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Abstract

Understanding the dynamics of strongly coupled gauge theories is one of the greatest
challenges in modern theoretical physics. A new hope in attacking this problem was
brought by the surprising discovery of integrability in a special four-dimensional gauge
theory — the N' = 4 supersymmetric Yang-Mills theory (SYM) in the limit of large number
of colors. Quantum integrability manifests itself as a powerful hidden symmetry which
allows to explore the theory far beyond the conventional perturbative regime, and may even
lead to its exact solution. Integrability should also shed light on the striking gauge/string
duality, which holographically relates N' = 4 SYM with a string theory in curved geometry.

In this thesis we focus on one of the key quantities in the N/ = 4 SYM theory — its
spectrum of conformal dimensions, which correspond to string state energies. The study
of integrability has culminated in reformulation of the spectral problem as a compact
set of Riemann-Hilbert type equations known as the Quantum Spectral Curve (QSC).
We demonstrate the power of this framework by applying it to study the spectrum in a
wide variety of settings. The new methods which we present allow to explore previously
unreachable regimes. We first discuss an all-loop solution in a near-BPS limit, leading
also to new strong coupling predictions. Next we describe an efficient numerical algorithm
which allows to compute the finite-coupling spectrum with nearly unlimited precision (e.g.
60 digits in some important cases). We also present a universal analytic iterative method,
which in particular allows to solve a longstanding open problem related to the BFKL limit
in which N’ = 4 SYM develops close links with QCD. Finally we propose the extension
of the QSC to the deformed case corresponding to a cusped Wilson line, uncovering new
algebraic features of the construction. This allows to systematically study the generalized

quark-antiquark potential and generate numerous new results.
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Part 1

Introduction

1 Overview

1.1 Integrability and gauge/string dualities

One of the most fascinating and difficult problems in modern theoretical physics is solving
strongly interacting quantum field theories. These theories are of paramount importance
in physics as they describe a wide array of phenomena ranging from condensed matter
systems to interactions of elementary particles. Yet their behaviour is difficult to study
outside of the weak coupling regime. In particular, it has long been the dream of many
physicists to understand the behavior of quantum chromodynamics (QCD) — the part of
the Standard Model of particle physics describing the strong nuclear force, which is one of
the four fundamental types of interactions in our world alongside gravity, electromagnetism
and the weak force. Traditional field theory methods have limited usefulness in studying
QCD, as they are based on a perturbative expansion in the theory’s coupling constant
which in QCD is not small except at very high energies.

Some non-perturbative methods to handle strongly coupled theories were becoming
available already in the 1980s, as exact solutions were found for conformal theories in two
dimensions, and a number of remarkable results were obtained also in the more realistic 3
and 4 dimensional cases. More recently, other powerful approaches have been developed
with guidance coming from string theory. While string theory may allow us to combine
the Standard Model with gravity and obtain a unified description of all interactions, it
also offers an entirely new perspective on the Standard Model itself. Namely, there is a
hope that any conventional gauge theory should have another, completely different but
equivalent, description as a string theory on a higher-dimensional spacetime. This type
of duality is known as the AdS/CFT correspondence or gauge/string duality, and its first
concrete example [1, 2, 3] was proposed in 1997, relating N' = 4 supersymmetric Yang-
Mills (SYM) theory in 4d (in the planar limit when the num,ber of colors is large) with
a string theory on AdSs x S°. This duality is also called “holographic”, as the 4d gauge
theory may be understood as living on the four-dimensional boundary of the Anti-de Sitter

space AdSs, while string theory is defined in the bulk of the whole AdSs x S? manifold.
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The isometries of AdS are identified with the symmetries of the 4d theory suggesting
that it should be a conformal field theory (CFT), i.e. possess invariance under conformal
transformations of spacetime. In addition to this already constraining symmetry, the
Yang-Mills theory appearing in this example also has supersymmetry — that is, invariance
under field transformations which relate bosons to fermions. Despite the high amount of
symmetry, the N' = 4 SYM theory is in many ways similar to QCD and is still a highly
nontrivial theory. It is therefore very remarkable that the AdS/CFT duality allows us
to glimpse the behavior of this theory at strong coupling. Namely, the non-perturbative
regime in the gauge theory is mapped to the weakly coupled, perturbative regime in string
theory which is tractable by standard methods. Conversely, the AdS/CFT duality also
sheds light on quantum gravity as modelled by string theory, as the strongly interacting
string theory is described by traditional techniques in weakly coupled gauge theory.

The AdS/CFT duality remains a conjecture which has not been proven rigorously even
in this most-studied example. A great body of evidence leaves little doubt for the validity
of this gauge/string correspondence, but its mathematical origins remain to a large extent
mysterious [4]. However, in 2002 a fascinating discovery was made [5], opening a whole
new direction of research which should bring us closer to understanding the nature of
AdS/CFT. This approach is based on integrability which was found on both sides of the
duality between N = 4 SYM and superstring theory on AdSs x S° (for a review see [6]).
Integrable systems have been known in mathematics for a long time?, and are characterized
by the presence of a complete set of conservation laws/symmetries whose presence leads
to the exact solution of the model (see e.g. [7]). In quantum field theories integrability
was observed for various models (CFTs, sigma models, sine-Gordon theory, ...) defined
in two dimensions, and later in supersymmetry-protected sectors of higher dimensional
gauge theories [8, 9, 10]. In fact after appropriate gauge fixing the string action defines
an 2d integrable theory on the worldsheet, to solve which one can apply (modulo various
complications of course) the well-developed methods based on the S-matrix bootstrap,
similarly to solutions of such renowned 2d models as the sine-Gordon theory. What is truly
remarkable is that this rather conventional integrability on the string side translates, via
AdS/CFT, into integrability on the gauge theory side — providing a rare case of integrable
structures in four, instead of two, spacetime dimensions. The emergence of integrability
for a full, non-protected set of observables in a 4d theory — even if only in the large N,

limit — was a completely novel phenomenon and gives a hope to reach, for the first time

2Best-known examples are models in classical mechanics such as the Kepler problem or spinning tops,

and integrable PDEs such as the Korteveg-de Vries equation.
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ever, the complete solution of an interacting 4d gauge theory.

Integrability is also one of the very few methods which allow to verify and test the
AdS/CFT correspondence on a non-perturbative level. An extra interest in the subject
stems from the fact that the integrable system arising here is of a novel type, in particular
the corresponding R-matrix has nontrivial branch points and is related to a new type of
quantum group.

As N = 4 SYM is a conformal theory, a key observable to study is the spectrum
of conformal dimensions, which on the string theory side corresponds to string energy
levels. Integrability has proven to be especially powerful in application to the spectral
problem, and more than a decade’s efforts have led to a strikingly simple set of equations
which are expected to describe the full spectrum (for local operators) at any coupling.
These equations are known as the Quantum Spectral Curve (QSC) and are based on deep
algebraic structures such as the QQ-relations. As the QSC encodes the exact Q-functions
of the model which are linked to wavefunctions in separated variables, it is also expected to
have applications for computing 3-point correlation functions in addition to the spectrum.

The main focus of the work presented in this thesis is exploring the spectrum using
this novel Quantum Spectral Curve framework. We will see the QSC in action in a
wide variety of settings, uncovering key features of solutions to the QSC equations in
different regimes and obtaining valuable data for the spectrum at the same time. The
applications range from exceptionally precise numerical calculations to high-order analytic
expansions and several all-loop results. We will show how using this approach it is possible
to attack several previously untractable problems, including next-to-next-to-leading order
calculations in the BFKL limit which links the /=4 theory to realistic QCD. In addition,
while the original QSC describes local operators, we will show how to extend it to a cusped
Wilson line setup. This opens the way to deeply study another important observable — the
generalized quark-antiquark potential, for which we will be able to obtain numerous new
results as well as uncovering surprising new structures in the QSC. All these solutions also
allow us to obtain Q-functions in different regimes, which we hope will help to develop

applications of the QSC to computation of 3-point correlators.

1.2 Thesis structure

The results described in this thesis were originally presented in six of my papers (with

co-authors) which are listed in the next section. The thesis contains eight parts: the
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first part provides an introduction and overview, in parts II - VII the main results are
presented, and the final part contains conclusions and appendices with technical details.

A more detailed summary of the content is given below.

e Part I
In this introductory part we first give an overview of gauge/string dualities and
the appearance of integrability in this context. We present the structure of the
thesis and list the author’s publications. Then we discuss in more detail the N = 4
SYM theory and the dual string theory and describe the historical development of
the integrability program. We also specifically focus on the key Quantum Spectral
Curve (QSC) framework, which is the basis for most of the results presented in the

thesis.

e Part II
In this part we describe the solution of the QSC at any coupling in the small spin
limit. We compute the first two orders of the near-BPS expansion to all loops and
show that this data also provides new strong coupling predictions for much-studied

observables such as the Konishi anomalous dimension and the BFKL intercept.

e Part III
Here we present a highly efficient numerical algorithm for solving the QSC for an
arbitrary state/operator. It allows to generate extremely precise data for the non-
perturbative spectrum at finite coupling. Moreover we show how to implement
analytic continuation in the spin away from integer values, and deeply explore the

rich analytic structure of the spectrum for twist two operators.

e Part IV
We present in this part a new analytic iterative method for solving the QSC per-
turbatively, which by now has found many diverse applications. We show that in
particular it allows to compute for the first time the NNLO correction to the BFKL
eigenvalue, resolving a longstanding problem open for more than 10 years. The
regime we study resums all orders of usual perturbation theory. We verify the result
with 60 digits precision using the numerical method discussed in part III. We also

achieve a further simplification of the QSC by eliminating several auxiliary functions.

e Part V

Having discussed the spectrum of local operators, in the parts V-VII we switch
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to the generalized cusp anomalous dimension, associated to a cusped Wilson line.
In this part we present the analytic solution of the TBA equations (which are the
predecessor of the QSC) to all loops in a near-BPS limit. The calculation reproduces
localization-based predictions and reveals a curious matrix model structure of the

result. It also provides guidance for extending the QSC to this case.

e Part VI
In this part we propose the Quantum Spectral Curve formulation for the angle-
dependent cusp anomalous dimension at all values of the parameters and the cou-
pling. This opens the way to study this observable systematically and apply the
powerful methods developed for local operators. The proposal is checked exten-
sively and leads to new analytic as well as numerical predictions. In particular, we

analytically compute the next term in the near-BPS expansion to all loops.

e Part VII
Here we show that the QSC proposed in the previous part leads to a finite closed
set of equations for the flat space quark-antiquark potential — a key observable in
AdS/CFT which is nearly inaccessible by previous integrability-based methods. It
corresponds to a singular limit in which the QSC develops qualitatively new features.
We calculate the first 7 nontrivial orders of the weak coupling expansion, going far
beyond the reach of other methods. We also compute the potential numerically in
a wide range of the coupling, reproducing the celebrated string theory results with
high accuracy. Finally we demonstrate how the Schrodinger equation resumming all

ladder diagrams in a double scaling limit is encoded in the QSC.

e Part VIII
We present concluding remarks and discuss directions for future research. This part

also contains appendices which supplement the main text.

1.3 The author’s publication list

A list of all my publications is given below. The papers (1)—(6) form the basis for this
thesis. The papers (7)-(11) are on closely related subjects, while papers (12), (13) are on
completely different topics. In the bibliography these papers are listed as [11] — [23].

(1) N. Gromov and F. Levkovich-Maslyuk, “Quark-anti-quark potential in N' =4 SYM,”

arXiv:1601.05679 [hep-th).
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(2)

N. Gromov and F. Levkovich-Maslyuk, “Quantum Spectral Curve for a Cusped Wilson
Line in N =4 SYM,”

arXiv:1510.02098 [hep-th] (to appear in JHEP).

N. Gromov, F. Levkovich-Maslyuk and G. Sizov, “Pomeron Eigenvalue at Three Loops
in N/ = 4 Supersymmetric Yang-Mills Theory,”

Phys. Rev. Lett. 115 (2015) 25, 251601 [arXiv:1507.04010 [hep-th]].

N. Gromov, F. Levkovich-Maslyuk and G. Sizov, “Quantum Spectral Curve and the
Numerical Solution of the Spectral Problem in AdS5/CFT4,”

arXiv:1504.06640 [hep-th].

N. Gromov, F. Levkovich-Maslyuk, G. Sizov and S. Valatka, “Quantum spectral curve
at work: from small spin to strong coupling in N’ =4 SYM,”

JHEP 1407 (2014) 156 [arXiv:1402.0871 [hep-th]].

N. Gromov, F. Levkovich-Maslyuk and G. Sizov, “Analytic Solution of Bremsstrahlung
TBA II: Turning on the Sphere Angle,”

JHEP 1310 (2013) 036 [arXiv:1305.1944 [hep-th]].

M. Beccaria, F. Levkovich-Maslyuk, G. Macorini and A. A. Tseytlin, “Quantum cor-
rections to spinning superstrings in AdSs x S3 x M*: determining the dressing phase,”
JHEP 1304 (2013) 006 [arXiv:1211.6090 [hep-th]].

F. Levkovich-Maslyuk, “Numerical results for the exact spectrum

of planar AdS4/CFT3,”

JHEP 1205 (2012) 142 [arXiv:1110.5869 [hep-th]].

M. Beccaria, F. Levkovich-Maslyuk and G. Macorini, “On wrapping corrections to
GKP-like operators,”

JHEP 1103 (2011) 001 [arXiv:1012.2054 [hep-th]].

N. Gromov and F. Levkovich-Maslyuk, “Y-system and [3-deformed N' = 4 Super-
Yang-Mills,”

J. Phys. A 44 (2011) 015402 [arXiv:1006.5438 [hep-th]].

N. Gromov and F. Levkovich-Maslyuk, “Y-system, TBA and Quasi-Classical strings
in AdS(4) x CP3,”
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JHEP 1006 (2010) 088 [arXiv:0912.4911 [hep-th]].

(12) N. Tulyakov, F. Levkovich-Maslyuk, V. Samoilov, “Analytical Calculation of Atom
Ejection from the Ni (111), Ni (001), and Au (001) Surfaces in Frames of a Three-

Dimensional Model”,
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2011,
Vol. 5, p. 335.

(13) F. Levkovich-Maslyuk, “Two destructive effects of decoherence on Bell inequality vi-

olation”,

Phys. Rev. A 79, 054101 (2009) [arXiv:0812.3736 [quant-ph]]

Let us also mention that in part II we mostly present results from paper (5), in part
III from paper (4), in part IV from paper (3), in part V from paper (6), in part VI from
paper (2), and in part VII from paper (1).

1.4 Frequently used notation

For the reader’s convenience we present here some frequently used notation.

e The coupling constant of planar N'=4 SYM is defined as

VA

g:E,

where A = g2, N, is the 't Hooft coupling (with N. — c0).

e For a function f(u) we denote
FE=f (u:l: ;) flrl =g <u—|— Z;) (1.2)
e We widely use the Zhukovsky variable x(u) defined by

u
T+ —=—, (1.3)

€z g
choosing the solution with |z| > 1 (in part V we use another solution in some
cases, which is discussed explicitly). This parameterisation resolves the branch cut

u € [—2g, 2g] which many functions discussed below have.
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2 N =4 super Yang-Mills and strings on AdSs x S°

In this section we will describe both sides of the AdS/CFT duality discussed above, and
make more precise their relation with each other.

On the gauge theory side we have N' = 4 SYM with gauge group SU(N.) which is the
maximally supersymmetric gauge theory in 4d (for a review see [24]). Its field content is a
non-abelian gauge field A, six real scalars ®, (a = 1,...,6) and fermionic fields ¥, 94.

All fields are in the adjoint representation of the gauge group. The action reads

1
S=-— / d*zTr
29y m

The beta function for the coupling is zero and this theory is conformally invariant at

1
-3 (Fyw)? + Dp®a DM =Y " [@q, &y)* + fermions (2.1)
a<b

the quantum level [25], with the corresponding symmetry group being SO(4,2). There is
also an SU(4) R-symmetry, under which the fermions transform in the (anti)fundamental
representation, and the scalars in the 6-dimensional irrep. Together with supersymmetry
transformations, the global symmetries of the theory form the supergroup PSU(2,2|4).

We will be interested in the planar limit when the number of colors N, goes to infinity
while the combination

A= gy N, (2.2)

which is known as the 't Hooft coupling, stays fixed. While this limit may seem an extra
complication it in fact offers a great simplification, with reduction of the number of relevant
Feynman diagrams and most importantly the emergence of integrability.

Let us now turn to the string side of the duality, which is type IIB superstring theory on
the AdS5 x S® space. A useful formulation of this theory which highlights the symmetries
is the sigma model action [26] (for a discussion and review see [27, 28]). This Metsaev-

Tseytlin action can be written as
5 VA / STt (J<2> AxJ® — g A J<3>) (2.3)
4

where J is the current constructed from the supergroup element g € PSU(2,2|4) as
4
J=—gldg = Z J®, (2.4)
i=1

The action is written in terms of the components J® which give the decomposition of the
current under the Z4 grading which is important for integrability.

The global symmetry of this action is given by the supergroup PSU(2,2|4), matching
the symmetries of N' = 4 SYM. The parameter A which defines the string tension in the ac-

tion is identified with gauge theory 't Hooft coupling. This already shows the weak/strong
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nature of the AdS/CFT correspondence: the gauge theory perturbative regime of small A
is mapped to the highly interacting regime in the string theory. Conversely, the semiclas-
sical and tractable regime of large A on the string side is mapped to the fully quantum
gauge theory.

Let us mention that the string coupling constant is set to zero (in the limit N, — 00),
so the action (2.3) describes the propagation of a single string whose worldsheet is a
cylinder, but of course the model is still highly nontrivial as the string is moving in a
curved space. The AdS/CFT duality is conjectured to extend for the finite N, case as well
with gs ~ A\/N.. We will always discuss the large N, regime.

The main statement of AdS/CFT is that gauge theory observables are directly related
to those of string theory. A particularly important class of observables are the scaling

dimensions A()\) of local gauge-invariant single trace operators in gauge theory,
O(z) = Tr(®;(x)P2(x) . ..). (2.5)

The scaling dimensions are very nontrivial functions of A which determine the form of

2-point correlators

(O@)O(y)) = ‘x_lyA (2.6)

and also fix the coordinate dependence of 3-point functions

Cra3
<Ol($)02(y)03(z)> = ‘x _ y‘AH_AQ—A?"x _ z\AlJFA?’_A?\y _ Z‘A2+A3—A1

(2.7)

(here the coefficients C23 are called the 3-point structure constants). The conformal
dimensions are conjectured to be equal to the energies of string states, i.e. their Noether
charge E with respect to translations in the AdS global time. In the commonly used
lightcone gauge [28] this AdS energy is also simply related to the worldsheet energy of the
state,

Ews=E—J (2.8)

where J is one of the R-charges. Thus the problem of computing scaling dimensions in
gauge theory is reformulated as computing the worldsheet spectrum in finite volume for a

nontrivial sigma model.

3 Integrable structures in AdS/CFT

In this section we will summarize the development of integrability methods in gauge/string

dualities.
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Exploration of integrability started with the discovery that the dilatation operator in
N = 4 SYM, whose eigenvalues are the scaling dimensions, coincides at 1 loop in the
scalar sector with the Hamiltonian of an integrable spin chain [5]. This nearest-neighbor
spin chain is solvable by beautiful Bethe ansatz techniques (see [24] for an introduction)
providing immediate access to the spectrum. Integrability was later extended to more
generic sectors and to higher orders in the 't Hooft coupling.

On the string side, classical integrability stems from the construction of a connection
which is flat on equations of motion and includes an additional complex variable called the
spectral parameter [29, 30]. The monodromy of this flat connection around the worldsheet
then generates infinitely many conserved charges when expanded as a series in the spectral
parameter. This construction is typical for sigma models on coset spaces. All the conserved
charges are encoded in the classical spectral curve of the theory [30] which also provides
a framework to compute 1-loop quantum corrections [31].

While integrable structures on the gauge theory side played a crucial role in the subject,
the complete all-loop solution for the spectrum was guided mostly by logic originating from
the string side of the duality. The reason for this is that after appropriate lightcone gauge-
fixing, the string action defines the worldsheet model which is a 2d integrable field theory
solvable by the bootstrap and related methods, which have been extensively developed
for simpler models like the sine-Gordon or principal chiral field models. These methods
were adapted to conjecture the exact S-matrix for string excitations as reviewed in [32].
Its structure is to a large extent fixed by the Yang-Baxter equation, although an overall
prefactor called the dressing phase required a special effort to determine [33]. An important
complication compared to more conventional models is that the dispersion relation for
excitations is non-relativistic.

These developments finally led to the asymptotic Bethe ansatz (ABA) equations at
any coupling that were formulated in [34]. They descibe the exact spectrum for operators
containing an asymptotically large number of fields, and interpolate between the gauge
and string theory predictions. The number of fields L in the operator corresponds to the
spatial volume in which the 1+1 dimensional worldsheet theory is defined. Thus as usual
in massive integrable QFTs, the ABA does not capture the corrections to the energy which
are exponentially small in the volume L.

More precisely, for length L operators the ABA equations describe the spectrum up
to order ¢?F, and they miss finite-size wrapping corrections that appear at higher orders

[35, 36]. At first several orders these effects can be studied using Luscher formulas. To
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fully take into account the wrapping effects, it was necessary to apply the Thermodynamic
Bethe ansatz (TBA) approach in which the energy levels of an integrable QFT in finite
volume are related to the asymptotic spectrum [37]. This led to the formulation of an
infinite set of functional Y-system relations [38] or integral TBA equations [39, 40, 41] that
are expected to capture the full spectrum with all finite-size contributions. Schematically,

the TBA equations have the following form:
log Vs () = @ +Z/de“ 1, 0) 10g(1 + Yary (v)) (3.1)

where Y,s(u) are the unknown functions while K% and ®,, are known explicitly. The
indices (a, s) of the Y-functions belong to a T-shaped domain of the integer lattice. Once
these equations are solved the energy can be extracted from the Y-functions. One of the
problems of this approach is that the explicit form of the equations requires case-by-case
study and is not known in general except for a few explicit examples such as Konishi
[42, 43]. They, however, allowed for a detailed numerical study of these simplest operators
[42, 44, 45, 46] and led to a prediction for string theory which was confirmed in [47, 48, 49].

While the TBA can be reliably applied only to a certain subset of states, the Y-system
equations are universal and have algebraic origins®. Their relation with the Hirota bilinear
equations allowed to get a set of extra conditions that impose on the Y-functions correct
analyticity properties dictated by TBA [50]. These developments led to a reduction of the
spectral equations to a finite set of nonlinear integral equations (FiNLIE) [51]. Finally,
an immense simplification of the spectral problem was achieved in [52] (see full details in
[53]) with the reformulation of TBA as Quantum Spectral Curve (QSC) equations. These
are a finite set of equations of Riemann-Hilbert type, which in contrast to FiNLIE have a
transparent analytic structure and are deeply connected with the PSU(2,2[4) symmetry
of the problem. The QSC equations provide perhaps the ultimate solution of the spectral
problem, and are expected to apply for arbitrary operators/string states. In addition,
in this framework the finite-zize corrections and the asymptotic part of the spectrum
are treated on equal footing. In fact, these equations capture not only the spectrum
but also the exact Q-functions of the model, which should correspond to wavefunctions
in Sklyanin’s separated variables [54, 194]. As 3-point correlators are closely related to
overlaps of wavefunctions, it is widely believed the QSC should play an important role in

computing various correlators as well. In the next subsection we will describe the QSC in

3However, analyticity properties of Y-functions may differ from state to state, thus it is still highly

difficult to single out the physical solutions for generic states
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more detail.

Integrability is also being developed for other observables, such as correlation functions
and scattering amplitudes though a complete and simple description for these quantities is
yet to be found (for recent advances see e.g. [55, 56], [57], [58]). In addition, following the
success of integrability in the most studied duality, other integrable cases of AdS/CFT have
been found. Some of them are deformations of the original theory [59, 203, 204, 60], while
others concern dualities in different number of dimensions, such as the by now well-studied
ABJM theory [61], or AdS3/CFTy (see the review [62]) where a lot of open questions still
remain. Let us also mention that one can consider not just the local operators but also
highly interesting boundary problems related e.g. to Wilson lines with insertions, where

integrability methods are powerful as well (see in particular [63, 64, 65]).

4 The Quantum Spectral Curve of AdS/CFT

The Quantum Spectral Curve equations are the central object discussed in this thesis. In

this section we will give an overview of the QSC framework.

4.1 Motivation and the XXX chain

Let us first discuss some general features of the construction and provide motivation for
it. As stated above, the QSC for states in some subsector can be derived from the Ther-
modynamic Bethe Anstaz, but in general stands as a conjecture motivated by compelling
arguments and a multitude of tests. Impressive confirmations of the correctness of the
proposed QSC equations were supplied already in the original papers [52, 53]. In partic-
ular it was shown that the QSC encodes the all-loop asymptotic Bethe ansatz equations
which have played a seminal role in the development of AdS/CFT integrability.

The name “Quantum Spectral Curve” suggests that the construction may be viewed as
a quantum version of the classical spectral curve. Indeed, as shown in [53], in the classical
limit it reduces to the classical AdS/CFT spectral curve. Moreover, in general it is known
at least for some examples (such as the XXX chain) that from the characteristic equation
defining the classical spectral curve one can obtain (promoting the spectral parameter and
the eigenvalue to operators) functional equations describing the corresponding quantum
integrable model (see e.g. [66] and references therein). These take the form of differ-

ence equations on Q-functions of the model, which can be usually written in the form of
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canonical QQ-relations. The set of these equations is thus sometimes called the quantum
spectral curve of the model. In AdS/CFT due to various complications this quantiza-
tion program has not been carried out directly, but the equations of the QSC are indeed
precisely the QQ-relations (supplemented with additional constraints), which is another
reason for giving the construction this name?.

The QQ-relations can be easily illustrated on the example of the SU(2) XXX Heisen-

berg quantum spin chain. This quantum integrable model is defined by the Hamiltonian

L
~ 1 ~
H=3Y (1 . Pk,kﬂ) (4.1)

k=1
acting on the tensor product of L copies of C?. Here Pk7k+1 is the permutation operator
acting on the product of the k-th and (k + 1)-th site (and k& = L + 1 is identified with
k =1). This system can be solved by Bethe ansatz techniques which lead to equations for

the Bethe roots u;,

. L N ;
<UJ+Z/2> I R (4.2)
k

uj —1/2 U~ up — i

In terms of solutions to these equations, the energy levels of the Hamiltonian are given by

Yoo
E = —_. 4.3
j;u?—i-l/él (43)

We see that the Bethe roots are key quantities which encode the spectrum of the Hamil-
tonian. It is convenient to assemble the roots into the Baxter Q-function Q1 (u) defined

as

N
Qu(u) = J[(u— ) (4.4)
k=1

Remarkably, the Bethe ansatz equations (4.2) can be obtained from a simple functional
equation on @1(u). Namely, we require that there exists another polynomial Q2(u) such

that
Q1(u+1/2)Qo(u —i/2) — Q1(u —i/2)Qo(u +i/2) = ul . (4.5)

This equation is known as the QQ-relation for this simple model. Now let us instead start
from this QQ-relation and define the parameters uy as zeros of Q1(u). Then using (4.5)
evaluated at u = u; +1/2 and u = uj —i/2 we see that Q2 drops out and we find

<W>L _ Qi+

uj—i/2 Qu(u; — 1)

4A quantization of the classical curve in one or another sense also arises in other contexts, e.g. in

(4.6)

relation to topological recursion in matrix models [67, 68].
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which are precisely the Bethe equations (4.2)! Thus solely from the QQ-relation (supple-
mented by the condition that @1, Q2 are polynomials) we have obtained the key Bethe
ansatz equations, which determine the spectrum via (4.3). In fact one can derive the
same Bethe equations for the roots of Q2(u). They are known as dual Bethe roots and
give an equivalent description of the same energy levels. To write the QQ-relation in a

more canonical form let us introduce

Qu2(u) =u®, Qp(u) =1 (4.7)

then we have

Q1(u+1/2)Q2(u —1i/2) — Q1(u —i/2)Q2(u +i/2) = Q12(u)Qp(u) . (4.8)

This is the standard bilinear form of the QQ-relation for models with SU(2) symmetry.
For integrable systems with higher rank symmetries one introduces more Q-functions,
which for spin chains encode Bethe roots on different levels of the nested Bethe ansatz.
The QQ-relations are then bilinear equations similar to those above, and their structure

is dictated by the symmetry group.

4.2 The QSC for gauge/string duality: equations and analyticity

As the spectral problem in AdS/CFT is expected to give rise to a quantum integrable
system, we should also have a set of Q-functions satisfying the canonical QQ-relations
based on PSU(2,2[4) symmetry. In general the Q-system of N' = 4 SYM is composed

of 28 Q-functions. They are labelled as Qa, .. where k& and n range from 1 to

kb1 b
4, and each of the indices a;,b; takes values from 1 to 4 as well. In other words, we
have Q-functions with up to eight indices in total, some examples being Qu,p,, Qayas(0>
Qajazasaalbibo- Lhe indices a; are often called “bosonic” while b; are called “fermionic”.

The Q-functions are moreover antisymmetric in all the a indices and in all the b indices.

In this notation the QQ-relations have the following form:

QA\IQAab\I = Q—‘A_a\IQZbU - sz\IQZa\I (49)
QAIIQAIHJ = Qj&uiQZlI‘j - Qj4_|1jQZ|I¢ (4.10)
QuaiQuari = QL\UQZU - Qz\leam (4.11)

5The formula for the energy (4.3) is an extra input which supplements the QQ-relation in this case,
but there are many models, including AdS/CFT, where such extra information is not needed, instead one

specifies how the energy is encoded in the asymptotics of Q-functions.
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Here A and I stand for some sets of indices. We see that the SU(2) QQ-relation (4.8)
is just a particular case of (4.9) with A =1 =0, a =1, b = 2. The Q-functions can be
neatly assembled into a Hasse diagram (see [53] and references therein) where each node

corresponds to a Q-function and each face with four vertices corresponds to a QQ-relation,

see Fig. 4.2.

Qoo

- ’

’

; P e - |

Qo0 Qi

e D S

Figure 1: A part of the Hasse diagram describing the Q-system for the PSU(2,2|4) group.
Each black dashed link corresponds to adding a “bosonic” index, and each blue dotted
link to adding a “fermionic” index. Rectangular facets in the diagram correspond to QQ-
relations, e.g. the facet containing Qgjg, Q1)9, @20 and Qq2)p gives rise to the QQ-relation
(4.8). The part of the diagram shown here corresponds to an SU(2|2) subgroup inside the

whole symmetry group.

For spin chains the QQ-relations together with requiring polynomiality of the Q-
functions essentially lead to the solution of the model. However the main complication in
the AdS/CFT integrable system is that the Q-functions are not polynomials, instead they
have a complicated analytic structure with branch points whose position depends on the
't Hooft coupling. However we still require the Q-functions to be free of any singularities
except these branch points. The branch points are inherited from the dispersion relation
of the excitations, which is written in terms of the Zhukovsky variable x(u) defined by

el (4.12)
T g

where we take the solution with |z| > 1 and we introduced

VA

s

g (4.13)
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where X is the 't Hooft coupling. Then using also the notation
frf=futif2), 149 = flu+ia/2) (4.14)

we can parameterize the energy and momentum of excitations as
+
, T 1 1
e?P=— E=2ig(———] . 4.15
- g <x+ ) (4.15)

x

We see that as functions of the spectral parameter u, the energy and momentum have
branch points at the ends of the cut [-2¢g 4 i/2,2¢ £ ¢/2]. Similar branch cuts are also
present in the S-matrix of the theory and eventually appear in the Q-functions. In the
limit when A is small the system reduces to the usual psu(2,2|4) Heisenberg spin chain.

Because of the branch points, the QQ-relations should be supplemented by extra an-
alyticity conditions which are the key element of the construction. Let us descrbe all the
QSC equations in detail (we also refer the reader to [53] where the QSC is covered in full
depth).

) ——" TR B —_— -

Figure 2: P, and Q; have one cut on the real axis in the representations with short and

long cuts respectively. The ellipse shows the region of convergence of the series (4.19)

Importantly, the algebraic relations between the Q-functions allow one to choose a
much smaller subset, which will be complete in the sense that the rest of Q-functions can
be generated from the selected ones algebraically. A convenient choice for such a subset
consists of 444 functions P, (u) and Q;(u) (a,i =1,...,4). One can say that P, describe
the S° degrees of freedom whereas Q; correspond to the AdSs part. In the notation of
(4.9) they correspond to P, = Qaps Qi = Qpi- A particularly nice property of P’s is
that they have only two branch points at +2g when they are connected by a “short” cut
[—29;2g] (see Fig. 4.2). This means that there are more branch points on the next sheet,
but for this choice of the cut they do not appear on the first sheet. As most Q-functions
have infinitely many cuts, the fact that on some Riemann sheet the P, have only one cut

is far from trivial and can be viewed as somewhat miraculous. Very similarly Q’s have
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only two branch point on the main sheet if the cut is taken to go through infinity. In a
sense this reflects the non-compactness of the AdSs part of the space.

Whereas the coupling determines the position of the branch points, the quantum num-
bers of the state are specified through the large u asymptotics of Q-functions. The P,
encode the compact bosonic subgroup SO(6) quantum numbers (J1, Ja2, J3), while Q; gives

the SO(4,2) charges (A, S1,.52), which include the conformal dimension of the state A.

Explicitly
P, ~ Agu Mo, Q; ~ BiuMli=l, PO~ A% Ma1l Qi o Biy~Mi (4.16)
where
Ma:{Jl—l-JQ—Jg,—l-Q?J1—J2+J37—J1+J2+J3+27—J1—J2—J3} @I
2 2 2 2
Mi:{A—512—52+2’A+S21+527—A—Sl2+52+2’—A+§1—SQ} w1s)

Note that often the P, are easier to deal with, as they can be expressed as a series in

the Zhukovsky variable z(u),

Po(u)= Y o (4.19)

" (u)

This series is convergent everywhere on the upper sheet and also in an elliptic region
around the cut on the next sheet (see Fig. 4.2). A similar parametrization for Q, will not
cover even the upper sheet. Fortunately, in the whole set of 28 Q-functions there are other
4 functions with one single cut, which are denoted as P®(u), a = 1,...,4. Together with
P,(u) they also form a complete set of Q-functions. In particular, one can reconstruct
Q; from them. The procedure for this, which will be important in many applications

discussed below, is the following:

e Iind a set of 16 functions Q,;, satisfying
Qufi(u + §) = Qujiu — §) = —Pa(w)P’(u) Qui(u + §) - (4.20)

Note that this is a 4-th order finite difference equation, which entangles all Q,;
with fixed i. Different values of ¢ label the 4 linearly independent solutions of this
equation. One could also equivalently use Qpj;(u — %) in place of Qp;(u + %) in the

r.h.s., due to the constraint [53]
P,P"=0. (4.21)

Importantly, we also need to choose the solutions of (4.20) to be analytic in the
upper half plane. In fact for all Q-functions one can ensure that they only have cuts

in the lower half-plane.
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e The matrix Q,); can then be used to pass to Q; from P*’s,
Qi(u) = —P(u) Qq)i(u+1i/2) . (4.22)

The equations (4.20) and (4.22) are simply two of the QQ-relations as explained in

[53]. Let us notice that combining this equation with (4.20) we find a neat relation
Qaji(u +1/2) = Qaji(u — +i/2) = Pa(u)Qi(u) (4.23)

which is also one of the usual QQ-relations.

We also introduce a matrix Q%% such that Q4 Q

alj = —5; and use it to define Q’s

with an upper index:

Q'(w) = +Pu(u) Q" (u+i/2). (4.24)

Note that since Qg);(u) is analytic in the upper-half-plane we can also analytically

continue these relations around the branch point at u = 2g to get

Qi(u) = —P%(u) Qup;(u+1/2) (4.25)

Q'(u) = +Pa(u) Q" (u+i/2) (4.26)
where the tilde denotes analytic continuation to the next sheet.

Since Q; can now be recovered from P, and P it is not surprising that actually all
information we needed, in particular all the charges (including those in AdS5), are encoded

in P’s alone, through

) ) (Mg, — M,
P, ~ Aau_M“, P® ~ AaUMa_l, AaoAaO - H]( (INO J~) ,
Hb¢a0 (Mao — M)

(4.27)

where M; and M, are defined in (4.17), (4.18) and there is no summation over ag in Lh.s.
In particular, one can extract A from the last equation.

@" of the expansion of P?(u) need

The coefficients ¢, , and corresponding coefficients ¢
to be found. The constraint (4.21) fixes some of them (for example, we can use it to fix all
¢1.n). The condition (4.27) gives the leading coefficients Ca.1,- The remaining coeflicients
should be fixed from the analyticity constraints on P’s as prescribed by QSC. Let us

describe these constraints. The analytic continuation of P, to the second sheet, which we

denote by P,, in terms of our ansatz (4.19) becomes simply

P,(u) = Z Cant"(u) . (4.28)
n=Ma,
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Figure 3: pgqp is periodic as a function with long cuts, and w;; as a function with short

cuts.

According to [53] this analytic continuation can be written in terms of auxiliary functions

tap(u) via

Po(u) = pap(w)P’ | P(u) = u (u)Py(u) (4.29)

where f45(u) is an antisymmetric matrix with unit Pfaffian, i-periodic as a function with

long cuts, with the discontinuity fixed in terms of P,
frap (1) — pap(v) = PPy — P Py . (4.30)

The matrix u® with upper indices is the inverse matrix to jiqp. Let us also note that if we
define p’s as functions with short cuts, we would have instead of i-periodicity the following
condition:

fiab(u) = pap(u + 7) (4.31)

Note also that pi,; are not themselves Q-functions.®

At this stage one can already present a closed system of equations which allow to fix
the energy A. In fact the equations (4.29), (4.30), (4.31) together with the requirement
P?P, = 0 are already constraining enough to fix the spectrum [52]. One should only
supplement them with asymptotics of the P’s from (4.16), the relations (4.27) and the

asymptotics of p’s which e.g. in the si(2) subsector with Jo = Sy = 0 take the form

(12, p13, f1a, H23, H24, ,u34) ~ (UA_J, UAHa UA7 UA, UA_l, UA+J) . (4-32)

Finally we also require that P’s and p’s should have no singularities apart from the branch
points. This formulation, which is known as the Pu system, does not use the Q; functions
at all.

The Pu formulation of the QSC is certainly powerful and has led to many new results

for the spectrum. However, we found that in many cases it is much more advantageous

5The matrix jiap can be interpreted as a rotation which transforms the Q-functions analytic in the

upper half plane into Q-functions analytic in the lower half-plane, see [53] for details.
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to close the analyticity conditions at the level of Q;, which obey very similar equations.
The rule is quite simple — one has to interchange short and long cuts. That is, we have to

introduce an i-periodic with short cuts function w;;(u) such that
Qi=w;Q , Q=uQ; , &ij—w;=QQ;—QQ;. (4.33)

with Pf w = 1. At u — +o0 the set of w;; becomes a constant matrix. These equations
represent another equivalent formulation of the QSC, known as the Qw system.
One can also relate p’s and w’s with the help of Q-functions with four indices Qqs;

defined as a determinant,

Qai Qa j
Quavlij = | |j (4.34)
Quli Qu|j
Then we have
1 g
e
Hab = 2Qab|ijw . (4.35)

Let us finally note that after the formulation of the original QSC in [52, 53], it was
understood in [13] that one can avoid computing the auxiliary functions p and w altogether.
The equations can be closed using Q-functions only”, and e.g. in the sl(2) sector it is

enough to impose
Q1 (u) = const - Q(—u) . (4.36)

In addition to being conceptually important, this simplification increases the efficiency of
the QSC even further, and in particular made it possible to reach the high-order results

presented in [13], [12], [11] which will be discussed below.

4.3 The QSC in the si(2) sector

The anomalous dimensions of twist operators in the sl(2) sector of N' = 4 SYM are
one of the most interesting parts of the theory’s spectrum, exhibiting rich structires in
perturbation theory and being related to multicolor QCD in some limits [69]. These
operators are built from sclaras and covariant derivatives, and they form the subsector

known as the sl(2) sector. Explicitly they have the form

O=Tr(2"7'D%2) +... (4.37)

"This has been checked explicitly in some subsectors but it should be possible to derive similar relations

for generic states.



4.4 The QSC in action: results obtained so far 31

where Z denotes one of the scalars of the theory®, D is a lightcone covariant derivative
and the dots stand for permutations. The number of derivatives S is called the spin of
the operator, while J is called the twist. Below we will study them intensively in various
regimes. We will focus on the symmetric case, corresponding to a distribution of the Bethe
roots which is invariant under v — —u.

For such states the QSC enjoys several simplifications. First, quantities with upper
and lower indices are now related to each other: indices can be raised or lowered using a

simple matrix

0 0 0 -1
0 0 1 0
X = ; (4.38)
0 -1 0 O
1 0 0 O
for example,
Q' =X"Q;, P* = Py, (4.39)

It is also easy to show that in this sector w;; should satisfy wis = we3 in addition to
antisymmetry, and similaraly 14 = po3. Also, the P and Q-functions have now definite
parity in w.

The matrix (q); can be normalized in this case such that it preserves the x® matrix,

xXQxQ" =1 (4.40)
and should have unit determinant [53],
(et Qui=1. (4.41)

4.4 The QSC in action: results obtained so far

Here we will summarize the applications of the QSC that have been explored so far.

One of the first impressive demonstrations of the efficiency of this approach was the
calculation of the Konishi anomalous dimension to 10 loops in perturbation theory [70],
supplemented later by more perturbative results in the sl(2) sector [70, 71]. The QSC
allows to prove general statements about the types of multiple zeta values that can appear
as coefficients in the expansion, establishing a curious link to deep algebra and perhaps
number theory. High-order weak coupling expansion for generic operators should also soon

be available.

8Written in terms of two real scalars as Z = &1 + D,
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The QSC was also proven to be powerful in application to expansion around BPS
configurations. A great simplification comes from the fact that P-functions typically
become suppressed in this case. In [15] the first two nontrivial orders in the small spin
expansion of twist operator anomalous dimensions were computed at all loops. The leading
order matches the known result encoded in ABA, while the next order is new and leads
to novel analytic predictions at strong coupling for Konishi-type operators and for the
BFKL intercept. The QSC also served as a guidance for the near-BPS solution of the
TBA describing the generalized cusp with arbitrary angle 6 [16].

The calculation of [15] led to a prescription in the QSC for analytic continuation of
anomalous dimensions away from integer spin values. The regime of non-integer spin was

2

further explored in [72] where the famous BFKL limit S — —1, g — 0, Jr5 = fixed was
studied. This limit has played an important role in explorations of integrability in N/ = 4
SYM and the theory develops close links to QCD in this case. In fact even long before the
formulation of AdS/CFT integrability was observed for 4d multicolor QCD. The leading
order anomalous dimension in this regime resums all orders of usual perturbation theory.
In [72] the leading order result was fully reproduced from integrability for the first time
and the LO solution of the QSC was constructed. The next challenge was to reach higher
orders in the expansion. It was overcome in [13] where the NNLO term was computed for
the first time, using an iterative analytic method which is also applicable in many other
situations.

Furthemore, an efficient numerical algorithm which allows to solve the QSC for any
state/operator was proposed in [14]. In particular it provided a check for the NNLO result
with at least 60 digits of precision.

In [12] it was proposed how to extend the QSC to calculation of the generalized cusp
anomalous dimension associated to a nonlocal operator (a cusped Wilson line). The ver-
satile methods developed before were adapted to this case, leading to many new results,
both analytical and numerical. Furthemore, it was understood in [11] how the singular
limit corresponding to the flat space ¢g potential is implemented in the QSC. This allowed
to deeply study this quantity at weak coupling, numerically and also in the double scaling
limit resumming all perturbative orders.

A setup similar to the cusped Wilson line was considered in [73] where deformations
of the QSC were described and in particular the QSC was formulated for y—deformed
N = 4 SYM. Extension of the QSC to other defomations (e.g. g-deformations) remains

to be carried out.
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The QSC has also been formulated for the ABJM duality [74] in which the ABA and
TBA/Y-system have been proposed earlier [75, 76, 77, 21, 78, 79]. The all-loop computa-
tion of [80] followed and led to the resolution of a longstanding problem by allowing to fix
an interpolation function h(A) that enters all integrability-based results in this model and
was previously studied intensively at weak and strong coupling [81, 82, 83, 84, 85, 86, 87].
The QSC was also applied to high-order weak coupling calculations [88]. Finally let us
mention that the QSC is also known for the Hubbard model which has several common

features with the AdS/CFT integrable system [89].
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Part 11

All-loop results at small spin

In this part we will describe the application of the QSC to studying the small spin near-
BPS limit in the sl(2) sector of N' = 4 SYM, based on the paper [15]. To preserve the
same notation as in that paper, in this part we chose to relabel the P, functions compared

to the discussion above, with

Piee = Py, Phere = Py, Phee = Py, Phere = Py . (4.42)

5 Introduction

The small spin limit for operators in the si(2) sector has attracted significant attention
since it is posible to obtain all-loop results in this regime. We will consider a two-cut
configuration with a symmetric distribution of Bethe roots, thus for physical states S is

even. For small spin, the scaling dimension of these operators can be written as
A=TJ+S+7(g), g=Vr(r) (5.1)
with the anomalous dimension v(g) given as an expansion
7(9) =1V (9)8 + 1P (9)5* + O(S?). (5.2)

The first term, 7(1)(9), is called the slope function. Remarkably, it can be found exactly
at any value of the coupling [90]

1 (g) = 47?227(?;9 : (5.3)

This expression was later derived from the asymptotic Bethe ansatz (ABA) equations in
two different ways [91, 92] and further studied and extended in [93, 94, 95, 96, 97]. This
quantity is protected from finite-size wrapping corrections and thus the ABA prediction
is exact. It is also not sensitive to the dressing phase of the ABA, which contributes only
starting from order S2.

Our key observation is that in the small S regime the Pu-system can be solved itera-
tively order by order in the spin. We will first solve it at leading order and reproduce the
slope function (5.3). Then we compute the coefficient of the S? term in the expansion, i.e.

the function v(?)(g) which we call the curvature function. For twist J = 2,3,4 we obtain
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closed exact expressions for it in the form of a double integral. Unlike the slope function,
72 (g) is affected by the dressing phase in the ABA and by wrapping corrections, all of
which are incorporated in the exact Pu-system.

Furthermore, we will use the strong coupling expansion of our result to find the value of
a new coefficient in the Konishi operator (i.e. Tr (DZZ 2)) anomalous dimension at strong

coupling. Our result for the Konishi dimension reads

2 3G+y 406G+

L 1/4
Akomshz =2 + )\1/4 )\3/4 )\5/4

(5.4)

We have also obtained two new terms in the strong coupling expansion of the BFKL

pomeron intercept,

2 1 1

. 1
Jo=2+ S(A)azg = _W_X+W+(6C3+2)F (5.5)

361 1 o511\ 1 1

where the new terms are in the second line. In addition we have checked our results against
available results in literature at weak and strong coupling, and found full agreement.
This part is organized as follows. We first write out some of the Pu system equations
more explicitly. In section 7 we demonstrate the usefulness of the QSC by rederiving
the exact slope function of N' = 4 found in [90]. In section 8 we push the calculation
further and find the exact expression for the next coefficient in the small spin expansion,
i.e. the curvature function. In sections 9 and 10 we discuss the weak and strong coupling
expansions of our result. We then use our results to calculate the previously unknown
three loop strong coupling coefficient of the Konishi anomalous dimension in subsection
10.3 and two new coefficients for the BFKL intercept at strong coupling in subsection 10.4.

We finish with conclusions.

6 Pu-system — an overview

The Pu-system, already discussed above, is a nonlinear system of functional equations for
a four-vector P,(u) and a 4 x 4 antisymmetric matrix pqp(u) depending on the spectral

parameter u. The functions p,p, are also constrained by the relations

friapss — paspios + piy = 1, (6.1)

pi4 = o3, (6.2)
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the first of which states that the Pfaffian of the matrix g is equal to 1. Let us also write

the equations (4.29) explicitly:

Py = —P3ui2 + Pojiiz — Prpg (6.3)
Py = —Pyurz +Popig — Pipoa (6.4)
P; = —Pypas + P3pig — P1usa (6.5)
P, = —Pyp1a + P3pog — Popsg . (6.6)

The above equations ensure that the branch points of P, and p4; are of the square root
type, i.e. I:’a =P, and ﬁab = Ugp-

Finally, we require that P, and u4, do not have any singularities except these branch
points?.

The quantum numbers and the energy of the state are encoded in the asymptotics of

the functions P, and pgp, at large real u. In the si(2) sector the relations read [52]

Pa ~ (Alu_‘]/Q, AQ’U,_J/Z_l, A3UJ/2, A4’U,J/2_1) (67)

(na2, p1s, paa, poa, psa) ~ (W77 BT u® w7 ut ) (6.8)

where J is the twist of the gauge theory operator, and A is its conformal dimension.
Lastly, the spin S of the operator is related [52] to the leading coefficients A, of the P,
functions (see (6.7)):

(745 =27 = 8%) (7= 5 - &)

Arda = 16iJ(J — 1) (6.9)
(I =5+22—A2) ((J +9)2 - A2
Azfls = 16iJ(J + 1) ‘ (6.10)

6.1 Symmetries

The Ppu-system enjoys a symmetry preserving all of its essential features. It has the
form of a linear transformation of P, and p,, which leaves the system (4.29)-(6.2) and
the asymptotics (6.7), (6.8) invariant. Indeed, consider a general linear transformation
P, = R,'P;, with a non-degenerate constant matrix R. In order to preserve the system

(4.29), p should at the same time be transformed as

W = —RuxR y. (6.11)

9For odd values of J the functions P, may have an additional branch point at infinity. However,
it should cancel in any product of two P,’s, and therefore it will not appear in any physically relevant

quantity (see [52], [53]). We will discuss some explicit examples in the text.
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Such a transformation also preserves the form of (4.30) if
RT\Rx = -1, (6.12)

which also automatically ensures antisymmetry of pq, and (6.1), (6.2). In general, this
transformation will spoil the asymptotics of P,. These asymptotics are ordered as |Ps| <

|P1| < |P4| < |P3|, which implies that the matrix R must have the following structure!?

)

* *x 0

0 = 0
R = ) (6.13)

* ok %k X

en}

* x 0 =%

The general form of R which satisfies (6.12) and does not spoil the asymptotics gener-
ates a 6-parametric transformation, which we will call a ~-transformation. The simplest

~y-transformation is the following rescaling:

P1—>OZP1 s P2—>6P2 s P3—>1/ﬁP3 s P4—>1/O¢P4 s (614)

Q 1
—MK13 5, H14 — H14 5, H24 — éum , W34 — —— 34 (6.15)
B o} af

pi2 — afpie , p13 —

with «, 8 being constants.

In all the solutions we consider in this part all functions P, turn out to be functions
of definite parity, so it makes sense to consider ~-transformations which preserve parity.
P; and P, always have opposite parity (as one can see from from (6.7)) and thus should
not mix under such transformations; the same is true about P3 and P4. Thus, depending

on parity of J the parity-preserving y-transformations are either

P3s = P3 +73P2, Py — Py + 2Py, (6.16)

H13 —> M13 + Y3p12, fo4 — Hho4 — Yo lh12, M34 — 34 + Y324 — Y2L13 — Y2Y3M12
for odd J or

P3 — P3 =+ 71P17 P4 — P4 — ’ylPQ, (617)

[14 = 14 — Y12, 34 — (34 + 21004 — Yipa2

for even J.

10This matrix would of course be lower triangular if we ordered P, by their asymptotics.



38

7 Exact slope function from the Pu-system

In this section we will find the solution of the Pu-system (4.29)-(6.2) corresponding to the
sl(2) sector operators at leading order in small S. Based on this solution we will compute

the slope function v (g) for any value of the coupling.

7.1 Solving the Pu-system in LO

The solution of the Pu-system is a little simpler for even J, because for odd J extra branch
points at infinity will appear in P, due to the asymptotics (6.7). Let us first consider the
even J case.

The description of the Pu-system above was done for physical operators. Our goal is to
take some peculiar limit when the (integer) number of covariant derivatives S goes to zero.
As we will see this requires some extension of the asymptotic requirement for p functions.
In this section we will be guided by principles of naturalness and simplicity to deduce these
modifications. The details of the prescription for the analytic continuation are discussed
in [15], and we do not cover them here for the sake of brevity. The prescription was later
understood to amount to allowing exponential asymptotics in one of the w;; functions (see
the part of the thesis discussing the numerical solution for more details).

We will start by finding pq,. Recalling that A = J + O(S5), from (6.9), (6.10) we
see that A1 A4 and AsAs are of order S for small S, so we can take the functions P,
to be of order v/S. This is a key simplification, because now (4.30) indicates that the
discontinuities of g, on the cut are small when S goes to zero. Thus at leading order
in S all pg, are just periodic entire functions without cuts. For power-like asymptotics
of pgp like in (6.8) the only possibility is that they are all constants. However, we found
that in this case there is only a trivial solution, i.e. P, can only be zero. The reason for
this is that for physical states S must be integer and thus cannot be arbitrarily small,
nevertheless, it is a sensible question how to define an analytical continuation from integer
values of S.1

Thus we have to relax the requirement of power-like behavior at infinity. The first

possibility is to allow for e?™*

asymptotics at u — +0o. We should, however, remember
about the constraints (6.1) and (6.2) which restrict our choice and the fact that we can

also use y-symmetry. Let us show that by allowing ps4 to have exponential behavior and

" Restricting the large positive S behavior one can achieve uniqueness of the continuation.
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setting it to peg4 = C'sinh(27u), with other u,, being constant, we arrive to the correct
result. This choice is dictated by our assumptions concerning the analytic continuation of
lap tO non-integer values of S, and this point is discussed in detail in [15]. It is also shown
therethat by using the v-transformation (described in section 6.1) and the constraint (6.1)
we can set the constant C to 1 and also p19 =1, p13 =0, pua = —1, pzq = 0.

Having fixed all u’s at leading order we get the following system of equations!? for Py:

P, = —P3+ Py, (7.1)
P, = —P, — Py — Py sinh(27u), (7.2)
P = —P3, (7.3)
P, = +P4 + P3sinh(27u). (7.4)

Recalling that the functions P, only have a single short cut, we see from these equations
that f’a also have only this cut! This means that we can take all P, to be infinite Laurent
series in the Zhukovsky variable z(u), which rationalizes the Riemann surface with two

sheets and one cut. It is defined as
ot - =2 (7.5)

where we pick the solution with a short cut, i.e.

x(u):;<g+\/F\/F> . (7.6)

Solving the equation (7.3) with the asymptotics (6.7) we find

J/2—1

Ps=c¢ (x_‘]/2 - .TU+J/2> + Z Ck (J?_k — xk) (7.7)

k=1
where € and ¢, are constants. Now it is useful to rewrite the equation for Py (i.e. (7.1))
in the form P; — P; = —P3, and we see that due to asymptotics of P; both sides of this
equation must have a gap in the powers of z from z~ /2! to 2//2~1. This means that all

coefficients ¢y in (7.7) must vanish and we find
P, =ex /% (7.8)

so we are left with one unfixed constant e (we expect it to be proportional to v/S).

21n this section we only consider the leading order of P’s at small S, so the equations involving them
are understood to hold at leading order in S. In section 4 we will study the next-to-leading order and

elaborate the notation for contributions of different orders.
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Thus the equations (7.2) and (7.4) become

P, +Py, = —P,—cx 7/ ?sinh(2mu) , (7.9)

P,— Py = e/ —27/?)sinh(27u) . (7.10)

We will first solve the second equation. It is useful to introduce operations [f(x)]+ and
[f(z)]—, which take parts of Laurent series with positive and negative powers of x respec-

tively. Taking into account that

sinh(27u) Z Topy 12?1 (7.11)

n=—0oo

where I, = I;,(47g) is the modified Bessel function of the first kind, we can write sinh(27u)

as
sinh(27u) = sinhy +sinh_, (7.12)
where explicitly
o0
sinh; = [sinh(27u)]4 = Zlgn,lx%_l (7.13)
n=1
sinh_ = [sinh(27u)] ZIQn pr 2t (7.14)
In this notation the general solution of Eq. (7.10) with asymptotics at infinity Py ~ u” /2-1
can be written as
P, = e(z’/? — 277/?) sinh_ +Q j/2-1(u), (7.15)

where @ j/o_; is a polynomial of degree J/2 —1 in u. The polynomial @ ;/»_; can be fixed
from the equation (7.9) for Py. Indeed, from the asymptotics of Py we see that the lhs of
(7.9) does not have powers of = from —J/2 + 1 to J/2 — 1. This fixes

J/2

QJ/Q,l(x) = —GZIQk_l (méf%ﬂ + x7%+2k71> . (7.16)
k=1

Once Q /21 is found, we set Py to be the part of the right hand side of (7.9) with powers
of z less than —J/2, which gives

00
P2 = —61‘+J/2 Z I2n_1$1—2n. (717)
n:%—s—l

Thus (for even J) we have uniquely fixed all P, with the only unknown parameter being
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€. We summarize the solution below:

iz =1, pi3 =0, prg = —1, pog = sinh(27u), psq =0, (7.18)
P, =ex '/? (7.19)
Py = —cxt//? i Iop 1zt (7.20)
n=J/2+1
Ps=c¢ (ZE_J/2 - CL‘+J/2) (7.21)
J/2

Py=c¢ (a;‘]/2 — :1:7J/2> sinh_ —e Z Io,—1 (wéf%ﬂ + xiéwnfl) . (7.22)

In the next section we fix the remaining parameter € of the solution in terms of S and find
the energy, but now let us briefly discuss the solution for odd J. As we mentioned above
the main difference is that the functions P, now have a branch point at v = oo, which is
dictated by the asymptotics (6.7). In addition, the parity of g is different according to
the asymptotics of these functions (6.8). The solution is still very similar to the even J

case and is discussed in detail in [15]. Let us present the result here:

12 = 1, H13 = 0, 14 = 0, H24 = COSh(QWU), H34 = 1 (7.23)
P, = ex /2 (7.24)
_J+1
2
Py =—cx’? Y Iya®, (7.25)
k=—o00
P = —ex’/?, (7.26)
J—1
2
Py =cx 7’/ %cosh_ —ex™/? Z Iopa®k — elox™7/2. (7.27)
k=1

Note that now P, include half-integer powers of x.

Fixing the global charges of the solution. To fix our solution completely we have
to find the value of € and find the energy in terms of the spin using (6.9) and (6.10). For
this we first extract the coefficients A, of the leading terms for all P, (see the asymptotics

(6.7)). From (7.19)-(7.22) or (7.24)-(7.27) we get

Ay = g7/, (7.28)
Ay = —g? el s, (7.29)
Az = —g 7%, (7.30)
Ay =—g 7P ey . (7.31)
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Expanding (6.9), (6.10) at small S with A = J+ S+, where v = O(S), we find at linear

order

v =i(A1A4 — A2 A3) (7.32)
S = i(A1A4 + A2A3) . (733)

Plugging in the coefficients (7.28)-(7.31) we find that

2miS
c= | J[J(\f)\)r (7.34)

and we obtain the anomalous dimension at leading order,

VA (V) 2
v = 7JIJ(\/X) S+ O(S57), (7.35)

which is precisely the slope function of Basso [90].
In summary, we have shown how the Pu-system correctly computes the energy at linear

order in S. In section 8 we will compute the next, S term in the anomalous dimension.

8 Exact curvature function

In this section we use the Pu-system to compute the S? correction to the anomalous
dimension, which we call the curvature function () (g). First we will discuss the case
J = 2 in detail and then describe the modifications of the solution for the cases J = 3 and

J = 4, more details on which can be found in [15].

8.1 [Iterative procedure for the small S expansion of the Pu-system

For convenience let us repeat the leading order solution of the Pu-system for J = 2 (see

(7.18)-(7.22))

Pgo) = e1 , Pgo) = +el; — ex[sinh(27u)]- (8.1)
x
1 1
Pgo) =€ <x - x) , PZ(LO) = —2el) —¢ (ac — :v) [sinh(27u)]_. (8.2)

Here € is a small parameter, proportional to v/S (see (7.34)), and by P((IO) we denote the
P, functions at leading order in e.
The key observation is that the Pu-system can be solved iteratively order by order in

€. Let us write P, and p4 as an expansion in this small parameter:

P, =P +PW P2 4 (8.3)

a
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Hab = oy + by + bgy + - (8.4)
where PYY = O(e), P = O(e?), PP = O(€®), ..., and :u’((z(l)) = 0(e), ,ug)) =

O(e?), uﬁ) = O(e*), etc. This structure of the expansion is dictated by the equations
(4.29), (4.30) of the Pu-system (as we will soon see explicitly). Since the leading order P,
are of order €, equation (4.30) implies that the discontinuity of i, on the cut is of order
€2. Thus to find p4 in the next to leading order (NLO) we only need the functions P,
at leading order. After this, we can find the NLO correction to P, from equations (4.30).
This will be done below, and having thus the full solution of the Pu-system at NLO we

will find the energy at order S2.

8.2 Correcting fig. - -

In this subsection we find the NLO corrections M,(;,) to pgp. As follows from (4.30) and
(4.31), they should satisfy the equation

p i) — ) () = POPO — pOPO) (8.5)

in which the right hand is known explicitly. For that reason let us define an apparatus for

solving equations of this type, i.e.

flu+1i) = f(u) = h(u). (8.6)

More precisely, we consider functions f(u) and h(u) with one cut in u between —2g and
2g, and no poles. Such functions can be represented as infinite Laurent series in the
Zhukovsky variable z(u), and we additionally restrict ourselves to the case where for h(u)
this expansion does not have a constant term!s.

One can see that the general solution of (8.6) has a form of a particular solution plus
an arbitrary i-periodic function, which we also call a zero mode. First we will describe the
construction of the particular solution and later deal with zero modes. The linear operator
which gives the particular solution of (8.6) described below will be denoted as 3.

Notice that given the explicit form (8.2) of P((lo), the right hand side of (8.5) can be

represented in a form

a(x) sinh(27u) + B(x), (8.7)

13The r.h.s. of (8.5) has the form F(u) — F(u) and therefore indeed does not have a constant term in

its expansion, as the constant in F would cancel in the difference F(u) — F(u).
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where a(x), f(x) are power series in x growing at infinity not faster than polynomially.

Thus for such « and S we define
Y - [a(z) sinh(27mu) + B(x)] = sinh(27u)X - a(x) + 2 - f(x). (8.8)

We also define ¥ - 27" =T" - 27" for n > 0, where the integral operator I defined as

29 du Ili(u—v) +1]
' h = — Oy log —————h(v). .
(- 1) () fzg T s I (8.9)
This requirement is consistent because of the following relation 4
1 [% hv) ~
I h ) — (I - h =—— dv="h_(u)—h . 1
(I h) (wd) = (T h) (0) = =5 P (u) = hy(u) (8.10)

What is left is to define ¥ on positive powers of . We do it by requiring

]' a al — ./

52 S+ 1/2% = pl(u) (8.11)
where p/,(u) is a polynomial in u of degree a + 1, which is a solution of

Pl i)~ pw) = 5 (2 + 1/a) (3.12)

and satisfies the following additional properties: p/(0) = 0 for odd a and p/,(i/2) = 0 for
even a. One can check that this definition is consistent and defines of p[,(u) uniquely.
From this definition of ¥ one can see that the result of its action on expressions of
the form (8.7) can again be represented in this form - what is important for us is that no
exponential functions other than sinh(27u) appear in the result.
As an example we present the particular solution for two components of i, (below we

will argue that 712 and 713 can be chosen to be zero, see (8.17))

1
72

,u%) — T3 =% <P1f’3 - ng’l) =% <x2 - > = (I 2% + ph(u))(8.13)
u%) — T2 =2 (Plf’z - sz’1> =
= —¢ [2]11“’ - — sinh(27u) TV - 22 — T <sinh_ <$2 + ;))} : (8.14)
Now let us apply ¥ defined above to (8.5), writing that its general solution is

iy =% (POPY — PP 4 1y, (8.15)

where the zero mode 7y, is an arbitrary i-periodic entire function, which can be written

similarly to the leading order as cj 44 cosh 2mu + ¢ o sinh 27w + €3 4p. Omitting a rather

MWe remind that f, and f_ stand for the part of the Laurent expansion with, respectively, positive
and negative powers of z, while f is the analytic continuation around the branch point at v = 2g (which

amounts to replacing z — 1)
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technical argument (discussed in detail in [15]) we find that the final form of the zero mode

in (8.15) is

m2 =0, m3=0, m4 =0, (8.16)

T4 = 01724 cosh 27ru, T34 = 0. (817)

In this way, using the particular solution given by ¥ and the form of zero modes (8.17)
we have computed all the functions MS;)- The details and the results of the calculation can

be found in appendix A.2.1.

8.3 Correcting P,...

In the previous section we found the NLO part of pg,. Now, according to the iterative
procedure described in section 8.1, we can use it to write a closed system of equations for

pY. Indeed, expanding the system (6.6) to NLO we get

B _ P _ _pM 4 (8.18)
P+ P = —PY — P ginh(27u) + o, (8.19)
I (8.20)
P — P = PV sinh(2mu) + 14, (8.21)
where the free terms are given by
ro = —p PO (8.22)
Notice that r, does not change if we add a matrix proportional to Pgo)f),(f’) — Pgo)f),(zo) to
,ugj), due to the relations
P.x?P, =0, P,x®P, = 0, (8.23)

which follow from the Ppu-system equations. In particular we can use this property to

replace u(%) in (8.22) by ,u(%) +1 (PEP’P})O) - PI()O)P((ZO)). This will be convenient for us,

since in expressions for u((l? in terms of p, and I' (see (8.13), (8.14) and appendix A.2.1)

this change amounts to simply replacing IV by a convolution with a more symmetric kernel:

I' - T, (8.24)

2 v (u—v
(T-h) (u) = 7{ ’ %au log FF[[_E = 3)++1]1] h(w), (8.25)

—2g
while at the same time replacing

Py (u) = pa(u), (8.26)
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palt) = pl.(u) + % ((u) + 2 (u)) . (8.27)

Having made this comment, we will now develop tools for solving the equations (8.18)
- (8.21). Notice first that if we solve them in the order (8.20), (8.18), (8.21), (8.19),
substituting into each subsequent equation the solution of all the previous, then at each

step the problem we have to solve has a form

f+f=ho f-f=h, (8.28)

where h is known, f is unknown and both the right hand side and the left hand side are

power series in x. It is obvious that equations (8.28) have solutions only for i such that

h = h and h = —h respectively. On the class of such h a particular solution for f can be
written as
f=[_+[ho/2=H -h = f+f=h (8.29)
and
f==[h_-=K-h = f—f=h, (8.30)

where [h]p is the constant part of Laurent expansion of A (it does not appear in the second
equation, because h such that h = —h does not have a constant part). The operators K

and H introduced here can be also defined by their integral kernels

1 u—2g/ 2g 1
H(uv) = 1 Vu gVvu+ 29

— d 8.31
4T /v — 2g/V + 29 u — v Y ( )
1 1
K(U,U) = +Tmu _ UdU. (832)

which are equivalent to (8.29),(8.30) of the classes of h such that h = h and h = —h
respectively'®. The particular solution f = H - h of the equation f + f = h is unique in
the class of functions f decaying at infinity, and the solution f = K - h of f —f=his
unique for non-growing f. In all other cases the general solution will include zero modes,

which, in our case are fixed by asymptotics of P,.

15We denote e.g. K -h = ffgg K (u,v)h(v)dv where the integral is around the branch cut between —2g

and 2g.
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Now it is easy to write the explicit solution of the equations (8.18)-(8.21):

P = H.rs, (8.33)

P — %Pg}) +K- (m - ;7“3) , (8.34)

PV = K. (_; (ng) _ PE,})) sinh(2mu) 4 243 S;nh(%“)> — 25, (8.35)

P = H. (—; (Pff) + sinh(2ru) P + PV +sinh(2m)13§”) + (8.36)
+7"4 + sinh(Q;ru)n + 27“2) )

where § is a constant fixed uniquely by requiring O(1/u?) asymptotics for Po. This asymp-
totic also sets the last coefficient c; 24 left in w12 to zero. Thus in the class of functions

with asymptotics (6.7) the solution for pg, and P, is unique up to a y-transformation.

8.4 Result for J =2

In order to obtain the result for the anomalous dimension, we again use the formulas (6.9),
(6.10) which connect the leading coefficients of P, with A, J and S. After plugging in
A; which we find from our solution, we obtain the result for the S? correction to the

anomalous dimension:

@ _ 7r f{ dug f{ duy |8} (I + I3) (2 — (2 + 1) y) (8.37)
Tr=2 2 — I3 2w | 2mi (23 — ) y? '
+Eﬁsh“fsh‘qi (9323/2 — 1) (11 (zy? + 1) — I322(y? + 1))
z? (22 — 1) y?
4(sh? )2z? (y* — 1) (L1(22% — 1) — I3)
(2? = 1) y?
SI%shlix (2 (1:3 - 95) (y3 + y) — 222 (y4 +y2 + 1) + oyt 4+ 4y? + 1)
+
(z* —1)y?
8(I — I3) ish? z(z — y)(zy — 1)
(@2 —1)y
A = I3)(sh?)? (2 + 1)y T (iug — duy + 1)

1
—— 0, 1
471 Oulog

(2 —1) (1 — duy + duy)

Here the integration contour goes around the branch cut at (—2g,2g). We also denote
sh? = sinh_(z), shY = sinh_(y) (recall that sinh_ was defined in (7.14)). This is our
final result for the curvature function at any coupling.

It is interesting to note that our result contains the combination log % which

plays an essential role in the construction of the BES dressing phase. We will use this
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identification in section 10.3 to compute the integral in (8.37) numerically with high pre-
cision.
In the next subsections we will describe generalizations of the J = 2 result to operators

with J =3 and J = 4.

8.5 Results for higher J

Solving the Pu-system for J = 3,4 is similar to the J = 2 case described above, except for
several technical complications (mainly that P, have a branch point at infinity for J = 3).
For the sake of clarity, let us present only the final results here (full details can be found

in [15]). For J = 3 we get

duy [ duy, . 1 2 (2% — 1) y(ch” )2(Iy — Iy)
12y = 7{ P i 3 ( )3 2 — (8.38)
2ri ) 2mi g2 (Is — Iy) 3 (y? — 1)
_4Ch‘fchgi (a:3y3 — 1) (ng5y3 + Iy — Iy2? (xy3 + 1)) N
s (22 — 1)y
(y?> — 1)(ch? )2 I, ((x8 +1) (2y4 + 3y + 2) — (25 4 2?) (y2 + 1)2>
i 3 (22 — 1)y N
(4P~ D) (@ + Dy (8 +a?) (1)
zd (22 = 1)y
g 2@ —y)(zy — DF(z,y)
- 23 (22 = 1)y
By - 1)z —y)(ay — Db (2,y)
zd (22 — 1)y
1 I(iug — iuy + 1)
1w 8 T )

with
Fi=5L(0%+1) (" +y)+ (2®+2) (y* +y*+1) —2° (y* + 1)) + Liz®y®  (8.39)

B=0L (% +2*+2®+1)y+22° (v’ +1)) + It (2° + ) (y* + 1) (8.40)

We defined ch” = cosh_(x) and ch” = cosh_(y), where cosh_(z) is the part of the Laurent

expansion of cosh (¢g(x 4+ 1/x)) vanishing at infinity, i.e.
oo
cosh_(z) = Iopz 2. (8.41)
k=1

The result for J = 4 is given in appendix A.3.
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9 Waeak coupling tests and predictions

Our results for the curvature function v?)(g) at J = 2,3,4 (Egs. (8.37), (8.38), (A.17))
are straightforward to expand at weak coupling. We give expansions to 10 loops for J = 2
in appendix A.4 (more data can be found in [15]). Let us start with the J = 2 case, for

which we found

3272
W2, = —8¢%G + 4" (140(;, - C‘”’) + ¢® (2007%¢5 — 2016¢7) (9.1)
1675¢s  887%¢s  929672(y
8

- - - 92772
+ g ( 15 9 3 + 27720(9y

20878 16076
+ gl ( Oig;?’ n 6027; S5 4 14474¢; + 4544072Co — 377520411> .

Remarkably, at each loop order all contributions have the same transcendentality, and
only simple zeta values (i.e. () appear. This is also true for the J = 3 and J = 4 cases.

We can check this expansion against known results, as the anomalous dimensions of
twist two operators have been computed up to five loops for arbitrary spin [98, 99, 100,
101, 102, 103, 104, 105] (see also [106] and the review [69]). To three loops they can be
found solely from the ABA equations, while at four and five loops wrapping corrections
need to be taken into account which was done in [104, 105] by utilizing generalized Luscher
formulas. All these results are given by linear combinations of harmonic sums

N . n N . n
Sa(N) = Z M? Sar,as,a3,...(IN) = Z M&lz,as,m(n) (9.2)

|al la1]
n=1 n n=1 n

with argument equal to the spin S. To make a comparison with our results we expanded
these predictions in the S — 0 limit. For this lengthy computation, as well as to simplify
the final expressions, we used the Mathematica packages HPL [107], the package [108]
provided with the paper [109], and the HarmonicSums package [110].

In this way we have confirmed the coefficients in (9.1) to four loops. Let us note that
expansion of harmonic sums leads to multiple zeta values (MZVs), which however cancel
in the final result leaving only (.

Importantly, the part of the four-loop coefficient which comes from the wrapping cor-
rection is essential for matching with our result. This is a strong confirmation that our
calculation based on the Pu-system is valid beyond the ABA level. Additional evidence
that our result incorporates all finite-size effects is found at strong coupling (see section

10).
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For operators with J = 3, our prediction at weak coupling is

47?2 2
vﬁgzz-af@+g4025— 3®>+g <4;3+82@—2&O (9.3)
AnS¢s  Anies
8 —_— — J—
+ g < e = 528§9>+

The known results for any spin in this case are available at up to six loops, including the
wrapping correction which first appears at five loops [111, 112, 113]. Expanding them at

S — 0 we have checked our calculation to four loops.

~05¢
—06;
07t
—08;
—09; _____________________________________________ .
“10f

-11F

_1-2: T T T T [ T R Y N S | n
2 3 4 5 6 7 8 9

Figure 4: One-loop energy at J =4 from the Bethe ansatz. The dashed line shows
the result from the Pp-system for the coefficient of S? in the 1-loop energy at J = 4, i.e.
—&543 + 47?%5 — %1~ —0.931 (see (9.4)). The dots show the Bethe ansatz prediction
(9.5) expanded to orders 1/J3,1/J4 ...,1/J8 (the order of expansion n corresponds to

the horizontal axis), and it appears to converge to the Pu-system result.

Let us now discuss the J = 4 case. The expansion of our result reads:

@ _ of 14¢G | 48¢G  252¢;
7]:4 - g ( + 7T2 7T4 (94)
A 227r2g3 474c5 ~ 8568(7 | 8316¢
g 5 572 4
L 327r4<3 3656772C5 _ 56568¢7 N 196128¢y  185328¢n
9\ 875 175 25 52 p
L _4n¢ 687'¢s 55312m¢y N 1113396¢y  3763188¢1
g 175 75 125 25 52
3513510
T 4C13> +
T

Unlike for the J = 2 and J = 3 cases, we could not find a closed expression for the energy

at any spin S in literature even at one loop, however there is another way to check our



51

result. One can expand the asymptotic Bethe ansatz equations at large J for fixed values
of S=2,4,6,... and then extract the coefficients in the expansion which are polynomial
in S. This was done in [93] (see appendix C there) where at one loop the expansion was
found up to order 1/.J5:
50 = (5 (D) e[ (e S e o
(9.5)

Now taking the part proportional to S? and substituting J = 4 one may expect to get a nu-
merical approximation to the 1-loop coefficient in our result (9.4), i.e. —% + % — %
To increase the precision we extended the expansion in (9.5) to order 1/.J%. Remarkably, in
this way we confirmed the 1-loop part of the Py prediction (9.4) with about 1% accuracy!
In Fig. 9 one can also see that the ABA result converges to our prediction when the order
of expansion in 1/J is being increased. Later on our analytic prediction for J = 4 was
confirmed in [114] where the curvature function at 1 loop was computed from the ABA
for any J.

Also, in contrast to J = 2 and J = 3 cases we see that negative powers of 7 appear
in (9.4) (although still all the contributions at a given loop order have the same transcen-
dentality). It would be interesting to understand why this happens from the gauge theory

perspective, especially since expansion of the leading S term (5.3) has the same structure

for all J,

8 2.2 39 4 4 256 6 .6
7((]1) _ _°Smg" ”29 + ) 9 +... (9.6)
JU+1)  JU12(J+2) " TJ 13 +2)(J +3)

The change of structure at J = 4 might be related to the fact that for J > 4 the ground
state anomalous dimension even at one loop is expected to be an irrational number for
integer S > 0 (see [115], [116]), and thus cannot be written as a linear combination of
harmonic sums with integer coefficients.

In the next section we will discuss tests and applications of our results at strong

coupling,.

10 Strong coupling tests and predictions

In this section we will present the strong coupling expansion of our results for the curvature
function, and link these results to anomalous dimensions of short operators at strong

coupling. We will also obtain new predictions for the BFKL pomeron intercept.
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10.1 Expansion of the curvature function for J = 2,3,4

To obtain the strong coupling expansion of our exact results for the curvature function, we
evaluated it numerically with high precision for a range of values of ¢ and then made a fit
to find the expansion coefficients. It would also be interesting to carry out the expansion
analytically, and we leave this for the future.

For numerical study it is convenient to write our exact expressions (8.37), (8.38), (A.17)
for v?)(g), which have the form

I'(tug — 9w,y + 1
= %dux%duyf(az,y)ﬁuw log Fgl — j—zu § (10.1)
@ y

where the integration goes around the branch cut between —2g and 2g, in a slightly
different way (we remind that we use notation x + % = “?” and y + % = %) Namely, by
changing the variables of integration to z,y and integrating by parts one can write the

result as

[(iug —iuy + 1)
dz ¢ dyF(z,y)] 10.2
f x?{ yF(z,y)log I(iuy —iuy + 1) (10.2)

where F(z,y) is some polynomial in the following variables: x, 1/x, y, 1/y, sh” and sh”
(for J = 3 it includes ch”, ch? instead of the sh_ functions). The integral in (10.2) is
over the unit circle. The advantage of this representation is that plugging in sh”, sh” as
series expansions (truncated to some large order), we see that it only remains to compute

integrals of the kind

_ 1
Crs j{ %a} y°® log L(iug z‘uy—i— ) (10.3)

I(iuy —iuy + 1)
These are nothing but the coefficients of the BES dressing phase [117, 118, 119, 33]. They

can be conveniently computed using the strong coupling expansion [117]

S [‘ﬂl(_ﬂ)nglng” (L= ()™ D (G —r+s - D)T (Jntr+s+1))

~ F(n—1I (3(-n—r+5+3))T (3(-n+r+s+5))

(10.4)

However this expansion is only asymptotic and does not converge. For fixed ¢ the terms

will start growing with n when n is greater than some value N, and we only summed

the terms up to n = N which gives the value of (), with very good precision for large
enough g.

Using this approach we computed the curvature function for a range of values of g

(typically we took 7 < g < 30) and then fitted the result as an expansion in 1/g. This

gave us only numerical values of the expansion coefficients, but in fact we found that with
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very high precision the coefficients are as follows. For J = 2
g 1 1 /3¢ 3 1 9(3 21
- — | =+ — —= 4+ — 10.5
4 +8 7rg(16+512 128+512 ( )
1 3 15 3957

< G, 156 > v

2
72, = -+

7T292

g3 \ 2048 512 131072
then for J =3
2.2
@) 8rm2¢g2 2mg 1 1 (1 (3 1 (3¢ 743
= =42 ) - — [+ ——) (106
17=3 7 T T2 g 216 8 w2g2 64 ' 13824 (10.6)
1 (41 35¢s 5519
+ - +...,
mg3 \ 1024 512 147456
and finally for J =4
2) 72¢®> wg 1 1 (/3¢ 15 0.01114622551913
Yjea = % tost o — 55 - 5 (10.7)
8 32 16 mwg \ 32 4096 g
0.004697583899
g3

To fix coefficients for the first four terms in the expansion we were guided by known
analytic predictions which will be discussed below, and found that our numerical result
matches these predictions with high precision. Then for J = 2 and J = 3 we extracted the
numerical values obtained from the fit for the coefficients of 1/¢? and 1/¢3, and plugging
them into the online calculator EZFace [120] we obtained a prediction for their exact
values as combinations of (3 and (5. Fitting again our numerical results with these exact
values fixed, we found that the precision of the fit at the previous orders in 1/¢ increased.
This is a highly nontrivial test for the proposed exact values of 1/g? and 1/g terms. For
J = 2 we confirmed the coefficients of these terms with absolute precision 10717 and 10~1°
at 1/g? and 1/g% respectively (at previous orders of the expansion the precision is even
higher). For .J = 3 the precision was correspondingly 10~*% and 10713,

For J = 4 we were not able to get a stable fit for the 1/¢? and 1/¢% coefficients
from EZFace, so above we gave their numerical values (with uncertainty in the last digit).
However below we will see that based on J = 2 and J = 3 results one can make a prediction
for these coeflicients, which we again confirmed by checking that precision of the fit at the
previous orders in 1/g increases. The precision of the final fit at orders 1/¢* and 1/¢° is

10716 and 10~ respectively.

10.2 Generalization to any J

Here we will find an analytic expression for the strong coupling expansion of the curvature

function which generalizes the formulas (10.5) and (10.6) to any J. To this end it will
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be beneficial to consider the structure of classical expansions of the scaling dimension. A
good entry point is considering the inverse relation S(A), frequently encountered in the
context of BFKL. It satisfies a few basic properties, namely the curve S(A) goes through
the points (£J,0) at any coupling, because at S = 0 the operator is BPS. At the same
time for non-BPS states one should have A()\) oc A/ — oo [2] which indicates that if A is
fixed, S should go to zero, thus combining this with the knowledge of fixed points (£.J,0)
we conclude that at infinite coupling S(A) is simply the line S = 0. As the coupling
becomes finite S(A) starts bending from the S = 0 line and starts looking like a parabola
going through the points +J, see fig. 10.4. Based on this qualitative picture and the
scaling A(\) o« A% at A — oo and fixed J and S, one can write down the following

ansatz,

(044 + BALAQ)i

)\2
)

We omit odd powers of the scaling dimension from the ansatz, as only the square of A

S(A) = (A2 _ J2) < )\1/2 + agi + (a3 + f3A%) ——= (10.8)

>\3/2

+ (a5 + B5A% + y5AY)—= + (ag + Bs A% + 76A4)

1
\5/2

enters the Pu-system. We can now invert the relation and express A in terms of S at

strong coupling, which gives

C Cy
L +...>+O(S4),

B

2_ 72 2 2 3

A2 =7 +S<A1\5\+A2+...)+S (Bl++...>+s </\1/2 S
(10.9)

VA
where the coefficients A4;, B;, C; are some functions of J. There exists a one-to-one
mapping between the coefficients «;, 3;, etc. and A;, B; etc, which is rather complicated
but easy to find. We note that this structure of A? coincides with Basso’s conjecture in
[90] for mode number n = 1 16, The pattern in (10.9) continues to higher orders in S with
further coefficients D;, E;, etc. and powers of A suppressed incrementally. This structure

is a nontrivial constraint on A itself as one easily finds from (10.9) that

S Asg
A2 A A By  A3424,A
2 B 142 71_ 2 1413
t+ 5 < 8J3)\ 4.J3 VA+ [2J 8J3 }
By  AyAs+ A1 A4 1 .
2J 473 Vi)

By definition the coefficients of S and S? are the slope and curvature functions respectively,
so now we have their expansions at strong coupling in terms of A;, B;, C;, etc. Since

the S coefficient only contains the constants A;, we can find all of their values by simply

%The generalization of (10.9) for n > 1 is not fully clear, as noted in [121].
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expanding the slope function (7.35) at strong coupling. We get

1 1
A1:2,A2:—1,A3:J2—1,A4:J2—Z.... (10.11)

Note that in this series the power of J increases by two at every other member, which is
a direct consequence of omitting odd powers of A from (10.8). We also expect the same
pattern to hold for the coefficients B;, Cj, etc.
The curvature function written in terms of A;, B;, etc. is given by
(2) . 27T2g2A% 7TgA1A2 A% + 2A1A3 - 4Blj2 10.12
AgAsz + A1 Ay — 232J2
167gJ3
A% +2A2A4 +2A1 A5 — 4B3J?
_ 3 + 2A4 + 1415 3 (1013)
12872g2.J3
A3Ay + AsAs + A1 Ag — 2By J? 1
_ Azdy + AgAs + A1 4 4+O<>.

25673 g3 .J3 gt

The remaining unknowns here (up to order 1/g*) are By, Ba, which we expect to be
constant due to the power pattern noticed above and Bs, B4, which we expect to have the
form a.J? +b with a and b constant. These unknowns are immediately fixed by comparing
the general curvature expansion (10.12) to the two explicit cases that we know for J = 2

and J = 3. We find

3
B1=3/2, By=-3C+ 3 (10.14)
and
J? 9¢G 5 3 15¢ 93¢ 3
By=—"——-2224+ " By=-—J*1 20(5 —9) — —=2 — >~ (10.1
3 5 2+16’ 4 16J(6C3+ 0¢s—9) 5 g 16(0 5)

Having fixed all the unknowns we can write the strong coupling expansion of the curvature

function for arbitrary values of J as

VD) = ST 2mg 1 1SRG+ 8+ TG+ 1) —4
J J3 J3 4J 64mg.J3 512¢2 (72.J3)
(701664206 - 7) BlG+2064+7)+25) (1 10.16)
1638473 g5 J5 -

Expanding 752:) 4 defined in (A.17) at strong coupling numerically we were able to confirm

the above result with high precision.

10.3 Anomalous dimension of short operators

In this section we will use the knowledge of slope functions ygn) at strong coupling to find

the strong coupling expansions of scaling dimensions of operators with finite S and J, in
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particular we will find the three loop coefficient of the Konishi operator by utilizing the
techniques of [90, 121]. What follows is a quick recap of the main ideas in these papers.

We are interested in the coefficients of the strong coupling expansion of A, namely
A=AONT L ADNT L A@XNT L A@NT 4 (10.17)

First, we use Basso’s conjecture (10.9) and by fixing S and J we re-expand the square

root of A? at strong coupling to find

VA (J2 + AsS + 3152) 1 1
A=A SV + +O<). 10.18
! YW 7o\ (1018)

Thus we reformulate the problem entirely in terms of the coefficients A;, B;, C;, etc. For

example, the next coefficient in the series, namely the two-loop term is given by

A _ (2A2 + 4B + J2)2 —16A;1(As + 2By + 4Ch) (10 19)
= — =73 . .
16243/

Further coefficients become more and more complicated, however a very clear pattern can

be noticed after looking at these expressions: we see that the term A only contains
coefficients with indices up to n + 1, e.g. the tree level term A©) only depends on A,
the one-loop term depends on A1, Ao, Bq, etc. Thus we can associate the index of these
coefficients with the loop level. Conversely, from the last section we learned that the letter
of A;, B;, etc. can be associated with the order in S, i.e. the slope function fixed all A;

coefficients and the curvature function in principle fixes all B; coefficients.

10.3.1 Matching with classical and semiclassical results

Looking at (10.18) we see that knowing A; and B; only takes us to one loop, in order to
proceed we need to know some coefficients in the C; and D; series. This is where the next
ingredient in this construction comes in, which is the knowledge of the classical energy
and its semiclassical correction in the Frolov-Tseytlin limit, i.e. when S = S/vA and
J = J/V/ remain fixed, while S, J, A — oco. Additionally we will also be taking the
limit § — 0 in all of the expressions that follow. In particular, the square of the classical
energy has a very nice form in these limits and is given by [45, 121]

2J%2+3 3 J*+3

Dgassica = j2+28 j2+1+827— v -
e 27°+2 8(g2+ 1)

+ 0 (8*) (10.20)
where Dejassical = Aclassical/ V/A. The 1-loop correction to the classical energy is given by

-S o | 3T+ 1172 +17 > n?m? (2m?* +n?J? — n?)

Age ™ 7+ + —
2(T34+ ) 1673 (72 +1)°/? I3 (m2 — n2)2 (m2 + n272)3/>

10.21)

m>0
m#n
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S,J) || A~%/4 prediction A5/ fit error || fit order

2,2) BG 1 6¢+4 =15.48929958 | 14.12099034 | 9.69% || 6
2,3) || B 4 B& 619 —16,03417190 | 14.88260078 | 7.74% || 5
2,4) || e 4186 1T — 1827355565 | 16.46106336 | 11.0% || 7

Table 1: Comparisons of strong coupling expansion coefficients for A\~%/% ob-
tained from fits to TBA data versus our predictions for various operators. The

fit order is the order of polynomials used for the rational fit function (see [121] for details).

If the parameters S and J are fixed to some values then the sum can be evaluated explicitly
in terms of zeta functions. We now add up the classical and the 1-loop contributions'”,
take S and J fixed at strong coupling and compare the result to (10.9). By requiring

consistency we are able to extract the following coefficients,

A = 2, Ay, = — 1

B = 3/2, By = — 3(+3

C, = — 3/8, Cy = 2(20¢3+20¢5 — 3)

D, = 31/64, Dy = =15 (—4720 (3 — 4160 (5 — 2520 (7 + 81)

As discussed in the previous section, we can in principle extract all coefficients with indices
1 and 2. In order to find e.g. B3 we would need to extend the quantization of the classical
solution to the next order. Note that the coefficients Ay, As and By, By have the same

exact values that we extracted from the slope and curvature functions.

10.3.2 Result for the anomalous dimensions at strong coupling

The key observation in [121] was that once written in terms of the coefficients A4;, B;, C;,
the two-loop term A®) only depends on Ai123, B12, C1 as can be seen in (10.19). As
discussed in the last section, the one-loop result fixes all of these constants except As,
which in principle is a contribution from a true two-loop calculation. However we already

fixed it from the slope function and thus we are able to find

A = —215% 4 (24 — 96 (3) 9% + 4 (5J% — 3) % + 8J25 — 4J* .
B 641/2 53/2 : (10.22)

Now that we know the strong coupling expansion of the curvature function and thus all
the coefficients B;, we can do the same trick and find the three loop strong coupling scaling

dimension coeflicient A(3), which now depends on Aq.2.3.4, Bi23, C1,2, D1. We find it to

Note that they mix various orders of the coupling.
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be
G _ 187 S5+ 6(208 (3 + 160 (5 — 43) S5 + (—146 J% — 4 (336 (3 — 41)) S* N
- 512v/2 55/2
(32(6¢3+7)J% —88) S® + (—28 J% + 40 J2) S? — 24 J*S + 8 J® (10.23)
512/2 55/2 ’ '
for S = 2 it simplifies to
1
@, = B (J8 —20J* + 48.J%(4¢3 — 1) + 64(36 (3 + 60 G5 + 11)) (10.24)
and finally for the Konishi operator, which has S = 2 and J = 2 we get'®
15 1
AY, = ;5 +6¢s+ 5. (10.25)

In order to compare our predictions with data available from TBA calculations [44], we
employed Padé type fits as explained in [121]. The fit results are shown in table 1, we see
that our predictions are within ~ 10% error bounds, which is a rather good agreement.
However we must be honest that for the J = 3 and especially J = 4 states we did not have
as many data points as for the J = 2 state and the fit is somewhat shaky. However we
later compared the Konishi analytic prediction with our high-precision numerical solution

of the QSC and found a perfect match (see the next part of this thesis).

10.4 BFKL pomeron intercept

The gauge theory operators that we consider here are of high importance in high energy
scattering amplitude calculations, especially in the Regge limit of high energy and fixed
momentum transfer [122, 123]. In this limit one can approximate the scattering amplitude
as an exchange of effective particles, the so-called reggeized gluons, compound states of
which are frequently called pomerons. When momentum transfer is large, perturbative
computations are possible and the so-called ‘hard pomeron’ appears, the BFKL pomeron
[124, 125, 126]. The BFKL pomeron leads to a power law behaviour of scattering am-
plitudes s/(2) where j(A) is called the Reggeon spin and s is the energy transfer of the
process. The remarkable connection between the pomeron and the operators we consider

can be symbolically stated as

pomeron = Tr (Z Df_ Z)+... (10.26)

8The ¢3 and (5 terms are coming from semi-classics and were already known before [94] and match our

result.
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where we are now considering twist two operators (J = 2) and the spin S can take on
complex values by analytic continuation. The Reggeon spin j(A) (also refered to as a
Regge trajectory) is a function of the anomalous dimension of the operator and is related
to spin S as j(A) = S(A) + 2. Some of these trajectories are shown in figure 10.4. A very
important quantity in this story is the BFKL intercept j(0), which we consider next.

S

-15*-

Figure 5: The BFKL trajectories. The BFKL trajectories S(A) at various values of
the coupling. Blue lines are obtained using the known two loop weak coupling expansion

[127, 128] and red lines are obtained using the strong coupling expansion [129, 130, 131].

One can also use the same techniques as in the previous section to calculate the strong
coupling expansion of the BFKL intercept. As stated before, the intercept of a BFKL
trajectory j(A) is simply j(0) and we already wrote down an ansatz for S(A) in (10.8).
The coefficients oy, 3;, etc. are in one-to-one correspondence with the coefficients A;, B;
etc. from (10.10), values of which we found in the previous sections. Plugging in their

values we find

1
oL =1/2, an = 1/4, a5 = —1/16 , ay = —3753 -3 (10.27)
9¢s 361 39¢s 511
9 _ 396 oll 10.
@5 2 2567 ¢ 4 IR (10.28)
3¢, 21 9¢; 51 45¢;  15Cs 141
— _3/1 B T M P T i 10.2
B3 3/16, fa4 s 61 Bs 3~ To8’ Be s T 16 "5l (10.29)
21 51C;  15¢s 129
o= k= M 156 (10.30)

128" 1 64 64 ' 256
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Figure 6: The BFKL intercept. The BFKL intercept j(0) = 2 + S(0) dependence on
the coupling constant g at two orders at weak coupling (blue lines), four orders at strong

coupling (red lines) and a Padé type interpolating function in between (dashed line).

Furthermore, setting A = 0 we find the intercept to be

2 1 1 1
“xz At per ety

361 1 ol1) 1 1
+ (18 (3 + 64) o2 + (39 (3 + 32) e + O <>\7/2> (10.31)

The first four terms successfully reproduce known results [129, 130, 131] and the last two

j(0)=2+S50) = 2

terms of the series are a new prediction (their derivation relies on the knowledge of the
constants B3 4, 7—2 found in the last section). On Figure 10.4 we show plots of the intercept

at weak and at strong coupling.

11 Conclusions

In this part we applied the recently proposed Ppu-system of Riemann-Hilbert type equa-
tions to study anomalous dimensions in the sl(2) sector of planar N' = 4 SYM theory.
Our main result are the expressions (8.37), (8.38) and (A.17) for the curvature function
752) (g), i.e. the coefficient of the S? term in the anomalous dimension at small spin S.

These results correspond to operators with twist J = 2,3 and 4. Curiosly, we found that

they involve essential parts of the BES dressing phase in the integral representation.
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We derived these results by solving the Ppu-system to order S? and they are exact at
any coupling. While expansion in small S (but at any coupling) seems hardly possible to
perform in the TBA approach, here it resembles a perturbative expansion — the P u-system
is solved order by order in .S and the coupling is kept arbitrary.

For J = 2 and J = 3 our calculation perfectly matches known results to four loops
at weak coupling. This includes in particular the leading finite-size correction at J = 2.
At strong coupling we obtained the expansion of our results numerically, and also found
full agreement with known predictions. This provides yet another check that our result
incorporates all wrapping corrections. Going to higher orders in this expansion we were
able to use the EZFace calculator [120] to fit the coefficients as linear combinations of (3
and (5 (and confirmed the outcome with high precision). By combining these coefficients
with the other known results, we obtained the 3-loop coefficient in the Konishi anomalous
dimension at strong coupling. This serves as a highly nontrivial prediction for a direct
string theory calculation, which hopefully may be done along the lines of [48, 47]. Our
results also predict the value of two new coefficients for the pomeron intercept at strong

coupling,.
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Part III
Numerical solution of the spectral

problem

In this part we discuss the efficient numerical method for solving the QSC, based on the

paper [14].

12 Introduction

Even though many explicit analytic results are available both at strong and weak cou-
pling, one important range of applications of the QSC that has remained unexplored for a
significant time is the numerical investigation of the spectrum at finite coupling. Previous
numerical methods based on TBA, even limited to a few operators'?, low precision and
slow convergence rate gave, nevertheless, several highly important results, allowing, in
particular, the first computation of the anomalous dimension of a nonprotected (Konishi)
operator in a planar 4d theory at finite coupling [42]. The main goal of the present work
is to remove the limitations of the previously known methods by developing an algorithm
for a numerical solution of the QSC.

The low precision and performance of the TBA-like approach was mainly due to the
complicated infinite system of equations and cumbersome integration kernels. The QSC
includes only a few unknown functions and thus can be expected to give highly precise
numerical results. However, the QSC equations are functional equations supplemented
with some analyticity constraints of a novel type which makes it a priori not a trivial task
to develop a robust numerical approach.

In this part, based on the paper [14], we propose an efficient method to solve the QSC
numerically and illustrate our method by a few examples. Among the several equivalent
formulations of the QSC we identified the equations which are best-suited for numerical

solution®’. We implemented our algorithm in Mathematica and were able to get a massive

Yonly for a few operators the complicated structure of the “driving terms” was deduced explicitly in
a closed form. Even for those operators the driving terms may change depending on the value of the

coupling.

206one may call this sub-system of equations as Pw-system, in contrast to previously used Ppu-system or

Quw-system
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increase in efficiency compared to the TBA or FiNLIE systems [42, 51, 44, 132]. With one
iteration taking about 2 seconds we only need 2 — 3 iterations (depending on the starting
points) to reach at least 10 digits of precision. Quite expectedly, the precision gets lost
for very large values of the 't Hooft coupling. Nevertheless, without any extra effort we
reached \ ~ 1000 keeping a good precision, which should be more than enough for most
practical goals.

Not only does our approach work for any finite length single trace operator and in
particular for any value of the spin, it also works with minimal changes even away from
integer quantum numbers! We demonstrate this in the particularly interesting case of
the s[(2) twist-2 operators. Their anomalous dimension analytically continued to complex
values of the spin S is known to have a very rich structure, in particular the region S ~ —1
is described by BFKL physics. As we show, within the framework of QSC it is not hard
to specify any value of the Lorentz spin S as the conserved charges enter the equations
through the asymptotics which can in principle take any complex values. Then we can
compute the analytically continued scaling dimension A directly for complex S (or even
interchange their roles and study S as a function of A). The result of this calculation can
be seen on Fig. 12.

Let us stress that the algorithm is very simple and mainly consists of elementary matrix
operations. As such it can be easily implemented on various platforms. In particular,
we believe the performance could be increased by a few orders with a lower level, e.g.
C++, implementation. In the presentation given here we mostly aim to demonstrate our
algorithm, prototyped in Mathematica.

Finally, to improve the performance of our method we used the further simplification
of the QSC obtained in [13], which allows us to eliminate auxiliary functions w;; from our
algorithm and close the equations using Q-functions only (we demonstrate this for the

sl(2) sector states).

13 Description of the Method

As discussed before, the functions P, and P, carry complete information about the state

and have only one cut, thus they can be parameterized as

Po(u)= Y o (13.1)
=M,
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Figure 7: Riemann surface of the function S(A) for twist-2 operators. Plot of
the real part of S(A) for complex values of A, generated from about 2200 numerical data
points for A =~ 6.3. We have mapped two Riemann sheets of this function. The thick red
lines show the position of cuts. The upper sheet corresponds to physical values of the spin.

Going through a cut we arrive at another sheet containing yet more cuts.

where c+a, n are some unknown coefficients which are the main parameters in our numerics
(we also have a similar parameterization for P%). This series is convergent everywhere on
the upper sheet and also in an elliptic region around the cut on the next sheet (see Fig. 4.2).

The coefficients ¢, , and corresponding coefficients ¢*™ of the expansion of P*(u) need
to be found. The constraint (4.21) fixes some of them (for example, we can use it to fix all
c1,n). The condition (4.27) gives the leading coefficients ¢, y; . The remaining coefficients
should be fixed from the analyticity constraints on P’s as prescribed by QSC.

The main idea is to construct the functions Q,; by solving the equation
Qqli(u + %) — Qqi(u — %) = —Py(u)P’(u) Qpji(u + %) . (13.2)
Then we can compute the Q; via

Qi(u) = —P*(u) Qqjiu +1i/2) . (13.3)
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and we also find their analytic continuation around the branch point on the real axis from

Qi(u) = —P*(u) Qqpi(u +1/2) (13.4)
Q'(u) = +Pa(u) Q" (u+1i/2) (13.5)

Our parameterization for P, covers a sufficient region to compute both Q; and QZ on the

cut [—2g,2g]. Then from the equation
Bij — wij = QiQy — QiQ; - (13.6)

we can immediately reconstruct w;;! This is done by taking a simple integral transform of
the r.h.s. (see below). This will allow us to close the equations.

The main step to be described is how to solve the equation on Q,;. We will describe
an algorithm which allows to solve it very efficiently and then find the coefficients c, 1,
which yields the solution of the QSC. We will also show that actually finding w;; is not
necessary and we can close the system in terms of just P, Q; and Q,;, thus speeding up

the calculations.

13.1 Step 1: Solving the equation for Q,

As we explained above the quantity Q,); is at the heart of our procedure. In this section
we will demonstrate how this set of 16 functions can be found for arbitrary P, and P*.
In this procedure the precise ansatz for P is not important. However, as we will see later,
we should be able to compute P, (u)P?(u) on the upper sheet for u with large imaginary
part. Of course, having the ansatz in the form of a (truncated) series expansion (4.19) we
can easily evaluate it everywhere on the upper sheet numerically very fast.

The process of finding Q,; is divided into two parts. Firstly, we find a good ap-
proximation for Q,; at some u with large imaginary part (in the examples we will need
Im u ~ 10 — 100). At the next step we apply to this large u approximation of Q,; a

recursive procedure which produces Q,; at u ~ 1.

Large u approximation. For Im u ~ 10 — 100 we can build the solution of (4.20) as
a 1/u expansion. This is done by plugging the (asymptotic) series expansion of Q,; into

(4.20):
al Ba|i,n

Qupn) = w7

n=0

(13.7)

un
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where N is some cutoff (usually ~ 10 — 20). This produces a simple linear problem for
the coefficients B,; ,, which can be even solved analytically to a rather high order. The
leading order coefficients of Q,|; can be chosen arbitrarily. After that the linear system of

equations becomes non-homogenous and gives a unique solution in a generic case.?!

Finite v approximation. Once we have a good approximation at large u we can simply

use the equation (4.20) to recursively decrease u. Indeed defining a 4 x 4 matrix
Uy (u) = 62 + Py (u)P(u) (13.8)

we have

Quii(u— %) = Ua(w) Qppi(u+ £). (13.9)

Iterating this equation we get, in matrix notation
Quilu— %) = [UU(u+1d)...Ulu+iN)],” Qpi(u+iN + %) . (13.10)

For large enough N we can use the large u approximation (13.7) for Q; in the r.h.s. As

a result we obtain the functions Q,; for finite u with high precision.

13.2 Step 2: Recovering w;;

Now when we have a good numerical approximation for Qah-(u) we can compute Q; and
Q; which through the discontinuity relation (4.33) will yield us Wij-

Let us also note that, as it was argued in our paper [13], one can in fact close the QSC
equations without calculating w;; (this was shown explicitly for the symmetric sl(2) sector
states). This makes it possible to further speed up our numerical procedure as we will
describe in detail in section 13.4. In the current section for completeness we will present
the procedure without this shortcut, as for some applications it could turn out to be useful

as well.

2! The matrix of this system may become non-invertible unless some constraint (which is not hard to find)
on the coefficients cq,, is satisfied. This constraint is fulfilled trivially for the even in the rapidity plane
operators considered in the next section. There is also no such problem for the situation with generic twists
(similar to B— or y-deformations, see the review [59]). Adding twists should correspond [53] to allowing
exponential factors e®@®, ¢®" in the asymptotics of P, and Q;, making everything less degenerate and

providing a useful regularization.
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One can recover w;; from its discontinuity (4.30) modulo an analytic function using its

spectral representation

29
i - .
i) =5 [ dveothln(u - v)) [QIQ(0) - EIQ )]+ (13.11)
—2g
where the “zero mode” w%(u) is the analytic part of w;; — it has to be periodic, antisym-

metric in ¢, j and should not have cuts. We will fix it below. We note that we only need
to know values of Q and Q on the cut. In our implementation we use a finite number of
sampling points on the cut given by zeros of Chebyshev polynomials. One can then fit the
values of Q iQ;i—Q ‘Qj at those points with a polynomial times the square root \/112—7492 .
After that we can use precomputed integrals of the form f 9 coth(m(u;—v)) \/ﬁ dv
to evaluate (13.11) with high precision by a simple matrix multiplication, which produces

the result at the sampling points v 4 in an instant.

reg .

One more point to mention here is that in our implementation we only compute w;, ij

%(wij — w;j) at the sampling points to avoid the problem of dealing with the singularity
of the integration kernel. Note that w;:’ can be used instead of w;; in the equations like
(4.33), because the difference is proportlonal to Q; Q¢ which is zero similarly to (4.21), as
can be shown by combining (4.21) with (4.22), (4.24).

Finding zero modes. It only remains to fix w?](u) First we notice that for all physical

operators wj; should not grow faster than constant at infinity [53]. As the integral part

0

of (13.11) does not grow either and since w;

(u) is i-periodic it can only be a constant.
To fix this constant we use the following observation [53]: the constant matrix a;; which
wi; approaches at u — 400 and the constant matrix a;; which it reaches at ©u — —oco are
restricted by the quantum numbers [53]. To see this we can pick some point on the real

axis far away from the origin and shift it slightly up into the complex plane, then from

(4.33) we have
wi Q' (u+i0) = a;Q/ (u +i0) = Qi(u +i0) = Q;(u — i0). (13.12)
Similarly for —u we get
a;;Q (—u+i0) = Qi(—u — i0). (13.13)

Next, notice that since Q7 is analytic everywhere except the cut on the real axis, it can
be replaced by its asymptotics above the real axis, i.e. Q/(u + i0) ~ Bju_MJ', and also

Q/(—u +1i0) ~ Biu~ Je*“TM as we find from the previous expression by a rotation by
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7 in the complex plane. As a result we get the asymptotics of Q; at infinities and slightly

below the real axis

Qi(u—i0) = o, Bl ™M | Qi(—u —i0) = aj;Blu~Mie=imMi . (13.14)
Using that they are related by the analytic continuation in the lower half plane the first
equation also gives
Qi(—u — i0) = o Blu~ietinls | (13.15)
Combining this with (13.14) we get a relation between the constant asymptotics of w at
the two infinities

a‘,". = afefZiﬂMJ‘ . (1316)

At the same time from (13.11) we get

2g
7 ~ ~
a;'; =+ + w?j , L = 3 / dv [Qz(v)Q](v) - Q;i(v)Q;(v)|, (13.17)
which implies that
Wl = —ilyy cot M. (13.18)

We see that the zero modes can be also computed from the values of Q and Q on the cut.
Note also that the r.h.s. is not explicitly antisymmetric. Imposing the antisymmetry
gives

Iy (cot TM; — cot mMy) = 0, (13.19)

so either I; = 0 or cot ﬂ'Ml = cot ﬂ'Mk. As Pf w = 1, all I; can not be equal to
zero simultaneously. Having [Ij; non-zero implies quantization of charges: for example,
the choice I1o # 0 and [I34 # 0, which is consistent with perturbative data, requires
cot ﬂ'Ml = cot WMQ and cot 7TM3 = cot 7TM4, and so 51, S have to be integer or half integer.
In section 14 we will see how to relax this condition and do an analytic continuation in

the spin S to the whole complex plane.

13.3 Step 3: Reducing to an optimization problem

Having w;; and Qg); at hand we can try to impose the remaining equations of the QSC
(4.33). We notice that there are two different ways of computing Q;, which should give
the same result when we have a true solution: (4.25) and (4.33). Their difference, which

at the end should be zero, is

Fy(u) = P*(u) Qpi(u+i/2) +wij(u) QU (u+i/2)P,(u) . (13.20)
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The problem is now to find ¢, for which Fj(u) is as close as possible to zero. Here we
have some freedom in how to measure its deviation from zero, but in our implementation
we use the sum of squares of F; at the sampling points uv4. Then the problem reduces
to the classical optimization problem of the least squares type. In our implementation
we found it to be particular efficient to use the Levenberg-Marquardt algorithm (LMA),
which we briefly describe in the next section. The LMA is known to have a Q-quadratic
convergence rate, which means that the error €, decreases with the iteration number n as

¢2"  The convergence is indeed so fast that normally it is enough to do 2 or 3

fast as e”
iterations to get the result with 10 digits precision. We give some examples in the next

section.

Levenberg-Marquardt algorithm Our problem can be reformulated as follows: given
a vector function f;(c,) of a set of variables ¢, (which we can always assume to be real)

find the configuration which minimizes
S(ca) = |filca)? . (13.21)
i
Assuming we are close to the minimum we can approximate f; by a linear function:
fi(€a) = fi(ca) + (¢a = ca)Jai » Jai = Oc, filca) (13.22)

which gives the following approximation for S(¢,):

S(Ca) = [filca) + (€a — ca)Jail [fi(ca) + (€a = ca)Jai] (13.23)

The approximate position of the minimum is then at 0;,.S = 0 for which we get

Jui [ﬁ(ca) + (5(1 — Ca)jai] -+ [fi(ca) + (6,1 — Ca)Jm‘] Jui =0 (13.24)
from which, in matrix notation,
E=c— (JJT+ JIDY Y If+Jf). (13.25)

We see that for this method we should also know the derivatives of our Fp(u) w.r.t. the
parameters ¢, ,, which in our implementation we find numerically by shifting a bit the
corresponding parameter.

In some cases, when the starting points are far away from the minimum, the above
procedure may start to diverge. In such cases one can switch to a slower, but more stable,

gradient descent method for a few steps. The Levenberg-Marquardt algorithm provides a
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nice way to interpolate between the two algorithms by inserting a positive parameter A

into the above procedure,
o1 =Cn— (JIL + JIT + ADYITf+Tf) . (13.26)

The point is that for large A this is equivalent to the gradient descent method. Thus one
can try to increase A from its zero value until S(c,41) < S(¢,,) and only then accept the
new value ¢, 1. This helps a lot to ensure stable convergence.

In the next section we demonstrate the performance of our numerical method by ap-

plying it to the twist-2 operators in s[(2) sector.

13.4 Implementation for the s((2) Sector and Comparison with Existing

Data

Although our method can be used for any state of the N'=4 SYM theory, the examples
we provide here are for states in the sl(2) subsector. In this section we will discuss the
physical operators which have integer spin, and demonstrate our numerical method in
action for the Konishi operator. Then in section 14 we will show how the algorithm works

for other states with S no longer an integer.

Improved implementation: skipping the computation of w’s. We have mentioned
before that the simplification of the QSC achieved in [13] should allow to significantly
improve the iterative procedure, as one can avoid calculating w;;. Here we present this
improvement for symmetric states in the sl(2) sector. Let us briefly recall the trick used in
[13] to eliminate w’s. For the states we consider, each of the P, (u) functions is either even
or odd. Then, as follows from the 4th order finite difference eqation on Q; with coefficients
built from P’s 22, Q;(—u) satisfy the same finite difference equation as Q;(u). Thus each of

the former can be expressed as a linear combination of the latter with periodic coefficients:
Qi(u) = 2 (u)Q;(—u) . (13.27)

We work in the basis where Q; have pure power-like asymptotics at large u, non-coinciding
for general values of global charges. It is easy to see that at large w in this basis Qi (u)
should be constant and diagonal. At the same time, (13.27) allows us to relate Q;(—u)
and Qz

Qi(u) = ol Q;(—u), o =wax*Q, (13.28)

22its explicit form is given e.g. in (3.2) of [72]
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Figure 8: Convergence of the algorithm. The error ¢, as measured by the value of

n . . .
¢2" a5 a function of the iteration number. In

(13.21) reduces at the quadratic rate €, ~ e~
most cases our program managed to find the solution from a very remote starting point.
On the picture we started from all free parameters c,, set to zero and with the initial
value for the energy Ag = 4.1. After 12 iterations it correctly reproduced A = 4.4188599
at A = 1672(0.2)2 ~ 31.6. With each iteration taking about 1.5sec the whole procedure

took about 20 sec on a Laptop with Intel i7 2.7GHz processor.

where x is defined in (4.38). The functions Q;(—u) and Q;(u) have the same analytical
properties, so aé» should be i-periodic and analytic. One should also take into account
that only wio and ws4 are non-zero at infinity, thus many elements of a‘g have to be zero.
For indices 1 and 3 we finally get the key relations which appear to be sufficient to close

the QSC equations:

Ql(u) == Oém(Qg(—U)7 Qg(u) == angl(—u) (1329)

Consistency of these two equations also implies that a13 = 1/a3; = . Note that Q (u) can
be also constructed as QJIP‘L. The equation above tells us that it should be proportional to
Qs3(—u) with unknown constant of proportionality. This requirement can be also phrased
as a minimization problem. For that let us evaluate the ratio Q;(u)/Qs(—u) at sampling

points uy on the cut [—2g,2g| and compute its variance,

M
S(u) =Y

k=1

Qupt (ur + /2P () [
Qi) B (13.30)

where the constant B is the mean value,

o L f: Qap (ug +1/2)P* (ug)

M & Qs(—ug)

(13.31)
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On the true solution of the QSC this ratio is a constant so the variance should be zero,
i.e. S(u) = 0. Thus our goal is to minimize the function S(u), and for this we again use
the Levenberg-Marquardt algorithm described above. This gives the desired numerical
prediction for the coefficients ¢, , parameterizing the P-functions.

The main performance gain stems from the fact that as we do not compute w’s, we no
longer need to calculate the integrals (13.11) and (13.17). We expect this improved method
to work for non left-right symmetric states as well, and details of this generalization will

be presented elsewhere.

Implementation for Konishi Here we discuss the convergence on a particular example
of the Konishi operator which corresponds to S = 2, L. = 2. The reason we start from this
operator is that it is very well studied both analytically at weak and strong coupling and
also numerically. So we will have lots of data to compare with.

To start the iteration process described in the previous sections, we need some rea-
sonably good starting points for the coefficients ¢, . For the iterative methods, like, for
instance, Newton’s method, good starting points are normally very important. Depend-
ing on them the procedure may converge very slowly or even diverge. We made a rather
radical test of the convergence of our method by setting all coefficients to zero, except
the leading ones, which are fixed by the charges. For A we took the initial value 4.1 at
the value of 't Hooft coupling ¢ = 0.2. To our great surprise it took only 12 steps to
converge from the huge value of S(c,) ~ 1077 (defined in (28.16)) to S(cq) ~ 1072, The
whole process took about 20 seconds on a usual laptop (see Fig. 8), producing the value
A = 4.4188599, consistent with the best TBA estimates [42, 44].

After that we used the obtained coefficients as starting points for other values of the
coupling to produce the Table 13.4. All the values obtained are consistent with the TBA
results within the precision of the latter, being considerably more accurate at the same
time.

The reason for such an excellent convergence is the Q-quadratic convergence rate of the
algorithm we use. It means that the number of exact digits doubles with each iteration,

¢2" at the step n, if the starting point is close enough.

or that the error decreases as e~
What is perhaps surprising is that the algorithm converges from a very remote starting
point.

Another indicator of the convergence is the plot of Q computed in two different ways,

i.e. (4.25) and (4.33). On the true solution of the QSC both should coincide. On Fig. 5

we show how fast the difference between them vanishes with iterations, i.e. how fast we
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P | AoV A Ag_s(N)

0.1 | 4.115506377945221056840042671851 || 0.2 | 4.418859880802350962250362876243
0.3 | 4.826948662284842304671283425271 || 0.4 | 5.271565182595898008221528540034
0.5 | 5.712723424787739030626966875973 || 0.6 | 6.133862814488691819595425762346
0.7 | 6.531606077852440195886557953690 || 0.8 | 6.907504206024567515828872789717
0.9 | 7.2641695874391127748396398539 1 7.60407071704738848334286555
1.1 | 7.9292942641568451632186264 1.2 | 8.241563441147703542676050

1.3 | 8.54230287229506674486342 1.4 | 8.8326999393163090494514

1.5 | 9.11375404891588560886 1.6 | 9.386314656368554140399

1.7 | 9.65111042653013781471 1.8 | 9.9087717085593508789

1.9 | 10.1598480131615473641 2 10.4048217434405061127

2.1 | 10.6441190951617575972 2.2 | 10.878118797537726796

2.3 | 11.107159189584305149 2.4 | 11.331544000504529107

2.5 | 11.551547111042160297 2.6 | 11.76741650605722239

2.7 | 11.97937757952067741 2.8 | 12.18763591669137588

2.9 | 12.3923796509149519 3| 12.5937814717988565

3.1 | 12.7920003457144898 3.2 | 12.9871829973986392

3.3 | 13.1794651919629055 3.4 | 13.368972849208144

3.5 | 13.555823016292914 3.6 | 13.740124720157966

3.7 | 13.921979717391474 3.8 | 14.101483156227149

3.9 | 14.278724162943763 4 14.45378636296056

4.1 | 14.62674834530641 4.2 | 14.79768407780976

4.3 | 14.96666327925592 4.4 | 15.13375175384302

4.5 | 15.29901169250472 4.6 | 15.4625019450274

4.7 | 15.6242782663505 4.8 | 15.7843935399844

4.9 | 15.942897981092 5 16.099839321454

Table 2: Conformal dimension of Konishi operator
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Figure 9: Q-functions at the first several iterations. Here we show how Q3 converges
to the solution in just four iterations when calculating the Konishi anomalous dimension.
At each picture solid and dashed blue lines show Qg slightly below the cut calculated with
(4.33) and (4.25) respectively, which should coincide on the solution. Red lines show the

same slightly above the cut.

approach the exact solution of the QSC.

In the next section we discuss the analytic continuation in S away from its integer
values. This is an important calculation which bring us to a highly accurate numerical
estimate for the pomeron intercept at finite coupling — a quantity which can be studied

exclusively by our methods.

14 Extension to Non-Integer Lorentz Spin

In this section we explain which modifications are needed in order to extend our method

to non-integer values of spin S, and give two specific examples of calculations for such S.

14.1 Modification of the Algorithm for Non-Integer Spin

First we need to discuss how the procedure of fixing zero modes of w’s described in section
13.2 is modified for non-integer S. The main difference stems from the fact that analytic
continuation to non-integer S changes the asymptotic behavior of w;; at large u, as de-
scribed in [15, 72, 133]. While for integer S asymptotics of w are constant, for non-integer
S some components of w have to grow exponentially. Without this modification the sys-
tem has no solution: indeed, in section 13.3 we assumed constant asymptotics of all w’s
and derived quantization condition for global charges.

A minimal modification would be to allow exponential asymptotics in one of the com-

ponents of w. In order to understand which of the components can it be, let us recall the
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Pfaffian constraint satisfied by w;;
Pfw = wiawss — wigwos + wi =1. (14.1)

First, it is clear wiy4 alone can not have exponential asymptotics. Second, in the case
of integer S both wiy of wsy are non-zero constants at infinity [72, 15]; then shifting S
infinitesimally away from an integer we see that it would be impossible to satisfy the
condition (14.1) if we allow one of them to have exponential asymptotics at infinity: this
exponent will multiply the constant in the other one. So the only two possibilities left
are wi3 and woyq, which are both zeros at infinity for integer S. From perturbative data
we know that it is wo4 which should have exponential asymptotics. Thus we formulate
the “minimal” prescription for analytic continuation of Q-system to non-integer S: 274l
asymptotic has to be allowed in way. This prescription was tested thoroughly on a variety
of examples [134, 135, 72, 15, 133], but it would be interesting to derive it rigorously
and generalize it to states outside of the s[(2) sector. Of course, one can also consider
adding exponents to more than one component of w;;: in this case the solution will not be
unique. A complete classification of solutions of Q-system according to exponents in their
asymptotics might be interesting. For example it is known that allowing for an exponent in
some other components corresponds to the generalized cusp anomalous dimension [15, 12].

Because of the exponential asymptotics of woy, the argument in section 13.2, which
fixes the zero modes of w, has to be modified. First, formula (13.18) still holds true for
1 =1 ori=3, as woy does not enter anywhere in the derivation. Thus

7T(S+ A), w3g = —1l34 cot Tw=a) (S _ A)

= > (14.2)

w12 = —iIlg cot

Consequently, one can use (13.18) for both wy3 and ws;, and reproduce the quantization
condition (13.19) for global charges, which in this case implies that either A = 0 or
w1z = 0. Equation (13.18) can also be used for w4 and weg (which are equal) and imposes
that either A =0 or w4 = 0.

It remains to fix the zero mode in wY,, for which we use an ansatz

wdy = a1€>™ + ag + aze 2™ (14.3)

The constants a, a2, a3 can be found from the Pfaffian constraint (14.1). To this end we

expand the hyperbolic cotangent in (13.11) to get

wij = wiy + L +2e72TLE 42T EY 4w — 400, (14.4)
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Figure 10: Section of the Riemann surface S(A) along Im A = 0 for different values of
coupling g. The upper two solid curves, shown in black and grey, represent the well-known
BFKL eigenvalue as a function of A, whereas the lower two come from the unphysical sheet
which can be accessed from the upper one by going through the cuts. The dashed line

shows the zero-coupling limit of the curve. Orange dots mark BPS states Tr(ZZ2).

where the terms of the expansion are integrals similar to I;; with additional factors of
e?™ or e*™ in the integrand??. Analogous expansion can be obtained at u — —oo. Then
plugging these expansions into (14.1) we get formulas for the coefficients aq,as,as. For

example,
1+ 71124134 (1 + i cot LA;S)) (1 — i cot LAQ_S))

T
Il3

ay = 2i (14.5)

With these modifications we can reconstruct all w;; including the zero modes and then

proceed with our algorithm as in the case of integer S.

14.2 Exploring Complex Spin

In this section we briefly describe the results of our numerical exploration of A(S) as
an analytic function of a complexified spin S. As explained in the previous section the

generalization of our numerical method to arbitrary values of spin requires minimal modi-

23 Actually, these integrals can be evaluated analytically in terms of Bessel functions
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fications of our main code. Thus we are able to generate numerous values of the anomalous
dimension for any S with high precision in seconds. In fact both S and A enter the QSC
formalism on almost equal footing and we can also switch quite easily to finding S for
given A. This is what is adopted in the vast literature on the subject and what we are
going to consider below. This viewpoint is particular convenient due to the symmetry
A — —A which makes the pictures particularly nice.

Starting from S = 2 (Konishi operator) we decreased the value of S or A in small
steps using the solution at the previous step as a starting point for the next value. In
this way we built the upper two curves on Fig. 10. Let us point out one curious technical
problem — one can see for instance from (14.5) that the lines S = £A + Z are potentially
dangerous due to the divergence. In fact we found that near these dangerous points on the
line the factor I12134 also vanishes canceling the potential divergence. This however affect
the convergence “radius” of our iterative procedure and we found it quite complicated to
cross those lines, even though in very small steps we were able to reach close to them. The
way out is to go around these lines in the complex plane A. To make sure there is no true
singularity or branch point we also explored a big patch of the complex plane A, indeed
finding some branch points, but deep inside the complex plane, having nothing to do with
these lines. For example when g = 0.2 we found 4 closest branch points at roughly +1+74,
see Fig. 12. By making an analytic continuation (described above) through those cuts we
found another sheet of the Riemann surface S(A). On this sheet we have found four cuts:
two are connecting it to the first sheet and two other ones, located symmetrically on the
imaginary axis, lead to further sheets. We expect an infinite set of sheets hidden below
and also more cuts on both sheets outside of the area that we have explored.

It is instructive to see how this Riemann surface behaves as g — 0. First, the real
parts of branch points on the physical sheet are very close to &1, but the imaginary part
goes to zero. Thus at infinitely small g the cuts collide, isolating the region |R A| < 1
from the rest of the complex plane. These two separated regions become then the areas
of applicability of two different approximations: for |[R A| > 1 one can apply the usual
perturbation theory and Beisert-Eden-Staudacher Asymptotic Bethe Ansatz, whereas the
region |R A| < 1 is described by BFKL approximation and so-called Asymptotic BFKL
Ansatz [133].

The presence of the cut can be to some extent deduced from perturbative perspective

in each region: in the regime of usual perturbation theory

A(S) =2+ S —8¢*Hgs + O(g"), (14.6)
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Figure 11: The BFKL intercept j as a function of coupling A. The red solid line with
tiny red dots is obtained by our numerical procedure. It interpolates perfectly between
the known perturbative predictions (the blue dashed lines) at weak [128, 127] and strong
coupling [129, 130, 131, 15].

where Hg is the harmonic number. It has poles for all negative integer values of S —
these poles are weak-coupling remnants of the cuts we see at finite coupling. In the BFKL
regime one should instead look at the leading order BFKL equation [136, 137, 128]

S(A) = —1444° [1/} <H2A> + 1) (1_2A> - 2¢(1)] +0(gh) . (14.7)

To make sense of this equation one has to take the limit ¢ — 0, S — —1 so that the L.h.s
stays finite. Then the ¢-functions in the r.h.s generate poles at odd values of A, which,
again, are cuts degenerated at weak coupling.

Fig 10 represents a section of the Riemann surface by the plane & v = 0, i.e. de-
pendence of S on A for real A, which, of course, consists of two curves, originating from
the two sheets we explored. At weak coupling the upper curve becomes piecewise linear,
approaching different parts of the dotted line: for |A| > 1 it coincides with S = +A — 2
and for |A| < 1 it becomes S = —1. One could expect a similar piecewise linear behavior
for the lower curve: it approaches S = +£A — 2 for |A| < 1, approaches S = 0 in some
region outside of |A| < 1 and becomes a certain linear function even further away from
A = 0. It would be interesting to explore the complete analytic structure of this Riemann

surface, and understand what describes its asymptotics when g — 0. It should produce a
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hierarchy of “Asymptotic Bethe Ansédtze” each responsible for its own linear part of the

limiting surface.

14.3 BFKL Pomeron Intercept

The pomeron intercept j(A) is a quantity which relates spectrum of single-trace operators
and scaling of high energy scattering amplitudes in the Regge regime [124, 125, 126]. This
regime is particularly interesting, since it establishes a connection between results in N' = 4
SYM and multicolor QCD: the non-trivial leading order of so-called BFKL eigenvalue is
the same in two theories, and in the higher orders N' = 4 SYM is expected to reproduce
at least the most complicated part of the QCD result.

Our goal is to demonstrate the universal power of our approach by giving an extremely
precise numerical estimate for this important quantity at finite coupling in a wide range
of couplings.

One defines the intercept as j = S(A = 0) + 2, where S is the spin of the twist-2
operator such that A(S) = 0. Having formulated the problem like this, we can in principle
apply the algorithm described in section 13 to find the correct value of S, while keeping
A at zero. However, one may already suspect that the point A = 0 is special. Indeed,
we know that for any solution of QSC there is always another one related by A — —A
symmetry. At the level of Q; functions this allows simultaneously interchanging Q; < Q3
and Q2 <> Q4 as one can see from the asymptotics. From this we see that at small A two
different solutions of QSC (related by the symmetry) approach each other, making the
convergence slow, exactly like Newton’s method becomes inefficient for degenerate zeros.
In other words, in the limit A — 0 the Q’s related by the symmetry become linearly
dependent in the leading order. Furthermore, since the matrix Q,); should stay invertible,
the leading coefficients B; of asymptotic expansion of Q; diverge at A — 0.

The way out is to perform a linear transformation of Q’s preserving the equations:
it will replace two of them by linear combinations Q3 — vQ; and Q4 + vQs with some
coefficient +, so that the divergent leading order cancels and the four functions Q; become
linearly independent.

For the gauge choice in which B; = By = 1 the transformation acts on ¢-indices of
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G YA |50

0. | 1.000 0000000000000000 || 0.1 | 1.101144978997 7728748
0.2 | 1.301794032258 7822087 || 0.3 | 1.4704452409891876306
0.4 | 1.5871280662541297304 || 0.5 | 1.666 438 709 974 061 852 3
0.6 | 1.7219178428156313539 || 0.7 | 1.762239296 816453814 3
0.8 | 1.792626 253 069403 59 0.9 | 1.816252952807284 11

1. | 1.835109464 0321730 1.1 | 1.850489553 7395228
1.2 | 1.863 264 346 3926404 1.3 | 1.874039 320799 460
1.4 | 1.883247290966 33 1.5 | 1.891 205 346 040 23
1.6 | 1.898150851 85249 1.7 | 1.904264 892928 17
1.8 | 1.909687948271 74 1.9 | 1.914530628 017 38

2. 1.918881 1873049 2.1 | 1.922810887 750

2.2 | 1.926 37789067 2.3 ] 1.92963012941

2.4 | 1.9326074591 2.5 | 1.9353432872

Table 3: Numerical data for the pomeron intercept for various values of the 't Hooft
coupling. All digits are expected to be significant but some additional tests are in progress,

and will be reported in second version of this preprint.

Q-functions with a matrix?*.

1 000
. 0 1 00 — _
H— . i(S —4)(S 2);‘3‘(5—%2). (14.8)
4 0 10 16(S —1)
0 ~ 01

One can check that rotation by this matrix will render Q,; finite and linearly inde-
pendent, and moreover, preserve relations (4.39). After this one can apply the standard
procedure from section 13 with the only modification that the large u expansion of Q,;
will contain logu/u™ terms in addition to the usual 1/u™.

Having done this, we can readily generate lots of numerical results. In particular we
built numerically the function j(A) which interpolates perfectly between the weak and
strong coupling predictions. We have found j(A) with high precision (up to 20 digits) for
a wide range of 't Hooft coupling (going up to A ~ 1000). The results are also summarized
in the Table 3.

Table 3 represents a small portion of all data we generated, which is available by

24This is a particular case of H-transformations described in section 4.1.3 of [53]
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request. In particular we generated ~ 100 points with small g in the range 0.1...0.017

each with more than 20 digits precision. Fitting this data with powers of g? we found
j =1+ 11.090354888959129% — 84.0785668075g* — 2543.0481652¢° + 156244.80864°

where the first 3 terms are known analytically from Feynman diagram perturbation theory
calculations [128, 127] and their numerical values coincide in all digits with our prediction
above. The last two terms give our numerical prediction for the numerical values of the
NNLO and NNNLO BFKL pomeron intercept. Our fit also gives predictions for the
higher corrections but with a smaller precision. In addition, we confirmed the analytic
string coupling predictions for the intercept from [15] (our precision is sufficient at the

moment to check all known coefficients except the last /\1—3 term).

15 Conclusions and Future Directions

In this part we have demonstrated that in addition to their analytic power, the QSC
equations can give highly precise numerical results at finite coupling. We develop a nu-
merical procedure which applies to generic single trace operators and as such it is unique
in its kind. Furthermore, the algorithm converges at a remarkably high rate which gives us
access to high numerical precision results — up to 20 digits or even more in a few iterations.

The efficiency of our method is demonstrated on the example of s[(2) sector opera-
tors. We also formulated how to extend our procedure to non-integer quantum numbers.
We studied the twist-2 operators for complex values of the spin discovering a fascinating
Riemann surface (see Fig.12). In addition we reformulated our equations to be directly
applicable to the BFKL pomeron intercept and evaluated the intercept j with high preci-
sion of up to 20 significant figures. By fitting our data we also gave a prediction for the

perturbation theory expansion

JA) = 1+0.07023049277268284 A — 0.00337167607361 A\ (15.1)

— 0.00064579607573 A* 4 0.0002512619258 A\* + . ..

reproducing correctly the first two nontrivial orders [128, 127] and giving a prediction for
higher orders.

The range of possible applications of our method is vast. First, it is not limited solely
to the sl(2) sector of N'=4 SYM, but is directly applicable to any single trace operators

of the theory. It would be interesting to do an explicit example of a numerical calculation
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with our algorithm outside of the sl(2) sector. For example, the wider class of s[(2,C)
operators (identified in [133]), also exhibiting a BFKL regime, could be a good candidate
to begin with. Third, it may be interesting to generalize our method to ABJM theory as
well as to various integrable deformations of N'=4 SYM theory.

The numerical results could also be helpful for the analytical exploration of the spec-
trum — for instance, in such regimes as BFKL and at strong coupling, which remains almost
unexplored, and various limiting cases of the generalized cusp. Furthermore, studying nu-
merical results and the behavior of the generated Q-functions in various limits can reveal

new analytically solvable regimes.
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Part IV
BFKL Pomeron eigenvalue at

next-to-next-to-leading order

The BFKL limit in N' = 4 SYM corresponds to analytic continuation for sl(2) sector
operators to the singular value of the spin § — —1 simultaneously with ¢ — 0. In this
part, based on results of [13], we present a method which allows to compute the anomalous
dimension in this highly nontrivial regime systematically from the QSC. In particular, we
solve the longstanding open problem of computing the NNLO correction to the anomalous

dimension.

16 Introduction

QCD is notorious for being hard to explore analytically: perturbative calculations become
impossibly complex after first few loop orders. However, there are regimes in which one can
probe all orders of perturbation theory analytically. The Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation is applicable in processes like Deep Inelastic Scattering or hadronic dijet
production, which are characterized by a presence of at least two widely separated energy
scales. The large logarithm of ratio of these energy scales Ay enters into perturbative
expansion, so in order to make sense of the perturbation theory one has to resum powers
of Ay in every order of perturbation theory.

The most nontrivial part x of the scattering amplitude [124, 125, 126] is the so-called
BFKL eigenvalue [136, 137] which at LO reads

) =2(1) - () (M), (16.1)

Here we focus on the case n = 0. Taking into account the Next-to-Leading, Next-to-Next-
to-Leading contributions, and the BFKL eigenvalue  gets corrected by terms of order g2,
g* etc correspondingly. One often also introduces j(iv), related to the BFKL eigenvalue
as

o
NZ;Q = X"O@.0) + g MO (1, 0) + gX O 0) +

The Next-to-Leading BFKL was obtained after 9 years of laborious calculations in

[138, 139, 140, 128]; the result in modern notation is presented below in the text (16.2). The
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corrections turned out to be numerically rather large compared to the LO, which makes
one question the validity of the whole BFKL resummation procedure and its applicability
for phenomenology.

This and other indications make it clear that just NLO may not be enough to match
experimental predictions. It is important to understand the general structure of BFKL
expansion terms and here we will study the NNLO BFKL eigenvalue in NV = 4 SYM
— a more symmetric analog of QCD. Notably, it was observed in [128] that the N’ = 4
SYM reproduces correctly the part of the QCD result with maximal transcendentality. In
particular the LO coincides exactly in the two theories.

A technically convenient way to compute the Pomeron eigenvalue is due to the obser-
vation of [140] who reformulated the problem in terms of a certain analytical continuation
of anomalous dimensions of twist-2 operators. Fortunately, in planar A" = 4 SYM the
problem of computing the anomalous dimensions is solved for finite coupling and any
operator by the Quantum Spectral Curve (QSC) formalism [52, 53].

In order to obtain the BFKL eigenvalue in N'= 4 SYM from the anomalous dimension
of twist operators we consider the dimension A(S) of twist-two operator O = TrZD? Z.
The inverse function S(A) is known to approach —1 perturbatively for A in the range
[—1,1] and thus the map to the BFKL regime is given by A = iv and j = 2+ S(A). Then
the goal is to compute j(A) as a series expansion in g2. Indeed, from the QSC formalism it
was shown in [72] that one reproduces correctly the LO (16.1). Here we use some shortcuts
to the direct approach of [72] to push the calculation to NNLO order, which already gives
useful new information about the QCD result.

An essential for us observation was made in [129]?° where it was pointed out that
both LO and NLO results can be represented as a simple linear combination of the nested
harmonic sums. Let us stress again that in our notation A is the full conformal dimension
of the twist-two operator, related to the anomalous dimension v as A =2+ 5 4 . Then
the expansion of j(A) can be written as

)
J(A) =1+ ;g% [Fg <A2_1> iyl <_A2_1>] (16.2)

with the two first known orders given by [129]

Fi = —45, (16.3)
F. 3 2
ZQ = —§C3 —+ 7% 1n 2 + %Sl + 255 + 7T2S_1 — 45_2,1

2>We are grateful to S. Caron-Huot for bringing our attention to this paper
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where

. (sign (a1))Y
Suvanon@) = CE s o) L S@) =1

y=1

We define harmonic sums for non-integer and negative arguments by the standard widely

accepted prescription, namely analytical continuation from positive even integer values as

in [141, 142, 143, 100]. These analytically continued sums, which we denote as S, q4,....,

are denoted by ST in [141], see e.g. Eq. (21) in that paper. A compatible but more
general definition is given in [144].

We assume the NNLO order can also be written in this form. After that we only have

to fix a finite number of coefficients which we do by expanding the QSC around some

values of A where the result simplifies. Then we verify our result by comparing it with

extremely high precision numerical evaluation proving this assumption to be correct.

17 Analytical Data from QSC

As we discussed before, the 4 functions P, of the spectral parameter u which can be
conveniently written as a convergent series expansion

Pun) = 35 s sty - VIS

n ) 2
B (u) g

We will follow the same approach as in the numerical algorithm, with the Q,|; functions
playing a central role. Let us describe the details of our analytical method. We will focus
on some particular points Ag = 1,3,5,7. It can be seen already from the LO (16.1) that
the function S(A) is singular at these points, however the coefficients of the expansion are
relatively simple and are given by (-functions. We will perform a double expansion first

in ¢ up to the order g% and then in § = A — A,.

General iterative procedure for solving the QSC. We describe a procedure which
for some given P, (or equivalently ¢, ) takes as an input some approximate solution of
(4.20) 09 valid up to the order € (where € is some small expansion parameter) and

ali

2n - The method is very general

produces as an output new Qa‘i accurate to the order €
and in particular is suitable for perturbative expansion around any background.

Let dS be the mismatch in the equation (4.20), i.e.

QW (u+3) — Q) (u— §) + PP Q) (u+ §) = dS,;, (17.1)

ali ali



86

where dS;); is small ~ €. We can always represent the exact solution in the form

Quii(w) = QW) (w) + b7 (w+ 1) @) (w) (17.2)

ali alj

where the unknown functions bij are also small. After plugging this ansatz into the equa-

tion (17.1) we get

(b2 0) = b7 (w+ 1)) QF = Sy + dSub? (17.3)

alj i

Since bij is small it can be neglected in the r.h.s. where it multiplies another small quantity.

alk

Finally multiplying the equation by Q©4* we arrive at

¥ (u + ) — bF(u) = —dS,);i(w) QO (u + £) + O(™) .

We see that the r.h.s. contains only the known functions dS and Q(O) and does not contain
b which means that the original 4th order finite difference equation is reduced to a set of
independent 1st order equations! In most interesting cases the first order equation can be

easily solved. After Q,); is found one can use (4.22) to find Q;.

Iterations at weak coupling. For our particular problem we will take either € = g or
e = 0. Applying this procedure a few times we generate Q; for sufficiently high order both
in g and in 6. Finally, by “gluing” Q; and Q; on the cut we find ¢,,, and S(A) also as a
double expansion.

For the above procedure we need the leading order Q((Bg . One can expect that to the
leading order in g the solution should be very simple - indeed the branch cuts collapse to
a point making most of the functions polynomial or having very simple singular structure.
Also one can use that to the leading order in g functions P, are very simple and are already
known from [72] for any A. By making a simple ansatz for Q; we found for Ay = 1 to the

leading order
Qi~u Q~1/u, Q3~1, Qu~1/u?. (17.4)

For Ag = 3,5,... the solution involves also the n-functions introduced in the QSC context

in [109, 70]

Nsy,...,sk (U) = Z ! (175)

y s . P
n1>ng...nj>0 (u4ing)t ... (u+ ing)s*
which are related in a simple way to the nested harmonic sums. For A = 3 we found

1

2 2 -
~ ~ —f— — 17.6
Ql u-, Q2 U-1m,3 ? 2’[1,’ ( )
1

1 {
2 : 2
Q3 ~uno—iu , Qa2 unpg 3
2 u  2u
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which reflects the general structure of the expansion of Q; around integer A’s which contain
only 712, 71,3 and 77 4 with polynomial coefficients. As it was explained in [109, 70] the
n-functions are closed under all essential for us operations: the product of any two n-
functions can be written as a sum of n-functions, and most importantly one can easily

solve equations of the type

fluti) = f(u) = u"ns,,. 5 (17.7)

for any integer n again in terms of a sum of powers of u multiplying n-functions (which
we call n-polynomials). For example for n = —1 and k=1, s1 =1 we get f = —n2 — 1
etc. Thus for these starting points we are guaranteed to get n-polynomials on each step
of the general procedure described above.

Proceeding in this way we computed Q; up to the order g% and §'° for A = 3,5,7. After
that we fix the coefficients in the ansatz for P, from analyticity requirements described

below.

Fixing remaining freedom. Here we will describe how to use Q; found before to finally
extract relation between S and A and the constants ¢, . This is done by using a relation
between Q; and their analytical continuations Q,;. On the one hand we have the relation
(4.33). On the other hand we can use the u — —u symmetry?® of the twist-2 operators to
notice that Q;(—u) should satisfy the same finite difference equation as Q;(u) and thus
we should have Q;(u) = Qz(u)Q](—u) where Qf(u) is a set of periodic coefficients. As
Qi(u) has a power-like behavior at infinity, Qg (u) should not grow faster than a constant.
Furthermore, since Q; has a definite asymptotic (13.7) only diagonal elements of QZ(u)

can be nonzero at infinity. Combining these relations we find
Qa(u) = 04 Qi(-u) , A=1,3, (17.8)

where ai‘ = wAiXiin are i-periodic (as a combination of i-periodic functions), analytic
(as both Qq(u) and Qu(—u) should be analytic in the lower-half-plane) and growing not
faster than a constant at infinity which implies that they are constants. Furthermore most
of them are zero because only wig, w4 and Q; are non-zero at infinity. Thus we simply

get

Ql(u) = a13Qs(—u) Qg(u) = a31Q1(—u) . (17.9)

Next we note that if we analytically continue this relation and change © — —u we should

get an inverse transformation which implies a3 = 1/ag1 = a. The coefficient a depends on

Z6more generally one can also use complex conjugation symmetry
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relative normalization of Q; and Q3. Let us see how to use the identity (17.9) to constrain

the constants c,;. We observed that all the constants are fixed from the requirement of

regularity at the origin of the combinations Q; + Q; and 2-Q_ which now can be

Q1 (u) — aQs(—u)

This relation is used in the following way: one first expands in g the l.h.s. and then in u

written as

Qi(u) + aQsz(—u) =reg ,

=reg .

around the origin. Then requiring the absence of the negative powers will fix «, all the
coefficients ¢4, and the function A(S)! So we can completely ignore w;j, Q2, and Qq
in this calculation. This observation can be used in more general situations and allows
avoiding construction of w;j, and in particular can simplify the numerical algorithm of [14]

considerably.

Constraints from poles. We use the procedure described above to compute the ex-
pansion of S(A) around Ag = 3,5,7. In particular for A =5+ € we computed the first 8

terms
NNLO 1024 64 (4% —33) 16 (=363 + 2% + 31)
X =——5 T 3 + 2
€ 3e €
—288¢3 + 22T 167 — 296
€

20 (47 — 75) (3 + 63005 + m* — 2157 + 285] + ... .

(17.10)

_2

15

The terms with €, €2, and €3 which we also evaluated explicitly are omitted for the sake of
brevity. We also reproduced expansions extracted from [71] for A = 1. In our calculations
we used several Mathematica packages for manipulating harmonic sums and multiple zeta

values [107, 110].

18 The result

By observing (16.3) for LO and NLO we notice that the transcendentality of these expres-
sions is uniform if one assigns to Sy, ... 4, transcendentality equal to zk: \aj\. The principal
assumption of our calculation states that F3(z) can also be written a]s:z; linear combination
of nested harmonic sums with coefficients made out of several transcendental constants
72,10g(2), (3, C5,Li4(%) ,Li5(%) of uniform transcendentality 5. The final basis obtained
after taking into account the constants contains 288 elements.

Hence we build the linear combination of these basis elements with free coeflicients

and constrained them by imposing the expansion at A = 1,3,5,7 to match the results of
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the analytic expansion of QSC (in particular, requiring (17.10)). This gave an overdefined

system of linear equations for the unknown coefficients which happen to have a unique

solution presented below:

Fy(z) 585  S-an n S15_3.1 n S_32 5525-21
256 8 2 2 2 4
S_4S S_3S 355 _ 35_

L S-a% | S-sS 383 31,1 .S o

o [5_2,1 IRCER RN 5152] L {251

+(3 [—

+ [2Li4(;) =

4
+S52 21 +35 2111 —

8 4 2

4 s T

8 48 12 48
7811 TS5 75151 S
1 T8 T4 16

m2log?2  log*2
12 12

} (5-1—51)

+

log®2  72log®2  2ntlog2 w3(s i 49¢5

36 45 24 32

35253 S5 | S-2515

45

_5
96

—2Li5(3) .

(18.1)

The simplicity of the final result is quite astonishing: only 37 coefficients out of 288

turned out to be nonzero. Furthermore, they are significantly simpler than the coefficients

appearing in the series expansion around the poles (17.10). These are all clear and expected

indications of the correct result similar to what was observed in the usual perturbation

theory [103]. In addition we also performed the numerical test described below.

19 Nwumerical tests

Using the method of [14] we evaluated 40 values of spin S for various values of the coupling

g in the range (0.01,0.025) with exceptionally high 80 digits precision and then fit this

data to get the following prediction for the N"LO BFKL coefficients at the fixed value of

A = 0.45:

value

error
10774.6358188471766379575931271924
NQLO 10761
56995929170948057653783424533229
—366393.20520539170389379035074785
NBLO 10756
44549935531959333919163403836
1.33273635568112691569404431036982
N4LO 10751
8561521940588979476878854 x 107
—4.9217401366579165009139555520750
N°LO 10~47

70060721450958436559876 x 10°
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We found that our result (18.1) reproduces perfectly the first line in the table within

the numerical error 1075 which leaves no room for doubt in the validity of our result.

20 Summary

In this letter we have applied the Quantum Spectral Curve method [52, 53] to the calcu-
lation of the NNLO correction to the BFKL eigenvalue. We check our result numerically
with 60 digits precision using the algorithm developed in [14] and gave numerical predic-
tions for a few next orders. We also developed a general efficient analytic method suitable
for systematic perturbative solution of QSC.

We hope that our findings could shed some light on the QCD counterpart of our
result and resolve some mysteries shrouding the BFKL physics. Our method is in no
way limited to NNLO: calculating further orders with our iterative algorithm seems to be
just the question of computational time. The goal of this activity would of course be to
understand the structure of the general term of BFKL expansion. The fact that our result
turned our significantly simpler than one could expect looking at the initial basis asks of

explanation.
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Part V

Analytic solution of Bremsstrahlung

TBA in the twisted case

In this part as well as the two following parts we will describe applications of the QSC
to a nonlocal operator — a cusped Wilson line. The divergence in its expectation value is
the famous generalized cusp anomalous dimension which it will be our goal to study. This
part is devoted to describing the analytic solution of the TBA equations (which are the
precursor to the QSC) in a near-BPS limit but to all loops, found in [16]. In the next two
parts we will formulate the QSC for this observable at any values of the parameters and
show that this leads to numerous new results in regimes that previously were impossibly

difficult to study.

21 Introduction

The Y-system and TBA were originally presented for the spectrum of local operators.
The same approach was shown in 2012 to be essential in understanding another kind
of observable — the quark-antiquark potential on the three-sphere, or equivalently the
generalized cusp anomalous dimension I'cysp. This quantity describes the divergence in
the expectation value of a Wilson loop made of two lines forming a cusp,

AIR ) Fcusp
)

St 21.1
Aoy (21.1)

o)~

with Ayy and Arg being the UV and IR cutoffs [145]. The quantity I'cysp has been studied
at weak and strong coupling (for some recent results see [146, 166, 175, 176, 171]), and
is also related to a number of other observables, such as IR divergence in amplitudes and
radiation power from a moving quark, see e.g. [147, 148, 149, 97]. The cusp anomalous
dimension is a function of two angles, ¢ and €, which describe the geometry of the Wilson
line setup shown in Fig. 21 [150]. The first angle, ¢, is the angle between the quark and
antiquark lines at the cusp. The second angle, 0, arises because the locally supersymmetric
Wilson lines considered here include a coupling to the scalar fields. As there are six real
scalars in N/ = 4 SYM the coupling can be defined by a unit vector 7 which gives a point

on S°. For the two lines we have two different vectors, i and 7y, with @ being the angle
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between them. Explicitly, we can write the cusped Wilson loop as

0 [e)
Wo = Pexp/dt [z’A-a’:q + 3. ﬁ|9bq|] x Pexp/dt [ZA g+ Bl |5cq|] . (21.2)
e 0

where @ denotes a vector consisting of the six scalars of N = 4 SYM, while x4(t) and zg(t)
are the quark and antiquark trajectories (straight lines through the origin) which make

up an angle ¢ at the cusp (see Fig.21).

St

Figure 12: The setup. A Wilson line with a cusp angle ¢ and L scalar fields Z = &1 +1i®-
inserted at the cusp. Coupling of the scalar fields to the two half lines is defined by

directions 77 and 77y in the internal space, with the angle § between them.

A fully nonperturbative description for the value of I'c,sp was obtained in a remarkable
development by Drukker [64] and by Correa, Maldacena & Sever [63]. They proposed an
infinite system of TBA integral equations which compute this quantity at arbitrary ’t
Hooft coupling A and for arbitrary angles. In order to implement the TBA approach,
the cusp anomalous dimension was generalized for the case when a local operator with

R-charge L is inserted at the cusp (cf. Fig. 21):

0 00
WL:Pexp/dt <z’A-abq+<i>'-ﬁ|j:q]> x 7k xPexp/dt (iA.ﬁcﬁcﬁ.ﬁgmqD. (21.3)
~% 0

Here Z = &1 4i®y, with ®; and ®, being two scalars independent from (®-7) and (®- ).
The anomalous dimension I'z, (¢, 6, A) corresponding to such Wilson loop is captured by the
TBA equations exactly at any value of L. For L = 0 the usual quark-antiquark potential
is recovered. The number of field insertions plays the role of the system’s volume in the
TBA description, and I';,(¢, 0, \) is obtained as the vacuum state energy.

While the infinite system of these TBA equations is rather complicated, having the
two angles as continuous parameters opens the possibility to look for simplifications in

some limits where an exact analytical solution may be expected?”. We will focus on the

270On the other hand, non-perturbative predictions from the spectral TBA have been mostly restricted

to numerics [42, 44, 45, 46]; see also [43].
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near-BPS limit when ¢ ~ 0. For ¢ = 6 the configuration is BPS and the anomalous
dimension vanishes [151, 152]?%. The small deviations from this supersymmetric case are
known to be partially under control: the cusp dimension at L = 0 was computed for
¢ ~ 0 analytically at any coupling in [147, 148] using results from localization methods
[153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163]. The answer in the planar limit reads
1 1 \/i I (\/i)
— (¢ - 0")—5 =
Am -2 5 <\f)\>

Fcusp(¢7 9) )‘) =

+0((¢* - 6%)?), 5\—)\<1—022>

T
(21.4)
where I, are the modified Bessel functions of the first kind. The existence of such explicit
result suggests that the cusp TBA system should simplify dramatically when ¢ ~ 6. Even
though the full set of TBA equations was simplified a bit in this limit as described in [63],
the result is still an enormously complicated infinite set of integral equations. Remarkably,
it turned out that these equations admit an exact analytical solution. It was obtained in
[164] for the particular near-BPS configuration where § = 0 and ¢ is small. The result of
[164] covers all values of L and A and for L = 0 reproduces the localization result (21.4)
in which 0 should be set to zero.

We will show how to extend the results of [164] to the generic near-BPS limit. Thus,
we consider the case when ¢ ~ 6, but 6 is arbitrary and is an extra parameter in the
result. We also filled some gaps in the previous derivation using the novel P u-formulation
[52]. We obtain an explicit expression valid for all values of , L and A. For this we solve
the Bremsstrahlung TBA analytically, following the strategy developed in [164]. Quite
surprisingly the result for arbitrary 6 is considerably simpler and takes the form

90 det Mar 11

I'r(g) 1 Oolog dot My (21.5)
where we define an N + 1 x N 4 1 matrix
oo Ly Iy
D R T I
My = : Do : (21.6)
Iy Iy oo Qg
By 1% - 15 o
and I¢ are
n n
n- g ()| (V5) - (i=5) )
28G¢trictly speaking the BPS condition allows ¢ = —@ in addition to ¢ = @ but these two cases are

trivially related.
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At L = 0 we have reproduced in full the localization result (21.4). For L > 0 our
result complements and generalizes the calculation of [164] as another integrability-based
prediction for localization techniques. As in [164], the determinant expressions we got

suggest a possible link to matrix models, which would be interesting to explore further.

22 TBA equations in the near-BPS limit

In this section we discuss the first simplification of the cusp TBA system in the near-BPS
regime, when the two angles ¢ and 6 are close to each other. Following [63] we will thus
obtain a somewhat simpler, but still infinite, set of integral equations — the Bremsstrahlung
TBA.%

Let us remind that the cusp TBA equations are very similar to those describing the
spectrum of single trace operator anomalous dimensions. After subtracting the asymptotic
large L solution, these two infinite sets of equations for the Y-functions Y, s(u) become
exactly the same. The integer indices (a, s) of the Y-functions take values in the infinite
T-shaped domain familiar from the spectral TBA (see Fig. 22). The only difference is
in an extra symmetry requirement for the Y-functions, and in the large L asymptotic
solution?’,

The asymptotic solution encodes, in particular, the boundary scattering phase which
has a double pole at zero mirror momentum. Due to this, the momentum-carrying func-
tions Y, o(u) have a double pole for u = 0. This greatly simplifies their dynamics in the
near-BPS regime — only the residue at this pole is important and gives a non-vanishing
contribution. This residue is small for ¢ ~ 6, and thus the structure of the expansion
of the cusp TBA system in our case is very similar to what happens in the small angles
regime discussed in detail in [63, 164].

We found it convenient to use a small expansion parameter

€ = (¢ — 0) tan ¢y, (22.1)

where3! we denote ¢g = (¢ +6)/2. As in the small angles case, it is sufficient to keep only

2The authors of [63] obtained the Bremsstrahlung TBA equations for the generic case ¢ = 6, but the

equations were given explicitly in [63] only for the small angles case so we will repeat the derivation here.
30The extra symmetry requirement in the cusp TBA reads Ya,s(u) = Ya,—s(—u) but is irrelevant in our

discussion as for our state all Y-functions are even.
31To shorten notation we will sometimes use 6 instead of ¢o in the text, on the understanding that

equations containing 6 are assumed to hold to the leading order in e.
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Yoo = (%)’

Yo1 =V (1l —eXy)
1/Y50 =—1—2¢P
V1. = Vo (1+eX)

N s

‘ Y171 =—1—2eV¥

Figure 13: The T-hook. The indices (a,s) of Y-functions take values on the infinite
T-shaped lattice in the figure. We also show the form of expansion in small € for different
groups of Y-functions. Notice that the momentum carrying Y-functions Y, ¢ are small in

€ and enter the system only through the singularity at u = 0.

the leading orders in the expansion of the Y-functions, which are

Yo1=Va[l +€(Qq —X)], 1/Y1s=Vs[1+e(Qs + &), (22.2)

Y171 =—-1- 26\I/, 1/Y272 =-1- 26(13,
while the residue of Y, o reads

lim (u Yao) = (e Ca)?. (22.3)

u—0

This expansion (except for the €, functions which will not enter our equations) is also
shown in Fig. 22.

It is straightforward to plug these expansions into the cusp TBA system, and then
simplify the equations a bit further using the same techniques as in the small angles case.

The resulting set of Bremsstrahlung TBA equations reads:

d— U = 1CK,(u), (22.4)
X N

S+ = - K - K - 22.

0= |2 T (R R)C - mi)Ca) (22,5
(0]
log Y1 m =s%* Ly nlog (1 4+ Y1) — O 28% <log T +e(®— \I/)> — ensC,p, (22.6)
(10) (1 ) 1+ 10)A v (10) ~ P
A =[Ry," + B, ol*log ——= 1A, + R, *log (1/2> B, *log (1/2 , (22.7)

2+2L

] a? a
C, = (—1)o+1gS a0 [ ) _a F A 929.8
a ( ) tan@ + 1692 49 (aag)e ’ ( )
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where the kernels and conventions are the same as in [164] and are defined in Appendix
B.1. The equation (22.6) for Y7 ,, should be understood to hold at orders O(e’) and O(e!)
only. Notice that as in the small angles case the functions Q, from (22.2) have dropped
out of the equations.

We see that our Bremsstrahlung TBA equations are almost the same as in [164].
However, importantly, the asymptotic condition at large real u is different:

sin? 6
sin(m + 1)@ sin(m — 1)6’

1/ Yim — (22.9)

which should hold up to terms of order O(e) inclusive. Finally, the cusp anomalous

dimension is determined by the double pole of momentum-carrying Y -functions:

(22.10)

Z V14 1692/a2

In the next section we will reduce this TBA system to a finite set of nonlinear equations.

23 FiNLIE

23.1 Twisted ansatz for T-functions

Our main task is to reduce the infinite set of equations (22.6) for the functions Yj ,,. In
order to do this we use its relation to the Y-system and Hirota equations in the horizontal
right wing of the T-hook. Indeed, from the integral form of (22.6) and the analyticity of
the kernels it is clear that Y7 ,,,(u) are analytic and regular in the strip |Su| < ™~=. Then

for m > 2 the equation (22.6) can be rewritten as the Y-system functional equation
log (Y Yy, ) =log (1 + Yim1) (1 + Yims1). (23.1)

This set of functional equations can be solved by switching to the so-called T-functions
according to
+ —
T

Tl
1/Y = —>" " 1. 23.2
/i T 111 m—1 ( )

In terms of T-functions the Y-system equation becomes the Hirota equation in the
horizontal strip, for which the general solution is known [51, 165] and involves only two

unknown functions which we denote 1 and Q2:

(23.3)
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In this way we are able to replace the infinite set of Y;, functions (m = 2,3,...) by two
functions Q1(u) and Q2(u). Now the problem is reduced to finding an ansatz for the
functions @1, Q2 entering (23.3). The main requirement for this ansatz is that the Y7 ,,
generated by (23.2), (23.3) should have the correct asymptotics at large real u given by

22.9). For small angles the asymptotics is —s— and the corresponding ansatz for the
m

1
Q-functions is known [164]. Here we present an ansatz which works also in a deformed
case with nontrivial twists.

The ansatz also has to ensure the correct analytical properties of the Y-functions
which are dictated by the integral equations (22.6). First of all, the Y; ,, functions should
be analytic inside the strip [Im u| < mT_l and even as functions of u. The term with
dm,2 in (22.6) can be reproduced if Y; o(u) has branch cuts starting at v = i/2 + 2¢g and
u=—i/2+2g.

Our proposal for Q-functions meeting these requirements is:

Q1 = Q = e0uidW), (23.4)

Q2 = Qq = e v, (23.5)

where G(u) should be a function with a branch cut on the real axis in order to satisfy the
properties of T-functions listed above. Note that the asymptotics (22.9) of Y-functions
is automatically satisfied for any G(u) decaying at infinity. Finally, as T} s are even and
real functions (to ensure the same properties for Y-functions), G(u) should be odd and
imaginary.

With this choice of 1 and Q2 we can calculate T7 s from (23.3) where for consistency

1

with [164] in the small angle limit we choose C' = 5=

sin(s — Gl + gl=#)g

sin @

T15:

)

(23.6)

Discontinuity of the function G can be found from the equation analogous to (23.1) for

m = 2 [51]. It reads

T Ty 1+ 1/Y:
% =r, where r = 1+ 1/¥es (23.7)
T T 1+ Y1,
and we denoted
T (u) = T(u+i/2£10) and T *(u) =T(u—1/2+40) . (23.8)

More explicitly, using the formula (23.6) for 77 one can write

sin (1 —gHl g ,0/2) 0 sin (1 +gl-2 g — p/2) ]
r=— - , (23.9)
sin (1 — g2 4+ G+ p/2) 0 sin (1 +gl=21 — g+ p/2) 0
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where G(u) is the average of G on both sides of the cut if u is on the cut, and it is equal to
G(u) + p(u)/2 away from the cut. This allows to deduce the discontinuity of the function
G with one real Zhukovsky cut in terms of a combination (23.7) of “fermionic” Y-functions
Y71 and Yao.

Finally, for small # the combinations Q1 & Q2 obtained from our ansatz nicely match>?

(up to overall factors) the Q-functions in the small angles case [164], where @1 = 1 and

Q2 = —iu — G(u).

23.2 Expansion in the near-BPS case

The ansatz presented in the previous subsection is valid for a general, not necessarily
near-BPS situation. Here we will apply it to the case of ¢ ~ 6 (i.e. small ¢).

As we have seen above, the solution for Y-functions is completely defined by a single
function G(u), which we will call the resolvent. For our goals we only need to know G up

to the linear in € terms inclusive. Our proposal for the resolvent is
29

g(u):%lm,/ u_v+ Zu_m/2 (23.10)

—2¢
The first term creates a short branch cut3® in G(u), which translates into the branch cuts

of V. The discontinuity of the resolvent across this cut is the density p:
p(u) = G(u —1i0) — G(u + i0). (23.11)

The second term in (23.10) produces poles at +i/2 with residues proportional to € in
Y-functions, which account for the term ersC,, in (22.6).

One can see that the properties of 77 ,, being real and even imposes the following
constraints on the density and poles: p should be even and real as a function with a long
cut, while b, = b_, and b, = —b}.

Most of the equations are already expanded in €, so it is convenient to introduce
expanded to the leading order versions of the quantities above. The leading order part of

the resolvent is?*

29
G(u):;m/dvup(v)v. (23.12)
—2g

32As T . are given by a determinant, we are free to replace Q1.2 by their linear combinations
33i.e. a cut from —2g to 2g.

34The density p contains both the leading order in e part and the linear correction, however, here we
will never need to deal with this correction. Hence, we will denote the full density and its leading order

part by the same letter p hoping that this will not cause any confusion.
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We also introduce the leading order T-functions 7, related to the leading order Y-

functions as
T T
- 7771-5—17771—1
Explicitly, the leading order part of (23.6) gives
sin (s — Gl*l +- G~y
sin ¢y ’

Ym - 1. (23.13)

T, = (23.14)

23.3 Final reduction to FiNLIE

We now use the ansatz that we discussed above and finalize the reduction of the original
Bremsstrahlung TBA system to a finite set of equations. Skipping the intermediate steps

which are covered in [16] we find that the FINLIE equations read:

sin 6

. )
Nl = Nk, (23.15)

cosbpcos(2—GT +G7)0 —cos (2G — GT —G7)b
g sinfsin (2 — Gt + G~)6

o XQ ot o
=sx* [ 21 TS +7(K, — K,;)C, ﬂé(u)@l] , (23.16)
2+2L
Co = (—1)%aTa(0) [ (142 — 2 x (23.17)
o T\ 169  4g '
exp [f(a%log (nsmh 27ru>} .
21y

A clarification of notation used here and the kernels can be found in the Appendix

B.1.%°

24 Solving the FiNLIE: analytical ansatz

In the previous sections we presented the FiNLIE - a system of equations for Cg, p, 7.
Following the spirit of [164], in order to solve it we should analyse the analytical properties
of n and p as functions in the whole complex plane. We parametrize these functions in
terms of auxiliary Bethe roots, for which we will obtain a set of Bethe equations. Then
we solve them using Baxter equation techniques and obtain the result for the anomalous

dimension I'z,(g).

358trictly speaking these equations are also supplemented with several additional constraints which may

be found in full detail in [16].
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For the sake of readability we will not cover all steps of this calculation which are
described in full detail in [16]. The main outcome is that the system reduces to a Baxter-

like equation for several functions encoding the auxiliary Bethe roots zy:

Tp— X

Q@) =][=—, Q (1) =Qs(-x) (24.1)
k20 Ok
Introducing )
—2¢90/x _
T(2) = 22" 1Q(2) + (- 1) —-Qu (0. (24.2)

which encodes the whole set of auxiliary Bethe roots zj, we will call T(z) the Baxter

function. T

T(—1/z) = —T(x) (24.3)
At large u one can show that
Qi(l/z) — 1 (24.4)
while
~sinh 2
Q. ~ T o (24.5)
2mu

Therefore the second term in (24.2) is suppressed compared to the first one and the
asymptotics of the whole expression at large z is T(z) ~ z%e2(™+9)%  Then from (24.3)
we can find the asymptotics of T(z) at x — 0, and combining all these analytical properties

together we can fix T uniquely to be
T(z) = sinh(2ru)e?9?@= Y2 pp (1), (24.6)

where Pp(z) should be a rational function with behavior ~ z% at infinity. Since T(z)
should not have singularities apart from x = 0 and x = oo, the function P; must be a
polynomial in z and 1/2z. Moreover, (24.3) means that Pr(—1/x) = Pr(x) and hence we
can write

Pr(z) = Crat + Cox ™ 4 (1)L Oy E. (24.7)

To find T(z) explicitly it only remains to determine the coefficients C;. This is straight-
forward to do by imposing the condition that the r.h.s. of (24.6) does not contain powers
of x from —L to L in its Laurent expansion (as follows from (24.2)) which must be the
case since Q_ is regular at the origin.

Finally, and most importantly, one can show that the energy is given by

Ir(g) = —2(¢ —O)g [—20021 - g - ge} , (24.8)
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where c is the leading expansion coefficient of Q.:
Qi(x)~1Fcx , z—0. (24.9)

Notice that the coefficients C, Cy are also encoded in Q4: from (24.2), (24.6) we find

2
T

Q. (z) ~ sinh(27w) , T —00. (24.10)

xT

Now we have all the necessary tools to obtain the energy explicitly using the Baxter

equation.

24.1 The L =0 case
Let us first discuss the L = 0 case, because it is technically simpler. The function Pr(x)
from (24.6) is then just a constant,

Pp(z) = Cy. (24.11)

To fix it we need to know the expansion of (24.6) in powers of x. Using that the exponent

of x + 1/x is a generating function for the modified Bessel functions of the first kind,

o0
e2m9(x+1/) — S~ [ (47g)x", we get the expansion
n=-—o0o
+o0
sinh (2mg(z 4 1/x)) e290@=1/2) = Z 0", (24.12)
n=-—00

where I? are the “deformed” Bessel functions

1 02 AN A
n=gn (1= 5) |(V55) - (V555)

Below we will omit the argument of I,,, always assuming it to be the same as in (24.13).

(24.13)

The expansion (24.12) allows us to write the Baxter function (24.6) as

—2g0/x +oo
Qi (l/z)=Cy > Iha™

n=—oo

e

T(.CE) — €+299:ch_(x) + -

We can now find Q_ as the regular part of the Laurent expansion of T:

_ “+o0o
e 2g0x

Q- (1) =C1— > i, (24.14)

n=1
From (24.1) we see that Q4 (0) = 1, so setting = 0 in the last equation we fix C; as

V2 — 92

C, =
! 71'11

(24.15)
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Since L = 0 we have Cy = 0, while the coefficient ¢ in (24.9) is read off from (24.14):

26 I
= 290+ ———. 24.1
5 (24.16)
Then from (24.8) we get the energy
I 5\1/2)
Og > ( 3 2 0?
I'p=-2(¢—90 , A= (4w 1-%). 24.17
L= 20 ) ) (4ng) (1- &) (24.17)

Remarkably, this is precisely the localization result of [147]! This is the first successful

check of our construction.

24.2 Non-zero L

Let us now find the explicit expression for the energy at any L.

First we need to compute the coefficients Cy, using the equation (24.6). From (24.2)
we see that the left hand side of (24.6) should not contain terms with powers of x from
—L to L, and also the coefficient of the ! term should be 1. After we expand the
right hand side according to (24.12) this condition generates 2L + 1 equations for 2L + 1

variables Cp:

L
Z Ifn_ka+L+1 :07 m:—L—i—lL,
=1L (24.18)
Z Ifn—ka‘FL‘i’l :17 m:L—l—l
k=—L
This linear system can be formulated in matrix form:
(M2r)ikCrtL+1 = Gi, 141, (24.19)
where
oI o Iy Iy
0 0 0 0
I3 - I3y Iy
Mpy = : : : : . (24.20)
IJO\/ 1—101771 T 119 Ig
By 1% - 1 0
By Cramer’s rule we obtain the solution
dot MELALR)
Cp = 2L (24.21)

det Moy, 7
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where ./\/lg\?’b) is the matrix obtained from My by deleting a'" row and b column. Plug-

ging these coefficients into Pr(x) we can combine it into a determinant again:

O R IET R (aPY)
0 0 0 0
1 IQ Il e I3*2L IQ*QL
P = — 24.22
() det Moy, ( )
IzeL 129L71 119 Ig
oL gL .. gLl L

Notice that now from (24.6) we have the Baxter function T(z) in a fully explicit form.
In particular, one can easily find the functions Q+ encoding the Bethe roots. Namely, Q_

is the regular part of the Laurent expansion of T(x),
Q- (x) = =Ll 2 [T (a)], (24.23)

while Q4 (z) = Q_(—x).
It remains to find ¢ — the coefficient of expansion of Q4 which enters the expression
for I'r,(g). Consider expansion of (24.6) around x = 0, taking into account the definition

of T (24.2):

400 L
(14+2g0x+4... )z (14 cx+. .. ) +negative powers = Z Ian Z Crari1a® (24.24)
n=-—00 k=—L
Equating the coefficients of 2 on both sides we get
L
200+ c= Y Iio 1Chirt - (24.25)

k=—L
Plugging the solution for C} into the right hand side of the last equation we see that it
combines nicely into a ratio of two determinants, resulting in

det MRLAL2L+2)

= —2g0 2L+1 . 24.2
¢ 90 + det Moy, ( 6)

The determinants det ./\/lg\c;’b) satisfy a number of useful identities which allow us to bring

the expressions for ¢ and C7/Cs to the following form:

det MS?) det M2
c= 290+ — 7N, C1/Cy = 67%1) (24.27)
det My, det My,
Finally we can plug (24.27) into (24.8) and write our main result for I';,(g)
det M)
Lr(g) = (¢ —0)g(rop—1—121), TN = [l (24.28)

det My



24.3 Weak and strong coupling limit 104

Using the identities for these determinants, we can represent it in a compact form. The

final formula reads

i) = © 7 aslog oot

— 24.29
4 08 det Moy ( )

This is our main result which was announced in the Introduction. As an example, for

L =1 it reduces to

1 (1) — 201818 + (19)° 1Y

I'i(g9) = (¢—0)g (24.30)
(1) - 1+ (18)°
while for higher values of L the expression becomes quite lengthy.
A form more suitable for some calculations is
det M(L2L+2)
Tr(g) = (—1)"* (¢ — 0)g— =L —. (24.31)

det Moy,

Notice that here the matrix in the numerator is just Moy with all indices of deformed
Bessel functions I? increased by 1.
The explicit result for the energy (24.29) concludes our analytical solution of the cusp

TBA equations. In the next subsection we will describe several checks of the result.

24.3 Weak and strong coupling limit

While for L = 0 our result matches fully the prediction from localization, at nonzero L
our result is new. Here we will show that it passes several nontrivial checks.

At strong coupling our computation should reproduce the energy of the corresponding
classical string solution which was computed in [164] (see also [146] for relevant calculations
at strong and at weak coupling). To do this we first expanded the energy at large g and
fixed L for several first values of L. The dependence on L happened to be polynomial

which allows us to easily extend the result to an arbitrary L:

Iy g 6L+3  3((6L>+6L+1)7*—20%(L+1)L)

200-00 Va2 8- 128972 (2 — 62)°/°

(24.32)

To compare with the classical string energy we re-expanded this formula in the regime
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when L and g are both large, but £ = L/g is fixed. Then at leading order in g we found

1N g 3L 9L 5L3 4514
2060-00 <_ ar? 64g7r3 256927T4+16384g37r5> (24.33)
N 92( 21> * 105L >
o T 47r ©128g7® 169275 32768¢377
N 94< 3L 99L*  3L*  2085L° )
875 471'6 © 512g77  32¢278  131072¢370
N 96< 2250 L*  7905L% )
167?7 7r8 1024979  8¢2m10  262144g3711
59 3L 199512 5L3 97425L%

+ o ( 12879 4710 8192gmll 3242712 2097152937r13> ’
which perfectly matches the expansion of the classical string energy from [164]! Since the
classical energy was derived without appealing to integrability, this matching is a direct
test of our calculation for nonzero L.

Later on a curious symmetry of the Bremsstrahlung function we computed was found
in [167] and revealed new structure in the strong coupling limit. The strong coupling
regime was studied further in [168] where the matrix model representation of (24.31) led
to a classical spectral curve which describes the scaling limit L,g — co, L ~ g.

At weak coupling we can compare our result to the leading Luscher correction to the
energy. This correction was computed, as well as shown to follow from the TBA equations,
in [63], [64] for generic ¢ and 6. It was also reproduced in [166]3¢ by a direct perturbative
calculation. When 6 ~ ¢ this Luscher correction reduces to

Ip=(¢— ‘9)92L+2W31+2L < 2;0) +O(g? Y (24.34)

where Bj95, are the Bernoulli polynomials. For L = 0,1,2, 3,4 we have checked that this

expression precisely coincides with the leading weak-coupling term of our result.

25 Conclusions

We have computed explicitly the generalized cusp anomalous dimension I'f,(g, ¢, 6) in the
near-BPS limit when ¢ ~ 6. We have thus extended the § = 0 calculation of [164] to the
arbitrary 6 case. Our result (24.29) is fully non-perturbative and covers generic values for
three (g, L and 0) out of four parameters in the cusp anomalous dimension.

Let us also mention that having the all-loop analytic solution of the TBA presented

here allowed in [16] to understand in part how the original QSC can be adapted to this

36except for the overall coefficient which was not fixed in [166]
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twisted case. A nice match was found between the Baxter equation and the equations of
the QSC, in particular the function Pr(x) featuring in our solution is naturally identified
wth one of the P-functions of the QSC up to a simple prefactor. We will see how the
near-BPS solution is reconstructed directly from the QSC in the next part.

At L = 0 our result matches an earlier localization calculation. For nonzero L it serves
as a new integrability-based prediction for localization techniques, and is fully confirmed
by nontrivial checks both at strong and at weak coupling.

Our result for I'y, has a form of a logarithmic derivative of a ratio of determinants,
which hints that it could be obtained as an expectation value of some quantity in a matrix
model. As in the § = 0 case [164] we expect that matrix model techniques should be very

useful to analyze the semiclassical expansion of our predictions at large L.
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Part VI

QSC for the cusp anomalous dimension

In this part, based on [12], we will formulate the Quantum Spectral Curve capturing the
generalized cusp anomalous dimension for arbitrary values of the parameters and at any
coupling. We will provide numerous tests of the construction and use it to generate new

results.

26 Introduction

In the previous part we have seen that the generalized cusp anomalous dimension (equiv-
alently, the generalized quark-antiquark potential) is described by an infinite system of
TBA /Y-system equations. We will show how to adapt the Quantum Spectral Curve ap-
proach to this observable. Instead of deriving the QSC from the TBA (which is how the
original QSC was obtained in [52, 53]), we make a proposal based on available data and
consistency of the equations, and confirm it by several highly nontrivial tests. We find
that all functional equations of the QSC remain unchanged, but the asymptotics at large
values of the spectral parameter, as well as some of the analyticity properties, should
be modified. In particular some functions acquire exponential asymptotics ~ e+?% =0t
as expected by analogy with spin chain Q-functions in the presence of twisted boundary
conditions. We also observed that rather subtle cancelations take place resulting in com-
plicated constraints on subleading coefficients in the large u asymptotics of Q-functions.
As an application we compute the subleading term (of order (¢ — 6)?) in the near-BPS
expansion of I'cysp without scalar insertions, at any coupling and for any ¢. Our explicit
result (28.26) fully agrees with perturbative predictions.

We will discuss the modifications needed in the QSC, focussing on the vacuum state,
i.e. with only Z fields inserted at the cusp, but keeping L arbitrary. Then we reconstruct
the near-BPS solution at any 6 and L, and for L = 0 extend it to the next order in the
near-BPS expansion. Next we describe a highly precise numerical method for solving the
QSC equations and demonstrate it on several examples. After this we discuss the weak

coupling solution at generic angles, and finally present conclusions.
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27 Constructing the Quantum Spectral Curve

In this section we will discuss the modifications in the QSC which are needed to describe
the generalized quark-antiquark potential. Below we will only discuss the vacuum state,
i.e. the Wilson line with L scalar insertions at the cusp (the extension for more general
insertions should be straightforward).

The Quantum Spectral Curve equations of [52, 53] in N' = 4 SYM can be deduced
from the TBA equations or the corresponding T- and Y-systems with special analyticity
assumptions. In our case the TBA equations for the generalised cusp are almost the same
as the original TBA system. The Y-system and T-system equations are exactly the same
as for the original problem. Thus it is natural to expect that the QSC equations should
also be the same to a large extent. In the TBA there are only two important differences:
the extra boundary dressing phase supplementing the BES phase, and the twists which
appear as chemical potentials and introduce the angles ¢, into the problem®’. We do
not derive the QSC from the Thermodynamic Bethe ansatz, rather we will put forward
and motivate a proposal which is consistent with several highly nontrivial checks, leaving
little doubt as to its correctness.

First, we expect to have the same set of Q-functions and auxiliary functions such as
ltab as in the original problem. All of them will satisfy the same functional relations,
for instance the Ppu-system equations or the QQ-relations are unchanged. However some
analyticity properties will change, as we will discuss below, and in particular the P-
functions acquire an extra cut going from v = 0 to infinity. In addition, the large w
asymptotics clearly need to be modified. Indeed, the twists in the boundary conditions
typically correspond to imposing exponential rather than powerlike asymptotics for the Q-
functions (see e.g. [53] and references therein). In our case the angle 6 is naturally related
to the S% part of the geometry, which qualitatively corresponds to the P-functions, so
roughly speaking we expect P, ~ et at large u. Similarly, the angle ¢ is associated to
AdSs leading to Q; ~ e*?*. This argument is also supported by the expectation that P’s
and Q’s should be related in the classical limit to the quasimomenta for S° and AdSs,
correspondingly. Similarly, we expect that L should enter the power in the asymptotics of

P’s, while the power in the asymptotics of Q’s should contain A.

37There is also an extra symmetry requirement on the Y-functions of the TBA, namely they should be
invariant under the exchange of the two wings of the Y-system with a simultaneous reflection u — —u, i.e.

Ya,s(u) = Ya,—s(—u), see [63, 64] for details.



109

In the original QSC proposal [53] some guidance to fix the powers in the asymptotics
came from comparison with the Asymptotic Bethe ansatz (ABA) which can be reproduced
from the QSC, and also with the classical spectral curve. For our problem the ABA is
also available [63, 64], and another piece of information is the all-loop solution of the
Pp system to leading order in the near-BPS expansion, based on analytic solutions of
the TBA [164, 52, 16]. In particular these solutions suggest that the large u asymptotics
should contain half-integer powers coming from a /u prefactor which the P’s contain.
However it turns out that there is an important subtlety — in the near-BPS limit the
leading large u coefficient in P3, P4 vanishes, making it not straightforward to guess the
correct asymptotics even knowing the all-loop result.

The available data indicates that, first, the boundary dressing phase leads to exponen-
tial rather than powerlike asymptotics in pqp. This was already observed in [52, 16]. More

precisely, we should have

12

w'? ~ const - 27Ul ()13

w™ ~ const, wt

~ const, u— 00 (27.1)

while other components of w” become zero at infinity. This translates via (4.35) into
eT2™ asymptotics in some components of the fi,, matrix.

It remains to fix the powers in the asymptotics of P’s and Q’s, and relate their large
u expansion coefficients to the charges of the state. To do this we demanded consistency
of the equations (4.20), (4.22) expanded at large u. This precisely follows the logic for the
undeformed case, where e.g. the relations for leading coefficients of P’s follow from the
powers in the asymptotics of these functions once we require consistency of the fucntional
equations (4.20), (4.22). However, our case turned out to be much more tricky, in particu-
lar since some of the twists are the same (e.g. two of the P, functions scale with the same
exponent ~ 69“) there are many subtle cancellations at the first several orders. It was
also convenient at intermediate steps to use (4.41) as well as the 4th order Baxter-type
difference equation on Q; with coefficients built from P,, P® — this equation follows from
(4.20), (4.22) (see [72] for details on its derivation). Finally, already the near-BPS solu-
tion suggests that not all four P, are independent, e.g. P1(u) is equal up to a constant

to PQ(—U).
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As a result, we found the following large u asymptotics:

Pi(u) = C?u V2 Let0upiy) | f(u) =1+ a1/u+ ag/u®+ as/u’ +..(27.2)
Py(u) = Ce?u P E e f(—u),

Pa() = 52wt e g(hu) | glu) = 14 byfut bafu? 4 bo/ud + ..
Pu(u) — R RE VLTS ) e~Pug(—u) .

Here L is the number of scalar insertions at the cusp, while the constant C' is unfixed
and can be set to 1 by the rescaling symmetry as discussed below (27.8), (27.9). The
coefficients should satisfy

o i(cos — cos ¢)?

(L +1)(2cosfcos ¢+ cos26 — 3)
2(L +1)sin%6 '

2sinf(cosf — cos @)

, a1 — bl = — (273)

The relation which includes A = I'cgp is more involved and we give its full form in Eq.

(C.1), Appendix C.1. For L = 0 it reduces to

ay 5 (1 —cosfcos o)

(cos ) — cos ¢)>
sin?0 = 'sinf(cosf — cos @)

AQ
sin fsin? ¢

|:a1a2 + arby — (274)

— agcot0+a3—b3] .

We see that in contrast to the undeformed case we need to expand P’s up to fourth order
at large u to extract the conformal dimension! With these asymptotic constraints the
Pu-system becomes a closed a set of equations fixing the cusp anomalous dimension.
Notice that the asymptotics of P, contains half-integer powers of u. Thus P, are not
as regular as in the case of local operators and should necessarily have extra cuts. Thus
we require the regularity on the plane with only Zhukovsky cuts not for P, (or Q;) but

for
Pa = Pa/\/aa q; = (Qz/\/a . (27.5)

This is an important additional analyticity condition. Let us underline that the extra \/u
factor in (27.5) is not e.g. an artefact of the weak coupling expansion. Its presence at
finite coupling is a part of our proposal, already observed in [16] based on the near-BPS
all-loop solution of the TBA. It is further confirmed here by numerical results at strong
coupling and analytic solution at weak coupling (which are described below).
Alternatively to the Pu-system one can use the Qw system described in (4.33) which
is also a closed set of equations provided the proper constraints at large u are imposed.

In our case the leading asymptotics of Q; are

Ql ~ ul/2—i—Aeu¢>7 QZ ~ u1/2—|—A6—u¢’ QS ~ u1/2—A€u¢’ Q4 ~ ul/Q—Ae—wb ] (276)
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The coefficients in their large u expansion are constrained similarly to (27.2), (27.4), and in
particular one can extract from them the R-charge L. We give the corresponding relations
in Appendix C.2.

Finally, like in the sl(2) sector of the original QSC we have

P'l=-P,, PP=+4P3 , PP’=-Py , P'=+Py, = p; (27.7)

due to which P*P, = 0 is satisfied automatically.

It is useful to note that there is a rescaling symmetry under which
P, — aPy, Py = aPsy, P3 — o 'P3, Py — o 'Py, (27.8)

pi2 — &g, piza — @ g (27.9)

while other pq, are not changed (« is a constant). In particular with this rescaling one can
set to 1 the constant C' appearing in (27.2). We also have the y-symmetry transformation
[15, 53] which reads

P;s —» P34+ Py, Py — Py —APo, (27.10)

(114 — p14 — YH12, f34 — p3a + 2yp1a — Yo (27.11)

with constant y. With this transformation the coefficients in the asymptotics of P’s will
also change, e.g. for L =0

bg—>b2+C:/Y, b3—>b3+0627a1, (27.12)
The formula (27.4) for A is invariant under this transformation, as it should be.

As discussed above, from (27.2) we see that when ¢ — 6 the leading coefficient in
P3, P, is proportional to (¢ — 6?)3/ 2 and thus is not visible at the leading order in the
near-BPS expansion. The next coefficients by, bs, ... will scale as 1/(¢ — 6) and thus all
P, are of order \/é — 0, as expected from the solution found in [16]. We will reconstruct
this solution in the next section.

The asymptotics discussed in this section constitute our main result. They provide the
crucial boundary conditions, thus concluding the reduction of the infinite TBA system of
[63, 64] to the finite set of QSC equations.

In the next sections we will demonstrate the usage of the QSC in several cases. We
will compute at all loops the next-to-leading term in the near-BPS expansion, solve the
equations numerically and also construct the leading weak coupling solution. All these

calculations provide stringent tests of our proposal as well as giving new results.
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28 Near-BPS solution

In this section we will describe the solution of the QSC in the near-BPS limit ¢ — 6. We
will first recover the leading order solution at arbitrary 6 found in [16], and then extend
it to the next order. This calculation is quite similar to the iterative solution of the QSC
at small spin studied in [15]. The main outcome is a prediction for the value of I'cygp at

order (¢ — 0)? to all loops.

28.1 Leading order

In the limit ¢ — 0 the generalized cusp anomalous dimension can be written as

2
A= 080 =080 Ny 4 (Cow—cosf)> AD () + O((6— 0)°) . (28.1)

sin ¢ sin ¢
The first coefficient, also known as the Bremsstrahlung function, was computed at any

coupling in [147, 148] and later reproduced from integrability in [164, 16] by a direct
analytic solution of the TBA in this limit. It reads

/1_ &
B 2%g I (47rg 1 7r2> |

In [16] the leading near-BPS solution was obtained from the TBA and linked to the

AD () (28.2)

Ppu-system. Let us rederive this solution using solely the information coming from our
asymptotics.

The key simplification is that Py, P, ~ /¢ — 8 are small. This can be seen from our
general asymptotics (27.2), (27.6), (C.3) where we have to send € ~ ¢ — § — 0 meaning
that in the near-BPS limit we get

P1 ~ u71/27L6+9u , 1:)2 ~ u71/27L679u , P3 ~ u1/2+Le+9u , P4 ~ u1/2+L679u ’

(28.3)

and

Q' ~u V2 Ee 0 Q2 2Lt 0 QB /2 E 0t L2 Lt Ou
(28.4)
Notice that the leading coefficient in P35 and P4 tends to zero faster than the subleading

ones since a; — by ~ 1/e, which modifies the expected behaviour at infinity in this limit
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(and similarly for Qs3, Q4). Thus we can write the expansion of P and u as
P, =PO 1+ PY + 06— 0)72), =Y + 1) + O((6 - 0)?) (28.5)
where the scaling is

PO ~ (6 —0)2, PW ~ (6 — )32, P91,y (o-0). (28.6)

(0)
ab aTe

From (4.30) we see that at leading order the discontinuity of 1, vanishes so p
periodic entire functions. To fix them we should look in more detail at the functions
Qaji and Qqp)ij, using (4.35) and our prescription (27.1) which states in particular that
w2 ~ e2mlul 4y —5 0o For ¢ ~ 6 the r.h.s. of (4.20) is small so Q; are periodic functions.
At the same time their large u asymptotics should be consistent with that of Q; and P,
from (28.3), (28.4), meaning that Qq); =~ ulNaig¥ai where 1)4; can be equal to £26 or to 0

in our limit. From that we conlude that Q,; must be constants. Moreover the relation

Pa = _QZQ:‘Z ) (287)

together with (28.3), (28.4) means that the only nonzero constants are

0 Ki 0 0
Ky 0 0 0
Qali = : (28.8)
0 0 0 K;
0 0 K4 0

In other words P, and Q; are the same in this limit after a relabeling of their indices (up
to a constant factor). This is indeed an expected feature for a BPS configuration where
cancellation between S° and AdSs modes is taking place. Similarly, w” and u® should
coincide after the same relabeling of indices.

Together with our requirement (27.1) this means that 12 = B + B1e*™ + Boe 2™,
p13 and pog are constants, while other ., are zero. Note that since we should have a
u — —u symmetry of the system, of course 12 should be either even or odd which further

constrains these constants. This leads to (see [12] for full details)

0 . 0 0 0 0
ug; = Asinh(27u), ug3) =1, ,u§4) =0, ,u,é4) =1, M:(g4) =0 (28.9)

where A is a constant. This also implies that at leading order

w'? = const - sinh(27u) . (28.10)
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Therefore the equations on the P’s to leading order take the form

P’ = Asinh(2mu)P - PY (28.11)
f’g)) = Asinh(Qﬂ'u)PiO) _ Pgo)

P = pY

PO = P,

To solve them let us first introduce some notation. We have a very useful expansion

sinh(2ru)e 20001/ = N g (28.12)

n=—oo

1 [ e2 AN =0\
Ig:f”(‘”g 1_7r2> [( wj()) _(_Dn( w+9>

with I, being the modified Bessel function. By x(u) we denote the usual Zhukovsky

where

: (28.13)

variable which resolves the cut [—2g, 2¢],

1
gt -—=2 |z|>1. (28.14)
r g
We also have
10, =179 = (—1)"*+1? (28.15)
and let us introduce
[e.e] oo
Si(@)=) L™, S_(x)=> L2 . (28.16)
n=1 n=1
In this notation we have e.g.
Sy + S_ = sinh(27u)e290@=1/2) (28.17)

(notice that applying the tilde amounts to flipping x — 1/x). We see that S, is the part
of the Laurent expansion of sinh(Zwu)e_Qge(x_l/ ) containing negative powers of z. We

can alternatively write it as a contour integral

1 d
Si(a) = 51 2 sinb(zngly + 1/y))e 010 (28.18)

where the contour goes counterclockwise around the unit circle.
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Focussing on the case L = 0 we can now write the explicit solution of (28.11):3%

PO = BVAu el S 0y (28.19)
n=1

PO = BYAue 010y [0, (28.20)
n=1

0 B z—1/x

PO = o e to0(a—1/x) (28.21)

pO - B e (28.22)

VA

where B ~ /¢ — 0 is a constant fixed from asymptotics (27.2) as

—i(¢ —0)

B= .
gI?

(28.23)

The constant A is arbitrary and is related to the constant C' appearing in the asymptotics
(27.2), so using the rescaling (27.8), (27.9) one can set either A or C' to 1. One can check
that this solution is fully consistent with the asymptotics (27.2), noting that, as discussed
above, in (27.2) the leading coefficient in P3, P4 vanishes and all b; ~ 1/(¢ — #). This

solution also reproduces via (27.4) the known result for A at the leading order in (¢ — 8),

b (Mg\/@) +O0((0 - 0)*) . (28.24)
V=t <4ﬂgﬁ)

We also translated to our conventions the solution for any L constructed in [16] and we

A=—2¢—0)

present it in appendix C.3. Remarkably, the result for I'c,sp, extracted from this solution
via our asymptotic relations (27.2), (27.4) perfectly matches the known predictions from
TBA found in [16] (we have checked this explicitly for the first several values of L). This

is already a nontrivial check of the proposed large u asymptotics.

28.2 Next-to-leading order

Let us now discuss the solution of the Py system at the next order in (¢ — 6). The
calculation is rather similar to the one discussed in part II for the small spin expansion,
apart from several technical complications. While full details are given in [12], here we will

only quote the final result for the anomalous dimension. To compare with the literature

38 This solution is slightly different from the one described in [16], as e.g. the relations (27.7) between
P® and P, that we use differ by a sign compared to those used in that paper. The solution given in [16]

is of course also valid, in the conventions used in that work.
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we found it convenient to bring our result to the form

cos ¢ — cos 6 cos ¢ — cos 6 2
A= "0 P72 AD =F P} AG) —9)3 28.2
ol + (UL AR o6 -0 (525)
so that at each order we have a nontrivial function of ¢ . Our all-loop result reads
1 [du du
2) - _Z z by
A (@) 5 % = 7{ 5 Uty X (28.26)

[DoT 4 (ua — uy) + Dol'o(ue — uy) +D-T'_(us — uy)]

where both integrals run clockwise around the cut [—2g,2¢| and

1Sy (y)e2092+290/x+290y—29¢/y

D, =
+ g3If)
28 28 dgpr—4go/x 2 2 I¢ S
. (- +((ﬁy) 284 (z)e : N 2y n 293 n (;fv +(y) ’
91 91 y -1 a*-1 (I7)*(2% = 1)
218 Si(x 198, (z 212
Do = +g§y) +(¢) _ ¢2 () i 7 (28.27)
9*1; 9l (IP)2(x2 —1) (z+1/z)(2* = 1)
D IS 1Sy (x))2e290a—299/v-290y+299/y

Gy (22 1)

We recall that Sy was defined in (28.16), and the kernels I" entering (28.26) are given by

I_g(u) = e*”“i [6_%.19 - 6%.9 ] , (28.28)
—Lu +wm  u—1n
e 62in9 e—2in9

Typ(u) = {u e m} (28.29)

n=1

Let us now discuss several checks of our main result (28.26) at weak coupling. It is
straightforward to expand it for ¢ — 0 simply by expanding the integrand in (28.26) at
weak coupling and taking the residue at u,,u, = 0. Then we can make a test against
perturbative predictions known up to four loops. In general the structure at weak coupling

is expected to be

A= y(0,0)g™" (28.30)
n=1
with
" (cos¢ — cosO\* (k)
nl0.0) =3 (CL0) S0 (25.31)
k=1

Our all-loop result allows to compute all coeficients %(?)(qb) in this expansion. Notice that

at each loop order only a finite number of terms in the near-BPS expansion contribute, e.g.

the two-loop result is completely determined by the first two terms in (28.25). For arbitrary
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¢ and 6 the anomalous dimension was computed directly up to two loops [169, 146] giving

W) = 20, (28.32)
W) = S8 -, (28.33)
WD(p) = 2ig [Lig(e%‘b)—Lig(e_%b)}—Q[Lig(ezm)—i—Lig(e_zid’)]+4C(3)(28.34)

and in [170] this data was reproduced from the TBA. We found that the weak coupling
expansion of our result perfectly matches the prediction (28.34).

The cusp anomalous dimension was also computed to four loops in [166, 171], giving
a prediction for the coefficients 'y§2)(¢), f)(@ which our result should reproduce. Indeed
we found a perfect match with the perturbative data. The predictions of [171] are written
in terms of harmonic polylogarithms, but match the expansion of our result?® which does

not include more complicated functions than Li,. At three loops our result gives

W(6) =24 [Lig(e ) + Lis(e%%)] - 1816 [Lig(¢*?) — Lig(e™)] (28.35)
—49* [Lia(e™%) + Lig ()| + %i(w — 6)(¢+ ™) [Lia(e¥?) — Lig(e™2)]
b2 (67 = ) 6 [log(1 — ¥9) + log(1 — ¢29)] +8 (¢(3)6” ~ 6¢(5))

while at four loops

1W(0) = =280 [Lin(e") + Lis(e )] + 1900 [Lig(e¥) ~ Lig(c**)] (2830
+ (44¢2 + 163”2> [Li5(e2i¢) + Li5(e—2i¢)]
+§i¢ (11¢* — 177%) [Li4(e2i¢) - Li4(e—2i¢)}

+§ (186" = 21726% + 71) [Lig(¢2) + Lig(e )]

—%’i (15¢° — 227%¢° + 7r9) [LiQ(eM) _ Liz(ﬂiqs)}

—i—%o (¢3 _ 7T2¢)2 [log(l _ 62i¢) + log(1 —2i¢)}
(7*¢(3) + 672¢(5) — 315¢(7))

—e
+16¢(3)¢" — g (47¢(3) + 33¢(5)) ¢* — 19—6
In fact it is clear that at any loop order our result would generate Li, at most. The reason
is that when evaluating the integral (28.26) by residues the most complicated functions
that can appear are the Li, (e*?*?) coming from expansion of the kernels (28.28), (28.29).

As a further example we computed the novel five- and six-loop coefficients, given in Eq.

(C.18) (Appendix C.4).

39we checked this numerically for some particular values of ¢
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Thus at weak coupling our result matches known predictions to four loops, which serves
as a deep test of the proposed Quantum Spectral Curve equations and of our near-BPS

calculation.

29 Numerical solution

The formulation of the problem in terms of the QSC allows for an efficient numerical
analysis of I'cysp at finite coupling. A highly precise and fast converging numerical method
for solving the original QSC for local operators was proposed in [14]. Here we will describe
how to modify it in the present case, and then demonstrate several applications. We will
focus on the case L = 0, but we expect the discussion in this section should be valid for

general L with minor changes.

29.1 The numerical algorithm

We start in the same way as in the numerical solution of the QSC for local operators:
we parameterize the P-functions in terms of unknown coefficients ¢, and build the Qg
functions which allow to obtain Q;,bQ; on the cut [—2¢,2g]. The only difference is that
all these functions have exponential asymptotics, but this is easily incorporated in the
algorithm.

The most important step is to close the equations in terms of Q;, Q; and find the free
coefficients ¢, . For that we use the very convenient trick proposed originally in [13]. Let
us discuss it in some detail as this is a crucial part of the calculation. We start by noticing
that Q;(u) and Q;(—u) should satisfy the same 4th order difference equation following
from (4.20), (4.22) with coefficients built from P-functions as the equation is symmetric

under u — —u. As we discussed in section 27, Eq. (27.5), it is simpler to work with

qi(u) = Qi(u)/Vu . (29.1)

Then we have q;(u) = Qi (u)gj(—u) where Qf(u) are some i—periodic functions. As Q;
have a definite asymptotics with prescribed exponential part (27.6), all Qi (u) become
constant at large u and furthermore only a few of them are nonzero at infinity, namely
Qf, Q% i, QF. We also know that q;(u) = w;j(u)x’*qx(u) where w;; are i-periodic.

Combining these relations we find

am(u) = ot (uw)qi(—u), m=1,23,4 (29.2)
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where al, = wy,; x\?*QL are i-periodic (being built from periodic functions) and moreover
analytic since q;(u) and g;(—u) are analytic in the lower half-plane. In addition to this,
most of the functions o, are equal to zero, because according to our prescription (27.1)
from section 27 the only nonzero components of w;; at infinity are w34 ~ const - e2mlul and
w13, waq ~ const. Using also that most components of Qi are zero at large u we get from

(29.2) the following equations (it’s enough for us to consider only qi,q4)

Qi(u) = siqi(—u) (29.3)
Qu(u) = (ae®™ +be 2™ + ¢)qi(—u) + s4qs(—u)

where s1, s4,a,b, c are constants, and moreover a and b are nonzero as Q% and the expo-
nential part of wsy are nonzero at infinity. Applying tilde to the first equation we also
get

ai(u) = s1@1(~u) = (s1)*a(w) (29.4)

so (s1)? = 1. Similarly from the second equation we find (s4)% = 1 as well as

asi+bsy = 0 (29.5)
bsi+asy = 0
cs1+csy = 0.

This system has two solutions: either
$1 =284, a=—b, c=0 (29.6)
or
s1 = —s4, a =b, and cis arbitrary. (29.7)

By comparing to the leading near-BPS solution where w'? oc sinh(27u) (see Eq. (28.10)),
we see that the first option is the correct one. It remains only to fix the sign of s;. For
that let us consider the explicit solution (28.19)-(28.22) for P, in the near-BPS limit. We
see that for p, = P,/+/u we have

p3(u) = p3(—u) (29.8)

As in the near-BPS limit we expect to identify q; and p3, comparing this relation with
the first equation in (29.3) we see that we should choose s; = +1.

In summary, we get a remarkably simple set of equations:

qs(u) = Asinh(2mu)qi(—u) + qa(—u) (29.10)
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where A is a constant and we recall that in our notation q;(u) = Q;(u)/y/u. These are
the key equations which are enough to close the system. Let us stress that they are exact
and are not restricted to large u or near-BPS limit. In particular, similarly to [13] these
equations should be useful for a systematic weak coupling solution. With this approach
we can completely avoid computing w;; as we are able to close the system using various Q-
functions only. Notice also that in [13] the resulting equations were similar but coefficients
in the r.h.s. were all constant, while here we also have sinh(27u).

Now, finally, as we know Q; and Q; on the cut, we can evaluate both sides of (29.9),
(29.10) at sampling points uy on the cut, and minimize the difference between them. More

precisely, we can express the constant A from (29.10) as

4= () —aqi(~u)

29.11
q1 (—u) sinh(27u) (29-11)

and we build a function which on the true solution of the QSC should be zero*°:
Gu(e) — da(Zur) (29.12)

F=Y"1q —ai(—ug)[* + V
%!m(uxc) qi(—ug)|” 4 Var d1 (—uyg) sinh(27uy)

where Var denotes the variance, i.e. measures the deviation of the function from a constant
41 Thus we have reduced the problem to minimization of F' which is a function of our main
parameters ¢, . It’s easy to see that F' can be written as the norm of a 2N-dimensional
vector where IV is the number of sampling points. Therefore to find its minimum we
can use the iterative Levenberg-Marquardt algorithm (an improved version of Newton’s
method) as in [14]. It converges rather fast and robustly, giving the values of coefficients

Can- Now we can reconstruct the P’s and compute the anomalous dimension from e.g.

(27.4).

29.2 Results

Let us now present the numerical results we obtained. First, we have evaluated I'c,sp for
a wide range of the coupling from g = 0 up to ¢ = 0.85 at fixed values of the angles
¢ =m/4, 0 = 4r1/10. The results are given in Table 4. A fit of our data at weak coupling

10As in (29.12) we have sinh(27uy) in denominator we should make sure the sampling points do not
include ur = 0. We choose N sampling points as ur = 2gzr where z are zeros of the N-th Chebyshev

polynomial T (z).
Var [fu] = 3, | fe — f|? where f is the average of all elements f.
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g Leusp(9) g Leusp(9) g Leusp(9) 9 | Teusp(9)

0.0125 | 0.000138062 || 0.025 | 0.000550881 || 0.0375 | 0.0012344 || 0.05 | 0.00218203
0.0625 | 0.00338487 || 0.075 | 0.00483202 || 0.0875 | 0.00651094 || 0.1 | 0.00840784
0.1125 | 0.010508 0.125 | 0.0127963 || 0.1375 | 0.0152575 || 0.15 | 0.0178762
0.1625 | 0.0206379 || 0.175 | 0.0235283 || 0.1875 | 0.0265342 || 0.2 | 0.0296431
0.2125 | 0.0328434 || 0.225 | 0.0361248 || 0.2375 | 0.0394776 || 0.25 | 0.0428933
0.2625 | 0.0463641 || 0.275 | 0.0498834 || 0.2875 | 0.053445 || 0.3 | 0.0570437
0.3125 | 0.0606747 || 0.325 | 0.0643342 || 0.3375 | 0.0680183 || 0.35 | 0.0717242
0.3625 | 0.0754492 || 0.375 | 0.0791908 || 0.3875 | 0.0829471 || 0.4 | 0.0867164
0.4125 | 0.0904971 || 0.425 | 0.0942879 || 0.4375 | 0.0980876 || 0.45 | 0.101895

0.4625 | 0.10571 0.475 | 0.109532 0.4875 | 0.113359 0.5 |0.117191
0.5125 | 0.121027 0.525 | 0.124868 0.5375 | 0.128713 0.55 | 0.132561
0.5625 | 0.136413 0.575 | 0.140267 0.5875 | 0.144124 0.6 |0.147984

0.6125 | 0.151845 0.625 | 0.155709 0.6375 | 0.159575 0.65 | 0.163442
0.6625 | 0.167312 0.675 | 0.171182 0.6875 | 0.175054 0.7 ]0.178928
0.7125 | 0.182803 0.725 | 0.186679 0.7375 | 0.190556 0.75 | 0.194434
0.7625 | 0.198313 0.775 | 0.202193 0.7875 | 0.206074 0.8 | 0.209955
0.8125 | 0.213838 0.825 | 0.217721 0.8375 | 0.221605 0.85 | 0.22549

Table 4: Numerical data used for the plot in Fig. 29.2. We give the values of I'cusp at
finite coupling for ¢ = w/4, § = 47 /10. Precision is decreased to fit the page. The full

data set is available as attachment to the arXiv submission.
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Figure 14: Numerically evaluated cusp anomalous dimension I'¢,sp for ¢ = 7/4, 6 = 47 /10
in a wide range of the coupling g. Solid line shows the 4-loop perturbation theory prediction
of [169, 146, 166, 171]. Dashed lines indicate the leading strong coupling prediction for

the slope of the function at g — oo.

gives

T 47
1_‘cusp (QZ) = 179 = E’g

—4.7002219374112776568286369 ¢g* + 37.481607207831059124394 ¢°

> ~ (.8843331608401797458041129816 g* (29.13)

—321.37797809257617613 ¢® + 2845.9019611906881 ¢'°

—25984.505154213 ¢'2 + O(g'*)

which agrees with the analytical perturbative result of [169, 146, 166, 171] with 10722 +
1072°¢* +10721¢% + 107 18¢® error. The terms ¢'° and ¢'2 above also give a numerical
prediction for the five- and six-loop coefficients. One could try to get an analytic pre-
diction for them by fitting the numerical data as a combination of some basis harmonic
polylogarithms. This would require higher precision of course but should be possible to
do (e.g. in [13] more than 60 digits of precision were reached).

At strong coupling only the leading classical result is known in explicit form at generic
angles. It can be extracted from [146, 164] which gives the ~ g coefficient. For ¢ = 7 and
0= %r it gives T'classical ~ () 3129881¢. Fitting our data we get

cusp
47 0.00073853 1
= — _ — 29.14
T +0() o

which agrees nicely with the AdS/CFT prediction. Let us mention that at strong coupling

Ceusp <<z> = %, 9 ) ~ 0.3122892 g — 0.0410591 +

it requires some effort to get high precision since we need to keep many terms in the
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expansion of the P’s in owers of 2. It would be interesting to compare our result for the g°
term with the 1-loop prediction of [146] which is written in an implicit form. One should
also be able to derive the one-loop correction in a simpler and more general way by using
the algebraic curve as in [31]. On Fig. 29.2 one can see that our data clearly interpolates

between gauge and string theory results.

1ﬂa:usp

Figure 15: A 3d plot of I'cysp at fixed ¢ = 7/4 in a range of values of the coupling g and
the angle 0, generated from ~ 800 data points. We also added a semi-transparent purple
plane located at I'cysp = 0, and two red lines corresponding to the BPS configuration

0 = +¢ for which I'cysp = 0 (i.e. § = £7/4 in our case).

In addition, on Fig. 29.2 we show our numerical data for the generalized cusp anoma-
lous dimension at ¢ = /4 for various values of # and of the coupling. One can clearly see
in particular the straight lines corresponding to the BPS regime ¢ = 6 when I'cyp, is zero.
We covered the full range of 6 from —7 to 7, and on the plot one can see that as expected

Icusp is a smooth and 27-periodic function of this angle, invariant under 6 — —0.
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30 Weak coupling solution

In section 28 we constructed the solution of the QSC in the near-BPS limit ¢ — 6 — 0. In
this section we will describe the solution for arbitrary angles, at leading order in g. We
will discuss the case L = 0.

At weak coupling the cuts degenerate into poles, but the singular part is typically
suppressed by the coupling so one could expect P, to be regular at leading order. However
the asymptotics (27.2) mean that we have to allow a 1/4/u singularity in Py, P3. This

leads to the ansatz

P, = (30.1)

P; = 69“(03u3/2 + C4u1/2), Py= 6_9“(C5u3/2 + Cﬁul/z) .

Then all the coefficients are completely fixed by asymptotics (up to a rescaling (27.8)),

giving
oOu o—0u
Pi = Ve Pam Ve (30.2)
Ps = /232" (14 b/u), Py = —/ 203270 (1 — b/u)
where
b:2cosﬁcosgb+c0829—3 (30.3)

2sin f(cos 6 — cos @)
and e is defined in (27.3).
Let us now discuss pqp. At leading order in the weak coupling expansion we expect

that in the general expression
1
Hab = 5@ qpjij” (30-4)

only w!? will contribute, in analogy with the undeformed QSC [52, 53, 70] as this also what
happens in the asymptotic large L regime. Based on our large u prescription w'? ~ 27/

and the near-BPS solution (28.9), it is natural to take
w'? = const - sinh(27u) . (30.5)

In fact, for computing higher orders in the weak coupling expansion it should be better
to completely avoid calculating w” and apply instead the equations (29.9), (29.10) we

used in the numerics. For the functions (Qq12 we can make an ansatz as polynomials

+20u

whose degree is determined by the asymptotics of Qgp|12, times e in accordance with
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asymptotics again. Also, we expect that those of the functions Q4412 which do not have

exponential asymptotics should be either even or odd. Thus we use the following ansatz:
{Mﬁa [l [0 Mgy figs ) = (30.6)
sinh(27u) {Dl, e?"(Dy + uD3), Dyu® + Ds,
¢4 Dg + uDy), Dgu* + Dou® + Dw} :

To fix the constants D; appearing here we use the difference equation on g, following

from the Pu-system equations:
++ _ c c
Pap” — Mab = facP Py — 115 PPy (30.7)

where P% are related to P, by (27.7). This equation fixes all the constants except one,

and we get

+ 4+ o+
{N12v#137M147M24>M34} =

: 20u :
Rsinh(27u) {_5111(9’ BT(ZU — cot §), 51110 (— Y + 4u? + 1) ,
L _opu 1 2 2.
—5¢ (cot 0 + 2u), T (4u®+ 1) esinf p . (30.8)

Going to higher orders in g (see below) we also found that the constant R and w'? scale
as ~ 1/¢2.

The Q-functions can be found from the 4th order Baxter equation on Q; with coeffi-
cients built from P, (see [72] for its derivation). They turn out to be written in terms of
generalized n-functions defined as

ni ng
-2

1
U OE DS , |
n1>ng>>n,>0 (u+iny)st ... (u+ing)

(30.9)

For the case when all twists z; are equal to 1 such functions already appeared in the weak
coupling calculations of [109, 70]. Importantly, all operations needed for the iterative
procedure of [13] (e.g. expressing the product as a linear combination or solving equations
of the kind f(u + i) — f(u) = 051758 (u)) can be carried out for these functions as we
describe in Appendix C.5.

In terms of n-functions we found the following four linearly independent solutions of

the fourth order Baxter equation:

Q = Vue', (30.10)
Q = Vue ™,
_e"(sing + qu(ni — ni)(cos 6 — cos ¢))
Q= Vu(cos ¢ — cos ) ’
Q = e~ (—sin ¢ + iu(nf — ni)(cosf — cos ¢))

Vu(cos ¢ — cos )
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where z = €?? z = ¢ 2%, The true Q-functions should be identified with appropriate
linear combinations of these four solutions.

To fix the anomalous dimension I'¢,sp one needs to go to higher orders in g. This can
be done using the iterative algorithm of [13] for which P, and Q; we have found serve as
a starting point. Notice that the weak coupling algorithm of [70] is not directly applicable
in our situation, as all P, are of the same order ~ ¢” and none of them are small at weak
coupling. In particular, none of the five independent equations among (30.7) decouple
from the rest at leading order. However the universal iterative method of [13] works well,

2

and we used it to compute the P- and Q-functions at higher orders*?. In particular we

reproduced the one-loop prediction

5COS ¢ — cos 0
sin ¢

directly at any ¢ and 6. The details of this calculation will be presented elsewhere. Using

1—‘(:usp = 29 ¢ + 0(94) (3011)

this method it is certainly possible to also reach much higher loops.

31 Conclusions

In this part we have presented the modifications needed in the Quantum Spectral Curve
to describe the generalized cusp anomalous dimension. We showed that the main new
ingredient of the boundary TBA formulation — the boundary reflection phase [63, 64] —
is mapped to a simple modification of the w'? asymptotics. In addition, the analytical
properties of the key functions P,(u) and Q;(u) have to be modified, namely we require
regularity in v on the defining sheet (except for the branch cut) once these functions are
divided by /u, as described by Eq. (27.5).

Our proposal is consistent with the known near-BPS solution, and we also computed
the subleading term in the near-BPS expansion at any coupling. The result matches
perfectly the known perturbative predictions, providing a deep test of the QSC for this
model.

Curiously, our modification of the asymptotics for the component w'? of the periodic
anti-symmetric matrix w” is very similar to that needed for the analytic continuation in
Lorentz spin for the twist-2 local operators where the w'? asymptotics was relaxed to be

exponentially large [15, 72, 14]. It seems to be a common feature of non-local operators.

42To simplify intermediate expressions we used several Mathematica packages [107, 110]
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It would be interesting to classify all consistent asymptotics of this kind and find the
corresponding integrable observables.

The drastic simplification of the TBA we have achieved calls for a systematic explo-
ration of I'cysp in various regimes, with the hope of revealing new structures. It would
be also interesting to explore the connection to the supersymmetric hydrogenlike bound
states of massive W-bosons in N' =4 SYM [172].

While a numerical solution of the TBA is additionally complicated by the infinite sums
which diverge for real ¢ and 6 [170], the simple high-precision numerical method of [14]
for the QSC is applicable almost directly. Computing I'cysp numerically in a wide range
of the coupling we found perfect interpolation between gauge theory and string theory

predictions.
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Part VII

Quark-antiquark potential

In this part we present the results of [11] where the QSC was used to explore the flat space

quark-antiquark potential in a variety of regimes.

32 Introduction

One of the first predictions of AdS/CFT was the strong coupling limit of the poten-
tial between two heavy charged particles or “quarks” which is represented by a pair of
anti-parallel Wilson lines separated by distance r [173, 155]. The potential is inversely pro-
portional to the separation r due to conformal symmetry of the theory, with the strength
of the interaction depending on the gauge coupling gy ps. In the planar limit N, — oo the
potential is a highly non-trivial function of the 't Hooft coupling A = g%/MNc,

Q)

VAr)=— .

(32.1)

Currently the function Q(A) is known at 3 loops at weak coupling [173, 174, 146, 166,
175, 177, 178] and at one loop at strong coupling [179, 180, 181, 182]. In fact even at low
orders the weak coupling expansion is rather involved and requires using a nontrivial low-
energy effective theory. One can further generalize this observable by introducing an extra
parameter 6, which may be associated with relative flavors of the particles. The particle

flavor enters through the unit vector 7 in the expression for the Maldacena-Wilson line
Pexp [/(iAHx'“ +& -7t |])| . (32.2)

The parameter 6 is the angle between these vectors 7 for the two antiparallel lines. The
expectation value of the pair of the Maldacena-Wilson lines is related to the potential as

(W) = 0 (32.3)
where T > r is the extent of the lines.

In this part we study this important quantity Q(\, #) intensively using the integrability-
based Quantum Spectral Curve method introduced for local operators in [53, 52] and
generalized for a subclass of Wilson lines in [12], as described above. We show how the
results of [12] can be used to get a closed system of equations describing (A, #) exactly in

the whole range of the parameters A and #. We find the analytic weak coupling expansion
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up to 7 loops and also build a numerically-exact function interpolating from weak to strong
coupling regime. Finally, we study analytically the limit § — ico (with Ae™® fixed) to all
orders in the ‘t Hooft coupling*®. We demonstrate how the Schrodinger equation arising
from resummation of the ladder diagrams in this limit appears from the Quantum Spectral

Curve.

33 Quantum Spectral Curve for the quark—anti-quark po-

tential

The configuration of two anti-parallel Wilson lines is closely related to a configuration
where two straight lines meet at a cusp where they form an angle ¢ [150]. Indeed, the two
setups are linked by the plane to cylinder transformation where the cusp point is mapped
to infinity. In this picture the distance between the lines is given by r = ¢ — 7. When ¢
tends to 7 the curvature of the cylinder becomes irrelevant and one recovers the flat space
quark—anti-quark potential.

In [146, 63, 64] it was shown that the anomalous dimension of the cusped Maldacena-
Wilson line admits an integrability-based description in terms of an infinite system of
integral equations (known as Thermodynamic Bethe Ansatz equations). This anomalous
dimension depends on 3 parameters: 6, ¢ and the coupling g = }(—ﬂx. Subsequently a much
simpler description in terms of the Quantum Spectral Curve (QSC) was found [12] which
we use here.

In this section we will first introduce useful notation corresponding to a convenient

normalization of the Q-functions, and then show what happens in the QSC when we take

the singular limit ¢ — 7.

43 A similar limit in the y-deformed SYM was recently considered in [183].
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33.1 Notation and parameterisation of the Q-functions

It will be convenient to slightly change the notation compared to the previous part, namely

after an appropriate a8 rescaling we can write

Pi(u) = 4eu'? e f(4u), (33.1)
Po(u) = —eu'/?e % f(—u),
P3(u) = +eul/?et g(4u),
Pi(u) = +eut/2e % g(—u).

We have to impose f ~ 1/u and g ~ u for large u. For this normalization the prefactor e

/i cosf —cos¢

As P’s have only one cut, f and g are regular function of the Zhukovsky variable z(u) at

is fixed to be

least for |z| > 1. They can be written in terms of the Laurent expansion coefficients

1 g" A, u? + Byu > ¢" B,
f = — R = -
(u) o + Z ot g(u) 9z + Z ot

o

(33.3)

The first few coefficients encode the information about the AdS charges and twists, i.e. A
and ¢, via the relations [12]
2 cos f cos ¢ + cos(20) — 3

2
— = A4
Aig” = Bo 2sinf(cosf — cos ) (33.4)
_ 3 92 41
A2 (co§0 'cozsqﬁ) e A%g (1 —cosfcos¢g) Agg? cot 0
sin 0 sin® ¢ sin f(cos 0 — cos ¢)
1
—g% (By + By + cot 0) — Ay g (Agg4 —2¢% + 2 9)] ) (33.5)

We also note that the coefficients A, and B, are real and scale at weak coupling as
O(g%). Their leading weak coupling behavior can be deduced from [12] and is given in
Appendix D.1.

Let us also write out explicitly the 4th order finite difference equation for Q; with the

coefficients built from P, which follows from the QQ-relations (4.20) and (4.22):
Q"py — QI [Dy — PLAPHID| 4 Qi [Dy — PPUHD, 4 PP Di3.6)
- Q™ [Dl + PL_Q}PQ[_ZL]DO} +Q Dy =0
Here D,,, D,, are some nice combinations of P’s given in Appendix D.2. As a 4th order

equation it has 4 independent solutions which are precisely the Q;. Let us remind that

the relations (33.5) and (33.4) imply the following large u asymptotics for Q;

Qi ~ ul/2—i—Aeu¢>7 Qo ~ u1/2—|—A6—u¢’ Q3 ~ u1/2—A€u¢’ Q4 ~ ul/Q—Ae—wb ] (337)
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This is in fact how (33.5) and (33.4) were derived. Those 4 distinguished asymptotics allow
to choose the basis of solutions {Q;} uniquely up to a normalization. The functions Q; are
analytic in the upper half plane and have a cut [—2g,2g| on the real axis as well as more
cuts below (as can be deduced from the equation (33.6)). A non-trivial new condition,
which in fact allows to close the equations and fix the coefficients A,, and B,, uniquely,

concerns the behavior of Q; on the cut [—2g,2g]. To describe it we introduce
q; = Quu~'/? (33.8)

and denote by q; the analytic continuation of q; under the cut on the real axis. Then

according to [12]

q1(u) = qi(—u) (33.9)
q2(u) = qz(—u) (33.10)
a3 (u) = a1 sinh(2mu)qa(—u) + q3(—uw) (33.11)
au(u) = ag sinh(2mu)qr (—u) + qa(—u) . (33.12)

It was noticed in [12] that it is sufficient to impose the first two equations in (33.9) only.
In the next section we discuss what happens in the singular limit ¢ — 7 and derive a

closed system of equations describing directly the potential Q(\, 6).

33.2 QSC for the quark—anti-quark potential

We will focus on the particularly important limit ¢ — 7 when the Wilson line with a cusp
is related to a pair of anti-parallel lines. In this limit we expect the anomalous dimension

A to diverge as
PNERLC) +O((r — ¢)?) (33.13)
T—¢

where () is a positive quantity (for real #). As the anomalous dimension diverges we

should expect a drastic change in the large u asymptotics of Q;, which for finite A is given
by (33.7). To get some intuition about what happens we take ¢ = m — € with € being

small, so the asymptotics becomes
- Q
qir ~ e™exp |—ue — —logu| . (33.14)
€

We see that the last term in the second factor explodes for u fixed and the asymptotics
does not make sense. What happens is that the subleading coefficients become bigger in

this limit in order to make the result finite. However, if we scale u to infinity while sending
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e — 0 we should be able to suppress the subleading in 1/u terms. The guiding principle
is to try to balance the two terms in the square brackets, which is the case for u ~ /¢?
(treating logu as a constant compared to /u) or in other words for € = ¢v/Q/\/u this
results in

logq; ~ +mu — cvVQu 4+ O(u°) . (33.15)

The positive constant ¢ cannot be determined from this heuristic argument and it will be

shown below to be equal to /8. Similar considerations for gz, q3 and q4 lead to

log qo ~ —7u 4 icvV/Qu + O(u®) | (33.16)
log q3 ~ +7mu — icvV/Qu + O(u) | (33.17)
logqq ~ —mu + ¢V Qu + O(u) . (33.18)

To get the precise value of the coefficient ¢ and derive the asymptotics rigorously, we
have to analyze the limit of P, when ¢ — 7. One could expect that P, behave smoothly
in this limit as they describe the S part which is relatively isolated from the twist ¢ in
AdSs. Tt can be also seen from (33.4) and (33.5) that we can consistently assume the

coeflicients A, and B,, in P’s to remain finite when ¢ — m, giving

i1cosf+1 2 — cosf
— T T By=A? -2 27 33.19
‘ \/; sing Y 19 sing ' ( )
2 g° cot® g : 4 2 .
Q° = T[2SIDQ(A39 sinf — Asg C089—3181D9—26089+2)
+2A437¢°sin 0 + Ay (—2A2g" sin® 0 — g% cos(20) + g*> — 2)] . (33.20)

This allows to find the asymptotics of q; using the 4th order Baxter equation (33.6) in
which we expand the coefficients at large u. The expressions we get are lengthy, and
for illustration purposes let us drop some of the terms which do not affect the leading

asymptotics, leaving the following equation:
20?2 : .
—5- = 2 1 2 1 1 1
3 . .
—3 41 S T - 2
q(u)( o2 + )—l—( 3u2+3u+3>q(u+2)+< 6u2+6u—|—6>q(u+ i)
2 1 2 1 1 1
—— = — 4= —1 - - —+ = —2i)=0.
+ < 30 3u " 3> qlu—i)+ ( 6u  6u 6) alu —2i)
While the coefficients in this equation are simple, the asymptotics of its four solutions is
quite nontrivial. It turns out to have indeed the form anticipated above in (33.15) as we

get
qi = Myul/temutans (1 4 O(1/u)) (33.21)

where

ap = —V8Q, as = +ivV8Q, az = —iV8Q, ay = +V8Q. (33.22)
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Expanding the Baxter equation to higher orders in u and keeping all the terms, we found

the following expansion for the solution:

o0 d
AL, 1/4 ETutaiu n
ai = Mau'/e (1 +) (a-)”u”/2) (33.23)
n=1 ¢

This rather surprising asymptotics is a key result which supplements the QSC func-
tional equations.
A natural way to fix the normalization of Q; (which we will use here, e.g. in Appendix

D.4) is to impose that the matrix Q,); preserves the constant matrix X%, ie.

Qalix ™ QX" = oF (33.24)
This leads to
40/2
iMy My = MyMs = ﬁCOSQP()/Q/) . (33.25)

We conclude that the quark—anti-quark potential is described by QSC with a novel type
of asymptotics of the Q-functions containing non-integer powers of the spectral parameter
u in the exponent. These asymptotics together with the general relations from the previous
section form a closed system of equations applicable at all values of the coupling ¢ and
the twist 6.

Despite the anomalous dimension A of the cusped Wilson line being infinite at ¢ = 7,
we managed to reformulate the QSC equations in such a way that they only include the
finite residue (A, ) and got rid of the auxiliary parameter ¢ completely. In the following
sections we will solve these equations both analytically at weak coupling to a high order
and numerically in a wide range of the coupling. We will be also able to demonstrate how
in a special limit the QSC reduces to the Schrodinger equation of [173, 166] resumming

the ladder diagrams to all orders in perturbation theory.

34 Weak coupling

In this section we show how to solve the equations from the previous section perturbatively
at weak coupling. We will see that the weak coupling limit is rather nontrivial and contains
qualitatively new features compared to all other perturbative expansions of the Quantum

Spectral Curve studied previously [52, 70, 13, 88].
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34.1 Different scales and structure of the expansion

The weak coupling limit is more involved in the present case as it depends on the scaling
of the spectral parameter u. The situation here is similar to the conventional perturbation
theory where in order to compute the quark—anti-quark potential one has to work with
an effective theory resumming soft contributions. We also note that the limits ¢ — =
and ¢ — 0 do not commute with each other and it is crucial to have a closed system of
equations directly at ¢ = 7 in order to get a sensible weak coupling expansion.

Another key feature of the weak coupling calculation is that the limits ¢ — 0 and
u — 0o do not commute. The reason for this is that {2, appearing in the asymptotics
(33.23), goes to zero as g2. In this case one should expect the following three natural

scales

scale 1 : u — oo before g — 0
scale 2: g — 0 with v =8u Q fixed

scale 3: g — 0 then u — o

In the scale 1 we are in the regime where the asymptotics (33.23) is still valid. The scale
2 is natural to consider as in the asymptotics (33.23) u appears in this combination with
Q. In the scale 3 we are in the usual perturbative regime of the QSC studied intensively
in [52, 70, 13, 88] and we should expect the usual expansion of the Q-functions in terms

of n-functions introduced in [109]. These n-functions are defined as**

Mg (W) = > ! . (34.1)

50 (u+iny)st ... (u+ ing)sk

At large u however these functions can only give terms of the type u™log™ u, which are
very different from the scale 1. The intermediate scale 2 should match the two regimes
corresponding to scales 1 and 3. This regime plays an important role as it allows to identify
correctly q; and q9 in the scale 3 and distinguish them from q3 and qu, for which the
analyticity condition on the cut [—2g, 2¢g] given by (33.9) is different.

Thus, before we can use (33.9) and fix the coefficients A,, and By, in the expression for
P, we have to pass through the regime with finite v = 8Qu. Fortunately, in this regime the
finite difference equation (33.6) on q; (related to Q; via (33.8)) simplifies into a 4th order
differential equation which we can solve systematically order by order in g. Its solution

provides a bridge between scale 1 and scale 3 by interpolating between the exponential

*4Tn some cases the sum could be divergent, we regularize it as in [109, 70] so that e.g. 11 (u) = ith(—iu).
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and power-like with logs asymptotics. We will first demonstrate this procedure at the
leading order in the coupling and then present our result to a high order in perturbation
theory?.

To study the 2nd scale we start from the 4th order Baxter equation (33.6) and expand
it at large u (notice that in the 2nd scale u is large as it is ~ 1/g%). By doing this we

obtain a finite difference equation of the form

Co qi(u+2i) ) Cy
—q; 1+—+4... —_— 1+ -+ +... 4.2
qz(u)<+u2+ )—i— 5 +u+u2+ (34.2)
2q;(u + i) i O qi(u — 2i) i Cy
|1+ —+ = +... _— (1l -+ = +...
* 3 <+2u+u2+ * 6 wtet
2q¢(u—i) ) C’l
A -+ ) =
+=2 ( ot t ) 0

where C,, and the sub-leading coefficients are some explicit combinations of A, and B,.
Next we use that u = v/(8Q) where Q ~ g2 and introduce a smooth function f(v) such

that q(u) = e*™ f(8Qu) to obtain

2f(3) f "
(4) - ~2J 4 —
+ . 602 + 8§ 2 +0(g")=0 (34.3)

f

where § = gcos(g). Fortunately, we can solve this equation analytically! At the leading

order in g its 4 independent solutions are given by four different types of Bessel functions,

ViKWV . VEYIVE) . VB L(VE) s v Si() - (34.4)

Next we notice that the first solution should be related to q; simply because its large v

asymptotics matches precisely the asymptotics (33.23) of qy:
f1(v) = Vo K1(v/v) ~ \/g W8Qu eV (34.5)

We note that since this is one of the decaying “small” solutions this identification is non-
ambiguous.

At the higher orders in g the equation (34.3) gets corrected. In general one would
have to solve (34.3) using perturbation theory, involving Green’s function and multiple
integrations. However, we found a much simpler procedure, which works magically up to
at least ¢'° order. Once can simply build an ansatz for the corrected solution as a linear
combination of v(1/2=™9" K, (\/v)|,—1 for integer m and n. So for instance at g> order we
simply get

Ai(v) = Vo Ki(vo) — 82V K"V (Vo) + 0(g") . (34.6)

45 At high orders to simplify intermediate expressions we used the HPL Mathematica package [107] and

the package for working with multiple zeta values provided with the paper [109].
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Having an explicit form of the solution in the scale 2, we can get information about

the behavior of q; in the scale 3. For that we expand (34.6) at small v,

_ 1 v _ 1o v _ 3
filv) = 1+Zv(log1+2'y 1>+64v <2log16+4’y 5)+O(v) (34.7)

+442 (logz + 27) + 5% (logz + 2y — 2) +0 (g2v2) +0(gh) .

We see that this expansion, rewritten in terms of u gives the large u expansion of q; in
the scale 3. So the first line (originating from the leading order in g in (34.6)) gives the
leading large u term to all orders in g in this scale, the second line in (34.7) gives the
subleading in large u term to all orders in g etc. This information is essential for the
correct identification of g in the scale 3.

Now let us finally describe the situation in the scale 3. In this scale the 4th order
finite difference equation cannot be much simplified but it can be solved iteratively order
by order in the coupling g using the highly universal procedure from [13]. For instance at

the first two orders we start by finding 4 independent solutions for ¢ = qe®™,

0 0
g = 1+4° <4iun2cos22+2mcot22((u+i)c059+ui)
cot? g (2u3 cosf + 2u3 — 2u — z)
+ )
U
qir = u,
qrrr = u? )
= 4mucos? b ¢ (34.8)
qv = 4N 5w’ .

However, to be able to use the key analyticity condition (33.9) we need to identify q; (or
q2). That is, we have to find a linear combination of ¢y, ..., gy which matches (34.7) at

large u. From this condition one finds uniquely

ai = €™ (Arqr + Arrqrr + Arrgr + Arvarv) + O(gh) (34.9)
where
9 20 Q .
A = 1+4g°(4log(29) + 2csc §+Z?+27TZ—4+8’7 (34.10)
A = 0+ 9(2log(29Q) +im + 4y — 2) (34.11)
0
A = 0-¢? <4C0t22> (34.12)
0 1) 0

A = — 2 2- 22 . 4.1

v 0—g <csc 5 + 55 sec 2> (34.13)

In this way we deduce q;. This allows us to find q;(u) = qi(—wu) via (33.9). On the last
step of the procedure we consider the combinations

- qi(u) — qi(u)

Q1(U)+Q1( ) ) \/m

(34.14)
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in which the cut on the real axis disappears. As at weak coupling the cuts manifest
themselves as poles, thus the poles at the origin which are naturally present in q; should
cancel in these combinations [52]. This condition fixes the coefficients A, and B,, and also
the value of the energy at the given order in g. So, for instance, at the g order we find
the following expansion at the origin

20
sec” 5

0
5 +O(u")

qi(u) ~ [L+7u+Ow?)] — Q +0(gh) . (34.15)

Then regularity of the second combination in (34.14) relates the singular term proportional

to 2 with the linear coefficient wu so that we get
2 20 4
Q) = 4mg” cos 5 + O(g%) . (34.16)

This perfectly matches the well known leading order result.

34.2 Expansion to high order in the coupling

The procedure described above allows to efficiently generate the quark—anti-quark poten-

tial expanded to very high orders in g. We have computed the expansion up to g'4 order.
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The result up to ¢'° order is shown below

— = ¢+ (34.17)

g*[16L — 8] +

—112—~?;~+7zr@

AT 2
AGP%L2+L<&L%6W ) ST ]

A8[2048L3_F1024W2L2

217672
e T+mM&7+LT(WB@+— ”)

4 2
+(J%—62”)L+IQ@%#@—7m@)

3274 1664 121672
J’<384g3—-640w2-+ gr )-+ . G4 97r ——1280]-+
8192L* 8192 57344L% 2048
glo [ 3 + 3 7r2L3T—i— 2 + 5 7r4L2T2

7168072 1945672
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870472 256074
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4659272 66567 266243 3891272
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1024 1
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736t 582472 37888
+6656(3 + 15 + 97 3 ] .
Here we use the following notation
) 0 1 —
g=geosy , T=—5, L =log+/8evmg? . (34.18)
COS b

In Appendix D.3 we also give the expression for the quite lengthy §'? and §'# orders. They
are particularly interesting since at order §'? an irreducible multiple zeta value appears
for the first time (namely, (¢2).

We notice that at the ¢g?"*2 order the result is a nth order polynomial in L and 7.
The terms with the maximal power of L and the subleading in L terms have a very simple

structure which can be summarized by the following formula

e 1 Ln 2 2
}: a2 187 (14—3n LG ¥ —%CXl/L%) . (34.19)

4L 12L

Our 7-loop result computed from the QSC is in perfect agreement with direct field

theory perturbative calculations. The first three orders were known completely and
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were computed in [173, 174, 146, 166, 175, 177, 178]. In addition, our formula (34.19)
matches the all-orders prediction of [174] for the coefficients of the leading logarithmic
terms §2" log” ! §. We also reproduced®® the result of [177] for the subleading logaithmic
term at 4th nontrivial order (i.e. §%log?g).

In the next section we will show that the terms which do not contain 7" can be captured

by a much simpler set of equations.

35 Ladders limit of the quark—anti-quark potential

A remarkable special limit, revealing rich structures, is the “double scaling” limit when
the twist ¢t = €%/ scales to zero as ¢. In this limit the effective coupling § = 4(14t?) and
2(g) remain finite. It is expected that in this special case our system of equations can be
solved exactly to all orders in § or at least simplified considerably. From the gauge theory
side, only the ladder diagrams contribute in that limit. Their resummation is achieved by

Bethe-Salpeter techniques which results in a Schrédinger equation [173, 166]

~2 2
F(2) + F(2) (foi - i) —0, (35.1)

whose ground state energy gives the quark—anti-quark potential €2(g). Its expansion in
small g should capture all terms in (34.17) without 7" to all orders in g, as T'— 0 in this

limit. Below we will demonstrate how this Schrodinger equation is encoded into the QSC.

35.1 Double scaling limit of the QSC

The main simplification in this limit occurs because g — 0 and thus each of the cuts
[—2g,2g| collapses into a point. In particular this implies that f(u) and g(u) from (33.1),
as analytic functions everywhere except the cut, reduce to simple rational functions. Nev-
ertheless, the result is a nontrivial function of the coupling ¢ which resums the usual
perturbative expansion. In this sense this setup reminds the BFKL limit of the QSC

studied in [72, 13]. Special care should be taken with the exponents e*%“

in P, which give
extra factors of ¢ or 1/t each time we shift the argument u by +i/2. For this reason we

have to keep terms up to order t* in P,. Assuming all the coefficients A, B, ~ 1 (which

463ome of the perturbative field theory calculations discussed here were done for the special case 6 = 0

only.
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we initially deduced from the weak coupling solution described in Sec. 34, and confirmed

by self-consistency) we get

1 4522 (Aju+ 1) 89t (297 (Au? + 24 u +2) — u? (Aju+ 1))

flu) = - O(t°
(u) —+ — - 0 +O(t°)

46% (A 4+ By +u — i 8% (A1u® + By +u — 3i

glu) = u—itt® |2 (A1 — . Z)+4z‘ |- (A - u = 3i)

u u
169* (A1 + (B2 +2)u+2(By —i
7 (e +{ . Jut2(B1=1) ol o) (35.2)
We can also exclude Bj using the expression for € (33.20),
o2 ~2 g i9P - 4

By =2i+1t° (4A19° + 4iA2g° — 7 — 44 —i—(’)(t) ) (35.3)

Next we plug the expressions (35.2) into (33.6) and expand to the leading order in t. We

notice that the dependence on all remaining A, and B, disappears and we simply get

~4 ~2 2
(1gg + 16;9 — 42 + 6u> q(u)
6% (2u + i
+ (u+i)g(u+2i) — <m + 4u + 2i> q(u +1) (35.4)
5% (2u — i
+ (u—1i)g(u—2i) — <4‘Z((j_i))+4u—2i> glu—1)=0

where q(u) = Q(u)e™™/\/u. A great simplification comes from the fact that this
equation can be factorized into two second order equations! This allows to replace (35.4)

by a pair of second order equations

—2q(u) (26° — Qu + u?) + u’q(u — i) + u’q(u+1i) =0 (35.5)

and the second one related by 2 — —€. By analyzing the large u asymptotics it is easy
to see that the two solutions of (35.5) correspond to Q; and Q4. To fix the conventions

and normalizations we define

o 1 /200
Q@ ~ /)2 V8Qu e VIR | gy ~ m\/ﬂ'/Q 8O etVE g, (0) =0 (35.6)
where
@ =e™Qu/Vu , q1=eT"Qu/Vu (35.7)

The relative coefficient in (35.6) is chosen in agreement with the canonical normalization
(33.25). We also choose ¢; and g4 to be regular in the upper half plane as usual. We see

that (35.5) is invariant under complex conjugation, which implies that q; and g4 are some
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linear combinations of ¢; and g4 with i-periodic coefficients

G o= g +e ™0l (35.8)

@ = e™Qlg + Qg (35.9)

Here Qij are some ¢-periodic functions for which notation is introduced in accordance
with the general consideration from Appendix D.4. Knowing the analytical properties of
¢1 and qq, which follow from the equation (35.5), we can constrain the possible form of
Qij . From the equation (35.5) we can see that ¢; should have double poles at u = —2in
for n = 1,2,... due to the u? factors in the equation. Similarly g4 has simple poles at
the same points due to the additional condition g4(0) = 0 which softens the singularity.
Furthermore, the complex conjugate functions q; and g4 should have the same poles as
q1 and g4 but in the upper half-plane instead of the lower half-plane. The poles of ¢; in
the upper half plane can only originate from s in the r.h.s. of (35.8). This implies that
Q' and 2 can have at most 2nd order poles, similarly, 2, and £, can only have simple
poles. Next, if we expand (35.8) near v = 0 in order to cancel poles in the r.h.s. we
must assume that ! has simple pole only as g4(0) = 0. Similarly Q. should be regular.
Finally, since for large u the asymptotics of ¢; does not contain periodic exponents due to
the definition (35.6) we can write the following ansatz for €'s in terms of a few constants
a;:

L ap + age®™ 4 aze’™ +ag 1 —9mu 4
Ql == 72 5 Ql == 72 2 5 Q4 == a4€ 5 Q4 ==
e ™ — 1 (e2m — 1)

as + age®™

S {35.10)

We also note that ag = 0 since ©,* should be even as explained in (D.20). By comparing
the large u asymptotics in the first equation of (35.8) at u — —oo we can fix a3 and get

4rt*0?
as = 167t*0% , Q= —— . 35.11
’ ' sinh?(ru) ( )

This allows to close the equations. Indeed, by rewriting
2

Qf -
2y/u? — 4g?

914 - —

Vu? —4g? (35.12)

so that the expressions in the square brackets are regular at the origin to all orders in g we
see that the poles present in (35.11) can only originate from the last term. At the same

time the last term can be written in terms of ¢ and ¢ using (D.20):

_ _“m(_u)m(_u)e_%;u_ 1B (B 652 bt 01 +0(e?)

2/u? — 492

(35.13)
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which results in the following pattern of the leading singularities in Q*

4_ 2bg*  4bgb

Q oz + A + - -+ 4 less singular terms (35.14)

thus we can relate b to £2(g) as
Q%(g)

b=
8mgt

(35.15)

or

L AaWe T = g0)0 ()
8wt us0 u '

(35.16)

This condition together with the finite difference equation (35.5) allows to determine
Q(g). Namely, we have to find such value of the parameter  in the finite difference
equation (35.5) for which its solution ¢; with the asymptotic (35.6), expanded at the origin,
satisfies the condition (35.16). This type of problem can be easily solved numerically or
perturbatively in g.

To solve the system perturbatively we repeat basically the same steps as in the previous
section, with an additional simplification that we do not have to tune any parameters in
P, except Q(g), and that we only have to deal with the second order equation instead
of the 4th order equation. This procedure, explained in detail in Sec. 34.1, leads to the
following result

Q0 = i00)
47
G [16L — 8] +

=g+ (35.17)

8 2
36 [128L2 4 64L — 112 — g] +

2048L3 4 121 1664
i [ 048 +2048L% — (768 + 6307r2> L — 1280 + T6w2 + %—643 -
8192L*  57344L3 194567
10 [ + + <20480 - 7T> L2
3 3
2
(26694 — 389127%  26624¢3 I
9 3
37888 582472 73674
S + o + 66563 + 15 }
12 [131072L°%  327680L* 1048576 109772872\
g + + - L
15 3 3 9
212992
412 <3§3 4 81920 + 245767r2>

2 4
+L <212992<3 _ 1515520, 1776040m , 39424n )

3 27 15
124928¢s | 106496C; |, [ 93184C; 107008 11594247 295936
+ + +% | - - - -

5 3 9 27 675 3
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where as before L = log \/8¢7m§2. We notice that all the terms in (34.17) without T are
reproduced perfectly by the above expansion.

In the next section we will show how to rewrite this finite difference ‘boundary’ prob-
lem into a spectral problem of a Schrodinger equation by performing a kind of Mellin

transformation.

35.2 Equivalence to the Schrodinger equation

The double scaling limit of the quark—anti-quark potential has a long history. In [173, 166]
it was shown that in this limit only the ladder diagrams contribute and they can be
resummed by a Bethe-Salpeter equation. This problem can be reformulated as a problem

of finding the ground-state energy of the Schrédinger equation

~2 2
F(2) + F(2) (Zfi - i) ~0. (35.18)

The Schrodinger wavefunction is linked to the solution of the Bethe-Salpeter equation.
In this section we will show that this problem is equivalent to the second order finite

difference equation arising from the QSC accompanied by the “quantization condition” at

the origin (35.16).

Relating g-function to the wave function. First we relate the ¢g-function ¢; with
the solution of (35.18) decaying at +00. We assume that the solution decaying at +oo is
normalized so that

F(z) ~ e %/2 (35.19)

Let us show that the solution ¢; of (35.5) is given by the following integral Mellin-like

transformation
too 0. .\ u
q(u) :2/ — <Z+Z,> F(z)dz , Tmu>0. (35.20)
U z2+1\z—1

i
To see that that the equation (35.5) is indeed satisfied we consider an integral of a total

derivative:

224+1\z—1

2/00@ <[(z2 F1F(2) + %F(z)(—élu +O+ 922)] ¥ (z i Z>u> dz  (35.21)
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the boundary terms vanish for Im v > 1 and the integral is zero. At the same time

evaluating the derivative and excluding the second derivative F”(u) using (35.18) we get

0 — 27[(4Q2+29u2u2)+u(u+i) <z;z> + u(u — i) <zfz>]

1

Qz 1
F —== . mu
(2)e” 2 (z + z) "

2241 z—1

X

2)“2“) +u(u+ z’)mi“;;i) +u(u— z’)Q1Z(L“__/) , (35.22)

= (—49* +2Qu —2u
which shows that ¢;(u) defined by the integral (35.20) satisfies (35.5). At the same time it
is easy to see by the saddle-point analysis that F'(z) ~ e~%/2 implies the following large

u asymptotics for ¢i:
q1(u) ~ /7/2 "V e~V (35.23)

Note that this map from F(z) to ¢i(u) is valid for any (positive) value of §2. Clearly, we
have to additionally impose the decay of F(z) at z — —oo to constrain Q. At the same
time from the QSC point of view we should impose on ¢ the condition (35.16) at the

origin. Below we show that these two conditions are equivalent.

Equivalence of the two quantization conditions. We should relate the behavior of
¢1(u) near the origin with the normalizability of F(z) as a solution of the Schrédinger
equation. It is clear that the singularity in ¢(u)/u around u = 0 is due to the divergence
in the integral (35.20) near z = i. Therefore it is controlled by the behavior of F'(z) at
z = 1. So our problem seems to be rather nontrivial as we have to relate the values of F' at
large z with its behavior near z = i. In general that would be impossible to do without an
explicit solution. However, we noticed an interesting duality of the equation which allows
to do this.

The key observation is that for the normalizable F(z) its Fourier image satisfies essen-

tially the same differential equation. More precisely, defining G(k) as

G(k) Q3/2 L9
= F R .24
Rl 85vm dzF(z)e™2 (35.24)

it is easy to see that G(k) satisfies literally the same Schrodinger equation (35.18). Fur-
thermore, G(k) also decays exponentially at both infinitites as Fourier transform of a
smooth function and is also smooth since F' itself decays exponentially at both infinities.

This means that F' and G should in fact coincide up to a constant factor. To make the
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symmetry more manifest we can write the relation (35.24) between F' and G as

2% [ . Gk) o 20 [ F(z) ao
F(z)=— [ dk w2 Gk) = d w2t 35.25
O=Tma ) Mot CWE g ) e (35:29)
We see that in the normalization (35.24)4" we must have G(z) = F(z), so that we get
VvV 2241 . ’

This property of the solution F(z) allows to bootstrap the behavior at infinity and near

the branch point z = i. Let’s assume that F(z) has the following expansion near z = i:

F(z) = —;g’; Oz —i)log(iz+1) + ... (35.27)
which is obtained by solving the equation (35.18) in the vicinity of z = i. As z =i is the

closest to the real axis singularity of F'(z) it controls the large z behavior of F(z)

o .
Fk) ~ 29 dw;% ehGw _ T T g (35.28)
) w? + 1 gV '
—0o0

next using the normalization (35.19) we find
%Y
v

which fixes the expansion (35.27) near z = ¢. This allows to find the residue of ¢;(u)/u at

C =i (35.29)

the origin by plugging (35.27) into (35.20):

q1(u) iCe™ % le VO
~Re 28 EVR (35.30)
u 2G%u u 29\

In Appendix D.5 we describe how to use a similar technique to establish the subleading

coefficient in u which then gives:

Q u?
_|_

c?  C*Q
- - u
4g* 898

21w

e q1(u)qi(u) =

+ O(u?) + O(u?) (35.31)

- 4rg?  8mwgt
showing that the condition (35.16), coming from the depth of QSC, does hold! This finishes
the proof of equivalence between the QSC and the Schrodinger equation in the ladders

limit.

4TThere is a possibility that G(z) = —F(z), however, it is easy to see that since F(z) > 0 for real z so
must be G
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Figure 16: Numerical results for the quark—anti-quark potential Q(g) at 0 =
0. Our numerical data points are shown in red, while the solid black line shows the
strong coupling analytic prediction (36.1). The purple curve is the 3-loop weak coupling

expansion, and the dashed green curve is our 7-loop perturbative result.
36 Numerical solution in a wide range of the coupling

The QSC can be very efficiently solved numerically with essentially arbitrary precision at
finite values of the coupling and all other parameters. The general method, which is also
applicable here, was developed in [14]. We have used it to generate numerical values for
the quark—anti-quark potential in a wide range of the 't Hooft coupling with ~ 20 digits
precision. Our method works well for arbitrary real 6, but we decided to focus on the case
f# = 0. Our numerical data is listed in Appendix D.6. A plot of our results is shown on
Fig. 36.

Let us make a comparison with the known analytical predictions. At strong coupling
the classical [179, 180] and 1-loop [181, 182] string theory results read

_ m(4mg + a1)

Q ~ 5— = 2.8710800442g — 0.3049193809 . (36.1)
4K (3)

At the same time a fit of our numerical data gives

0.0100740 = 0.000381
2 = 2.8710800436¢g — 0.3049193819 + + 5 + ... (36.2)
[ 9
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which quite convincingly reproduces the first two known orders.

At weak coupling one can see on the plot that this expansion matches well our numerics.
In addition, our analytic solution of the QSC at weak coupling described in Sec. 34 provides
the expansion of  to first 7 loop orders presented in (34.17) and in Appendix D.3. Fixing
a particular small value of the coupling g = 0.0625 we compared our numerical prediction
Q =0.04472043670132964806 at this point with the analytic weak coupling expansion. In
Table 5 one clearly sees that including more and more orders in the expansion improves
noticeably the agreement with our numerical result. This is a nice check of our weak

coupling analytic prediction.

(Qperturbative (Qnumerical |difference|
1-loop | 0.04908738521 | 0.04472043670 | 0.00436694851
2-loop | 0.04487846353 | 0.04472043670 | 0.00015802682
3-loop | 0.04473327069 | 0.04472043670 | 0.00001283399
4-loop | 0.04471883557 | 0.04472043670 | 0.00000160113
5-loop | 0.04472038490 | 0.04472043670 | 0.00000005179
6-loop | 0.04472043227 | 0.04472043670 | 0.00000000442
7-loop | 0.04472043747 | 0.04472043670 | 0.00000000076

Table 5: Comparison between the 7-loop weak coupling prediction and the numerical data

for the quark—anti-quark potential at g = 0.0625.

37 Conclusion

In this part we demonstrated that the Quantum Spectral Curve approach allows to deeply
explore the quark—anti-quark potential in a variety of settings. In particular, we generated
highly precise numerical data at finite coupling interpolating extremely well between gauge
theory and string theory predictions. Thus finally we are able to access on a fully nonper-
turbative level this observable which historically has been a milestone in the investigations
of AdS/CFT.

The setup we study corresponds to a singular limit ¢ — m of the cusp anomalous
dimension which leads to a drastic change of Q-functions’ asymptotics in the QSC. The
asymptotics we found are of a novel type even for integrable systems with twisted boundary

conditions. As this is yet another set of nontrivial asymptotics in the QSC, it is clearly



148

an important question how to classify all possible types of asymptotics. They should
correspond to some kind of deformations and boundary problems for local or nonlocal
observables likely including the setups studied in [65, 184]. Consistency of asymptotics
with the functional QSC equations appears to be a highly nontrivial constraint giving
hope for an exhaustive description.

Using the efficient iterative procedure of [13] we computed the weak coupling expan-
sion of the potential to the 7th loop order. The perturbative expansion is known to be
rather nontrivial and to be captured by an effective theory arising at low energy scales.
Remarkably, we also observed the appearance of several distinct scales in the QSC which
may be thought of as a counterpart to this effective field theory description. In the future
it will be also interesting to apply the QSC to study the energies of hydrogen-like bound
states in NV =4 SYM [172] which are also related to a ¢ — 7 limit. Moreover, our weak
coupling results may be useful to establish connections with QCD, similarly to e.g. [185].

We also studied the double scaling limit when the twist 6 in the scalar sector goes
to i0c0. We showed how the Schrodinger equation arising on the field theory side from
resummation of ladder diagrams is encoded in the QSC, with its wavefunction rather
directly linked to the Q-functions. We believe that this approach should also apply to
a similar double scaling limit of y-deformed N' = 4 SYM recently proposed in [183],
where the QSC has many common features with the one for the cusped Wilson lines setup
[16, 12, 73]*8. This limit in the y-deformed model was advocated in [183] to give a novel
integrable 4d theory.

We also observed a peculiar duality of the Schrodinger equation with respect to Fourier
transform, whose meaning in the QSC itself beyond this special limit calls for further clar-
ification and might have something to do with dual conformal symmetry. Viewing the
relation between the QSC and the Schrédinger equation as a kind of ODE/IM correspon-
dence [189], it would be interesting to see what kind of generalization will take place at
finite twist. Another important direction is to derive the Schrédinger equation of [166] in
the ladders limit with generic ¢.

Finally, as the ladders limit allows for a simpler access to the wrapping corrections, it
could also serve as a useful ground to attempt a finite-size resummation of perturbation

theory for 3-point correlators [190, 191, 192, 193, 58], using Q-functions as building blocks.

“The Y-system and TBA for the spectrum in the y-deformed case were proposed earlier in [20, 186,
187, 188]
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Part VIII

Conclusions and appendices
38 Summary and outlook

In this thesis we have described the Quantum Spectral Curve of AdS/CFT in application
to a wide variety of problems. Numerical and analytical methods have been developed
which make it possible to access the spectrum even in the extreme regimes which are far
beyond the reach of previous techniques. Let us describe some of the possible directions

for future work.

e While we have focused on exploration of the spectrum, we hope the results pre-
sented here could also be useful in application to correlation functions. The QSC
construction provides exact Q-functions which serve as building blocks for wavefunc-
tions in separated variables and with appropriate Sklyanin’s measure should allow to
reconstruct the correlator. The QSC and Sklyanin’s separation of variables methods
[54, 194] are naturally linked and their interplay would be very interesting to study.
The many known solutions of the QSC, including those dicsussed in this thesis and
in particular the all-loop solutions, should be very helpful in this problem. Also, as
the ladders limit for the quark-antiquark potential allows for a simpler access to the
wrapping corrections, it could also serve as a useful ground to attempt a finite-size
resummation of perturbation theory for 3-point correlators [190, 191, 192, 193, 58],

using Q-functions as building blocks.

e It is an important open problem to build a strong coupling analytic expansion. While
we have seen that the QSC truly shines at weak coupling, at strong coupling we are

still restricted to numerical data or re-expansions of near-BPS exact results.

e Further exploration of the BFKL and similar regimes with the hope of finding extra

structures looks surely interesting.

e The double scaling limit in y-deformed SYM, expected to lead to new 4d integrable
QFTs [183], should be possible to study using the QSC, especially since a similar
limit has been already understood for the quark-antiquark potential as described

above in part VII [11].
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e The deep origins of integrability on the gauge theory side remain mysterious, as all-
loop integrability has been developed essentially by following the bootstrap program
in the 2d string sigma model. Perhaps the QSC could shed light on this aspect by
revealing hidden structures in perturbation theory. It would also be very interesting
to explore links between the spectral problem and powerful methods developed in

the context of amplitudes [195, 196, 197].

e It would be interesting to connect the AdS/CFT integrability with integrable systems
linked with /' = 2 theories and AGT dualities (see e.g. [198]). In particular it might
be possible to find a dual classical description of the AdS/CFT integrable system,
in the spirit of classical/quantum dualities [199, 200, 201, 202].

e It should be possible to extend the QSC to various more involved deformations of
N = 4 SYM where a change in analytic structure would be expected [203, 204,
60]. We have also seen that e.g. the boundary dressing phase for the cusp setup
corresponds to allowing exponential asymptotics in some parts of the QSC. It may
be possible to classify all such asymptotics which would describe different boundary

problems such as [65].

e Finally, it would be highly interesting to formulate the QSC for lower-dimensional
AdS/CFT’s (see e.g. [205, 206, 207, 208, 209]) and explore their rich properties and

surprising features such as the appearance of massless modes.

A Appendices to part II

A.1 Summary of notation and definitions

Integral kernels

In order to solve for P((zl) in section 8.3 we introduce integral operators H and K with

kernels
1 Vu—2g4/ 2g 1
H(u,v) = —— U gvu =g dv, (A.1)
A7 v —2gy/v+29u—v
1 1
K = +— d A2
(o) =+, (4.2)

which satisfy

f+f=h, f=H-h and f—f=h, f=K-h. (A.3)
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Since the purpose of H and K is to solve equations of the type A.3, H usually acts
on functions h such that h = h, whereas K acts on h such that o = —h. On the
corresponding classes of functions, provided also that the constant term in their Laurent
expansion (denoted as [h]g) is zero, H and K can be represented by kernels which are

equal up to a sign

1 1
H(u,v) = — — dx, , (A.4)
271 Xy — Ty i—h
1 1
K(u,v) = — Ty (A.5)
271 Xy — Xy fe—h

In order to be able to deal with series in half-integer powers of x in section 8.5 we introduce

modified kernels:

e f_ar—i—lH N

YV x+1
o f_a:—i-lK N
WV r+1

Finally, to write the solution to equations of the type (8.5), we introduce the operator T”

f (A.6)

f. (A7)

and its more symmetric version I'

2 v (u—v

(T 1) (u) = 74_ ; %au log Wh(v), (A.8)
2 v (u—v

(T h) (u) = 75_ 299 %au log FF[[_E = 3)++1]1] h(v). (A.9)

A.2 NLO solution of Py system at J = 2: details

In this appendix we will provide more details on the solution of the Ppu-system and cal-
culation of curvature function for J = 2 which was presented in the main text in section

8.1.

A.2.1 NLO corrections to g

Here we present some details of calculation of NLO corrections to pgp for J = 2 omitted in
the main text. As described in section 8.2, u%) are found as solutions of (8.5) with appro-
priate asymptotics. The general solution of this equation consists of a general solution of
the corresponding homogeneous equation (which can be reduced to one-parametric form

(8.17)) and a particular solution of the inhomogeneous one. The latter can be taken to be

Mgzsc —y. (P((Il)f)l()l) _ Pl()l)f)gl)) . (Al())
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One can get rid of the operation Y, expressing u%sc in terms of IV and p),. This procedure

is based on two facts: the definition (8.11) of p/, and the statement that on functions
decaying at infinity 3 coincides with IT” defined by (8.9). After a straightforward but long

calculation we find

‘ 1
2

| 1
pdise _ &2 [—2.71]?1 — 44T - x + sinh(27u) (F cx? 4 po) + T -sinh_ (x — > (A.12)
x

. 1\2
pdise = —2¢2 [2[1;01 — 44T - x + sinh(27u)(p2 — po) + T - sinh_ (x - > }A.l?))

x
; 1
pdise — 2 [2[11“ -z —sinh(27u) T' - 2? — T - sinh_ <x2 + :ﬂ)} , (A.14)
disc __ 2 oI T - sinh l 2
15 C =€ 1I-sinh |z + . + Iipo+ (A.15)
inh(2mu)T - sinh_ (22 — © ) —T-sinb? (2% — A.16
+sinh(27u)l - sinh_ | x — 3 ) —DsinhZ (27— — ]| (A.16)

Here we write I and p, instead of I” and p/, taking into account the discussion between

equations (8.22) - (8.27).
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A.3 Result for J =4

The final result for the curvature function at J = 4 reads

@ f dug 7{ duy
=4 211 2mi ig?( Ig —1I5)3

2 (shf)2y4 (13 (xlo + 1) — I52? (:176 + 1)) 2 (sh{)2x4 (ys — 1) (13:1;2 — I5) N

(A.17)

(@~ 1) ) @ -1yl
+4shfsh?i (w4y4 — 1) (I3 + I3aby* — I5z? (x2y4 + 1))
zt (22 — 1) y*

+sh? ((y*+y ) 2~ (s — I3) (32" + 1) — 211 132°%) +
2L3a2 (I5 (a2 + 1) 22 + I (1 — 22)) — [ T5 (a2 — 1) + 12 (=225 + 2% + 1)

+ 5 +

z(z? —1)
gy II3a® — L st — I3 (2 — 1)
3 3 3 _
+2 (y +y ) o

L (22 = 1) — I3 (2% — 22 + 1) + I5 (a* — 2? + 1)
x?—1 +

425I3 (I3 — I})  dwyh (Isy® + 1) (Is + I5)
* x2 -1 + x2 -1 *
' (W + L) (W —13) 2y (y°+1) (L + 1) (Ll - 13)
2?2 —1 x(x?—1)
_2x3y (Il + 13) (Il (2]3 + (3 y2 + 1) 15) — I3 (2[5y2 + (y2 + 3) 13))
x2—1
20%y* (=15 — I (313 + I5) I3 + I315)
+ 2
e —1
2zy (.712 (2yl5 - 2y3I3) — 2y (y2 + 1) I§I5)
+ - +
4x yl3 217y + Is (15 —L)y*+ 1L (I3+15) | 1 [ (iug — tuy + 1)

— 8,1
221 47 8 T = dug + uy)

—2I3(y+y ")

where, similarly to J = 2, 3, the integrals go around the branch between —2g and 2g.



A.4 Weak coupling expansion — details 154

A.4 Weak coupling expansion — details

The expansion of our result for the slope-to slope function 752:)2 to 10 loops reads:

3272
W2, = —8¢%G+ 4" <14045 - C‘”’) + ¢ (200m2¢5 — 2016¢) (A.18)
1675¢s  887%¢s  92967%¢y
8
- — — 27720
ty ( 45 9 5 %
20878 16076
+ g'° ey 160776 | 144747 + 4544072y — 377520(11
405 27
JRSE 79047'0C;  172967°%Cs  1287¢;  63127¢
14175 4725 15 5

—65340072¢1; + 5153148(13)
N 14(15047r1243 1065767'°C; 189927°¢;  169767°

2835 42525 405 15
2 4 2 2
N 569(;7r ¢ N 80039;67r Gi3 0790720 415)
N 16(_178112771443 | 2394887'%¢s | 26044167'0¢; | 88711527°(y
382725 127575 42525 4725
3015707270¢; 82242167413 5
— 133253120
+ 945 + 45 ™G5
+979945824C17>
JRESE (1477127r16<3 9406727'1¢s  4905287'°¢;  3580167'°¢y
382725 637875 8505 189
| 374413127 96162567°C1s  169886087¢:5
945 15 3

+190579084872(17 — 13671272160(19>

. 20(_1357486727r18¢3_1036838727r16g5 14084236167 14¢;

442047375 88409475 29469825
2288692288712y N 34713664m10¢), N 7332956873(13

1403325 945 105
n 30567929675¢1 5
27

+192157325360C21>

+ 1216666887 (17 — 2734254432079
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B Appendices to part V

B.1 Notation and conventions

In this appendix we summarized the notation which is used throughout part V. The basic
definitions are in the first subsection, and the second one contains a glossary of integration

kernels.

Basic notation

B = flutia), ff=fluti/2), (B.1)
RO = fu+i0), f** = f(u+1i/2+i0). (B.2)
Im,n = 5m+1,n + 6m—1,n- (BB)

We also found it convenient to denote
T =¢? cqg=e¥C02 y = z(ia)2), (B.4)

where G is the resolvent from (23.12).

Kernels in the TBA

We denote by * the convolution over the full real axis from —oo to oo, and by % the
convolution over the range —2g < u < 2g.

Our definitions of the kernels coincide with the ones used in [63] and [164], and we
summarize them below. Let us note that in some cases the “mirror” branch of x is used,
for which |z(u)| > 1 for u in the upper half-plane, and |z(u)| > 1 for u in the lower
half-plane (see [63]).

s(u,v) = 2COSh(Tl’1(u —v))’ (B:5)
Ky(u,v) = 20 (B.6)

m(a? + 4(u —v)?)’

. . 492 — u? - [4g9* +a?/4
Ko(u) = Ky o(u,0) = m-’{a(u)7 Ko(u) = WKG(U)’ (B.7)
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T
Kpm(u,v) = K2j+2k+2(u v) (B.8)
==t k=
1 [492 —u? 1
K = — B.9
(u,v) 2mi \| 492 —v2v —u’ (B-9)
h(2
log F,(a,g) = Ky%log sinh(2mu) . (B.10)
2 =0
_ 1 _
’l“(u, U) = Ma b(u,v) = /x(U) x<v)7 (Bll)
Ve z(v) (v)
i i (u+ia/2+ij,v—ib/2+ik) (B.12)
Sar 2P 2mdv ( —ia/2+ij,v+ib/2 + ik)’ ’
= ——m=1
< +ia)2 +ij,v —ib/2 + ik)
Blab) — (“ : — B.13
jz; 1kzml 2mi dv ( —ia/2 +ij,v +ib/2 + ik) ( )
Given the definitions above one can prove the following identities (see [63]):
RO (u, 0) + BEY (u,0) = Ka(u,v), (B.14)
Rc(lllo)(u, v) — Béllo) (u,v) = K(u+ia/2,v) — K(u—ia/2,v), (B.15)
R (w,v) + BRY (u,0) = Ko(u,v), (B.16)
Rg?ll)(u, v) — ngl)(u, v) = Ky a(u,v) = K(u,v —ia/2) — K (u,v + ia/2), (B.17)
Rin = % (Kf - Ko+ K+ K, (B.18)
Ko = RUD 40O (B.19)
1/- ~ a
= 3 (K([zbfu — K kP 4 Kc[fbﬂ]) + ZKb—a—3+2r
r=1

Ry = ROV +BY), = (B.20)

1

2
r=1

= S (B = K KP4 KPP 6T Ky s
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C Appendices to part VI

C.1 The anomalous dimension from asymptotics

Here we present the explicit expression we got for the conformal dimension A in terms of
the coefficients a;, b; in the large u expansion of the P-functions (see Eq. (27.2)), for any

L. It reads

as(cosf —cos@)®  ba(cos® — cos ¢)3
(L + 1)sin O sin? ¢ B (L +1)sinfsin? ¢
a?(cosfcos g — 1)(cosf — cos $)?  ag(cosf — cos ¢)*
sin? 0 sin? ¢ (L +1)sinOsin? ¢
as(cos @ — cos ¢)?(—2cosfcos g+ (L + 1) cos20 — L + 1)

A2 = —q + F(0,¢,L)

a 2(L +1)sin% 0sin? ¢ (€1
bs(cosf — cos¢)®  byL(cosBcosd — 1)(cosf — cos ¢)?
~ (L+1)sinfsin?¢ (L + 1) sin2 fsin? ¢
(2L + 1)L L(1-1)

{cos&(cosBd)—10cos¢)+cos39cosq5+8 - 3

24 sin? fsin? ¢

where

F(0,¢,L) = (CO.S(Z_C.OSQ@|:—2(5L+4)COS€COS¢+(L+2)COSQ¢+7L+4
4sin” A sin” ¢

+ cos260 (2L cosfcos ¢+ Lcos2¢ — L + 2) (C.2)

C.2 Asymptotics of Q-functions

Similarly to the asymptotics of P, given in (27.2) in the main text, we found that the

asymptotics of Q; have the form (with C' an arbitrary constant)

Qi(u) ~ CV2U/2HA etPup(y) | Fu) =1+ ¢ /u+ co/u? +es/u® + ... (C.3)
Qou) = CEV2 yl/2HA —oup(_y)

Qs(u) =~ ée'g/Q WD G | Glu) = 1+ dy fu+ dafu? + ds)ub + ...
Qi) = — 2 ulP G ()

while Q’s with upper and lower indices are related as in (27.7),

Ql = _Q47 Q2 = +Q37 Qs = _Q27 Q4 = +Q1 (C4)
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The coefficients are constrained by

,2__i(COSQ—COS¢)2 o=
B 2A sin? ¢ n A b

A(2cosfcos ¢+ cos2¢ — 3)
2sin ¢(cos§ — cos @)

(C.5)

While A enters the powers in the asymptotics of Q;, the remaining conserved charge L is

encoded in the large u expansion coefficients as

2 _ 3
L(L +2) e [dlcsc OCscqzﬁ(Acosgb cos ) (C.6)
n (A — 1) csc?  esc? ¢(cos O cos ¢ — 1)(cos ¢ — cos §)?
A
cz csc? O escg(cos@ — cos ¢)®  dscesc? O csc ¢(cos ¢ — cos 0)?

+ +

A A
d [dg csc? 0 csc ¢Xos€ — cos ¢)* R0 A)]
+d2 csc? 0 csc? ¢(cos ¢ — cos 0)? (A sin? ¢ + cos 0 cos ¢ — 1)

A

—d? csc? 0 esc? ¢(cos ¢ — cos B)?(cos B cos ¢ — 1)

+i [—(A —1)(2A — 1)(cos § — 2) cot? <§> sec? <‘§>
—4(A —1)(2A — 1) cot 0 csc 0 cos ¢

(A = 1)(2A — 1)(cos 0 + 2) tan® (Z) esc? @) +8((A—3)A — 1)]

where we denote

cscd =1/sinf, secd =1/cosd (C.7)
and
Fi(0,0,A) = %cse2 6 csc® ¢(cos  — cos p) [2 cos  cos ¢((A — 1) cos 2¢ — 5A + 1)
+cos20((A—1)cos2¢+A+1) — (A —3)cos2¢+ 7TA — 3] (C.8)

C.3 The leading near-BPS solution at any L

Let us present explicitly the leading order near-BPS solution of the P system at any L.
It was constructed in [16] and below we write it in our conventions. Most importantly,
imposing the asymptotics (27.2) and (27.3) we recovered from (27.4) the all-loop results
of [16] for the near-BPS cusp anomalous dimension at nonzero L, providing a stringent
test of the asymptotics we proposed?®.

The solution has the following form. First, the components of p,p are

,ugg) = Asinh(27u), ,ug?,)) = (—1)L, ,ugg) =0, ugi) = (—1)L+1, ugi) =0 (C.9)

49We checked the matching explicitly for the first several L’s
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Second, the P-functions read

F(z)

Py = KVAVu (C.10)
Py = K\/Z\/ae*%f; Co)

Pgo) _ \—;{Zﬁege(z—ux)PL(:ﬁ)’

PiO) _ (_1)L§Z\/ae—ge(:v—l/m)PL(_w).

Here A is a constant which can be set to 1 via a rescaling (27.8), (27.9) while the constant

K ~ /0 — ¢ can be fixed from asymptotics (27.2), (27.3). The function F(x) is a power

series .
F(z) =1+ faa", (C.11)
which satisfies "
2997 L P (1) 4+ (—1) e 290/ L4 B (— 1) = sinh(27u)e290@—1/2) pp (z) (C.12)
and is fixed as
F(x) = e 29011 [sinh(?wu)ezge(x_l/x)PL(x) . (C.13)

where [f]; denotes the part of the Laurent expansion of f(z) with positive powers of x.

Finally, the Laurent polynomial Pr,(x) reads

I g Iy, 1)y
R TR )
Pp(z) = dethQL (C.14)
g, I, - I I
L =L .. L=l L
where
B 1y
5o o Iy I3y
My = : T . (C.15)
I Iy oo I
B fh o 1O
Notice also that
Pr(1/x) = Pr(—x) (C.16)

From this solution using (27.4) we recover the result of [16] for the cusp anomalous di-

mension,
¢ —0
4

det Mo 4q
det Moy 1

Cewsp = L + dplog +0((¢ — 6)?) . (C.17)
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C.4 Weak coupling predictions at five and six loops

From our all-loop result (28.26) it is straightforward to obtain a prediction for a part of
the full anomalous dimension at five and six loops, namely for the coefficients 7§2)(¢) and

%2 (4) in (28.31). We found them to be

7(8) = 8360 [Lig(e %) + Lig(e*?)] — 21561 |Lis(*?) ~ Lis(e )] (C.18)
—8 (62¢2 + 157T2) [Li7(€2i¢) + Li7(€—2i¢)]
+51 (197%6 - 20") [Lis(e) — Lig(e™ )|

3

_g (73¢4 — 877T2¢2 + 671'4) [L15(62Z¢) + Li5(€_2i¢):|

+§2’ (65¢° — 9472¢° + 297 ¢) [Li4(62i¢) _ Li4(6_gi¢)}

_g(w — 8)(6+ ) (336" — 31727 + 27) [Lig(¢¥?) + Lig(e™2%)|
—i—%iqb (772 —12¢7) (x% — ¢?)° [LiQ(em) L, (6*22'45)}

+%¢2 (¢ =)’ [log(l — ¢%%) + log(1 — e*2i¢>)}

+% [83¢(3)¢° — 15 (872¢(3) + 31¢(5)) ¢*

+3 (974¢(3) + 85m7¢(5) + 930¢(7)) ¢

—18900¢(9) + 6757%¢(7) + 907" ¢(5) + 107°¢(3)]
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and

76(}2)((25) = —41580 |:Lill(672i¢) + Lill(€2i¢>):|
+25704i¢ [Liro(e) — Liro(e )|

1168(35¢% + 1272) [Lig(e—2i¢’) + Lig(e2i¢)] (C.19)

_iSGi(241W2¢ — 137¢°) [L18(€2i¢) - Lis(e_w)}

+§ (943¢* — 11507%¢” + 917*) [Li7(e—2i¢) n Li7(62¢¢)}
4 | |
— ¢ (266107 — 37547%6° 1 1077x*6) [Lig(¢*"*) — Lis(e )]

+45 (= 2299¢° + 3970m%¢* — 183571¢? + 1487°) I

—i—gz’(w — ¢)p(¢ + ) (3519 — 44972¢* + 1547t) Fy

—I—% (639¢ — 6187292 + 47774) (W2 _ ¢2)2 [Li3(e_2i¢) + Li3(e2i¢)]
+ﬁl¢ (22¢)2 _ 1571-2) (7'('2 _ ¢2)3 [L12(621¢) _ L12(€_2i¢)i|
(;52 ( ¢2)4 []og(l — 62i¢) +log(1 — 6—21‘(;5)}

| 1168

135

752¢(3)¢° 16 2 6
T 1 (9707°¢(3) 4 2493¢(5)) ¢

Zg (20871¢(3) + 11307%¢(5) + 5175¢(7)) ¢*
16
9

(27%¢(3) + 2771¢(5) + 4147%¢(7) + 6615¢(9)) ¢*
—ﬁ (9475¢(3) + 88879¢(5)
+819071¢(7) + 680407¢(9) — 1403325¢(11))
with
Fy = Lis(e~2%) + Lis(e%?), Fy = Lig(e*?) — Lig(e~%9) (C.20)

C.5 Generalized 7n-functions

We found that the solution of the QSC for arbitrary angles at weak coupling involves the

following generalized n functions

2 Tk
gk =y e (C.21)

n1>no>>n,>0 (u+ing)st ... (u+ing)s

which are a generalization of the multiple polylogarithms

ni
AT A
. _ 2 : 1 k
L1(517..'78k)(21, e ,Zk) = 77181

niy>ng>-->np>1 1

(C.22)
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For the case when all twists z; are set to 1, the n-functions were encountered in the weak
coupling computations of [109, 70]. In our calculation of I'¢ysp we had to deal with the
case where twists are present. Below we summarize some useful relations analogous to
those found in [109, 70].

Let us denote a solution of the equation

flu+1i)— f(u) = h(u) (C.23)
as
f=%(h) (C.24)
A useful property is
Z\[2]
nan = Zz(no)P + Z(”sz (C.25)

where A is a set of indices A; and Z in the superscript is a set of twists Z;, while z is a
single complex number. The prefactor Z in the r.h.s. denotes the product [, Z;. Using

this relation we find

Hu .
Y|l—— ) = —2z7"n? j 2
((u n m)s) # g (utin) (C.26)
—iU,,Z ; ; —iu
z7"ng (u + in + 1) z Z(2)2) .
by = —— 2
( (u +in)s Z s (u+in), (C.27)
—iu, a, 2z . v\ i a —iu,, 4z .
S [T nGE(u+in)] = ¥ [(ZZ) u ] (22)""n4E (u + in) (C.28)
i 2] Z : :
v o —iu s A (u +n + 7’)
IE|(— )W
+ [(zZ) “ ] (22) (u +in)b
In these expressions a,s = 1,2,3,... while n is arbitrary.

Finally we have the ’stuffle’ relations which express a product of two 1 functions as a
linear combination of some other n’s. They are obtained by splitting the region of summa-
tion in the product of n functions and are directly analogous to those for polylogarithms

or mutiple zeta values (see e.g. the pedagogical review [210] and references therein):
§//

where in case two of the s indices are combined in the r.h.s. the corresponding twists are

mutiplied, exactly as in the stuffle relations for polylogarithms. For example,

nyns =057 + 05y + 05y (C.30)

The operations described above are essential for the iterative procedure of [13] and should

allow to run it to very high orders in the weak coupling expansion with any ¢, 6.
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D Appendices to part VII

D.1 Weak coupling limit of the coefficients

At weak coupling one can fix the values of the several leading coefficients A, B,, which
parameterize the P-functions via (33.3). In order to do this we used the leading order
weak coupling solution of the QSC constructed in [12]. With the P, and p,p functions
from that solution, one can build P, = LapX"P. and compare the result with our ansatz
(33.3) in which P, is constructed by simply replacing z — 1 /x. For the case ¢ = 7 we
found that

By=———" + A1 g (D.1)

and the remaining coefficients to the leading order are all fixed as

2" Ir(14 (=1)")

A, = (n D] +0(g%) (D.2)

By = G502 | D.3
on = m +0(9°) , n> (D.3)

Bow i = L T 1 D.4
on—1 = —CO m-ﬁ- (g) , n> ( )
By = 2tang + O(¢?%) (D.5)
By = 0+0(g?. (D.6)

D.2 Determinants entering the 5th order equation on Q;

The 4th order difference equation (33.6) on Q; includes several determinants built out of

the P-functions, which are defined as follows:
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pll+2l p2+2] p3l+2 p4+2
p! p? p3 p?

Dy = det , (D.7)
pl-21 p2-2 p3-2 p4-2
P1[74] P2[74} P3[74] P4[74]
pli+4 p2i+4  p3[+4]  pa[+4]
p! p? p3 pt

D1 = det s (D.8)
pil-21 p2-21 p3-2 pi-2

Pl[—4] P2[—4} P3[—4] P4[—4]

P1[+4] P2[+4} P3[+4] P4[+4]
P1[+2] P2[+2} P3[+2] P4[+2]
Dy = det , (D.Q)
P1[72] P2[72} P3[72] P4[72]

pll-4 p2-4 p3l-4 pi-4
pll-4 p2-4 p3l-4 pi-4
_ p! p? P3 P!

Dy = det , (D.10)
pl+2 p2+2] p3[+2  pa+2

pll+4] p2+4] p3l+4]  p4a+4]

Pl[—2] P2[—2} P3[—2] P4[—2]

_ P! P? P3 p?
Do = det . (D.ll)
pll+2 p2+2] p3[+2 pa+2

pll+4 p2+4  p3[+4]  pa[+4]

D.3 Six and seven loop results at weak coupling

Using the QSC we have computed the weak coupling expansion of the quark—antiquark
potential at the first seven nontrivial orders. The first five orders are given in the main

text in (34.17). Here we present the rather bulky 6- and 7-loop results.
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6-loop result. The term of order §'? in % reads
131072L°  327680L* 131072 , 104857613 1097728
L'T - L D.12
5 T3 Ty ThHITT 9 (D-12)
1163264 32768 212992¢3 L*
g 23T + =5 T L3T? + 81920L2 + 2457672L2 + s ¢
8192 77824 475136
—TWQLQT + 81920¢3L°T — ——7L?T + ——— 74217
65536 1515520L  177664072L
[ 22202¢ — 512005 | L2T2 + — 4 T 1 212992¢3 L
3 3 27
3942474 L 16384
+1757T — 2519047 LT + 176128G;LT — ——='LT

1
+ (10240g5 — 728079@) LT —

118784 44
8978 T LT? + (573307#(3 — 99840§5> LT?

70912 139264
+ <3072g§ + 4057r6> LT? + ( I 7ty — 312327%¢5 + 60928§7> LT3

295936 1070087 N 106496¢3 11594247 N 124928(5  931847°(3
3 27 3 675

) 9

_119052278”2T —19456¢3T + 30452’556W4T + (21239927r2<3 + 27648§5> T

+ (1536<§ - 14113[5”6) T- 50;76 T2 - (17232887r2<3 + 24320@;) 72

+ <18816§§ + N‘Z’igﬂﬁ) T? + (7247504w4c3 + 19136725 — 38976C7> T2
<222§527r4g3 — 107326472(5 + 43904@) T3

+ <2496<6,2 + 222 g1930¢, + 532(’5;‘?) s

2560
+ <—37r445 + 2150472 ¢ — 102816(9> T4

At this order an irreducible multiple zeta value appears for the first time, given by (52 ~

0.017819740416836.
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7-loop result. The term of order §'* in % is given by

6 5
104845576L n 5249288 [On2 681517;14L 2629144L47T4T2 65536 TCs + 406392320

—%L%Z +2752512L% + 131072 22 3RO 4+ 65536 L3 T2 (s + 6553360 L*T?¢s
3407872L53(s

122595232 13472 _ 64115395744 LT — 65536L°TCs + 133033808 3T 4+ :

1114112 1 280L% 2 499712
_TOL%?JF 5073380 n 08405768L27T4T3§ 9937 L2m2T3 s — 129024L2T3¢;

%L%%Q — 36864L°T(C3 + H‘Lgﬂﬁw%?gg + 20480L*T?¢s
23521%104L27T4T2 B 7618368 22T — 40960L2TCs — 2732451896

221248 L°7* 1 41272 1404812 192
7 458 ™ 9555004L2C + 709678 ™ 69 28 +899

83
- 1333120 Lr*T*Cs + 369152L7° T ¢ — 628992LT o + 11762;’?;; T+ 2103944

2512
%L#T?’cs — 1899520 LT (5 + 867328LT "y

1150976 2 2378752

L'7(D.13)

+32768 L7 T? —
+ L*7*T 4 1671168 L°T¢3

—3817472L% 7T + Lr®T ¢

Le*T3¢3

—T1680LT 3¢5 + 30720LT% ¢ 2 +
212992

LrST3 — LrT? Lm2T?Cs — 2 LT LaST?
5 LT 15 L' TG + 665600Lm" T Cs — 268800LT°Cr + == o= L
6
+43008LT°¢; + 7573760 Lr*T?(3 — 1587200LT*Cs — 7148398784 Lr'T? - 72152332? T
24051712 4122
—163840LT¢3 + LJL#T@ +364544LTCs + WLT#T + 2457600LTC3
39706624 . o, 5324800 . o 1998848L(s  34199552Lx*  9797632L(s
o LT 5 LmG+ 5 595 + 3
1534208L72 2 192L 11264 21
+6 53 8:?8 s _ 356(; 9 . 10§ W6T5C5 + 735 6 4T5<7 . 2851207?2T5<9
1054471074 11
+12719527° ¢y — 0593;55T 42 9367r4T4<§ - 52038327r2T4c;3<:5 +179424T*¢2
16768 65536
+361088T*(s(r + —— 3 2T o0 — 264327 (s 0 + 453 0T ¢ — 634887 T ¢s
1 2073
140140872 T™*¢7 — 5080321 Co + % — T68T3C3 + 309767 T
41632 22119047 1428167872 1183232
29 363 T3 + 92 o _ if;; 83 52232 33766477 Cas
f 1762304 44 4 4 o
+17664T° (6.0 — 563000 T3¢ + 76330 T2 T3Cs 4 367360172 Cr — 6 446464 "o
23485127°T° 175360 76288 6986752 4
42525 3 7 LGt g TGl 6880 o + TG
295424 1111552 2234624
+ 959 T2 (s — 61152072 ¢ — T?f#ﬁ +225792T2¢5 — 337677%%3
‘T 2342
—9261120T2Cs + 370073?” 313256 ¢ + 1315847°TCs + 33152T°¢Cr
34626567°T » 3972608 , 2226603527
U | T AT 2T fesmoost 2
ogan 1058887 CE + = - 3 + 387072T°Cs — DI
16618240727 12262475  1384448(2
5447687 ¢ + 190 8810” - 96 45” 4 138 5 86 | 10649672Cs + 499712¢
2743009287 1384448(3 67858432 4759552
10125 3 243 15

where we have a new multiple zeta value (g2 ~ 0.0041224696783998322240.
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D.4 Complex conjugation of the Q; functions

Another set of useful relations concerns the expected symmetry of the QSC system under
complex conjugation. Let’s assume that under the complex conjugation the equation

(33.6) remain invariant. In general this is true if
P, =\P, , P*=)\%P° (D.14)

for some constant coefficients A\ °, such that \,’A?, = —6% (in our case \,* = —idl). If
this holds the complex conjugate Q; should give an alternative complete set of solutions
of the finite difference equation (33.6), which should be related to the initial set as a linear

combinations with some i-periodic coefficients
Qi=97Q; , Q7(u+i)=97(u). (D.15)
Those coefficients can be written in terms of Q,; as
27 = = Qaji(u = HXQ" (u— ) (D.16)

where Q" = —((Qp;)™H™. We can easily check this is indeed true. We show that (D.15)
holds:

27 Qj = —Quji(u = $A%Q (u = 5)Q; = —Qui(u = HXWP’ = —Quji(u + §)P* = Q;
(D.17)
and also that the r.h.s. (D.16) is periodic:

Q;—li/\abeUJr = (Q:'Z _ PaQi))\ab<Qb|j7 + Pij) _ Q;ﬁXszb\j— (D.18)
(we denoted f* = f(u=1i/2)). Finally we can find discontinuity of Q using this identity

Q7 - = —Q A% (Qb\j— - Qb‘j_> = Q" (f)ij - Pij> - QG +QQ .

(D.19)
We notice one more relation which we will use below. Consider Q;%. Its discontinuity is
due to (33.9)

O (u) — Q' (w) = uan (w)ar (u) — udi(~u)ai(~u) (D.20)

from where we see that 2;* should be an even function.
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D.5 Expansion of ¢(u) at the origin

As discussed in the end of Sec 35.2, to demonstrate that the Schrodinger equation is
encoded in the QSC we need to compute the expansion of ¢i(u) at the origin up to the
term linear in u. Let us show how this can be done.

On the one hand, from the 2nd order difference equation (35.5) on g1 we find that

¢1(0) and ¢} (0) are related to its expansion at u = —i:
4% 15741 (0) — 21 (0)92 10
= ——7=q1(0 O((u — . D.21
0(0) = sz (0) + AR 1 o)) (D.21)
On the other hand, we can compute the expansion around u = —i using the expression
(35.20) for ¢; in terms of F(z). In that expression the singularity of ¢; at u = —i arises

because the integrand is singular when z = 4. In the vicinity of this point F'(z) is a linear
combination of two solutions of the the Schrodinger equation, one of which is smooth at
z =i and the other one also includes terms of the type (z — )" log(iz + 1) with n > 1.
Solving the equation close to this point we find

iC

F(z2) = ~o2 +C(z—1i)log(iz+ 1) +iCo(z —3) + ... , (D.22)

1°0 constant Cy comes from the smooth solution and dots stand for more

where the rea
regular terms. Let us also note that the expression (35.20) is not applicable directly for
Im u < 0 as the integrand is too singular near z = i. However, as we need only the
coefficients of the double and the single pole at u = —i in ¢;(u), we can modify (35.20) in

a way which ensures convergence of the integral without changing these two coefficients:

T —i)2 AT L -
2/dze <Z+Z> [ZC t et ( ic +C(z—i)log(iz+1)—i—z'Cg(z—i)—i—...)] .

241 \z—i 292 22
(D.23)

We subtracted a part proportional to the integral

(o.9] .
1 z+i\" 1
2 [d = — D.24
/z22+1<z—z’> u’ ( )

)

which does not affect the two coefficients we are after. From (D.23) we now find

iQ _iQ 1CQ . y
viCe-2 e <_ CQ _ 9irC — 2C — 2Clog2 — 2202) .
_ _ —i)% . (D.2
o - +O((u=1)0) . (D.25)

q1(u) =

Comparing this with (D.21) we get
iCe™5

q1(0) = _2792 ) (D.26)

*0ne can show that Cs is real using the fact that F(z) is a real and even function.
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iQ
e 2 (492 (iC2 + C(1 +im +log 2)) — iCQ
¢, (0) = ( 55 )| (D.27)

2mu

This finally allows to construct the combination e“™¢; (u)g; (u) which we need. We observe

that Cy cancels out and we find

¢ _cn
455 8P

21

e q(u)q(u) = +0(u?) (D.28)

which is the key result used in (35.31) in the main text.

D.6 Numerical data

Here we present a part of our numnerical data for the quark—antiquark potential ) at

finite coupling g with zero twist 8 = 0. While the accuracy might vary slightly, we expect
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all digits to be correct (with uncertanity in the last digit).

Q(9)

Q(g)

0.075
0.125
0.175
0.225
0.275
0.325
0.375
0.425
0.475
0.525
0.575
0.625
0.675
0.725
0.775
0.825
0.875
0.925
0.975
1.025
1.075
1.125
1.175
1.225
1.275
1.325
1.375
1.425
1.475

0

0.06265474565224
0.15465836443567
0.26845318866584
0.39435828555165
0.5268878004652301086
0.6631138101939375140
0.8014991401020814198
0.9412212786455914103
1.0818205391585539063
1.2230254118796313025
1.3646663040854278314
1.5066318508313724359
1.6488457911511407735
1.7912540747152853534
1.9338172918626574100
2.0765060183502537912
2.2192978370894877695
2.3621753683925865485
2.5051249301358780128
2.6481356041939115734
2.7911985721684911266
2.9343066338961908685
3.0774538526229463147
3.2206352896028680533
3.3638468028903889215
3.5070848929154719081
3.6503465826264 772085
3.793629323499052523
3.936930921125622182

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1.05
1.1
1.15
1.2
1.25
1.3
1.35
14
1.45
1.5

0.02937069654776
0.10511713720337
0.20955607216466
0.330312294925133
0.4600215248401101992
0.5946574683022822222
0.7320994342456940408
0.8712277052055592640
1.0114313519742950991
1.1523596132795935855
1.2937993424631526624
1.4356138993330072537
1.5777115633938239593
1.7200283813289496328
1.8625183485921063555
2.0051475048695944173
2.1478902273706390145
2.2907268179434612004
2.4336418837756454947
2.5766232221146891288
2.7196610347092241265
2.8627473634963918184
3.0058756780749462488
3.1490405693740687669
3.2922375189379219065
3.4354627229126975867
3.5787129561817286982
3.7219854663574488362
3.865277890247007235
4.008588187423520918
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