bases. Through the method of adiabatic
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control of the KNPO system’s state evolution in the parametric space, we numerically
analyze and extract the QMT. The results are highly consistent with the theory, providing
an effective method with which to explore the geometry of continuous variable systems.

2. Quantum Metric Tensorl (QMT)

We consider a Hamiltonian Ĥ(r) of a nondegenerate quantum system, which is depen-
dent on N dimensionless parameters r = (r1, r2, . . . , rN)

Tr, and define the corresponding
eigensystem:

Ĥ(r)|uk(r)〉 = Ek(r)|uk(r)〉, (1)

where |uk(r)〉 and Ek(r) are the eigenstate and the eigenenergy with quantum number k,
respectively. By projecting these dynamics onto this nondegenerate band Ek(r), we can
define the QGT of this geometric construction as (see Appendix A):

Qk
ij = 〈∂iuk(r)|(1 − |uk(r)〉〈uk(r)|)

∣

∣∂juk(r)
〉

, (2)

with i, j ∈ {r1, r2, . . . , rN}. Note that the QGT is complex, and can be spanned into two
parts. The imaginary part is related to the Berry curvature: Im

{

Qij

}

= −Fij/2, which is
anti-symmetric; while the real part defines quantum metric tensor: Re

{

Qij

}

= gij, which
is symmetric.

For two nearby quantum states |ψ(r)〉 and |ψ(r + dr)〉, the QMT defines the distance
of them in the corresponding parametric space:

ds2 = 1 − |〈ψ(r)|ψ(r + dr)〉|2 = ∑
ij

gijdridrj. (3)

As shown in Figure 1, this quantity gives the geometric picture in the parametric space,
where it expresses the length of the geodesic curve between two neighboring quantum
states in the parametric space, reflecting the fluctuation of the system for the corresponding
Hamiltonian. What is more, it can be exploited to present the excited probability of the
eigenstate for the parameter-dependent Hamiltonian Ĥ(r), which is the core of our method
to extract the QMT of the continuous variable quantum system.

𝑑𝑑𝑠𝑠2

Brillouin zone 𝑇𝑇2

|𝜓𝜓 𝒓𝒓 〉
|𝜓𝜓 𝒓𝒓+ 𝒅𝒅𝒓𝒓 〉

(A) 𝑑𝑑𝑠𝑠2

𝐶𝐶𝑃𝑃𝑁𝑁−1
|𝜓𝜓 𝒓𝒓 〉 |𝜓𝜓 𝒓𝒓+ 𝒅𝒅𝒓𝒓 〉

(B)

Figure 1. Illustration of the distance between two nearby quantum states in the parametric space.

(A) The geometric picture of quantum distance in Brillouin zone T2. (B) The geometric picture of

quantum distance on Bloch sphere.

3. The KNPO as the Continuous Variable System

We realize the continuous variable system by considering the model in ref. [47].
This model consists of a large capacitor and N Josephson junctions, with the use of the
high-frequency magnetic flux to construct the SQUID array.

As shown in Figure 2, the corresponding Hamiltonian is (h̄ = 1 is set):

ĤSQUID = 4ECn̂2 − NEJ(Φ(t)) cos
φ̂

N
, (4)
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where n̂ is the number of Cooper pairs and φ̂ is the phase over the Josephson junctions
array, EC is the charging energy including shunt capacitor and parasitic capacitance of
Josephson junctions and EJ is the Josephson energy for the SQUID array controlled by
the external flux Φ(t). This flux is harmonically modulated around its mean value with
a small amplitude, so EJ(Φ(t)) can be approximated as EJ + δEJ cos ωmt, where ωm is the
harmonic frequency. Since φ̂ is a small quantity (see Appendix B), we can make the Taylor
expansion to the second term and drop the high-order terms. Due to the commutation
relation [φ̂, n̂] = ih̄, we can rewrite this Hamiltonian using bosonic operators â and â†:

Ĥbosonic = ωc â† â +
K

6
(â + â†)4 − [2P(â + â†)2 +

4KP

3ωc
(â + â†)4] cos ωmt, (5)

where n̂ and φ̂ are expressed by the bosonic operators â and â†: n̂ = (
EJ

32NEC
)

1
4 i(â† − â) and

φ̂ = ( 2NEC
EJ

)
1
4 (â† + â), ωc =

√

8ECEJ/N, K = −EC/2N2 and P = −ωcδEJ/8EJ . Here, K

and P correspond to the Kerr-nonlinearity and the pump strength of the KNPO, respectively.
We control 4KP ≪ 3ωc to drop the last term, turn into the rotating frame at the frequency
ωm/2, and drop the high-frequency terms according to the rotating wave approximation.
The effective Hamiltonian is:

Ĥe f f = Kâ†2 â2 + ∆â† â − P(â2 + â†2), (6)

with ∆ = ωc + 2K − ωm/2. The constructed KPNO system dominated by the Hamilto-
nian (6) possesses two degenerate ground states of the continuous variable kind, i.e., the
even and odd Schrödinger cat states:

|C+〉 = N+(|+α〉+ |−α〉),
|C−〉 = N−(|+α〉 − |−α〉), (7)

where α =
√

P/K and N± = 1

(2±2e−2|α|2 )1/2
.

…

Φ𝐶𝐶
𝐽𝐽1 𝐽𝐽2 𝐽𝐽𝑁𝑁

SQUID

𝜔𝜔𝑑𝑑 𝜔𝜔𝑃𝑃

Figure 2. Circuit diagram of the KNPO. The red and gray arrows denote the external flux and the

magnetic field, respectively, while two red wave arrows represent the modulated drives.

4. Arbitrary Manipulation of the Continuous Variable System

We now turn to the discussion of the arbitrary manipulation of the continuous variable
system, with the full Hamiltonian modelled as:

Ĥ f ull = Kâ†2 â2 − P(â2 + â†2) + ∆â† â + Ĥd,

Ĥd = 2ǫx cos ωdt(â† + â) + 2ǫy cos ωpt(â† − â), (8)

where ǫx/y and ωd/p are the amplitudes and the angular frequencies of the drives, respec-

tively. We let ωd = ωp = ωshi f t and rotate into the frame of Ĥ0 =
ωshi f t

2 â† â + Kâ†2 â2 −
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P(â2 + â†2). By neglecting the high-order oscillation terms, we then rewrite the Hamiltonian
in the basis of cat states:

Ĥtwo = Ωx ˆ̃σx + Ωy ˆ̃σy + Ωz ˆ̃σz, (9)

with

Ωx = 4αN−N+ǫx,

Ωy = −4ǫyαN−N+e−2|α|2 i, (10)

Ωz = (∆ − ωshi f t)8|α|2N2
+N2

−e−2|α|2 ,

where ˆ̃σi (i ∈ {x, y, z}) are the Pauli operators defined with the continuous variable state

space {|C+〉, |C−〉}. It should be noted that e−2|α|2 is an exponential function about average

photon number |α|2 of the cat state component, so the amplitude of coherent state |α|
should be small. What is more, to evade the high-level leakage, we should keep Ωy and

Ωz small. According to the formula of the effective two-level system, we let Ωz =
Ω
2 cos θ,

Ωx = Ω
2 sin θ cos φ, and Ωy = Ω

2 sin θ sin φ, with θ ∈ [0, π], φ ∈ [0, 2π].
To check the stability of this system, we performed the simple numerical simulation,

by initialing the system’s state in the ground eigenstate of Ĥtwo(θ = π
4 , φ = 0) and

adiabatically evolving this system into Ĥtwo(θ = π
4 + dθ, φ = 0), where dθ = π/32.

Note that the numerical calculations are performed through the truncation of the infinite-
dimension Fock basis state Hilbert space to the dimension of 20. For the duration with
the large enough T ≫ 1/(P2/K), the system with the initial state will adiabatically evolve

along |u+(r)〉 to reach a final state. In Figure 3B, we show the fidelity |〈u+(r)|ψ(t)〉|2 as a
function of the variable θ for the set of reasonably chosen parameters, with the numerical
results well consistent with the theory for a large enough T. For the cases with the reduced
evolution time T, the fidelity is slightly deviated, as also depicted in Figure 3B.

| + 𝛼𝛼〉
𝑑𝑑𝑑𝑑

|𝐶𝐶+〉

|𝐶𝐶+𝑖𝑖〉

(A) (B)

|𝐶𝐶−𝑖𝑖〉 |− 𝛼𝛼〉

|𝐶𝐶−〉

Ω=0.001K

Figure 3. The dynamics process of the adiabatic evolution. (A) The Bloch dynamics process of

the adiabatic evolution. The Wigner functions of the states at the six cardinal points on the sphere

(defined with the cat-qubit) are shown.
∣

∣C±〉 = N±(|+α〉 ± |−α〉), where N± is normalization

factor. Similarly,
∣

∣

∣
C±i

〉

= N±i(|+α〉 ∓ i|−α〉). (B) The fidelities for the numerical and theoretical

results, respectively, with θ0 = π/4, φ0 = 0 and δθ = π/32, Ω = 0.001K, P = K, T = 100/Ω,

r = (sin θ cos φ, sin θ sin φ, cos θ),
∣

∣u+(r)
〉

= cos θ
2

∣

∣C+
〉

+ sin θ
2 eiφ

∣

∣C−〉 and |ψ(t)〉 is the quantum

state in the evolution.

5. Method for the Measurement of the QMT

To extract the QMT, we use the definition of quantum distance (see Appendix C
of ref. [39]). First, we make a single-parametric modulation to the Hamiltonian Ĥ(r +
t
T δriei) and set the initial state the eigenstate state of the initial Hamiltonian Ĥ(r) with
quantum number k. After the adiabatic evolution with the period T, we measure the
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excited probability Pk
ii = 1 −

∣

∣

〈

uk(r +
t
T δriei)

∣

∣ψ(t)
〉∣

∣

2
, which can be achieved by mapping

the continuous variable basis state to the Fock qubit and followed by dispersive readout [50].
According to the Equation (3), we can obtain the diagonal elements of the QMT:

gk
ii =

Pk
ii

dr2
i

. (11)

We then make two-parametric modulation Ĥ(r+ t
T δriei +

t
T δrjej) and Ĥ(r+ t

T δriei −
t
T δrjej) to measure the corresponding probability Pk+

ij = gk
iidr2

i + 2gk
ijdridrj + gk

jjdr2
j and

Pk−
ij = gk

iidr2
i − 2gk

ijdridrj + gk
jjdr2

j . These two probabilities can be exploited to calculate the

off-diagonal elements of the QMT:

gk
ij =

Pk+
ij − Pk−

ij

4dridrj
. (12)

Numerical simulations are performed to verify this theory. Note that, for the numeri-
cal calculations, the infinite-dimension Fock basis state Hilbert space is truncated to the
dimension of 20, for the set of reasonably chosen parameters. We consider the effective
two-level Hamiltonian:

Ĥ(θ, φ) =
Ω

2

(

cos θ sin θe−iφ

sin θeiφ − cos θ

)

, (13)

which can be constructed in Equation (9), with the effective ground state |u−〉 = sin θ
2 |C+〉−

cos θ
2 eiφ|C−〉 and the effective excited state |u+〉 = cos θ

2 |C+〉+ sin θ
2 eiφ|C−〉. By substitut-

ing them into Equation (2), we get the QMT:

g± = Re{Q} =

(

1
4 0

0 1
4 sin2 θ

)

. (14)

Here, we initialize the quantum state in the ground state of the Hamiltonian Ĥ(θ0, φ0),
perform two single-parametric modulations Ĥ(θ0 +

t
T δθ, φ0) and Ĥ(θ0, φ0 +

t
T δφ) to cal-

culate the diagonal elements of the QMT, and two two-parametric modulations Ĥ(θ0 +
t
T δθ, φ0 +

t
T δφ) and Ĥ(θ0 +

t
T δθ, φ0 − t

T δφ) to calculate the off-diagonal elements of the
QMT.

The numerical results are shown in Figure 4, which displays the elements of the QMT
as the function of the initial condition θ0 (here we set φ0 = 0), showing the accordance
between the theoretical (solid lines) and numerical (dots) results.

Figure 4. Extraction of the QMT of the continuous variable system. The numerical results of the

QMT gθθ (yellow dots), gφφ (green dots), and gθφ (pink dots) are plotted with the theoretical results

(solid lines). The whole adiabatic evolution is simulated with Ω = 0.001K, P = K, δθ = δφ = π
32 and

T = 100/Ω.
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6. Discussion and Conclusions

In summary, we have proposed a new scheme for the measurement of the QMT with
a modulated KNPO system, achieved first by the adiabatic manipulation of the KNPO
within the parametric space defined with the continuous variable Schrödinger even and
odd cat state bases, and followed by the acquirement of the excited probabilities. The
numerical calculations were performed by the adoption of the continuous variable system
states defined in the truncated indefinite-dimensional Fock state Hilbert space, and by use
of the reasonably chosen parameters.

The measurement of the QMT based on the modulated KNPO system can be, in
principle, achieved by use of a microwave-driving superconducting nonlinear inductive
element [50]. As compared with the previously demonstrated methods that adopt the
discrete two-level solid-state systems [39–41], our method provides an alternative for the
exploration of geometry and its relevant topology with quantum physical systems, and
can be extended to reveal the geometry and topology with interacting [40,41] or high-
dimensional [53,54] continuous variable systems.
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The following abbreviations are used in this manuscript:

QGT quantum geometric tensor

KNPO Kerr nonlinear parametric oscillator

SQUID superconducting quantum interference device

ECN Euler characteristic number

Appendix A. Quantum Geometric Tensor

For some quantum states in the infinite dimensional Hilbert space, we can take it
into the projected Hilbert space due to the gauge invariability (|ψ〉 = eiα|ψ〉), and then
build the relative geometric structure. Studies along this path are often named geometric
quantum mechanics.

Geometric quantum mechanics have two critical structures, which are described by
quantum geometric tensor (QGT). The first one is the metric structure, corresponding to the
real part of the QGT, i.e., QMT (or Fubini-study metric), that defines the quantum distance
between two different states; the other one is the gauge structure, which is the imaginary
part of the QGT related to the gauge field, i.e, Berry curvature.

To define the QGT, we consider a family of parameter-dependent Hamiltonian Ĥ~r

requiring a smooth dependence on a set of parameters~r = (r1, r2, . . .)Tr. The parameters
~r construct the projected Hilbert space H(~r). If the eigenenergy and the eigenstate are
denoted by En(~r) and |un〉(~r), respectively, the quantum states of this system can be
represented as:

|ψ(~r)〉 = ∑
i

ai|ui(~r)〉. (A1)
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Upon infinitesimal variation of the parameter d~r, we can define the quantum distance:

ds2 = ||ψ(~r + d~r)− ψ(~r)||2 = 〈δψ|δψ〉 = ∑
ij

〈

∂iψ
∣

∣∂jψ
〉

dridrj, (A2)

and define
〈

∂iψ
∣

∣∂jψ
〉

= γij + iσij. It can be proved that (
〈

∂iψ
∣

∣∂jψ
〉

)∗ = γij − iσij =
〈

∂jψ
∣

∣∂iψ
〉

= γji + iσji, so ∑ij σij = 0. We then rewrite the quantum distance:

ds2 = ∑
ij

γijdridrj. (A3)

However, we can’t define γij as the metric structure because it is not gauge invariant.

For example, we let |ψ〉′ = eiα(~r)|ψ〉, with |ψ〉′ and |ψ〉 referring to as the same quantum

state, then we see the corresponding γ
′
ij:

γ
′
ij =

〈

∂iψ
∣

∣∂jψ
〉

− βi∂jα − β j∂iα + ∂iα∂jα, (A4)

where βi = i〈ψ|∂iψ〉 is the Berry connection, which is purely real (β∗
i = −i〈∂iψ|ψ〉 =

i〈ψ|∂iψ〉 = βi). It can be seen that γij 6= γ
′
ij. The rescue is to redefine a gauge invariant

metric gij = γij − βiβ j to let gij = g
′
ij. In this case, g does not measure the distance of

states in Hilbert space H, but measure the distance of ’Rays’ in projected Hilbert space
PH = H/U(1). It is reasonable because the physical observable relates to Hermitean
operators acting on ’Rays’, required by the principle of gauge invariance. So we define the
QGT as:

χij = γij + iσij − βiβ j = 〈∂iψ|(1 − |ψ〉〈ψ|)
∣

∣∂jψ
〉

. (A5)

The corresponding metric and gauge structures are:

gij = Re
{

χij

}

; σij = Im
{

χij

}

. (A6)

Then to define the quantum distance in projected Hilbert space |ψ̃〉 = eiα(~r)|ψ〉, where
α is arbitrarily complex, we select the minimal distance in this subspace:

D2(ψ̃1, ψ̃2) = min
α1,α2

∣

∣

∣

∣

∣

∣
ψ1eiα1 − ψ2eiα2

∣

∣

∣

∣

∣

∣
= 2 − 2|〈ψ1|ψ2〉|. (A7)

We further consider two nearby quantum states |ψ(~r)〉 and |ψ(~r + d~r)〉, upon infinites-
imal variation d~r, and do Taylor expansion of |ψ(~r + d~r)〉:

|ψ(~r + d~r)〉 = |ψ(~r)〉+ ∑i|∂iψ(~r)〉dri +
1
2 ∑ij

〈

ψ
∣

∣∂i∂jψ
〉

dridrj +O(dr3)

= |ψ(~r)〉+ ∑i|∂iψ(~r)〉dri − 1
2 ∑ij

〈

∂iψ
∣

∣∂jψ
〉

dridrj +O(dr3), (A8)

and calculate |〈ψ(~r)|ψ(~r + d~r)〉|2:

|〈ψ(~r)|ψ(~r + d~r)〉|2 = 1 + ∑i〈ψ|∂iψ〉dri − 1
2 ∑ij

〈

∂iψ
∣

∣∂jψ
〉

dridrj + ∑i〈∂iψ|ψ〉dri +

∑ij〈∂i|ψ〉
〈

ψ
∣

∣∂jψ
〉

dridrj − 1
2 ∑ij

〈

∂iψ
∣

∣∂jψ
〉

+O(dr3). (A9)

Neglecting the high-order infinitesimal, we can obtain:

|〈ψ(~r)|ψ(~r + d~r)〉|2 ≈
∣

∣

∣

∣

∣

1 − 1

2 ∑
ij

gijdridrj

∣

∣

∣

∣

∣

2

, (A10)
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and calculate the distance:

ds2 = 2 − 2|〈ψ(~r)|ψ(~r + d~r)〉| = ∑
ij

gijdridrj, (A11)

which is called geodesic quantum distance, meaning the effective distance between two
nearby quantum states in the projected Hilbert space. It is worth noticing that the inner
product of any two states should be within the range of [0, 1], by which we regard the QGT
as a metric measuring the geodesic distance of points lying on the Bloch sphere. Specifically,

if we define |〈ψ(~r)|ψ(~r + d~r)〉| = cos θ
2 , then dθ = 2ds = 2

√

∣

∣gijdridrj

∣

∣.

What’s more, we can write the geodesic quantum distance in the other formula:

ds2 = ∑
ij

gijdridrj = 1 − |〈ψ(~r)|ψ(~r + d~r)〉|2. (A12)

Appendix B. Kerr Nonlinear Parametric Oscillator

To engineer the KNPO, we consider a SQUID-array resonator with N SQUIDs (As
shown in Figure 2), whose effective Hamiltonian can be written as (h̄ = 1):

Ĥ = 4Ecn̂2 − NEJ [Φ(t)] cos
φ̂

N
, (A13)

where n̂ and φ̂ are the number of Cooper pairs and overall phase across the junction array,
respectively, Ec is the resonator’s charging energy including the contribution of the junction
capacitance Ci

J , i = 1, 2, 3, . . . , N, and the shunt capacitance C, N is the number of SQUIDs
in the array, and EJ is Josephson energy for a single SQUID in the array, depending on the
external flux Φ(t), which can be expressed as EJ + δEJ cos ωmt.

Similar to the transmon, we can expend cos
φ̂
N in the Equation (A13):

Ĥ = 4Ecn̂2 − NEJ [1 −
1

2
(

φ̂

N
)2 +

1

24
(

φ̂

N
)4 +O(φ̂6)]− NδEJ [1 −

1

2
(

φ̂

N
)2 +

1

24
(

φ̂

N
)4 +O(φ̂6)]. (A14)

We then induce the annihilation and creation operators to substitute n̂ and φ̂:

n̂ = n0 · i(â† − â),

φ̂ = φ0 · (â† + â). (A15)

with n0 = (EJ/32NEc)
1
4 and φ0 = (2NEc/EJ)

1
4 being the zero-point fluctuations. After the

quantization and by ignoring the constant terms, we obtain the Hamiltonian of the SQUID
array resonator:

Ĥ = ωc â† â +
K

6
(â + â†)4 − [2P(â + â†)2 +

4KP

3ω
(0)
c

(â + â†)4] cos ωmt, (A16)

where ωc =
√

8EcEJ/N, K = −Ec/2N2 and P = −ω
(0)
c δEJ/8EJ . Here K and P correspond

to the Kerr-nonlinearity coefficient and pump strength, respectively. Let 4KP ≪ 3ω
(0)
c , we

can neglect the last term. Therefore, the effective Hamiltonian can be written as:

Ĥ = ωc â† â +
K

6
(â + â†)4 − P(â + â†)2(eiωmt + e−iωmt). (A17)

By moving into a rotating frame at the frequency of ωm/2 and neglecting the high-
frequency terms according to the RWA, the final Hamiltonian is reduced to:

Ĥ = Kâ†2 â2 + ∆â† â − P(â2 + â2). (A18)
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where ∆ = ωc + 2K − ωm/2. This Hamiltonian describes a Kerr non-linear oscillator with
the two-photon driving and the Kerr nonlinearity. To make the Taylor expansion, it’s
required φ̂ to be infinitesimal to satisfy this condition:

φclass = min{〈φ̂〉+
√

〈φ̂2〉 − 〈φ̂〉2} = φ0 =
√

2NEc/EJ . (A19)

We can choose the large capacitance C to make Ec a little quantity (equivalent to the
transmon model), and thus to drop the last term in Equation (A16):

4KP ≪ 3ωc → δEJ ≪
12EJ Ec

N2
. (A20)

This means that the applied external magnetic flux is weak. Finally, to drop the high-
frequency terms in the Equation (A17), we should make the frequency of the external mag-
netic large. It is like a transmon model with a weak but high-frequency cosine-oscillation
magnetic field. The two-photon squeezing drive is applied by this magnetic field, while the
Kerr nonlinearity originates from the anharmonicity of the transmon model.
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