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Abstract We obtain the Courant bracket twisted simulta-
neously by a 2-form B and a bi-vector θ by calculating the
Poisson bracket algebra of the symmetry generator in the
basis obtained acting with the relevant twisting matrix. It is
the extension of the Courant bracket that contains well known
Schouten–Nijenhuis and Koszul bracket, as well as some new
star brackets. We give interpretation to the star brackets as
projections on isotropic subspaces.

1 Introduction

The Courant bracket [1,2] represents the generalization of
the Lie bracket on spaces of generalized vectors, understood
as the direct sum of the elements of the tangent bundle and
the elements of the cotangent bundle. It was obtained in the
algebra of generalized currents firstly in [3]. Generalized cur-
rents are arbitrary functionals of the fields, parametrized by
a pair of vector field and covector field on the target space.
Although the Lie bracket satisfies the Jacobi identity, the
Courant bracket does not.

In bosonic string theory, the Courant bracket is govern-
ing both local gauge and general coordinate transformations,
invariant upon T-duality [4,5]. It is a special case of the more
general C-bracket [6,7]. The C-bracket is obtained as the
T-dual invariant bracket of the symmetry generator algebra,
when the symmetry parameters depend both on the initial and
T-dual coordinates. It reduces to the Courant bracket once
when parameters depend solely on the coordinates from the
initial theory.

It is possible to obtain the twisted Courant bracket, when
the self T-dual generator algebra is considered in the basis
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obtained from the action of the appropriate O(D, D) trans-
formation [8]. The Courant bracket is usually twisted by a
2-form B, giving rise to what is known as the twisted Courant
bracket [9], and by a bi-vector θ , giving rise to the θ -twisted
Courant bracket [10]. In [3,8,11,12], the former bracket was
obtained in the generalized currents algebra, and it was shown
to be related to the latter by self T-duality [13], when the T-
dual of the B field is the bi-vector θ .

The B-twisted Courant bracket contains H flux, while the
θ -twisted Courant bracket contains non-geometric Q and R
fluxes. The fluxes are known to play a crucial role in the
compactification of additional dimensions in string theory
[14]. Non-geometric fluxes can be used to stabilize moduli. In
this paper, we are interested in obtaining the Poisson bracket
representation of the twisted Courant brackets that contain
all fluxes from the generators algebra. Though it is possible
to obtain various twists of the C-bracket as well [15], we do
not deal with them in this paper.

The realization of all fluxes using the generalized geom-
etry was already considered, see [16] for a comprehensive
review. In [17], one considers the generalized tetrads origi-
nating from the generalized metric of the string Hamiltonian.
As the Lie algebra of tetrads originating from the initial met-
ric defines the geometric flux, it is suggested that all the
other fluxes can be extracted from the Courant bracket of
the generalized tetrads. Different examples of O(D, D) and
O(D) × O(D) transformations of generalized tetrads lead
to the Courant bracket algebras with different fluxes as its
structure constants.

In [18], one considers the standard Lie algebroid defined
with the Lie bracket and the identity map as an anchor on the
tangent bundle, as well as the Lie algebroid with the Koszul
bracket and the bi-vector θ as an anchor on the cotangent
bundle. The tetrad basis in these Lie algebroids is suitable
for defining the geometric f and non-geometric Q fluxes.
It was shown that by twisting both of these Lie algebroids
by H -flux one can construct the Courant algebroid, which
gives rise to all of the fluxes in the Courant bracket algebra.
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Unlike previous approaches where generalized fluxes were
defined using the Courant bracket algebra, in a current paper
we obtain them in the Poisson bracket algebra of the sym-
metry generator.

Firstly, we consider the symmetry generator of local gauge
and global coordinate transformations, defined as a standard
inner product in the generalized tangent bundle of a dou-
ble gauge parameter and a double canonical variable. The
O(D, D) group transforms the double canonical variable
into some other basis, in terms of which the symmetry gen-
erator can be expressed. We demonstrate how the Poisson
bracket algebra of this generator can be used to obtain twist
of the Courant bracket by any such transformation. We give a

brief summary of how eB̂ and eθ̂ produce respectively the B-
twisted and θ -twisted Courant bracket in the Poisson bracket
algebra of generators [8].

Secondly, we consider the matrix eB̆ used for twisting the
Courant bracket simultaneously by a 2-form and a bi-vector.
The argument B̆ is defined simply as a sum of the arguments
B̂ and θ̂ . Unlike B̂ or θ̂ , the square of B̆ is not zero. The
full Taylor series gives rise to the hyperbolic functions of the
parameter depending on the contraction of the 2-form with
the bi-vector α

μ
ν = 2κθμρBρν . We represent the symme-

try generator in the basis obtained acting with the twisting
matrix eB̆ on the double canonical variable. This generator is
manifestly self T-dual and its algebra closes on the Courant
bracket twisted by both B and θ .

Instead of computing the B − θ twisted Courant bracket
directly, we introduce the change of basis in which we define
some auxiliary generators, in order to simplify the calcula-
tions. This change of basis is also realized by the action of
an element of the O(D, D) group. The structure constants
appearing in the Poisson bracket algebra have exactly the
same form as the generalized fluxes obtained in other papers
[16–18]. The expressions for fluxes is given in terms of new
auxiliary fields B̊ and θ̊ , both being the function of αμ.

The algebra of these new auxiliary generators closes on
another bracket, that we call C̊-twisted Courant bracket. We
obtain its full Poisson bracket representation, and express
it in terms of generalized fluxes. We proceed with rewrit-
ing it in the coordinate free notation, where many terms are
recognized as the well known brackets, such as the Koszul
or Schouten–Nijenhuis bracket, but some new brackets, that
we call star brackets, also appear. These star brackets as a
domain take the direct sum of tangent and cotangent bun-
dle, and as a result give the graph of the bi-vector θ̊ in the
cotangent bundle, i.e. the sub-bundle for which the vector
and 1-form components are related as ξμ = κθ̊μνλν . We
show that they can be defined in terms of the projections on
isotropic subspaces acting on different twists of the Courant
bracket.

Lastly, we return to the previous basis and obtain the full
expression for the Courant bracket twisted by both B and θ .
It has a similar form as C̊-twisted Courant bracket, but in this
case the other brackets contained within it are also twisted.
The Courant bracket twisted by both B and θ and the one
twisted by C̊ are directly related by a O(D, D) transforma-
tion represented with the block diagonal matrix.

2 The bosonic string essentials

The canonical Hamiltonian for closed bosonic string, moving
in the D-dimensional space-time with background charac-
terized by the metric field Gμν and the antisymmetric Kalb–
Ramond field Bμν is given by [19,20]

HC = 1

2κ
πμ(G−1)μνπν + κ

2
x ′μGE

μνx
′ν

−2x ′μBμρ(G−1)ρνπν, (2.1)

where πμ are canonical momenta conjugate to coordinates
xμ, and

GE
μν = Gμν − 4(BG−1B)μν (2.2)

is the effective metric. The Hamiltonian can be rewritten in
the matrix notation

HC = 1

2κ
(XT )MHMN XN , (2.3)

where XM is a double canonical variable given by

XM =
(

κx ′μ
πμ

)
, (2.4)

and HMN is the so called generalized metric, given by

HMN =
(

GE
μν −2Bμρ(G−1)ρν

2(G−1)μρBρν (G−1)μν

)
, (2.5)

with M, N ∈ {0, 1}. In the context of generalized geometry
[21], the double canonical variable XM represents the gen-
eralized vector. The generalized vectors are 2D structures
that combine both vector and 1-form components in a single
entity.

The standard T-duality [22,23] laws for background fields
have been obtained by Buscher [24]


Gμν = (G−1
E )μν, 
Bμν = κ

2
θμν, (2.6)
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where (G−1
E )μν is the inverse of the effective metric (2.2),

and θμν is the non-commutativity parameter, given by

θμν = − 2

κ
(G−1

E )μρBρσ (G−1)σν. (2.7)

The T-duality can be realized without changing the phase
space, which is called the self T-duality [13]. It has the
same transformation rules for the background fields like T-
duality (2.6), with additionally interchanging the coordinate
σ -derivatives κx ′μ with canonical momenta πμ

κx ′μ ∼= πμ. (2.8)

Since momenta and winding numbers correspond to σ inte-
gral of respectively πμ and κx ′μ, we see that the self T-
duality, just like the standard T-duality, swaps momenta and
winding numbers.

2.1 Symmetry generator

We consider the symmetry generator that at the same time
governs the general coordinate transformations, parametrized
by ξμ, and the local gauge transformations, parametrized by
λμ. The generator is given by [25]

G(ξ, λ) =
∫ 2π

0
dσG(ξ, λ) =

∫ 2π

0
dσ

[
ξμπμ + λμκx ′μ]

.

(2.9)

It has been shown that the general coordinate transformations
and the local gauge transformations are related by self T-
duality [25], meaning that this generator is self T-dual. If one
makes the following change of parameters λμ → λμ + ∂μϕ,
the generator (2.9) does not change

G(ξ, λ + ∂ϕ) = G(ξ, λ) + κ

∫ 2π

0
ϕ′dσ = G(ξ, λ), (2.10)

since the total derivative integral vanishes for the closed
string. Therefore, the symmetry is reducible.

Let us introduce the double gauge parameter �M , as the
generalized vector, given by

�M =
(

ξμ

λμ

)
, (2.11)

where ξμ represent the vector components, and λμ represent
the 1-form components. The space of generalized vectors is
endowed with the natural inner product

〈�1,�2〉 = (�T
1 )MηMN�N

2 ⇔ 〈(ξ1, λ1), (ξ2, λ2)〉
= iξ1λ2 + iξ2λ1 = ξ

μ
1 λ2μ + ξ

μ
2 λ1μ, (2.12)

where iξ is the interior product along the vector field ξ , and
ηMN is O(D, D) metric, given by

ηMN =
(

0 1
1 0

)
. (2.13)

Now it is possible to rewrite the generator (2.9) as

G(�) =
∫

dσ 〈�, X〉. (2.14)

In [8], the Poisson bracket algebra of generator (2.9) was
obtained in the form

{
G(�1), G(�2)

}
= −G

(
[�1,�2]C

)
, (2.15)

where the standard Poisson bracket relations between coor-
dinates and canonical momenta were assumed

{xμ(σ ), πν(σ̄ )} = δμ
νδ(σ − σ̄ ). (2.16)

The bracket [�1,�2]C is the Courant bracket [1], defined by

[�1,�2]C = � ⇔ [(ξ1, λ1), (ξ2, λ2)]C = (ξ, λ), (2.17)

where

ξμ = ξν
1 ∂νξ

μ
2 − ξν

2 ∂νξ
μ
1 ,

and

λμ = ξν
1 (∂νλ2μ − ∂μλ2ν) − ξν

2 (∂νλ1μ − ∂μλ1ν)

+1

2
∂μ(ξ1λ2 − ξ2λ1). (2.18)

It is the generalization of the Lie bracket on spaces of gener-
alized vectors.

3 O(D, D) group

Consider the orthogonal transformation O, i.e. the transfor-
mation that preserves the inner product (2.12)

〈O�1,O�2〉 = 〈�1,�2〉 ⇔ (O�1)
T η (O�2) = �T

1 η�2,

(3.19)

which is satisfied for the condition

OT η O = η. (3.20)

123
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There is a solution for the above equation in the formO = eT ,
see Sec. 2.1 of [21], where

T =
(
A θ

B −AT

)
, (3.21)

with θ : T 
M → T M and B : T M → T 
M being anti-
symmetric, and A : T M → T M being the endomorphism.
In general case, B and θ can be independent for O to satisfy
condition (3.20).

Consider now the action of some element of O(D, D) on
the double coordinate X (2.4) and the double gauge parameter
� (2.11)

X̂ M = OM
N XN , �̂M = OM

N �N , (3.22)

and note that the relation (2.15) can be written as

∫
dσ

{
〈�1, X〉, 〈�2, X〉

}
= −

∫
dσ 〈[�1,�2]C, X〉,

(3.23)

and using (3.19) and (3.22) as

∫
dσ

{
〈�̂1, X̂〉, 〈�̂2, X̂〉

}
= −

∫
dσ 〈[�1,�2]C, X〉

= −
∫

dσ 〈[�̂1, �̂2]CT , X̂〉,
(3.24)

where we expressed the right hand side in terms of some new
bracket [�̂1, �̂2]CT . Moreover, using (3.19) and (3.22), the
right hand side of (3.23) can be written as

〈[�1,�2]C, X〉 = 〈[O−1�̂1,O−1�̂2]C,O−1 X̂〉
= 〈O[O−1�̂1,O−1�̂2]C, X̂〉. (3.25)

Using (3.24) and (3.25), one obtains

[�̂1, �̂2]CT =O[O−1�̂1,O−1�̂2]C =eT [e−T �̂1, e
−T �̂2]C .

(3.26)

This is a definition of a T -twisted Courant bracket. Through-
out this paper, we use the notation where [, ]C is the Courant
bracket, while when C has an additional index, it represents
the twist of the Courant bracket by the indexed field, e.g.
[, ]CB is the Courant bracket twisted by B.

In a special case, when A = 0, θ = 0, the bracket (3.26)
becomes the Courant bracket twisted by a 2-form B [9]

[�1,�2]CB = eB̂[e−B̂�1, e
−B̂�2]C, (3.27)

where eB̂ is the twisting matrix, given by

eB̂ =
(

δ
μ
ν 0

2Bμν δν
μ

)
, B̂M

N =
(

0 0
2Bμν 0

)
. (3.28)

This bracket has been obtained in the algebra of generalized
currents [11,13].

In case of A = 0, B = 0, the bracket (3.26) becomes the
Courant bracket twisted by a bi-vector θ

[�1,�2]Cθ
= eθ̂ [e−θ̂�1, e

−θ̂�2]C, (3.29)

where eθ̂ is the twisting matrix, given by

eθ̂ =
(

δ
μ
ν κθμν

0 δν
μ

)
, θ̂M

N =
(

0 κθμν

0 0

)
. (3.30)

The B-twisted Courant bracket (3.27) and θ -twisted Courant
bracket (3.29) are related by self T-duality [13]. It is easy to

demonstrate that both eB̂ and eθ̂ satisfy the condition (3.20).
We can now deduce a simple algorithm for finding the

Courant bracket twisted by an arbitrary O(D, D) transfor-
mation. One rewrites the double symmetry generator G(ξ, λ)

in the basis obtained by the action of the matrix eT on the
double coordinate (2.4). Then, the Poisson bracket algebra
between these generators gives rise to the appropriate twist
of the Courant bracket. In this paper, we apply this algorithm
to obtain the Courant bracket twisted by both B and θ .

4 Twisting matrix

The transformations eB̂ and eθ̂ do not commute. That is why
we define the transformations that simultaneously twists the
Courant bracket by B and θ as eB̆ , where

B̆ = B̂ + θ̂ =
(

0 κθμν

2Bμν 0

)
. (4.1)

The Courant bracket twisted at the same time both by a 2-
form B and by a bi-vector θ is given by

[�1,�2]CBθ
= eB̆[e−B̆�1, e

−B̆�2]C . (4.2)

The full expression for eB̆ can be obtained from the well
known Taylor series expansion of exponential function

eB̆ =
∞∑
n=0

B̆n

n! . (4.3)

123
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The square of the matrix B̆ is easily obtained

B̆2 = 2

(
κ(θB)

μ
ν 0

0 κ(Bθ) ν
μ

)
, (4.4)

as well as its cube

B̆3 = 2

(
0 κ2(θBθ)μν

2κ(BθB)μν 0

)
. (4.5)

The higher degree of B̆ are given by

B̆2n =
(

(αn)
μ
ν 0

0 ((αT )n) ν
μ

)
, (4.6)

for even degrees, and for odd degrees by

B̆2n+1 =
(

0 κ(αnθ)μν

2(Bαn)μν 0

)
, (4.7)

where we have marked

αμ
ν = 2κθμρBρν. (4.8)

Substituting (4.6) and (4.7) into (4.3), we obtain the twisting
matrix

eB̆ =
⎛
⎜⎝

( ∑∞
n=0

αn

(2n)!
)μ

ν
κ
(∑∞

n=0
αn

(2n+1)!
)μ

ρ
θρν

2Bμρ

( ∑∞
n=0

αn

(2n+1)!
)ρ

ν

( ∑∞
n=0

(αT )n

(2n)!
) ν

μ

⎞
⎟⎠ .

(4.9)

Taking into the account the Taylor’s expansion of hyperbolic
functions

cosh(x) =
∞∑
n=0

x2k

(2k)! , sinh(x) =
∞∑
n=0

x2k+1

(2k + 1)! , (4.10)

the twisting matrix (4.9) can be rewritten as

eB̆ =
( Cμ

ν κSμ
ρθρν

2BμρSρ
ν (CT ) ν

μ

)
, (4.11)

with Sμ
ν =

(
sinh

√
α√

α

)μ

ν
and Cμ

ν =
(

cosh
√

α
)μ

ν
. Its deter-

minant is given by

det(eB̆) = eTr(B̆) = 1, (4.12)

and the straightforward calculations show that its inverse is
given by

e−B̆ =
( Cμ

ν −κSμ
ρθρν

−2BμρSρ
ν (CT ) ν

μ

)
. (4.13)

One easily obtains the relation

(eB̆)T η eB̆ = η, (4.14)

therefore the transformation (4.11) is indeed an element of
O(D, D).

It is worth pointing out characteristics of the matrix α
μ
ν .

It is easy to show that α
μ
ρθρν = θμρ(αT ) ν

ρ and Bμρα
ρ
ν =

(αT )
ρ
μ Bρν , which is further generalized to

( f (α))μρθρν = θμρ( f (αT )) ν
ρ , Bμρ( f (α))ρν

= ( f (αT )) ρ
μ Bρν, (4.15)

for any analytical function f (α). Moreover, the well known
hyperbolic identity cosh(x)2 − sinh(x)2 = 1 can also be
expressed in terms of newly defined tensors

(C2)μν − αμ
ρ(S2)ρν = δμ

ν . (4.16)

Lastly, the self T-duality relates the matrix α to its transpose
α ∼= αT , due to (2.6). Consequently, we write the following
self T-duality relations

C ∼= CT , S ∼= ST . (4.17)

5 Symmetry generator in an appropriate basis

The direct computation of the bracket (4.2) would be difficult,
given the form of the matrix eB̆ . Therefore, we use the indi-
rect computation of the bracket, by computing the Poisson
bracket algebra of the symmetry generator (2.9), rewritten in
the appropriate basis. As elaborated at the end of the Chapter
3, this basis is obtained by the action of the matrix (4.11) on
the double coordinate (2.4)

X̆ M = (eB̆)MN XN =
(
k̆μ

ῐμ

)
, (5.18)

where

k̆μ = κCμ
νx

′ν + κ(Sθ)μνπν,

ῐμ = 2(BS)μνx
′ν + (CT ) ν

μ πν, (5.19)

are new currents. Applying (2.6), (2.8) and (4.17) to currents
k̆μ and ῐμ we obtain ῐμ and k̆μ respectively, meaning that
these currents are directly related by self T-duality. Multi-
plying the Eq. (5.18) with the matrix (4.13), we obtain the
relations inverse to (5.19)

κx ′μ = Cμ
ν k̆

ν − κ(Sθ)μν ῐν,

πμ = −2(BS)μν k̆
ν + (CT ) ν

μ ῐν . (5.20)

123
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Applying the transformation (4.11) to a double gauge param-
eter (2.11), we obtain new gauge parameters

�̆M =
(

ξ̆ μ

λ̆μ

)
= (eB̆)MN �N =

( Cμ
νξ

ν + κ(Sθ)μνλν

2(BS)μνξ
ν + (CT ) ν

μ λν

)
.

(5.21)

The symmetry generator (2.9) rewritten in a new basisG(Cξ+
κSθλ, 2(BS)ξ + CT λ) ≡ Ğ(ξ̆ , λ̆) is given by

Ğ(�̆) =
∫

dσ 〈�̆, X̆〉 ⇔ Ğ(ξ̆ , λ̆) =
∫

dσ
[
ξ̆ μῐμ + λ̆μk̆

μ
]
.

(5.22)

Substituting (5.18) and (5.21) into (5.22), the symmetry gen-
erator in the initial canonical basis (2.9) is obtained. Due
to mutual self T-duality between basis currents (5.19), this
generator is invariant upon self T-duality.

Rewriting the Eq. (2.15) in terms of new gauge parameters
(5.21) in the basis of auxiliary currents (5.19), the Courant
bracket twisted by both a 2-form Bμν and by a bi-vector θμν

is obtained in the new generator (5.22) algebra

{
Ğ(�̆1), Ğ(�̆2)

}
= −Ğ

(
[�̆1, �̆2]CBθ

)
. (5.23)

5.1 Auxiliary generator

Let us define a new auxiliary basis, so that both the matri-
ces C and S are absorbed in some new fields, giving rise to
the generator algebra that is much more readable. When the
algebra in this basis is obtained, simple change of variables
back to the initial ones will provide us with the bracket in
need.

Multiplying the second equation of (5.19) with the matrix
C−1, we obtain

ῐν (C−1)νμ = πμ + 2κ(BSC−1)μνx
′ν, (5.24)

where we have used (BS)νρ(C−1)νμ = −(BSC−1)ρμ =
(BSC−1)μρ , due to tensor BS being antisymmetric, and
properties (4.15). We will mark the result as a new auxil-
iary current, given by

ι̊μ = πμ + 2κ B̊μνx
′ν, (5.25)

where B̊ is an auxiliary B-field, given by

B̊μν = BμρSρ
σ (C−1)σν. (5.26)

On the other hand, multiplying the first equation of (5.19)
with the matrix C, we obtain

Cμ
ν k̆

ν = (C2)μνκx
′ν + κ(CSθ)μνπν. (5.27)

Substituting (4.16) in the previous equation, and keeping in
mind that C, S and θ commute (4.15), we obtain

Cμ
ν k̆

ν = κx ′μ + κ(CSθ)ρν(πν + 2κ(BSC−1)νσ x
′σ ). (5.28)

Using (5.25), the results are marked as a new auxiliary current

k̊μ = κx ′μ + κθ̊μν ι̊ν, (5.29)

where θ̊ is given by

θ̊μν = Cμ
ρSρ

σ θσν. (5.30)

There is no explicit dependence on either C nor S in rede-
fined auxiliary currents, rather only on canonical variables
and new background fields. From (5.29), it is easy to express
the coordinate σ -derivative in the basis of new auxiliary cur-
rents

κx ′μ = k̊μ − κθ̊μν ι̊ν . (5.31)

The first equation of (5.19) could have been multiplied
with C, instead of C−1, given that the latter would also pro-
duce a current that would not explicitly depend on C. How-
ever, the expression for coordinate σ -derivative κx ′μ would
explicitly depend on C2 in that case, while with our choice
of basis it does not (5.31).

Substituting (5.24) and (5.28) in the expression for the
generator (5.22), we obtain

Ğ(ξ̆ , λ̆) =
∫

dσ
[
λ̆μ(C−1)μν k̊

ν + ξ̆ μ(CT ) ν
μ ι̊ν

]
, (5.32)

from which it is easily seen that the generator (5.22) is equal
to an auxiliary generator

G̊(�̊) =
∫

dσ 〈X̊ , �̊〉 ⇔ G̊(ξ̊ , λ̊) =
∫

dσ
[
λ̊μk̊

μ + ξ̊ μι̊μ

]
,

(5.33)

provided that

�̊M =
(

ξ̊ μ

λ̊μ

)
, λ̊μ = λ̆ν(C−1)νμ, ξ̊μ = Cμ

νξ̆
ν, (5.34)

and

X̊ M =
(
k̊μ

ι̊μ

)
. (5.35)

Once that the algebra of (5.33) is known, the algebra of gen-
erator (5.22) can be easily obtained using (5.34).
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The change of basis to the one suitable for the auxiliary
generator (5.33) corresponds to the transformation

AM
N =

(
(C)

μ
ν 0

0 ((C−1)T ) ν
μ

)
, �̊M = AM

N �̆N , X̊ M = AM
N X̆ N ,

(5.36)

that can be rewritten as

X̊ M = (AeB̆)MN XN , �̊M = (AeB̆)MN �N , (5.37)

where (5.18) and (5.21) were used. It is easy to show that
the transformation AM

N , and consequentially (AeB̆)MN , is the
element of O(D, D) group

AT η A = η, (AeB̆)T η (AeB̆) = η, (5.38)

which means that there is C̊ , for which [21]

eC̊ = AeB̆ . (5.39)

The generator (5.33) gives rise to algebra that closes on C̊-
twisted Courant bracket

{
G̊(�̊1), G̊(�̊1)

}
= −G̊

(
[�̊1, �̊2]CC̊

)
, (5.40)

where the C̊-twisted Courant bracket is defined by

[�̊1, �̊2]CC̊ = eC̊ [e−C̊�̊1, e
−C̊�̊2]C . (5.41)

In the next chapter, we will obtain this bracket by direct com-
putation of the generators Poisson bracket algebra.

Lastly, let us briefly comment on reducibility conditions
for the C̊-twisted Courant bracket. Since we are working
with the closed strings, the total derivatives vanishes when
integrated out over the worldsheet. Using (5.31), we obtain

∫
dσκϕ′ =

∫
dσκx ′μ∂μϕ=

∫
dσ

(
k̊μ∂μϕ + κι̊μθ̊μν∂νϕ

)
= 0,

(5.42)

for any parameter λ. Hence, the generator (5.33) remains
invariant under the following change of parameters

ξ̊ μ → ξ̊ μ + κθ̊μν∂νϕ, λ̊μ → λ̊μ + ∂μϕ. (5.43)

These are reducibility conditions (2.10) in the basis spanned
by k̊μ and ι̊μ.

6 Courant bracket twisted by C̊ from the generator
algebra

In order to obtain the Poisson bracket algebra for the genera-
tor (5.33), let us firstly calculate the algebra of basis vectors,
using the standard Poisson bracket relations (2.16). The aux-
iliary currents ι̊μ algebra is

{ι̊μ(σ ), ι̊ν(σ̄ )} = −2B̊μνρ k̊
ρδ(σ − σ̄ ) − F̊ ρ

μν ι̊ρδ(σ − σ̄ ),

(6.1)

where B̊μνρ is the generalized H-flux, given by

B̊μνρ = ∂μ B̊νρ + ∂ν B̊ρμ + ∂ρ B̊μν, (6.2)

and F̊ρ
μν is the generalized f-flux, given by

F̊ ρ
μν = −2κ B̊μνσ θ̊σρ. (6.3)

The algebra of currents k̊μ is given by

{k̊μ(σ ), k̊ν(σ̄ )}=−κQ̊ μν
ρ k̊ρδ(σ − σ̄ )−κ2R̊μνρ ι̊ρδ(σ − σ̄ ),

(6.4)

where

Q̊ νρ
μ = Q̊ νρ

μ + 2κθ̊νσ θ̊ρτ B̊μστ , Q̊ νρ
μ = ∂μθ̊νρ (6.5)

and

R̊μνρ = R̊μνρ + 2κθ̊μλθ̊νσ θ̊ρτ B̊λστ ,

R̊μνρ = θ̊μσ ∂σ θ̊νρ + θ̊ νσ ∂σ θ̊ρμ + θ̊ ρσ ∂σ θ̊μν. (6.6)

The terms in (6.4) containing both θ̊ and B̊ are the conse-
quence of non-commutativity of auxiliary currents ι̊μ. The
remaining algebra of currents k̊μ and ι̊μ can be as easily
obtained

{ι̊μ(σ ), k̊ν(σ̄ )} = κδν
μδ′(σ − σ̄ )

+ F̊ ν
μρ k̊ρδ(σ − σ̄ ) − κQ̊ νρ

μ ι̊ρδ(σ − σ̄ ).

(6.7)

The basic algebra relations can be summarized in a sin-
gle algebra relation where the structure constants contain all
generalized fluxes

{X̊ M , X̊ N } = −F̊ MN
P X̊ Pδ(σ − σ̄ )+κηMN δ′(σ − σ̄ ), (6.8)
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with

FMNρ =
(

κ2R̊μνρ −κQ̊ μρ
ν

κQ̊ νρ
μ F̊ ρ

μν

)
,

FMN
ρ =

(
κQ̊ μν

ρ F̊ μ
νρ

−F̊ ν
μρ 2B̊μνρ

)
. (6.9)

The form of the generalized fluxes is the same as the ones
already obtained using the tetrad formalism [16–18]. In our
approach, the generalized fluxes are obtained in the Pois-
son bracket algebra, only from the fact that the generalized
canonical variable XM is transformed with an element of the
O(D, D) group that twists the Courant bracket both by B
and θ at the same time. Consequentially, the fluxes obtained
in this paper are functions of some new effective fields, B̊μν

(5.26) and θ̊μν (5.30).
We now proceed to obtain the full bracket. Let us rewrite

the generator (5.33) algebra

{
G̊(ξ̊1, λ̊1)(σ ), G̊(ξ̊2, λ̊2)(σ̄ )

}

=
∫

dσdσ̄
[{

ξ̊
μ
1 (σ )ι̊μ(σ ), ξ̊ ν

2 (σ̄ )ι̊ν(σ̄ )
}

+
{
λ̊1μ(σ )k̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

+
{
ξ̊

μ
1 (σ )ι̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

+
{
λ̊1μ(σ )k̊μ(σ ), ξ̊ ν

2 (σ̄ )ι̊ν(σ̄ )
}]

. (6.10)

The first term of (6.10) is obtained, using (6.1)

∫
dσdσ̄

{
ξ̊

μ
1 (σ )ι̊μ(σ ), ξ̊ ν

2 (σ̄ )ι̊ν(σ̄ )
}

=
∫

dσ
[
ι̊μ

(
ξ̊ ν

2 ∂ν ξ̊
μ
1 − ξ̊ ν

1 ∂ν ξ̊
μ
2 − F̊ μ

νρ ξ̊ ν
1 ξ̊

ρ
2

)

−2B̊μνρ k̊
μξ̊ ν

1 ξ̊
ρ
2

]
. (6.11)

The second term is obtained, using (6.4)

∫
dσdσ̄

{
λ̊1μ(σ )k̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

=
∫

dσ
[
k̊μ

(
κθ̊νρ(λ̊2ν∂ρλ̊1μ − λ̊1ν∂ρλ̊2μ) − κQ̊ νρ

μ

λ̊1νλ̊2ρ

)
− ι̊μκ2R̊μνρλ̊1νλ̊2ρ

]
. (6.12)

The remaining terms are antisymmetric with respect to 1 ↔
2, σ ↔ σ̄ interchange. Therefore, it is sufficient to calculate

only the first term in the last line of (6.10)∫
dσdσ̄

{
ξ̊

μ
1 (σ )ι̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

=
∫

dσ
[
k̊μ

(
− ξ̊ ν

1 ∂νλ̊2μ − F̊ ν
μρ ξ̊

ρ
1 λ̊2ν

)

+ι̊μ

(
κ(λ̊2ν θ̊

νρ)∂ρ ξ̊
μ
1 − κQ̊ νμ

ρ ξ̊
ρ
1 λ̊2ν

)]

+
∫

dσdσ̄ κξ̊ ν
1 (σ )λ̊2ν(σ̄ )∂σ δ(σ − σ̄ ). (6.13)

In order to transform the anomalous part, we note that

∂σ δ(σ − σ̄ ) = 1

2
∂σ δ(σ − σ̄ ) − 1

2
∂σ̄ δ(σ − σ̄ ), (6.14)

and

f (σ̄ )∂σ δ(σ − σ̄ ) = f (σ )∂σ δ(σ − σ̄ ) + f ′(σ )δ(σ − σ̄ ).

(6.15)

Applying (6.14) and (6.15) to the last row of (6.13), we obtain∫
dσdσ̄ κξ̊ ν

1 (σ )λ̊2ν(σ̄ )∂σ δ(σ − σ̄ )

= 1

2

∫
dσκx ′μ(

ξ̊ ν
1 ∂μλ̊2ν − ∂μξ̊ ν

1 λ̊2ν

)

+κ

2

∫
dσdσ̄

(
ξ̊ ν

1 (σ )λ̊2ν(σ )∂σ δ(σ − σ̄ )

−ξ̊ ν
1 (σ̄ )λ̊2ν(σ̄ )∂σ̄ δ(σ − σ̄ )

)

= 1

2

∫
dσ

[
k̊μ

(
ξ̊ ν

1 ∂μλ̊2ν − ∂μξ̊ ν
1 λ̊2ν

)

+ι̊μκθ̊μρ
(
ξ̊ ν

1 ∂ρλ̊2ν − ∂ρξ̊ ν
1 λ̊2ν

)]
, (6.16)

where (5.31) was used, as well as antisymmetry of θ̊ . Sub-
stituting (6.16) to (6.13), we obtain∫

dσdσ̄
{
ξ̊

μ
1 (σ )ι̊μ(σ ), λ̊2ν(σ̄ )k̊ν(σ̄ )

}

=
∫

dσ
[
k̊μ

(
ξ̊ ν

1 (∂μλ̊2ν − ∂νλ̊2μ)

−1

2
∂μ(ξ̊1λ̊2) − F̊ ν

μρ ξ̊
ρ
1 λ̊2ν

)

+ι̊μ

(
κ(λ̊2ν θ̊

νρ)∂ρ ξ̊
μ
1 + κθ̊μρ

(
ξ̊ ν

1 ∂ρλ̊2ν − 1

2
∂ρ(ξ̊1λ̊2)

)

−κQ̊ νμ
ρ ξ̊

ρ
1 λ̊2ν

)]
. (6.17)

Substituting (6.11), (6.12) and (6.17) into (6.10), we write
the full algebra of generator in the form

{
G̊(�̊1), G̊(�̊2)

}

= −G̊(�̊) ⇔
{
G̊(ξ̊1, λ̊1), G̊(ξ̊2, λ̊2)

}
= −G̊(ξ̊ , λ̊),

(6.18)
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where

ξ̊ μ = ξ̊ ν
1 ∂ν ξ̊

μ
2 − ξ̊ ν

2 ∂ν ξ̊
μ
1 − κθ̊μρ

×
(
ξ̊ ν

1 ∂ρλ̊2ν − ξ̊ ν
2 ∂ρλ̊1ν − 1

2
∂ρ(ξ̊1λ̊2 − ξ̊2λ̊1)

)

+κθ̊νρ(λ̊1ν∂ρ ξ̊
μ
2 − λ̊2ν∂ρ ξ̊

μ
1 )

+κ2R̊μνρλ̊1νλ̊2ρ + F̊ μ
ρσ ξ̊

ρ
1 ξ̊ σ

2

+κQ̊ νμ
ρ (ξ̊

ρ
1 λ̊2ν − ξ̊

ρ
2 λ̊1ν), (6.19)

and

λ̊μ = ξ̊ ν
1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν

2 (∂νλ̊1μ − ∂μλ̊1ν)

+1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1)

+κθ̊νρ(λ̊1ν∂ρλ̊2μ − λ̊2ν∂ρλ̊1μ)

+2B̊μνρ ξ̊ ν
1 ξ̊

ρ
2 + κQ̊ νρ

μ λ̊1νλ̊2ρ + F̊ ν
μσ

×(ξ̊ σ
1 λ̊2ν − ξ̊ σ

2 λ̊1ν). (6.20)

It is possible to rewrite the previous two equations, if we
note the relations between the generalized fluxes

R̊μνρ = R̊μνρ + θ̊μσ θ̊ ντ F̊ ρ
στ , Q̊ νρ

μ = Q̊ νρ
μ + θ̊ νσ F̊ ρ

μσ .

(6.21)

Now we have

ξ̊ μ = ξ̊ ν
1 ∂ν ξ̊

μ
2 − ξ̊ ν

2 ∂ν ξ̊
μ
1

+κθ̊μρ
(
ξ̊ ν

1 (∂νλ̊2ρ − ∂ρλ̊2ν) − ξ̊ ν
2 (∂νλ̊1ρ − ∂ρλ̊1ν)

+1

2
∂ρ(ξ̊1λ̊2 − ξ̊2λ̊1)

)

+κξ̊
ρ
1 ∂ρ(λ̊2ν θ̊

νμ) − κ(λ̊2ν θ̊
νρ)∂ρ ξ̊

μ
1 − κξ̊

ρ
2 ∂ρ(λ̊1ν θ̊

νμ)

+κ(λ̊1ν θ̊
νρ)∂ρ ξ̊

μ
2 + κ2 R̊μνρλ̊1νλ̊2ρ

+F̊ μ
ρσ ξ̊

ρ
1 ξ̊ σ

2 + κθ̊μσ F̊ ν
σρ (ξ̊

ρ
1 λ̊2ν − ξ̊

ρ
2 λ̊1ν)

+κ2θ̊μσ θ̊ ντ F̊ ρ
στ λ̊1νλ̊2ρ, (6.22)

and

λ̊μ = ξ̊ ν
1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν

2 (∂νλ̊1μ − ∂μλ̊1ν)

+1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1)

+κθ̊νρ(λ̊1ν∂ρλ̊2μ − λ̊2ν∂ρλ̊1μ) + κ Q̊ νρ
μ λ̊1νλ̊2ρ

+2B̊μνρ ξ̊ ν
1 ξ̊

ρ
2 + F̊ ν

μσ

×(ξ̊ σ
1 λ̊2ν − ξ̊ σ

2 λ̊1ν) + κθ̊νσ F̊ ρ
μσ λ̊1νλ̊2ρ, (6.23)

where the partial integration was used in the equation (6.22).
The relation (6.18) defines the C̊-twisted Courant bracket

[�̊1, �̊2]CC̊ = �̊ ⇔ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]CC̊ = (ξ̊ , λ̊), (6.24)

that gives the same bracket as (5.41). Both (6.19)–(6.20)
and (6.22)–(6.23) are the products of C̊-twisted Courant
bracket. The former shows explicitly how the gauge parame-
ters depend on the generalized fluxes. In the latter, similarities
between the expressions for two parameters is easier to see.

6.1 Special cases and relations to other brackets

Even though the non-commutativity parameter θ and the
Kalb Ramond field B are not mutually independent, while
obtaining the bracket (6.24) the relation between these fields
(2.7) was not used. Therefore, the results stand even if a
bi-vector and a 2-form used for twisting are mutually inde-
pendent. This will turn out to be convenient to analyze the
origin of terms appearing in the Courant bracket twisted by
C̊ .

Primarily, consider the case of zero bi-vector θμν = 0
with the 2-form Bμν arbitrary. Consequently, the parameter
α (4.8) is zero, while the hyperbolic functions C and S are
identity matrices. Therefore, the auxiliary fields (5.26) and
(5.30) simplify in a following way

B̊μν → Bμν θ̊μν → 0, (6.25)

and the twisting matrix eB̆ (4.11) becomes the matrix eB̂

(3.28). The expressions (6.19) and (6.20) respectively reduce
to

ξ̊ μ = ξ̊ ν
1 ∂ν ξ̊

μ
2 − ξ̊ ν

2 ∂ν ξ̊
μ
1 , (6.26)

and

λ̊μ = ξ̊ ν
1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν

2 (∂νλ̊1μ − ∂μλ̊1ν)

+ 1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1) + 2Bμνρ ξ̊ ν

1 ξ̊
ρ
2 , (6.27)

where Bμνρ is the Kalb–Ramond field strength, given by

Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν. (6.28)

The equations (6.26) and (6.27) define exactly the B-twisted
Courant bracket (3.27) [9].

Secondarily, consider the case of zero 2-form Bμν = 0
and the bi-vector θμν arbitrary. Similarly, α = 0 and C and
S are identity matrices. The auxiliary fields B̊μν and θ̊μν are
given by

B̊μν → 0 θ̊μν → θμν. (6.29)

The twisting matrix eB̆ becomes the matrix of θ -transformations

eθ̂ (3.30). The gauge parameters (6.19) and (6.20) are respec-
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tively given by

ξ̊ μ = ξ̊ ν
1 ∂ν ξ̊

μ
2 − ξ̊ ν

2 ∂ν ξ̊
μ
1

+ κθμρ
(
ξ̊ ν

1 (∂νλ̊2ρ − ∂ρλ̊2ν) − ξ̊ ν
2 (∂νλ̊1ρ − ∂ρλ̊1ν)

+ 1

2
∂ρ(ξ̊1λ̊2 − ξ̊2λ̊1)

)

+ κξ̊ ν
1 ∂ν(λ̊2ρθρμ) − κξ̊ ν

2 ∂ν(λ̊1ρθρμ)

+ κ(λ̊1νθ
νρ)∂ρ ξ̊

μ
2 − κ(λ̊2νθ

νρ)∂ρ ξ̊
μ
1

+ κ2Rμνρλ̊1νλ̊2ρ, (6.30)

and

λ̊μ = ξ̊ ν
1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν

2 (∂νλ̊1μ − ∂μλ̊1ν)

+ 1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1)

+ κθνρ(λ̊1ν∂ρλ̊2μ − λ̊2ν∂ρλ̊1μ) + κλ̊1ρλ̊2νQ
ρν
μ ,

(6.31)

where by Q νρ
μ and Rμνρ we have marked the non-geometric

fluxes, given by

Q νρ
μ = ∂μθνρ, Rμνρ = θμσ ∂σ θνρ+θνσ ∂σ θρμ+θρσ ∂σ θμν.

(6.32)

The bracket defined by these relations is θ -twisted Courant
bracket (3.29) [8] and it features the non-geometric fluxes
only.

Let us comment on terms in the obtained expressions for
gauge parameters (6.22) and (6.23). The first line of (6.22)
appears in the Courant bracket and in all brackets that can be
obtained from its twisting by either a 2-form or a bi-vector.
The next two lines correspond to the terms appearing in the
θ -twisted Courant bracket (6.30). The other terms do not
appear in either B- or θ -twisted Courant bracket.

Similarly, the first line of (6.20) appears in the Courant
bracket (2.18) and in all other brackets obtained from its
twisting, while the terms in the second line appear exclusively
in the θ twisted Courant bracket (6.27). The first term in the
last line appear in the B-twisted Courant bracket (6.31), while
the rest are some new terms. We see that all the terms that do
not appear in neither of two brackets are the terms containing
F̊ flux.

6.2 Coordinate free notation

In order to obtain the formulation of the C̊-twisted Courant
bracket in the coordinate free notation, independent of the
local coordinate system that is used on the manifold, let us
firstly provide definitions for a couple of well know brackets
and derivatives.

The Lie derivative along the vector field ξ is given by

L
ξ̊

= i
ξ̊
d + di

ξ̊
, (6.33)

with i
ξ̊

being the interior product along the vector field ξ̊ and
d being the exterior derivative. Using the Lie derivative one
easily defines the Lie bracket

[ξ̊1, ξ̊2]L = L
ξ̊1

ξ̊2 − L
ξ̊2

ξ̊1. (6.34)

The generalization of the Lie bracket on a space of 1-forms
is a well known Koszul bracket [26]

[λ̊1, λ̊2]θ = L
θ̊ λ̊1

λ̊2 − L
θ̊ λ̊2

λ̊1 + d(θ̊(λ̊1, λ̊2)). (6.35)

The expressions (6.19) and (6.20) in the coordinate free
notation are given by

ξ̊ = [ξ̊1, ξ̊2]L − [ξ̊2, λ̊1κθ̊]L + [ξ̊1, λ̊2κθ̊]L
−

(
L

ξ̊1
λ̊2 − L

ξ̊2
λ̊1 − 1

2
d(i

ξ̊1
λ̊2 − i

ξ̊2
λ̊1)

)
κθ̊

+F̊(ξ̊1, ξ̊2, .) − κθ̊F̊(λ̊1, ., ξ̊2) + κθ̊F̊(λ̊2, ., ξ̊1)

+R̊(λ̊1, λ̊2, .), (6.36)

and

λ̊ = L
ξ̊1

λ̊2 − L
ξ̊2

λ̊1 − 1

2
d(i

ξ̊1
λ̊2 − i

ξ̊2
λ̊1) − [λ̊1, λ̊2]κθ̊

+ H̊(ξ̊1, ξ̊2, .) − F̊(λ̊1, ., ξ̊2) + F̊(λ̊2, ., ξ̊1)

+ κθ̊F̊(λ̊1, λ̊2, .), (6.37)

where

H̊ = 2d B̊. (6.38)

We have marked the geometric H flux as H̊ , so that it is
distinguished from the 2-form B̊. In the local basis, the full
term containing H -flux is given by

H̊(ξ̊1, ξ̊2, .)

∣∣∣
μ

= 2B̊μνρ ξ̊ ν
1 ξ̊

ρ
2 . (6.39)

Similarly are defined the terms containing F̊ flux

F̊(ξ̊1, ξ̊2, .)

∣∣∣μ = F̊ μ
νρ ξ̊ ν

1 ξ̊
ρ
2 , (6.40)

and the non-geometric R̊ flux

R̊(λ̊1, λ̊2, .)

∣∣∣μ = R̊μνρλ̊1νλ̊2ρ, (6.41)

as well as

θ̊F̊(λ̊1, ., ξ̊2)

∣∣∣μ = θ̊ νσ F̊ μ
σρ λ̊1ν ξ̊

ρ
2 . (6.42)

123



Eur. Phys. J. C           (2021) 81:685 Page 11 of 15   685 

It is possible to rewrite the coordinate free notation in
terms of the H̊ -flux and θ̊ bi-vector only. The geometric F̊
flux is just the contraction of the H̊ -flux with a bi-vector

F̊ = κθ̊ H̊ . (6.43)

The non-geometric R̊ flux can be rewritten as

R̊ = 1

2
[θ̊ , θ̊ ]S + ∧3(κθ̊)H̊ , (6.44)

where ∧ is the wedge product, and by [θ̊ , θ̊ ]S we have marked
the Schouten–Nijenhuis bracket [27], given by

[θ̊ , θ̊ ]S
∣∣∣μνρ = ε

μνρ
αβγ θ̊σα∂σ θ̊βγ = 2R̊μνρ, (6.45)

where

ε
μνρ
αβγ =

∣∣∣∣∣∣∣
δ
μ
α δν

β δ
ρ
γ

δν
α δ

ρ
β δ

μ
γ

δ
ρ
α δ

μ
β δν

γ

∣∣∣∣∣∣∣
. (6.46)

Expressing both F̊ and R̊ fluxes in terms of the bi-vector θ̊

and 3-form H̊ , we obtain

ξ̊ = [ξ̊1, ξ̊2]L − [ξ̊2, λ̊1κθ̊]L + [ξ̊1, λ̊2κθ̊]L
−

(
L

ξ̊1
λ̊2 − L

ξ̊2
λ̊1 − 1

2
d(i

ξ̊1
λ̊2 − i

ξ̊2
λ̊1)

)
κθ̊

+κ2

2
[θ̊ , θ̊ ]S(λ̊1, λ̊2, .)

+κθ̊ H̊(., ξ̊1, ξ̊2) − ∧2κθ̊ H̊(λ̊1, ., ξ̊2)

+ ∧2 κθ̊ H̊(λ̊2, ., ξ̊1) + ∧3κθ̊ H̊(λ̊1, λ̊2, .), (6.47)

and

λ̊ = L
ξ̊1

λ̊2 − L
ξ̊2

λ̊1 − 1

2
d(i

ξ̊1
λ̊2 − i

ξ̊2
λ̊1) − [λ̊1, λ̊2]κθ̊

+H̊(ξ̊1, ξ̊2, .) − κθ̊ H̊(λ̊1, ., ξ̊2)

+κθ̊ H̊(λ̊1, ., ξ̊2) + ∧2κθ̊ H̊(λ̊1, λ̊2, .). (6.48)

The term κθ̊ H̊(., ξ̊1, ξ̊2) is the wedge product of a bi-
vector with a 3-form, contracted with two vectors, given by

(
κθ̊ H̊(., ξ̊1, ξ̊2)

)μ = 2κθ̊μν B̊νρσ ξ̊
ρ
1 ξ̊ σ

2 , (6.49)

and κθ̊ H̊(λ̊1, ., ξ̊2) is similarly defined, with the 1-form con-
tracted instead of one vector field
(
κθ̊ H̊(λ̊1, ., ξ̊2)

)
μ

= 2κθ̊νρ B̊ρμσ λ̊1ν ξ̊
σ
2 . (6.50)

The terms like ∧2κθ̊ H̊(λ̊1, ., ξ̊2) are the wedge product of
two bi-vectors with a 3-form, contracted with the 1-form λ̊1

and the vector ξ̊2

(
∧2 κθ̊ H̊(λ̊1, ., ξ̊2)

)μ = 2κ2θ̊ νσ θ̊μρ B̊σρτ λ̊1ν ξ̊
τ
2 , (6.51)

and similarly when contraction is done with two forms

(
∧2 κθ̊ H̊(λ̊1, λ̊2, .)

)
μ

= 2κ2θ̊ τρ θ̊ νσ B̊ρσμλ̊1τ λ̊2ν. (6.52)

Lastly, the term ∧3κθ̊ H̊(λ̊1, λ̊2, .) is obtained by taking a
wedge product of three bi-vectors with a 3-form and than
contracting it with two 1-forms. It is given by

(
∧3 κθ̊ H̊(λ̊1, λ̊2, .)

)μ = 2κ3θ̊ νσ θ̊ρτ θ̊μλ B̊στλλ̊1ν λ̊2ρ,

(6.53)

7 Star brackets

The expressions for gauge parameters (6.36) and (6.37) pro-
duce some well known bracket, such as Lie bracket and
Koszul bracket. The remaining terms can be combined so that
they are expressed by some new brackets, acting on pairs of
generalized vectors. It turns out that these brackets produce a
generalized vector, where the vector part ξ̊ μ and the 1-form
part λ̊μ are related by ξ̊ μ = κθ̊μνλ̊ν , effectively resulting
in the graphs in the generalized cotangent bundle T 
M of
the bi-vector θ̊ , i.e. ξ = κθ(., λ). The star brackets can be
interpreted in terms of projections on isotropic subspaces.

7.1 θ -star bracket

Let us firstly consider the second line of (6.22) and the first
line of (6.23). When combined, they define a bracket acting
on a pair of generalized vectors

[�̊1, �̊2]
θ̊ = �̊
 ⇔ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]
θ̊ = (ξ̊
, λ̊

), (7.1)

where

ξ̊
μ

 = κθ̊μρ

(
ξ̊ ν

1 (∂νλ̊2ρ − ∂ρλ̊2ν) − ξ̊ ν
2 (∂νλ̊1ρ − ∂ρλ̊1ν)

+ 1

2
∂ρ(ξ̊1λ̊2 − ξ̊2λ̊1)

)
, (7.2)

and

λ̊

μ = ξ̊ ν

1 (∂νλ̊2μ − ∂μλ̊2ν) − ξ̊ ν
2 (∂νλ̊1μ − ∂μλ̊1ν)

+1

2
∂μ(ξ̊1λ̊2 − ξ̊2λ̊1), (7.3)

from which one easily reads the relation

ξ̊
μ

 = κθ̊μρλ̊


ρ. (7.4)
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In a coordinate free notation, this bracket can be written as

[�̊1, �̊2]
θ̊ = [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]
θ̊
=

(
κθ̊

(
.,L

ξ̊1
λ̊2 − L

ξ̊2
λ̊1

)
,L

ξ̊1
λ̊2 − L

ξ̊2
λ̊1

)
.

(7.5)

7.2 Bθ -star bracket

The remaining terms contain geometric H̊ and F̊ fluxes. Note
that they are the only terms that depend on the new effective
Kalb–Ramond field B̊. Firstly, we mark the last line of (6.23)
as

λ̊∗
μ = 2B̊μνρξ̊ ν

1 ξ̊
ρ
2 +F̊ ν

μσ

(
ξ̊ σ

1 λ̊2ν−ξ̊ σ
2 λ̊1ν)+κθ̊νσ F̊ ρ

μσ λ̊1νλ̊2ρ.

(7.6)

Secondly, using the definition of F̊ (6.3) and the fact that θ̊

is antisymmetric, the last line of (6.22) can be rewritten as

ξ̊
μ∗ = 2κθ̊μν B̊νρσ ξ̊

ρ
1 ξ̊ σ

2 + κθ̊μσ F̊ ν
σρ (ξ̊

ρ
1 λ̊2ν − ξ̊

ρ
2 λ̊1ν)

+κ2θ̊μν θ̊ τσ F̊ ρ
νσ λ̊1τ λ̊2ρ

= κθ̊μνλ̊∗
ν. (7.7)

Now relations (7.6) and (7.7) define the Bθ -star bracket
by

[�̊1, �̊2]∗B̊θ̊
= �̊∗ ⇔ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]∗B̊θ̊

= (ξ̊∗, λ̊∗),
(7.8)

We can write the full bracket (6.24) as

[(ξ̊1, λ̊1), (ξ̊2, λ̊2)]CC̊
=

(
[ξ̊1, ξ̊2]L − [ξ̊2, λ̊1κθ̊]L + [ξ̊1, λ̊2κθ̊]L

+ κ2

2
[θ̊ , θ̊ ]S(λ̊1, λ̊2, .),−[λ̊1, λ̊2]κθ̊

)

+ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]∗B̊,θ̊
+ [(ξ̊1, λ̊1), (ξ̊2, λ̊2)]
θ̊ . (7.9)

7.3 Isotropic subspaces

In order to give an interpretation to newly obtained starred
brackets, it is convenient to consider isotropic subspaces. A
subspace L is isotropic if the inner product (2.12) of any two
generalized vectors from that sub-bundle is zero

〈�1,�2〉 = 0, �1,�2 ∈ L . (7.10)

From (2.12), one easily finds that

ξ
μ
i = κ θμνλiν . (i = 1, 2) θμν = −θνμ, (7.11)

for any bi-vector θ , and

λiμ = 2Bμνξ
μ
i . (i = 1, 2) Bμν = −Bνμ, (7.12)

for any 2-form B satisfy the condition (7.10).
Furthermore, it is straightforward to introduce projections

on these isotropic subspaces by

Iθ (�M ) = Iθ (ξμ, λμ) = (κ θμνλν, λμ), (7.13)

and

IB(�M ) = IB(ξμ, λμ) = (ξμ, 2Bμνξ
ν). (7.14)

Now it is easy to give an interpretation to star brackets. The
θ -star bracket (7.1) can be defined as the projection of the
Courant bracket (3.29) on the isotropic subspace (7.13)

[�̊1, �̊2]
θ̊ = I θ̊
(
[�̊1, �̊2]C

)
. (7.15)

Similarly, note that all the terms in (6.37) that do not appear
in the θ -twisted Courant bracket, contribute exactly to the
Bθ -star bracket. From that, it is easy to obtain the definition
of the Bθ -star bracket (7.8)

[�̊1, �̊2]∗B̊θ̊
= I θ̊

(
[�̊1, �̊2]CC̊

)
− I θ̊

(
[�̊1, �̊2]C

θ̊

)
. (7.16)

8 Courant bracket twisted by B and θ

Now it is possible to write down the expression for the
Courant bracket twisted by B and θ (4.2), using the expres-
sion for C̊-twisted Courant bracket

[�̆1, �̆2]CBθ
= A−1[A�̆1, A�̆2]CC̊ , (8.1)

where A is defined in (5.36). Substituting (8.1) into (6.36),
we obtain

ξ̆ = C−1[Cξ̆1, Cξ̆2]L
−C−1[Cξ̆2, λ̆1κC−1θ̊]L + C−1[Cξ̆1, λ̆2κC−1θ̊ ]L
−

(
LCξ̆1

(λ̆2C−1) − LCξ̆2
(λ̆1C−1)

−1

2
d(iξ̆1

λ̆2 − iξ̆2
λ̆1)

)
κθ̊C−1

+κ2

2
C−1[θ̊ , θ̊ ]S(λ̆1C−1, λ̆2C−1, .)

+κC−1θ̊ H̊(., Cξ̆1, Cξ̆2)

−C−1 ∧2 κθ̊ H̊(λ̆1C−1, ., Cξ̆2)

+C−1 ∧2 κθ̊ H̊(λ̆2C−1, ., Cξ̆1)

+C−1 ∧3 κθ̊ H̊(λ̆1C−1, λ̆2C−1, .), (8.2)
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and similarly, substituting (8.1) into (6.37), we obtain

λ̆ =
(
LCξ̆1

(λ̆2C−1) − LCξ̆2
(λ̆1C−1) − 1

2
d(iξ̆1

λ̆2 − iξ̆2
λ̆1)

)
C

+H̊(Cξ̆1, Cξ̆2, .)C
−[λ̆1C−1, λ̆2C−1]

κθ̊
C − κθ̊ H̊(λ̆1C−1, ., Cξ̆2)C

+κθ̊ H̊(λ̆2C−1, ., Cξ̆1)C
+ ∧2 κθ̊ H̊(λ̆1C−1, λ̆2C−1, .)C, (8.3)

where Cμ
ν =

(
cosh

√
α
)μ

ν
and �̆ = (ξ̆ , λ̆) (5.21). This is

somewhat a cumbersome expression, making it difficult to
work with. To simplify it, with the accordance of our con-
vention, we define the twisted Lie bracket by

[ξ̆1, ξ̆2]LC = C−1[Cξ̆1, Cξ̆2]L , (8.4)

as well as the twisted Schouten–Nijenhuis bracket

(
[θ̆ , θ̆ ]SC

)μνρ = (C−1)μσ (C−1)νλ(C−1)ρτ

(
[Cθ̆ , Cθ̆ ]S

)σλτ

,

(8.5)

and twisted Koszul bracket

[λ̆1, λ̆2]θC = (CT )−1[CT λ̆1, CT λ̆2]θC, (8.6)

where the transpose of the matrix is necessary because the
Koszul bracket acts on 1-forms. Now, the first three terms of
(8.2) can be written as

[ξ̆1, ξ̆2]LC − [ξ̆2, λ̆1κC−1θ̆]LC + [ξ̆1, λ̆2κC−1θ̆]LC , (8.7)

where

θ̆μν = (C−1)μρθ̊ρν = Sμ
ρθρν. (8.8)

The second line of (8.2) and the first line of (8.3) originating
from θ̊ star bracket (7.1) can be easily combined into

[(Cξ̆1, λ̆1C−1), (Cξ̆2, λ̆2C−1)]
C−1θ̆
C. (8.9)

The terms originating from B̊θ̊ star bracket (7.8) are com-
bined into

[(ξ̆1, λ̆1), (ξ̆2, λ̆2]∗B̆,C−1 θ̆
, (8.10)

where

B̆μνρ = B̊αβγ Cα
μCβ

νCγ
ρ =

(
∂α(BSC−1)βγ

+ ∂β(BSC−1)γα + ∂γ (BSC−1)αβ

)
Cα

μCβ
νCγ

ρ. (8.11)

The expressions for the Courant bracket twisted by both B
and θ can be written in a form

[(ξ̆1, λ̆1), (ξ̆2, λ̆2)]CBθ

=
(
[ξ̆1, ξ̆2]LC − [ξ̆2, λ̆1κC−1θ̆ ]LC + [ξ̆1, λ̆2κC−1θ̆]LC

+ κ2

2
[θ̆ , θ̆ ]SC (λ̆1, λ̆2, .),−[λ̆1, λ̆2]θC

)

+ [(Cξ̆1, λ̆1C−1), (Cξ̆2, λ̆2C−1)]
C−1 θ̆
C

+ [(ξ̆1, λ̆1), (ξ̆2, λ̆2]∗B̆,C−1 θ̆
. (8.12)

When the Courant bracket is twisted by both B and θ , it
results in a bracket similar to C̊-twisted Courant bracket,
where Lie brackets, Schouten Nijenhuis bracket and Koszul
bracket are all twisted as well.

9 Conclusion

We examined various twists of the Courant bracket, that
appear in the Poisson bracket algebra of symmetry gener-
ators written in a suitable basis, obtained acting on the dou-
ble canonical variable (2.4) by the appropriate elements of
O(D, D) group. In this paper, we considered the transfor-
mations that twists the Courant bracket simultaneously by
a 2-form B and a bi-vector θ . When these fields are mutu-
ally T-dual, the generator obtained by this transformation is
invariant upon self T-duality.

We obtained the matrix elements of this transformation,
that we denoted eB̆ (4.11), expressed in terms of the hyper-
bolic functions of a parameter α (4.8). In order to avoid
working with such a complicated expression, we considered
another O(D, D) transformation A (5.36) and introduced
a new generator, written in a basis of auxiliary currents ι̊μ
and k̊μ. The Poisson bracket algebra of a new generator was
obtained and it gave rise to the C̊-twisted Courant bracket,
which contains all of the fluxes.

The generalized fluxes were obtained using different
methods [10–12,16–18]. In our approach, we started by
an O(D, D) transformation that twists the Courant bracket
simultaneously by a 2-form B and bi-vector θ , making it
manifestly self T-dual. We obtained the expressions for all
fluxes, written in terms of the effective fields

B̊μν = Bμρ

( tanh
√

2κθB√
2κθB

)ρ

ν,

θ̊μν =
( sinh 2

√
2κθB

2
√

2κθB

)μ

σ θσν. (9.1)

The fluxes, as a function of these effective fields, appear nat-
urally in the Poisson bracket algebra of such generators.
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Similar bracket was obtained in the algebra of general-
ized currents in [11,12] and is sometimes referred to as the
Roytenberg bracket [10]. In that approach, phase space has
been changed, so that the momentum algebra gives rise to the
H -flux, after which the generalized currents were defined in
terms of the open string fields. The bracket obtained this way
corresponds to the Courant bracket that was firstly twisted
by B field, and then by a bi-vector θ . The matrix of that twist
is given by

eR = eθ̂eB̂ =
(

δ
μ
ν + α

μ
ν κθμν

2Bμν δν
μ

)
. (9.2)

In our approach, we obtained the transformations that twists
the Courant bracket at the same time by B and θ , resulting in a
C̊-twisted Courant bracket. As a consequence, the C̊-twisted
Courant bracket is defined in terms of auxiliary fields B̊ (5.26)
and θ̊ (5.30), that are themselves function of α. This is not the
case in [11,12]. The Roytenberg bracket calculated therein
can be also obtained following our approach by twisting with
the matrix

eC = AeB̆ =
( C2 κ(CSθ)

2BCS 1

)
, (9.3)

demanding that the background fields are infinitesimal B ∼
ε, θ ∼ ε and keeping the terms up to ε2. With these con-
ditions, eC (9.3) becomes exactly eR (9.2), and the bracket
becomes the Roytenberg bracket.

Analyzing the C̊-twisted Courant bracket, we recognized
that certain terms can be seen as new brackets on the space of
generalized vectors, that we named star brackets. We demon-
strated that they are closely related to projections on isotropic
spaces. It is well established that the Courant bracket does not
satisfy the Jacobi identity in general case. The sub-bundles
on which the Jacobi identity is satisfied are known as Dirac
structures, which as a necessary condition need to be sub-
sets of isotropic spaces. Therefore, the star brackets might
provide future insights into integrability conditions for the
C̊-twisted Courant bracket [28].

In the end, we obtained the Courant bracket twisted at the
same time by B and θ by considering the generator in the
basis spanned by ῐ and k̆, equivalent to undoing A transfor-
mation, used to simplify calculations. With the introduction
of new fields B̆μν and θ̆μν , this bracket has a similar form
as C̊-twisted Courant bracket, whereby the Lie, Schouten–
Nijenhuis and Koszul brackets became their twisted counter-
parts.

It has already been established that B-twisted and θ -
twisted Courant brackets appear in the generator algebra
defined in bases related by self T-duality [13]. When the
Courant bracket is twisted by both B and θ , it is self T-dual,
and as such, represent the self T-dual extension of the Lie

bracket that includes all fluxes. It has been already shown
[8] how the Hamiltonian can be obtained acting with B-
transformations on diagonal generalized metric. The same
method could be replicated with the twisting matrix eB̆ , that
would give rise to a different Hamiltonian, whose further
analysis can provide interesting insights in the role that the
Courant bracket twisted by both B and θ plays in understand-
ing T-duality.
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