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Résumé

Au moyen d’une transformation binomiale involutive dans ’espace des suites & va-
leurs complexes, on définit un nouveau produit dénommé « harmonique » en raison
de ses remarquables propriétés a I’égard des sommes harmoniques. La transformation
d’Euler des séries permet de déduire de ces propriétés d’harmonicité de nouvelles et
remarquables identités.

Abstract

By means of an involutary binomial transformation on complex sequences, we de-
fine a new product called "harmonic" because of its remarkable properties towards
the harmonic sums. The Euler’s series transformation allows to deduce from these
properties some new and remarkable identities.
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Introduction

Dans l'espace CN* des suites & valeurs complexes, on considére la transformation
linéaire D associant a toute suite a = (a(1),a(2),a(3),---) la suite D(a) définie par

n

D(a)(n+1) = Z(—l)k (Z)a(k + 1) pour tout n > 0.
k=0



L’opérateur D est un automorphisme involutif du C-espace vectoriel CN', c’est-a-dire
a = D(D(a)).

Formellement, les suites a et D(a) sont liées par la relation d’Euler :

> Dl@)(m)z" = =3 alm)(—7)"-

n>1 n>1

. - . . 1 .
La relation précédente montre en particulier que la suite harmonique n — — est inva-
n

1
riante par D. En notant N cette suite, on peut donc écrire

Si D(a)D(b) désigne le produit de Hadamard (i.e. le produit terme a terme) des
suites D(a) et D(b), on définit un nouveau produit dans CY', noté x, par la formule

a b= D(D(a)D(b)).

Il en résulte (par involutivité de D) que D(ab) = D(a) x D(b). Muni du produit
X, l’espace vectoriel CN" est une C-algebre commutative, associative et unitaire (mais
non-intégre), ’élément unité étant la suite o9 = (1,0,0,...) = D(1) ou 1 est la suite
(1,1,1,...). Une suite a est inversible pour le produit X si et seulement si D(a) est
inversible pour le produit de Hadamard (i.e. D(a)(n) # 0 pour tout n).

Une expression explicite du produit a x b est donnée par la formule suivante :

(axb)(n+1)= Z (—1)F (Z) (?) alk+1)bn+1—-1) (n>0),

0<i<k<n

qui permet de le calculer pour de petites valeurs de n; on obtient ainsi

(@ b)(1) =a(1)b(1),

(a X b)(2) = a(2)b(1) + a(1)b(2) — a(2)b(2),

(a % b)(3) = a(3)b(1) + a(1)b(3) + 2a(2)b(2) — 2a(3)b(2) — 2a(2)b(3) + a(3)b(3)
etc.

Le produit x posséde des propriétés remarquables vis-a-vis des sommes harmoniques
qui justifient sa dénomination de produit harmonique. On démontre (Théoreme 2) la
relation suivante : pour toute suite a, on a ’identité

<]17 X a> (n) = %(a(l) +a(2) + - +a(n)).



De cette propriété d’harmonicité découlent plusieurs applications remarquables. On ob-
tient notamment (Théoréeme 4) la formule suivante :

>

k—1
n>ny>e>n>1 L Tl m=1 m

alng) = 3 (17! (”) —L_D(a)(m)

qui s’applique a toute suite a et pour tout entier k£ > 1. Dans le cas particulier ou a est

la suite harmonique ~ on retrouve la classique « formule de Dilcher » (cf. [2], [3], [5]) :

T n(—l)%l(i)ﬂik,

n>py>een>1 M e T

dont on donne une formulation plus générale (Corollaire 8) .
On introduit les nombres

SH@m= Y am)

n>ny > on>1 L Tl

qui apparaissent comme une généralisation naturelle des nombres harmoniques c§f) de
1
Rota et Roman (cf. [9], [10]) : on a en effet la relation F) = S(k)(ﬁ)(n). Par transfor-

mation d’Euler, on obtient la relation

D(a)(n) , Lok z
2. == 5P @) (—)"
E 2 -
=1 n 1 n z—1
: < . 1 .
qui permet notamment, dans le cas o1 a est la suite n — 7(2 12 d’étendre une formule
n—

de Ramanujan ([1], chapitre 9, Entry 34) pour la constante de Catalan (Exemple 23 d)).

2 Préliminaires : Opérateurs dans ’espace des suites

2.1 L’isomorphisme ¢

Notation. Le C-espace vectoriel CN des suites a = (a(1),a(2),a(3),...,a(n),---) a
valeurs dans C est noté £*.

Définition 1. Si C[[z]] désigne l'espace des séries formelles, on a un isomorphisme
naturel :

o & — C[[7]]
défini par



Définition 2. Les opérateurs sur £* se transforment en opérateurs sur C[[z]] via l’iso-
morphisme ®. Plus précisément, si U désigne un opérateur sur £*, il lui correspond
lopérateur u sur C[[z]] défini par la relation

U =ud & u=0Ud "
que 'on appelle I'image de U. On a donc le diagramme :
g Lo e
T@-l l@
Clle]] —— C[[]]
L’image de l'opérateur I d’identité sur £* est notée Id.

Exemple 1. a) La suite ¢ définie pour k > 0 et n > 1 par

1 sin=k+1
5k(”)={

0 sinon

vérifie la relation

Sk

D)) = o
On a dg :=(1,0,0,...),601 := (0,1,0,...), etc.
b) La suite 1 := (1,1,1,...) vérifie &(1)(z) = €*.

c) La suite N := (1,2,3,...) vérifie la relation

n
B(N)(2) = 3 (n+1) "5 = z¢* + ¢ = (1 + 2)e”.
= n!
d) Pour « € C, la suite géométrique oV ! := (1,a,a?,a3,...) vérifie la relation

BN N (2) = > o e,

=0 n!
1 111
e) La suite N = (1, LA .) vérifie la relation
1 1 2" 2" 1
FESIE IS I S Y
N nZOn—i—ln! nZO(n+1)! z

1
Dans la suite de I'article, on désignera la suite N sous le nom de suite harmonique.

Notation. Si a et b sont deux suites dans £, on note ab la suite définie par

(ab)(n) = a(n)b(n) .

On a en particulier : 1a = a et dya = a(k + 1) pour tout £ > 0. Muni de ce produit
(appelé produit de Hadamard), £* est une algébre commutative, associative et unitaire
notée A. L’élément unité de A est la suite 1.



2.2 Les opérateurs L et R

Définition 3. L’opérateur L de décalage a gauche sur £* est défini par
L(a)(n) = a(n +1),
autrement dit .
(a(1),a(2),a(3),...) — (a(2),a(3),a(4),...) .
L’image de L est I'opérateur de dérivation formelle 9, car on a
o1 Z2
i a2)+a(3)z +a(d) = +--- = 0P(a)(2).

O(L())(x) = Y a(n+2)° o1

n>0

Définition 4. L’opérateur R de décalage a droite sur £* est défini par

aln—1) sin>1

R(a)(n) = {

0 sin=1,

autrement dit
(a(1),a(2),a(3),...) 25 (0,a(1),a(2),a(3),...) .

La suite R(a) = (0,a(1),a(2),---) est notée (0,a). L’'image de R est opérateur d’inté-
gration formelle [, car on a

Zn+1
P(R(a))(2) = 3 afn +1) g = a(1)z +a(2) = (o
n>0

Remarque 1. On a la relation LR = I, mais on notera que RL n’est pas I'identité :
(a(1),a(2),a(3),...) 7 (0.a(2),a(3), a(4),...) .

2.3 Les opérateurs D et S

Définition 5. Soit V' : £* — C le morphisme d’évaluation défini par

Son image est I'application v : C[[z]] — C telle que v(®(a)) = ®(a)(0).
L’opérateur D : £* — E£* est défini par

D(a)(n) =V ((I - L)""a) = v ((1d - 9)"'®(a)) ,

c’est-a-dire

M=

D(a)(n) _ (_l)k—l (Z: 1) a(k) pour tout n > 1,

k=1



ou encore

D(a)(n+1) = i(—l)k (Z)a(k + 1) pour tout n > 0.

k=0
On obtient ainsi
D(a)(1) = a(
D(a)(2) = a( ) a(2)
D(a)(3) = a(1) — 2a(2) + a(3) .

Remarque 2. On définit dans [3] une version "continue" de 'opérateur D dans un cadre
différent.

Proposition 1 (Relation entre D et la transformation binomiale). Soit T" la transfor-
mation binomiale définie sur £ = CN par

T(a)(n) = i(—l)’f(’;)a(k),

k=0
et m: & — £* la projection naturelle :

(a(O),a(l),a(Q),a(3), o ) - (a(1)7a(2)7a(3)’ o ) :

On a la relation

D(x7(a)) = a(0)5; — 7 (T(a) &
Démonstration. On a pour n > 1,
1 - n—1 n n
nD(N kz:; 1( 1) ka(k) =— kZ::l(—l)k (k) a(k) = —T(a)(n) + a(0).
O

Proposition 2 (Image de D). On a la relation

@ (D(a)) (2) = e*®(a)(-2), (2)

autrement dit, 'image d de lopérateur D est telle que pour tout f € C[[z]],
d(f)(z) = e f(==).
Démonstration. On a
® (D = Z ( > a(k + 1)

n>0 k=0
k n—k

—ZZ k:+1k'( i

n>0 k=0

_Z Z (k+1)( k

= Uiz
=e*P(a)(—2).



Corollaire 1. L’opérateur D est un automorphisme involutif, autrement dit,
D=D"
Démonstration. Pour montrer que D = D!, il suffit de montrer que d = d~!. On a

d(f) =g & e f(=2) =g(2) & f(=2) =€ 7g(2) & f(2) = ’g(=2) & [ =d(g) .

Exemple 2. a) D(1) =y, D(N) =69 — 01, D(6;) =1 — N.

b) On a vu que ®(aN=1) = 2%, 1l en résulte par (2) que D(a’¥"1) = (1 — )V~ En

N-1

particulier la suite (5) est invariante par D.

1 1
¢) On a vu que (D(N) = —(e* —1). 1l en résulte par (2) que la suite harmonique est
z

invariante par D : .
D(N) =N

Proposition 3. Pour toute suite a, on a

DL(a) = (I — L)D(a). (3)
Démonstration. On a

®(DL(a))(z) = e2®(L(a))(=2) = e*0P(a)(—2) = *®(a)(—2) — d(e"P(a)(-2)),
d'oa DL=D— LD = (I —-L)D. O
Définition 6. L’opérateur de sommation S : £¥ — £* est défini par
S(a) (n) = Z a(k) .
k=1

Exemple 3. 1) S(dp) =1,5(1) = N.

1
2) S(aV 1) = ——(1 —a¥) pour a # 1. En particulier,

11—«
S((-n)Nh = %(1 + (-1)VY =(1,0,1,0,...).

Proposition 4. L’opérateur S est un automorphisme d’inverse S~! =T — R.

Démonstration. On a

b(n) = S(a)(n) < a(n) =b(n) —b(n — 1) pour n > 1 et a(l) =b(1).



1 1
Notation. Onlpose H = S(N)’ 0 = S(m), et pour k > 2, H®) .= S(W> et
k .
O( ) S(m) avec .
1 1 1 ot 1 . 1 1
Nt N N 2N —-1)F" 2N -1 2N -1
—_——
k k
Pour n > 1, on a donc
Hin) =Y 1. On) = Y U =3 g5 0% = 3
k=1 k=1 k=1 k=1 (2k —1)
Exemple 4. Les relations
Z (n+1)H(n) —n
et
" H(k 1
> = g+ )
se démontrent facilement par récurrence; elles se traduisent par
S(H)y=(N+1)H—-N
et 1 1
—H)=-(H*+ HY).
S(s:H) = 5(H + H®)
Proposition 5. On a la relation
O(S(@)(2) = V(a)(2) — ¢ [ ' Ba)(~)t. @
0

Autrement dit, 'image s de S est 'opérateur Id — d [ d.

Démonstration. On alarelation (L—1)S = L qui se traduit par (0—1d)®(S(a)) = 0®(a).
En résolvant 1’équation différentielle (0 — Id)®(S(a)) = 0®(a), on obtient

B(S(a))(2) = B(a)(2) + e / et (a)(t)dt = B(a)(z) — e /0 el (a)(—t)dt .

0

Proposition 6. Pour tout entier naturel p, 'automorphisme D.SP est involutif :
DS? = S7PD = (DSP)™!

En particulier,
DS=S"'D=(I-R)D



Démonstration. Le cas p = 0 traduit I'involutivité de D. On a vu que I'image s de .S est
Popérateur Id — d [ d. On en déduit que

S=I1-DRD.
Dot DS =D —RD = (I — R)D = S7'D = (DS)~!. On procede alors par récurrence
sur p > 1 en écrivant que DSPT! = DSPS = §~PDS = S PS~1pD = S-(+U D, O

1
Exemple 5. Comme a = N est invariante par D, on en déduit que

1 1 1 1
D(H) = (I - R)(N) =N (0, _N) = do + (0, —m)>
c’est a dire .
—— sin>1
D(H)(n)={ n(n—1)
1 sin=1.
Proposition 7. Pour toute suite a € £*, on a la relation
1 1
D — = —D(a).
(§5@) = 3D@ )
Démonstration. Comme S™' =1~ R,ona s !=1Id— [, dou
z 1 n
(57 @)(e) = 20)e) — [ B0t = dle(z) = 3 DT
1

= ®(a)(z) — z@(ﬁa).

En remplagant a par S(a) dans la relation précédente, on obtient alors I’égalité
1 ®(S(a)) — ®(a)
a)) = .

o+ 5(a)) = 25
D’apres (4), on a donc
@(%S(a)) _ —g /0 e (a)(—t)dt
D’ou
(D( @) = ; [ eba)(-t)dt =~ ["B(Dl@) @)t = o3 D(@)

1
Exemple 6. Par (5) appliquée a la suite N on déduit

1 1 1 11 1
D(NH> A e

d’ou aussi



2.4 Formule de Vandermonde

Notation. Pour a € C, on note (a), =1 et pour n > 1,
(o), =ala+1)...(a+n-1).

On note (a)  la suite n — (a),,. On pose N!:= (1),.

Proposition 8. Pour a € C et pour § € R —{0,—1,—2,...}, on a la relation

L)) 1 1@-a)y
D(N(B)N> N N By (6)
En particulier, pour o € R — {0, -1, -2,...},
(N=-D!\ 1T (a=1y _ 1
D<(0‘)N>_N N(a)]\],V_N+a_1' (7)

Démonstration. D’apres la formule de Vandermonde (cf. [7], p. 25), on peut écrire

- k(T %_ - (@) (=n), _ (B—a),
2.(-1) <k>(6) X W,

k=0 kE k=0

La relation (6) s’en déduit alors par (1). O

Remarque 3. La formule de Vandermonde peut s’écrire plus simplement

(@)y_1)  B—a)y,
N <(ﬁ)N1> B (5)1\771 ' (8)

Exemple 7. En appliquant (7) avec o = 3 il vient

D (N 1 1 12 2
N@2N) ) N NN-1/2 2N -1°

En posant

on en déduit
1 1 22N—1

D2N—1):N(TV)’ ©)

d’ou aussi par (5) :

1 1 1 22N-1
D<N0> “ 3Py 7 Ny

10



3 Le produit harmonique
3.1 L’algébre H = (£*, x)
On rappelle que A désigne I’algebre (£*, -) munie du produit de Hadamard des suites.
Définition 7. On définit le produit harmonique a X b de deux suites a et b dans £* par
a X b:=D(D(a)D(b)).

Comme D = D~!, on déduit immédiatement de la définition précédente les deux relations
fondamentales suivantes :

D(a x b) = D(a)D(b), (10)

et
D(ab) = D(a) x D(b). (11)

Exemple 8. 1) Ona 1 x a = a(1)1, car
D(1 ® a) = D(1)D(a) = 6D(a) = D(a)(1)d = a(1) = a(1)D(1).
2) Ona N x a=a(2)1+ (a(1) — a(2))N, car
D(N)D(a) = (6 — 61)D(a) = D(a)(1)6 — D(a)(2)81 = a(1)D(N) + a(2)D(1 — N).
3) Ona oVl w BV = (a+ B —aB)NL, car
DN BN = (1= )N (1= gV

=(1—(a+8-ap)"!
=D((a+B—ap)"™).

4) Enfin, par la formule de Vandermonde (8), on a

(Vn-1 (B)n-1 a (Vn-1

(Y= 8)n_1 v (B—a)y_4 (v —a)y_1 .

Proposition 9. L’espace (£*, 1) est une C-algébre commutative, associative et unitaire
notée H, isomorphe a l'algebre A. L’élément unité dans H est la suite dp.

Démonstration. La bilinéarité du produit x résulte de la linéarité de D et de la bilinéarité
du produit de Hadamard. De plus, il résulte immédiatement des propriétés (10) et (11)
que Vopérateur D réalise un isomorphisme d’algebre entre les C-algebres A et H.

Il en résulte que H hérite des propriétés d’associativité et de commutativité de A.
En particulier, I’élément unité de ‘H est I'image de 1 par D, c’est a dire . O

Remarque 4. L’algebre H contient des diviseurs de zéro. On a par exemple

1I><1(51:O.

11



Corollaire 2. Une suite a est inversible dans H si et seulement si la suite D(a) est
inversible dans A (i.e. D(a)(n) # 0 pour tout n). Dans ce cas, 'inverse harmonique de
a est donné par la formule

2D = 1
D ( = (a)) . (12)
Démonstration.
0w b =08 D(a)D(b) = D(y) = 1 < D(b) = Déa) .

Exemple 9. a) Les suites 1 et NV ne sont pas inversibles dans H.

b)
(+) b= s,

(aNfl)N(fl) _ (ai 1)N—l .

3.2 Puissances harmoniques k-iémes

Définition 8. Pour toute suite a € £*, on définit pour tout entier k > 0, la puissance
harmonique k-iéme de a notée a** par

a0 =35y et a**tD = g%k 1 q.

Par récurrence sur k, on en déduit immédiatement la formule suivante :

En particulier, si a est invariante par D, alors a** = D(a*).

Exemple 10. a)

N =D((6o—01)") =1+ (-1 -N) =

N si k est impair
2— N sik est pair.

12



c¢) Soient les nombres de Stirling de deuxieéme espece

Sty =L 3 (—1)m—k<”>mk.

n! = m
On a
k
(61)% =" nlS(k,n)é, ,
n=0
car
(61)"* = D((-1)*(N - 1)F)

et

3.3 Image de H dans C|[z]]

Théoreme 1. Pour toutes suites a et b, on pose

(@(a) ® ©())(x, y) := P(a)(x)P(0)(y)-

On a alors

D(a x b)(2) = Y (vz ®vy)(0r + 8y — 9:0,)" ((a) ® (b)) =
n>0

1l en résulte que pour tout entier n > 0,

(@axb)(n+1)= > Cklalk+1)b(1+1)
0<k<n
0<i<n
ot les nombres CF! sont définis par lidentité

(X+Y -XY)"= Y O XMyl
0<k<n
0<i<n
Démonstration. On a

®(a x b)(2) = ®(D(D(a)D(b)))(2) = e*@(D(a) D(b))(—2)

et
D(a)(n+1)=v((Id—0)"®(a)) avec v(P(a))=P(a)(0)=ua(l).

D’ou

(D(a)D(b)) (n+1) = (vz @ vy)[(Id = 9;)(Id = 8,)]" (®(a) ® (b)) (z,y)

= (02 @ vy)[Id = (95 + 9y — 0:0,)]" (2(a) ® ®(b)) (2, y)-

13



On en déduit que

® (D(a)D(b)) (=2) = (va @ vy) }_ [1d = (0 + Iy = 0:0,)]" (2(a) @ (1)) (-1)" —
n>0 ’

= ¢ (vg @ 0,)el % TR (B(a) @ B (D)) .
Il en résulte que

D(a M b)(2) = (v @ v,)ePe T =%0)2P(q) @ B(b)
= 3 (00 @ )00 49, ~ 220" (2() 8 20) z

Par identification du terme général, on en déduit que
(a2 B)(n+ 1) = (0, ©,) (s + 8, — 0.0,)" (B(a) ® B(b))
= Z (vz @ vy) Oﬁ’lalg(b(a)agl/@(b)

0<k<n
0<i<n

= > Chla(k+1)b(l+1)
0<k<n
0<I<n

avec
(X+Y-XV)"= Y CPlxtvt

0<k<n
0<i<n

Corollaire 3 (Expression explicite du produit harmonique).

(ax b)(n+1) = O (B e+ Db+ 1-1) (0> 0).
k) L

0<i<k<n
Démonstration. En développant (X +Y — XY)" par la formule du binéme et en iden-
tifiant le coefficient de X*Y!, on vérifie que

n!

(n—k)!n—-01+k—n)

Cchl = (—1)kti-n sin <k+1, et C& =0 sinon,

d’ou

(axb)(n+1)= > Ckla(k+1)bl+1)

0<k<n
0<I<n

|
= _q)kHn n! i
0<zk;n( ) (N—k)!(n—l)!(l+k_n)!a( +1)b(l +1)
0<i<n
k+i>n

= 2 (—1>k—l<z> (’;) a(k +1)b(n —1+1).

0<I<k<n

14



Corollaire 4. On a la relation

®(a m b)(2) = vy (®(a)[(Id = 9y)2]@(b)[y + 2]) . (14)

Il en résulte que
BN M a)(2) = e ®(a)((1 — )2), (15)

ce qui se traduit par I'identité

n — k
(@ U wa)(nt1)=a"y <k> <1 > alk+1). (16)

Démonstration. On a

O t0y=0:00)2p () = 914=00)2p ()l = &(a)[x + (Id — 9,)z]e!%)*
donc

B(a x D)(2) = (02 © v,)(a)[z + (1 — 8,)2]e @ ()
= (vz ®@ vy)®(a)[z + (Id — 0y)z]P(b)[y + 2]
= vy (®(a)[(Id — 9y)z]P(b)[y + 2]) -

On a vu que ®(a1)(z) = e** donc
("™ wa)(2) = vy, (®(a)[(1d — 9,)2]®(a)y + 2]
=, (ea(ld—ayV@(a) [y + z})
= vy, (e (a)[y + 2]
— e} (_nyla%(a)(z)

n>0
=e¥P(a)((1—a)z).

Exemple 11.
(3) wam+rn=g > (Z)a(k—i— ).

Proposition 10 (Caractérisation des suites invariantes par D). Une suite a € £* est
invariante par D si et seulement si elle peut s’écrire sous la forme

1 N—-1
a= (> X b
2
ou la suite b € £* est telle que b(2k) = 0 pour tout k > 1.
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Démonstration. On a
D(a) =a < ®(D(a)) = ®(a) & *®(a)(—2) = ®(a)(2).

Posons ¢(z) = e~ 2®(a)(z). On a donc D(a) = a < ¢(2) = ¢(—z). Dans ce cas, ¢ peut
toujours s’écrire
6(2) = @(b)(%) avec b(2n) = 0 pour n > 1,

et on a alors

z 1. .-
®(a)(z) = e2g(2) = e22(b)(5) = B((;)" ' 1 b)(2)
]
Exemple 12. a) La suite harmonique s’écrit
1 Lin-1
e (5) X b
1 1 1
b=— x (—1)V1=(1,0,-,0,-,.
avec 7 X (—1) (1,0, 30 )
b) La suite

1 111
= — 1 = ]_ —_— —_— _— DY
2(50+ ) (327272, )
est invariante par D. Elle s’écrit
1
a= ()" % (1,0,1,0,---).

Remarque 5. On comparera le critere d’invariance précédent avec celui donné par Sun
([11] Corollary 3.3 (a)).

Remarque 6 (Sommation d’Euler des séries). Pour ¢ > 0, on définit la suite al® par

oD (n 4+ 1) anZ() alk+1) (n>0).

D’apres [6], la série 3, - a(n) est dite (E, ¢) sommable si la série >, -4 a9 (n) converge;
on pose alors

(%%) = @
a(n) == —— D(n+1).
n>1 q+ 1

D’apres (16), on a linterprétation suivante de a(q) :

a9 =N xa avec a:L.
qg+1

On obtient ainsi une reformulation du théoreme de Hardy ([6], p. 178-179) :

Théoréme (Hardy). Sila série ), ~, a(n) est convergente alors elle est (E, q) sommable
et on a

1 +oo q N1 _+oo
1 2 e = 3 atn).

16



3.4 Harmonicité

Théoréme 2. Pour toute suite a € £*, on a la relation

1 1
~ a—NS(a). (17)
p . 1 1
Démonstration. 11 suffit de montrer que D(N X a) = D(NS(a)). Or, par (5), on a
1 1 1 1
D(NS(a)) = ND(G) = D(N)D(a) = D(N X a). O
Corollaire 5. Pour tout entier £ > 1,
1 1 1

Démonstration.
1 1 x(k+1) 1 1 Xk 1 1 Xk 1 1
D) = (N) =N <N) = NS((N> )= §oPFR)-

Exemple 13.

1 N
Zx =D ~H
N ( ’

NPl =¥
1\ 1 1,1 1
(%) =Dlaa) = 5 Sy H) = 5 (B2 + HO)
Notation. Pour tout p € R — {—1,—2,---}, on note p! =I'(p + 1) ; on note I'(N + p)
la suite n +— I'(n + p) . On pose

_ I(N+p)
W= Trany

Pour p entier naturel, on a (N), =1, et pour p > 1
(N),=NN+1)---(N+p-1).

Le théoréme 2 se généralise alors de la maniére suivante :

Théoréme 3. Pour toute suite a € E* et tout réel p # —1,—2,—-3,---, on a la relation
Ma= S al, (18)
(N)p-i-l (N)p+1 ( p!
ce qui, pour p entier > 0, se traduit par
p! p! " k(k+1)...(k+p—1)
X a)(n) = a(k).
(N(N+1)...(N+p) () n(n+1)...(n+p)k§1 p! (k)

17



Démonstration. En appliquant (7) avec p = a — 1, on obtient

L _(N-Dt TNl
N+p' (p+ly T(N+p+1)  (N)

D(

par conséquent,

Posons alors

fon(e) = o (Nip ()))(2)
On a !
fo1(2) = € ;)(D(“))(” Uy 1 +p (_Ti)
et donc e
e 2P fori(2) = ) (D(a))(n + D=Y* +1 +p : ;I:Jr

Par conséquent,
z t’n
e () = [0 Y (D(@) i+ (-1 e
0 !
= /0 e 'tP Z a(n + 1)%dt
_ / e~ HPD(a) (£)dt .
0

On obtient donc

fon(e) = [ trata) by,

Par le changement de variable u = tz, on a aussi

1
fra(2) = [ e a)(uz)du
k 1 1

z
=) ——a k+1/ 1 —w)ul ™ du
RN M)

zkzl . p+k)!
(p+k+1+1)!

2" n! Up+k)!
=y = 2k + 1
zn: ! T )(p+k+l+1)!

—y e PEDL ).

18



Or,
1 n+1

k(k+1)
(n+1)...(n+1+p) f Z *

zn: Z:Ma(k_l_ 1) =

TETER (k +p —1)a(k)
k=0 :

ce qui montre que

p! _ 1 2 — P V),

Exemple 14. Pour p=1,0n a

1 1
NN+ TN

c’est a dire

On en déduit que

(Ni—lwa)( - n+1zn+17 (£).

Corollaire 6. Pour toute suite a € £* et pour tout entier p > 0,

1 1
D <(N5(a)> = S (D@, (19)

)p+1 pt+1

Démonstration. Par récurrence sur p. Pour p = 0, c’est la formule (5). En écrivant
(N>p+1 = (N +0p) (N)p, on obtient

1 1 1
D (W)MS(Q)) =D(,) % D <(N)pS(a)>

19
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Exemple 15. a) Pour a = N et p=1,
? (5o m) ~ v
N(N+1)) NN+1)°
1
b) Poura:Netp:Z
( H ) B S(H) _ " 1
N(N+1)(N+2)) NN+1)(N+2 NN+2) N+1 N+2°
¢) Poura= —etp=1,
H®) 1 1 H? H®)
D = S(=H) = + .
NN+1)) NN+1°'N 2N(N +1) ' 2N(N +1)
Corollaire 7. Pour tout réel p # —1,—2,---, on a
1 p! p! p! 1
D( ) = X = S( ).
(N + p)2 (N)p—i-l (N)p+1 (N)p+1 N +p
Démonstration. Par (18),
ptooopto 5<(N)P p! ); P! ( ! )
Npyr - (N)pn - (N)pn \ 28 (N)py ) (N)pyy N +p

Exemple 16. a) Pour p =1,
1 1 1 H 1
D = = —
((N+1)2) N(N+1)S(N+1) N(N+1) (N+1)2’

ce qui peut se réécrire :

H 1 1

N(N+1) (N+1)?2 +D((N+ 1)2)'
b) Pour p = ——,
TR S G T
-1 T, N=L)
ce qui peut se réécrire :
1 22N—1
D( ) = O,
@N-12" " N ()
c’est-a-dire
1 22n—1 n 1
D( = (cf. [1] p. 293 (34.3)).

eN -2 T -
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Remarque 7. Plus généralement, on peut montrer que, pour tout entier £ > 1, on a

1 N!
D((N +p)k+1) T Np+ 1)NPk( P

avec, pour 1 <m < k,
n
= p+J

ou les P(Xi,..., X)) sont les polynémes de Bell modifiés (cf. [3], [5]) définis par la
fonction génératrice

exp( Y X = Pu(X1,..., Xg) 2"
m>1 k>0

En particulier, pour p = 0,

1 1
1
et pour p = 3
! 2 @ ®)
D( ) = P.(O0,0%,...;0%)).
(2N — 1)k+1 N(QJQV)

4 Les sommes harmoniques

1
M oa = NS(a). Cette propriété

1
On rappelle la propriété d’harmonicité (17) : N

justifie la généralisation suivante.

Définition 9. Soit une suite a € £*, on définit pour tout entier naturel k, la somme
harmonique k-iéme de a notée S*)(a) par la formule

(1) SV lS(’ﬂ( ) (20)
N a= a) .
Exemple 17.
1 1\ *(E+D) I\* 1 1 1
R G - (= — = — gk
D) (N) (N) N =N (21)
D’ou 1 1
k
ce qui se traduit par
1 1 o n\ 1
(k) (— — __ — _1\ym—1 -
SR = nD()m) = 32 (-1 (m> —
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Plus généralement, on a l'identité suivante,

Proposition 11. Pour toute suite a € £* et pour k > 1,

s<k><a><n>=i<—1>m1(”> - D(a)(m). (22)

m | mk—1
m=1

Démonstration. D’apres (20) et la définition du produit harmonique,

xk
%S(k)(a) - (]b) X a = D(ﬁD(G))

d’ou

ce qui se traduit par

On va a présent donner une autre expression des sommes harmoniques.

Proposition 12. Pour toute suite a € £*, on a S (a)(n) = na(n) et la relation de
récurrence :

SED gy ) = 3 %s“f) (a)(m) pour k > 0. (23)
m=1
Il en résulte que S (a) = S(a), et pour k > 1,
1
SP@m) = > = ———alm). (24)

n>ny>oen>1 L Tl

1
Démonstration. On a §y X a = NS(O) (a), c’est-a-dire S(O(a) = Na. Pour k > 0, on

peut écrire par (17) et (20),

x(k+1) xk xk
Loty (1) wam b () ) = B ((£) " )

On en déduit la relation de récurrence

Sk () = § ((;f) “ X a) =S (Jifs(k)(a)>

qui se traduit par (23). La formule (24) s’en déduit aussitdt par récurrence. O
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Exemple 18.

1
(0) - (1) - (2

RV SN Der SR )
~) = S(H) = 5(H? + H?).

Théoréme 4. Pour toute suite a € £*, et pour k > 1, on a l'identité

1 - _1(n 1
Y. —————alm) =Y (-)" 1( )MD(G)(m)- (25)
n>ny > >ng>1 ny...Nkg—1 me1 m)m
Démonstration. La formule (25) résulte directement des formules (22) et (24). O

Corollaire 8 (Formule de Dilcher généralisée). Pour k > 1 et ¢ > 1,

Z 1711%: (_1)m—1<n> 1 Z 1

— - -
n>ny > >ng>1 ny...Nkg—1 me=1 mj/m m>my> e >mg_1>1 my...mg—1
(26)
. . . . . 1 I |
Démonstration. On applique (25) a la suite a = N Par (21),ona D(a) = NS(q )(N)
1
Exemple 19. a) a = N
1 i_ i(_mml(n)H(m)
2 I
et ML TR T m/) mk
1
b) a = m,
S by e
3 - 9
SR (VRN S St m 2mk
) o= 1
“OTON T
5 1 1 z”:( ym 1<n> 22m—1
= —1)ym— Bl
2 b
oy eyl e T 2n; — 1 = m mk(T;")
1
d) a=——-
) a=GN o
5 1 1 B Z”:( 1)m1<n> 22m=10(m)
- o T k(2my
n>ny>-2ng>1 M- M- (2nk - 1)2 m=1 m mk( 77:)
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5 La Transformation d’Euler

5.1 Transformation d’Euler formelle dans C[[z]]

Théoréme 5. Soit a € £*, on a la relation dans C][z]]

S D@)m)" = =3 a(n)(——)". (27)

n>1 n>1 z—1

Démonstration. Par définition de D(a), on a

Y D(a)(n+1)2" ="z Z () (k+1).

n>0 n>0 k=0
Or
n k[T _ k k ny n—k
;Jz Z(—l) <k>a(k¢+1)—2(—1) a(k+1)z Z <k>z
n> k=0 k>0 n>k
=Y (-Dfa(k+1)"(1—2)~*!
k>0
1 z
= > (=1)Fa(k +1)( ¥
1—2 k>0 1-
1
= 1-> a(k + 1)( — 1)k :
k>0
D’ou i
> D(a)(n+1)2" = —=—>"a(k+ 1)( Z
n>0 = z—1
qui est la relation cherchée. O

Exemple 20. D’apres les exemples 15 et 16 a), on a les relations suivantes :

;n(n+1)z”——;n(n+l) 27;( _,;( 2_1)n7
b
) 5 H(n) n -y H(n) oy
a1+ 2) w1t +2) Sinn+1)(n+2)z-1" "
c)
Ly~ (HOP L L HOW) o~ HOw) =
§n21”(”+1)2 +2n§1”(n+1)z __nZI (n+1)( )"
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Corollaire 9. Pour toute suite a € £* et tout entier naturel k, on a l’identité

D(a)(n) 10 z
no_ _ - n. 2
P = - s ) (28)
Démonstration. D’apres (20), on a %D(a) = D(%S(k)(a)). La formule (28) résulte
alors de (27). O

1
Exemple 21. a) En appliquant (28) avec a = N on obtient pour k > 1,

L) = -+ Y L (2 (29)

1 Y opsny>esn>1 e 2 1

ou Lij désigne (formellement) le polylogarithme

Li (2 Z ke

n>1
. 1 .
b) En appliquant (28) avec a = N2 on obtient pour k > 1,
H(n 1 1 Z \n
> k 1 Z ~ — ()" (30)
n>1 " - e T SR L REL LSS B
1
¢) En appliquant (28) avec a = sv 1 o0 obtient pour k > 1,
1 22n 1 1 zZ
9 Z (2ny k1 Z " Z ( )" (31)
25 0Ghn 17 i1 sy s>t M -1 20 — 12— 1
. 1 .
d) En appliquant (28) avec a = m, on obtient pour k > 1,
22n O 1 1 1 z
722 Wyl % —e ()" (32)
n>1 ") nkt e SR RPN (2n —1)2 "z —1

5.2 Transformation d’Euler analytique

Théoréeme 6. Soit une suite a € £*. Si la série y_,,>1 a(n)z" est convergente dans le
disque unité D(0,1) alors la série Zn>1 D(a)(n)z" est convergente dans le disque ouvert
D(0,1) et on a pour tout z € D(0, 3)

—+00

00 P
Y D(a)(n)z" == a(n)(—7)"
n=1

n=1
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n

L’application z — étant involutive, il en résulte que si la série 3, ~; D(a)(n)z

est convergente dans le disque D(0,1) alors la série 3, ~q a(n)z"

le disque ouvert D(0,%) et on a pour tout z € D(0, 3)

est convergente dans

“+o00

2 aln ZD

n=1

)"

z—l

Démonstration. Pour z € D(0,1), posons A(z) = 3720 a(n + 1)2™. On a pour tout
0 <r <1 et pour tout entier £ >0

1 A(u)
a(k+1) = /0(07r) ukt1 du

2

ott C(0,7) est le cercle paramétré par t + re't, avec t € [0,27]. On en déduit que pour
tout entier n > 1 on a

D(a)(n+1) = — /C(Or)(l _ LAy,

2T U U

On va montrer que

"1—i z —l" uiu
> D(a)(n+1)z" = — /C(OT)Z((l )" A(u)~du.

n>0 2im n>0 u
. L. 1
Pour cela, il suffit que la série },,~o(z(1——))"A(u )— soit normalement convergente sur
= u u
le cercle C(0,7), ce qui est le cas si
<[]
z
u—1
) r? r r L
Or, siu € C(0,7), on a p— S C(r2 71 —r2)’ donc — > R On en déduit
r
que si |z] < mOnEE alors on a

nlii Py _ln uiu
> D(a)(n+1)z"" = — /C(OJ)Z( (1= =)"Alu)~d

n>0 2im

-1
- —Z A(w)du.
2im Jeor) uz — 2z —u

n+1

Comme 0 < r < 1, ceci prouve que la série 3, >, D(a)(n + 1)z est convergente dans

1
le disque D(0, 5) D’autre part,

— = Alu) = — Z(ﬁ)?ﬂrl fn(j:z .
n>0




Cette derniere série converge normalement sur C(0, ) si

<
ul=r
z—1
i est 1 i 2 € D( A )
ce qul es e cas s1 2 —_, = ).
4 r2—-1"1—17r2
T2 T T

En conclusion, si z € D( ), alors on a

.
—. —)ND(0 =D(0, ——
r2—1’1—7"2) (’7“—1—1) (’r—i—l

ntl _ z n+1i/ Alu)
> D(a)(n+1)z _Z(z—l) : C(O7T)un+1du

n>0 n>0 2
=— Z )"la(n +1).
n>0 © 1
. e . 1
Comme 0 < r < 1, ceci prouve qu'on a ’égalité dans le disque D(0, 5) O

Par le Lemme d’Abel sur les séries entieres, on déduit du théoréme précédent le
corollaire suivant.

1
Corollaire 10. 1) Si les séries 3,5 a(n)(—1)" et 3,5 D(a)(n)(i)" convergent, alors

on a I’égalité
+00

+o0
3" Dl@)m)(5)" = Yo (-1 a(n).
n=1

n=1
1
2) Si les séries 3,51 D(a)(n)(=1)" et 3=, 54 a(n)(ﬁ)" convergent, alors on a 1’égalité

+oo +oo 1

S (1) D@ m) = 3 alm) (3"
n=1 n=1
Exemple 22. D’aprées 'exemple 20 a), on a (cf. [1] p. 248)

% et

i n—l n
2:: nff)( ) _ 2L12(%) + Lig(—1) = %C(2) ~log2(2).

Corollaire 11. Sila serle > on>1a(n)z" est convergente dans le disque D(0, 1), alors on
a pour tout z € D(0, 3) et pour k > 0,

-3 S5O @) (33)
n=1

En particulier, pour k =1,

> A S S(a) ) () (31)



D
De plus, si les séries Y oo, (Zl(n) et oo S(’C (a)(n)(—1)™ convergent, alors on

a l'égalité
n—1

= (=1) = D(a)(n

Démonstration. Si la série 3°,,51 a(n)2" converge dans le disque D(0, 1), alors il en est

(35)

1
de méme de la série >, 4 ES (K)(a)(n)z". Cela résulte de la relation de récurrence (cf.

(23)) : . L
28k )y = —§(—5®)
et du fait que si une série >, -, b(n)2" converge dans le disque D(0,1), alors il en est

de méme de la série >, ~; —S(b)(n)2". On peut alors appliquer le Théoreme 6 car
='n

k _
1
Exemple 23. a) Poura:N,onaD(a):a, d’ot pour k =1,
o L Hn) 101 1
1) = Lig(2) = =¢(2) — = log?(2)  (cf. [1] p. 24
Sy = Lia(g) = 500) — S log'?) (eF 1] p-249)
et pour k = 2,
(-t &S H(m) 101 53 1 7
= Lig(=) = =(log2)° — =((2)log2 + — f. [1] p. 249).
n; - mgl - i5(5) = 5(1082)” = 5C(2)log 2+ 2((3)  (cf. [1] p. 249)
1 N
b) Pour a = 2,onaD():NH,doupourk:O,
s .1 < H(n) 1
DD =2 G =56,
pour k =1,
> H®(n) & H(n) 1
) = — =((2)1og2 (cf. [1] p. 2
Sy = 5 T = @) — e lom ek (1. 258
et pour k = 2,
o0 — n [e.e]
(=) & HP(m) H(n)
1 122N71
c) Poura:QN_l,onaD(a):NW,doupourk‘zo,

i (_1)n71 _1 o0 on _
Zm—1 245 a(?)

n

% (formule d’Euler : cf. [8]),

28



- 10(n) 1 20 2 .
—1)t =35 = — (formule de Jean Bernoulli : cf. [8]),
nz::l( T T nZ::l n2(?n) 16 ( [8])
pour k = 2,
o~ (DR O0(m) 15 20w G 35
=32 mem — 16082t 5 T 55 £. 4] (2.
nzz:l n mZ::l m 2,; ey 16082t g gt (e 26T,

ou G désigne la constante de Catalan :

o Sy

— (2n—-1)%
Pour k=2et z = ——,
e’} 1 n O(m) 5 00 (_1)7171
> —= > ==> — = ((3) (cf. [1] p. 232).
n=1 "t m=1 m 2 n=1 n? (2n)
p ! D) = 220, don pour k =0
our a = ———=, ona D(a) = -—x— O, dou pour k =0,
(2N —1)? N (QN)

L& 2o,
25T

(formule de Ramanujan pour la constante de Catalan : cf. [1], p. 293-294).
Pour k£ =1,

oo ¢ 1\n—1 0 n n ™
> (120(2)(71) _ % 5 (;)OTEQ) - Zg(3) - 7G (cf. [4] (2.36) et (2.37)),
n=1 n=1 \n
pour k = 2, @)
— ()" &R O®(m) 1 2" On)
XX e axE
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