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1“My tongue was true, like a spectral analysis...”, Arseny Tarkovsky, Russian poet (1907–1989); trans-

lation by Philip Metres and Dimitri Psurtsev.
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Abstract

Understanding the dynamics of strongly coupled gauge theories is one of the greatest

challenges in modern theoretical physics. A new hope in attacking this problem was

brought by the surprising discovery of integrability in a special four-dimensional gauge

theory – the N = 4 supersymmetric Yang-Mills theory (SYM) in the limit of large number

of colors. Quantum integrability manifests itself as a powerful hidden symmetry which

allows to explore the theory far beyond the conventional perturbative regime, and may even

lead to its exact solution. Integrability should also shed light on the striking gauge/string

duality, which holographically relates N = 4 SYM with a string theory in curved geometry.

In this thesis we focus on one of the key quantities in the N = 4 SYM theory – its

spectrum of conformal dimensions, which correspond to string state energies. The study

of integrability has culminated in reformulation of the spectral problem as a compact

set of Riemann-Hilbert type equations known as the Quantum Spectral Curve (QSC).

We demonstrate the power of this framework by applying it to study the spectrum in a

wide variety of settings. The new methods which we present allow to explore previously

unreachable regimes. We first discuss an all-loop solution in a near-BPS limit, leading

also to new strong coupling predictions. Next we describe an efficient numerical algorithm

which allows to compute the finite-coupling spectrum with nearly unlimited precision (e.g.

60 digits in some important cases). We also present a universal analytic iterative method,

which in particular allows to solve a longstanding open problem related to the BFKL limit

in which N = 4 SYM develops close links with QCD. Finally we propose the extension

of the QSC to the deformed case corresponding to a cusped Wilson line, uncovering new

algebraic features of the construction. This allows to systematically study the generalized

quark-antiquark potential and generate numerous new results.
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Part I

Introduction

1 Overview

1.1 Integrability and gauge/string dualities

One of the most fascinating and difficult problems in modern theoretical physics is solving

strongly interacting quantum field theories. These theories are of paramount importance

in physics as they describe a wide array of phenomena ranging from condensed matter

systems to interactions of elementary particles. Yet their behaviour is difficult to study

outside of the weak coupling regime. In particular, it has long been the dream of many

physicists to understand the behavior of quantum chromodynamics (QCD) – the part of

the Standard Model of particle physics describing the strong nuclear force, which is one of

the four fundamental types of interactions in our world alongside gravity, electromagnetism

and the weak force. Traditional field theory methods have limited usefulness in studying

QCD, as they are based on a perturbative expansion in the theory’s coupling constant

which in QCD is not small except at very high energies.

Some non-perturbative methods to handle strongly coupled theories were becoming

available already in the 1980s, as exact solutions were found for conformal theories in two

dimensions, and a number of remarkable results were obtained also in the more realistic 3

and 4 dimensional cases. More recently, other powerful approaches have been developed

with guidance coming from string theory. While string theory may allow us to combine

the Standard Model with gravity and obtain a unified description of all interactions, it

also offers an entirely new perspective on the Standard Model itself. Namely, there is a

hope that any conventional gauge theory should have another, completely different but

equivalent, description as a string theory on a higher-dimensional spacetime. This type

of duality is known as the AdS/CFT correspondence or gauge/string duality, and its first

concrete example [1, 2, 3] was proposed in 1997, relating N = 4 supersymmetric Yang-

Mills (SYM) theory in 4d (in the planar limit when the num,ber of colors is large) with

a string theory on AdS5 × S5. This duality is also called “holographic”, as the 4d gauge

theory may be understood as living on the four-dimensional boundary of the Anti-de Sitter

space AdS5, while string theory is defined in the bulk of the whole AdS5 × S5 manifold.
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The isometries of AdS are identified with the symmetries of the 4d theory suggesting

that it should be a conformal field theory (CFT), i.e. possess invariance under conformal

transformations of spacetime. In addition to this already constraining symmetry, the

Yang-Mills theory appearing in this example also has supersymmetry – that is, invariance

under field transformations which relate bosons to fermions. Despite the high amount of

symmetry, the N = 4 SYM theory is in many ways similar to QCD and is still a highly

nontrivial theory. It is therefore very remarkable that the AdS/CFT duality allows us

to glimpse the behavior of this theory at strong coupling. Namely, the non-perturbative

regime in the gauge theory is mapped to the weakly coupled, perturbative regime in string

theory which is tractable by standard methods. Conversely, the AdS/CFT duality also

sheds light on quantum gravity as modelled by string theory, as the strongly interacting

string theory is described by traditional techniques in weakly coupled gauge theory.

The AdS/CFT duality remains a conjecture which has not been proven rigorously even

in this most-studied example. A great body of evidence leaves little doubt for the validity

of this gauge/string correspondence, but its mathematical origins remain to a large extent

mysterious [4]. However, in 2002 a fascinating discovery was made [5], opening a whole

new direction of research which should bring us closer to understanding the nature of

AdS/CFT. This approach is based on integrability which was found on both sides of the

duality between N = 4 SYM and superstring theory on AdS5 × S5 (for a review see [6]).

Integrable systems have been known in mathematics for a long time2, and are characterized

by the presence of a complete set of conservation laws/symmetries whose presence leads

to the exact solution of the model (see e.g. [7]). In quantum field theories integrability

was observed for various models (CFTs, sigma models, sine-Gordon theory, ...) defined

in two dimensions, and later in supersymmetry-protected sectors of higher dimensional

gauge theories [8, 9, 10]. In fact after appropriate gauge fixing the string action defines

an 2d integrable theory on the worldsheet, to solve which one can apply (modulo various

complications of course) the well-developed methods based on the S-matrix bootstrap,

similarly to solutions of such renowned 2d models as the sine-Gordon theory. What is truly

remarkable is that this rather conventional integrability on the string side translates, via

AdS/CFT, into integrability on the gauge theory side – providing a rare case of integrable

structures in four, instead of two, spacetime dimensions. The emergence of integrability

for a full, non-protected set of observables in a 4d theory – even if only in the large Nc

limit – was a completely novel phenomenon and gives a hope to reach, for the first time

2Best-known examples are models in classical mechanics such as the Kepler problem or spinning tops,

and integrable PDEs such as the Korteveg-de Vries equation.



1.2 Thesis structure 13

ever, the complete solution of an interacting 4d gauge theory.

Integrability is also one of the very few methods which allow to verify and test the

AdS/CFT correspondence on a non-perturbative level. An extra interest in the subject

stems from the fact that the integrable system arising here is of a novel type, in particular

the corresponding R-matrix has nontrivial branch points and is related to a new type of

quantum group.

As N = 4 SYM is a conformal theory, a key observable to study is the spectrum

of conformal dimensions, which on the string theory side corresponds to string energy

levels. Integrability has proven to be especially powerful in application to the spectral

problem, and more than a decade’s efforts have led to a strikingly simple set of equations

which are expected to describe the full spectrum (for local operators) at any coupling.

These equations are known as the Quantum Spectral Curve (QSC) and are based on deep

algebraic structures such as the QQ-relations. As the QSC encodes the exact Q-functions

of the model which are linked to wavefunctions in separated variables, it is also expected to

have applications for computing 3-point correlation functions in addition to the spectrum.

The main focus of the work presented in this thesis is exploring the spectrum using

this novel Quantum Spectral Curve framework. We will see the QSC in action in a

wide variety of settings, uncovering key features of solutions to the QSC equations in

different regimes and obtaining valuable data for the spectrum at the same time. The

applications range from exceptionally precise numerical calculations to high-order analytic

expansions and several all-loop results. We will show how using this approach it is possible

to attack several previously untractable problems, including next-to-next-to-leading order

calculations in the BFKL limit which links the N=4 theory to realistic QCD. In addition,

while the original QSC describes local operators, we will show how to extend it to a cusped

Wilson line setup. This opens the way to deeply study another important observable – the

generalized quark-antiquark potential, for which we will be able to obtain numerous new

results as well as uncovering surprising new structures in the QSC. All these solutions also

allow us to obtain Q-functions in different regimes, which we hope will help to develop

applications of the QSC to computation of 3-point correlators.

1.2 Thesis structure

The results described in this thesis were originally presented in six of my papers (with

co-authors) which are listed in the next section. The thesis contains eight parts: the
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first part provides an introduction and overview, in parts II - VII the main results are

presented, and the final part contains conclusions and appendices with technical details.

A more detailed summary of the content is given below.

• Part I

In this introductory part we first give an overview of gauge/string dualities and

the appearance of integrability in this context. We present the structure of the

thesis and list the author’s publications. Then we discuss in more detail the N = 4

SYM theory and the dual string theory and describe the historical development of

the integrability program. We also specifically focus on the key Quantum Spectral

Curve (QSC) framework, which is the basis for most of the results presented in the

thesis.

• Part II

In this part we describe the solution of the QSC at any coupling in the small spin

limit. We compute the first two orders of the near-BPS expansion to all loops and

show that this data also provides new strong coupling predictions for much-studied

observables such as the Konishi anomalous dimension and the BFKL intercept.

• Part III

Here we present a highly efficient numerical algorithm for solving the QSC for an

arbitrary state/operator. It allows to generate extremely precise data for the non-

perturbative spectrum at finite coupling. Moreover we show how to implement

analytic continuation in the spin away from integer values, and deeply explore the

rich analytic structure of the spectrum for twist two operators.

• Part IV

We present in this part a new analytic iterative method for solving the QSC per-

turbatively, which by now has found many diverse applications. We show that in

particular it allows to compute for the first time the NNLO correction to the BFKL

eigenvalue, resolving a longstanding problem open for more than 10 years. The

regime we study resums all orders of usual perturbation theory. We verify the result

with 60 digits precision using the numerical method discussed in part III. We also

achieve a further simplification of the QSC by eliminating several auxiliary functions.

• Part V

Having discussed the spectrum of local operators, in the parts V-VII we switch
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to the generalized cusp anomalous dimension, associated to a cusped Wilson line.

In this part we present the analytic solution of the TBA equations (which are the

predecessor of the QSC) to all loops in a near-BPS limit. The calculation reproduces

localization-based predictions and reveals a curious matrix model structure of the

result. It also provides guidance for extending the QSC to this case.

• Part VI

In this part we propose the Quantum Spectral Curve formulation for the angle-

dependent cusp anomalous dimension at all values of the parameters and the cou-

pling. This opens the way to study this observable systematically and apply the

powerful methods developed for local operators. The proposal is checked exten-

sively and leads to new analytic as well as numerical predictions. In particular, we

analytically compute the next term in the near-BPS expansion to all loops.

• Part VII

Here we show that the QSC proposed in the previous part leads to a finite closed

set of equations for the flat space quark-antiquark potential – a key observable in

AdS/CFT which is nearly inaccessible by previous integrability-based methods. It

corresponds to a singular limit in which the QSC develops qualitatively new features.

We calculate the first 7 nontrivial orders of the weak coupling expansion, going far

beyond the reach of other methods. We also compute the potential numerically in

a wide range of the coupling, reproducing the celebrated string theory results with

high accuracy. Finally we demonstrate how the Schrodinger equation resumming all

ladder diagrams in a double scaling limit is encoded in the QSC.

• Part VIII

We present concluding remarks and discuss directions for future research. This part

also contains appendices which supplement the main text.

1.3 The author’s publication list

A list of all my publications is given below. The papers (1)–(6) form the basis for this

thesis. The papers (7)–(11) are on closely related subjects, while papers (12), (13) are on

completely different topics. In the bibliography these papers are listed as [11] – [23].

(1) N. Gromov and F. Levkovich-Maslyuk, “Quark–anti-quark potential in N = 4 SYM,”

arXiv:1601.05679 [hep-th].
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(2) N. Gromov and F. Levkovich-Maslyuk, “Quantum Spectral Curve for a Cusped Wilson

Line in N = 4 SYM,”

arXiv:1510.02098 [hep-th] (to appear in JHEP).

(3) N. Gromov, F. Levkovich-Maslyuk and G. Sizov, “Pomeron Eigenvalue at Three Loops
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Let us also mention that in part II we mostly present results from paper (5), in part

III from paper (4), in part IV from paper (3), in part V from paper (6), in part VI from

paper (2), and in part VII from paper (1).

1.4 Frequently used notation

For the reader’s convenience we present here some frequently used notation.

• The coupling constant of planar N = 4 SYM is defined as

g =

√
λ

4π
, (1.1)

where λ = g2
YMNc is the ’t Hooft coupling (with Nc →∞).

• For a function f(u) we denote

f± = f

(
u± i

2

)
f [n] = f

(
u+

in

2

)
(1.2)

• We widely use the Zhukovsky variable x(u) defined by

x+
1

x
=
u

g
, (1.3)

choosing the solution with |x| > 1 (in part V we use another solution in some

cases, which is discussed explicitly). This parameterisation resolves the branch cut

u ∈ [−2g, 2g] which many functions discussed below have.
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2 N = 4 super Yang-Mills and strings on AdS5 × S5

In this section we will describe both sides of the AdS/CFT duality discussed above, and

make more precise their relation with each other.

On the gauge theory side we have N = 4 SYM with gauge group SU(Nc) which is the

maximally supersymmetric gauge theory in 4d (for a review see [24]). Its field content is a

non-abelian gauge field Aµ, six real scalars Φa (a = 1, . . . , 6) and fermionic fields ψα, ψα̇.

All fields are in the adjoint representation of the gauge group. The action reads

S =
1

2g2
YM

∫
d4xTr

[
−1

2
(Fµν)2 +DµΦaD

µΦa −
∑
a<b

[Φa,Φb]
2 + fermions

]
(2.1)

The beta function for the coupling is zero and this theory is conformally invariant at

the quantum level [25], with the corresponding symmetry group being SO(4, 2). There is

also an SU(4) R-symmetry, under which the fermions transform in the (anti)fundamental

representation, and the scalars in the 6-dimensional irrep. Together with supersymmetry

transformations, the global symmetries of the theory form the supergroup PSU(2, 2|4).

We will be interested in the planar limit when the number of colors Nc goes to infinity

while the combination

λ = g2
YMNc, (2.2)

which is known as the ’t Hooft coupling, stays fixed. While this limit may seem an extra

complication it in fact offers a great simplification, with reduction of the number of relevant

Feynman diagrams and most importantly the emergence of integrability.

Let us now turn to the string side of the duality, which is type IIB superstring theory on

the AdS5× S5 space. A useful formulation of this theory which highlights the symmetries

is the sigma model action [26] (for a discussion and review see [27, 28]). This Metsaev-

Tseytlin action can be written as

S =

√
λ

4π

∫
STr

(
J (2) ∧ ∗J (2) − J (1) ∧ J (3)

)
(2.3)

where J is the current constructed from the supergroup element g ∈ PSU(2, 2|4) as

J = −g−1dg =

4∑
i=1

J (i). (2.4)

The action is written in terms of the components J (i) which give the decomposition of the

current under the Z4 grading which is important for integrability.

The global symmetry of this action is given by the supergroup PSU(2, 2|4), matching

the symmetries of N = 4 SYM. The parameter λ which defines the string tension in the ac-

tion is identified with gauge theory ’t Hooft coupling. This already shows the weak/strong
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nature of the AdS/CFT correspondence: the gauge theory perturbative regime of small λ

is mapped to the highly interacting regime in the string theory. Conversely, the semiclas-

sical and tractable regime of large λ on the string side is mapped to the fully quantum

gauge theory.

Let us mention that the string coupling constant is set to zero (in the limit Nc →∞),

so the action (2.3) describes the propagation of a single string whose worldsheet is a

cylinder, but of course the model is still highly nontrivial as the string is moving in a

curved space. The AdS/CFT duality is conjectured to extend for the finite Nc case as well

with gs ∼ λ/Nc. We will always discuss the large Nc regime.

The main statement of AdS/CFT is that gauge theory observables are directly related

to those of string theory. A particularly important class of observables are the scaling

dimensions ∆(λ) of local gauge-invariant single trace operators in gauge theory,

O(x) = Tr(Φ1(x)Φ2(x) . . . ). (2.5)

The scaling dimensions are very nontrivial functions of λ which determine the form of

2-point correlators

〈O(x)Ō(y)〉 =
1

|x− y|2∆
(2.6)

and also fix the coordinate dependence of 3-point functions

〈O1(x)O2(y)O3(z)〉 =
C123

|x− y|∆1+∆2−∆3 |x− z|∆1+∆3−∆2 |y − z|∆2+∆3−∆1
(2.7)

(here the coefficients C123 are called the 3-point structure constants). The conformal

dimensions are conjectured to be equal to the energies of string states, i.e. their Noether

charge E with respect to translations in the AdS global time. In the commonly used

lightcone gauge [28] this AdS energy is also simply related to the worldsheet energy of the

state,

Ews = E − J (2.8)

where J is one of the R-charges. Thus the problem of computing scaling dimensions in

gauge theory is reformulated as computing the worldsheet spectrum in finite volume for a

nontrivial sigma model.

3 Integrable structures in AdS/CFT

In this section we will summarize the development of integrability methods in gauge/string

dualities.
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Exploration of integrability started with the discovery that the dilatation operator in

N = 4 SYM, whose eigenvalues are the scaling dimensions, coincides at 1 loop in the

scalar sector with the Hamiltonian of an integrable spin chain [5]. This nearest-neighbor

spin chain is solvable by beautiful Bethe ansatz techniques (see [24] for an introduction)

providing immediate access to the spectrum. Integrability was later extended to more

generic sectors and to higher orders in the ’t Hooft coupling.

On the string side, classical integrability stems from the construction of a connection

which is flat on equations of motion and includes an additional complex variable called the

spectral parameter [29, 30]. The monodromy of this flat connection around the worldsheet

then generates infinitely many conserved charges when expanded as a series in the spectral

parameter. This construction is typical for sigma models on coset spaces. All the conserved

charges are encoded in the classical spectral curve of the theory [30] which also provides

a framework to compute 1-loop quantum corrections [31].

While integrable structures on the gauge theory side played a crucial role in the subject,

the complete all-loop solution for the spectrum was guided mostly by logic originating from

the string side of the duality. The reason for this is that after appropriate lightcone gauge-

fixing, the string action defines the worldsheet model which is a 2d integrable field theory

solvable by the bootstrap and related methods, which have been extensively developed

for simpler models like the sine-Gordon or principal chiral field models. These methods

were adapted to conjecture the exact S-matrix for string excitations as reviewed in [32].

Its structure is to a large extent fixed by the Yang-Baxter equation, although an overall

prefactor called the dressing phase required a special effort to determine [33]. An important

complication compared to more conventional models is that the dispersion relation for

excitations is non-relativistic.

These developments finally led to the asymptotic Bethe ansatz (ABA) equations at

any coupling that were formulated in [34]. They descibe the exact spectrum for operators

containing an asymptotically large number of fields, and interpolate between the gauge

and string theory predictions. The number of fields L in the operator corresponds to the

spatial volume in which the 1+1 dimensional worldsheet theory is defined. Thus as usual

in massive integrable QFTs, the ABA does not capture the corrections to the energy which

are exponentially small in the volume L.

More precisely, for length L operators the ABA equations describe the spectrum up

to order g2L, and they miss finite-size wrapping corrections that appear at higher orders

[35, 36]. At first several orders these effects can be studied using Luscher formulas. To
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fully take into account the wrapping effects, it was necessary to apply the Thermodynamic

Bethe ansatz (TBA) approach in which the energy levels of an integrable QFT in finite

volume are related to the asymptotic spectrum [37]. This led to the formulation of an

infinite set of functional Y-system relations [38] or integral TBA equations [39, 40, 41] that

are expected to capture the full spectrum with all finite-size contributions. Schematically,

the TBA equations have the following form:

log Yas(u) = Φas(u) +
∑
a′,s′

∞∫
−∞

dvKa′s′
as (u, v) log(1 + Ya′s′(v)) (3.1)

where Yas(u) are the unknown functions while Ka′s′
as and Φas are known explicitly. The

indices (a, s) of the Y-functions belong to a T-shaped domain of the integer lattice. Once

these equations are solved the energy can be extracted from the Y-functions. One of the

problems of this approach is that the explicit form of the equations requires case-by-case

study and is not known in general except for a few explicit examples such as Konishi

[42, 43]. They, however, allowed for a detailed numerical study of these simplest operators

[42, 44, 45, 46] and led to a prediction for string theory which was confirmed in [47, 48, 49].

While the TBA can be reliably applied only to a certain subset of states, the Y-system

equations are universal and have algebraic origins3. Their relation with the Hirota bilinear

equations allowed to get a set of extra conditions that impose on the Y-functions correct

analyticity properties dictated by TBA [50]. These developments led to a reduction of the

spectral equations to a finite set of nonlinear integral equations (FiNLIE) [51]. Finally,

an immense simplification of the spectral problem was achieved in [52] (see full details in

[53]) with the reformulation of TBA as Quantum Spectral Curve (QSC) equations. These

are a finite set of equations of Riemann-Hilbert type, which in contrast to FiNLIE have a

transparent analytic structure and are deeply connected with the PSU(2, 2|4) symmetry

of the problem. The QSC equations provide perhaps the ultimate solution of the spectral

problem, and are expected to apply for arbitrary operators/string states. In addition,

in this framework the finite-zize corrections and the asymptotic part of the spectrum

are treated on equal footing. In fact, these equations capture not only the spectrum

but also the exact Q-functions of the model, which should correspond to wavefunctions

in Sklyanin’s separated variables [54, 194]. As 3-point correlators are closely related to

overlaps of wavefunctions, it is widely believed the QSC should play an important role in

computing various correlators as well. In the next subsection we will describe the QSC in

3However, analyticity properties of Y-functions may differ from state to state, thus it is still highly

difficult to single out the physical solutions for generic states
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more detail.

Integrability is also being developed for other observables, such as correlation functions

and scattering amplitudes though a complete and simple description for these quantities is

yet to be found (for recent advances see e.g. [55, 56], [57], [58]). In addition, following the

success of integrability in the most studied duality, other integrable cases of AdS/CFT have

been found. Some of them are deformations of the original theory [59, 203, 204, 60], while

others concern dualities in different number of dimensions, such as the by now well-studied

ABJM theory [61], or AdS3/CFT2 (see the review [62]) where a lot of open questions still

remain. Let us also mention that one can consider not just the local operators but also

highly interesting boundary problems related e.g. to Wilson lines with insertions, where

integrability methods are powerful as well (see in particular [63, 64, 65]).

4 The Quantum Spectral Curve of AdS/CFT

The Quantum Spectral Curve equations are the central object discussed in this thesis. In

this section we will give an overview of the QSC framework.

4.1 Motivation and the XXX chain

Let us first discuss some general features of the construction and provide motivation for

it. As stated above, the QSC for states in some subsector can be derived from the Ther-

modynamic Bethe Anstaz, but in general stands as a conjecture motivated by compelling

arguments and a multitude of tests. Impressive confirmations of the correctness of the

proposed QSC equations were supplied already in the original papers [52, 53]. In partic-

ular it was shown that the QSC encodes the all-loop asymptotic Bethe ansatz equations

which have played a seminal role in the development of AdS/CFT integrability.

The name “Quantum Spectral Curve” suggests that the construction may be viewed as

a quantum version of the classical spectral curve. Indeed, as shown in [53], in the classical

limit it reduces to the classical AdS/CFT spectral curve. Moreover, in general it is known

at least for some examples (such as the XXX chain) that from the characteristic equation

defining the classical spectral curve one can obtain (promoting the spectral parameter and

the eigenvalue to operators) functional equations describing the corresponding quantum

integrable model (see e.g. [66] and references therein). These take the form of differ-

ence equations on Q-functions of the model, which can be usually written in the form of
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canonical QQ-relations. The set of these equations is thus sometimes called the quantum

spectral curve of the model. In AdS/CFT due to various complications this quantiza-

tion program has not been carried out directly, but the equations of the QSC are indeed

precisely the QQ-relations (supplemented with additional constraints), which is another

reason for giving the construction this name4.

The QQ-relations can be easily illustrated on the example of the SU(2) XXX Heisen-

berg quantum spin chain. This quantum integrable model is defined by the Hamiltonian

Ĥ =
1

2

L∑
k=1

(
1− P̂k,k+1

)
(4.1)

acting on the tensor product of L copies of C2. Here P̂k,k+1 is the permutation operator

acting on the product of the k-th and (k + 1)-th site (and k = L + 1 is identified with

k = 1). This system can be solved by Bethe ansatz techniques which lead to equations for

the Bethe roots uj ,(
uj + i/2

uj − i/2

)L
= −

N∏
k=1

uj − uk + i

uj − uk − i
, j = 1, . . . , N . (4.2)

In terms of solutions to these equations, the energy levels of the Hamiltonian are given by

E =

N∑
j=1

1

u2
j + 1/4

. (4.3)

We see that the Bethe roots are key quantities which encode the spectrum of the Hamil-

tonian. It is convenient to assemble the roots into the Baxter Q-function Q1(u) defined

as

Q1(u) =

N∏
k=1

(u− uk) (4.4)

Remarkably, the Bethe ansatz equations (4.2) can be obtained from a simple functional

equation on Q1(u). Namely, we require that there exists another polynomial Q2(u) such

that

Q1(u+ i/2)Q2(u− i/2)−Q1(u− i/2)Q2(u+ i/2) = uL . (4.5)

This equation is known as the QQ-relation for this simple model. Now let us instead start

from this QQ-relation and define the parameters uk as zeros of Q1(u). Then using (4.5)

evaluated at u = uj + i/2 and u = uj − i/2 we see that Q2 drops out and we find(
uj + i/2

uj − i/2

)L
= −Q1(uj + i)

Q1(uj − i)
(4.6)

4A quantization of the classical curve in one or another sense also arises in other contexts, e.g. in

relation to topological recursion in matrix models [67, 68].
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which are precisely the Bethe equations (4.2)! Thus solely from the QQ-relation (supple-

mented by the condition that Q1, Q2 are polynomials) we have obtained the key Bethe

ansatz equations, which determine the spectrum via (4.3).5 In fact one can derive the

same Bethe equations for the roots of Q2(u). They are known as dual Bethe roots and

give an equivalent description of the same energy levels. To write the QQ-relation in a

more canonical form let us introduce

Q12(u) = uL, Q∅(u) = 1 (4.7)

then we have

Q1(u+ i/2)Q2(u− i/2)−Q1(u− i/2)Q2(u+ i/2) = Q12(u)Q∅(u) . (4.8)

This is the standard bilinear form of the QQ-relation for models with SU(2) symmetry.

For integrable systems with higher rank symmetries one introduces more Q-functions,

which for spin chains encode Bethe roots on different levels of the nested Bethe ansatz.

The QQ-relations are then bilinear equations similar to those above, and their structure

is dictated by the symmetry group.

4.2 The QSC for gauge/string duality: equations and analyticity

As the spectral problem in AdS/CFT is expected to give rise to a quantum integrable

system, we should also have a set of Q-functions satisfying the canonical QQ-relations

based on PSU(2, 2|4) symmetry. In general the Q-system of N = 4 SYM is composed

of 28 Q-functions. They are labelled as Qa1,...,ak|b1,...,bn where k and n range from 1 to

4, and each of the indices ai, bj takes values from 1 to 4 as well. In other words, we

have Q-functions with up to eight indices in total, some examples being Qa1|b1 , Qa1a2|∅,

Qa1a2a3a4|b1b2 . The indices ai are often called “bosonic” while bi are called “fermionic”.

The Q-functions are moreover antisymmetric in all the a indices and in all the b indices.

In this notation the QQ-relations have the following form:

QA|IQAab|I = Q+
Aa|IQ

−
Ab|I −Q

+
Ab|IQ

−
Aa|I (4.9)

QA|IQA|Iij = Q+
A|IiQ

−
A|Ij −Q

+
A|IjQ

−
A|Ii (4.10)

QAa|IQA|Ii = Q+
Aa|IiQ

−
A|I −Q

+
A|IQ

−
Aa|Ii (4.11)

5The formula for the energy (4.3) is an extra input which supplements the QQ-relation in this case,

but there are many models, including AdS/CFT, where such extra information is not needed, instead one

specifies how the energy is encoded in the asymptotics of Q-functions.
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Here A and I stand for some sets of indices. We see that the SU(2) QQ-relation (4.8)

is just a particular case of (4.9) with A = I = ∅, a = 1, b = 2. The Q-functions can be

neatly assembled into a Hasse diagram (see [53] and references therein) where each node

corresponds to a Q-function and each face with four vertices corresponds to a QQ-relation,

see Fig. 4.2.

Figure 1: A part of the Hasse diagram describing the Q-system for the PSU(2, 2|4) group.

Each black dashed link corresponds to adding a “bosonic” index, and each blue dotted

link to adding a “fermionic” index. Rectangular facets in the diagram correspond to QQ-

relations, e.g. the facet containing Q∅|∅, Q1|∅, Q2|∅ and Q12|∅ gives rise to the QQ-relation

(4.8). The part of the diagram shown here corresponds to an SU(2|2) subgroup inside the

whole symmetry group.

For spin chains the QQ-relations together with requiring polynomiality of the Q-

functions essentially lead to the solution of the model. However the main complication in

the AdS/CFT integrable system is that the Q-functions are not polynomials, instead they

have a complicated analytic structure with branch points whose position depends on the

’t Hooft coupling. However we still require the Q-functions to be free of any singularities

except these branch points. The branch points are inherited from the dispersion relation

of the excitations, which is written in terms of the Zhukovsky variable x(u) defined by

x+
1

x
=
u

g
, (4.12)

where we take the solution with |x| > 1 and we introduced

g =

√
λ

4π
(4.13)
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where λ is the ’t Hooft coupling. Then using also the notation

f± ≡ f(u± i/2), f [+a] ≡ f(u+ ia/2) (4.14)

we can parameterize the energy and momentum of excitations as

eip =
x+

x−
, E = 2ig

(
1

x+
− 1

x−

)
. (4.15)

We see that as functions of the spectral parameter u, the energy and momentum have

branch points at the ends of the cut [−2g ± i/2, 2g ± i/2]. Similar branch cuts are also

present in the S-matrix of the theory and eventually appear in the Q-functions. In the

limit when λ is small the system reduces to the usual psu(2, 2|4) Heisenberg spin chain.

Because of the branch points, the QQ-relations should be supplemented by extra an-

alyticity conditions which are the key element of the construction. Let us descrbe all the

QSC equations in detail (we also refer the reader to [53] where the QSC is covered in full

depth).

u u

Figure 2: Pa and Qi have one cut on the real axis in the representations with short and

long cuts respectively. The ellipse shows the region of convergence of the series (4.19)

Importantly, the algebraic relations between the Q-functions allow one to choose a

much smaller subset, which will be complete in the sense that the rest of Q-functions can

be generated from the selected ones algebraically. A convenient choice for such a subset

consists of 4+4 functions Pa(u) and Qi(u) (a, i = 1, . . . , 4). One can say that Pa describe

the S5 degrees of freedom whereas Qi correspond to the AdS5 part. In the notation of

(4.9) they correspond to Pa = Qa|∅, Qi = Q∅|i. A particularly nice property of P’s is

that they have only two branch points at ±2g when they are connected by a “short” cut

[−2g; 2g] (see Fig. 4.2). This means that there are more branch points on the next sheet,

but for this choice of the cut they do not appear on the first sheet. As most Q-functions

have infinitely many cuts, the fact that on some Riemann sheet the Pa have only one cut

is far from trivial and can be viewed as somewhat miraculous. Very similarly Q’s have
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only two branch point on the main sheet if the cut is taken to go through infinity. In a

sense this reflects the non-compactness of the AdS5 part of the space.

Whereas the coupling determines the position of the branch points, the quantum num-

bers of the state are specified through the large u asymptotics of Q-functions. The Pa

encode the compact bosonic subgroup SO(6) quantum numbers (J1, J2, J3), while Qi gives

the SO(4, 2) charges (∆, S1, S2), which include the conformal dimension of the state ∆.

Explicitly

Pa ∼ Aau−M̃a , Qi ∼ BiuM̂i−1, Pa ∼ AauM̃a−1, Qi ∼ Biu−M̂i (4.16)

where

M̃a =

{
J1 + J2 − J3 + 2

2
,
J1 − J2 + J3

2
,
−J1 + J2 + J3 + 2

2
,
−J1 − J2 − J3

2

}
, (4.17)

M̂i =

{
∆− S1 − S2 + 2

2
,
∆ + S1 + S2

2
,
−∆− S1 + S2 + 2

2
,
−∆ + S1 − S2

2

}
. (4.18)

Note that often the Pa are easier to deal with, as they can be expressed as a series in

the Zhukovsky variable x(u),

Pa(u) =
∞∑

n=M̃a

ca,n
xn(u)

. (4.19)

This series is convergent everywhere on the upper sheet and also in an elliptic region

around the cut on the next sheet (see Fig. 4.2). A similar parametrization for Qa will not

cover even the upper sheet. Fortunately, in the whole set of 28 Q-functions there are other

4 functions with one single cut, which are denoted as Pa(u), a = 1, . . . , 4. Together with

Pa(u) they also form a complete set of Q-functions. In particular, one can reconstruct

Qi from them. The procedure for this, which will be important in many applications

discussed below, is the following:

• Find a set of 16 functions Qa|i, satisfying

Qa|i(u+ i
2)−Qa|i(u− i

2) = −Pa(u)Pb(u)Qb|i(u+ i
2) . (4.20)

Note that this is a 4-th order finite difference equation, which entangles all Qa|i
with fixed i. Different values of i label the 4 linearly independent solutions of this

equation. One could also equivalently use Qb|i(u− i
2) in place of Qb|i(u+ i

2) in the

r.h.s., due to the constraint [53]

PaP
a = 0 . (4.21)

Importantly, we also need to choose the solutions of (4.20) to be analytic in the

upper half plane. In fact for all Q-functions one can ensure that they only have cuts

in the lower half-plane.
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• The matrix Qa|i can then be used to pass to Qi from Pa’s,

Qi(u) = −Pa(u) Qa|i(u+ i/2) . (4.22)

The equations (4.20) and (4.22) are simply two of the QQ-relations as explained in

[53]. Let us notice that combining this equation with (4.20) we find a neat relation

Qa|i(u+ i/2)−Qa|i(u−+i/2) = Pa(u)Qi(u) (4.23)

which is also one of the usual QQ-relations.

We also introduce a matrix Qa|i such that Qa|iQa|j = −δij and use it to define Q’s

with an upper index:

Qi(u) = +Pa(u) Qa|i(u+ i/2) . (4.24)

Note that since Qa|i(u) is analytic in the upper-half-plane we can also analytically

continue these relations around the branch point at u = 2g to get

Q̃i(u) = −P̃a(u) Qa|i(u+ i/2) (4.25)

Q̃i(u) = +P̃a(u) Qa|i(u+ i/2) (4.26)

where the tilde denotes analytic continuation to the next sheet.

Since Qi can now be recovered from Pa and Pa it is not surprising that actually all

information we needed, in particular all the charges (including those in AdS5), are encoded

in P’s alone, through

Pa ∼ Aau−M̃a , Pa ∼ AauM̃a−1, Aa0Aa0 = i

∏
j(M̃a0 − M̂j)∏

b 6=a0
(M̃a0 − M̃b)

, (4.27)

where M̂j and M̃a are defined in (4.17), (4.18) and there is no summation over a0 in l.h.s.

In particular, one can extract ∆ from the last equation.

The coefficients ca,n and corresponding coefficients ca,n of the expansion of Pa(u) need

to be found. The constraint (4.21) fixes some of them (for example, we can use it to fix all

c1,n). The condition (4.27) gives the leading coefficients ca,M̃a
. The remaining coefficients

should be fixed from the analyticity constraints on P’s as prescribed by QSC. Let us

describe these constraints. The analytic continuation of Pa to the second sheet, which we

denote by P̃a, in terms of our ansatz (4.19) becomes simply

P̃a(u) =
∞∑

n=M̃a

ca,nx
n(u) . (4.28)
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uu

Figure 3: µab is periodic as a function with long cuts, and ωij as a function with short

cuts.

According to [53] this analytic continuation can be written in terms of auxiliary functions

µab(u) via

P̃a(u) = µab(u)Pb , P̃a(u) = µab(u)Pb(u) (4.29)

where µab(u) is an antisymmetric matrix with unit Pfaffian, i-periodic as a function with

long cuts, with the discontinuity fixed in terms of Pa

µ̃ab(u)− µab(u) = PaP̃b − P̃aPb . (4.30)

The matrix µab with upper indices is the inverse matrix to µab. Let us also note that if we

define µ’s as functions with short cuts, we would have instead of i-periodicity the following

condition:

µ̃ab(u) = µab(u+ i) (4.31)

Note also that µab are not themselves Q-functions.6

At this stage one can already present a closed system of equations which allow to fix

the energy ∆. In fact the equations (4.29), (4.30), (4.31) together with the requirement

PaPa = 0 are already constraining enough to fix the spectrum [52]. One should only

supplement them with asymptotics of the P’s from (4.16), the relations (4.27) and the

asymptotics of µ’s which e.g. in the sl(2) subsector with J2 = S2 = 0 take the form

(µ12, µ13, µ14, µ23, µ24, µ34) ∼
(
u∆−J , u∆+1, u∆, u∆, u∆−1, u∆+J

)
. (4.32)

Finally we also require that P’s and µ’s should have no singularities apart from the branch

points. This formulation, which is known as the Pµ system, does not use the Qi functions

at all.

The Pµ formulation of the QSC is certainly powerful and has led to many new results

for the spectrum. However, we found that in many cases it is much more advantageous

6The matrix µab can be interpreted as a rotation which transforms the Q-functions analytic in the

upper half plane into Q-functions analytic in the lower half-plane, see [53] for details.
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to close the analyticity conditions at the level of Qi, which obey very similar equations.

The rule is quite simple – one has to interchange short and long cuts. That is, we have to

introduce an i-periodic with short cuts function ωij(u) such that

Q̃i = ωijQ
j , Q̃i = ωijQj , ω̃ij − ωij = Q̃iQj −QiQ̃j . (4.33)

with Pf ω = 1. At u → +∞ the set of ωij becomes a constant matrix. These equations

represent another equivalent formulation of the QSC, known as the Qω system.

One can also relate µ’s and ω’s with the help of Q-functions with four indices Qab|ij

defined as a determinant,

Qab|ij =

∣∣∣∣∣∣Qa|i Qa|j

Qb|i Qb|j

∣∣∣∣∣∣ . (4.34)

Then we have

µab =
1

2
Q−ab|ijω

ij . (4.35)

Let us finally note that after the formulation of the original QSC in [52, 53], it was

understood in [13] that one can avoid computing the auxiliary functions µ and ω altogether.

The equations can be closed using Q-functions only7, and e.g. in the sl(2) sector it is

enough to impose

Q̃1(u) = const ·Q3(−u) . (4.36)

In addition to being conceptually important, this simplification increases the efficiency of

the QSC even further, and in particular made it possible to reach the high-order results

presented in [13], [12], [11] which will be discussed below.

4.3 The QSC in the sl(2) sector

The anomalous dimensions of twist operators in the sl(2) sector of N = 4 SYM are

one of the most interesting parts of the theory’s spectrum, exhibiting rich structires in

perturbation theory and being related to multicolor QCD in some limits [69]. These

operators are built from sclaras and covariant derivatives, and they form the subsector

known as the sl(2) sector. Explicitly they have the form

O = Tr
(
ZJ−1 DSZ

)
+ . . . (4.37)

7This has been checked explicitly in some subsectors but it should be possible to derive similar relations

for generic states.
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where Z denotes one of the scalars of the theory8, D is a lightcone covariant derivative

and the dots stand for permutations. The number of derivatives S is called the spin of

the operator, while J is called the twist. Below we will study them intensively in various

regimes. We will focus on the symmetric case, corresponding to a distribution of the Bethe

roots which is invariant under u→ −u.

For such states the QSC enjoys several simplifications. First, quantities with upper

and lower indices are now related to each other: indices can be raised or lowered using a

simple matrix

χ =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , (4.38)

for example,

Qi = χijQj , Pa = χabPb. (4.39)

It is also easy to show that in this sector ωij should satisfy ω14 = ω23 in addition to

antisymmetry, and similaraly µ14 = µ23. Also, the P and Q-functions have now definite

parity in u.

The matrix Qa|i can be normalized in this case such that it preserves the χab matrix,

χQχQT = 1 (4.40)

and should have unit determinant [53],

det
1≤a,i≤4

Qa|i = 1 . (4.41)

4.4 The QSC in action: results obtained so far

Here we will summarize the applications of the QSC that have been explored so far.

One of the first impressive demonstrations of the efficiency of this approach was the

calculation of the Konishi anomalous dimension to 10 loops in perturbation theory [70],

supplemented later by more perturbative results in the sl(2) sector [70, 71]. The QSC

allows to prove general statements about the types of multiple zeta values that can appear

as coefficients in the expansion, establishing a curious link to deep algebra and perhaps

number theory. High-order weak coupling expansion for generic operators should also soon

be available.
8Written in terms of two real scalars as Z = Φ1 + iΦ2.
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The QSC was also proven to be powerful in application to expansion around BPS

configurations. A great simplification comes from the fact that P-functions typically

become suppressed in this case. In [15] the first two nontrivial orders in the small spin

expansion of twist operator anomalous dimensions were computed at all loops. The leading

order matches the known result encoded in ABA, while the next order is new and leads

to novel analytic predictions at strong coupling for Konishi-type operators and for the

BFKL intercept. The QSC also served as a guidance for the near-BPS solution of the

TBA describing the generalized cusp with arbitrary angle θ [16].

The calculation of [15] led to a prescription in the QSC for analytic continuation of

anomalous dimensions away from integer spin values. The regime of non-integer spin was

further explored in [72] where the famous BFKL limit S → −1, g → 0, g2

S+1 = fixed was

studied. This limit has played an important role in explorations of integrability in N = 4

SYM and the theory develops close links to QCD in this case. In fact even long before the

formulation of AdS/CFT integrability was observed for 4d multicolor QCD. The leading

order anomalous dimension in this regime resums all orders of usual perturbation theory.

In [72] the leading order result was fully reproduced from integrability for the first time

and the LO solution of the QSC was constructed. The next challenge was to reach higher

orders in the expansion. It was overcome in [13] where the NNLO term was computed for

the first time, using an iterative analytic method which is also applicable in many other

situations.

Furthemore, an efficient numerical algorithm which allows to solve the QSC for any

state/operator was proposed in [14]. In particular it provided a check for the NNLO result

with at least 60 digits of precision.

In [12] it was proposed how to extend the QSC to calculation of the generalized cusp

anomalous dimension associated to a nonlocal operator (a cusped Wilson line). The ver-

satile methods developed before were adapted to this case, leading to many new results,

both analytical and numerical. Furthemore, it was understood in [11] how the singular

limit corresponding to the flat space qq̄ potential is implemented in the QSC. This allowed

to deeply study this quantity at weak coupling, numerically and also in the double scaling

limit resumming all perturbative orders.

A setup similar to the cusped Wilson line was considered in [73] where deformations

of the QSC were described and in particular the QSC was formulated for γ−deformed

N = 4 SYM. Extension of the QSC to other defomations (e.g. q-deformations) remains

to be carried out.
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The QSC has also been formulated for the ABJM duality [74] in which the ABA and

TBA/Y-system have been proposed earlier [75, 76, 77, 21, 78, 79]. The all-loop computa-

tion of [80] followed and led to the resolution of a longstanding problem by allowing to fix

an interpolation function h(λ) that enters all integrability-based results in this model and

was previously studied intensively at weak and strong coupling [81, 82, 83, 84, 85, 86, 87].

The QSC was also applied to high-order weak coupling calculations [88]. Finally let us

mention that the QSC is also known for the Hubbard model which has several common

features with the AdS/CFT integrable system [89].
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Part II

All-loop results at small spin

In this part we will describe the application of the QSC to studying the small spin near-

BPS limit in the sl(2) sector of N = 4 SYM, based on the paper [15]. To preserve the

same notation as in that paper, in this part we chose to relabel the Pa functions compared

to the discussion above, with

Phere
1 = P2, Phere

2 = P1, Phere
3 = P4, Phere

4 = P3 . (4.42)

5 Introduction

The small spin limit for operators in the sl(2) sector has attracted significant attention

since it is posible to obtain all-loop results in this regime. We will consider a two-cut

configuration with a symmetric distribution of Bethe roots, thus for physical states S is

even. For small spin, the scaling dimension of these operators can be written as

∆ = J + S + γ(g), g =
√
λ/(4π) (5.1)

with the anomalous dimension γ(g) given as an expansion

γ(g) = γ(1)(g)S + γ(2)(g)S2 +O(S3). (5.2)

The first term, γ(1)(g), is called the slope function. Remarkably, it can be found exactly

at any value of the coupling [90]

γ(1)(g) =
4πgIJ+1(4πg)

JIJ(4πg)
. (5.3)

This expression was later derived from the asymptotic Bethe ansatz (ABA) equations in

two different ways [91, 92] and further studied and extended in [93, 94, 95, 96, 97]. This

quantity is protected from finite-size wrapping corrections and thus the ABA prediction

is exact. It is also not sensitive to the dressing phase of the ABA, which contributes only

starting from order S2.

Our key observation is that in the small S regime the Pµ-system can be solved itera-

tively order by order in the spin. We will first solve it at leading order and reproduce the

slope function (5.3). Then we compute the coefficient of the S2 term in the expansion, i.e.

the function γ(2)(g) which we call the curvature function. For twist J = 2, 3, 4 we obtain
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closed exact expressions for it in the form of a double integral. Unlike the slope function,

γ(2)(g) is affected by the dressing phase in the ABA and by wrapping corrections, all of

which are incorporated in the exact Pµ-system.

Furthermore, we will use the strong coupling expansion of our result to find the value of

a new coefficient in the Konishi operator (i.e. Tr
(
D2Z2

)
) anomalous dimension at strong

coupling. Our result for the Konishi dimension reads

∆konishi = 2λ1/4 +
2

λ1/4
+
−3 ζ3 + 1

2

λ3/4
+

15 ζ5
2 + 6 ζ3 + 1

2

λ5/4
+ . . . . (5.4)

We have also obtained two new terms in the strong coupling expansion of the BFKL

pomeron intercept,

j0 = 2 + S(∆)|∆=0 = 2− 2

λ1/2
− 1

λ
+

1

4λ3/2
+ (6 ζ3 + 2)

1

λ2
(5.5)

+

(
18 ζ3 +

361

64

)
1

λ5/2
+

(
39 ζ3 +

511

32

)
1

λ3
+O

(
1

λ7/2

)
,

where the new terms are in the second line. In addition we have checked our results against

available results in literature at weak and strong coupling, and found full agreement.

This part is organized as follows. We first write out some of the Pµ system equations

more explicitly. In section 7 we demonstrate the usefulness of the QSC by rederiving

the exact slope function of N = 4 found in [90]. In section 8 we push the calculation

further and find the exact expression for the next coefficient in the small spin expansion,

i.e. the curvature function. In sections 9 and 10 we discuss the weak and strong coupling

expansions of our result. We then use our results to calculate the previously unknown

three loop strong coupling coefficient of the Konishi anomalous dimension in subsection

10.3 and two new coefficients for the BFKL intercept at strong coupling in subsection 10.4.

We finish with conclusions.

6 Pµ-system – an overview

The Pµ-system, already discussed above, is a nonlinear system of functional equations for

a four-vector Pa(u) and a 4 × 4 antisymmetric matrix µab(u) depending on the spectral

parameter u. The functions µab are also constrained by the relations

µ12µ34 − µ13µ24 + µ2
14 = 1 , (6.1)

µ14 = µ23 , (6.2)
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the first of which states that the Pfaffian of the matrix µab is equal to 1. Let us also write

the equations (4.29) explicitly:

P̃1 = −P3µ12 + P2µ13 −P1µ14 (6.3)

P̃2 = −P4µ12 + P2µ14 −P1µ24 (6.4)

P̃3 = −P4µ13 + P3µ14 −P1µ34 (6.5)

P̃4 = −P4µ14 + P3µ24 −P2µ34 . (6.6)

The above equations ensure that the branch points of Pa and µab are of the square root

type, i.e. ˜̃Pa = Pa and ˜̃µab = µab.

Finally, we require that Pa and µab do not have any singularities except these branch

points9.

The quantum numbers and the energy of the state are encoded in the asymptotics of

the functions Pa and µab at large real u. In the sl(2) sector the relations read [52]

Pa ∼ (A1u
−J/2, A2u

−J/2−1, A3u
J/2, A4u

J/2−1) (6.7)

(µ12, µ13, µ14, µ24, µ34) ∼
(
u∆−J , u∆+1, u∆, u∆−1, u∆+J

)
(6.8)

where J is the twist of the gauge theory operator, and ∆ is its conformal dimension.

Lastly, the spin S of the operator is related [52] to the leading coefficients Aa of the Pa

functions (see (6.7)):

A1A4 =

(
(J + S − 2)2 −∆2

) (
(J − S)2 −∆2

)
16iJ(J − 1)

(6.9)

A2A3 =

(
(J − S + 2)2 −∆2

) (
(J + S)2 −∆2

)
16iJ(J + 1)

. (6.10)

6.1 Symmetries

The Pµ-system enjoys a symmetry preserving all of its essential features. It has the

form of a linear transformation of Pa and µab which leaves the system (4.29)-(6.2) and

the asymptotics (6.7), (6.8) invariant. Indeed, consider a general linear transformation

P′a = Ra
bPb with a non-degenerate constant matrix R. In order to preserve the system

(4.29), µ should at the same time be transformed as

µ′ = −RµχR−1χ. (6.11)

9For odd values of J the functions Pa may have an additional branch point at infinity. However,

it should cancel in any product of two Pa’s, and therefore it will not appear in any physically relevant

quantity (see [52], [53]). We will discuss some explicit examples in the text.
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Such a transformation also preserves the form of (4.30) if

RTχRχ = −1 , (6.12)

which also automatically ensures antisymmetry of µab and (6.1), (6.2). In general, this

transformation will spoil the asymptotics of Pa. These asymptotics are ordered as |P2| <

|P1| < |P4| < |P3|, which implies that the matrix R must have the following structure10

R =


∗ ∗ 0 0

0 ∗ 0 0

∗ ∗ ∗ ∗

∗ ∗ 0 ∗

 . (6.13)

The general form of R which satisfies (6.12) and does not spoil the asymptotics gener-

ates a 6-parametric transformation, which we will call a γ-transformation. The simplest

γ-transformation is the following rescaling:

P1 → αP1 , P2 → βP2 , P3 → 1/βP3 , P4 → 1/αP4 , (6.14)

µ12 → αβµ12 , µ13 →
α

β
µ13 , µ14 → µ14 , µ24 →

β

α
µ24 , µ34 →

1

αβ
µ34 , (6.15)

with α, β being constants.

In all the solutions we consider in this part all functions Pa turn out to be functions

of definite parity, so it makes sense to consider γ-transformations which preserve parity.

P1 and P2 always have opposite parity (as one can see from from (6.7)) and thus should

not mix under such transformations; the same is true about P3 and P4. Thus, depending

on parity of J the parity-preserving γ-transformations are either

P3 → P3 + γ3P2, P4 → P4 + γ2P1, (6.16)

µ13 → µ13 + γ3µ12, µ24 → µ24 − γ2µ12, µ34 → µ34 + γ3µ24 − γ2µ13 − γ2γ3µ12

for odd J or

P3 → P3 + γ1P1, P4 → P4 − γ1P2, (6.17)

µ14 → µ14 − γ1µ12, µ34 → µ34 + 2γ1µ14 − γ2
1µ12 ,

for even J .

10This matrix would of course be lower triangular if we ordered Pa by their asymptotics.
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7 Exact slope function from the Pµ-system

In this section we will find the solution of the Pµ-system (4.29)-(6.2) corresponding to the

sl(2) sector operators at leading order in small S. Based on this solution we will compute

the slope function γ(1)(g) for any value of the coupling.

7.1 Solving the Pµ-system in LO

The solution of the Pµ-system is a little simpler for even J , because for odd J extra branch

points at infinity will appear in Pa due to the asymptotics (6.7). Let us first consider the

even J case.

The description of the Pµ-system above was done for physical operators. Our goal is to

take some peculiar limit when the (integer) number of covariant derivatives S goes to zero.

As we will see this requires some extension of the asymptotic requirement for µ functions.

In this section we will be guided by principles of naturalness and simplicity to deduce these

modifications. The details of the prescription for the analytic continuation are discussed

in [15], and we do not cover them here for the sake of brevity. The prescription was later

understood to amount to allowing exponential asymptotics in one of the ωij functions (see

the part of the thesis discussing the numerical solution for more details).

We will start by finding µab. Recalling that ∆ = J + O(S), from (6.9), (6.10) we

see that A1A4 and A2A3 are of order S for small S, so we can take the functions Pa

to be of order
√
S. This is a key simplification, because now (4.30) indicates that the

discontinuities of µab on the cut are small when S goes to zero. Thus at leading order

in S all µab are just periodic entire functions without cuts. For power-like asymptotics

of µab like in (6.8) the only possibility is that they are all constants. However, we found

that in this case there is only a trivial solution, i.e. Pa can only be zero. The reason for

this is that for physical states S must be integer and thus cannot be arbitrarily small,

nevertheless, it is a sensible question how to define an analytical continuation from integer

values of S.11

Thus we have to relax the requirement of power-like behavior at infinity. The first

possibility is to allow for e2πu asymptotics at u → +∞. We should, however, remember

about the constraints (6.1) and (6.2) which restrict our choice and the fact that we can

also use γ-symmetry. Let us show that by allowing µ24 to have exponential behavior and

11Restricting the large positive S behavior one can achieve uniqueness of the continuation.
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setting it to µ24 = C sinh(2πu), with other µab being constant, we arrive to the correct

result. This choice is dictated by our assumptions concerning the analytic continuation of

µab to non-integer values of S, and this point is discussed in detail in [15]. It is also shown

therethat by using the γ-transformation (described in section 6.1) and the constraint (6.1)

we can set the constant C to 1 and also µ12 = 1, µ13 = 0, µ14 = −1, µ34 = 0.

Having fixed all µ’s at leading order we get the following system of equations12 for Pa:

P̃1 = −P3 + P1, (7.1)

P̃2 = −P4 −P2 −P1 sinh(2πu), (7.2)

P̃3 = −P3, (7.3)

P̃4 = +P4 + P3 sinh(2πu). (7.4)

Recalling that the functions Pa only have a single short cut, we see from these equations

that P̃a also have only this cut! This means that we can take all Pa to be infinite Laurent

series in the Zhukovsky variable x(u), which rationalizes the Riemann surface with two

sheets and one cut. It is defined as

x+
1

x
=
u

g
(7.5)

where we pick the solution with a short cut, i.e.

x(u) =
1

2

(
u

g
+

√
u

g
− 2

√
u

g
+ 2

)
. (7.6)

Solving the equation (7.3) with the asymptotics (6.7) we find

P3 = ε
(
x−J/2 − x+J/2

)
+

J/2−1∑
k=1

ck

(
x−k − xk

)
(7.7)

where ε and ck are constants. Now it is useful to rewrite the equation for P1 (i.e. (7.1))

in the form P̃1 −P1 = −P3, and we see that due to asymptotics of P1 both sides of this

equation must have a gap in the powers of x from x−J/2+1 to xJ/2−1. This means that all

coefficients ck in (7.7) must vanish and we find

P1 = εx−J/2 , (7.8)

so we are left with one unfixed constant ε (we expect it to be proportional to
√
S).

12In this section we only consider the leading order of P’s at small S, so the equations involving them

are understood to hold at leading order in S. In section 4 we will study the next-to-leading order and

elaborate the notation for contributions of different orders.
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Thus the equations (7.2) and (7.4) become

P̃2 + P2 = −P4 − εx−J/2 sinh(2πu) , (7.9)

P̃4 −P4 = ε(x−J/2 − x+J/2) sinh(2πu) . (7.10)

We will first solve the second equation. It is useful to introduce operations [f(x)]+ and

[f(x)]−, which take parts of Laurent series with positive and negative powers of x respec-

tively. Taking into account that

sinh(2πu) =

∞∑
n=−∞

I2n+1x
2n+1, (7.11)

where Ik ≡ Ik(4πg) is the modified Bessel function of the first kind, we can write sinh(2πu)

as

sinh(2πu) = sinh+ + sinh−, (7.12)

where explicitly

sinh+ = [sinh(2πu)]+ =
∞∑
n=1

I2n−1x
2n−1 (7.13)

sinh− = [sinh(2πu)]− =
∞∑
n=1

I2n−1x
−2n+1 . (7.14)

In this notation the general solution of Eq. (7.10) with asymptotics at infinity P4 ∼ uJ/2−1

can be written as

P4 = ε(xJ/2 − x−J/2) sinh−+QJ/2−1(u), (7.15)

where QJ/2−1 is a polynomial of degree J/2− 1 in u. The polynomial QJ/2−1 can be fixed

from the equation (7.9) for P2. Indeed, from the asymptotics of P2 we see that the lhs of

(7.9) does not have powers of x from −J/2 + 1 to J/2− 1. This fixes

QJ/2−1(x) = −ε
J/2∑
k=1

I2k−1

(
x
J
2
−2k+1 + x−

J
2

+2k−1
)
. (7.16)

Once QJ/2−1 is found, we set P2 to be the part of the right hand side of (7.9) with powers

of x less than −J/2, which gives

P2 = −εx+J/2
∞∑

n=J
2

+1

I2n−1x
1−2n. (7.17)

Thus (for even J) we have uniquely fixed all Pa with the only unknown parameter being
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ε. We summarize the solution below:

µ12 = 1, µ13 = 0, µ14 = −1, µ24 = sinh(2πu), µ34 = 0, (7.18)

P1 = εx−J/2 (7.19)

P2 = −εx+J/2
∞∑

n=J/2+1

I2n−1x
1−2n (7.20)

P3 = ε
(
x−J/2 − x+J/2

)
(7.21)

P4 = ε
(
xJ/2 − x−J/2

)
sinh−−ε

J/2∑
n=1

I2n−1

(
x
J
2
−2n+1 + x−

J
2

+2n−1
)
. (7.22)

In the next section we fix the remaining parameter ε of the solution in terms of S and find

the energy, but now let us briefly discuss the solution for odd J . As we mentioned above

the main difference is that the functions Pa now have a branch point at u =∞, which is

dictated by the asymptotics (6.7). In addition, the parity of µab is different according to

the asymptotics of these functions (6.8). The solution is still very similar to the even J

case and is discussed in detail in [15]. Let us present the result here:

µ12 = 1, µ13 = 0, µ14 = 0, µ24 = cosh(2πu), µ34 = 1 (7.23)

P1 = εx−J/2, (7.24)

P2 = −εxJ/2
−J+1

2∑
k=−∞

I2kx
2k, (7.25)

P3 = −εxJ/2, (7.26)

P4 = εx−J/2 cosh−−εx−J/2
J−1

2∑
k=1

I2kx
2k − εI0x

−J/2. (7.27)

Note that now Pa include half-integer powers of x.

Fixing the global charges of the solution. To fix our solution completely we have

to find the value of ε and find the energy in terms of the spin using (6.9) and (6.10). For

this we first extract the coefficients Aa of the leading terms for all Pa (see the asymptotics

(6.7)). From (7.19)-(7.22) or (7.24)-(7.27) we get

A1 = gJ/2ε, (7.28)

A2 = −gJ/2+1εIJ+1, (7.29)

A3 = −g−J/2ε, (7.30)

A4 = −g−J/2+1εIJ−1. (7.31)
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Expanding (6.9), (6.10) at small S with ∆ = J +S+ γ, where γ = O(S), we find at linear

order

γ = i(A1A4 −A2A3) (7.32)

S = i(A1A4 +A2A3) . (7.33)

Plugging in the coefficients (7.28)-(7.31) we find that

ε =

√
2πiS

JIJ(
√
λ)

(7.34)

and we obtain the anomalous dimension at leading order,

γ =

√
λIJ+1(

√
λ)

JIJ(
√
λ)

S +O(S2), (7.35)

which is precisely the slope function of Basso [90].

In summary, we have shown how the Pµ-system correctly computes the energy at linear

order in S. In section 8 we will compute the next, S2 term in the anomalous dimension.

8 Exact curvature function

In this section we use the Pµ-system to compute the S2 correction to the anomalous

dimension, which we call the curvature function γ(2)(g). First we will discuss the case

J = 2 in detail and then describe the modifications of the solution for the cases J = 3 and

J = 4, more details on which can be found in [15].

8.1 Iterative procedure for the small S expansion of the Pµ-system

For convenience let us repeat the leading order solution of the Pµ-system for J = 2 (see

(7.18)-(7.22))

P
(0)
1 = ε

1

x
, P

(0)
2 = +εI1 − εx[sinh(2πu)]− , (8.1)

P
(0)
3 = ε

(
1

x
− x
)

, P
(0)
4 = −2εI1 − ε

(
1

x
− x
)

[sinh(2πu)]−. (8.2)

Here ε is a small parameter, proportional to
√
S (see (7.34)), and by P

(0)

a we denote the

Pa functions at leading order in ε.

The key observation is that the Pµ-system can be solved iteratively order by order in

ε. Let us write Pa and µab as an expansion in this small parameter:

Pa = P(0)
a + P(1)

a + P(2)
a + . . . (8.3)
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µab = µ
(0)
ab + µ

(1)
ab + µ

(2)
ab + . . . . (8.4)

where P
(0)
a = O(ε), P

(1)
a = O(ε3), P

(2)
a = O(ε5), . . . , and µ

(0)
ab = O(ε0), µ

(1)
ab =

O(ε2), µ
(2)
ab = O(ε4), etc. This structure of the expansion is dictated by the equations

(4.29), (4.30) of the Pµ-system (as we will soon see explicitly). Since the leading order Pa

are of order ε, equation (4.30) implies that the discontinuity of µab on the cut is of order

ε2. Thus to find µab in the next to leading order (NLO) we only need the functions Pa

at leading order. After this, we can find the NLO correction to Pa from equations (4.30).

This will be done below, and having thus the full solution of the Pµ-system at NLO we

will find the energy at order S2.

8.2 Correcting µab. . .

In this subsection we find the NLO corrections µ
(1)
ab to µab. As follows from (4.30) and

(4.31), they should satisfy the equation

µ
(1)
ab (u+ i)− µ(1)

ab (u) = P(0)
a P̃

(0)
b −P

(0)
b P̃(0)

a , (8.5)

in which the right hand is known explicitly. For that reason let us define an apparatus for

solving equations of this type, i.e.

f(u+ i)− f(u) = h(u). (8.6)

More precisely, we consider functions f(u) and h(u) with one cut in u between −2g and

2g, and no poles. Such functions can be represented as infinite Laurent series in the

Zhukovsky variable x(u), and we additionally restrict ourselves to the case where for h(u)

this expansion does not have a constant term13.

One can see that the general solution of (8.6) has a form of a particular solution plus

an arbitrary i-periodic function, which we also call a zero mode. First we will describe the

construction of the particular solution and later deal with zero modes. The linear operator

which gives the particular solution of (8.6) described below will be denoted as Σ.

Notice that given the explicit form (8.2) of P
(0)
a , the right hand side of (8.5) can be

represented in a form

α(x) sinh(2πu) + β(x), (8.7)

13The r.h.s. of (8.5) has the form F (u) − F̃ (u) and therefore indeed does not have a constant term in

its expansion, as the constant in F would cancel in the difference F (u)− F̃ (u).
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where α(x), β(x) are power series in x growing at infinity not faster than polynomially.

Thus for such α and β we define

Σ · [α(x) sinh(2πu) + β(x)] ≡ sinh(2πu)Σ · α(x) + Σ · β(x). (8.8)

We also define Σ · x−n = Γ′ · x−n for n > 0, where the integral operator Γ′ defined as

(
Γ′ · h

)
(u) ≡

∮ 2g

−2g

dv

4πi
∂u log

Γ[i(u− v) + 1]

Γ[−i(u− v)]
h(v). (8.9)

This requirement is consistent because of the following relation 14

(
Γ′ · h

)
(u+ i)−

(
Γ′ · h

)
(u) = − 1

2πi

∮ 2g

−2g

h(v)

u− v
dv = h−(u)− h̃+(u). (8.10)

What is left is to define Σ on positive powers of x. We do it by requiring

1

2
Σ · [xa + 1/xa] ≡ p′a(u) (8.11)

where p′a(u) is a polynomial in u of degree a+ 1, which is a solution of

p′a(u+ i)− p′a(u) =
1

2
(xa + 1/xa) (8.12)

and satisfies the following additional properties: p′a(0) = 0 for odd a and p′a(i/2) = 0 for

even a. One can check that this definition is consistent and defines of p′a(u) uniquely.

From this definition of Σ one can see that the result of its action on expressions of

the form (8.7) can again be represented in this form - what is important for us is that no

exponential functions other than sinh(2πu) appear in the result.

As an example we present the particular solution for two components of µab (below we

will argue that π12 and π13 can be chosen to be zero, see (8.17))

µ
(1)
13 − π13 = Σ ·

(
P1P̃3 −P3P̃1

)
= ε2Σ ·

(
x2 − 1

x2

)
= ε2

(
Γ′ · x2 + p′2(u)

)
,(8.13)

µ
(1)
12 − π12 = Σ ·

(
P1P̃2 −P2P̃1

)
=

= −ε2
[
2I1Γ′ · x− sinh(2πu) Γ′ · x2 − Γ′ ·

(
sinh−

(
x2 +

1

x2

))]
. (8.14)

Now let us apply Σ defined above to (8.5), writing that its general solution is

µ
(1)
ab = Σ · (P(0)

a P̃
(0)
b −P

(0)
b P̃(0)

a ) + πab, (8.15)

where the zero mode πab is an arbitrary i-periodic entire function, which can be written

similarly to the leading order as c1,ab cosh 2πu + c2,ab sinh 2πu + c3,ab. Omitting a rather

14We remind that f+ and f− stand for the part of the Laurent expansion with, respectively, positive

and negative powers of x, while f̃ is the analytic continuation around the branch point at u = 2g (which

amounts to replacing x→ 1
x

)
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technical argument (discussed in detail in [15]) we find that the final form of the zero mode

in (8.15) is

π12 = 0, π13 = 0, π14 = 0, (8.16)

π24 = c1,24 cosh 2πu, π34 = 0. (8.17)

In this way, using the particular solution given by Σ and the form of zero modes (8.17)

we have computed all the functions µ
(1)
ab . The details and the results of the calculation can

be found in appendix A.2.1.

8.3 Correcting Pa. . .

In the previous section we found the NLO part of µab. Now, according to the iterative

procedure described in section 8.1, we can use it to write a closed system of equations for

P
(1)
a . Indeed, expanding the system (6.6) to NLO we get

P̃
(1)
1 −P

(1)
1 = −P

(1)
3 + r1, (8.18)

P̃
(1)
2 + P

(1)
2 = −P

(1)
4 −P

(1)
1 sinh(2πu) + r2, (8.19)

P̃
(1)
3 + P

(1)
3 = r3, (8.20)

P̃
(1)
4 −P

(1)
4 = P

(1)
3 sinh(2πu) + r4, (8.21)

where the free terms are given by

ra = −µ(1)
ab χ

bcP(0)
c . (8.22)

Notice that ra does not change if we add a matrix proportional to P
(0)
a P̃

(0)
b −P

(0)
b P̃

(0)
a to

µ
(1)
ab , due to the relations

Paχ
abPb = 0, Paχ

abP̃b = 0, (8.23)

which follow from the Pµ-system equations. In particular we can use this property to

replace µ
(1)
ab in (8.22) by µ

(1)
ab + 1

2

(
P

(0)
a P̃

(0)
b −P

(0)
b P̃

(0)
a

)
. This will be convenient for us,

since in expressions for µ
(1)
ab in terms of pa and Γ (see (8.13), (8.14) and appendix A.2.1)

this change amounts to simply replacing Γ′ by a convolution with a more symmetric kernel:

Γ′ → Γ, (8.24)

(Γ · h) (u) ≡
∮ 2g

−2g

dv

4πi
∂u log

Γ[i(u− v) + 1]

Γ[−i(u− v) + 1]
h(v), (8.25)

while at the same time replacing

p′a(u)→ pa(u), (8.26)
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pa(u) = p′a(u) +
1

2

(
xa(u) + x−a(u)

)
. (8.27)

Having made this comment, we will now develop tools for solving the equations (8.18)

- (8.21). Notice first that if we solve them in the order (8.20), (8.18), (8.21), (8.19),

substituting into each subsequent equation the solution of all the previous, then at each

step the problem we have to solve has a form

f̃ + f = h or f̃ − f = h , (8.28)

where h is known, f is unknown and both the right hand side and the left hand side are

power series in x. It is obvious that equations (8.28) have solutions only for h such that

h = h̃ and h = −h̃ respectively. On the class of such h a particular solution for f can be

written as

f = [h]− + [h]0/2 ≡ H · h ⇒ f̃ + f = h (8.29)

and

f = −[h]− ≡ K · h ⇒ f̃ − f = h, (8.30)

where [h]0 is the constant part of Laurent expansion of h (it does not appear in the second

equation, because h such that h = −h̃ does not have a constant part). The operators K

and H introduced here can be also defined by their integral kernels

H(u, v) = − 1

4πi

√
u− 2g

√
u+ 2g√

v − 2g
√
v + 2g

1

u− v
dv, (8.31)

K(u, v) = +
1

4πi

1

u− v
dv. (8.32)

which are equivalent to (8.29),(8.30) of the classes of h such that h = h̃ and h = −h̃

respectively15. The particular solution f = H · h of the equation f̃ + f = h is unique in

the class of functions f decaying at infinity, and the solution f = K · h of f̃ − f = h is

unique for non-growing f . In all other cases the general solution will include zero modes,

which, in our case are fixed by asymptotics of Pa.

15We denote e.g. K · h =
∮ 2g

−2g
K(u, v)h(v)dv where the integral is around the branch cut between −2g

and 2g.
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Now it is easy to write the explicit solution of the equations (8.18)-(8.21):

P
(1)
3 = H · r3, (8.33)

P
(1)
1 =

1

2
P

(1)
3 +K ·

(
r1 −

1

2
r3

)
, (8.34)

P
(1)
4 = K ·

(
−1

2

(
P̃

(1)
3 −P

(1)
3

)
sinh(2πu) +

2r4 + r3 sinh(2πu)

2

)
− 2δ, (8.35)

P
(1)
2 = H ·

(
−1

2

(
P

(1)
4 + sinh(2πu)P

(1)
1 + P̃

(1)
4 + sinh(2πu)P̃

(1)
1

)
+ (8.36)

+
r4 + sinh(2πu)r1 + 2r2

2

)
+ δ,

where δ is a constant fixed uniquely by requiring O(1/u2) asymptotics for P2. This asymp-

totic also sets the last coefficient c1,24 left in π12 to zero. Thus in the class of functions

with asymptotics (6.7) the solution for µab and Pa is unique up to a γ-transformation.

8.4 Result for J = 2

In order to obtain the result for the anomalous dimension, we again use the formulas (6.9),

(6.10) which connect the leading coefficients of Pa with ∆, J and S. After plugging in

Ai which we find from our solution, we obtain the result for the S2 correction to the

anomalous dimension:

γ
(2)
J=2 =

π

g2(I1 − I3)3

∮
dux
2πi

∮
duy
2πi

[
8I2

1 (I1 + I3)
(
x3 −

(
x2 + 1

)
y
)

(x3 − x) y2
(8.37)

+
8shx−shy−

(
x2y2 − 1

) (
I1(x4y2 + 1)− I3x

2(y2 + 1)
)

x2 (x2 − 1) y2

−
4(shy−)2x2

(
y4 − 1

) (
I1(2x2 − 1)− I3

)
(x2 − 1) y2

+
8I2

1 shy−x
(
2
(
x3 − x

) (
y3 + y

)
− 2x2

(
y4 + y2 + 1

)
+ y4 + 4y2 + 1

)
(x2 − 1) y2

−
8(I1 − I3)I1shy−x(x− y)(xy − 1)

(x2 − 1) y

−
4(I1 − I3)(shx−)2

(
x2 + 1

)
y2

(x2 − 1)

]
1

4πi
∂u log

Γ(iux − iuy + 1)

Γ(1− iux + iuy)
.

Here the integration contour goes around the branch cut at (−2g, 2g). We also denote

shx− = sinh−(x), shy− = sinh−(y) (recall that sinh− was defined in (7.14)). This is our

final result for the curvature function at any coupling.

It is interesting to note that our result contains the combination log
Γ(iux−iuy+1)
Γ(1−iux+iuy) which

plays an essential role in the construction of the BES dressing phase. We will use this
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identification in section 10.3 to compute the integral in (8.37) numerically with high pre-

cision.

In the next subsections we will describe generalizations of the J = 2 result to operators

with J = 3 and J = 4.

8.5 Results for higher J

Solving the Pµ-system for J = 3, 4 is similar to the J = 2 case described above, except for

several technical complications (mainly that Pa have a branch point at infinity for J = 3).

For the sake of clarity, let us present only the final results here (full details can be found

in [15]). For J = 3 we get

γ
(2)
J=3 =

∮
dux
2πi

∮
duy
2πi

i
1

g2(I2 − I4)3

[
2
(
x6 − 1

)
y(chy−)2(I2 − I4)

x3 (y2 − 1)
− (8.38)

−
4chx−chy−

(
x3y3 − 1

) (
I2x

5y3 + I2 − I4x
2
(
xy3 + 1

))
x3 (x2 − 1) y3

+

+
(y2 − 1)(chy−)2I2

(
(x8 + 1)

(
2y4 + 3y2 + 2

)
− (x6 + x2)

(
y2 + 1

)2)
x3 (x2 − 1) y3

−

−
(y2 − 1)(chy−)2I4

(
(x8 + 1)y2 + (x6 + x2)

(
y4 + 1

))
x3 (x2 − 1) y3

−

−chy−
4I2(x− y)(xy − 1)F1(x, y)

x3 (x2 − 1) y3
−

−I
2
2 (y2 − 1)(x− y)(xy − 1)F2(x, y)

x3 (x2 − 1) y3

]
1

4πi
∂u log

Γ(iux − iuy + 1)

Γ(1− iux + iuy)
.

with

F1 = I2

((
x6 + 1

) (
y3 + y

)
+
(
x5 + x

) (
y4 + y2 + 1

)
− x3

(
y4 + 1

))
+ I4x

3y2 (8.39)

F2 = I2

((
x6 + x4 + x2 + 1

)
y + 2x3

(
y2 + 1

))
+ I4

(
x5 + x

) (
y2 + 1

)
(8.40)

We defined chx− = cosh−(x) and chy− = cosh−(y), where cosh−(x) is the part of the Laurent

expansion of cosh (g(x+ 1/x)) vanishing at infinity, i.e.

cosh−(x) =

∞∑
k=1

I2kx
−2k. (8.41)

The result for J = 4 is given in appendix A.3.
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9 Weak coupling tests and predictions

Our results for the curvature function γ(2)(g) at J = 2, 3, 4 (Eqs. (8.37), (8.38), (A.17))

are straightforward to expand at weak coupling. We give expansions to 10 loops for J = 2

in appendix A.4 (more data can be found in [15]). Let us start with the J = 2 case, for

which we found

γ
(2)
J=2 = −8g2ζ3 + g4

(
140ζ5 −

32π2ζ3

3

)
+ g6

(
200π2ζ5 − 2016ζ7

)
(9.1)

+ g8

(
−16π6ζ3

45
− 88π4ζ5

9
− 9296π2ζ7

3
+ 27720ζ9

)
+ g10

(
208π8ζ3

405
+

160π6ζ5

27
+ 144π4ζ7 + 45440π2ζ9 − 377520ζ11

)
+ . . .

Remarkably, at each loop order all contributions have the same transcendentality, and

only simple zeta values (i.e. ζn) appear. This is also true for the J = 3 and J = 4 cases.

We can check this expansion against known results, as the anomalous dimensions of

twist two operators have been computed up to five loops for arbitrary spin [98, 99, 100,

101, 102, 103, 104, 105] (see also [106] and the review [69]). To three loops they can be

found solely from the ABA equations, while at four and five loops wrapping corrections

need to be taken into account which was done in [104, 105] by utilizing generalized Luscher

formulas. All these results are given by linear combinations of harmonic sums

Sa(N) =

N∑
n=1

(sign(a))n

n|a|
, Sa1,a2,a3,...(N) =

N∑
n=1

(sign(a1))n

n|a1|
Sa2,a3,...(n) (9.2)

with argument equal to the spin S. To make a comparison with our results we expanded

these predictions in the S → 0 limit. For this lengthy computation, as well as to simplify

the final expressions, we used the Mathematica packages HPL [107], the package [108]

provided with the paper [109], and the HarmonicSums package [110].

In this way we have confirmed the coefficients in (9.1) to four loops. Let us note that

expansion of harmonic sums leads to multiple zeta values (MZVs), which however cancel

in the final result leaving only ζn.

Importantly, the part of the four-loop coefficient which comes from the wrapping cor-

rection is essential for matching with our result. This is a strong confirmation that our

calculation based on the Pµ-system is valid beyond the ABA level. Additional evidence

that our result incorporates all finite-size effects is found at strong coupling (see section

10).
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For operators with J = 3, our prediction at weak coupling is

γ
(2)
J=3 = −2g2ζ3 + g4

(
12ζ5 −

4π2ζ3

3

)
+ g6

(
2π4ζ3

45
+ 8π2ζ5 − 28ζ7

)
(9.3)

+ g8

(
−4π6ζ3

45
− 4π4ζ5

15
− 528ζ9

)
+ . . .

The known results for any spin in this case are available at up to six loops, including the

wrapping correction which first appears at five loops [111, 112, 113]. Expanding them at

S → 0 we have checked our calculation to four loops.
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Figure 4: One-loop energy at J = 4 from the Bethe ansatz. The dashed line shows

the result from the Pµ-system for the coefficient of S2 in the 1-loop energy at J = 4, i.e.

−14ζ3
5 + 48ζ5

π2 − 252ζ7
π4 ≈ −0.931 (see (9.4)). The dots show the Bethe ansatz prediction

(9.5) expanded to orders 1/J3, 1/J4, . . . , 1/J8 (the order of expansion n corresponds to

the horizontal axis), and it appears to converge to the Pµ-system result.

Let us now discuss the J = 4 case. The expansion of our result reads:

γ
(2)
J=4 = g2

(
−14ζ3

5
+

48ζ5

π2
− 252ζ7

π4

)
(9.4)

+ g4

(
−22π2ζ3

25
+

474ζ5

5
− 8568ζ7

5π2
+

8316ζ9

π4

)
+ g6

(
32π4ζ3

875
+

3656π2ζ5

175
− 56568ζ7

25
+

196128ζ9

5π2
− 185328ζ11

π4

)
+ g8

(
−4π6ζ3

175
− 68π4ζ5

75
− 55312π2ζ7

125
+

1113396ζ9

25
− 3763188ζ11

5π2

+
3513510ζ13

π4

)
+ . . .

Unlike for the J = 2 and J = 3 cases, we could not find a closed expression for the energy

at any spin S in literature even at one loop, however there is another way to check our
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result. One can expand the asymptotic Bethe ansatz equations at large J for fixed values

of S = 2, 4, 6, . . . and then extract the coefficients in the expansion which are polynomial

in S. This was done in [93] (see appendix C there) where at one loop the expansion was

found up to order 1/J6:

γ(S, J) = g2

(
S

2 J2
−
(S2

4
+
S

2

) 1

J3
+
[3S3

16
+
(1

8
− π2

12

)
S2 +

S

2

] 1

J4
+ . . .

)
+O(g4)

(9.5)

Now taking the part proportional to S2 and substituting J = 4 one may expect to get a nu-

merical approximation to the 1-loop coefficient in our result (9.4), i.e. −14ζ3
5 + 48ζ5

π2 − 252ζ7
π4 .

To increase the precision we extended the expansion in (9.5) to order 1/J8. Remarkably, in

this way we confirmed the 1-loop part of the Pµ prediction (9.4) with about 1% accuracy!

In Fig. 9 one can also see that the ABA result converges to our prediction when the order

of expansion in 1/J is being increased. Later on our analytic prediction for J = 4 was

confirmed in [114] where the curvature function at 1 loop was computed from the ABA

for any J .

Also, in contrast to J = 2 and J = 3 cases we see that negative powers of π appear

in (9.4) (although still all the contributions at a given loop order have the same transcen-

dentality). It would be interesting to understand why this happens from the gauge theory

perspective, especially since expansion of the leading S term (5.3) has the same structure

for all J ,

γ
(1)
J =

8π2g2

J(J + 1)
− 32π4g4

J(J + 1)2(J + 2)
+

256π6g6

J(J + 1)3(J + 2)(J + 3)
+ . . . (9.6)

The change of structure at J = 4 might be related to the fact that for J ≥ 4 the ground

state anomalous dimension even at one loop is expected to be an irrational number for

integer S > 0 (see [115], [116]), and thus cannot be written as a linear combination of

harmonic sums with integer coefficients.

In the next section we will discuss tests and applications of our results at strong

coupling.

10 Strong coupling tests and predictions

In this section we will present the strong coupling expansion of our results for the curvature

function, and link these results to anomalous dimensions of short operators at strong

coupling. We will also obtain new predictions for the BFKL pomeron intercept.
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10.1 Expansion of the curvature function for J = 2, 3, 4

To obtain the strong coupling expansion of our exact results for the curvature function, we

evaluated it numerically with high precision for a range of values of g and then made a fit

to find the expansion coefficients. It would also be interesting to carry out the expansion

analytically, and we leave this for the future.

For numerical study it is convenient to write our exact expressions (8.37), (8.38), (A.17)

for γ(2)(g), which have the form

γ(2)(g) =

∮
dux

∮
duyf(x, y)∂ux log

Γ(iux − iuy + 1)

Γ(1− iux + iuy)
(10.1)

where the integration goes around the branch cut between −2g and 2g, in a slightly

different way (we remind that we use notation x + 1
x = ux

g and y + 1
y =

uy
g ). Namely, by

changing the variables of integration to x, y and integrating by parts one can write the

result as

γ(2)(g) =

∮
dx

∮
dyF (x, y) log

Γ(iux − iuy + 1)

Γ(iuy − iux + 1)
(10.2)

where F (x, y) is some polynomial in the following variables: x, 1/x, y, 1/y, shx− and shy−

(for J = 3 it includes chx−, chy− instead of the sh− functions). The integral in (10.2) is

over the unit circle. The advantage of this representation is that plugging in shx−, shy− as

series expansions (truncated to some large order), we see that it only remains to compute

integrals of the kind

Cr,s =
1

i

∮
dx

2π

∮
dy

2π
xrys log

Γ(iux − iuy + 1)

Γ(iuy − iux + 1)
(10.3)

These are nothing but the coefficients of the BES dressing phase [117, 118, 119, 33]. They

can be conveniently computed using the strong coupling expansion [117]

Cr,s =
∞∑
n=0

[
−

2−n−1(−π)−ng1−nζn
(
1− (−1)r+s+4

)
Γ
(

1
2(n− r + s− 1)

)
Γ
(

1
2(n+ r + s+ 1)

)
Γ(n− 1)Γ

(
1
2(−n− r + s+ 3)

)
Γ
(

1
2(−n+ r + s+ 5)

) ]
(10.4)

However this expansion is only asymptotic and does not converge. For fixed g the terms

will start growing with n when n is greater than some value N , and we only summed

the terms up to n = N which gives the value of Cr,s with very good precision for large

enough g.

Using this approach we computed the curvature function for a range of values of g

(typically we took 7 ≤ g ≤ 30) and then fitted the result as an expansion in 1/g. This

gave us only numerical values of the expansion coefficients, but in fact we found that with
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very high precision the coefficients are as follows. For J = 2

γ
(2)
J=2 = −π2g2 +

πg

4
+

1

8
− 1

πg

(
3ζ3

16
+

3

512

)
− 1

π2g2

(
9ζ3

128
+

21

512

)
(10.5)

+
1

π3g3

(
3ζ3

2048
+

15ζ5

512
− 3957

131072

)
+ . . . ,

then for J = 3

γ
(2)
J=3 = −8π2g2

27
+

2πg

27
+

1

12
− 1

πg

(
1

216
+
ζ3

8

)
− 1

π2g2

(
3ζ3

64
+

743

13824

)
(10.6)

+
1

π3g3

(
41ζ3

1024
+

35ζ5

512
− 5519

147456

)
+ . . . ,

and finally for J = 4

γ
(2)
J=4 = −π

2g2

8
+
πg

32
+

1

16
− 1

πg

(
3ζ3

32
+

15

4096

)
− 0.01114622551913

g2
(10.7)

+
0.004697583899

g3
+ . . . .

To fix coefficients for the first four terms in the expansion we were guided by known

analytic predictions which will be discussed below, and found that our numerical result

matches these predictions with high precision. Then for J = 2 and J = 3 we extracted the

numerical values obtained from the fit for the coefficients of 1/g2 and 1/g3, and plugging

them into the online calculator EZFace [120] we obtained a prediction for their exact

values as combinations of ζ3 and ζ5. Fitting again our numerical results with these exact

values fixed, we found that the precision of the fit at the previous orders in 1/g increased.

This is a highly nontrivial test for the proposed exact values of 1/g2 and 1/g3 terms. For

J = 2 we confirmed the coefficients of these terms with absolute precision 10−17 and 10−15

at 1/g2 and 1/g3 respectively (at previous orders of the expansion the precision is even

higher). For J = 3 the precision was correspondingly 10−15 and 10−13.

For J = 4 we were not able to get a stable fit for the 1/g2 and 1/g3 coefficients

from EZFace, so above we gave their numerical values (with uncertainty in the last digit).

However below we will see that based on J = 2 and J = 3 results one can make a prediction

for these coefficients, which we again confirmed by checking that precision of the fit at the

previous orders in 1/g increases. The precision of the final fit at orders 1/g2 and 1/g3 is

10−16 and 10−14 respectively.

10.2 Generalization to any J

Here we will find an analytic expression for the strong coupling expansion of the curvature

function which generalizes the formulas (10.5) and (10.6) to any J . To this end it will
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be beneficial to consider the structure of classical expansions of the scaling dimension. A

good entry point is considering the inverse relation S(∆), frequently encountered in the

context of BFKL. It satisfies a few basic properties, namely the curve S(∆) goes through

the points (±J, 0) at any coupling, because at S = 0 the operator is BPS. At the same

time for non-BPS states one should have ∆(λ) ∝ λ1/4 →∞ [2] which indicates that if ∆ is

fixed, S should go to zero, thus combining this with the knowledge of fixed points (±J, 0)

we conclude that at infinite coupling S(∆) is simply the line S = 0. As the coupling

becomes finite S(∆) starts bending from the S = 0 line and starts looking like a parabola

going through the points ±J , see fig. 10.4. Based on this qualitative picture and the

scaling ∆(λ) ∝ λ1/4 at λ → ∞ and fixed J and S, one can write down the following

ansatz,

S(∆) =
(
∆2 − J2

) (
α1

1

λ1/2
+ α2

1

λ
+ (α3 + β3∆2)

1

λ3/2
+ (α4 + β4∆2)

1

λ2
(10.8)

+ (α5 + β5∆2 + γ5∆4)
1

λ5/2
+ (α6 + β6∆2 + γ6∆4)

1

λ3
+ . . .

)
.

We omit odd powers of the scaling dimension from the ansatz, as only the square of ∆

enters the Pµ-system. We can now invert the relation and express ∆ in terms of S at

strong coupling, which gives

∆2 = J2+S
(
A1

√
λ+A2 + . . .

)
+S2

(
B1 +

B2√
λ

+ . . .

)
+S3

(
C1

λ1/2
+
C2

λ
+ . . .

)
+O(S4) ,

(10.9)

where the coefficients Ai, Bi, Ci are some functions of J . There exists a one-to-one

mapping between the coefficients αi, βi, etc. and Ai, Bi etc, which is rather complicated

but easy to find. We note that this structure of ∆2 coincides with Basso’s conjecture in

[90] for mode number n = 1 16. The pattern in (10.9) continues to higher orders in S with

further coefficients Di, Ei, etc. and powers of λ suppressed incrementally. This structure

is a nontrivial constraint on ∆ itself as one easily finds from (10.9) that

∆ = J +
S

2J

(
A1

√
λ+A2 +

A3√
λ

+ . . .

)
(10.10)

+ S2

(
− A2

1

8J3
λ− A1A2

4J3

√
λ+

[
B1

2J
− A2

2 + 2A1A3

8J3

]
+

[
B2

2J
− A2A3 +A1A4

4J3

]
1√
λ

+ . . .

)
.

By definition the coefficients of S and S2 are the slope and curvature functions respectively,

so now we have their expansions at strong coupling in terms of Ai, Bi, Ci, etc. Since

the S coefficient only contains the constants Ai, we can find all of their values by simply

16The generalization of (10.9) for n > 1 is not fully clear, as noted in [121].
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expanding the slope function (7.35) at strong coupling. We get

A1 = 2 , A2 = −1 , A3 = J2 − 1

4
, A4 = J2 − 1

4
. . . . (10.11)

Note that in this series the power of J increases by two at every other member, which is

a direct consequence of omitting odd powers of ∆ from (10.8). We also expect the same

pattern to hold for the coefficients Bi, Ci, etc.

The curvature function written in terms of Ai, Bi, etc. is given by

γ
(2)
J (g) = −2π2g2A2

1

J3
− πgA1A2

J3
− A2

2 + 2A1A3 − 4B1J
2

8J3
(10.12)

− A2A3 +A1A4 − 2B2J
2

16πgJ3

− A2
3 + 2A2A4 + 2A1A5 − 4B3J

2

128π2g2J3
(10.13)

− A3A4 +A2A5 +A1A6 − 2B4J
2

256π3g3J3
+O

(
1

g4

)
.

The remaining unknowns here (up to order 1/g4) are B1, B2, which we expect to be

constant due to the power pattern noticed above and B3, B4, which we expect to have the

form aJ2 + b with a and b constant. These unknowns are immediately fixed by comparing

the general curvature expansion (10.12) to the two explicit cases that we know for J = 2

and J = 3. We find

B1 = 3/2 , B2 = −3 ζ3 +
3

8
, (10.14)

and

B3 = −J
2

2
− 9 ζ3

2
+

5

16
, B4 =

3

16
J2(16 ζ3 + 20 ζ5 − 9)− 15 ζ5

2
− 93 ζ3

8
− 3

16
. (10.15)

Having fixed all the unknowns we can write the strong coupling expansion of the curvature

function for arbitrary values of J as

γ
(2)
J (g) = −8π2g2

J3
+

2πg

J3
+

1

4J
+

1− J2(24 ζ3 + 1)

64πgJ3
− 8J4 + J2(72 ζ3 + 11)− 4

512g2 (π2J3)

+
3
(
8J4(16 ζ3 + 20 ζ5 − 7)− 16J2(31 ζ3 + 20 ζ5 + 7) + 25

)
16384π3g3J3

+O
(

1

g4

)
.(10.16)

Expanding γ
(2)
J=4 defined in (A.17) at strong coupling numerically we were able to confirm

the above result with high precision.

10.3 Anomalous dimension of short operators

In this section we will use the knowledge of slope functions γ
(n)
J at strong coupling to find

the strong coupling expansions of scaling dimensions of operators with finite S and J , in
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particular we will find the three loop coefficient of the Konishi operator by utilizing the

techniques of [90, 121]. What follows is a quick recap of the main ideas in these papers.

We are interested in the coefficients of the strong coupling expansion of ∆, namely

∆ = ∆(0)λ
1
4 + ∆(1)λ−

1
4 + ∆(2)λ−

3
4 + ∆(3)λ−

5
4 + . . . (10.17)

First, we use Basso’s conjecture (10.9) and by fixing S and J we re-expand the square

root of ∆2 at strong coupling to find

∆ =
√
A1S

4
√
λ+

√
A1

(
J2 +A2S +B1S

2
)

2A1

√
S

1
4
√
λ

+O
(

1

λ
3
4

)
. (10.18)

Thus we reformulate the problem entirely in terms of the coefficients Ai, Bi, Ci, etc. For

example, the next coefficient in the series, namely the two-loop term is given by

∆(2) = −
(
2A2 + 4B1 + J2

)2 − 16A1(A3 + 2B2 + 4C1)

16
√

2A
3/2
2

. (10.19)

Further coefficients become more and more complicated, however a very clear pattern can

be noticed after looking at these expressions: we see that the term ∆(n) only contains

coefficients with indices up to n + 1, e.g. the tree level term ∆(0) only depends on A1,

the one-loop term depends on A1, A2, B1, etc. Thus we can associate the index of these

coefficients with the loop level. Conversely, from the last section we learned that the letter

of Ai, Bi, etc. can be associated with the order in S, i.e. the slope function fixed all Ai

coefficients and the curvature function in principle fixes all Bi coefficients.

10.3.1 Matching with classical and semiclassical results

Looking at (10.18) we see that knowing Ai and Bi only takes us to one loop, in order to

proceed we need to know some coefficients in the Ci and Di series. This is where the next

ingredient in this construction comes in, which is the knowledge of the classical energy

and its semiclassical correction in the Frolov-Tseytlin limit, i.e. when S ≡ S/
√
λ and

J ≡ J/
√
λ remain fixed, while S, J , λ → ∞. Additionally we will also be taking the

limit S → 0 in all of the expressions that follow. In particular, the square of the classical

energy has a very nice form in these limits and is given by [45, 121]

D2
classical = J 2 + 2S

√
J 2 + 1 + S2 2J 2 + 3

2J 2 + 2
− S3 J 2 + 3

8 (J 2 + 1)5/2
+O

(
S4
)
,(10.20)

where Dclassical ≡ ∆classical/
√
λ. The 1-loop correction to the classical energy is given by

∆sc '
−S

2 (J 3 + J )
+ S2

3J 4 + 11J 2 + 17

16J 3 (J 2 + 1)5/2
−
∑
m>0
m 6=n

n3m2
(
2m2 + n2J 2 − n2

)
J 3 (m2 − n2)2 (m2 + n2J 2)3/2

(10.21)
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(S, J) λ−5/4 prediction λ−5/4 fit error fit order

(2, 2) 15 ζ5
2 + 6 ζ3 + 1

2 = 15.48929958 14.12099034 9.69% 6

(2, 3) 15 ζ5
2 + 63 ζ3

8 − 619
512 = 16.03417190 14.88260078 7.74% 5

(2, 4) 21 ζ3
2 + 15 ζ5

2 − 17
8 = 18.27355565 16.46106336 11.0% 7

Table 1: Comparisons of strong coupling expansion coefficients for λ−5/4 ob-

tained from fits to TBA data versus our predictions for various operators. The

fit order is the order of polynomials used for the rational fit function (see [121] for details).

If the parameters S and J are fixed to some values then the sum can be evaluated explicitly

in terms of zeta functions. We now add up the classical and the 1-loop contributions17,

take S and J fixed at strong coupling and compare the result to (10.9). By requiring

consistency we are able to extract the following coefficients,

A1 = 2, A2 = − 1

B1 = 3/2, B2 = − 3 ζ3 + 3
8

C1 = − 3/8, C2 = 3
16 (20 ζ3 + 20 ζ5 − 3)

D1 = 31/64, D2 = 1
512(−4720 ζ3 − 4160 ζ5 − 2520 ζ7 + 81)

As discussed in the previous section, we can in principle extract all coefficients with indices

1 and 2. In order to find e.g. B3 we would need to extend the quantization of the classical

solution to the next order. Note that the coefficients A1, A2 and B1, B2 have the same

exact values that we extracted from the slope and curvature functions.

10.3.2 Result for the anomalous dimensions at strong coupling

The key observation in [121] was that once written in terms of the coefficients Ai, Bi, Ci,

the two-loop term ∆(2) only depends on A1,2,3, B1,2, C1 as can be seen in (10.19). As

discussed in the last section, the one-loop result fixes all of these constants except A3,

which in principle is a contribution from a true two-loop calculation. However we already

fixed it from the slope function and thus we are able to find

∆(2) =
−21S4 + (24− 96 ζ3)S3 + 4

(
5J2 − 3

)
S2 + 8J2S − 4J4

64
√

2S3/2
. (10.22)

Now that we know the strong coupling expansion of the curvature function and thus all

the coefficients Bi, we can do the same trick and find the three loop strong coupling scaling

dimension coefficient ∆(3), which now depends on A1;2;3;4, B1,2,3, C1,2, D1. We find it to

17Note that they mix various orders of the coupling.
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be

∆(3) =
187S6 + 6 (208 ζ3 + 160 ζ5 − 43)S5 +

(
−146 J2 − 4 (336 ζ3 − 41)

)
S4

512
√

2S5/2
+

+

(
32 (6 ζ3 + 7) J2 − 88

)
S3 +

(
−28 J4 + 40 J2

)
S2 − 24 J4S + 8 J6

512
√

2S5/2
, (10.23)

for S = 2 it simplifies to

∆
(3)
S=2 =

1

512

(
J6 − 20J4 + 48J2(4ζ3 − 1) + 64(36 ζ3 + 60 ζ5 + 11)

)
(10.24)

and finally for the Konishi operator, which has S = 2 and J = 2 we get18

∆
(3)
S=2,J=2 =

15 ζ5

2
+ 6 ζ3 +

1

2
. (10.25)

In order to compare our predictions with data available from TBA calculations [44], we

employed Padé type fits as explained in [121]. The fit results are shown in table 1, we see

that our predictions are within ∼ 10% error bounds, which is a rather good agreement.

However we must be honest that for the J = 3 and especially J = 4 states we did not have

as many data points as for the J = 2 state and the fit is somewhat shaky. However we

later compared the Konishi analytic prediction with our high-precision numerical solution

of the QSC and found a perfect match (see the next part of this thesis).

10.4 BFKL pomeron intercept

The gauge theory operators that we consider here are of high importance in high energy

scattering amplitude calculations, especially in the Regge limit of high energy and fixed

momentum transfer [122, 123]. In this limit one can approximate the scattering amplitude

as an exchange of effective particles, the so-called reggeized gluons, compound states of

which are frequently called pomerons. When momentum transfer is large, perturbative

computations are possible and the so-called ‘hard pomeron’ appears, the BFKL pomeron

[124, 125, 126]. The BFKL pomeron leads to a power law behaviour of scattering am-

plitudes sj(∆), where j(∆) is called the Reggeon spin and s is the energy transfer of the

process. The remarkable connection between the pomeron and the operators we consider

can be symbolically stated as

pomeron = Tr
(
Z DS+ Z

)
+ . . . (10.26)

18The ζ3 and ζ5 terms are coming from semi-classics and were already known before [94] and match our

result.
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where we are now considering twist two operators (J = 2) and the spin S can take on

complex values by analytic continuation. The Reggeon spin j(∆) (also refered to as a

Regge trajectory) is a function of the anomalous dimension of the operator and is related

to spin S as j(∆) = S(∆) + 2. Some of these trajectories are shown in figure 10.4. A very

important quantity in this story is the BFKL intercept j(0), which we consider next.

g = 0.63

g = 0.48

g = 0.28

g = 0.10

g = 0.05

-4 -2 2

D

-1.5

-1.0

-0.5

0.5

1.0

S

Figure 5: The BFKL trajectories. The BFKL trajectories S(∆) at various values of

the coupling. Blue lines are obtained using the known two loop weak coupling expansion

[127, 128] and red lines are obtained using the strong coupling expansion [129, 130, 131].

One can also use the same techniques as in the previous section to calculate the strong

coupling expansion of the BFKL intercept. As stated before, the intercept of a BFKL

trajectory j(∆) is simply j(0) and we already wrote down an ansatz for S(∆) in (10.8).

The coefficients αi, βi, etc. are in one-to-one correspondence with the coefficients Ai, Bi

etc. from (10.10), values of which we found in the previous sections. Plugging in their

values we find

α1 = 1/2, α2 = 1/4, α3 = −1/16 , α4 = −3ζ3

2
− 1

2
, (10.27)

α5 = −9ζ3

2
− 361

256
, α6 = −39ζ3

4
− 511

128
(10.28)

β3 = −3/16, β4 =
3ζ3

8
− 21

64
, β5 =

9ζ3

8
− 51

128
, β6 =

45ζ3

8
+

15ζ5

16
+

141

512
(10.29)

γ5 =
21

128
, γ6 = −51ζ3

64
− 15ζ5

64
+

129

256
(10.30)
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Figure 6: The BFKL intercept. The BFKL intercept j(0) = 2 + S(0) dependence on

the coupling constant g at two orders at weak coupling (blue lines), four orders at strong

coupling (red lines) and a Padé type interpolating function in between (dashed line).

Furthermore, setting ∆ = 0 we find the intercept to be

j(0) = 2 + S(0) = 2− 2

λ1/2
− 1

λ
+

1

4λ3/2
+ (6ζ3 + 2)

1

λ2

+

(
18 ζ3 +

361

64

)
1

λ5/2
+

(
39 ζ3 +

511

32

)
1

λ3
+O

(
1

λ7/2

)
.(10.31)

The first four terms successfully reproduce known results [129, 130, 131] and the last two

terms of the series are a new prediction (their derivation relies on the knowledge of the

constants B3,4;J=2 found in the last section). On Figure 10.4 we show plots of the intercept

at weak and at strong coupling.

11 Conclusions

In this part we applied the recently proposed Pµ-system of Riemann-Hilbert type equa-

tions to study anomalous dimensions in the sl(2) sector of planar N = 4 SYM theory.

Our main result are the expressions (8.37), (8.38) and (A.17) for the curvature function

γ
(2)
J (g), i.e. the coefficient of the S2 term in the anomalous dimension at small spin S.

These results correspond to operators with twist J = 2, 3 and 4. Curiosly, we found that

they involve essential parts of the BES dressing phase in the integral representation.
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We derived these results by solving the Pµ-system to order S2 and they are exact at

any coupling. While expansion in small S (but at any coupling) seems hardly possible to

perform in the TBA approach, here it resembles a perturbative expansion – the Pµ-system

is solved order by order in S and the coupling is kept arbitrary.

For J = 2 and J = 3 our calculation perfectly matches known results to four loops

at weak coupling. This includes in particular the leading finite-size correction at J = 2.

At strong coupling we obtained the expansion of our results numerically, and also found

full agreement with known predictions. This provides yet another check that our result

incorporates all wrapping corrections. Going to higher orders in this expansion we were

able to use the EZFace calculator [120] to fit the coefficients as linear combinations of ζ3

and ζ5 (and confirmed the outcome with high precision). By combining these coefficients

with the other known results, we obtained the 3-loop coefficient in the Konishi anomalous

dimension at strong coupling. This serves as a highly nontrivial prediction for a direct

string theory calculation, which hopefully may be done along the lines of [48, 47]. Our

results also predict the value of two new coefficients for the pomeron intercept at strong

coupling.



62

Part III

Numerical solution of the spectral

problem

In this part we discuss the efficient numerical method for solving the QSC, based on the

paper [14].

12 Introduction

Even though many explicit analytic results are available both at strong and weak cou-

pling, one important range of applications of the QSC that has remained unexplored for a

significant time is the numerical investigation of the spectrum at finite coupling. Previous

numerical methods based on TBA, even limited to a few operators19, low precision and

slow convergence rate gave, nevertheless, several highly important results, allowing, in

particular, the first computation of the anomalous dimension of a nonprotected (Konishi)

operator in a planar 4d theory at finite coupling [42]. The main goal of the present work

is to remove the limitations of the previously known methods by developing an algorithm

for a numerical solution of the QSC.

The low precision and performance of the TBA-like approach was mainly due to the

complicated infinite system of equations and cumbersome integration kernels. The QSC

includes only a few unknown functions and thus can be expected to give highly precise

numerical results. However, the QSC equations are functional equations supplemented

with some analyticity constraints of a novel type which makes it a priori not a trivial task

to develop a robust numerical approach.

In this part, based on the paper [14], we propose an efficient method to solve the QSC

numerically and illustrate our method by a few examples. Among the several equivalent

formulations of the QSC we identified the equations which are best-suited for numerical

solution20. We implemented our algorithm in Mathematica and were able to get a massive

19only for a few operators the complicated structure of the “driving terms” was deduced explicitly in

a closed form. Even for those operators the driving terms may change depending on the value of the

coupling.
20one may call this sub-system of equations as Pω-system, in contrast to previously used Pµ-system or

Qω-system
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increase in efficiency compared to the TBA or FiNLIE systems [42, 51, 44, 132]. With one

iteration taking about 2 seconds we only need 2− 3 iterations (depending on the starting

points) to reach at least 10 digits of precision. Quite expectedly, the precision gets lost

for very large values of the ’t Hooft coupling. Nevertheless, without any extra effort we

reached λ ∼ 1000 keeping a good precision, which should be more than enough for most

practical goals.

Not only does our approach work for any finite length single trace operator and in

particular for any value of the spin, it also works with minimal changes even away from

integer quantum numbers! We demonstrate this in the particularly interesting case of

the sl(2) twist-2 operators. Their anomalous dimension analytically continued to complex

values of the spin S is known to have a very rich structure, in particular the region S ' −1

is described by BFKL physics. As we show, within the framework of QSC it is not hard

to specify any value of the Lorentz spin S as the conserved charges enter the equations

through the asymptotics which can in principle take any complex values. Then we can

compute the analytically continued scaling dimension ∆ directly for complex S (or even

interchange their roles and study S as a function of ∆). The result of this calculation can

be seen on Fig. 12.

Let us stress that the algorithm is very simple and mainly consists of elementary matrix

operations. As such it can be easily implemented on various platforms. In particular,

we believe the performance could be increased by a few orders with a lower level, e.g.

C++, implementation. In the presentation given here we mostly aim to demonstrate our

algorithm, prototyped in Mathematica.

Finally, to improve the performance of our method we used the further simplification

of the QSC obtained in [13], which allows us to eliminate auxiliary functions ωij from our

algorithm and close the equations using Q-functions only (we demonstrate this for the

sl(2) sector states).

13 Description of the Method

As discussed before, the functions Pa and Pa carry complete information about the state

and have only one cut, thus they can be parameterized as

Pa(u) =

∞∑
n=M̃a

ca,n
xn(u)

. (13.1)
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Figure 7: Riemann surface of the function S(∆) for twist-2 operators. Plot of

the real part of S(∆) for complex values of ∆, generated from about 2200 numerical data

points for λ ≈ 6.3. We have mapped two Riemann sheets of this function. The thick red

lines show the position of cuts. The upper sheet corresponds to physical values of the spin.

Going through a cut we arrive at another sheet containing yet more cuts.

where c+a, n are some unknown coefficients which are the main parameters in our numerics

(we also have a similar parameterization for Pa). This series is convergent everywhere on

the upper sheet and also in an elliptic region around the cut on the next sheet (see Fig. 4.2).

The coefficients ca,n and corresponding coefficients ca,n of the expansion of Pa(u) need

to be found. The constraint (4.21) fixes some of them (for example, we can use it to fix all

c1,n). The condition (4.27) gives the leading coefficients ca,M̃a
. The remaining coefficients

should be fixed from the analyticity constraints on P’s as prescribed by QSC.

The main idea is to construct the functions Qa|i by solving the equation

Qa|i(u+ i
2)−Qa|i(u− i

2) = −Pa(u)Pb(u)Qb|i(u+ i
2) . (13.2)

Then we can compute the Qi via

Qi(u) = −Pa(u) Qa|i(u+ i/2) . (13.3)
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and we also find their analytic continuation around the branch point on the real axis from

Q̃i(u) = −P̃a(u) Qa|i(u+ i/2) (13.4)

Q̃i(u) = +P̃a(u) Qa|i(u+ i/2) (13.5)

Our parameterization for Pa covers a sufficient region to compute both Qi and Q̃i on the

cut [−2g, 2g]. Then from the equation

ω̃ij − ωij = Q̃iQj −QiQ̃j . (13.6)

we can immediately reconstruct ωij ! This is done by taking a simple integral transform of

the r.h.s. (see below). This will allow us to close the equations.

The main step to be described is how to solve the equation on Qa|i. We will describe

an algorithm which allows to solve it very efficiently and then find the coefficients ca,n,

which yields the solution of the QSC. We will also show that actually finding ωij is not

necessary and we can close the system in terms of just Pa,Qi and Qa|i, thus speeding up

the calculations.

13.1 Step 1: Solving the equation for Qa|i

As we explained above the quantity Qa|i is at the heart of our procedure. In this section

we will demonstrate how this set of 16 functions can be found for arbitrary Pa and Pa.

In this procedure the precise ansatz for P is not important. However, as we will see later,

we should be able to compute Pa(u)Pb(u) on the upper sheet for u with large imaginary

part. Of course, having the ansatz in the form of a (truncated) series expansion (4.19) we

can easily evaluate it everywhere on the upper sheet numerically very fast.

The process of finding Qa|i is divided into two parts. Firstly, we find a good ap-

proximation for Qa|i at some u with large imaginary part (in the examples we will need

Im u ∼ 10 − 100). At the next step we apply to this large u approximation of Qa|i a

recursive procedure which produces Qa|i at u ∼ 1.

Large u approximation. For Im u ∼ 10 − 100 we can build the solution of (4.20) as

a 1/u expansion. This is done by plugging the (asymptotic) series expansion of Qa|i into

(4.20):

Qa|i(u) = uM̂i−M̃a

N∑
n=0

Ba|i,n

un
. (13.7)
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where N is some cutoff (usually ∼ 10 − 20). This produces a simple linear problem for

the coefficients Ba|i,n, which can be even solved analytically to a rather high order. The

leading order coefficients of Qa|i can be chosen arbitrarily. After that the linear system of

equations becomes non-homogenous and gives a unique solution in a generic case.21

Finite u approximation. Once we have a good approximation at large u we can simply

use the equation (4.20) to recursively decrease u. Indeed defining a 4× 4 matrix

Ua
b(u) = δba + Pa(u)Pb(u) (13.8)

we have

Qa|i(u− i
2) = Ua

b(u)Qb|i(u+ i
2). (13.9)

Iterating this equation we get, in matrix notation

Qa|i(u− i
2) = [U(u)U(u+ i) . . . U(u+ iN)]a

b Qb|i(u+ iN + i
2) . (13.10)

For large enough N we can use the large u approximation (13.7) for Qb|i in the r.h.s. As

a result we obtain the functions Qa|i for finite u with high precision.

13.2 Step 2: Recovering ωij

Now when we have a good numerical approximation for Qa|i(u) we can compute Qi and

Q̃i which through the discontinuity relation (4.33) will yield us ωij .

Let us also note that, as it was argued in our paper [13], one can in fact close the QSC

equations without calculating ωij (this was shown explicitly for the symmetric sl(2) sector

states). This makes it possible to further speed up our numerical procedure as we will

describe in detail in section 13.4. In the current section for completeness we will present

the procedure without this shortcut, as for some applications it could turn out to be useful

as well.

21The matrix of this system may become non-invertible unless some constraint (which is not hard to find)

on the coefficients ca,n is satisfied. This constraint is fulfilled trivially for the even in the rapidity plane

operators considered in the next section. There is also no such problem for the situation with generic twists

(similar to β− or γ-deformations, see the review [59]). Adding twists should correspond [53] to allowing

exponential factors eαau, eβiu in the asymptotics of Pa and Qi, making everything less degenerate and

providing a useful regularization.



13.2 Step 2: Recovering ωij 67

One can recover ωij from its discontinuity (4.30) modulo an analytic function using its

spectral representation

ωij(u) =
i

2

2g∫
−2g

dv coth(π(u− v))
[
Q̃i(v)Qj(v)−Qi(v)Q̃j(v)

]
+ ω0

ij(u) (13.11)

where the “zero mode” ω0
ij(u) is the analytic part of ωij — it has to be periodic, antisym-

metric in i, j and should not have cuts. We will fix it below. We note that we only need

to know values of Q and Q̃ on the cut. In our implementation we use a finite number of

sampling points on the cut given by zeros of Chebyshev polynomials. One can then fit the

values of Q̃iQj−QiQ̃j at those points with a polynomial times the square root
√
u2 − 4g2.

After that we can use precomputed integrals of the form
∫ 2g
−2g coth(π(ui−v))vn

√
v2 − 4g2dv

to evaluate (13.11) with high precision by a simple matrix multiplication, which produces

the result at the sampling points uA in an instant.

One more point to mention here is that in our implementation we only compute ωregij =

1
2(ωij − ω̃ij) at the sampling points to avoid the problem of dealing with the singularity

of the integration kernel. Note that ωregij can be used instead of ωij in the equations like

(4.33), because the difference is proportional to QiQ
i which is zero similarly to (4.21), as

can be shown by combining (4.21) with (4.22), (4.24).

Finding zero modes. It only remains to fix ω0
ij(u). First we notice that for all physical

operators ωij should not grow faster than constant at infinity [53]. As the integral part

of (13.11) does not grow either and since ω0
ij(u) is i-periodic it can only be a constant.

To fix this constant we use the following observation [53]: the constant matrix α+
ij which

ωij approaches at u→ +∞ and the constant matrix α−ij which it reaches at u→ −∞ are

restricted by the quantum numbers [53]. To see this we can pick some point on the real

axis far away from the origin and shift it slightly up into the complex plane, then from

(4.33) we have

ωijQ
j(u+ i0) = α+

ijQ
j(u+ i0) = Q̃i(u+ i0) = Qi(u− i0). (13.12)

Similarly for −u we get

α−ijQ
j(−u+ i0) = Qi(−u− i0). (13.13)

Next, notice that since Qj is analytic everywhere except the cut on the real axis, it can

be replaced by its asymptotics above the real axis, i.e. Qj(u + i0) ∼ Bju−M̂j , and also

Qj(−u + i0) ∼ Bju−M̂je−iπM̂j , as we find from the previous expression by a rotation by
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π in the complex plane. As a result we get the asymptotics of Qi at infinities and slightly

below the real axis

Qi(u− i0) = α+
ijB

ju−M̂j , Qi(−u− i0) = α−ijB
ju−M̂je−iπM̂j . (13.14)

Using that they are related by the analytic continuation in the lower half plane the first

equation also gives

Qi(−u− i0) = α+
ijB

ju−M̂je+iπM̂j . (13.15)

Combining this with (13.14) we get a relation between the constant asymptotics of ω at

the two infinities

α+
ij = α−ije

−2iπM̂j . (13.16)

At the same time from (13.11) we get

α±ij = ±Iij + ω0
ij , Iij ≡

i

2

2g∫
−2g

dv
[
Q̃i(v)Qj(v)−Qi(v)Q̃j(v)

]
, (13.17)

which implies that

ω0
kl = −iIkl cotπM̂l. (13.18)

We see that the zero modes can be also computed from the values of Q and Q̃ on the cut.

Note also that the r.h.s. is not explicitly antisymmetric. Imposing the antisymmetry

gives

Ikl(cotπM̂l − cotπM̂k) = 0, (13.19)

so either Ikl = 0 or cotπM̂l = cotπM̂k. As Pf ω = 1, all Ikl can not be equal to

zero simultaneously. Having Ikl non-zero implies quantization of charges: for example,

the choice I12 6= 0 and I34 6= 0, which is consistent with perturbative data, requires

cotπM̂1 = cotπM̂2 and cotπM̂3 = cotπM̂4, and so S1, S2 have to be integer or half integer.

In section 14 we will see how to relax this condition and do an analytic continuation in

the spin S1 to the whole complex plane.

13.3 Step 3: Reducing to an optimization problem

Having ωij and Qa|i at hand we can try to impose the remaining equations of the QSC

(4.33). We notice that there are two different ways of computing Q̃i, which should give

the same result when we have a true solution: (4.25) and (4.33). Their difference, which

at the end should be zero, is

Fi(u) = P̃a(u) Qa|i(u+ i/2) + ωij(u) Qa|j(u+ i/2)Pa(u) . (13.20)
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The problem is now to find ca,n for which Fi(u) is as close as possible to zero. Here we

have some freedom in how to measure its deviation from zero, but in our implementation

we use the sum of squares of Fi at the sampling points uA. Then the problem reduces

to the classical optimization problem of the least squares type. In our implementation

we found it to be particular efficient to use the Levenberg-Marquardt algorithm (LMA),

which we briefly describe in the next section. The LMA is known to have a Q-quadratic

convergence rate, which means that the error εn decreases with the iteration number n as

fast as e−c 2n . The convergence is indeed so fast that normally it is enough to do 2 or 3

iterations to get the result with 10 digits precision. We give some examples in the next

section.

Levenberg-Marquardt algorithm Our problem can be reformulated as follows: given

a vector function fi(ca) of a set of variables ca (which we can always assume to be real)

find the configuration which minimizes

S(ca) ≡
∑
i

|fi(ca)|2 . (13.21)

Assuming we are close to the minimum we can approximate fi by a linear function:

fi(c̃a) ' fi(ca) + (c̃a − ca)Jai , Jai ≡ ∂cafi(ca) (13.22)

which gives the following approximation for S(c̃a):

S(c̃a) = [fi(ca) + (c̃a − ca)Jai]
[
f̄i(ca) + (c̃a − ca)J̄ai

]
(13.23)

The approximate position of the minimum is then at ∂c̃aS = 0 for which we get

Jai
[
f̄i(ca) + (c̃a − ca)J̄ai

]
+ [fi(ca) + (c̃a − ca)Jai] J̄ai = 0 (13.24)

from which, in matrix notation,

c̃ = c− (JJ̄T + J̄JT )−1(J̄f + Jf̄) . (13.25)

We see that for this method we should also know the derivatives of our Fa(u) w.r.t. the

parameters ca,n, which in our implementation we find numerically by shifting a bit the

corresponding parameter.

In some cases, when the starting points are far away from the minimum, the above

procedure may start to diverge. In such cases one can switch to a slower, but more stable,

gradient descent method for a few steps. The Levenberg-Marquardt algorithm provides a
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nice way to interpolate between the two algorithms by inserting a positive parameter Λ

into the above procedure,

cn+1 = cn − (JJ̄T + J̄JT + ΛI)−1(J̄f + Jf̄) . (13.26)

The point is that for large Λ this is equivalent to the gradient descent method. Thus one

can try to increase Λ from its zero value until S(cn+1) < S(cn) and only then accept the

new value cn+1. This helps a lot to ensure stable convergence.

In the next section we demonstrate the performance of our numerical method by ap-

plying it to the twist-2 operators in sl(2) sector.

13.4 Implementation for the sl(2) Sector and Comparison with Existing

Data

Although our method can be used for any state of the N = 4 SYM theory, the examples

we provide here are for states in the sl(2) subsector. In this section we will discuss the

physical operators which have integer spin, and demonstrate our numerical method in

action for the Konishi operator. Then in section 14 we will show how the algorithm works

for other states with S no longer an integer.

Improved implementation: skipping the computation of ω’s. We have mentioned

before that the simplification of the QSC achieved in [13] should allow to significantly

improve the iterative procedure, as one can avoid calculating ωij . Here we present this

improvement for symmetric states in the sl(2) sector. Let us briefly recall the trick used in

[13] to eliminate ω’s. For the states we consider, each of the Pa(u) functions is either even

or odd. Then, as follows from the 4th order finite difference eqation on Qi with coefficients

built from P’s 22, Qi(−u) satisfy the same finite difference equation as Qi(u). Thus each of

the former can be expressed as a linear combination of the latter with periodic coefficients:

Qi(u) = Ωj
i (u)Qj(−u) . (13.27)

We work in the basis where Qi have pure power-like asymptotics at large u, non-coinciding

for general values of global charges. It is easy to see that at large u in this basis Ωj
i (u)

should be constant and diagonal. At the same time, (13.27) allows us to relate Qi(−u)

and Q̃i:

Q̃i(u) = αjiQj(−u), αji = ωilχ
lkΩj

k, (13.28)

22its explicit form is given e.g. in (3.2) of [72]
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Figure 8: Convergence of the algorithm. The error εn as measured by the value of

(13.21) reduces at the quadratic rate εn ∼ e−c 2n as a function of the iteration number. In

most cases our program managed to find the solution from a very remote starting point.

On the picture we started from all free parameters ca,n set to zero and with the initial

value for the energy ∆0 = 4.1. After 12 iterations it correctly reproduced ∆ = 4.4188599

at λ = 16π2(0.2)2 ' 31.6. With each iteration taking about 1.5sec the whole procedure

took about 20 sec on a Laptop with Intel i7 2.7GHz processor.

where χ is defined in (4.38). The functions Qi(−u) and Q̃i(u) have the same analytical

properties, so αij should be i-periodic and analytic. One should also take into account

that only ω12 and ω34 are non-zero at infinity, thus many elements of αji have to be zero.

For indices 1 and 3 we finally get the key relations which appear to be sufficient to close

the QSC equations:

Q̃1(u) = α13Q3(−u), Q̃3(u) = α31Q1(−u) (13.29)

Consistency of these two equations also implies that α13 = 1/α31 ≡ α. Note that Q̃1(u) can

be also constructed asQ+
a|1P

a. The equation above tells us that it should be proportional to

Q3(−u) with unknown constant of proportionality. This requirement can be also phrased

as a minimization problem. For that let us evaluate the ratio Q̃1(u)/Q3(−u) at sampling

points uk on the cut [−2g, 2g] and compute its variance,

S(u) =
M∑
k=1

∣∣∣∣Qa|1(uk + i/2)Pa(uk)

Q3(−uk)
−B

∣∣∣∣2 (13.30)

where the constant B is the mean value,

B =
1

M

M∑
k=1

Qa|1(uk + i/2)Pa(uk)

Q3(−uk)
(13.31)
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On the true solution of the QSC this ratio is a constant so the variance should be zero,

i.e. S(u) = 0. Thus our goal is to minimize the function S(u), and for this we again use

the Levenberg-Marquardt algorithm described above. This gives the desired numerical

prediction for the coefficients ca,n parameterizing the P-functions.

The main performance gain stems from the fact that as we do not compute ω’s, we no

longer need to calculate the integrals (13.11) and (13.17). We expect this improved method

to work for non left-right symmetric states as well, and details of this generalization will

be presented elsewhere.

Implementation for Konishi Here we discuss the convergence on a particular example

of the Konishi operator which corresponds to S = 2, L = 2. The reason we start from this

operator is that it is very well studied both analytically at weak and strong coupling and

also numerically. So we will have lots of data to compare with.

To start the iteration process described in the previous sections, we need some rea-

sonably good starting points for the coefficients ca,n. For the iterative methods, like, for

instance, Newton’s method, good starting points are normally very important. Depend-

ing on them the procedure may converge very slowly or even diverge. We made a rather

radical test of the convergence of our method by setting all coefficients to zero, except

the leading ones, which are fixed by the charges. For ∆ we took the initial value 4.1 at

the value of ’t Hooft coupling g = 0.2. To our great surprise it took only 12 steps to

converge from the huge value of S(ca) ∼ 10+7 (defined in (28.16)) to S(ca) ∼ 10−9. The

whole process took about 20 seconds on a usual laptop (see Fig. 8), producing the value

∆ = 4.4188599, consistent with the best TBA estimates [42, 44].

After that we used the obtained coefficients as starting points for other values of the

coupling to produce the Table 13.4. All the values obtained are consistent with the TBA

results within the precision of the latter, being considerably more accurate at the same

time.

The reason for such an excellent convergence is the Q-quadratic convergence rate of the

algorithm we use. It means that the number of exact digits doubles with each iteration,

or that the error decreases as e−c 2n at the step n, if the starting point is close enough.

What is perhaps surprising is that the algorithm converges from a very remote starting

point.

Another indicator of the convergence is the plot of Q̃ computed in two different ways,

i.e. (4.25) and (4.33). On the true solution of the QSC both should coincide. On Fig. 5

we show how fast the difference between them vanishes with iterations, i.e. how fast we
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√
λ

4π ∆S=2(λ)
√
λ

4π ∆S=2(λ)

0.1 4.115506377945221056840042671851 0.2 4.418859880802350962250362876243

0.3 4.826948662284842304671283425271 0.4 5.271565182595898008221528540034

0.5 5.712723424787739030626966875973 0.6 6.133862814488691819595425762346

0.7 6.531606077852440195886557953690 0.8 6.907504206024567515828872789717

0.9 7.2641695874391127748396398539 1 7.60407071704738848334286555

1.1 7.9292942641568451632186264 1.2 8.241563441147703542676050

1.3 8.54230287229506674486342 1.4 8.8326999393163090494514

1.5 9.11375404891588560886 1.6 9.386314656368554140399

1.7 9.65111042653013781471 1.8 9.9087717085593508789

1.9 10.1598480131615473641 2 10.4048217434405061127

2.1 10.6441190951617575972 2.2 10.878118797537726796

2.3 11.107159189584305149 2.4 11.331544000504529107

2.5 11.551547111042160297 2.6 11.76741650605722239

2.7 11.97937757952067741 2.8 12.18763591669137588

2.9 12.3923796509149519 3 12.5937814717988565

3.1 12.7920003457144898 3.2 12.9871829973986392

3.3 13.1794651919629055 3.4 13.368972849208144

3.5 13.555823016292914 3.6 13.740124720157966

3.7 13.921979717391474 3.8 14.101483156227149

3.9 14.278724162943763 4 14.45378636296056

4.1 14.62674834530641 4.2 14.79768407780976

4.3 14.96666327925592 4.4 15.13375175384302

4.5 15.29901169250472 4.6 15.4625019450274

4.7 15.6242782663505 4.8 15.7843935399844

4.9 15.942897981092 5 16.099839321454

Table 2: Conformal dimension of Konishi operator
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Figure 9: Q-functions at the first several iterations. Here we show how Q3 converges

to the solution in just four iterations when calculating the Konishi anomalous dimension.

At each picture solid and dashed blue lines show Q3 slightly below the cut calculated with

(4.33) and (4.25) respectively, which should coincide on the solution. Red lines show the

same slightly above the cut.

approach the exact solution of the QSC.

In the next section we discuss the analytic continuation in S away from its integer

values. This is an important calculation which bring us to a highly accurate numerical

estimate for the pomeron intercept at finite coupling — a quantity which can be studied

exclusively by our methods.

14 Extension to Non-Integer Lorentz Spin

In this section we explain which modifications are needed in order to extend our method

to non-integer values of spin S, and give two specific examples of calculations for such S.

14.1 Modification of the Algorithm for Non-Integer Spin

First we need to discuss how the procedure of fixing zero modes of ω’s described in section

13.2 is modified for non-integer S. The main difference stems from the fact that analytic

continuation to non-integer S changes the asymptotic behavior of ωij at large u, as de-

scribed in [15, 72, 133]. While for integer S asymptotics of ω are constant, for non-integer

S some components of ω have to grow exponentially. Without this modification the sys-

tem has no solution: indeed, in section 13.3 we assumed constant asymptotics of all ω’s

and derived quantization condition for global charges.

A minimal modification would be to allow exponential asymptotics in one of the com-

ponents of ω. In order to understand which of the components can it be, let us recall the
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Pfaffian constraint satisfied by ωij

Pf ω = ω12ω34 − ω13ω24 + ω2
14 = 1. (14.1)

First, it is clear ω14 alone can not have exponential asymptotics. Second, in the case

of integer S both ω12 of ω34 are non-zero constants at infinity [72, 15]; then shifting S

infinitesimally away from an integer we see that it would be impossible to satisfy the

condition (14.1) if we allow one of them to have exponential asymptotics at infinity: this

exponent will multiply the constant in the other one. So the only two possibilities left

are ω13 and ω24, which are both zeros at infinity for integer S. From perturbative data

we know that it is ω24 which should have exponential asymptotics. Thus we formulate

the “minimal” prescription for analytic continuation of Q-system to non-integer S: e2π|u|

asymptotic has to be allowed in ω24. This prescription was tested thoroughly on a variety

of examples [134, 135, 72, 15, 133], but it would be interesting to derive it rigorously

and generalize it to states outside of the sl(2) sector. Of course, one can also consider

adding exponents to more than one component of ωij : in this case the solution will not be

unique. A complete classification of solutions of Q-system according to exponents in their

asymptotics might be interesting. For example it is known that allowing for an exponent in

some other components corresponds to the generalized cusp anomalous dimension [15, 12].

Because of the exponential asymptotics of ω24, the argument in section 13.2, which

fixes the zero modes of ω, has to be modified. First, formula (13.18) still holds true for

i = 1 or i = 3, as ω24 does not enter anywhere in the derivation. Thus

ω12 = −iI12 cot
π (S + ∆)

2
, ω34 = −iI34 cot

π (S −∆)

2
. (14.2)

Consequently, one can use (13.18) for both ω13 and ω31, and reproduce the quantization

condition (13.19) for global charges, which in this case implies that either ∆ = 0 or

ω13 = 0. Equation (13.18) can also be used for ω14 and ω23 (which are equal) and imposes

that either ∆ = 0 or ω14 = 0.

It remains to fix the zero mode in ω0
24, for which we use an ansatz

ω0
24 = a1e

2πu + a2 + a3e
−2πu. (14.3)

The constants a1, a2, a3 can be found from the Pfaffian constraint (14.1). To this end we

expand the hyperbolic cotangent in (13.11) to get

ωij = ω0
ij + Iij + 2e−2πuI+

ij + 2e−4πuI++
ij + . . . , u→ +∞, (14.4)
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Figure 10: Section of the Riemann surface S(∆) along Im ∆ = 0 for different values of

coupling g. The upper two solid curves, shown in black and grey, represent the well-known

BFKL eigenvalue as a function of ∆, whereas the lower two come from the unphysical sheet

which can be accessed from the upper one by going through the cuts. The dashed line

shows the zero-coupling limit of the curve. Orange dots mark BPS states Tr(ZZ).

where the terms of the expansion are integrals similar to Iij with additional factors of

e2πu or e4πu in the integrand23. Analogous expansion can be obtained at u→ −∞. Then

plugging these expansions into (14.1) we get formulas for the coefficients a1, a2, a3. For

example,

a1 = 2i
1 + I12I34

4

(
1 + i cot π(∆+S)

2

)(
1− i cot π(∆−S)

2

)
I+

13

. (14.5)

With these modifications we can reconstruct all ωij including the zero modes and then

proceed with our algorithm as in the case of integer S.

14.2 Exploring Complex Spin

In this section we briefly describe the results of our numerical exploration of ∆(S) as

an analytic function of a complexified spin S. As explained in the previous section the

generalization of our numerical method to arbitrary values of spin requires minimal modi-

23Actually, these integrals can be evaluated analytically in terms of Bessel functions
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fications of our main code. Thus we are able to generate numerous values of the anomalous

dimension for any S with high precision in seconds. In fact both S and ∆ enter the QSC

formalism on almost equal footing and we can also switch quite easily to finding S for

given ∆. This is what is adopted in the vast literature on the subject and what we are

going to consider below. This viewpoint is particular convenient due to the symmetry

∆→ −∆ which makes the pictures particularly nice.

Starting from S = 2 (Konishi operator) we decreased the value of S or ∆ in small

steps using the solution at the previous step as a starting point for the next value. In

this way we built the upper two curves on Fig. 10. Let us point out one curious technical

problem – one can see for instance from (14.5) that the lines S = ±∆ + Z are potentially

dangerous due to the divergence. In fact we found that near these dangerous points on the

line the factor I12I34 also vanishes canceling the potential divergence. This however affect

the convergence “radius” of our iterative procedure and we found it quite complicated to

cross those lines, even though in very small steps we were able to reach close to them. The

way out is to go around these lines in the complex plane ∆. To make sure there is no true

singularity or branch point we also explored a big patch of the complex plane ∆, indeed

finding some branch points, but deep inside the complex plane, having nothing to do with

these lines. For example when g = 0.2 we found 4 closest branch points at roughly ±1± i,

see Fig. 12. By making an analytic continuation (described above) through those cuts we

found another sheet of the Riemann surface S(∆). On this sheet we have found four cuts:

two are connecting it to the first sheet and two other ones, located symmetrically on the

imaginary axis, lead to further sheets. We expect an infinite set of sheets hidden below

and also more cuts on both sheets outside of the area that we have explored.

It is instructive to see how this Riemann surface behaves as g → 0. First, the real

parts of branch points on the physical sheet are very close to ±1, but the imaginary part

goes to zero. Thus at infinitely small g the cuts collide, isolating the region |< ∆| < 1

from the rest of the complex plane. These two separated regions become then the areas

of applicability of two different approximations: for |< ∆| > 1 one can apply the usual

perturbation theory and Beisert-Eden-Staudacher Asymptotic Bethe Ansatz, whereas the

region |< ∆| < 1 is described by BFKL approximation and so-called Asymptotic BFKL

Ansatz [133].

The presence of the cut can be to some extent deduced from perturbative perspective

in each region: in the regime of usual perturbation theory

∆(S) = 2 + S − 8g2HS +O(g4), (14.6)
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Figure 11: The BFKL intercept j as a function of coupling λ. The red solid line with

tiny red dots is obtained by our numerical procedure. It interpolates perfectly between

the known perturbative predictions (the blue dashed lines) at weak [128, 127] and strong

coupling [129, 130, 131, 15].

where HS is the harmonic number. It has poles for all negative integer values of S —

these poles are weak-coupling remnants of the cuts we see at finite coupling. In the BFKL

regime one should instead look at the leading order BFKL equation [136, 137, 128]

S(∆) = −1 + 4g2

[
ψ

(
1 + ∆

2

)
+ ψ

(
1−∆

2

)
− 2ψ(1)

]
+O(g4) . (14.7)

To make sense of this equation one has to take the limit g → 0, S → −1 so that the l.h.s

stays finite. Then the ψ-functions in the r.h.s generate poles at odd values of ∆, which,

again, are cuts degenerated at weak coupling.

Fig 10 represents a section of the Riemann surface by the plane = u = 0, i.e. de-

pendence of S on ∆ for real ∆, which, of course, consists of two curves, originating from

the two sheets we explored. At weak coupling the upper curve becomes piecewise linear,

approaching different parts of the dotted line: for |∆| > 1 it coincides with S = ±∆ − 2

and for |∆| < 1 it becomes S = −1. One could expect a similar piecewise linear behavior

for the lower curve: it approaches S = ±∆ − 2 for |∆| < 1, approaches S = 0 in some

region outside of |∆| < 1 and becomes a certain linear function even further away from

∆ = 0. It would be interesting to explore the complete analytic structure of this Riemann

surface, and understand what describes its asymptotics when g → 0. It should produce a
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hierarchy of “Asymptotic Bethe Ansätze” each responsible for its own linear part of the

limiting surface.

14.3 BFKL Pomeron Intercept

The pomeron intercept j(λ) is a quantity which relates spectrum of single-trace operators

and scaling of high energy scattering amplitudes in the Regge regime [124, 125, 126]. This

regime is particularly interesting, since it establishes a connection between results inN = 4

SYM and multicolor QCD: the non-trivial leading order of so-called BFKL eigenvalue is

the same in two theories, and in the higher orders N = 4 SYM is expected to reproduce

at least the most complicated part of the QCD result.

Our goal is to demonstrate the universal power of our approach by giving an extremely

precise numerical estimate for this important quantity at finite coupling in a wide range

of couplings.

One defines the intercept as j = S(∆ = 0) + 2, where S is the spin of the twist-2

operator such that ∆(S) = 0. Having formulated the problem like this, we can in principle

apply the algorithm described in section 13 to find the correct value of S, while keeping

∆ at zero. However, one may already suspect that the point ∆ = 0 is special. Indeed,

we know that for any solution of QSC there is always another one related by ∆ → −∆

symmetry. At the level of Qi functions this allows simultaneously interchanging Q1 ↔ Q3

and Q2 ↔ Q4 as one can see from the asymptotics. From this we see that at small ∆ two

different solutions of QSC (related by the symmetry) approach each other, making the

convergence slow, exactly like Newton’s method becomes inefficient for degenerate zeros.

In other words, in the limit ∆ → 0 the Q’s related by the symmetry become linearly

dependent in the leading order. Furthermore, since the matrix Qa|i should stay invertible,

the leading coefficients Bi of asymptotic expansion of Qi diverge at ∆→ 0.

The way out is to perform a linear transformation of Q’s preserving the equations:

it will replace two of them by linear combinations Q3 − γQ1 and Q4 + γQ2 with some

coefficient γ, so that the divergent leading order cancels and the four functions Qi become

linearly independent.

For the gauge choice in which B1 = B2 = 1 the transformation acts on i-indices of
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√
λ

4π j(λ)
√
λ

4π j(λ)

0. 1.000 000 000 000 000 000 0 0.1 1.101 144 978 997 772 874 8

0.2 1.301 794 032 258 782 208 7 0.3 1.470 445 240 989 187 630 6

0.4 1.587 128 066 254 129 730 4 0.5 1.666 438 709 974 061 852 3

0.6 1.721 917 842 815 631 353 9 0.7 1.762 239 296 816 453 814 3

0.8 1.792 626 253 069 403 59 0.9 1.816 252 952 807 284 11

1. 1.835 109 464 032 173 0 1.1 1.850 489 553 739 522 8

1.2 1.863 264 346 392 640 4 1.3 1.874 039 320 799 460

1.4 1.883 247 290 966 33 1.5 1.891 205 346 040 23

1.6 1.898 150 851 852 49 1.7 1.904 264 892 928 17

1.8 1.909 687 948 271 74 1.9 1.914 530 628 017 38

2. 1.918 881 187 304 9 2.1 1.922 810 887 750

2.2 1.926 377 890 67 2.3 1.929 630 129 41

2.4 1.932 607 459 1 2.5 1.935 343 287 2

Table 3: Numerical data for the pomeron intercept for various values of the ’t Hooft

coupling. All digits are expected to be significant but some additional tests are in progress,

and will be reported in second version of this preprint.

Q-functions with a matrix24.

Hi
j =


1 0 0 0

0 1 0 0

−γ 0 1 0

0 γ 0 1

 , γ =
i(S − 4)(S − 2)S(S + 2)

16(S − 1)2∆
. (14.8)

One can check that rotation by this matrix will render Qa|i finite and linearly inde-

pendent, and moreover, preserve relations (4.39). After this one can apply the standard

procedure from section 13 with the only modification that the large u expansion of Qa|i
will contain log u/un terms in addition to the usual 1/un.

Having done this, we can readily generate lots of numerical results. In particular we

built numerically the function j(λ) which interpolates perfectly between the weak and

strong coupling predictions. We have found j(λ) with high precision (up to 20 digits) for

a wide range of ’t Hooft coupling (going up to λ ' 1000). The results are also summarized

in the Table 3.

Table 3 represents a small portion of all data we generated, which is available by

24This is a particular case of H-transformations described in section 4.1.3 of [53]
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request. In particular we generated ∼ 100 points with small g in the range 0.1 . . . 0.017

each with more than 20 digits precision. Fitting this data with powers of g2 we found

j = 1 + 11.09035488895912g2 − 84.0785668075g4 − 2543.0481652g6 + 156244.8086g8

where the first 3 terms are known analytically from Feynman diagram perturbation theory

calculations [128, 127] and their numerical values coincide in all digits with our prediction

above. The last two terms give our numerical prediction for the numerical values of the

NNLO and NNNLO BFKL pomeron intercept. Our fit also gives predictions for the

higher corrections but with a smaller precision. In addition, we confirmed the analytic

string coupling predictions for the intercept from [15] (our precision is sufficient at the

moment to check all known coefficients except the last 1
λ3 term).

15 Conclusions and Future Directions

In this part we have demonstrated that in addition to their analytic power, the QSC

equations can give highly precise numerical results at finite coupling. We develop a nu-

merical procedure which applies to generic single trace operators and as such it is unique

in its kind. Furthermore, the algorithm converges at a remarkably high rate which gives us

access to high numerical precision results – up to 20 digits or even more in a few iterations.

The efficiency of our method is demonstrated on the example of sl(2) sector opera-

tors. We also formulated how to extend our procedure to non-integer quantum numbers.

We studied the twist-2 operators for complex values of the spin discovering a fascinating

Riemann surface (see Fig.12). In addition we reformulated our equations to be directly

applicable to the BFKL pomeron intercept and evaluated the intercept j with high preci-

sion of up to 20 significant figures. By fitting our data we also gave a prediction for the

perturbation theory expansion

j(λ) = 1 + 0.07023049277268284 λ− 0.00337167607361 λ2 (15.1)

− 0.00064579607573 λ3 + 0.0002512619258 λ4 + . . .

reproducing correctly the first two nontrivial orders [128, 127] and giving a prediction for

higher orders.

The range of possible applications of our method is vast. First, it is not limited solely

to the sl(2) sector of N = 4 SYM, but is directly applicable to any single trace operators

of the theory. It would be interesting to do an explicit example of a numerical calculation
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with our algorithm outside of the sl(2) sector. For example, the wider class of sl(2,C)

operators (identified in [133]), also exhibiting a BFKL regime, could be a good candidate

to begin with. Third, it may be interesting to generalize our method to ABJM theory as

well as to various integrable deformations of N = 4 SYM theory.

The numerical results could also be helpful for the analytical exploration of the spec-

trum – for instance, in such regimes as BFKL and at strong coupling, which remains almost

unexplored, and various limiting cases of the generalized cusp. Furthermore, studying nu-

merical results and the behavior of the generated Q-functions in various limits can reveal

new analytically solvable regimes.
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Part IV

BFKL Pomeron eigenvalue at

next-to-next-to-leading order

The BFKL limit in N = 4 SYM corresponds to analytic continuation for sl(2) sector

operators to the singular value of the spin S → −1 simultaneously with g → 0. In this

part, based on results of [13], we present a method which allows to compute the anomalous

dimension in this highly nontrivial regime systematically from the QSC. In particular, we

solve the longstanding open problem of computing the NNLO correction to the anomalous

dimension.

16 Introduction

QCD is notorious for being hard to explore analytically: perturbative calculations become

impossibly complex after first few loop orders. However, there are regimes in which one can

probe all orders of perturbation theory analytically. The Balitsky-Fadin-Kuraev-Lipatov

(BFKL) equation is applicable in processes like Deep Inelastic Scattering or hadronic dijet

production, which are characterized by a presence of at least two widely separated energy

scales. The large logarithm of ratio of these energy scales ∆y enters into perturbative

expansion, so in order to make sense of the perturbation theory one has to resum powers

of ∆y in every order of perturbation theory.

The most nontrivial part χ of the scattering amplitude [124, 125, 126] is the so-called

BFKL eigenvalue [136, 137] which at LO reads

χLO(ν, n)=2ψ(1)−ψ
(
n+ 1 + iν

2

)
−ψ

(
n+ 1− iν

2

)
. (16.1)

Here we focus on the case n = 0. Taking into account the Next-to-Leading, Next-to-Next-

to-Leading contributions, and the BFKL eigenvalue χ gets corrected by terms of order g2,

g4 etc correspondingly. One often also introduces j(iν), related to the BFKL eigenvalue

as
j(iν)− 1

4g2
= χLO(ν, 0) + g2χNLO(ν, 0) + g4χNNLO(ν, 0) + . . . .

The Next-to-Leading BFKL was obtained after 9 years of laborious calculations in

[138, 139, 140, 128]; the result in modern notation is presented below in the text (16.2). The
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corrections turned out to be numerically rather large compared to the LO, which makes

one question the validity of the whole BFKL resummation procedure and its applicability

for phenomenology.

This and other indications make it clear that just NLO may not be enough to match

experimental predictions. It is important to understand the general structure of BFKL

expansion terms and here we will study the NNLO BFKL eigenvalue in N = 4 SYM

— a more symmetric analog of QCD. Notably, it was observed in [128] that the N = 4

SYM reproduces correctly the part of the QCD result with maximal transcendentality. In

particular the LO coincides exactly in the two theories.

A technically convenient way to compute the Pomeron eigenvalue is due to the obser-

vation of [140] who reformulated the problem in terms of a certain analytical continuation

of anomalous dimensions of twist-2 operators. Fortunately, in planar N = 4 SYM the

problem of computing the anomalous dimensions is solved for finite coupling and any

operator by the Quantum Spectral Curve (QSC) formalism [52, 53].

In order to obtain the BFKL eigenvalue in N = 4 SYM from the anomalous dimension

of twist operators we consider the dimension ∆(S) of twist-two operator O = TrZDS
+Z.

The inverse function S(∆) is known to approach −1 perturbatively for ∆ in the range

[−1, 1] and thus the map to the BFKL regime is given by ∆ = iν and j = 2 +S(∆). Then

the goal is to compute j(∆) as a series expansion in g2. Indeed, from the QSC formalism it

was shown in [72] that one reproduces correctly the LO (16.1). Here we use some shortcuts

to the direct approach of [72] to push the calculation to NNLO order, which already gives

useful new information about the QCD result.

An essential for us observation was made in [129]25 where it was pointed out that

both LO and NLO results can be represented as a simple linear combination of the nested

harmonic sums. Let us stress again that in our notation ∆ is the full conformal dimension

of the twist-two operator, related to the anomalous dimension γ as ∆ = 2 + S + γ. Then

the expansion of j(∆) can be written as

j(∆) = 1 +
∞∑
`=1

g2`

[
F`

(
∆− 1

2

)
+ F`

(
−∆− 1

2

)]
(16.2)

with the two first known orders given by [129]

F1 = −4S1 (16.3)

F2

4
= −3

2
ζ3 + π2 ln 2 +

π2

3
S1 + 2S3 + π2S−1 − 4S−2,1

25We are grateful to S. Caron-Huot for bringing our attention to this paper
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where

Sa1,a2,...,an(x) =

x∑
y=1

(sign (a1))y

y|a1|
Sa2,...,an(y) , S(x) = 1 .

We define harmonic sums for non-integer and negative arguments by the standard widely

accepted prescription, namely analytical continuation from positive even integer values as

in [141, 142, 143, 100]. These analytically continued sums, which we denote as Sa1,a2,...,

are denoted by S̄+ in [141], see e.g. Eq. (21) in that paper. A compatible but more

general definition is given in [144].

We assume the NNLO order can also be written in this form. After that we only have

to fix a finite number of coefficients which we do by expanding the QSC around some

values of ∆ where the result simplifies. Then we verify our result by comparing it with

extremely high precision numerical evaluation proving this assumption to be correct.

17 Analytical Data from QSC

As we discussed before, the 4 functions Pa of the spectral parameter u which can be

conveniently written as a convergent series expansion

Pa(u) =

∞∑
n=M̃a

ca,n
xn(u)

, x(u) =
u+
√
u− 2g

√
u+ 2g

2g
.

We will follow the same approach as in the numerical algorithm, with the Qa|i functions

playing a central role. Let us describe the details of our analytical method. We will focus

on some particular points ∆0 = 1, 3, 5, 7. It can be seen already from the LO (16.1) that

the function S(∆) is singular at these points, however the coefficients of the expansion are

relatively simple and are given by ζ-functions. We will perform a double expansion first

in g up to the order g6 and then in δ = ∆−∆0.

General iterative procedure for solving the QSC. We describe a procedure which

for some given Pa (or equivalently ca,n) takes as an input some approximate solution of

(4.20) Q(0)
a|i valid up to the order εn (where ε is some small expansion parameter) and

produces as an output new Qa|i accurate to the order ε2n. The method is very general

and in particular is suitable for perturbative expansion around any background.

Let dS be the mismatch in the equation (4.20), i.e.

Q(0)
a|i (u+ i

2)−Q(0)
a|i (u−

i
2) + PaP

bQ(0)
b|i (u+ i

2) = dSa|i, (17.1)
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where dSa|i is small ∼ εn. We can always represent the exact solution in the form

Qa|i(u) = Q(0)
a|i (u) + b ji (u+ i

2) Q(0)
a|j(u) (17.2)

where the unknown functions b ji are also small. After plugging this ansatz into the equa-

tion (17.1) we get (
b ji (u)− b ji (u+ i)

)
Q+(0)
a|j = dSa|i + dSa|jb

j
i . (17.3)

Since b ji is small it can be neglected in the r.h.s. where it multiplies another small quantity.

Finally multiplying the equation by Q(0)a|k we arrive at

bki (u+ i)− bki (u) = −dSa|i(u)Q(0)a|k (u+ i
2

)
+O(ε2n) .

We see that the r.h.s. contains only the known functions dS and Q(0) and does not contain

b which means that the original 4th order finite difference equation is reduced to a set of

independent 1st order equations! In most interesting cases the first order equation can be

easily solved. After Qa|i is found one can use (4.22) to find Qi.

Iterations at weak coupling. For our particular problem we will take either ε = g or

ε = δ. Applying this procedure a few times we generate Qi for sufficiently high order both

in g and in δ. Finally, by “gluing” Qi and Q̃i on the cut we find ca,n and S(∆) also as a

double expansion.

For the above procedure we need the leading order Q(0)
a,i . One can expect that to the

leading order in g the solution should be very simple - indeed the branch cuts collapse to

a point making most of the functions polynomial or having very simple singular structure.

Also one can use that to the leading order in g functions Pa are very simple and are already

known from [72] for any ∆. By making a simple ansatz for Qi we found for ∆0 = 1 to the

leading order

Q1 ' u, Q2 ' 1/u, Q3 ' 1, Q4 ' 1/u2 . (17.4)

For ∆0 = 3, 5, . . . the solution involves also the η-functions introduced in the QSC context

in [109, 70]

ηs1,...,sk(u) =
∑

n1>n2...nk≥0

1

(u+ in1)s1 . . . (u+ ink)sk
. (17.5)

which are related in a simple way to the nested harmonic sums. For ∆ = 3 we found

Q1 ' u2, Q2 ' u2η1,3 − i−
1

2u
, (17.6)

Q3 ' u2η1,2 − iu−
1

2
, Q4 ' u2η1,4 −

i

u
− 1

2u2
,
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which reflects the general structure of the expansion of Qi around integer ∆’s which contain

only η1,2, η1,3 and η1,4 with polynomial coefficients. As it was explained in [109, 70] the

η-functions are closed under all essential for us operations: the product of any two η-

functions can be written as a sum of η-functions, and most importantly one can easily

solve equations of the type

f(u+ i)− f(u) = unηs1,...,sk (17.7)

for any integer n again in terms of a sum of powers of u multiplying η-functions (which

we call η-polynomials). For example for n = −1 and k = 1, s1 = 1 we get f = −η2 − η1,1

etc. Thus for these starting points we are guaranteed to get η-polynomials on each step

of the general procedure described above.

Proceeding in this way we computed Qi up to the order g6 and δ10 for ∆ = 3, 5, 7. After

that we fix the coefficients in the ansatz for Pa from analyticity requirements described

below.

Fixing remaining freedom. Here we will describe how to use Qi found before to finally

extract relation between S and ∆ and the constants ca,n. This is done by using a relation

between Qi and their analytical continuations Q̃i. On the one hand we have the relation

(4.33). On the other hand we can use the u→ −u symmetry26 of the twist-2 operators to

notice that Qi(−u) should satisfy the same finite difference equation as Qi(u) and thus

we should have Qi(u) = Ωj
i (u)Qj(−u) where Ωj

i (u) is a set of periodic coefficients. As

Qi(u) has a power-like behavior at infinity, Ωj
i (u) should not grow faster than a constant.

Furthermore, since Qi has a definite asymptotic (13.7) only diagonal elements of Ωi
i(u)

can be nonzero at infinity. Combining these relations we find

Q̃A(u) = αiAQi(−u) , A = 1, 3 , (17.8)

where αjA = ωAiχ
ikΩj

k are i-periodic (as a combination of i-periodic functions), analytic

(as both Q̃a(u) and Qa(−u) should be analytic in the lower-half-plane) and growing not

faster than a constant at infinity which implies that they are constants. Furthermore most

of them are zero because only ω12, ω34 and Ωi
i are non-zero at infinity. Thus we simply

get

Q̃1(u) = α13Q3(−u) , Q̃3(u) = α31Q1(−u) . (17.9)

Next we note that if we analytically continue this relation and change u→ −u we should

get an inverse transformation which implies α13 = 1/α31 ≡ α. The coefficient α depends on

26more generally one can also use complex conjugation symmetry
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relative normalization of Q1 and Q3. Let us see how to use the identity (17.9) to constrain

the constants ca,i. We observed that all the constants are fixed from the requirement of

regularity at the origin of the combinations Q1 + Q̃1 and Q1−Q̃1√
u2−4g2

, which now can be

written as

Q1(u) + αQ3(−u) = reg ,
Q1(u)− αQ3(−u)√

u2 − 4g2
= reg .

This relation is used in the following way: one first expands in g the l.h.s. and then in u

around the origin. Then requiring the absence of the negative powers will fix α, all the

coefficients ca,n, and the function ∆(S)! So we can completely ignore ωij , Q2, and Q4

in this calculation. This observation can be used in more general situations and allows

avoiding construction of ωij , and in particular can simplify the numerical algorithm of [14]

considerably.

Constraints from poles. We use the procedure described above to compute the ex-

pansion of S(∆) around ∆0 = 3, 5, 7. In particular for ∆ = 5 + ε we computed the first 8

terms

χNNLO = −1024

ε5
+

64
(
4π2 − 33

)
3ε3

+
16
(
−36ζ3 + 2π2 + 31

)
ε2

(17.10)

+
−288ζ3 + 232π4

45 − 16π2 − 296

ε

− 2

15

[
20
(
4π2 − 75

)
ζ3 + 6300ζ5 + π4 − 215π2 + 285

]
+ . . . .

The terms with ε, ε2, and ε3 which we also evaluated explicitly are omitted for the sake of

brevity. We also reproduced expansions extracted from [71] for ∆ = 1. In our calculations

we used several Mathematica packages for manipulating harmonic sums and multiple zeta

values [107, 110].

18 The result

By observing (16.3) for LO and NLO we notice that the transcendentality of these expres-

sions is uniform if one assigns to Sa1,...,ak transcendentality equal to
k∑
j=1
|aj |. The principal

assumption of our calculation states that F3(x) can also be written as a linear combination

of nested harmonic sums with coefficients made out of several transcendental constants

π2, log(2), ζ3, ζ5,Li4
(

1
2

)
,Li5

(
1
2

)
of uniform transcendentality 5. The final basis obtained

after taking into account the constants contains 288 elements.

Hence we build the linear combination of these basis elements with free coefficients

and constrained them by imposing the expansion at ∆ = 1, 3, 5, 7 to match the results of
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the analytic expansion of QSC (in particular, requiring (17.10)). This gave an overdefined

system of linear equations for the unknown coefficients which happen to have a unique

solution presented below:

F3(x)

256
= −5S−5

8
− S−4,1

2
+
S1S−3,1

2
+
S−3,2

2
− 5S2S−2,1

4

+
S−4S1

4
+
S−3S2

8
+

3S3,−2

4
− 3S−3,1,1

2
− S1S−2,1,1

+S2,−2,1 + 3S−2,1,1,1 −
3S−2S3

4
− S5

8
+
S−2S1S2

4
(18.1)

+π2

[
S−2,1

8
− 7S−3

48
− S−2S1

12
+
S1S2

48

]
−π4

[
2S−1

45
− S1

96

]
+ζ3

[
−7S−1,1

4
+

7S−2

8
+

7S−1S1

4
− S2

16

]
+

[
2Li4

(
1
2

)
− π2 log22

12
+

log42

12

]
(S−1 − S1)

+
log52

60
− π2 log32

36
− 2π4 log 2

45
− π2ζ3

24
+

49ζ5

32
− 2Li5

(
1
2

)
.

The simplicity of the final result is quite astonishing: only 37 coefficients out of 288

turned out to be nonzero. Furthermore, they are significantly simpler than the coefficients

appearing in the series expansion around the poles (17.10). These are all clear and expected

indications of the correct result similar to what was observed in the usual perturbation

theory [103]. In addition we also performed the numerical test described below.

19 Numerical tests

Using the method of [14] we evaluated 40 values of spin S for various values of the coupling

g in the range (0.01, 0.025) with exceptionally high 80 digits precision and then fit this

data to get the following prediction for the NnLO BFKL coefficients at the fixed value of

∆ = 0.45:

value error

N2LO
10774.6358188471766379575931271924

56995929170948057653783424533229
10−61

N3LO
−366393.20520539170389379035074785

44549935531959333919163403836
10−56

N4LO
1.33273635568112691569404431036982

8561521940588979476878854× 107
10−51

N5LO
−4.9217401366579165009139555520750

70060721450958436559876× 108
10−47
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We found that our result (18.1) reproduces perfectly the first line in the table within

the numerical error 10−61 which leaves no room for doubt in the validity of our result.

20 Summary

In this letter we have applied the Quantum Spectral Curve method [52, 53] to the calcu-

lation of the NNLO correction to the BFKL eigenvalue. We check our result numerically

with 60 digits precision using the algorithm developed in [14] and gave numerical predic-

tions for a few next orders. We also developed a general efficient analytic method suitable

for systematic perturbative solution of QSC.

We hope that our findings could shed some light on the QCD counterpart of our

result and resolve some mysteries shrouding the BFKL physics. Our method is in no

way limited to NNLO: calculating further orders with our iterative algorithm seems to be

just the question of computational time. The goal of this activity would of course be to

understand the structure of the general term of BFKL expansion. The fact that our result

turned our significantly simpler than one could expect looking at the initial basis asks of

explanation.
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Part V

Analytic solution of Bremsstrahlung

TBA in the twisted case

In this part as well as the two following parts we will describe applications of the QSC

to a nonlocal operator – a cusped Wilson line. The divergence in its expectation value is

the famous generalized cusp anomalous dimension which it will be our goal to study. This

part is devoted to describing the analytic solution of the TBA equations (which are the

precursor to the QSC) in a near-BPS limit but to all loops, found in [16]. In the next two

parts we will formulate the QSC for this observable at any values of the parameters and

show that this leads to numerous new results in regimes that previously were impossibly

difficult to study.

21 Introduction

The Y-system and TBA were originally presented for the spectrum of local operators.

The same approach was shown in 2012 to be essential in understanding another kind

of observable – the quark-antiquark potential on the three-sphere, or equivalently the

generalized cusp anomalous dimension Γcusp. This quantity describes the divergence in

the expectation value of a Wilson loop made of two lines forming a cusp,

〈W 〉 ∼
(

ΛIR
ΛUV

)Γcusp

, (21.1)

with ΛUV and ΛIR being the UV and IR cutoffs [145]. The quantity Γcusp has been studied

at weak and strong coupling (for some recent results see [146, 166, 175, 176, 171]), and

is also related to a number of other observables, such as IR divergence in amplitudes and

radiation power from a moving quark, see e.g. [147, 148, 149, 97]. The cusp anomalous

dimension is a function of two angles, φ and θ, which describe the geometry of the Wilson

line setup shown in Fig. 21 [150]. The first angle, φ, is the angle between the quark and

antiquark lines at the cusp. The second angle, θ, arises because the locally supersymmetric

Wilson lines considered here include a coupling to the scalar fields. As there are six real

scalars in N = 4 SYM the coupling can be defined by a unit vector ~n which gives a point

on S5. For the two lines we have two different vectors, ~n and ~nθ, with θ being the angle
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between them. Explicitly, we can write the cusped Wilson loop as

W0 = P exp

0∫
−∞

dt
[
iA · ẋq + ~Φ · ~n |ẋq|

]
× P exp

∞∫
0

dt
[
iA · ẋq̄ + ~Φ · ~nθ |ẋq̄|

]
, (21.2)

where ~Φ denotes a vector consisting of the six scalars of N = 4 SYM, while xq(t) and xq̄(t)

are the quark and antiquark trajectories (straight lines through the origin) which make

up an angle φ at the cusp (see Fig.21).

Figure 12: The setup. A Wilson line with a cusp angle φ and L scalar fields Z = Φ1 +iΦ2

inserted at the cusp. Coupling of the scalar fields to the two half lines is defined by

directions ~n and ~nθ in the internal space, with the angle θ between them.

A fully nonperturbative description for the value of Γcusp was obtained in a remarkable

development by Drukker [64] and by Correa, Maldacena & Sever [63]. They proposed an

infinite system of TBA integral equations which compute this quantity at arbitrary ’t

Hooft coupling λ and for arbitrary angles. In order to implement the TBA approach,

the cusp anomalous dimension was generalized for the case when a local operator with

R-charge L is inserted at the cusp (cf. Fig. 21):

WL = P exp

0∫
−∞

dt
(
iA · ẋq + ~Φ · ~n |ẋq|

)
× ZL × P exp

∞∫
0

dt
(
iA · ẋq̄ + ~Φ · ~nθ |ẋq̄|

)
. (21.3)

Here Z = Φ1 +iΦ2, with Φ1 and Φ2 being two scalars independent from (~Φ ·~n) and (~Φ ·~nθ).

The anomalous dimension ΓL(φ, θ, λ) corresponding to such Wilson loop is captured by the

TBA equations exactly at any value of L. For L = 0 the usual quark-antiquark potential

is recovered. The number of field insertions plays the role of the system’s volume in the

TBA description, and ΓL(φ, θ, λ) is obtained as the vacuum state energy.

While the infinite system of these TBA equations is rather complicated, having the

two angles as continuous parameters opens the possibility to look for simplifications in

some limits where an exact analytical solution may be expected27. We will focus on the

27On the other hand, non-perturbative predictions from the spectral TBA have been mostly restricted

to numerics [42, 44, 45, 46]; see also [43].
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near-BPS limit when φ ≈ θ. For φ = θ the configuration is BPS and the anomalous

dimension vanishes [151, 152]28. The small deviations from this supersymmetric case are

known to be partially under control: the cusp dimension at L = 0 was computed for

φ ≈ θ analytically at any coupling in [147, 148] using results from localization methods

[153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163]. The answer in the planar limit reads

Γcusp(φ, θ, λ) = − 1

4π2
(φ2 − θ2)

1

1− θ2

π2

√
λ̃ I2

(√
λ̃
)

I1

(√
λ̃
) +O

(
(φ2 − θ2)2

)
, λ̃ = λ

(
1− θ2

π2

)
(21.4)

where In are the modified Bessel functions of the first kind. The existence of such explicit

result suggests that the cusp TBA system should simplify dramatically when φ ≈ θ. Even

though the full set of TBA equations was simplified a bit in this limit as described in [63],

the result is still an enormously complicated infinite set of integral equations. Remarkably,

it turned out that these equations admit an exact analytical solution. It was obtained in

[164] for the particular near-BPS configuration where θ = 0 and φ is small. The result of

[164] covers all values of L and λ and for L = 0 reproduces the localization result (21.4)

in which θ should be set to zero.

We will show how to extend the results of [164] to the generic near-BPS limit. Thus,

we consider the case when φ ≈ θ, but θ is arbitrary and is an extra parameter in the

result. We also filled some gaps in the previous derivation using the novel Pµ-formulation

[52]. We obtain an explicit expression valid for all values of θ, L and λ. For this we solve

the Bremsstrahlung TBA analytically, following the strategy developed in [164]. Quite

surprisingly the result for arbitrary θ is considerably simpler and takes the form

ΓL(g) =
φ− θ

4
∂θ log

detM2L+1

detM2L−1
, (21.5)

where we define an N + 1×N + 1 matrix

MN =



Iθ1 Iθ0 · · · Iθ2−N Iθ1−N

Iθ2 Iθ1 · · · Iθ3−N Iθ2−N
...

...
. . .

...
...

IθN IθN−1 · · · Iθ1 Iθ0

IθN+1 IθN · · · Iθ2 Iθ1


(21.6)

and Iθn are

Iθn =
1

2
In

(√
λ̃
)[(√π + θ

π − θ

)n
− (−1)n

(√
π − θ
π + θ

)n]
. (21.7)

28Strictly speaking the BPS condition allows φ = −θ in addition to φ = θ but these two cases are

trivially related.
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At L = 0 we have reproduced in full the localization result (21.4). For L > 0 our

result complements and generalizes the calculation of [164] as another integrability-based

prediction for localization techniques. As in [164], the determinant expressions we got

suggest a possible link to matrix models, which would be interesting to explore further.

22 TBA equations in the near-BPS limit

In this section we discuss the first simplification of the cusp TBA system in the near-BPS

regime, when the two angles φ and θ are close to each other. Following [63] we will thus

obtain a somewhat simpler, but still infinite, set of integral equations – the Bremsstrahlung

TBA.29

Let us remind that the cusp TBA equations are very similar to those describing the

spectrum of single trace operator anomalous dimensions. After subtracting the asymptotic

large L solution, these two infinite sets of equations for the Y-functions Ya,s(u) become

exactly the same. The integer indices (a, s) of the Y-functions take values in the infinite

T-shaped domain familiar from the spectral TBA (see Fig. 22). The only difference is

in an extra symmetry requirement for the Y-functions, and in the large L asymptotic

solution30.

The asymptotic solution encodes, in particular, the boundary scattering phase which

has a double pole at zero mirror momentum. Due to this, the momentum-carrying func-

tions Ya,0(u) have a double pole for u = 0. This greatly simplifies their dynamics in the

near-BPS regime – only the residue at this pole is important and gives a non-vanishing

contribution. This residue is small for φ ≈ θ, and thus the structure of the expansion

of the cusp TBA system in our case is very similar to what happens in the small angles

regime discussed in detail in [63, 164].

We found it convenient to use a small expansion parameter

ε ≡ (φ− θ) tanφ0, (22.1)

where31 we denote φ0 = (φ+ θ)/2. As in the small angles case, it is sufficient to keep only

29The authors of [63] obtained the Bremsstrahlung TBA equations for the generic case φ ≈ θ, but the

equations were given explicitly in [63] only for the small angles case so we will repeat the derivation here.
30The extra symmetry requirement in the cusp TBA reads Ya,s(u) = Ya,−s(−u) but is irrelevant in our

discussion as for our state all Y-functions are even.
31To shorten notation we will sometimes use θ instead of φ0 in the text, on the understanding that

equations containing θ are assumed to hold to the leading order in ε.
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a

s

Figure 13: The T-hook. The indices (a, s) of Y -functions take values on the infinite

T-shaped lattice in the figure. We also show the form of expansion in small ε for different

groups of Y -functions. Notice that the momentum carrying Y -functions Ya,0 are small in

ε and enter the system only through the singularity at u = 0.

the leading orders in the expansion of the Y-functions, which are

Ya,1 = Ya [1 + ε(Ωa −Xa)] , 1/Y1,s = Ys [1 + ε(Ωs + Xs)] , (22.2)

Y1,1 = −1− 2εΨ, 1/Y2,2 = −1− 2εΦ,

while the residue of Ya,0 reads

lim
u→0

(
u2Ya,0

)
= (εCa)2 . (22.3)

This expansion (except for the Ωa functions which will not enter our equations) is also

shown in Fig. 22.

It is straightforward to plug these expansions into the cusp TBA system, and then

simplify the equations a bit further using the same techniques as in the small angles case.

The resulting set of Bremsstrahlung TBA equations reads:

Φ−Ψ = πCaK̂a(u), (22.4)

Φ + Ψ = s ∗
[
−2

X2

1 + Y2
+ π(K̂+

a − K̂−a )Ca − πδ(u)C1

]
, (22.5)

log Y1,m = s ∗ Im,n log (1 + Y1,n)− δm,2s∗̂
(

log
Φ

Ψ
+ ε (Φ−Ψ)

)
− επsCm, (22.6)

∆a = [R(10)
ab + B(10)

a,b−2]∗̂ log
1 + Yb
1 +Ab

+R(10)
a1 ∗̂ log

(
Ψ

1/2

)
− B(10)

a1 ∗̂ log

(
Φ

1/2

)
, (22.7)

Ca = (−1)a+1a
sin aθ

tan θ

(√
1 +

a2

16g2
− a

4g

)2+2L

F (a, g)e∆a , (22.8)
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where the kernels and conventions are the same as in [164] and are defined in Appendix

B.1. The equation (22.6) for Y1,m should be understood to hold at orders O(ε0) and O(ε1)

only. Notice that as in the small angles case the functions Ωa from (22.2) have dropped

out of the equations.

We see that our Bremsstrahlung TBA equations are almost the same as in [164].

However, importantly, the asymptotic condition at large real u is different:

1/Y1,m →
sin2 θ

sin(m+ 1)θ sin(m− 1)θ
, (22.9)

which should hold up to terms of order O(ε) inclusive. Finally, the cusp anomalous

dimension is determined by the double pole of momentum-carrying Y -functions:

ΓL(g) = ε

∞∑
a=1

Ca√
1 + 16g2/a2

. (22.10)

In the next section we will reduce this TBA system to a finite set of nonlinear equations.

23 FiNLIE

23.1 Twisted ansatz for T-functions

Our main task is to reduce the infinite set of equations (22.6) for the functions Y1,m. In

order to do this we use its relation to the Y-system and Hirota equations in the horizontal

right wing of the T-hook. Indeed, from the integral form of (22.6) and the analyticity of

the kernels it is clear that Y1,m(u) are analytic and regular in the strip |=u| < m−1
2 . Then

for m > 2 the equation (22.6) can be rewritten as the Y-system functional equation

log
(
Y +

1,mY
−

1,m

)
= log (1 + Y1,m−1) (1 + Y1,m+1) . (23.1)

This set of functional equations can be solved by switching to the so-called T-functions

according to

1/Y1,m =
T+

1,mT
−
1,m

T1,m+1T1,m−1
− 1. (23.2)

In terms of T-functions the Y-system equation becomes the Hirota equation in the

horizontal strip, for which the general solution is known [51, 165] and involves only two

unknown functions which we denote Q1 and Q2:

T1,s = C

∣∣∣∣∣∣ Q
[s]
1 Q̄

[−s]
1

Q
[s]
2 Q̄

[−s]
2

∣∣∣∣∣∣ . (23.3)
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In this way we are able to replace the infinite set of Ym functions (m = 2, 3, . . . ) by two

functions Q1(u) and Q2(u). Now the problem is reduced to finding an ansatz for the

functions Q1, Q2 entering (23.3). The main requirement for this ansatz is that the Y1,m

generated by (23.2), (23.3) should have the correct asymptotics at large real u given by

(22.9). For small angles the asymptotics is 1
m2−1

and the corresponding ansatz for the

Q-functions is known [164]. Here we present an ansatz which works also in a deformed

case with nontrivial twists.

The ansatz also has to ensure the correct analytical properties of the Y-functions

which are dictated by the integral equations (22.6). First of all, the Y1,m functions should

be analytic inside the strip |Im u| < m−1
2 and even as functions of u. The term with

δm,2 in (22.6) can be reproduced if Y1,2(u) has branch cuts starting at u = i/2 ± 2g and

u = −i/2± 2g.

Our proposal for Q-functions meeting these requirements is:

Q1 = Q̄1 = e+θ(u−iG(u)), (23.4)

Q2 = Q̄2 = e−θ(u−iG(u)), (23.5)

where G(u) should be a function with a branch cut on the real axis in order to satisfy the

properties of T-functions listed above. Note that the asymptotics (22.9) of Y -functions

is automatically satisfied for any G(u) decaying at infinity. Finally, as T1,s are even and

real functions (to ensure the same properties for Y-functions), G(u) should be odd and

imaginary.

With this choice of Q1 and Q2 we can calculate T1,s from (23.3) where for consistency

with [164] in the small angle limit we choose C = 1
2i sin θ

T1,s =
sin(s− G[s] + G[−s])θ

sin θ
. (23.6)

Discontinuity of the function G can be found from the equation analogous to (23.1) for

m = 2 [51]. It reads

T
++

1,1 T
−−
1,1

T
+−
1,1 T

−+

1,1

= r, where r =
1 + 1/Y2,2

1 + Y1,1
(23.7)

and we denoted

T+±(u) = T (u+ i/2± i0) and T−±(u) = T (u− i/2± i0) . (23.8)

More explicitly, using the formula (23.6) for T1,1 one can write

r =
sin
(
1− G[+2] + G − ρ/2

)
θ sin

(
1 + G[−2] − G − ρ/2

)
θ

sin
(
1− G[+2] + G + ρ/2

)
θ sin

(
1 + G[−2] − G + ρ/2

)
θ
, (23.9)
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where G(u) is the average of G on both sides of the cut if u is on the cut, and it is equal to

G(u) + ρ(u)/2 away from the cut. This allows to deduce the discontinuity of the function

G with one real Zhukovsky cut in terms of a combination (23.7) of “fermionic” Y-functions

Y1,1 and Y2,2.

Finally, for small θ the combinations Q1±Q2 obtained from our ansatz nicely match32

(up to overall factors) the Q-functions in the small angles case [164], where Q1 = 1 and

Q2 = −iu− G(u).

23.2 Expansion in the near-BPS case

The ansatz presented in the previous subsection is valid for a general, not necessarily

near-BPS situation. Here we will apply it to the case of φ ≈ θ (i.e. small ε).

As we have seen above, the solution for Y -functions is completely defined by a single

function G(u), which we will call the resolvent. For our goals we only need to know G up

to the linear in ε terms inclusive. Our proposal for the resolvent is

G(u) =
1

2πi

2g∫
−2g

dv
ρ(v)

u− v
+ ε
∑
a6=0

ba
u− ia/2

. (23.10)

The first term creates a short branch cut33 in G(u), which translates into the branch cuts

of Ym. The discontinuity of the resolvent across this cut is the density ρ:

ρ(u) = G(u− i0)−G(u+ i0). (23.11)

The second term in (23.10) produces poles at ±i/2 with residues proportional to ε in

Y-functions, which account for the term επsCm in (22.6).

One can see that the properties of T1,m being real and even imposes the following

constraints on the density and poles: ρ should be even and real as a function with a long

cut, while ba = b−a and ba = −b∗a.

Most of the equations are already expanded in ε, so it is convenient to introduce

expanded to the leading order versions of the quantities above. The leading order part of

the resolvent is34

G(u) =
1

2πi

2g∫
−2g

dv
ρ(v)

u− v
. (23.12)

32As T1,s are given by a determinant, we are free to replace Q1,2 by their linear combinations
33i.e. a cut from −2g to 2g.
34The density ρ contains both the leading order in ε part and the linear correction, however, here we

will never need to deal with this correction. Hence, we will denote the full density and its leading order

part by the same letter ρ hoping that this will not cause any confusion.
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We also introduce the leading order T -functions Tm related to the leading order Y -

functions as

Ym =
T +
m T −m

Tm+1Tm−1
− 1. (23.13)

Explicitly, the leading order part of (23.6) gives

Ts =
sin (s−G[s] +G[−s])φ0

sinφ0
. (23.14)

23.3 Final reduction to FiNLIE

We now use the ansatz that we discussed above and finalize the reduction of the original

Bremsstrahlung TBA system to a finite set of equations. Skipping the intermediate steps

which are covered in [16] we find that the FiNLIE equations read:

η
sin θρ

sin θ
= −

∑
a

πCaK̂a, (23.15)

η
cos θρ cos (2−G+ +G−)θ − cos (2G−G+ −G−)θ

sin θ sin (2−G+ +G−)θ
=

= s ∗
[
−2

X2

1 + Y2
+ π(K̂+

a − K̂−a )Ca − πδ(u)C1

]
, (23.16)

Ca = (−1)aaTa(0)

(√
1 +

a2

16g2
− a

4g

)2+2L

× (23.17)

exp

[
K̃a∗̂ log

(
η

sinh 2πu

2πu

)]
.

A clarification of notation used here and the kernels can be found in the Appendix

B.1.35

24 Solving the FiNLIE: analytical ansatz

In the previous sections we presented the FiNLIE - a system of equations for Ca, ρ, η.

Following the spirit of [164], in order to solve it we should analyse the analytical properties

of η and ρ as functions in the whole complex plane. We parametrize these functions in

terms of auxiliary Bethe roots, for which we will obtain a set of Bethe equations. Then

we solve them using Baxter equation techniques and obtain the result for the anomalous

dimension ΓL(g).

35Strictly speaking these equations are also supplemented with several additional constraints which may

be found in full detail in [16].
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For the sake of readability we will not cover all steps of this calculation which are

described in full detail in [16]. The main outcome is that the system reduces to a Baxter-

like equation for several functions encoding the auxiliary Bethe roots xk:

Q+(x) =
∏
k 6=0

xk − x
xk

, Q−(x) = Q+(−x) (24.1)

Introducing

T(x) = e+2gθxxL+1Q−(x) + (−1)L
e−2gθ/x

xL+1
Q̃+(x). (24.2)

which encodes the whole set of auxiliary Bethe roots xk, we will call T(x) the Baxter

function. T

T(−1/x) = −T(x) (24.3)

At large u one can show that

Q±(1/x)→ 1 (24.4)

while

Q± ∼ C̃
sinh 2πu

2πu
, u→ +∞ . (24.5)

Therefore the second term in (24.2) is suppressed compared to the first one and the

asymptotics of the whole expression at large x is T(x) ∼ xLe2g(π+θ)x. Then from (24.3)

we can find the asymptotics of T(x) at x→ 0, and combining all these analytical properties

together we can fix T uniquely to be

T(x) = sinh(2πu)e2gθ(x−1/x)PL(x), (24.6)

where PL(x) should be a rational function with behavior ∼ xL at infinity. Since T(x)

should not have singularities apart from x = 0 and x = ∞, the function PL must be a

polynomial in x and 1/x. Moreover, (24.3) means that PL(−1/x) = PL(x) and hence we

can write

PL(x) = C1x
L + C2x

L−1 · · ·+ (−1)LC1x
−L. (24.7)

To find T(x) explicitly it only remains to determine the coefficients Ci. This is straight-

forward to do by imposing the condition that the r.h.s. of (24.6) does not contain powers

of x from −L to L in its Laurent expansion (as follows from (24.2)) which must be the

case since Q− is regular at the origin.

Finally, and most importantly, one can show that the energy is given by

ΓL(g) = −2(φ− θ)g
[
− C2

2C1
+
c

2
+ gθ

]
, (24.8)
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where c is the leading expansion coefficient of Q±:

Q±(x) ' 1∓ cx , x→ 0. (24.9)

Notice that the coefficients C1, C2 are also encoded in Q±: from (24.2), (24.6) we find

Q±(x) ' sinh(2πu)

[
C1

x
± 2gθC1

x2
∓ C2

x2
+ . . .

]
, x→∞ . (24.10)

Now we have all the necessary tools to obtain the energy explicitly using the Baxter

equation.

24.1 The L = 0 case

Let us first discuss the L = 0 case, because it is technically simpler. The function PL(x)

from (24.6) is then just a constant,

PL(x) = C1. (24.11)

To fix it we need to know the expansion of (24.6) in powers of x. Using that the exponent

of x + 1/x is a generating function for the modified Bessel functions of the first kind,

e2πg(x+1/x) =
∞∑

n=−∞
In(4πg)xn, we get the expansion

sinh (2πg(x+ 1/x)) e2gθ(x−1/x) =
+∞∑

n=−∞
Iθnx

n, (24.12)

where Iθn are the “deformed” Bessel functions

Iθn =
1

2
In

(
4πg

√
1− θ2

π2

)[(√
π + θ

π − θ

)n
− (−1)n

(√
π − θ
π + θ

)n]
. (24.13)

Below we will omit the argument of In, always assuming it to be the same as in (24.13).

The expansion (24.12) allows us to write the Baxter function (24.6) as

T(x) = e+2gθxxQ−(x) +
e−2gθ/x

x
Q+(1/x) = C1

+∞∑
n=−∞

Iθnx
n.

We can now find Q− as the regular part of the Laurent expansion of T:

Q−(x) = C1
e−2gθx

x

+∞∑
n=1

Iθnx
n. (24.14)

From (24.1) we see that Q±(0) = 1, so setting x = 0 in the last equation we fix C1 as

C1 =

√
π2 − θ2

πI1
. (24.15)
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Since L = 0 we have C2 = 0, while the coefficient c in (24.9) is read off from (24.14):

c = −2gθ +
2θ√

π2 − θ2

I2

I1
. (24.16)

Then from (24.8) we get the energy

ΓL = −2(φ− θ) θg√
π2 − θ2

I2

(
λ̃1/2

)
I1

(
λ̃1/2

) , λ̃ = (4πg)2
(

1− θ2

π2

)
. (24.17)

Remarkably, this is precisely the localization result of [147]! This is the first successful

check of our construction.

24.2 Non-zero L

Let us now find the explicit expression for the energy at any L.

First we need to compute the coefficients Ck, using the equation (24.6). From (24.2)

we see that the left hand side of (24.6) should not contain terms with powers of x from

−L to L, and also the coefficient of the xL+1 term should be 1. After we expand the

right hand side according to (24.12) this condition generates 2L+ 1 equations for 2L+ 1

variables Ck:


L∑

k=−L
Iθm−kCk+L+1 = 0, m = −L+ 1 . . . L,

L∑
k=−L

Iθm−kCk+L+1 = 1, m = L+ 1.

(24.18)

This linear system can be formulated in matrix form:

(M2L)ikCk+L+1 = δi,L+1, (24.19)

where

MN =



Iθ1 Iθ0 · · · Iθ2−N Iθ1−N

Iθ2 Iθ1 · · · Iθ3−N Iθ2−N
...

...
. . .

...
...

IθN IθN−1 · · · Iθ1 Iθ0

IθN+1 IθN · · · Iθ2 Iθ1


. (24.20)

By Cramer’s rule we obtain the solution

Ck =
detM(2L+1,k)

2L

detM2L
, (24.21)
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whereM(a,b)
N is the matrix obtained fromMN by deleting ath row and bth column. Plug-

ging these coefficients into PL(x) we can combine it into a determinant again:

PL(x) =
1

detM2L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2L Iθ1−2L

Iθ2 Iθ1 · · · Iθ3−2L Iθ2−2L

...
...

. . .
...

...

Iθ2L Iθ2L−1 · · · Iθ1 Iθ0

x−L x1−L · · · xL−1 xL

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (24.22)

Notice that now from (24.6) we have the Baxter function T(x) in a fully explicit form.

In particular, one can easily find the functions Q± encoding the Bethe roots. Namely, Q−

is the regular part of the Laurent expansion of T(x),

Q−(x) = x−L−1e−2gθx [T(x)]+ , (24.23)

while Q+(x) = Q−(−x).

It remains to find c – the coefficient of expansion of Q± which enters the expression

for ΓL(g). Consider expansion of (24.6) around x = 0, taking into account the definition

of T (24.2):

(1+2gθx+. . . )xL+1(1+cx+. . . )+negative powers =
+∞∑

n=−∞
Iθnx

n
L∑

k=−L
Ck+L+1x

k (24.24)

Equating the coefficients of xL on both sides we get

2gθ + c =

L∑
k=−L

IL+2−kCk+L+1 . (24.25)

Plugging the solution for Ck into the right hand side of the last equation we see that it

combines nicely into a ratio of two determinants, resulting in

c = −2gθ +
detM(2L+1,2L+2)

2L+1

detM2L
. (24.26)

The determinants detM(a,b)
N satisfy a number of useful identities which allow us to bring

the expressions for c and C1/C2 to the following form:

c = −2gθ +
detM(1,2)

2L+1

detM(1,1)
2L+1

, C1/C2 =
detM(1,2)

2L

detM(1,1)
2L

. (24.27)

Finally we can plug (24.27) into (24.8) and write our main result for ΓL(g)

ΓL(g) = (φ− θ)g (r2L−1 − r2L) , rN =
detM(1,2)

N+1

detMN
. (24.28)
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Using the identities for these determinants, we can represent it in a compact form. The

final formula reads

ΓL(g) =
φ− θ

4
∂θ log

detM2L+1

detM2L−1
. (24.29)

This is our main result which was announced in the Introduction. As an example, for

L = 1 it reduces to

Γ1(g) = (φ− θ)g 1

Iθ1

(
Iθ2
)3 − 2Iθ1I

θ
2I

θ
3 +

(
Iθ1
)2
Iθ4(

Iθ1
)2 − Iθ1Iθ3 +

(
Iθ2
)2 , (24.30)

while for higher values of L the expression becomes quite lengthy.

A form more suitable for some calculations is

ΓL(g) = (−1)L+1(φ− θ)g
detM(1,2L+2)

2L+1

detM2L
. (24.31)

Notice that here the matrix in the numerator is just M2L with all indices of deformed

Bessel functions Iθn increased by 1.

The explicit result for the energy (24.29) concludes our analytical solution of the cusp

TBA equations. In the next subsection we will describe several checks of the result.

24.3 Weak and strong coupling limit

While for L = 0 our result matches fully the prediction from localization, at nonzero L

our result is new. Here we will show that it passes several nontrivial checks.

At strong coupling our computation should reproduce the energy of the corresponding

classical string solution which was computed in [164] (see also [146] for relevant calculations

at strong and at weak coupling). To do this we first expanded the energy at large g and

fixed L for several first values of L. The dependence on L happened to be polynomial

which allows us to easily extend the result to an arbitrary L:

ΓL
2(φ− θ)θ

= − g√
π2 − θ2

+
6L+ 3

8 (π2 − θ2)
−

3
((

6L2 + 6L+ 1
)
π2 − 2θ2(L+ 1)L

)
128gπ2 (π2 − θ2)3/2

+ . . .

(24.32)

To compare with the classical string energy we re-expanded this formula in the regime
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when L and g are both large, but L = L/g is fixed. Then at leading order in g we found

ΓL
2(φ− θ)θ

=

(
− g
π

+
3L

4π2
− 9L2

64gπ3
− 5L3

256g2π4
+

45L4

16384g3π5

)
(24.33)

+ θ2

(
− g

2π3
+

3L

4π4
− 21L2

128gπ5
− L3

16g2π6
− 105L4

32768g3π7

)
+ θ4

(
− 3g

8π5
+

3L

4π6
− 99L2

512gπ7
− 3L3

32g2π8
− 2085L4

131072g3π9

)
+ θ6

(
− 5g

16π7
+

3L

4π8
− 225L2

1024gπ9
− L3

8g2π10
− 7905L4

262144g3π11

)
+ θ8

(
− 35g

128π9
+

3L

4π10
− 1995L2

8192gπ11
− 5L3

32g2π12
− 97425L4

2097152g3π13

)
,

which perfectly matches the expansion of the classical string energy from [164]! Since the

classical energy was derived without appealing to integrability, this matching is a direct

test of our calculation for nonzero L.

Later on a curious symmetry of the Bremsstrahlung function we computed was found

in [167] and revealed new structure in the strong coupling limit. The strong coupling

regime was studied further in [168] where the matrix model representation of (24.31) led

to a classical spectral curve which describes the scaling limit L, g →∞, L ∼ g.

At weak coupling we can compare our result to the leading Luscher correction to the

energy. This correction was computed, as well as shown to follow from the TBA equations,

in [63], [64] for generic φ and θ. It was also reproduced in [166]36 by a direct perturbative

calculation. When θ ∼ φ this Luscher correction reduces to

ΓL = (φ− θ)g2L+2 (−1)L(4π)1+2L

(1 + 2L)!
B1+2L

(
π − θ

2π

)
+O(g2L+4) (24.34)

where B1+2L are the Bernoulli polynomials. For L = 0, 1, 2, 3, 4 we have checked that this

expression precisely coincides with the leading weak-coupling term of our result.

25 Conclusions

We have computed explicitly the generalized cusp anomalous dimension ΓL(g, φ, θ) in the

near-BPS limit when φ ≈ θ. We have thus extended the θ = 0 calculation of [164] to the

arbitrary θ case. Our result (24.29) is fully non-perturbative and covers generic values for

three (g, L and θ) out of four parameters in the cusp anomalous dimension.

Let us also mention that having the all-loop analytic solution of the TBA presented

here allowed in [16] to understand in part how the original QSC can be adapted to this

36except for the overall coefficient which was not fixed in [166]
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twisted case. A nice match was found between the Baxter equation and the equations of

the QSC, in particular the function PL(x) featuring in our solution is naturally identified

wth one of the P-functions of the QSC up to a simple prefactor. We will see how the

near-BPS solution is reconstructed directly from the QSC in the next part.

At L = 0 our result matches an earlier localization calculation. For nonzero L it serves

as a new integrability-based prediction for localization techniques, and is fully confirmed

by nontrivial checks both at strong and at weak coupling.

Our result for ΓL has a form of a logarithmic derivative of a ratio of determinants,

which hints that it could be obtained as an expectation value of some quantity in a matrix

model. As in the θ = 0 case [164] we expect that matrix model techniques should be very

useful to analyze the semiclassical expansion of our predictions at large L.
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Part VI

QSC for the cusp anomalous dimension

In this part, based on [12], we will formulate the Quantum Spectral Curve capturing the

generalized cusp anomalous dimension for arbitrary values of the parameters and at any

coupling.We will provide numerous tests of the construction and use it to generate new

results.

26 Introduction

In the previous part we have seen that the generalized cusp anomalous dimension (equiv-

alently, the generalized quark-antiquark potential) is described by an infinite system of

TBA/Y-system equations. We will show how to adapt the Quantum Spectral Curve ap-

proach to this observable. Instead of deriving the QSC from the TBA (which is how the

original QSC was obtained in [52, 53]), we make a proposal based on available data and

consistency of the equations, and confirm it by several highly nontrivial tests. We find

that all functional equations of the QSC remain unchanged, but the asymptotics at large

values of the spectral parameter, as well as some of the analyticity properties, should

be modified. In particular some functions acquire exponential asymptotics ∼ e±φu, e±θu,

as expected by analogy with spin chain Q-functions in the presence of twisted boundary

conditions. We also observed that rather subtle cancelations take place resulting in com-

plicated constraints on subleading coefficients in the large u asymptotics of Q-functions.

As an application we compute the subleading term (of order (φ − θ)2) in the near-BPS

expansion of Γcusp without scalar insertions, at any coupling and for any φ. Our explicit

result (28.26) fully agrees with perturbative predictions.

We will discuss the modifications needed in the QSC, focussing on the vacuum state,

i.e. with only Z fields inserted at the cusp, but keeping L arbitrary. Then we reconstruct

the near-BPS solution at any θ and L, and for L = 0 extend it to the next order in the

near-BPS expansion. Next we describe a highly precise numerical method for solving the

QSC equations and demonstrate it on several examples. After this we discuss the weak

coupling solution at generic angles, and finally present conclusions.
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27 Constructing the Quantum Spectral Curve

In this section we will discuss the modifications in the QSC which are needed to describe

the generalized quark-antiquark potential. Below we will only discuss the vacuum state,

i.e. the Wilson line with L scalar insertions at the cusp (the extension for more general

insertions should be straightforward).

The Quantum Spectral Curve equations of [52, 53] in N = 4 SYM can be deduced

from the TBA equations or the corresponding T- and Y-systems with special analyticity

assumptions. In our case the TBA equations for the generalised cusp are almost the same

as the original TBA system. The Y-system and T-system equations are exactly the same

as for the original problem. Thus it is natural to expect that the QSC equations should

also be the same to a large extent. In the TBA there are only two important differences:

the extra boundary dressing phase supplementing the BES phase, and the twists which

appear as chemical potentials and introduce the angles φ, θ into the problem37. We do

not derive the QSC from the Thermodynamic Bethe ansatz, rather we will put forward

and motivate a proposal which is consistent with several highly nontrivial checks, leaving

little doubt as to its correctness.

First, we expect to have the same set of Q-functions and auxiliary functions such as

µab as in the original problem. All of them will satisfy the same functional relations,

for instance the Pµ-system equations or the QQ-relations are unchanged. However some

analyticity properties will change, as we will discuss below, and in particular the P-

functions acquire an extra cut going from u = 0 to infinity. In addition, the large u

asymptotics clearly need to be modified. Indeed, the twists in the boundary conditions

typically correspond to imposing exponential rather than powerlike asymptotics for the Q-

functions (see e.g. [53] and references therein). In our case the angle θ is naturally related

to the S5 part of the geometry, which qualitatively corresponds to the P-functions, so

roughly speaking we expect Pa ∼ e±θu at large u. Similarly, the angle φ is associated to

AdS5 leading to Qi ∼ e±φu. This argument is also supported by the expectation that P’s

and Q’s should be related in the classical limit to the quasimomenta for S5 and AdS5,

correspondingly. Similarly, we expect that L should enter the power in the asymptotics of

P’s, while the power in the asymptotics of Q’s should contain ∆.

37There is also an extra symmetry requirement on the Y-functions of the TBA, namely they should be

invariant under the exchange of the two wings of the Y-system with a simultaneous reflection u→ −u, i.e.

Ya,s(u) = Ya,−s(−u), see [63, 64] for details.
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In the original QSC proposal [53] some guidance to fix the powers in the asymptotics

came from comparison with the Asymptotic Bethe ansatz (ABA) which can be reproduced

from the QSC, and also with the classical spectral curve. For our problem the ABA is

also available [63, 64], and another piece of information is the all-loop solution of the

Pµ system to leading order in the near-BPS expansion, based on analytic solutions of

the TBA [164, 52, 16]. In particular these solutions suggest that the large u asymptotics

should contain half-integer powers coming from a
√
u prefactor which the P’s contain.

However it turns out that there is an important subtlety – in the near-BPS limit the

leading large u coefficient in P3,P4 vanishes, making it not straightforward to guess the

correct asymptotics even knowing the all-loop result.

The available data indicates that, first, the boundary dressing phase leads to exponen-

tial rather than powerlike asymptotics in µab. This was already observed in [52, 16]. More

precisely, we should have

ω12 ∼ const · e2π|u|, ω13 ∼ const, ω24 ∼ const, u→∞ (27.1)

while other components of ωij become zero at infinity. This translates via (4.35) into

e±2πu asymptotics in some components of the µab matrix.

It remains to fix the powers in the asymptotics of P’s and Q’s, and relate their large

u expansion coefficients to the charges of the state. To do this we demanded consistency

of the equations (4.20), (4.22) expanded at large u. This precisely follows the logic for the

undeformed case, where e.g. the relations for leading coefficients of P’s follow from the

powers in the asymptotics of these functions once we require consistency of the fucntional

equations (4.20), (4.22). However, our case turned out to be much more tricky, in particu-

lar since some of the twists are the same (e.g. two of the Pa functions scale with the same

exponent ∼ eθu) there are many subtle cancellations at the first several orders. It was

also convenient at intermediate steps to use (4.41) as well as the 4th order Baxter-type

difference equation on Qi with coefficients built from Pa,P
a – this equation follows from

(4.20), (4.22) (see [72] for details on its derivation). Finally, already the near-BPS solu-

tion suggests that not all four Pa are independent, e.g. P1(u) is equal up to a constant

to P2(−u).
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As a result, we found the following large u asymptotics:

P1(u) = Cε1/2 u−1/2−L e+θuf(+u) , f(u) = 1 + a1/u+ a2/u
2 + a3/u

3 + . . .(27.2)

P2(u) = Cε1/2 u−1/2−L e−θuf(−u) ,

P3(u) =
1

C
ε3/2 u+3/2+L e+θug(+u) , g(u) = 1 + b1/u+ b2/u

2 + b3/u
3 + . . .

P4(u) = − 1

C
ε3/2 u+3/2+L e−θug(−u) .

Here L is the number of scalar insertions at the cusp, while the constant C is unfixed

and can be set to 1 by the rescaling symmetry as discussed below (27.8), (27.9). The

coefficients should satisfy

ε2 =
i(cos θ − cosφ)2

2(L+ 1) sin2 θ
, a1 − b1 = −(L+ 1)(2 cos θ cosφ+ cos 2θ − 3)

2 sin θ(cos θ − cosφ)
. (27.3)

The relation which includes ∆ ≡ Γcusp is more involved and we give its full form in Eq.

(C.1), Appendix C.1. For L = 0 it reduces to

∆2 =
(cos θ − cosφ)3

sin θ sin2 φ

[
−a1a2 + a1b2 −

a1

sin2 θ
+ a2

1

(1− cos θ cosφ)

sin θ(cos θ − cosφ)
(27.4)

− a2 cot θ + a3 − b3
]
.

We see that in contrast to the undeformed case we need to expand P’s up to fourth order

at large u to extract the conformal dimension! With these asymptotic constraints the

Pµ-system becomes a closed a set of equations fixing the cusp anomalous dimension.

Notice that the asymptotics of Pa contains half-integer powers of u. Thus Pa are not

as regular as in the case of local operators and should necessarily have extra cuts. Thus

we require the regularity on the plane with only Zhukovsky cuts not for Pa (or Qi) but

for

pa ≡ Pa/
√
u, qi ≡ Qi/

√
u . (27.5)

This is an important additional analyticity condition. Let us underline that the extra
√
u

factor in (27.5) is not e.g. an artefact of the weak coupling expansion. Its presence at

finite coupling is a part of our proposal, already observed in [16] based on the near-BPS

all-loop solution of the TBA. It is further confirmed here by numerical results at strong

coupling and analytic solution at weak coupling (which are described below).

Alternatively to the Pµ-system one can use the Qω system described in (4.33) which

is also a closed set of equations provided the proper constraints at large u are imposed.

In our case the leading asymptotics of Qi are

Q1 ∼ u1/2+∆euφ, Q2 ∼ u1/2+∆e−uφ, Q3 ∼ u1/2−∆euφ, Q4 ∼ u1/2−∆e−uφ . (27.6)
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The coefficients in their large u expansion are constrained similarly to (27.2), (27.4), and in

particular one can extract from them the R-charge L. We give the corresponding relations

in Appendix C.2.

Finally, like in the sl(2) sector of the original QSC we have

P1 = −P4 , P2 = +P3 , P3 = −P2 , P4 = +P1, µ14 = µ23 (27.7)

due to which PaPa = 0 is satisfied automatically.

It is useful to note that there is a rescaling symmetry under which

P1 → αP1, P2 → αP2, P3 → α−1P3, P4 → α−1P4, (27.8)

µ12 → α2µ12, µ34 → α−2µ34 (27.9)

while other µab are not changed (α is a constant). In particular with this rescaling one can

set to 1 the constant C appearing in (27.2). We also have the γ-symmetry transformation

[15, 53] which reads

P3 → P3 + γP1, P4 → P4 − γP2, (27.10)

µ14 → µ14 − γµ12, µ34 → µ34 + 2γµ14 − γ2µ12 (27.11)

with constant γ. With this transformation the coefficients in the asymptotics of P’s will

also change, e.g. for L = 0

b2 → b2 +
C2γ

ε
, b3 → b3 +

C2γ

ε
a1, . . . (27.12)

The formula (27.4) for ∆ is invariant under this transformation, as it should be.

As discussed above, from (27.2) we see that when φ → θ the leading coefficient in

P3,P4 is proportional to (φ − θ)3/2 and thus is not visible at the leading order in the

near-BPS expansion. The next coefficients b1, b2, . . . will scale as 1/(φ − θ) and thus all

Pa are of order
√
φ− θ, as expected from the solution found in [16]. We will reconstruct

this solution in the next section.

The asymptotics discussed in this section constitute our main result. They provide the

crucial boundary conditions, thus concluding the reduction of the infinite TBA system of

[63, 64] to the finite set of QSC equations.

In the next sections we will demonstrate the usage of the QSC in several cases. We

will compute at all loops the next-to-leading term in the near-BPS expansion, solve the

equations numerically and also construct the leading weak coupling solution. All these

calculations provide stringent tests of our proposal as well as giving new results.
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28 Near-BPS solution

In this section we will describe the solution of the QSC in the near-BPS limit φ→ θ. We

will first recover the leading order solution at arbitrary θ found in [16], and then extend

it to the next order. This calculation is quite similar to the iterative solution of the QSC

at small spin studied in [15]. The main outcome is a prediction for the value of Γcusp at

order (φ− θ)2 to all loops.

28.1 Leading order

In the limit φ→ θ the generalized cusp anomalous dimension can be written as

∆ =
cosφ− cos θ

sinφ
∆(1)(φ) +

(
cosφ− cos θ

sinφ

)2

∆(2)(φ) +O((φ− θ)3) . (28.1)

The first coefficient, also known as the Bremsstrahlung function, was computed at any

coupling in [147, 148] and later reproduced from integrability in [164, 16] by a direct

analytic solution of the TBA in this limit. It reads

∆(1)(φ) =
2φg√
π2 − φ2

I2

(
4πg

√
1− φ2

π2

)
I1

(
4πg

√
1− φ2

π2

) . (28.2)

In [16] the leading near-BPS solution was obtained from the TBA and linked to the

Pµ-system. Let us rederive this solution using solely the information coming from our

asymptotics.

The key simplification is that Pa, P̃a ∼
√
φ− θ are small. This can be seen from our

general asymptotics (27.2), (27.6), (C.3) where we have to send ε ∼ φ − θ → 0 meaning

that in the near-BPS limit we get

P1 ∼ u−1/2−Le+θu , P2 ∼ u−1/2−Le−θu , P3 ∼ u1/2+Le+θu , P4 ∼ u1/2+Le−θu ,

(28.3)

and

Q1 ∼ u−1/2−Le−θu , Q2 ∼ u−1/2−Le+θu , Q3 ∼ u1/2+Le−θu , Q4 ∼ u1/2+Le+θu ,

(28.4)

Notice that the leading coefficient in P3 and P4 tends to zero faster than the subleading

ones since a1 − b1 ∼ 1/ε, which modifies the expected behaviour at infinity in this limit
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(and similarly for Q3,Q4). Thus we can write the expansion of P and µ as

Pa = P(0)
a + P(1)

a +O((φ− θ)5/2), µab = µ
(0)
ab + µ

(1)
ab +O((φ− θ)2) (28.5)

where the scaling is

P(0)
a ∼ (φ− θ)1/2, P(1)

a ∼ (φ− θ)3/2, µ
(0)
ab ∼ 1, µ

(1)
ab ∼ (φ− θ) . (28.6)

From (4.30) we see that at leading order the discontinuity of µab vanishes so µ
(0)
ab are

periodic entire functions. To fix them we should look in more detail at the functions

Qa|i and Qab|ij , using (4.35) and our prescription (27.1) which states in particular that

ω12 ∼ e2π|u|, u→∞. For φ ' θ the r.h.s. of (4.20) is small so Qa|i are periodic functions.

At the same time their large u asymptotics should be consistent with that of Qi and Pa

from (28.3), (28.4), meaning that Qa|i ' uNaieψaiu where ψai can be equal to ±2θ or to 0

in our limit. From that we conlude that Qa|i must be constants. Moreover the relation

Pa = −QiQ+
a|i , (28.7)

together with (28.3), (28.4) means that the only nonzero constants are

Qa|i =


0 K1 0 0

K2 0 0 0

0 0 0 K3

0 0 K4 0

 . (28.8)

In other words Pa and Qi are the same in this limit after a relabeling of their indices (up

to a constant factor). This is indeed an expected feature for a BPS configuration where

cancellation between S5 and AdS5 modes is taking place. Similarly, ωij and µab should

coincide after the same relabeling of indices.

Together with our requirement (27.1) this means that µ12 = B0 + B1e
2πu + B2e

−2πu,

µ13 and µ24 are constants, while other µab are zero. Note that since we should have a

u→ −u symmetry of the system, of course µ12 should be either even or odd which further

constrains these constants. This leads to (see [12] for full details)

µ
(0)
12 = A sinh(2πu), µ

(0)
13 = 1, µ

(0)
14 = 0, µ

(0)
24 = −1, µ

(0)
34 = 0 (28.9)

where A is a constant. This also implies that at leading order

ω12 = const · sinh(2πu) . (28.10)



28.1 Leading order 114

Therefore the equations on the P’s to leading order take the form

P̃
(0)
1 = A sinh(2πu)P

(0)
3 −P

(0)
2 (28.11)

P̃
(0)
2 = A sinh(2πu)P

(0)
4 −P

(0)
1

P̃
(0)
3 = P

(0)
4

P̃
(0)
4 = P

(0)
3 .

To solve them let us first introduce some notation. We have a very useful expansion

sinh(2πu)e+2gθ(x−1/x) =
∞∑

n=−∞
I+θ
n xn , (28.12)

where

Iθn =
1

2
In

(
4πg

√
1− θ2

π2

)[(√
π + θ

π − θ

)n
− (−1)n

(√
π − θ
π + θ

)n]
, (28.13)

with In being the modified Bessel function. By x(u) we denote the usual Zhukovsky

variable which resolves the cut [−2g, 2g],

x+
1

x
=
u

g
, |x| ≥ 1 . (28.14)

We also have

Iθ−n = I−θn = (−1)n+1Iθn (28.15)

and let us introduce

S+(x) ≡
∞∑
n=1

I+θ
n x−n , S−(x) ≡

∞∑
n=1

I−θn x−n . (28.16)

In this notation we have e.g.

S+ + S̃− = sinh(2πu)e−2gθ(x−1/x) (28.17)

(notice that applying the tilde amounts to flipping x→ 1/x). We see that S+ is the part

of the Laurent expansion of sinh(2πu)e−2gθ(x−1/x) containing negative powers of x. We

can alternatively write it as a contour integral

S+(x) =
1

2πi

∮
dy

x− y
sinh(2πg(y + 1/y))e−2gθ(y−1/y) (28.18)

where the contour goes counterclockwise around the unit circle.
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Focussing on the case L = 0 we can now write the explicit solution of (28.11):38

P
(0)
1 = B

√
A
√
u e+gθ(x−1/x)

∞∑
n=1

I+θ
n x−n (28.19)

P
(0)
2 = B

√
A
√
u e−gθ(x−1/x)

∞∑
n=1

I−θn x−n (28.20)

P
(0)
3 =

B√
A

√
u e+gθ(x−1/x) (28.21)

P
(0)
4 =

B√
A

√
u e−gθ(x−1/x) (28.22)

where B ∼
√
φ− θ is a constant fixed from asymptotics (27.2) as

B =

√
−i(φ− θ)

gIθ1
. (28.23)

The constant A is arbitrary and is related to the constant C appearing in the asymptotics

(27.2), so using the rescaling (27.8), (27.9) one can set either A or C to 1. One can check

that this solution is fully consistent with the asymptotics (27.2), noting that, as discussed

above, in (27.2) the leading coefficient in P3,P4 vanishes and all bi ∼ 1/(φ − θ). This

solution also reproduces via (27.4) the known result for ∆ at the leading order in (φ− θ),

∆ = −2(φ− θ) φg√
π2 − φ2

I2

(
4πg

√
1− φ2

π2

)
I1

(
4πg

√
1− φ2

π2

) +O((φ− θ)2) . (28.24)

We also translated to our conventions the solution for any L constructed in [16] and we

present it in appendix C.3. Remarkably, the result for Γcusp extracted from this solution

via our asymptotic relations (27.2), (27.4) perfectly matches the known predictions from

TBA found in [16] (we have checked this explicitly for the first several values of L). This

is already a nontrivial check of the proposed large u asymptotics.

28.2 Next-to-leading order

Let us now discuss the solution of the Pµ system at the next order in (φ − θ). The

calculation is rather similar to the one discussed in part II for the small spin expansion,

apart from several technical complications. While full details are given in [12], here we will

only quote the final result for the anomalous dimension. To compare with the literature

38This solution is slightly different from the one described in [16], as e.g. the relations (27.7) between

Pa and Pa that we use differ by a sign compared to those used in that paper. The solution given in [16]

is of course also valid, in the conventions used in that work.
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we found it convenient to bring our result to the form

∆ =
cosφ− cos θ

sinφ
∆(1)(φ) +

(
cosφ− cos θ

sinφ

)2

∆(2)(φ) +O((φ− θ)3) (28.25)

so that at each order we have a nontrivial function of φ . Our all-loop result reads

∆(2)(φ) = −1

2

∮
dux
2πi

∮
duy
2πi

uxuy × (28.26)

[D+Γ+φ(ux − uy) +D0Γ0(ux − uy) +D−Γ−φ(ux − uy)]

where both integrals run clockwise around the cut [−2g, 2g] and

D+ =
iS+(y)e−2gφx+2gφ/x+2gφy−2gφ/y

g3Iφ1

×

(
−2S+(y)

gIφ1
− 2S+(x)e4gφx−4gφ/x

gIφ1
+

2y

y2 − 1
+

2x

x2 − 1
+

Iφ2 xS+(y)

(Iφ1 )2(x2 − 1)

)
,

D0 =
2iS+(y)

g3Iφ1

(
S+(x)

gIφ1
− Iφ2 S+(x)

(Iφ1 )2(x2 − 1)
− 2x2

(x+ 1/x)(x2 − 1)

)
, (28.27)

D− =
iIφ2

g3(Iφ1 )3

x(S+(x))2e2gφx−2gφ/x−2gφy+2gφ/y

(x2 − 1)

We recall that S+ was defined in (28.16), and the kernels Γ entering (28.26) are given by

Γ−θ(u) = e−2θu
∞∑
n=1

[
e−2inθ

u+ in
− e2inθ

u− in

]
, (28.28)

Γ+θ(u) = e2θu
∞∑
n=1

[
e2inθ

u+ in
− e−2inθ

u− in

]
. (28.29)

Let us now discuss several checks of our main result (28.26) at weak coupling. It is

straightforward to expand it for g → 0 simply by expanding the integrand in (28.26) at

weak coupling and taking the residue at ux, uy = 0. Then we can make a test against

perturbative predictions known up to four loops. In general the structure at weak coupling

is expected to be

∆ =

∞∑
n=1

γn(θ, φ)g2n (28.30)

with

γn(θ, φ) =
n∑
k=1

(
cosφ− cos θ

sinφ

)k
γ(k)
n (φ) . (28.31)

Our all-loop result allows to compute all coeficients γ
(2)
n (φ) in this expansion. Notice that

at each loop order only a finite number of terms in the near-BPS expansion contribute, e.g.

the two-loop result is completely determined by the first two terms in (28.25). For arbitrary
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φ and θ the anomalous dimension was computed directly up to two loops [169, 146] giving

γ
(1)
1 (φ) = 2φ, (28.32)

γ
(1)
2 (φ) =

4

3
φ(φ2 − π2), (28.33)

γ
(2)
2 (φ) = 2iφ

[
Li2(e2iφ)− Li2(e−2iφ)

]
− 2

[
Li3(e2iφ) + Li3(e−2iφ)

]
+ 4ζ(3)(28.34)

and in [170] this data was reproduced from the TBA. We found that the weak coupling

expansion of our result perfectly matches the prediction (28.34).

The cusp anomalous dimension was also computed to four loops in [166, 171], giving

a prediction for the coefficients γ
(2)
3 (φ), γ

(2)
4 (φ) which our result should reproduce. Indeed

we found a perfect match with the perturbative data. The predictions of [171] are written

in terms of harmonic polylogarithms, but match the expansion of our result39 which does

not include more complicated functions than Lin. At three loops our result gives

γ
(2)
3 (φ) = 24

[
Li5(e−2iφ) + Li5(e2iφ)

]
− 18iφ

[
Li4(e2iφ)− Li4(e−2iφ)

]
(28.35)

−4φ2
[
Li3(e−2iφ) + Li3(e2iφ)

]
+

4

3
i(π − φ)(φ+ π)φ

[
Li2(e2iφ)− Li2(e−2iφ)

]
+

8

3

(
φ2 − π2

)
φ2
[
log(1− e2iφ) + log(1− e−2iφ)

]
+ 8

(
ζ(3)φ2 − 6ζ(5)

)
while at four loops

γ
(2)
4 (φ) = −280

[
Li7(e2iφ) + Li7(e−2iφ)

]
+ 190iφ

[
Li6(e2iφ)− Li6(e2iφ)

]
(28.36)

+

(
44φ2 +

16π2

3

)[
Li5(e2iφ) + Li5(e−2iφ)

]
+

4

3
iφ
(
11φ2 − 17π2

) [
Li4(e2iφ)− Li4(e−2iφ)

]
+

8

9

(
18φ4 − 21π2φ2 + π4

) [
Li3(e2iφ) + Li3(e−2iφ)

]
−4

9
i
(
15φ5 − 22π2φ3 + 7π4φ

) [
Li2(e2iφ)− Li2(e−2iφ)

]
+

40

9

(
φ3 − π2φ

)2 [
log(1− e2iφ) + log(1− e−2iφ)

]
+16ζ(3)φ4 − 8

3

(
4π2ζ(3) + 33ζ(5)

)
φ2 − 16

9

(
π4ζ(3) + 6π2ζ(5)− 315ζ(7)

)
In fact it is clear that at any loop order our result would generate Lin at most. The reason

is that when evaluating the integral (28.26) by residues the most complicated functions

that can appear are the Lin(e±2iφ) coming from expansion of the kernels (28.28), (28.29).

As a further example we computed the novel five- and six-loop coefficients, given in Eq.

(C.18) (Appendix C.4).

39we checked this numerically for some particular values of φ
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Thus at weak coupling our result matches known predictions to four loops, which serves

as a deep test of the proposed Quantum Spectral Curve equations and of our near-BPS

calculation.

29 Numerical solution

The formulation of the problem in terms of the QSC allows for an efficient numerical

analysis of Γcusp at finite coupling. A highly precise and fast converging numerical method

for solving the original QSC for local operators was proposed in [14]. Here we will describe

how to modify it in the present case, and then demonstrate several applications. We will

focus on the case L = 0, but we expect the discussion in this section should be valid for

general L with minor changes.

29.1 The numerical algorithm

We start in the same way as in the numerical solution of the QSC for local operators:

we parameterize the P-functions in terms of unknown coefficients ca,n and build the Qa|i

functions which allow to obtain Qi, b̃Qi on the cut [−2g, 2g]. The only difference is that

all these functions have exponential asymptotics, but this is easily incorporated in the

algorithm.

The most important step is to close the equations in terms of Qi, Q̃i and find the free

coefficients ca,n. For that we use the very convenient trick proposed originally in [13]. Let

us discuss it in some detail as this is a crucial part of the calculation. We start by noticing

that Qi(u) and Qi(−u) should satisfy the same 4th order difference equation following

from (4.20), (4.22) with coefficients built from P-functions as the equation is symmetric

under u→ −u. As we discussed in section 27, Eq. (27.5), it is simpler to work with

qi(u) = Qi(u)/
√
u . (29.1)

Then we have qi(u) = Ωj
i (u)qj(−u) where Ωj

i (u) are some i−periodic functions. As Qi

have a definite asymptotics with prescribed exponential part (27.6), all Ωj
i (u) become

constant at large u and furthermore only a few of them are nonzero at infinity, namely

Ω1
2, Ω2

1, Ω4
3, Ω3

4. We also know that q̃i(u) = ωij(u)χjkqk(u) where ωij are i-periodic.

Combining these relations we find

q̃m(u) = αim(u)qi(−u), m = 1, 2, 3, 4 (29.2)
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where αim = ωmjχ
jkΩi

k are i-periodic (being built from periodic functions) and moreover

analytic since q̃i(u) and qi(−u) are analytic in the lower half-plane. In addition to this,

most of the functions αim are equal to zero, because according to our prescription (27.1)

from section 27 the only nonzero components of ωij at infinity are ω34 ∼ const · e2π|u| and

ω13, ω24 ∼ const. Using also that most components of Ωj
i are zero at large u we get from

(29.2) the following equations (it’s enough for us to consider only q1,q4)

q̃1(u) = s1q1(−u) (29.3)

q̃4(u) = (ae2πu + be−2πu + c)q1(−u) + s4q4(−u)

where s1, s4, a, b, c are constants, and moreover a and b are nonzero as Ω1
2 and the expo-

nential part of ω34 are nonzero at infinity. Applying tilde to the first equation we also

get

q1(u) = s1q̃1(−u) = (s1)2q1(u) (29.4)

so (s1)2 = 1. Similarly from the second equation we find (s4)2 = 1 as well as

as1 + bs4 = 0 (29.5)

bs1 + as4 = 0

cs1 + cs4 = 0 .

This system has two solutions: either

s1 = s4, a = −b, c = 0 (29.6)

or

s1 = −s4, a = b, and c is arbitrary. (29.7)

By comparing to the leading near-BPS solution where ω12 ∝ sinh(2πu) (see Eq. (28.10)),

we see that the first option is the correct one. It remains only to fix the sign of s1. For

that let us consider the explicit solution (28.19)-(28.22) for Pa in the near-BPS limit. We

see that for pa = Pa/
√
u we have

p̃3(u) = p3(−u) (29.8)

As in the near-BPS limit we expect to identify q1 and p3, comparing this relation with

the first equation in (29.3) we see that we should choose s1 = +1.

In summary, we get a remarkably simple set of equations:

q̃1(u) = q1(−u) (29.9)

q̃4(u) = A sinh(2πu)q1(−u) + q4(−u) (29.10)
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where A is a constant and we recall that in our notation qi(u) = Qi(u)/
√
u. These are

the key equations which are enough to close the system. Let us stress that they are exact

and are not restricted to large u or near-BPS limit. In particular, similarly to [13] these

equations should be useful for a systematic weak coupling solution. With this approach

we can completely avoid computing ωij as we are able to close the system using various Q-

functions only. Notice also that in [13] the resulting equations were similar but coefficients

in the r.h.s. were all constant, while here we also have sinh(2πu).

Now, finally, as we know Qi and Q̃i on the cut, we can evaluate both sides of (29.9),

(29.10) at sampling points uk on the cut, and minimize the difference between them. More

precisely, we can express the constant A from (29.10) as

A =
q̃4(u)− q4(−u)

q1(−u) sinh(2πu)
(29.11)

and we build a function which on the true solution of the QSC should be zero40:

F =
∑
k

|q̃1(uk)− q1(−uk)|2 + Var

[
q̃4(uk)− q4(−uk)

q1(−uk) sinh(2πuk)

]
(29.12)

where Var denotes the variance, i.e. measures the deviation of the function from a constant

41. Thus we have reduced the problem to minimization of F which is a function of our main

parameters ca,n. It’s easy to see that F can be written as the norm of a 2N -dimensional

vector where N is the number of sampling points. Therefore to find its minimum we

can use the iterative Levenberg-Marquardt algorithm (an improved version of Newton’s

method) as in [14]. It converges rather fast and robustly, giving the values of coefficients

ca,n. Now we can reconstruct the P’s and compute the anomalous dimension from e.g.

(27.4).

29.2 Results

Let us now present the numerical results we obtained. First, we have evaluated Γcusp for

a wide range of the coupling from g = 0 up to g = 0.85 at fixed values of the angles

φ = π/4, θ = 4π/10. The results are given in Table 4. A fit of our data at weak coupling

40As in (29.12) we have sinh(2πuk) in denominator we should make sure the sampling points do not

include uk = 0. We choose N sampling points as uk = 2gzk where zk are zeros of the N -th Chebyshev

polynomial TN (z).
41Var [fk] =

∑
k |fk − f̂ |

2 where f̂ is the average of all elements fk.
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g Γcusp(g) g Γcusp(g) g Γcusp(g) g Γcusp(g)

0.0125 0.000138062 0.025 0.000550881 0.0375 0.0012344 0.05 0.00218203

0.0625 0.00338487 0.075 0.00483202 0.0875 0.00651094 0.1 0.00840784

0.1125 0.010508 0.125 0.0127963 0.1375 0.0152575 0.15 0.0178762

0.1625 0.0206379 0.175 0.0235283 0.1875 0.0265342 0.2 0.0296431

0.2125 0.0328434 0.225 0.0361248 0.2375 0.0394776 0.25 0.0428933

0.2625 0.0463641 0.275 0.0498834 0.2875 0.053445 0.3 0.0570437

0.3125 0.0606747 0.325 0.0643342 0.3375 0.0680183 0.35 0.0717242

0.3625 0.0754492 0.375 0.0791908 0.3875 0.0829471 0.4 0.0867164

0.4125 0.0904971 0.425 0.0942879 0.4375 0.0980876 0.45 0.101895

0.4625 0.10571 0.475 0.109532 0.4875 0.113359 0.5 0.117191

0.5125 0.121027 0.525 0.124868 0.5375 0.128713 0.55 0.132561

0.5625 0.136413 0.575 0.140267 0.5875 0.144124 0.6 0.147984

0.6125 0.151845 0.625 0.155709 0.6375 0.159575 0.65 0.163442

0.6625 0.167312 0.675 0.171182 0.6875 0.175054 0.7 0.178928

0.7125 0.182803 0.725 0.186679 0.7375 0.190556 0.75 0.194434

0.7625 0.198313 0.775 0.202193 0.7875 0.206074 0.8 0.209955

0.8125 0.213838 0.825 0.217721 0.8375 0.221605 0.85 0.22549

Table 4: Numerical data used for the plot in Fig. 29.2. We give the values of Γcusp at

finite coupling for φ = π/4, θ = 4π/10. Precision is decreased to fit the page. The full

data set is available as attachment to the arXiv submission.
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Figure 14: Numerically evaluated cusp anomalous dimension Γcusp for φ = π/4, θ = 4π/10

in a wide range of the coupling g. Solid line shows the 4-loop perturbation theory prediction

of [169, 146, 166, 171]. Dashed lines indicate the leading strong coupling prediction for

the slope of the function at g →∞.

gives

Γcusp

(
φ =

π

4
, θ =

4π

10
, g

)
' 0.8843331608401797458041129816 g2 (29.13)

−4.7002219374112776568286369 g4 + 37.481607207831059124394 g6

−321.37797809257617613 g8 + 2845.9019611906881 g10

−25984.505154213 g12 +O(g14)

which agrees with the analytical perturbative result of [169, 146, 166, 171] with 10−29g2 +

10−25g4 + 10−21g6 + 10−18g8 error. The terms g10 and g12 above also give a numerical

prediction for the five- and six-loop coefficients. One could try to get an analytic pre-

diction for them by fitting the numerical data as a combination of some basis harmonic

polylogarithms. This would require higher precision of course but should be possible to

do (e.g. in [13] more than 60 digits of precision were reached).

At strong coupling only the leading classical result is known in explicit form at generic

angles. It can be extracted from [146, 164] which gives the ∼ g coefficient. For φ = π
4 and

θ = 4π
10 it gives Γclassical

cusp ' 0.3122881g. Fitting our data we get

Γcusp

(
φ =

π

4
, θ =

4π

10
, g

)
' 0.3122892 g − 0.0410591 +

0.00073853

g
+O

(
1

g2

)
(29.14)

which agrees nicely with the AdS/CFT prediction. Let us mention that at strong coupling

it requires some effort to get high precision since we need to keep many terms in the
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expansion of the P’s in owers of x. It would be interesting to compare our result for the g0

term with the 1-loop prediction of [146] which is written in an implicit form. One should

also be able to derive the one-loop correction in a simpler and more general way by using

the algebraic curve as in [31]. On Fig. 29.2 one can see that our data clearly interpolates

between gauge and string theory results.

Figure 15: A 3d plot of Γcusp at fixed φ = π/4 in a range of values of the coupling g and

the angle θ, generated from ∼ 800 data points. We also added a semi-transparent purple

plane located at Γcusp = 0, and two red lines corresponding to the BPS configuration

θ = ±φ for which Γcusp = 0 (i.e. θ = ±π/4 in our case).

In addition, on Fig. 29.2 we show our numerical data for the generalized cusp anoma-

lous dimension at φ = π/4 for various values of θ and of the coupling. One can clearly see

in particular the straight lines corresponding to the BPS regime φ = θ when Γcusp is zero.

We covered the full range of θ from −π to π, and on the plot one can see that as expected

Γcusp is a smooth and 2π-periodic function of this angle, invariant under θ → −θ.
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30 Weak coupling solution

In section 28 we constructed the solution of the QSC in the near-BPS limit φ− θ → 0. In

this section we will describe the solution for arbitrary angles, at leading order in g. We

will discuss the case L = 0.

At weak coupling the cuts degenerate into poles, but the singular part is typically

suppressed by the coupling so one could expect Pa to be regular at leading order. However

the asymptotics (27.2) mean that we have to allow a 1/
√
u singularity in P1,P2. This

leads to the ansatz

P1 = C1
eθu√
u
, P2 = C2

e−θu√
u
, (30.1)

P3 = eθu(C3u
3/2 + C4u

1/2), P4 = e−θu(C5u
3/2 + C6u

1/2) .

Then all the coefficients are completely fixed by asymptotics (up to a rescaling (27.8)),

giving

P1 =
√
ε
eθu√
u
, P2 =

√
ε
e−θu√
u
, (30.2)

P3 = ε3/2u3/2eθu(1 + b/u), P4 = −ε3/2u3/2e−θu(1− b/u)

where

b =
2 cos θ cosφ+ cos 2θ − 3

2 sin θ(cos θ − cosφ)
(30.3)

and ε is defined in (27.3).

Let us now discuss µab. At leading order in the weak coupling expansion we expect

that in the general expression

µab =
1

2
Q−ab|ijω

ij (30.4)

only ω12 will contribute, in analogy with the undeformed QSC [52, 53, 70] as this also what

happens in the asymptotic large L regime. Based on our large u prescription ω12 ∼ e2π|u|

and the near-BPS solution (28.9), it is natural to take

ω12 = const · sinh(2πu) . (30.5)

In fact, for computing higher orders in the weak coupling expansion it should be better

to completely avoid calculating ωij and apply instead the equations (29.9), (29.10) we

used in the numerics. For the functions Qab|12 we can make an ansatz as polynomials

whose degree is determined by the asymptotics of Qab|12, times e±2θu in accordance with
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asymptotics again. Also, we expect that those of the functions Qab|12 which do not have

exponential asymptotics should be either even or odd. Thus we use the following ansatz:

{µ+
12, µ

+
13, µ

+
14, µ

+
24, µ

+
34} = (30.6)

sinh(2πu)
{
D1, e

2θu(D2 + uD3), D4u
2 +D5,

e−2θu(D6 + uD7), D8u
4 +D9u

2 +D10

}
.

To fix the constants Di appearing here we use the difference equation on µab following

from the Pµ-system equations:

µ++
ab − µab = µacP

cPb − µbcPcPa (30.7)

where Pa are related to Pa by (27.7). This equation fixes all the constants except one,

and we get

{µ+
12, µ

+
13, µ

+
14, µ

+
24, µ

+
34} =

R sinh(2πu)

{
−sin θ

ε
,
e2θu

2
(2u− cot θ),

sin θ

4

(
− 2

sin2 θ
+ 4u2 + 1

)
,

−1

2
e−2θu(cot θ + 2u),

1

16

(
4u2 + 1

)2
ε sin θ

}
. (30.8)

Going to higher orders in g (see below) we also found that the constant R and ω12 scale

as ∼ 1/g2.

The Q-functions can be found from the 4th order Baxter equation on Qi with coeffi-

cients built from Pa (see [72] for its derivation). They turn out to be written in terms of

generalized η-functions defined as

ηz1,...,zks1,...,sk
(u) ≡

∑
n1>n2>···>nk≥0

zn1
1 . . . znkk

(u+ in1)s1 . . . (u+ ink)sk
(30.9)

For the case when all twists zi are equal to 1 such functions already appeared in the weak

coupling calculations of [109, 70]. Importantly, all operations needed for the iterative

procedure of [13] (e.g. expressing the product as a linear combination or solving equations

of the kind f(u + i) − f(u) = ηz1,...,zks1,...,sk (u)) can be carried out for these functions as we

describe in Appendix C.5.

In terms of η-functions we found the following four linearly independent solutions of

the fourth order Baxter equation:

Q1 =
√
ueuφ, (30.10)

Q2 =
√
ue−uφ,

Q3 =
euφ(sinφ+ iu(ηz1 − η1

1)(cos θ − cosφ))√
u(cosφ− cos θ)

,

Q4 =
e−uφ(− sinφ+ iu(ηz̄1 − η1

1)(cos θ − cosφ))√
u(cosφ− cos θ)
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where z = e2iφ, z̄ = e−2iφ. The true Q-functions should be identified with appropriate

linear combinations of these four solutions.

To fix the anomalous dimension Γcusp one needs to go to higher orders in g. This can

be done using the iterative algorithm of [13] for which Pa and Qi we have found serve as

a starting point. Notice that the weak coupling algorithm of [70] is not directly applicable

in our situation, as all Pa are of the same order ∼ g0 and none of them are small at weak

coupling. In particular, none of the five independent equations among (30.7) decouple

from the rest at leading order. However the universal iterative method of [13] works well,

and we used it to compute the P- and Q-functions at higher orders42. In particular we

reproduced the one-loop prediction

Γcusp = 2g2 cosφ− cos θ

sinφ
φ+O(g4) (30.11)

directly at any φ and θ. The details of this calculation will be presented elsewhere. Using

this method it is certainly possible to also reach much higher loops.

31 Conclusions

In this part we have presented the modifications needed in the Quantum Spectral Curve

to describe the generalized cusp anomalous dimension. We showed that the main new

ingredient of the boundary TBA formulation – the boundary reflection phase [63, 64] –

is mapped to a simple modification of the ω12 asymptotics. In addition, the analytical

properties of the key functions Pa(u) and Qi(u) have to be modified, namely we require

regularity in u on the defining sheet (except for the branch cut) once these functions are

divided by
√
u, as described by Eq. (27.5).

Our proposal is consistent with the known near-BPS solution, and we also computed

the subleading term in the near-BPS expansion at any coupling. The result matches

perfectly the known perturbative predictions, providing a deep test of the QSC for this

model.

Curiously, our modification of the asymptotics for the component ω12 of the periodic

anti-symmetric matrix ωij is very similar to that needed for the analytic continuation in

Lorentz spin for the twist-2 local operators where the ω13 asymptotics was relaxed to be

exponentially large [15, 72, 14]. It seems to be a common feature of non-local operators.

42To simplify intermediate expressions we used several Mathematica packages [107, 110]
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It would be interesting to classify all consistent asymptotics of this kind and find the

corresponding integrable observables.

The drastic simplification of the TBA we have achieved calls for a systematic explo-

ration of Γcusp in various regimes, with the hope of revealing new structures. It would

be also interesting to explore the connection to the supersymmetric hydrogenlike bound

states of massive W-bosons in N = 4 SYM [172].

While a numerical solution of the TBA is additionally complicated by the infinite sums

which diverge for real φ and θ [170], the simple high-precision numerical method of [14]

for the QSC is applicable almost directly. Computing Γcusp numerically in a wide range

of the coupling we found perfect interpolation between gauge theory and string theory

predictions.
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Part VII

Quark-antiquark potential

In this part we present the results of [11] where the QSC was used to explore the flat space

quark-antiquark potential in a variety of regimes.

32 Introduction

One of the first predictions of AdS/CFT was the strong coupling limit of the poten-

tial between two heavy charged particles or “quarks” which is represented by a pair of

anti-parallel Wilson lines separated by distance r [173, 155]. The potential is inversely pro-

portional to the separation r due to conformal symmetry of the theory, with the strength

of the interaction depending on the gauge coupling gYM . In the planar limit Nc →∞ the

potential is a highly non-trivial function of the ’t Hooft coupling λ = g2
YMNc,

V (λ, r) = −Ω(λ)

r
. (32.1)

Currently the function Ω(λ) is known at 3 loops at weak coupling [173, 174, 146, 166,

175, 177, 178] and at one loop at strong coupling [179, 180, 181, 182]. In fact even at low

orders the weak coupling expansion is rather involved and requires using a nontrivial low-

energy effective theory. One can further generalize this observable by introducing an extra

parameter θ, which may be associated with relative flavors of the particles. The particle

flavor enters through the unit vector ~n in the expression for the Maldacena-Wilson line

Pexp

[∫
(iAµẋ

µ + ~Φ · ~n |ẋ|)
]
. (32.2)

The parameter θ is the angle between these vectors ~n for the two antiparallel lines. The

expectation value of the pair of the Maldacena-Wilson lines is related to the potential as

〈W 〉 ' e
TΩ(λ,θ)

r (32.3)

where T � r is the extent of the lines.

In this part we study this important quantity Ω(λ, θ) intensively using the integrability-

based Quantum Spectral Curve method introduced for local operators in [53, 52] and

generalized for a subclass of Wilson lines in [12], as described above. We show how the

results of [12] can be used to get a closed system of equations describing Ω(λ, θ) exactly in

the whole range of the parameters λ and θ. We find the analytic weak coupling expansion
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up to 7 loops and also build a numerically-exact function interpolating from weak to strong

coupling regime. Finally, we study analytically the limit θ → i∞ (with λe−iθ fixed) to all

orders in the ‘t Hooft coupling43. We demonstrate how the Schrödinger equation arising

from resummation of the ladder diagrams in this limit appears from the Quantum Spectral

Curve.

33 Quantum Spectral Curve for the quark–anti-quark po-

tential

The configuration of two anti-parallel Wilson lines is closely related to a configuration

where two straight lines meet at a cusp where they form an angle φ [150]. Indeed, the two

setups are linked by the plane to cylinder transformation where the cusp point is mapped

to infinity. In this picture the distance between the lines is given by r = φ − π. When φ

tends to π the curvature of the cylinder becomes irrelevant and one recovers the flat space

quark–anti-quark potential.

In [146, 63, 64] it was shown that the anomalous dimension of the cusped Maldacena-

Wilson line admits an integrability-based description in terms of an infinite system of

integral equations (known as Thermodynamic Bethe Ansatz equations). This anomalous

dimension depends on 3 parameters: θ, φ and the coupling g =
√
λ

4π . Subsequently a much

simpler description in terms of the Quantum Spectral Curve (QSC) was found [12] which

we use here.

In this section we will first introduce useful notation corresponding to a convenient

normalization of the Q-functions, and then show what happens in the QSC when we take

the singular limit φ→ π.

43A similar limit in the γ-deformed SYM was recently considered in [183].
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33.1 Notation and parameterisation of the Q-functions

It will be convenient to slightly change the notation compared to the previous part, namely

after an appropriate αβ rescaling we can write

P1(u) = +ε u1/2 e+θu f(+u) , (33.1)

P2(u) = −ε u1/2 e−θu f(−u) ,

P3(u) = +ε u1/2 e+θu g(+u) ,

P4(u) = +ε u1/2 e−θu g(−u) .

We have to impose f ' 1/u and g ' u for large u. For this normalization the prefactor ε

is fixed to be

ε =

√
i

2

cos θ − cosφ

sin θ
. (33.2)

As P’s have only one cut, f and g are regular function of the Zhukovsky variable x(u) at

least for |x| > 1. They can be written in terms of the Laurent expansion coefficients

f(u) =
1

gx
+

∞∑
n=1

gn−1An
xn+1

, g(u) =
u2 +B0u

gx
+

∞∑
n=1

gn−1Bn
xn+1

. (33.3)

The first few coefficients encode the information about the AdS charges and twists, i.e. ∆

and φ, via the relations [12]

A1g
2 −B0 = −2 cos θ cosφ+ cos(2θ)− 3

2 sin θ(cos θ − cosφ)
, (33.4)

∆2 =
(cos θ − cosφ)3

sin θ sin2 φ

[
A3g

6 +
A2

1g
4(1− cos θ cosφ)

sin θ(cos θ − cosφ)
−A2g

4 cot θ

−g2 (B0 +B1 + cot θ)−A1g
2

(
A2g

4 − 2g2 +
1

sin2 θ

)]
. (33.5)

We also note that the coefficients An and Bn are real and scale at weak coupling as

O(g0). Their leading weak coupling behavior can be deduced from [12] and is given in

Appendix D.1.

Let us also write out explicitly the 4th order finite difference equation for Qi with the

coefficients built from Pa, which follows from the QQ-relations (4.20) and (4.22):

Q
[+4]
i D0 − Q

[+2]
i

[
D1 −P[+2]

a Pa[+4]D0

]
+ Qi

[
D2 −PaP

a[+2]D1 + PaP
a[+4]D0

]
(33.6)

− Q
[−2]
i

[
D̄1 + P[−2]

a Pa[−4]D̄0

]
+ Q

[−4]
i D̄0 = 0

Here Dn, D̄n are some nice combinations of P’s given in Appendix D.2. As a 4th order

equation it has 4 independent solutions which are precisely the Qi. Let us remind that

the relations (33.5) and (33.4) imply the following large u asymptotics for Qi

Q1 ∼ u1/2+∆euφ, Q2 ∼ u1/2+∆e−uφ, Q3 ∼ u1/2−∆euφ, Q4 ∼ u1/2−∆e−uφ . (33.7)
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This is in fact how (33.5) and (33.4) were derived. Those 4 distinguished asymptotics allow

to choose the basis of solutions {Qi} uniquely up to a normalization. The functions Qi are

analytic in the upper half plane and have a cut [−2g, 2g] on the real axis as well as more

cuts below (as can be deduced from the equation (33.6)). A non-trivial new condition,

which in fact allows to close the equations and fix the coefficients An and Bn uniquely,

concerns the behavior of Qi on the cut [−2g, 2g]. To describe it we introduce

qi = Qiu
−1/2 (33.8)

and denote by q̃i the analytic continuation of qi under the cut on the real axis. Then

according to [12]

q̃1(u) = q1(−u) (33.9)

q̃2(u) = q2(−u) (33.10)

q̃3(u) = a1 sinh(2πu)q2(−u) + q3(−u) (33.11)

q̃4(u) = a2 sinh(2πu)q1(−u) + q4(−u) . (33.12)

It was noticed in [12] that it is sufficient to impose the first two equations in (33.9) only.

In the next section we discuss what happens in the singular limit φ→ π and derive a

closed system of equations describing directly the potential Ω(λ, θ).

33.2 QSC for the quark–anti-quark potential

We will focus on the particularly important limit φ→ π when the Wilson line with a cusp

is related to a pair of anti-parallel lines. In this limit we expect the anomalous dimension

∆ to diverge as

∆ = − Ω(λ)

π − φ
+O((π − φ)0) (33.13)

where Ω(λ) is a positive quantity (for real θ). As the anomalous dimension diverges we

should expect a drastic change in the large u asymptotics of Qi, which for finite ∆ is given

by (33.7). To get some intuition about what happens we take φ = π − ε with ε being

small, so the asymptotics becomes

q1 ∼ eπu exp

[
−uε− Ω

ε
log u

]
. (33.14)

We see that the last term in the second factor explodes for u fixed and the asymptotics

does not make sense. What happens is that the subleading coefficients become bigger in

this limit in order to make the result finite. However, if we scale u to infinity while sending
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ε → 0 we should be able to suppress the subleading in 1/u terms. The guiding principle

is to try to balance the two terms in the square brackets, which is the case for u ∼ Ω/ε2

(treating log u as a constant compared to
√
u) or in other words for ε = c

√
Ω/
√
u this

results in

log q1 ∼ +πu− c
√

Ωu+O(u0) . (33.15)

The positive constant c cannot be determined from this heuristic argument and it will be

shown below to be equal to
√

8. Similar considerations for q2,q3 and q4 lead to

log q2 ∼ −πu+ ic
√

Ωu+O(u0) , (33.16)

log q3 ∼ +πu− ic
√

Ωu+O(u0) , (33.17)

log q4 ∼ −πu+ c
√

Ωu+O(u0) . (33.18)

To get the precise value of the coefficient c and derive the asymptotics rigorously, we

have to analyze the limit of Pa when φ→ π. One could expect that Pa behave smoothly

in this limit as they describe the S5 part which is relatively isolated from the twist φ in

AdS5. It can be also seen from (33.4) and (33.5) that we can consistently assume the

coefficients An and Bn in P’s to remain finite when φ→ π, giving

ε =

√
i

2

cos θ + 1

sin θ
, B0 = A1g

2 − 2− cos θ

sin θ
, (33.19)

Ω2 =
g2 cot3 θ

2

2

[
2 sin θ

(
A3g

4 sin θ −A2g
2 cos θ −B1 sin θ − 2 cos θ + 2

)
+2A2

1g
2 sin θ +A1

(
−2A2g

4 sin2 θ − g2 cos(2θ) + g2 − 2
)]

. (33.20)

This allows to find the asymptotics of qi using the 4th order Baxter equation (33.6) in

which we expand the coefficients at large u. The expressions we get are lengthy, and

for illustration purposes let us drop some of the terms which do not affect the leading

asymptotics, leaving the following equation:

q(u)

(
−2Ω2

3 − 1

u2
+ 1

)
+

(
− 2

3u2
+

i

3u
+

2

3

)
q(u+ i) +

(
− 1

6u2
+

i

6u
+

1

6

)
q(u+ 2i)

+

(
− 2

3u2
− i

3u
+

2

3

)
q(u− i) +

(
− 1

6u2
− i

6u
+

1

6

)
q(u− 2i) = 0 .

While the coefficients in this equation are simple, the asymptotics of its four solutions is

quite nontrivial. It turns out to have indeed the form anticipated above in (33.15) as we

get

qi = Miu
1/4e±πu+αi

√
u (1 +O(1/u)) (33.21)

where

α1 = −
√

8Ω, α2 = +i
√

8Ω, α3 = −i
√

8Ω, α4 = +
√

8Ω . (33.22)
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Expanding the Baxter equation to higher orders in u and keeping all the terms, we found

the following expansion for the solution:

qi = Miu
1/4e±πu+αi

√
u

(
1 +

∞∑
n=1

dn

(αi)nun/2

)
(33.23)

This rather surprising asymptotics is a key result which supplements the QSC func-

tional equations.

A natural way to fix the normalization of Qi (which we will use here, e.g. in Appendix

D.4) is to impose that the matrix Qa|i preserves the constant matrix χab, i.e.

Qa|iχ
abQb|jχ

jk = δki (33.24)

This leads to

iM1M4 = M2M3 =
√

2
cos4(θ/2)

Ω3/2
. (33.25)

We conclude that the quark–anti-quark potential is described by QSC with a novel type

of asymptotics of the Q-functions containing non-integer powers of the spectral parameter

u in the exponent. These asymptotics together with the general relations from the previous

section form a closed system of equations applicable at all values of the coupling g and

the twist θ.

Despite the anomalous dimension ∆ of the cusped Wilson line being infinite at φ = π,

we managed to reformulate the QSC equations in such a way that they only include the

finite residue Ω(λ, θ) and got rid of the auxiliary parameter φ completely. In the following

sections we will solve these equations both analytically at weak coupling to a high order

and numerically in a wide range of the coupling. We will be also able to demonstrate how

in a special limit the QSC reduces to the Schrödinger equation of [173, 166] resumming

the ladder diagrams to all orders in perturbation theory.

34 Weak coupling

In this section we show how to solve the equations from the previous section perturbatively

at weak coupling. We will see that the weak coupling limit is rather nontrivial and contains

qualitatively new features compared to all other perturbative expansions of the Quantum

Spectral Curve studied previously [52, 70, 13, 88].
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34.1 Different scales and structure of the expansion

The weak coupling limit is more involved in the present case as it depends on the scaling

of the spectral parameter u. The situation here is similar to the conventional perturbation

theory where in order to compute the quark–anti-quark potential one has to work with

an effective theory resumming soft contributions. We also note that the limits φ → π

and g → 0 do not commute with each other and it is crucial to have a closed system of

equations directly at φ = π in order to get a sensible weak coupling expansion.

Another key feature of the weak coupling calculation is that the limits g → 0 and

u → ∞ do not commute. The reason for this is that Ω, appearing in the asymptotics

(33.23), goes to zero as g2. In this case one should expect the following three natural

scales

scale 1 : u→∞ before g → 0

scale 2 : g → 0 with v ≡ 8u Ω fixed

scale 3 : g → 0 then u→∞

In the scale 1 we are in the regime where the asymptotics (33.23) is still valid. The scale

2 is natural to consider as in the asymptotics (33.23) u appears in this combination with

Ω. In the scale 3 we are in the usual perturbative regime of the QSC studied intensively

in [52, 70, 13, 88] and we should expect the usual expansion of the Q-functions in terms

of η-functions introduced in [109]. These η-functions are defined as44

ηs1,...,sk(u) =
∑

n1>n2...nk≥0

1

(u+ in1)s1 . . . (u+ ink)sk
. (34.1)

At large u however these functions can only give terms of the type un logm u, which are

very different from the scale 1. The intermediate scale 2 should match the two regimes

corresponding to scales 1 and 3. This regime plays an important role as it allows to identify

correctly q1 and q2 in the scale 3 and distinguish them from q3 and q4, for which the

analyticity condition on the cut [−2g, 2g] given by (33.9) is different.

Thus, before we can use (33.9) and fix the coefficients An and Bn in the expression for

Pa, we have to pass through the regime with finite v ≡ 8Ωu. Fortunately, in this regime the

finite difference equation (33.6) on qi (related to Qi via (33.8)) simplifies into a 4th order

differential equation which we can solve systematically order by order in g. Its solution

provides a bridge between scale 1 and scale 3 by interpolating between the exponential

44In some cases the sum could be divergent, we regularize it as in [109, 70] so that e.g. η1(u) = iψ(−iu).
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and power-like with logs asymptotics. We will first demonstrate this procedure at the

leading order in the coupling and then present our result to a high order in perturbation

theory45.

To study the 2nd scale we start from the 4th order Baxter equation (33.6) and expand

it at large u (notice that in the 2nd scale u is large as it is ∼ 1/g2). By doing this we

obtain a finite difference equation of the form

−qi(u)

(
1 +

C0

u2
+ . . .

)
+

qi(u+ 2i)

6

(
1 +

i

u
+
C2

u2
+ . . .

)
(34.2)

+
2qi(u+ i)

3

(
1 +

i

2u
+
C1

u2
+ . . .

)
+

qi(u− 2i)

6

(
1− i

u
+
C̄2

u2
+ . . .

)
+

2qi(u− i)
3

(
1− i

2u
+
C̄1

u2
+ . . .

)
= 0

where Cn and the sub-leading coefficients are some explicit combinations of An and Bn.

Next we use that u = v/(8Ω) where Ω ∼ g2 and introduce a smooth function f(v) such

that q(u) = e±πuf(8Ωu) to obtain

f (4) +
2f (3)

v
− f

16v2
+ 8ĝ2 f

′′

v2
+O

(
g4
)

= 0 (34.3)

where ĝ = g cos
(
θ
2

)
. Fortunately, we can solve this equation analytically! At the leading

order in g its 4 independent solutions are given by four different types of Bessel functions,

√
v K1(

√
v) ,

√
v Y1(

√
v) ,

√
v I1(

√
v) ,

√
v J1(

√
v) . (34.4)

Next we notice that the first solution should be related to q1 simply because its large v

asymptotics matches precisely the asymptotics (33.23) of q1:

f1(v) ≡
√
v K1(

√
v) '

√
π

2
1/4
√

8Ωu e−
√

8Ωu . (34.5)

We note that since this is one of the decaying “small” solutions this identification is non-

ambiguous.

At the higher orders in g the equation (34.3) gets corrected. In general one would

have to solve (34.3) using perturbation theory, involving Green’s function and multiple

integrations. However, we found a much simpler procedure, which works magically up to

at least g10 order. Once can simply build an ansatz for the corrected solution as a linear

combination of v(1/2−m)∂nνKν(
√
v)|ν=1 for integer m and n. So for instance at g2 order we

simply get

f1(v) =
√
v K1(

√
v)− 8ĝ2√v K(1,0)

1 (
√
v) +O(g4) . (34.6)

45At high orders to simplify intermediate expressions we used the HPL Mathematica package [107] and

the package for working with multiple zeta values provided with the paper [109].
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Having an explicit form of the solution in the scale 2, we can get information about

the behavior of q1 in the scale 3. For that we expand (34.6) at small v,

f1(v) = 1 +
1

4
v
(

log
v

4
+ 2γ − 1

)
+

1

64
v2
(

2 log
v

16
+ 4γ − 5

)
+O

(
v3
)

(34.7)

+4ĝ2
(

log
v

4
+ 2γ

)
+ ĝ2v

(
log

v

4
+ 2γ − 2

)
+O

(
g2v2

)
+O(g4) .

We see that this expansion, rewritten in terms of u gives the large u expansion of q1 in

the scale 3. So the first line (originating from the leading order in g in (34.6)) gives the

leading large u term to all orders in g in this scale, the second line in (34.7) gives the

subleading in large u term to all orders in g etc. This information is essential for the

correct identification of q1 in the scale 3.

Now let us finally describe the situation in the scale 3. In this scale the 4th order

finite difference equation cannot be much simplified but it can be solved iteratively order

by order in the coupling g using the highly universal procedure from [13]. For instance at

the first two orders we start by finding 4 independent solutions for q = q e±πu,

qI = 1 + g2

(
4iu η2 cos2 θ

2
+ 2 η1 cot2 θ

2
((u+ i) cos θ + u− i)

+
cot2 θ

2

(
2u3 cos θ + 2u3 − 2u− i

)
u

)
,

qII = u ,

qIII = u2 ,

qIV = 4η1u cos2 θ

2
− i

u
. (34.8)

However, to be able to use the key analyticity condition (33.9) we need to identify q1 (or

q2). That is, we have to find a linear combination of qI , . . . , qIV which matches (34.7) at

large u. From this condition one finds uniquely

q1 = eπu (AIqI +AIIqII +AIIIqIII +AIV qIV ) +O(g4) (34.9)

where

AI = 1 + ĝ2

(
4 log (2Ω) + 2 csc2 θ

2
+ i

Ω

ĝ2
+ 2πi− 4 + 8γ

)
(34.10)

AII = 0 + Ω(2 log(2Ω) + iπ + 4γ − 2) (34.11)

AIII = 0− ĝ2

(
4 cot2 θ

2

)
(34.12)

AIV = 0− ĝ2

(
csc2 θ

2
+
iΩ

2ĝ2
sec2 θ

2

)
. (34.13)

In this way we deduce q1. This allows us to find q̃1(u) = q1(−u) via (33.9). On the last

step of the procedure we consider the combinations

q1(u) + q̃1(u) ,
q1(u)− q̃1(u)√

u2 − 4g2
(34.14)
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in which the cut on the real axis disappears. As at weak coupling the cuts manifest

themselves as poles, thus the poles at the origin which are naturally present in q1 should

cancel in these combinations [52]. This condition fixes the coefficients An and Bn and also

the value of the energy at the given order in g. So, for instance, at the g2 order we find

the following expansion at the origin

q1(u) '
[
1 + πu+O(u2)

]
− Ω

[
−

sec2 θ
2

2u
+O(u0)

]
+O(g4) . (34.15)

Then regularity of the second combination in (34.14) relates the singular term proportional

to Ω with the linear coefficient πu so that we get

Ω = 4πg2 cos2 θ

2
+O(g4) . (34.16)

This perfectly matches the well known leading order result.

34.2 Expansion to high order in the coupling

The procedure described above allows to efficiently generate the quark–anti-quark poten-

tial expanded to very high orders in g. We have computed the expansion up to g14 order.



34.2 Expansion to high order in the coupling 138

The result up to g10 order is shown below

Ω

4π
= ĝ2 + (34.17)

ĝ4 [16L− 8] +

ĝ6

[
128L2 + L

(
64 +

64π2T

3

)
− 112− 8π2

3
+ 72Tζ3

]
+

ĝ8

[
2048L3

3
+

1024

3
π2L2T + 2048L2 + LT

(
768ζ3 +

2176π2

3

)
+

(
−768− 640π2

3

)
L+ T 2

(
128π2ζ3 − 760ζ5

)
+T

(
384ζ3 − 640π2 +

32π4

9

)
+

1664ζ3

3
+

1216π2

9
− 1280

]
+

ĝ10

[
8192L4

3
+

8192

3
π2L3T +

57344L3

3
+

2048

9
π4L2T 2

+L2T

(
3072ζ3 +

71680π2

3

)
+

(
20480− 19456π2

3

)
L2

+LT 2

(
8704π2ζ3

3
− 6400ζ5 +

2560π4

3

)
+LT

(
12800ζ3 −

46592π2

3
− 6656π4

45

)
+ L

(
26624ζ3

3
− 26624 +

38912π2

9

)
+T 3

(
1792π4ζ3

45
− 4928π2ζ5

3
+ 8624ζ7

)
+T 2

(
3392π2ζ3 + 1248ζ2

3 − 4000ζ5 −
1024π4

3
− 16π6

45

)
+T

(
896ζ3 +

3392π2ζ3

3
+ 1600ζ5 −

10112π2

3
+

1408π4

45

)
+6656ζ3 +

736π4

45
+

5824π2

27
− 37888

3

]
.

Here we use the following notation

ĝ ≡ g cos
θ

2
, T ≡ 1

cos2 θ
2

, L ≡ log
√

8eγπĝ2 . (34.18)

In Appendix D.3 we also give the expression for the quite lengthy ĝ12 and ĝ14 orders. They

are particularly interesting since at order ĝ12 an irreducible multiple zeta value appears

for the first time (namely, ζ6,2).

We notice that at the g2n+2 order the result is a nth order polynomial in L and T .

The terms with the maximal power of L and the subleading in L terms have a very simple

structure which can be summarized by the following formula

Ω

4π
=
∞∑
n=0

ĝ2n+2 16nLn

n!

(
1 +

3n2 − 5n

4L
+ π2T

n2 − n
12L

+O(1/L2)

)
. (34.19)

Our 7-loop result computed from the QSC is in perfect agreement with direct field

theory perturbative calculations. The first three orders were known completely and
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were computed in [173, 174, 146, 166, 175, 177, 178]. In addition, our formula (34.19)

matches the all-orders prediction of [174] for the coefficients of the leading logarithmic

terms ĝ2n logn−1 ĝ. We also reproduced46 the result of [177] for the subleading logaithmic

term at 4th nontrivial order (i.e. ĝ8 log2 ĝ).

In the next section we will show that the terms which do not contain T can be captured

by a much simpler set of equations.

35 Ladders limit of the quark–anti-quark potential

A remarkable special limit, revealing rich structures, is the “double scaling” limit when

the twist t = eiθ/2 scales to zero as g. In this limit the effective coupling ĝ = g
2t(1+ t2) and

Ω(ĝ) remain finite. It is expected that in this special case our system of equations can be

solved exactly to all orders in ĝ or at least simplified considerably. From the gauge theory

side, only the ladder diagrams contribute in that limit. Their resummation is achieved by

Bethe-Salpeter techniques which results in a Schrödinger equation [173, 166]

F ′′(z) + F (z)

(
4ĝ2

z2 + 1
− Ω2

4

)
= 0 , (35.1)

whose ground state energy gives the quark–anti-quark potential Ω(ĝ). Its expansion in

small ĝ should capture all terms in (34.17) without T to all orders in ĝ, as T → 0 in this

limit. Below we will demonstrate how this Schrödinger equation is encoded into the QSC.

35.1 Double scaling limit of the QSC

The main simplification in this limit occurs because g → 0 and thus each of the cuts

[−2g, 2g] collapses into a point. In particular this implies that f(u) and g(u) from (33.1),

as analytic functions everywhere except the cut, reduce to simple rational functions. Nev-

ertheless, the result is a nontrivial function of the coupling ĝ which resums the usual

perturbative expansion. In this sense this setup reminds the BFKL limit of the QSC

studied in [72, 13]. Special care should be taken with the exponents e±θu in Pa which give

extra factors of t or 1/t each time we shift the argument u by ±i/2. For this reason we

have to keep terms up to order t4 in Pa. Assuming all the coefficients An, Bn ∼ 1 (which

46Some of the perturbative field theory calculations discussed here were done for the special case θ = 0

only.
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we initially deduced from the weak coupling solution described in Sec. 34, and confirmed

by self-consistency) we get

f(u) =
1

u
+

4ĝ2t2 (A1u+ 1)

u3
+

8ĝ2t4
(
2ĝ2

(
A2u

2 + 2A1u+ 2
)
− u2 (A1u+ 1)

)
u5

+O(t6)

g(u) = u− i+ t2

[
4ĝ2

(
A1u

2 +B1 + u− i
)

u2
+ 4i

]
+ t4

[
−

8ĝ2
(
A1u

2 +B1 + u− 3i
)

u2

+
16ĝ4

(
A1u

2 + (B2 + 2)u+ 2 (B1 − i)
)

u4
− 2i

]
+O(t6) (35.2)

We can also exclude B1 using the expression for Ω (33.20),

B1 = 2i+ t2
(

4A1ĝ
2 + 4iA2ĝ

2 − iΩ2

ĝ2
− 4i

)
+O

(
t4
)
. (35.3)

Next we plug the expressions (35.2) into (33.6) and expand to the leading order in t. We

notice that the dependence on all remaining An and Bn disappears and we simply get(
16ĝ4

u3
+

16ĝ2

u
− 4Ω2

u
+ 6u

)
q(u)

+ (u+ i)q(u+ 2i)−
(

4ĝ2(2u+ i)

u(u+ i)
+ 4u+ 2i

)
q(u+ i) (35.4)

+ (u− i)q(u− 2i)−
(

4ĝ2(2u− i)
u(u− i)

+ 4u− 2i

)
q(u− i) = 0

where q(u) = Q(u)e±πu/
√
u. A great simplification comes from the fact that this

equation can be factorized into two second order equations! This allows to replace (35.4)

by a pair of second order equations

−2q(u)
(
2ĝ2 − Ωu+ u2

)
+ u2q(u− i) + u2q(u+ i) = 0 (35.5)

and the second one related by Ω → −Ω. By analyzing the large u asymptotics it is easy

to see that the two solutions of (35.5) correspond to Q1 and Q4. To fix the conventions

and normalizations we define

q1 '
√
π/2

1/4
√

8Ωu e−
√

8Ωu , q4 '
1

16iπΩ2t4

√
π/2

1/4
√

8Ωu e+
√

8Ωu , q4(0) = 0 (35.6)

where

q1 = e−πuQ1/
√
u , q4 = e+πuQ4/

√
u . (35.7)

The relative coefficient in (35.6) is chosen in agreement with the canonical normalization

(33.25). We also choose q1 and q4 to be regular in the upper half plane as usual. We see

that (35.5) is invariant under complex conjugation, which implies that q̄1 and q̄4 are some
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linear combinations of q1 and q4 with i-periodic coefficients

q̄1 = Ω 1
1 q1 + e−2πuΩ 4

1 q4 (35.8)

q̄4 = e+2πuΩ 1
4 q1 + Ω 4

4 q4 . (35.9)

Here Ω j
i are some i-periodic functions for which notation is introduced in accordance

with the general consideration from Appendix D.4. Knowing the analytical properties of

q1 and q4, which follow from the equation (35.5), we can constrain the possible form of

Ω j
i . From the equation (35.5) we can see that q1 should have double poles at u = −2in

for n = 1, 2, . . . due to the u2 factors in the equation. Similarly q4 has simple poles at

the same points due to the additional condition q4(0) = 0 which softens the singularity.

Furthermore, the complex conjugate functions q̄1 and q̄4 should have the same poles as

q1 and q4 but in the upper half-plane instead of the lower half-plane. The poles of q̄1 in

the upper half plane can only originate from Ω′s in the r.h.s. of (35.8). This implies that

Ω 1
1 and Ω 4

1 can have at most 2nd order poles, similarly, Ω 1
4 and Ω 4

4 can only have simple

poles. Next, if we expand (35.8) near u = 0 in order to cancel poles in the r.h.s. we

must assume that Ω 1
1 has simple pole only as q̄4(0) = 0. Similarly Ω 1

4 should be regular.

Finally, since for large u the asymptotics of q1 does not contain periodic exponents due to

the definition (35.6) we can write the following ansatz for Ω′s in terms of a few constants

ai:

Ω 1
1 =

a1 + a2e
2πu

e2πu − 1
, Ω 4

1 =
a3e

2πu + a0

(e2πu − 1)2
, Ω 1

4 = a4e
−2πu , Ω 4

4 =
a5 + a6e

2πu

e2πu − 1
.(35.10)

We also note that a0 = 0 since Ω 4
1 should be even as explained in (D.20). By comparing

the large u asymptotics in the first equation of (35.8) at u → −∞ we can fix a3 and get

Ω 4
1

a3 = 16πt4Ω2 , Ω 4
1 =

4πt4Ω2

sinh2(πu)
. (35.11)

This allows to close the equations. Indeed, by rewriting

Ω 4
1 =

[
Ω̃ 4

1 + Ω 4
1

2

]
−

[
Ω̃ 4

1 − Ω 4
1

2
√
u2 − 4g2

]√
u2 − 4g2 (35.12)

so that the expressions in the square brackets are regular at the origin to all orders in g we

see that the poles present in (35.11) can only originate from the last term. At the same

time the last term can be written in terms of q and q̄ using (D.20):[
Ω̃ 4

1 − Ω 4
1

2
√
u2 − 4g2

]
= −uq̄1(−u)q1(−u)e−2πu − uq̄1(u)q1(u)e+2πu

2u
+O(g2) = bu+O(u3)+O(g2)

(35.13)
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which results in the following pattern of the leading singularities in Ω 4
1

Ω 4
1 =

2bg4

u2
+

4bg6

u4
+ · · ·+ less singular terms (35.14)

thus we can relate b to Ω(ĝ) as

b =
Ω2(ĝ)

8πĝ4
(35.15)

or
Ω2(ĝ)

8πĝ4
= lim

u→0

q̄1(u)q1(u)e+2πu − q̄1(0)q1(0)

u
. (35.16)

This condition together with the finite difference equation (35.5) allows to determine

Ω(ĝ). Namely, we have to find such value of the parameter Ω in the finite difference

equation (35.5) for which its solution q1 with the asymptotic (35.6), expanded at the origin,

satisfies the condition (35.16). This type of problem can be easily solved numerically or

perturbatively in ĝ.

To solve the system perturbatively we repeat basically the same steps as in the previous

section, with an additional simplification that we do not have to tune any parameters in

Pa except Ω(ĝ), and that we only have to deal with the second order equation instead

of the 4th order equation. This procedure, explained in detail in Sec. 34.1, leads to the

following result

Ω(θ = i∞)

4π
= ĝ2 + (35.17)

ĝ4 [16L− 8] +

ĝ6

[
128L2 + 64L− 112− 8π2

3

]
+

ĝ8

[
2048L3

3
+ 2048L2 −

(
768 +

640

3
π2

)
L− 1280 +

1216

9
π2 +

1664

3
ζ3

]
+

ĝ10

[
8192L4

3
+

57344L3

3
+

(
20480− 19456π2

3

)
L2

−
(

26624− 38912π2

9
− 26624ζ3

3

)
L

−37888

3
+

5824π2

27
+ 6656ζ3 +

736π4

45

]
+

ĝ12

[
131072L5

15
+

327680L4

3
+

(
1048576

3
− 1097728π2

9

)
L3

+L2

(
212992ζ3

3
+ 81920 + 24576π2

)
+L

(
212992ζ3 −

1515520

3
+

1776640π2

27
+

39424π4

15

)
+

124928ζ5

5
+

106496ζ3

3
+ π2

(
−93184ζ3

9
− 107008

27

)
− 1159424π4

675
− 295936

3

]
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where as before L ≡ log
√

8eγπĝ2. We notice that all the terms in (34.17) without T are

reproduced perfectly by the above expansion.

In the next section we will show how to rewrite this finite difference ‘boundary’ prob-

lem into a spectral problem of a Schrödinger equation by performing a kind of Mellin

transformation.

35.2 Equivalence to the Schrödinger equation

The double scaling limit of the quark–anti-quark potential has a long history. In [173, 166]

it was shown that in this limit only the ladder diagrams contribute and they can be

resummed by a Bethe-Salpeter equation. This problem can be reformulated as a problem

of finding the ground-state energy of the Schrödinger equation

F ′′(z) + F (z)

(
4ĝ2

z2 + 1
− Ω2

4

)
= 0 . (35.18)

The Schrödinger wavefunction is linked to the solution of the Bethe-Salpeter equation.

In this section we will show that this problem is equivalent to the second order finite

difference equation arising from the QSC accompanied by the “quantization condition” at

the origin (35.16).

Relating q-function to the wave function. First we relate the q-function q1 with

the solution of (35.18) decaying at +∞. We assume that the solution decaying at +∞ is

normalized so that

F (z) ' e−Ωz/2 . (35.19)

Let us show that the solution q1 of (35.5) is given by the following integral Mellin-like

transformation

q1(u)

u
= 2

+∞∫
i

e−
Ωz
2

z2 + 1

(
z + i

z − i

)iu
F (z)dz , Im u > 0 . (35.20)

To see that that the equation (35.5) is indeed satisfied we consider an integral of a total

derivative:

2

∞∫
i

∂z

([
(z2 + 1)F ′(z) +

1

2
F (z)(−4u+ Ω + Ωz2)

]
e−

Ωz
2

z2 + 1

(
z + i

z − i

)iu)
dz (35.21)
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the boundary terms vanish for Im u > 1 and the integral is zero. At the same time

evaluating the derivative and excluding the second derivative F ′′(u) using (35.18) we get

0 = 2

∞∫
i

[
(−4ĝ2 + 2Ωu− 2u2) + u(u+ i)

(
z − i
z + i

)
+ u(u− i)

(
z + i

z − i

)]

× F (z)e−
Ωz
2

z2 + 1

(
z + i

z − i

)iu
dz

= (−4ĝ2 + 2Ωu− 2u2)
q1(u)

u
+ u(u+ i)

q1(u+ i)

u+ i
+ u(u− i)q1(u− i)

u− i
, (35.22)

which shows that q1(u) defined by the integral (35.20) satisfies (35.5). At the same time it

is easy to see by the saddle-point analysis that F (z) ' e−Ωz/2 implies the following large

u asymptotics for q1:

q1(u) '
√
π/2

1/4
√

8Ωu e−
√

8Ωu . (35.23)

Note that this map from F (z) to q1(u) is valid for any (positive) value of Ω. Clearly, we

have to additionally impose the decay of F (z) at z → −∞ to constrain Ω. At the same

time from the QSC point of view we should impose on q1 the condition (35.16) at the

origin. Below we show that these two conditions are equivalent.

Equivalence of the two quantization conditions. We should relate the behavior of

q1(u) near the origin with the normalizability of F (z) as a solution of the Schrödinger

equation. It is clear that the singularity in q(u)/u around u = 0 is due to the divergence

in the integral (35.20) near z = i. Therefore it is controlled by the behavior of F (z) at

z = i. So our problem seems to be rather nontrivial as we have to relate the values of F at

large z with its behavior near z = i. In general that would be impossible to do without an

explicit solution. However, we noticed an interesting duality of the equation which allows

to do this.

The key observation is that for the normalizable F (z) its Fourier image satisfies essen-

tially the same differential equation. More precisely, defining G(k) as

G(k)

k2 + 1
=

Ω3/2

8ĝ
√
π

∞∫
−∞

dzF (z)eik
Ω
2
z (35.24)

it is easy to see that G(k) satisfies literally the same Schrödinger equation (35.18). Fur-

thermore, G(k) also decays exponentially at both infinitites as Fourier transform of a

smooth function and is also smooth since F itself decays exponentially at both infinities.

This means that F and G should in fact coincide up to a constant factor. To make the
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symmetry more manifest we can write the relation (35.24) between F and G as

F (z) =
2ĝ√
πΩ

∞∫
−∞

dk
G(k)

k2 + 1
eik

Ω
2
z , G(k) =

2ĝ√
πΩ

∞∫
−∞

dz
F (z)

z2 + 1
eik

Ω
2
z . (35.25)

We see that in the normalization (35.24)47 we must have G(z) = F (z), so that we get

F (k) =
2ĝ√
πΩ

∞∫
−∞

dz
F (z)

z2 + 1
eik

Ω
2
z . (35.26)

This property of the solution F (z) allows to bootstrap the behavior at infinity and near

the branch point z = i. Let’s assume that F (z) has the following expansion near z = i:

F (z) = − iC
2ĝ2

+ C(z − i) log(iz + 1) + . . . (35.27)

which is obtained by solving the equation (35.18) in the vicinity of z = i. As z = i is the

closest to the real axis singularity of F (z) it controls the large z behavior of F (z)

F (k) ' 2ĝ√
πΩ

∞∫
−∞

dw
− iC

2ĝ2

w2 + 1
eik

Ω
2
w =

−iC
ĝ

√
π

Ω
e−

kΩ
2 (35.28)

next using the normalization (35.19) we find

C = i
ĝ
√

Ω√
π

, (35.29)

which fixes the expansion (35.27) near z = i. This allows to find the residue of q1(u)/u at

the origin by plugging (35.27) into (35.20):

q1(u)

u
' iCe−

iΩ
2

2ĝ2u
= −1

u

e−
iΩ
2

√
Ω

2ĝ
√
π

. (35.30)

In Appendix D.5 we describe how to use a similar technique to establish the subleading

coefficient in u which then gives:

e2πuq1(u)q̄1(u) = − C
2

4ĝ4
− C2Ω

8ĝ6
u+O(u2) =

Ω

4πĝ2
+
uΩ2

8πĝ4
+O(u2) (35.31)

showing that the condition (35.16), coming from the depth of QSC, does hold! This finishes

the proof of equivalence between the QSC and the Schrödinger equation in the ladders

limit.

47There is a possibility that G(z) = −F (z), however, it is easy to see that since F (z) > 0 for real z so

must be G
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Figure 16: Numerical results for the quark–anti-quark potential Ω(g) at θ =

0. Our numerical data points are shown in red, while the solid black line shows the

strong coupling analytic prediction (36.1). The purple curve is the 3-loop weak coupling

expansion, and the dashed green curve is our 7-loop perturbative result.

36 Numerical solution in a wide range of the coupling

The QSC can be very efficiently solved numerically with essentially arbitrary precision at

finite values of the coupling and all other parameters. The general method, which is also

applicable here, was developed in [14]. We have used it to generate numerical values for

the quark–anti-quark potential in a wide range of the ’t Hooft coupling with ∼ 20 digits

precision. Our method works well for arbitrary real θ, but we decided to focus on the case

θ = 0. Our numerical data is listed in Appendix D.6. A plot of our results is shown on

Fig. 36.

Let us make a comparison with the known analytical predictions. At strong coupling

the classical [179, 180] and 1-loop [181, 182] string theory results read

Ω ' π(4πg + a1)

4K
(

1
2

)2 = 2.8710800442g − 0.3049193809 . (36.1)

At the same time a fit of our numerical data gives

Ω = 2.8710800436g − 0.3049193819 +
0.0100740

g
+

0.000381

g2
+ . . . (36.2)
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which quite convincingly reproduces the first two known orders.

At weak coupling one can see on the plot that this expansion matches well our numerics.

In addition, our analytic solution of the QSC at weak coupling described in Sec. 34 provides

the expansion of Ω to first 7 loop orders presented in (34.17) and in Appendix D.3. Fixing

a particular small value of the coupling g = 0.0625 we compared our numerical prediction

Ω = 0.04472043670132964806 at this point with the analytic weak coupling expansion. In

Table 5 one clearly sees that including more and more orders in the expansion improves

noticeably the agreement with our numerical result. This is a nice check of our weak

coupling analytic prediction.

Ωperturbative Ωnumerical |difference|

1-loop 0.04908738521 0.04472043670 0.00436694851

2-loop 0.04487846353 0.04472043670 0.00015802682

3-loop 0.04473327069 0.04472043670 0.00001283399

4-loop 0.04471883557 0.04472043670 0.00000160113

5-loop 0.04472038490 0.04472043670 0.00000005179

6-loop 0.04472043227 0.04472043670 0.00000000442

7-loop 0.04472043747 0.04472043670 0.00000000076

Table 5: Comparison between the 7-loop weak coupling prediction and the numerical data

for the quark–anti-quark potential at g = 0.0625.

37 Conclusion

In this part we demonstrated that the Quantum Spectral Curve approach allows to deeply

explore the quark–anti-quark potential in a variety of settings. In particular, we generated

highly precise numerical data at finite coupling interpolating extremely well between gauge

theory and string theory predictions. Thus finally we are able to access on a fully nonper-

turbative level this observable which historically has been a milestone in the investigations

of AdS/CFT.

The setup we study corresponds to a singular limit φ → π of the cusp anomalous

dimension which leads to a drastic change of Q-functions’ asymptotics in the QSC. The

asymptotics we found are of a novel type even for integrable systems with twisted boundary

conditions. As this is yet another set of nontrivial asymptotics in the QSC, it is clearly
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an important question how to classify all possible types of asymptotics. They should

correspond to some kind of deformations and boundary problems for local or nonlocal

observables likely including the setups studied in [65, 184]. Consistency of asymptotics

with the functional QSC equations appears to be a highly nontrivial constraint giving

hope for an exhaustive description.

Using the efficient iterative procedure of [13] we computed the weak coupling expan-

sion of the potential to the 7th loop order. The perturbative expansion is known to be

rather nontrivial and to be captured by an effective theory arising at low energy scales.

Remarkably, we also observed the appearance of several distinct scales in the QSC which

may be thought of as a counterpart to this effective field theory description. In the future

it will be also interesting to apply the QSC to study the energies of hydrogen-like bound

states in N = 4 SYM [172] which are also related to a φ → π limit. Moreover, our weak

coupling results may be useful to establish connections with QCD, similarly to e.g. [185].

We also studied the double scaling limit when the twist θ in the scalar sector goes

to i∞. We showed how the Schrödinger equation arising on the field theory side from

resummation of ladder diagrams is encoded in the QSC, with its wavefunction rather

directly linked to the Q-functions. We believe that this approach should also apply to

a similar double scaling limit of γ-deformed N = 4 SYM recently proposed in [183],

where the QSC has many common features with the one for the cusped Wilson lines setup

[16, 12, 73]48. This limit in the γ-deformed model was advocated in [183] to give a novel

integrable 4d theory.

We also observed a peculiar duality of the Schrödinger equation with respect to Fourier

transform, whose meaning in the QSC itself beyond this special limit calls for further clar-

ification and might have something to do with dual conformal symmetry. Viewing the

relation between the QSC and the Schrödinger equation as a kind of ODE/IM correspon-

dence [189], it would be interesting to see what kind of generalization will take place at

finite twist. Another important direction is to derive the Schrödinger equation of [166] in

the ladders limit with generic φ.

Finally, as the ladders limit allows for a simpler access to the wrapping corrections, it

could also serve as a useful ground to attempt a finite-size resummation of perturbation

theory for 3-point correlators [190, 191, 192, 193, 58], using Q-functions as building blocks.

48The Y-system and TBA for the spectrum in the γ-deformed case were proposed earlier in [20, 186,

187, 188]
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Part VIII

Conclusions and appendices

38 Summary and outlook

In this thesis we have described the Quantum Spectral Curve of AdS/CFT in application

to a wide variety of problems. Numerical and analytical methods have been developed

which make it possible to access the spectrum even in the extreme regimes which are far

beyond the reach of previous techniques. Let us describe some of the possible directions

for future work.

• While we have focused on exploration of the spectrum, we hope the results pre-

sented here could also be useful in application to correlation functions. The QSC

construction provides exact Q-functions which serve as building blocks for wavefunc-

tions in separated variables and with appropriate Sklyanin’s measure should allow to

reconstruct the correlator. The QSC and Sklyanin’s separation of variables methods

[54, 194] are naturally linked and their interplay would be very interesting to study.

The many known solutions of the QSC, including those dicsussed in this thesis and

in particular the all-loop solutions, should be very helpful in this problem. Also, as

the ladders limit for the quark-antiquark potential allows for a simpler access to the

wrapping corrections, it could also serve as a useful ground to attempt a finite-size

resummation of perturbation theory for 3-point correlators [190, 191, 192, 193, 58],

using Q-functions as building blocks.

• It is an important open problem to build a strong coupling analytic expansion. While

we have seen that the QSC truly shines at weak coupling, at strong coupling we are

still restricted to numerical data or re-expansions of near-BPS exact results.

• Further exploration of the BFKL and similar regimes with the hope of finding extra

structures looks surely interesting.

• The double scaling limit in γ-deformed SYM, expected to lead to new 4d integrable

QFTs [183], should be possible to study using the QSC, especially since a similar

limit has been already understood for the quark-antiquark potential as described

above in part VII [11].
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• The deep origins of integrability on the gauge theory side remain mysterious, as all-

loop integrability has been developed essentially by following the bootstrap program

in the 2d string sigma model. Perhaps the QSC could shed light on this aspect by

revealing hidden structures in perturbation theory. It would also be very interesting

to explore links between the spectral problem and powerful methods developed in

the context of amplitudes [195, 196, 197].

• It would be interesting to connect the AdS/CFT integrability with integrable systems

linked with N = 2 theories and AGT dualities (see e.g. [198]). In particular it might

be possible to find a dual classical description of the AdS/CFT integrable system,

in the spirit of classical/quantum dualities [199, 200, 201, 202].

• It should be possible to extend the QSC to various more involved deformations of

N = 4 SYM where a change in analytic structure would be expected [203, 204,

60]. We have also seen that e.g. the boundary dressing phase for the cusp setup

corresponds to allowing exponential asymptotics in some parts of the QSC. It may

be possible to classify all such asymptotics which would describe different boundary

problems such as [65].

• Finally, it would be highly interesting to formulate the QSC for lower-dimensional

AdS/CFT’s (see e.g. [205, 206, 207, 208, 209]) and explore their rich properties and

surprising features such as the appearance of massless modes.

A Appendices to part II

A.1 Summary of notation and definitions

Integral kernels

In order to solve for P
(1)
a in section 8.3 we introduce integral operators H and K with

kernels

H(u, v) = − 1

4πi

√
u− 2g

√
u+ 2g√

v − 2g
√
v + 2g

1

u− v
dv, (A.1)

K(u, v) = +
1

4πi

1

u− v
dv, (A.2)

which satisfy

f̃ + f = h , f = H · h and f̃ − f = h , f = K · h. (A.3)
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Since the purpose of H and K is to solve equations of the type A.3, H usually acts

on functions h such that h̃ = h, whereas K acts on h such that h̃ = −h. On the

corresponding classes of functions, provided also that the constant term in their Laurent

expansion (denoted as [h]0) is zero, H and K can be represented by kernels which are

equal up to a sign

H(u, v) = − 1

2πi

1

xu − xv
dxv

∣∣∣∣
h̃=h

, (A.4)

K(u, v) =
1

2πi

1

xu − xv
dxv

∣∣∣∣
h̃=−h

. (A.5)

In order to be able to deal with series in half-integer powers of x in section 8.5 we introduce

modified kernels:

H∗ · f ≡ x+ 1√
x
H ·

√
x

x+ 1
f, (A.6)

K∗ · f ≡ x+ 1√
x
K ·

√
x

x+ 1
f. (A.7)

Finally, to write the solution to equations of the type (8.5), we introduce the operator Γ′

and its more symmetric version Γ

(
Γ′ · h

)
(u) ≡

∮ 2g

−2g

dv

4πi
∂u log

Γ[i(u− v) + 1]

Γ[−i(u− v)]
h(v), (A.8)

(Γ · h) (u) ≡
∮ 2g

−2g

dv

4πi
∂u log

Γ[i(u− v) + 1]

Γ[−i(u− v) + 1]
h(v). (A.9)

A.2 NLO solution of Pµ system at J = 2: details

In this appendix we will provide more details on the solution of the Pµ-system and cal-

culation of curvature function for J = 2 which was presented in the main text in section

8.1.

A.2.1 NLO corrections to µab

Here we present some details of calculation of NLO corrections to µab for J = 2 omitted in

the main text. As described in section 8.2, µ
(1)
ab are found as solutions of (8.5) with appro-

priate asymptotics. The general solution of this equation consists of a general solution of

the corresponding homogeneous equation (which can be reduced to one-parametric form

(8.17)) and a particular solution of the inhomogeneous one. The latter can be taken to be

µdiscab = Σ ·
(
P(1)
a P̃

(1)
b −P

(1)
b P̃(1)

a

)
. (A.10)
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One can get rid of the operation Σ, expressing µdiscab in terms of Γ′ and p′a. This procedure

is based on two facts: the definition (8.11) of p′a and the statement that on functions

decaying at infinity Σ coincides with Γ′ defined by (8.9). After a straightforward but long

calculation we find

µdisc31 = ε2Σ

(
1

x2
− x2

)
= −ε2

(
Γ · x2 + p2

)
, (A.11)

µdisc41 = ε2

[
−2I1p1 − 4I1Γ · x+ sinh(2πu)

(
Γ · x2 + p0

)
+ Γ · sinh−

(
x− 1

x

)2
]
,(A.12)

µdisc43 = −2ε2

[
−2I1p1 − 4I1Γ · x+ sinh(2πu)(p2 − p0) + Γ · sinh−

(
x− 1

x

)2
]
,(A.13)

µdisc21 = ε2
[
2I1Γ · x− sinh(2πu) Γ · x2 − Γ · sinh−

(
x2 +

1

x2

)]
, (A.14)

µdisc24 = ε2
[
2I1Γ · sinh−

(
x+

1

x

)
+ I2

1p0+ (A.15)

+ sinh(2πu)Γ · sinh−

(
x2 − 1

x2

)
− Γ · sinh2

−

(
x2 − 1

x2

)]
. (A.16)

Here we write Γ and pa instead of Γ′ and p′a taking into account the discussion between

equations (8.22) - (8.27).
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A.3 Result for J = 4

The final result for the curvature function at J = 4 reads

γ
(2)
J=4 =

∮
dux
2πi

∮
duy
2πi

1

ig2(I3 − I5)3

[
(A.17)

2
(
shx−

)2
y4
(
I3

(
x10 + 1

)
− I5x

2
(
x6 + 1

))
x4 (x2 − 1)

−
2
(
shy−

)2
x4
(
y8 − 1

) (
I3x

2 − I5

)
(x2 − 1) y4

+

+
4shx−shy−

(
x4y4 − 1

) (
I3 + I3x

6y4 − I5x
2
(
x2y4 + 1

))
x4 (x2 − 1) y4

+ shy−
((
y4 + y−4

)
x−1

((
I1I5 − I2

3

) (
3x4 + 1

)
− 2I1I3x

6
)

+

+
2I3x

2
(
I5

(
x2 + 1

)
x2 + I1

(
1− x2

))
− I1I5

(
x2 − 1

)2
+ I2

3

(
−2x6 + x4 + 1

)
x(x2 − 1)

+

+2
(
y3 + y−3

) I1I3x
6 − I1I5x

4 − I2
3

(
x2 − 1

)
x2 − 1

−

−2I3

(
y + y−1

) I1

(
x2 − 1

)
− I3

(
x6 − x2 + 1

)
+ I5

(
x4 − x2 + 1

)
x2 − 1

)
+

+
4x6y2I3

(
I2

3 − I2
1

)
x2 − 1

+
4xyI1

(
I3y

2 + I1

)
(I3 + I5)

x2 − 1
+

2y4 (I1 + I3)
(
I1I5 − I2

3

)
x2 − 1

−
2y
(
y2 + 1

)
(I1 + I3)

(
I1I5 − I2

3

)
x (x2 − 1)

−

−
2x3y (I1 + I3)

(
I1

(
2I3 +

(
3 y2 + 1

)
I5

)
− I3

(
2I5y

2 +
(
y2 + 3

)
I3

))
x2 − 1

+
2x2y4

(
−I3

3 − I1 (3I3 + I5) I3 + I2
1I5

)
x2 − 1

+
2x4y

(
I2

1

(
2yI5 − 2y3I3

)
− 2y

(
y2 + 1

)
I2

3I5

)
x2 − 1

+

+
4x5yI3

(
2I2

1y
2 + I3 (I5 − I3) y2 + I1 (I3 + I5)

)
x2 − 1

]
1

4πi
∂u log

Γ(iux − iuy + 1)

Γ(1− iux + iuy)

where, similarly to J = 2, 3, the integrals go around the branch between −2g and 2g.
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A.4 Weak coupling expansion – details

The expansion of our result for the slope-to slope function γ
(2)
J=2 to 10 loops reads:

γ
(2)
J=2 = −8g2ζ3 + g4

(
140ζ5 −

32π2ζ3

3

)
+ g6

(
200π2ζ5 − 2016ζ7

)
(A.18)

+ g8

(
−16π6ζ3

45
− 88π4ζ5

9
− 9296π2ζ7

3
+ 27720ζ9

)
+ g10

(
208π8ζ3

405
+

160π6ζ5

27
+ 144π4ζ7 + 45440π2ζ9 − 377520ζ11

)
+ g12

(
−7904π10ζ3

14175
− 17296π8ζ5

4725
− 128π6ζ7

15
− 6312π4ζ9

5

−653400π2ζ11 + 5153148ζ13

)
+ g14

(1504π12ζ3

2835
+

106576π10ζ5

42525
− 18992π8ζ7

405
− 16976π6ζ9

15

+
25696π4ζ11

9
+

28003976π2ζ13

3
− 70790720ζ15

)
+ g16

(
−178112π14ζ3

382725
− 239488π12ζ5

127575
+

2604416π10ζ7

42525
+

8871152π8ζ9

4725

+
30157072π6ζ11

945
+

8224216π4ζ13

45
− 133253120π2ζ15

+979945824ζ17

)
+ g18

(147712π16ζ3

382725
+

940672π14ζ5

637875
− 490528π12ζ7

8505
− 358016π10ζ9

189

−37441312π8ζ11

945
− 9616256π6ζ13

15
− 16988608π4ζ15

3

+1905790848π2ζ17 − 13671272160ζ19

)
+ g20

(
−135748672π18ζ3

442047375
− 103683872π16ζ5

88409475
+

1408423616π14ζ7

29469825

+
2288692288π12ζ9

1403325
+

34713664π10ζ11

945
+

73329568π8ζ13

105

+
305679296π6ζ15

27
+ 121666688π4ζ17 − 27342544320π2ζ19

+192157325360ζ21

)



155

B Appendices to part V

B.1 Notation and conventions

In this appendix we summarized the notation which is used throughout part V. The basic

definitions are in the first subsection, and the second one contains a glossary of integration

kernels.

Basic notation

f [±a] ≡ f(u± ia), f± ≡ f(u± i/2), (B.1)

f [±0] = f(u± i0), f±± = f(u± i/2± i0). (B.2)

Im,n ≡ δm+1,n + δm−1,n. (B.3)

We also found it convenient to denote

T = eiθ, ca = e2iG(ia/2), ya = x(ia/2), (B.4)

where G is the resolvent from (23.12).

Kernels in the TBA

We denote by ∗ the convolution over the full real axis from −∞ to ∞, and by ∗̂ the

convolution over the range −2g < u < 2g.

Our definitions of the kernels coincide with the ones used in [63] and [164], and we

summarize them below. Let us note that in some cases the “mirror” branch of x is used,

for which |x(u)| > 1 for u in the upper half-plane, and |x(u)| > 1 for u in the lower

half-plane (see [63]).

s(u, v) =
1

2 cosh(π(u− v))
, (B.5)

Ka(u, v) =
2a

π(a2 + 4(u− v)2)
, (B.6)

K̂a(u) = K̂y,a(u, 0) =

√
4g2 − u2

4g2 + a2/4
Ka(u), K̃a(u) =

√
4g2 + a2/4

4g2 − u2
Ka(u), (B.7)



B.1 Notation and conventions 156

Kn,m(u, v) =

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

K2j+2k+2(u, v), (B.8)

K(u, v) =
1

2πi

√
4g2 − u2

4g2 − v2

1

v − u
, (B.9)

logFa(a, g) = K̃a∗̂ log
sinh(2πu)

2πu

∣∣∣∣
u=0

. (B.10)

r(u, v) =
x(u)− x(v)√

x(v)
, b(u, v) =

1/x(u)− x(v)√
x(v)

, (B.11)

R(ab)
nm =

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

1

2πi

d

dv
log

r(u+ ia/2 + ij, v − ib/2 + ik)

r(u− ia/2 + ij, v + ib/2 + ik)
, (B.12)

B(ab)
nm =

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

1

2πi

d

dv
log

b(u+ ia/2 + ij, v − ib/2 + ik)

b(u− ia/2 + ij, v + ib/2 + ik)
, (B.13)

Given the definitions above one can prove the following identities (see [63]):

R(10)
a1 (u, v) + B(10)

a1 (u, v) = Ka(u, v), (B.14)

R(10)
a1 (u, v)− B(10)

a1 (u, v) = K(u+ ia/2, v)−K(u− ia/2, v), (B.15)

R(01)
1a (u, v) + B(01)

1a (u, v) = Ka(u, v), (B.16)

R(01)
1a (u, v)− B(01)

1a (u, v) = K̂y,a(u, v) = K(u, v − ia/2)−K(u, v + ia/2), (B.17)

R(01)
2n =

1

2

(
K̂+
n − K̂−n +K+

n +K−n

)
(B.18)

K̃ab = R(10)
ab + B(10)

ab−2 = (B.19)

=
1

2

(
K̃ [b−1]
a − K̃ [−b+1]

a +K [b−1]
a +K [−b+1]

a

)
+

a∑
r=1

Kb−a−3+2r

K̂ba = R(01)
ba + B(01)

b−2,a = (B.20)

=
1

2

(
K̂ [b−1]
a − K̂ [−b+1]

a +K [b−1]
a +K [−b+1]

a

)
+

a∑
r=1

Kb−a−3+2r
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C Appendices to part VI

C.1 The anomalous dimension from asymptotics

Here we present the explicit expression we got for the conformal dimension ∆ in terms of

the coefficients ai, bi in the large u expansion of the P-functions (see Eq. (27.2)), for any

L. It reads

∆2 = −a1

[
a2(cos θ − cosφ)3

(L+ 1) sin θ sin2 φ
− b2(cos θ − cosφ)3

(L+ 1) sin θ sin2 φ
+ F (θ, φ, L)

]
− a2

1(cos θ cosφ− 1)(cos θ − cosφ)2

sin2 θ sin2 φ
+
a3(cos θ − cosφ)3

(L+ 1) sin θ sin2 φ

− a2(cos θ − cosφ)2(−2 cos θ cosφ+ (L+ 1) cos 2θ − L+ 1)

2(L+ 1) sin2 θ sin2 φ
(C.1)

− b3(cos θ − cosφ)3

(L+ 1) sin θ sin2 φ
+
b2L(cos θ cosφ− 1)(cos θ − cosφ)2

(L+ 1) sin2 θ sin2 φ

+
(2L+ 1)L

24 sin2 θ sin2 φ

[
cos θ (cos 3φ− 10 cosφ) + cos 3θ cosφ+ 8

]
− L(1− L)

3

where

F (θ, φ, L) =
(cos θ − cosφ)

4 sin3 θ sin2 φ

[
−2(5L+ 4) cos θ cosφ+ (L+ 2) cos 2φ+ 7L+ 4

+ cos 2θ (2L cos θ cosφ+ L cos 2φ− L+ 2)

]
(C.2)

C.2 Asymptotics of Q-functions

Similarly to the asymptotics of Pa given in (27.2) in the main text, we found that the

asymptotics of Qi have the form (with C an arbitrary constant)

Q1(u) ' Cε′1/2 u1/2+∆ e+φuF (+u) , F (u) = 1 + c1/u+ c2/u
2 + c3/u

3 + . . . (C.3)

Q2(u) ' Cε′1/2 u1/2+∆ e−φuF (−u)

Q3(u) ' 1

C
ε′3/2 u1/2−∆ e+φuG(+u) , G(u) = 1 + d1/u+ d2/u

2 + d3/u
3 + . . .

Q4(u) ' − 1

C
ε′3/2 u1/2−∆ e−φuG(−u)

while Q’s with upper and lower indices are related as in (27.7),

Q1 = −Q4, Q2 = +Q3, Q3 = −Q2, Q4 = +Q1 (C.4)
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The coefficients are constrained by

ε′2 = − i(cos θ − cosφ)2

2∆ sin2 φ
, c1 − d1 = −∆(2 cos θ cosφ+ cos 2φ− 3)

2 sinφ(cos θ − cosφ)
(C.5)

While ∆ enters the powers in the asymptotics of Qi, the remaining conserved charge L is

encoded in the large u expansion coefficients as

L(L+ 2) = c2

[
d1 csc2 θ cscφ(cosφ− cos θ)3

∆
(C.6)

+
(∆− 1) csc2 θ csc2 φ(cos θ cosφ− 1)(cosφ− cos θ)2

∆

]
+
c3 csc2 θ cscφ(cos θ − cosφ)3

∆
+
d3 csc2 θ cscφ(cosφ− cos θ)3

∆

+d1

[
d2 csc2 θ cscφ(cos θ − cosφ)3

∆
+ F1(θ, φ,∆)

]
+
d2 csc2 θ csc2 φ(cosφ− cos θ)2

(
∆ sin2 φ+ cos θ cosφ− 1

)
∆

−d2
1 csc2 θ csc2 φ(cosφ− cos θ)2(cos θ cosφ− 1)

+
1

24

[
−(∆− 1)(2∆− 1)(cos θ − 2) cot2

(
θ

2

)
sec2

(
φ

2

)
−4(∆− 1)(2∆− 1) cot θ csc θ cosφ

+(∆− 1)(2∆− 1)(cos θ + 2) tan2

(
θ

2

)
csc2

(
φ

2

)
+ 8((∆− 3)∆− 1)

]
where we denote

csc θ ≡ 1/ sin θ, sec θ ≡ 1/ cos θ (C.7)

and

F1(θ, φ,∆) =
1

4
csc2 θ csc3 φ(cos θ − cosφ) [2 cos θ cosφ((∆− 1) cos 2φ− 5∆ + 1)

+ cos 2θ((∆− 1) cos 2φ+ ∆ + 1)− (∆− 3) cos 2φ+ 7∆− 3] (C.8)

C.3 The leading near-BPS solution at any L

Let us present explicitly the leading order near-BPS solution of the Pµ system at any L.

It was constructed in [16] and below we write it in our conventions. Most importantly,

imposing the asymptotics (27.2) and (27.3) we recovered from (27.4) the all-loop results

of [16] for the near-BPS cusp anomalous dimension at nonzero L, providing a stringent

test of the asymptotics we proposed49.

The solution has the following form. First, the components of µab are

µ
(0)
12 = A sinh(2πu), µ

(0)
13 = (−1)L, µ

(0)
14 = 0, µ

(0)
24 = (−1)L+1, µ

(0)
34 = 0 (C.9)

49We checked the matching explicitly for the first several L’s
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Second, the P-functions read

P
(0)
1 = K

√
A
√
ueθu

F̃ (x)

xL+1
, (C.10)

P
(0)
2 = K

√
A
√
ue−θu

F̃ (−x)

xL+1
,

P
(0)
3 =

K√
A

√
uegθ(x−1/x)PL(x) ,

P
(0)
4 = (−1)L

K√
A

√
ue−gθ(x−1/x)PL(−x) .

Here A is a constant which can be set to 1 via a rescaling (27.8), (27.9) while the constant

K ∼
√
θ − φ can be fixed from asymptotics (27.2), (27.3). The function F (x) is a power

series

F (x) = 1 +

∞∑
n=1

fnx
n , (C.11)

which satisfies

e2gθxxL+1F (x) + (−1)Le−2gθ/xxL+1F̃ (−x) = sinh(2πu)e2gθ(x−1/x)PL(x) (C.12)

and is fixed as

F (x) = e−2gθxx−L−1
[
sinh(2πu)e2gθ(x−1/x)PL(x)

]
+

(C.13)

where [f ]+ denotes the part of the Laurent expansion of f(x) with positive powers of x.

Finally, the Laurent polynomial PL(x) reads

PL(x) =
1

detM2L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2L Iθ1−2L

Iθ2 Iθ1 · · · Iθ3−2L Iθ2−2L

...
...

. . .
...

...

Iθ2L Iθ2L−1 · · · Iθ1 Iθ0

x−L x1−L · · · xL−1 xL

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(C.14)

where

MN =



Iθ1 Iθ0 · · · Iθ2−N Iθ1−N

Iθ2 Iθ1 · · · Iθ3−N Iθ2−N
...

...
. . .

...
...

IθN IθN−1 · · · Iθ1 Iθ0

IθN+1 IθN · · · Iθ2 Iθ1


. (C.15)

Notice also that

PL(1/x) = PL(−x) (C.16)

From this solution using (27.4) we recover the result of [16] for the cusp anomalous di-

mension,

Γcusp = L+
φ− θ

4
∂θ log

detM2L+1

detM2L−1
+O((φ− θ)2) . (C.17)
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C.4 Weak coupling predictions at five and six loops

From our all-loop result (28.26) it is straightforward to obtain a prediction for a part of

the full anomalous dimension at five and six loops, namely for the coefficients γ
(2)
5 (φ) and

γ
(2)
6 (φ) in (28.31). We found them to be

γ
(2)
5 (φ) = 3360

[
Li9(e−2iφ) + Li9(e2iφ)

]
− 2156iφ

[
Li8(e2iφ)− Li8(e−2iφ)

]
(C.18)

−8
(
62φ2 + 15π2

) [
Li7(e2iφ) + Li7(e−2iφ)

]
+

20

3
i
(
49π2φ− 29φ3

) [
Li6(e2iφ)− Li6(e−2iφ)

]
−8

3

(
73φ4 − 87π2φ2 + 6π4

) [
Li5(e2iφ) + Li5(e−2iφ)

]
+

4

3
i
(
65φ5 − 94π2φ3 + 29π4φ

) [
Li4(e2iφ)− Li4(e−2iφ)

]
−8

9
(π − φ)(φ+ π)

(
33φ4 − 31π2φ2 + 2π4

) [
Li3(e2iφ) + Li3(e−2iφ)

]
+

32

45
iφ
(
7π2 − 12φ2

) (
π2 − φ2

)2 [
Li2(e2iφ)− Li2(e−2iφ)

]
+

32

5
φ2
(
φ2 − π2

)3 [
log(1− e2iφ) + log(1− e−2iφ)

]
+

16

45

[
83ζ(3)φ6 − 15

(
8π2ζ(3) + 31ζ(5)

)
φ4

+3
(
9π4ζ(3) + 85π2ζ(5) + 930ζ(7)

)
φ2

−18900ζ(9) + 675π2ζ(7) + 90π4ζ(5) + 10π6ζ(3)
]
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and

γ
(2)
6 (φ) = −41580

[
Li11(e−2iφ) + Li11(e2iφ)

]
+25704iφ

[
Li10(e2iφ)− Li10(e−2iφ)

]
+168(35φ2 + 12π2)

[
Li9(e−2iφ) + Li9(e2iφ)

]
(C.19)

−56

3
i(241π2φ− 137φ3)

[
Li8(e2iφ)− Li8(e−2iφ)

]
+

8

3

(
943φ4 − 1150π2φ2 + 91π4

) [
Li7(e−2iφ) + Li7(e2iφ)

]
−4

9
i
(
2661φ5 − 3754π2φ3 + 1077π4φ

) [
Li6(e2iφ)− Li6(e−2iφ)

]
+

8

45

(
−2299φ6 + 3970π2φ4 − 1835π4φ2 + 148π6

)
F5

−16

45
i(π − φ)φ(φ+ π)

(
351φ4 − 449π2φ2 + 154π4

)
F4

+
8

135

(
639φ4 − 618π2φ2 + 47π4

) (
π2 − φ2

)2 [
Li3(e−2iφ) + Li3(e2iφ)

]
+

64

135
iφ
(
22φ2 − 15π2

) (
π2 − φ2

)3 [
Li2(e2iφ)− Li2(e−2iφ)

]
+

1168

135
φ2
(
π2 − φ2

)4 [
log(1− e2iφ) + log(1− e−2iφ)

]
+

752ζ(3)φ8

15
− 16

135

(
970π2ζ(3) + 2493ζ(5)

)
φ6

+
16

45

(
208π4ζ(3) + 1130π2ζ(5) + 5175ζ(7)

)
φ4

−16

9

(
2π6ζ(3) + 27π4ζ(5) + 414π2ζ(7) + 6615ζ(9)

)
φ2

− 8

135

(
94π8ζ(3) + 888π6ζ(5)

+8190π4ζ(7) + 68040π2ζ(9)− 1403325ζ(11)
)

with

F5 = Li5(e−2iφ) + Li5(e2iφ), F4 = Li4(e2iφ)− Li4(e−2iφ) (C.20)

C.5 Generalized η-functions

We found that the solution of the QSC for arbitrary angles at weak coupling involves the

following generalized η functions

ηz1,...,zks1,...,sk
(u) ≡

∑
n1>n2>···>nk≥0

zn1
1 . . . znkk

(u+ in1)s1 . . . (u+ ink)sk
(C.21)

which are a generalization of the multiple polylogarithms

Li(s1,...,sk)(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

zn1
1 . . . znkk
ns11 . . . nskk

(C.22)
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For the case when all twists zi are set to 1, the η-functions were encountered in the weak

coupling computations of [109, 70]. In our calculation of Γcusp we had to deal with the

case where twists are present. Below we summarize some useful relations analogous to

those found in [109, 70].

Let us denote a solution of the equation

f(u+ i)− f(u) = h(u) (C.23)

as

f = Σ(h) (C.24)

A useful property is

ηZ,zA,a = Zz(ηZ,zA,a)
[2] + Z

(ηZA)[2]

ua
(C.25)

where A is a set of indices Ai and Z in the superscript is a set of twists Zi, while z is a

single complex number. The prefactor Z in the r.h.s. denotes the product
∏
i Zi. Using

this relation we find

Σ

(
z−iu

(u+ in)s

)
= −z−iuηzs(u+ in) (C.26)

Σ

(
z−iuηZS (u+ in+ i)

(u+ in)s

)
= −z

−iu

Z
η
Z(z/Z)
Ss (u+ in), (C.27)

Σ
[
v−iuuaηZzAb (u+ in)

]
= Σ

[( v

zZ

)−iu
ua
]

(zZ)−iuηZzAb (u+ in) (C.28)

+ Σ

[
Σ

[( v

zZ

)−iu
ua
][2]

(zZ)−iuZ
ηZA(u+ in+ i)

(u+ in)b

]
In these expressions a, s = 1, 2, 3, . . . while n is arbitrary.

Finally we have the ’stuffle’ relations which express a product of two η functions as a

linear combination of some other η’s. They are obtained by splitting the region of summa-

tion in the product of η functions and are directly analogous to those for polylogarithms

or mutiple zeta values (see e.g. the pedagogical review [210] and references therein):

ηzs η
z′

s′ =
∑
s′′

η
z′′

s′′ (C.29)

where in case two of the s indices are combined in the r.h.s. the corresponding twists are

mutiplied, exactly as in the stuffle relations for polylogarithms. For example,

ηw2 η
z
3 = ηwz5 + ηw,z2,3 + ηz,w3,2 (C.30)

The operations described above are essential for the iterative procedure of [13] and should

allow to run it to very high orders in the weak coupling expansion with any φ, θ.
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D Appendices to part VII

D.1 Weak coupling limit of the coefficients

At weak coupling one can fix the values of the several leading coefficients An, Bn which

parameterize the P-functions via (33.3). In order to do this we used the leading order

weak coupling solution of the QSC constructed in [12]. With the Pa and µab functions

from that solution, one can build P̃a = µabχ
bcPc and compare the result with our ansatz

(33.3) in which P̃a is constructed by simply replacing x → 1/x. For the case φ = π we

found that

B0 =
cos θ − 2

sin θ
+A1g

2 (D.1)

and the remaining coefficients to the leading order are all fixed as

An =
2n−1πn(1 + (−1)n)

(n+ 1)!
+O(g2) (D.2)

B2n =
(2π)2n−2

(2n− 1)!
+O(g2) , n > 1 (D.3)

B2n−1 = − cot θ
(2π)2n−2

(2n− 1)!
+O(g2) , n > 1 (D.4)

B1 = 2 tan
θ

2
+O(g2) (D.5)

B2 = 0 +O(g2) . (D.6)

D.2 Determinants entering the 5th order equation on Qi

The 4th order difference equation (33.6) on Qi includes several determinants built out of

the P-functions, which are defined as follows:
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D0 = det


P1[+2] P2[+2] P3[+2] P4[+2]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 , (D.7)

D1 = det


P1[+4] P2[+4] P3[+4] P4[+4]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 , (D.8)

D2 = det


P1[+4] P2[+4] P3[+4] P4[+4]

P1[+2] P2[+2] P3[+2] P4[+2]

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 , (D.9)

D̄1 = det


P1[−4] P2[−4] P3[−4] P4[−4]

P1 P2 P3 P4

P1[+2] P2[+2] P3[+2] P4[+2]

P1[+4] P2[+4] P3[+4] P4[+4]

 , (D.10)

D̄0 = det


P1[−2] P2[−2] P3[−2] P4[−2]

P1 P2 P3 P4

P1[+2] P2[+2] P3[+2] P4[+2]

P1[+4] P2[+4] P3[+4] P4[+4]

 . (D.11)

D.3 Six and seven loop results at weak coupling

Using the QSC we have computed the weak coupling expansion of the quark–antiquark

potential at the first seven nontrivial orders. The first five orders are given in the main

text in (34.17). Here we present the rather bulky 6- and 7-loop results.
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6-loop result. The term of order ĝ12 in Ω
4π reads

131072L5

15
+

327680L4

3
+

131072

9
π2L4T +

1048576L3

3
− 1097728

9
π2L3 (D.12)

+
1163264

3
π2L3T +

32768

9
π4L3T 2 + 81920L2 + 24576π2L2 +

212992ζ3L
2

3

−8192

3
π2L2T + 81920ζ3L

2T − 77824

5
π4L2T +

475136

9
π4L2T 2

+

(
65536

3
π2ζ3 − 5120ζ5

)
L2T 2 +−1515520L

3
+

1776640π2L

27
+ 212992ζ3L

+
39424π4L

15
− 251904π2LT + 176128ζ3LT −

16384

27
π4LT

+

(
10240ζ5 −

71680

9
π2ζ3

)
LT − 118784

9
π4LT 2 +

(
573440

3
π2ζ3 − 99840ζ5

)
LT 2

+

(
3072ζ2

3 +
70912

405
π6

)
LT 2 +

(
139264

45
π4ζ3 − 31232π2ζ5 + 60928ζ7

)
LT 3

−295936

3
− 107008π2

27
+

106496ζ3

3
− 1159424π4

675
+

(
124928ζ5

5
− 93184π2ζ3

9

)
−1190528π2T

27
− 19456ζ3T +

3045376π4T

405
+

(
212992

3
π2ζ3 + 27648ζ5

)
T

+

(
1536ζ2

3 −
14464π6

405

)
T − 50176

3
π4T 2 −

(
172288

3
π2ζ3 + 24320ζ5

)
T 2

+

(
18816ζ2

3 +
17344π6

135

)
T 2 +

(
72704

45
π4ζ3 + 19136π2ζ5 − 38976ζ7

)
T 2

+

(
228352

45
π4ζ3 −

107264

3
π2ζ5 + 43904ζ7

)
T 3

+

(
2496ζ6,2 +

20224

3
π2ζ2

3 − 31232ζ3ζ5 +
55304π8

42525

)
T 3

+

(
−2560

3
π4ζ5 + 21504π2ζ7 − 102816ζ9

)
T 4

At this order an irreducible multiple zeta value appears for the first time, given by ζ6,2 '

0.017819740416836.
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7-loop result. The term of order ĝ14 in Ω
4π is given by

1048576L6

45
+

524288

9
L5π2T +

6815744L5

15
+

262144

9
L4π4T 2 − 65536L4Tζ3 +

40632320

9
L4π2T(D.13)

−15007744

9
L4π2 + 2752512L4 +

131072

81
L3π6T 3 + 65536L3π2T 2ζ3 +

655360

3
L3T 2ζ5

+
12255232

9
L3π4T 2 − 64159744

135
L3π4T − 65536L3Tζ3 +

13303808

3
L3π2T +

3407872L3ζ3
9

−11141120

9
L3π2 +

15073280L3

3
+

2080768

45
L2π4T 3ζ3 −

499712

3
L2π2T 3ζ5 − 129024L2T 3ζ7

+32768L2π6T 3 − 2828288

405
L2π6T 2 − 36864L2T 2ζ2

3 +
11444224

3
L2π2T 2ζ3 + 20480L2T 2ζ5

+
2351104

3
L2π4T 2 − 7610368

9
L2π2Tζ3 − 40960L2Tζ5 −

27344896

45
L2π4T + 1671168L2Tζ3

−3817472L2π2T +
7221248L2π4

45
+ 2555904L2ζ3 +

17096704L2π2

9
− 6914048L2

3
+

8192

9
Lπ6T 4ζ3

−133120

3
Lπ4T 4ζ5 + 369152Lπ2T 4ζ7 − 628992LT 4ζ9 +

1176832Lπ8T 3

42525
+

210944

3
Lπ2T 3ζ2

3

−71680LT 3ζ3ζ5 + 30720LT 3ζ6,2 +
7872512

15
Lπ4T 3ζ3 − 1899520Lπ2T 3ζ5 + 867328LT 3ζ7

+
212992

27
Lπ6T 3 − 1150976

15
Lπ4T 2ζ3 + 665600Lπ2T 2ζ5 − 268800LT 2ζ7 +

2378752

405
Lπ6T 2

+43008LT 2ζ2
3 +

757760

3
Lπ2T 2ζ3 − 1587200LT 2ζ5 −

14838784

9
Lπ4T 2 − 2152448Lπ6T

2835

−163840LTζ2
3 +

24051712

9
Lπ2Tζ3 + 364544LTζ5 +

390412288

405
Lπ4T + 2457600LTζ3

−39706624

9
Lπ2T − 5324800

9
Lπ2ζ3 +

1998848Lζ5
5

− 34199552Lπ4

225
+

9797632Lζ3
3

+
61534208Lπ2

81
− 23560192L

3
− 11264

105
π6T 5ζ5 +

73216

5
π4T 5ζ7 − 285120π2T 5ζ9

+1271952T 5ζ11 −
10544π10T 4

93555
+

91136

9
π4T 4ζ2

3 −
520832

3
π2T 4ζ3ζ5 + 179424T 4ζ2

5

+361088T 4ζ3ζ7 +
16768

3
π2T 4ζ6,2 − 26432T 4ζ8,2 +

65536

45
π6T 4ζ3 − 63488π4T 4ζ5

+401408π2T 4ζ7 − 508032T 4ζ9 +
5137792π6T 3ζ3

2835
− 768T 3ζ3

3 + 30976π4T 3ζ5

−941632

3
π2T 3ζ7 +

2211904T 3ζ9
3

− 142816π8T 3

14175
+

1183232

3
π2T 3ζ2

3 − 337664T 3ζ3ζ5

+17664T 3ζ6,2 −
256000

3
π4T 3ζ3 +

1762304

3
π2T 3ζ5 + 367360T 3ζ7 −

446464

45
π6T 3

+
2348512π8T 2

42525
− 175360

3
π2T 2ζ2

3 +
76288

3
T 2ζ3ζ5 + 26880T 2ζ6,2 +

6986752

45
π4T 2ζ3

+
295424

9
π2T 2ζ5 − 611520T 2ζ7 −

1111552

405
π6T 2 + 225792T 2ζ2

3 −
2234624

3
π2T 2ζ3

−261120T 2ζ5 +
3700736π4T 2

27
− 2342656

135
π4Tζ3 + 131584π2Tζ5 + 33152Tζ7

+
3462656π6T

2835
+ 165888Tζ2

3 +
3972608

27
π2Tζ3 + 387072Tζ5 −

222660352π4T

1215

−544768Tζ3 +
16618240π2T

81
− 122624π6

945
+

1384448ζ2
3

9
+ 106496π2ζ3 + 499712ζ5

+
274300928π4

10125
− 1384448ζ3

3
− 67858432π2

243
− 4759552

15

where we have a new multiple zeta value ζ8,2 ' 0.0041224696783998322240.
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D.4 Complex conjugation of the Qi functions

Another set of useful relations concerns the expected symmetry of the QSC system under

complex conjugation. Let’s assume that under the complex conjugation the equation

(33.6) remain invariant. In general this is true if

P̄a = λ b
a Pb , P̄a = λabP

b (D.14)

for some constant coefficients λ b
a , such that λ b

a λ
a
c = −δbc (in our case λ b

a = −iδba). If

this holds the complex conjugate Q̄i should give an alternative complete set of solutions

of the finite difference equation (33.6), which should be related to the initial set as a linear

combinations with some i-periodic coefficients

Q̄i = Ω j
i Qj , Ω j

i (u+ i) = Ω j
i (u) . (D.15)

Those coefficients can be written in terms of Qa|i as

Ω j
i = −Q̄a|i(u− i

2)λabQ
b|j(u− i

2) (D.16)

where Qb|j = −((Qb|j)
−1)T. We can easily check this is indeed true. We show that (D.15)

holds:

Ω j
i Qj = −Q̄a|i(u− i

2)λabQ
b|j(u− i

2)Qj = −Q̄a|i(u− i
2)λabP

b = −Qa|i(u+ i
2)Pa = Q̄i

(D.17)

and also that the r.h.s. (D.16) is periodic:

Q̄+
a|iλ

a
bQ

b|j+ = (Q+
a|i −PaQi)λ

a
b(Q

b|j− + PbQj) = Q̄−a|iλ
a
bQ

b|j− (D.18)

(we denoted f± = f(u± i/2)). Finally we can find discontinuity of Ω using this identity

Ω̃ j
i − Ω j

i = −Q̄−a|iλ
a
b

(
Q̃b|j− −Qb|j−

)
= Q̄−a|iλ

a
b

(
P̃bQ̃j −PbQj

)
= − ¯̃QiQ̃

j + Q̄iQ
j .

(D.19)

We notice one more relation which we will use below. Consider Ω 4
1 . Its discontinuity is

due to (33.9)

Ω̃ 4
1 (u)− Ω 4

1 (u) = uq̄1(u)q1(u)− uq̄1(−u)q1(−u) (D.20)

from where we see that Ω 4
1 should be an even function.
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D.5 Expansion of q1(u) at the origin

As discussed in the end of Sec 35.2, to demonstrate that the Schrödinger equation is

encoded in the QSC we need to compute the expansion of q1(u) at the origin up to the

term linear in u. Let us show how this can be done.

On the one hand, from the 2nd order difference equation (35.5) on q1 we find that

q1(0) and q′1(0) are related to its expansion at u = −i:

q1(u) =
4ĝ2

(u+ i)2
q1(0) +

4ĝ2q′1(0)− 2q1(0)Ω

u+ i
+O((u− i)0) . (D.21)

On the other hand, we can compute the expansion around u = −i using the expression

(35.20) for q1 in terms of F (z). In that expression the singularity of q1 at u = −i arises

because the integrand is singular when z = i. In the vicinity of this point F (z) is a linear

combination of two solutions of the the Schrödinger equation, one of which is smooth at

z = i and the other one also includes terms of the type (z − i)n log(iz + 1) with n ≥ 1.

Solving the equation close to this point we find

F (z) = − iC
2ĝ2

+ C(z − i) log(iz + 1) + iC2(z − i) + . . . , (D.22)

where the real50 constant C2 comes from the smooth solution and dots stand for more

regular terms. Let us also note that the expression (35.20) is not applicable directly for

Im u < 0 as the integrand is too singular near z = i. However, as we need only the

coefficients of the double and the single pole at u = −i in q1(u), we can modify (35.20) in

a way which ensures convergence of the integral without changing these two coefficients:

2

∞∫
i

dz
e−iΩ/2

z2 + 1

(
z + i

z − i

)iu [ iC
2ĝ2

+ e−i
z−Ω

2

(
− iC

2ĝ2
+ C(z − i) log(iz + 1) + iC2(z − i) + . . .

)]
.

(D.23)

We subtracted a part proportional to the integral

2

∞∫
i

dz
1

z2 + 1

(
z + i

z − i

)iu
=

1

u
, (D.24)

which does not affect the two coefficients we are after. From (D.23) we now find

q1(u) = −2iCe−
iΩ
2

(u+ i)2
−
e−

iΩ
2

(
− iCΩ

2ĝ2 − 2iπC − 2C − 2C log 2− 2iC2

)
u+ i

+O((u−i)0) . (D.25)

Comparing this with (D.21) we get

q1(0) = − iCe
− iΩ

2

2ĝ2
, (D.26)

50One can show that C2 is real using the fact that F (z) is a real and even function.
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q′1(0) =
e−

iΩ
2

(
4ĝ2 (iC2 + C(1 + iπ + log 2))− iCΩ

)
8ĝ4

. (D.27)

This finally allows to construct the combination e2πuq1(u)q̄1(u) which we need. We observe

that C2 cancels out and we find

e2πuq1(u)q̄1(u) = − C
2

4ĝ4
− C2Ω

8ĝ6
u+O(u2) , (D.28)

which is the key result used in (35.31) in the main text.

D.6 Numerical data

Here we present a part of our numnerical data for the quark–antiquark potential Ω at

finite coupling g with zero twist θ = 0. While the accuracy might vary slightly, we expect
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all digits to be correct (with uncertanity in the last digit).

g Ω(g) g Ω(g)

0 0 0.05 0.02937069654776

0.075 0.06265474565224 0.1 0.10511713720337

0.125 0.15465836443567 0.15 0.20955607216466

0.175 0.26845318866584 0.2 0.330312294925133

0.225 0.39435828555165 0.25 0.4600215248401101992

0.275 0.5268878004652301086 0.3 0.5946574683022822222

0.325 0.6631138101939375140 0.35 0.7320994342456940408

0.375 0.8014991401020814198 0.4 0.8712277052055592640

0.425 0.9412212786455914103 0.45 1.0114313519742950991

0.475 1.0818205391585539063 0.5 1.1523596132795935855

0.525 1.2230254118796313025 0.55 1.2937993424631526624

0.575 1.3646663040854278314 0.6 1.4356138993330072537

0.625 1.5066318508313724359 0.65 1.5777115633938239593

0.675 1.6488457911511407735 0.7 1.7200283813289496328

0.725 1.7912540747152853534 0.75 1.8625183485921063555

0.775 1.9338172918626574100 0.8 2.0051475048695944173

0.825 2.0765060183502537912 0.85 2.1478902273706390145

0.875 2.2192978370894877695 0.9 2.2907268179434612004

0.925 2.3621753683925865485 0.95 2.4336418837756454947

0.975 2.5051249301358780128 1. 2.5766232221146891288

1.025 2.6481356041939115734 1.05 2.7196610347092241265

1.075 2.7911985721684911266 1.1 2.8627473634963918184

1.125 2.9343066338961908685 1.15 3.0058756780749462488

1.175 3.0774538526229463147 1.2 3.1490405693740687669

1.225 3.2206352896028680533 1.25 3.2922375189379219065

1.275 3.3638468028903889215 1.3 3.4354627229126975867

1.325 3.5070848929154719081 1.35 3.5787129561817286982

1.375 3.6503465826264772085 1.4 3.7219854663574488362

1.425 3.793629323499052523 1.45 3.865277890247007235

1.475 3.936930921125622182 1.5 4.008588187423520918
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