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Tutti-Frutti method: Recent developments in the PN/PM/SF

treatment of the gravitational two-body problem
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We review some recent results obtained at the sixth Post-Newtonian level of approxi-
mation for the Hamiltonian description of a two-body system, by using several methods
whose combination has led to the so-called “Tutti-Frutti” approach.
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1. Introduction

The two-body gravitational interaction is a fundamental physics problem whose de-

scriptions necessitates a fully general relativistic treatment. The latter, in turn, is

much difficult and over the years several approximation methods have been imple-

mented for the mathematical treatment of this problem, ranging from weak-field and

slow-motion (Post-Newtonian (PN) approximation1), weak-field but eventually rel-

ativistic motions (Post-Minkowskian (PM) approximation2, 3), extreme-mass-ratio

limit (i.e., the condition in which the mass of one of the two bodies is much larger

of the other, discussed in the framework of perturbation theory and gravitational

self-force (GSF)4), Effective Field Theory (EFT),5 numerical relativity (NR).6

All these analytical (and semi-analytical) treatments have been used to build

up a Hamiltonian description of the system. Since as soon as one raises the level

of approximation considered the number of terms entering this Hamiltonian raises

as well, in 1999 A. Buonanno and T. Damour7, 8 introduced the so-called Effective

One-Body (EOB) approach aiming at a partial resummation of the Hamiltonian it-

self. Indeed, the EOB is especially useful since it condensates in a few gravitational

potentials the essential characteristics of the interaction, and can be also continu-

ously (and easily) updated as soon as new results become available in the literature

by using whatever approximation scheme.

Let us recall also that 1) the gravitational interaction of two bodies is actually

compatible with two basic scenarios: capture (the more massive of the two attracts

and then swallows the other; the system in this case spirals undergoing ellipticlike

motions) and scattering (the two bodies can be close enough but they have enough

energy to resist the attraction; the system in this case undergoes hyperboliclike or

paraboliclike motions). 2) Both cases are of particular importance in view of the
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possibility to detect gravitational wave signals from Earth-based interferometers op-

erating now (e.g., Ligo9 and Virgo10) and also (more likely) by future, forthcoming

satellite missions involving space-based interferometers (Lisa11). 3) The mathemat-

ical description of the dynamics by any available approximation method has strong

limitations when the gravitational field becomes too strong, as for example in the

case of the capture. In this condition one is only left with NR.

To add fuel to fire one should also take into account that new difficulties arise

when taking into account the emission of gravitational radiation (energy, angular

momentum and linear momentum) by the system as soon as a purely conservative

scenario is no more possible. Indeed, starting from the 2.5PN level of approximation

the problem is no more conservative, so that one has to deal with radiation-reaction

effects. Furthermore, starting from the 4PN order the Hamiltonian of the system

also includes a nonlocal part, which accounts for the past history of the system.

This picture clearly explains the difficulties which one encounters when trying

to reach the 5PN (and beyond) level of accuracy in the model. Luckily, the various

concomitant effects can be still computed separately so one can decide to limit to

the study of the conservative and local part of the Hamiltonian, and later includ-

ing nonlocal effects and radiation-reaction induced effects. This is the spirit of the

recently developed “Tutti-Frutti” (TF) method, which combines several theoretical

formalisms: PN, PM, multipolar-post-Minkowskian (MPM), EFT, GSF, EOB, and

Delaunay averaging.12–16

2. EOB Hamiltonian

The EOB approach rewrites the (real, conservative) two-body Hamiltonian

H(r, pr, pφ) in terms of an effective Hamiltonian Heff(r, pr, pφ) (φ is an ignorable

coordinate in the conservative case)

H = M

√
1 + 2ν(Ĥeff − 1) , (1)

with

M = m1 +m2 , μ =
m1m2

m1 +m2
, ν =

m1m2

(m1 +m2)2
(2)

the total mass of the system (M), the reduced mass (μ) and the symmetric mass

ratio (ν). The effective Hamiltonian (per unit of reduced mass, μ) Ĥeff written in

the standard pr-gauge or DJS gauge17 involves several potentials: A, D̄, Q̂, etc.,

Ĥ2
eff = A(u, ν)[1 + p2φu

2 + A(u, ν)D̄(u, ν)p2r + Q̂(u, ν; pr)] , (3)

where u = GM/r and

Q̂(u, ν; pr) = p4rq4(u, ν) + p6rq6(u, ν) + p8rq8(u, ν) + . . . . (4)
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The various potentials 1) have a polynomial structure in terms of the symmetric

mass-ratio ν, e.g.,

A(u, ν) = 1− 2u+ νaν
1

(u) + ν2aν
2

(u) + ν3aν
3

(u) + . . . ,

D̄(u, ν) = 1 + νd̄ν
1

(u) + ν2d̄ν
2

(u) + ν3d̄ν
3

(u) + . . . ,

q4(u, ν) = 1 + νqν
1

4 (u) + ν2qν
2

4 (u) + ν3qν
3

4 (u) + . . . , (5)

etc., with the degree of the polynom increasing with PN approximation order; 2)

have both a local part and a nonlocal part

A(u, ν) = Aloc(u, ν) +Anl(u, ν) ,

D̄(u, ν) = D̄loc(u, ν) + D̄nl(u, ν) ,

Q̂(u, ν; pr) = Q̂loc(u, ν; pr) + Q̂nl(u, ν; pr) , (6)

the nonlocal part starting at 4PN.

3. The Tutti-Frutti approach and the determination of the

conservative dynamics at 6PN

The starting point of the TF approach is to consider the total two-body conservative

action, which at the 6PN accuracy has both a local-in-time part and a nonlocal-in-

time part (starting at 4PN)

S≤6PN
tot = S≤6PN

loc + S≤6PN
nonloc . (7)

The main steps are summarized below.

(1) Fix completely the nonlocal part of the Hamiltonian by using Delaunay aver-

aging along ellipticlike orbits.

The nonlocal action is given by

S4+5+6PN
nonloc = −

∫
dtH4+5+6PN

nonloc (t) , (8)

with

H4+5+6PN
nonloc (t) =

GM
c3

Pf2r12/c

∫
dt′

|t− t′|F
split
2PN (t, t′) . (9)

Here, M denotes the total ADM conserved mass-energy of the binary sys-

tem, r12 entering the timescale of the the partie finie (Pf) operation is the

harmonic-coordinate radial distance, and F split
2PN (t, t′) is the time-split version of

the fractionally 2PN-accurate gravitational-wave energy flux, i.e.,

FGW
2PN(t) ∝ I(3)ab (t)I

(3)
ab (t) +O(η2) → F split

2PN (t, t′) ∝ I(3)ab (t)I
(3)
ab (t′) +O(η2) ,

(10)

with η ≡ 1
c , the superscript in parenthesis denoting repeated time-derivatives

of the quadrupole moment Iab. Taking then the (Delaunay) time average of the

 T
he

 S
ix

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n 
01

/3
0/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



1408

harmonic-coordinates Hamiltonian (9) gives a gauge-invariant function of two

orbital parameters

〈δH4+5+6PN
nonloc,h 〉 =

1∮
dth

∮
δH4+5+6PN

nonloc,h (th)dth . (11)

Next, do the same computation in EOB coordinates. Comparison between the

two results allows fixing the nonlocal parts of the EOB potentials.

(2) Use SF information about small-eccentricity ellipticlike motion to determine

(part of) the local EOB Hamiltonian.

Compute the averaged redshift factor, z1, i.e., a (first) gauge-invariant variable

associated with the conservative dynamics of the two-body system, along ellipti-

clike orbits by using first-order SF techniques in a small-eccentricity expansion

limit, including but high powers of the eccentricity (up to the eighth order).

z1 ∼ 〈∂m1H〉 incorporates both local and nonlocal contributions in the Hamil-

tonian, but it is limited from the fact that analytic computations are possible

only at first-order in the symmetric mass-ratio ν. Combining this result with

the information about the nonlocal part of the EOB Hamiltonian specified at

the point 1 will allow one to determine all the linear-in-ν local EOB potentials.

The remaining (i.e., higher order in ν) coefficients are still undetermined.

(3) Compute another gauge-invariant quantity, the scattering angle, χ, along hy-

perboliclike orbits to determine most of the remaining coefficients.

The total scattering angle χtot = χloc + χnonloc can be expressed as a large-

angular momentum (or equivalently large-eccentricity) expansion, with coeffi-

cients having a precise mass-structure (or ν-structure) as recently shown by

Damour.18 Therefore, one needs to separately compute both the local and the

nonlocal contributions to the scattering angle. The latter is defined by

χnonloc(E, J, ν) =
∂W nonloc(E, J, ν)

∂J
, (12)

where E and J are the total energy and angular momentum in the c.m. frame,

respectively, and

W nonloc(E, J ; ν) ≡
∫ +∞

−∞
dtHnonloc(t) , (13)

is the integrated nonlocal action. In order to compute the local contribution χloc,

instead, it is convenient to convert the local EOB Hamiltonian into the so-called

energy-gauge.19 Imposing then that χtot satisfies the prescribed ν-structure will

fix most of the parametrizing coefficients of the EOB potentials.

All the above steps used jointly have lead to the determination of most of the

coefficients entering the conservative Hamiltonian of the two-body system. More

precisely at 5PN there remain only 2 quantities to be determined (d̄ν
2

5 and aν
2

6 )

and at 6PN there remain only 4 more quantities to be determined (qν
2

45 , d̄ν
2

6 , aν
2

7 ,

and aν
3

7 ).
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Within the EFT approach, the conservative scattering angle can be decom-

posed into a potential-graviton contribution, and a radiation-graviton one.5 The

O(G4) potential-graviton contribution to the radial action has been recently de-

rived in Ref.,20 whereas Ref.21 has computed the potential-graviton contribution to

the 5PN two-body Hamiltonian. Although the TF decomposition of the two-body

dynamics into local-in-time and non-local-in-time parts is closely linked to the EFT

decomposition, one cannot simply identify the TF time-symmetric local-in-time dy-

namics to the EFT time-symmetric potential-graviton dynamics. However, one can

compare the total conservative scattering angle derived within the two approaches.

This allows one to complete the result of Ref.20 by providing the explicit expres-

sion (at the 6PN accuracy) of the complementary radiation-graviton contributions

to the scattering angle, or equivalently, to the radial action. Furthermore, adding

the radiation-graviton contributions to the 5PN Hamiltonian obtained in Ref.22

yields explicit expressions for the two 5PN undetermined O(G5) and O(G6) TF

parameters d̄ν
2

5 and aν
2

6 , involving either π2 terms and rational coefficients entering

various (local-in-time) radiation-graviton contributions to the conservative effective

5PN action.22 Our results are in agreement (for the π2 contributions) with those of

Ref.21 A comparison with the results of Ref.22 is currently under consideration.

4. Radiation-reaction effects

The presence of a radiation-reaction force implies a modification of Hamilton equa-

tions as

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
+ F rr . (14)

The work done by this force on the system implies energy, angular momentum and

linear momentum losses by the system itself, as well as to the fact that the four-

velocity of the center-of-mass is no more conserved, leading to recoil effects. For

instance, the scattering angle will be modified as

χ = χcons + δrrχ , (15)

where the radiation-reaction corrections to the conservative value can be written as

δrrχ = −1

2

[
∂χcons

∂E
Erad +

∂χcons

∂J
J rad

]
, (16)

in terms of the energy and angular momentum losses Erad and J rad. The latter

include instantaneous and tail (i.e. hereditary) contributions, and admit a double

PM and PN expansion. At the fractional 2PN order they read

Erad
2PN = ν2

(
EN + η2E1PN + η3Etail

1.5PN + η4E2PN

)
,

J rad
2PN = ν2

(
JN + η2J1PN + η3J tail

1.5PN + η4J2PN

)
, (17)
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where tails start at the 1.5PN order. For example, the Newtonian values are given

by

EN =
37

15
π
p4∞
j3

+
1568

45

p3∞
j4

+
122

5
π
p2∞
j5

+O

(
1

j6

)
,

JN =
16

5

p3∞
j

+
28

5
π
p2∞
j2

+
176

5

p∞
j3

+O

(
1

j4

)
, (18)

where j ≡ cJ/(GMμ) is a dimensionless angular momentum parameter, and the

linear momentum at infinity, p∞, is related to the binding energy by Ē ≡ (E −
Mc2)/(μc2) = 1

2p
2∞, at the Newtonian level. At higher PN orders the coefficients of

the above expansion become functions of ν: linear functions of ν at 1PN, quadratic

at 2PN, etc., but the structure of the PM expansion is exactly the same.

We have computed in Ref.23 the changes of 4-momentum during the scattering

process (between the two asymptotic states of the two bodies labelled by a = 1, 2)

which are linear order in radiation-reaction, i.e.,

Δpaμ ≡ p+aμ − p−aμ = Δpconsaμ + Δprraμ , (19)

where the radiation-reacted contribution Δprraμ is the sum of a relative-motion term

and a recoil one, which are linear in the radiative losses of energy, linear-momentum,

and angular momentum. We have also shown how the polynomial dependence of

Δprraμ can be exploited to yield some identity relating the various radiative losses.

Adding radiation-reaction effects at higher PN orders is an open issue for challenging

future works.
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tional field and equations of motion of two pointlike objects: The postlinear approxi-
mation of general relativity,” Gen. Rel. Grav. 13, 963 (1981).

3. K. Westpfahl, “High-Speed Scattering of Charged and Uncharged Particles in General
Relativity,” Fortsch. Phys. 33, 417 (1985).

4. S. L. Detweiler, “Perspective on gravitational self-force analyses,” Class. Quant. Grav.
22, S681 (2005) [gr-qc/0501004].

5. W. D. Goldberger and I. Z. Rothstein, “An Effective field theory of gravity for ex-
tended objects,” Phys. Rev. D 73, 104029 (2006) [arXiv:hep-th/0409156 [hep-th]].

6. F. Pretorius, “Numerical relativity using a generalized harmonic decomposition,”
Class. Quant. Grav. 22, 425 (2005) [gr-qc/0407110].

7. A. Buonanno and T. Damour, “Effective one-body approach to general relativistic
two-body dynamics,” Phys. Rev. D 59, 084006 (1999) [gr-qc/9811091].

8. A. Buonanno and T. Damour, “Transition from inspiral to plunge in binary black hole
coalescences,” Phys. Rev. D 62, 064015 (2000) [gr-qc/0001013].

9. See the LIGO website at http://www.ligo.org
10. See the VIRGO website at http://www.virgo-gw.eu
11. See the LISA website at https://lisa.nasa.gov/

 T
he

 S
ix

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n 
01

/3
0/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



1411

12. D. Bini, T. Damour and A. Geralico, “Novel approach to binary dynamics: applica-
tion to the fifth post-Newtonian level,” Phys. Rev. Lett. 123, no.23, 231104 (2019)
[arXiv:1909.02375 [gr-qc]].

13. D. Bini, T. Damour and A. Geralico, “Binary dynamics at the fifth and fifth-and-a-
half post-Newtonian orders,” Phys. Rev. D 102, no.2, 024062 (2020) [arXiv:2003.11891
[gr-qc]].

14. D. Bini, T. Damour and A. Geralico, “Sixth post-Newtonian local-in-time dynamics
of binary systems,” Phys. Rev. D 102, no.2, 024061 (2020) [arXiv:2004.05407 [gr-qc]].

15. D. Bini, T. Damour and A. Geralico, “Sixth post-Newtonian nonlocal-in-time dy-
namics of binary systems,” Phys. Rev. D 102, no.8, 084047 (2020) [arXiv:2007.11239
[gr-qc]].

16. D. Bini, T. Damour, A. Geralico, S. Laporta and P. Mastrolia, “Gravitational scat-
tering at the seventh order in G: nonlocal contribution at the sixth post-Newtonian
accuracy,” Phys. Rev. D 103, no.4, 044038 (2021) [arXiv:2012.12918 [gr-qc]].
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