IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 5, MAY 2025

3693

Entanglement-Assisted Covert Communication via
Qubit Depolarizing Channels
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Abstract—We consider entanglement-assisted communication
over the qubit depolarizing channel under the security require-
ment of covert communication, where the transmission itself
must be concealed from detection by an adversary. Previous
work showed that O(+/n) information bits can be reliably and
covertly transmitted in n channel uses without entanglement
assistance. However, Gagatsos et al. (2020) showed that entan-
glement assistance can increase this scaling to O(vnlogn) for
continuous-variable bosonic channels. Here, we present a finite-
dimensional parallel, and show that O(yrlog n) covert bits can
be transmitted reliably over n uses of a qubit depolarizing
channel. The coding scheme employs ‘“weakly” entangled states
such that their squared amplitude scales as O (V/yz).

Index Terms—Quantum communication, covert communica-
tion, entanglement assistance, square-root law violation.

I. INTRODUCTION

RIVACY and confidentiality are critical in communica-
tion systems [2]. Traditional security approaches (e.g.,
encryption [3], information-theoretic secrecy [4], and quantum
key distribution [5], [6], [7]) ensure that an eavesdropper
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is unable to recover any transmitted information. However,
privacy and safety concerns may further require covertness
[8], [9]. Covertness is a stringent requirement whereby the
transmission itself is concealed from detection by an adversary
(a warden) [10], [11]. Despite the severity of limitations
imposed by covertness, it is possible to communicate O(\/n)
bits of information both reliably and covertly over n classical
channel uses [12], [13], [14]. This property is referred to
as the “square root law” (SRL). The SRL has also been
observed in covert communication over finite-dimensional
classical-quantum channels [15], [16], [17], [18], as well as
continuous-variable bosonic channels [19], [20], [21], [22].
Covert sensing is also governed by an SRL [23], [24], [25].
Other covert models are studied in [26], [27], [28], [29], [30],
and [31].

Proving the achievability of the SRLs discovered so far
involves the following principles. In the finite-dimensional
case, both classical and quantum [13], [14], [15], [17], [18],
a symbol (say, 0) in the input alphabet is designated as
“innocent.” The codebook is generated such that a non-
innocent symbol is transmitted with probability ~ i to
ensure covertness. On the other hand, the innocent symbol
corresponding to zero transmitted power occurs naturally in
the continuous-variable covert communication over classical
additive white Gaussian noise (AWGN) [12], [13], [14] and
classical-quantum bosonic [19], [20], [21], [22] channels.
Maintaining average transmitted power O(!/yr) correspond-
ingly measured in Watts and in the emitted photon number
ensures covertness.

Pre-shared entanglement resources are known to increase
performance and throughput [32], [33], [34], [35], [36]. Gagat-
sos et al. [21] showed that entanglement assistance allows
transmission of O( 4/n log n) reliable and covert bits over n uses
of continuous-variable bosonic channel, surpassing the SRL
scaling (see also [37]). As in the unassisted setting, the trans-
mission is limited to O(}/vx) mean photon number. However,
so far it has remained open whether such a performance boost
can be achieved in communication over finite-dimensional
quantum channels.

The depolarizing channel is a fundamental model that
has gained significant attention in both experimental [35],
[38] and theoretical [39], [40] research. Depolarization may
be regarded as the worst type of noise in a quantum sys-
tem and can also be interpreted as the result of a random
unitary error with a probability law that follows the Haar
measure or, alternatively, a random Pauli error. Furthermore,
the insights on the depolarizing channel are often useful in
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Fig. 1. Entanglement-assisted coding for covert communication over a quantum channel A_,gw. Alice and Bob access entangled resources in systems T4
and T'g, respectively. Message m is encoded by applying the map ]—'(T'ZL 4n to the entangled system T4. Alice decides whether to transmit to Bob (Case 1) or
not (Case 0). A switch connects the channel to the encoder in Case 1 or to a zero sequence [0)*" in Case 0. Alice transmits the systems A" over the quantum
channel. Bob receives the channel output systems B", and performs a joint decoding measurement on the systems B" and T, using a POVM Dpnr,. Willie
receives the output systems W”, and performs a binary measurement to test whether transmission has taken place.

the derivation of results for a general quantum channel [32],
[41, Sec. 11.9.1].

Here, we show that entanglement assistance enables reli-
able and covert transmission of O(+nlogn) bits in n
uses of a finite-dimensional qubit depolarizing channel. The
entanglement-assisted covert communication scheme is illus-
trated in Figure 1. Our analysis is fundamentally different
from the previous works. In particular, we do not encode a
random bit sequence with ~ 1/yn frequency (or probability) of
non-innocent symbols. Instead, we employ “weakly” entangled
states of the form

[Waa) = V1 - |00) + Va|ll), (1)

such that the squared amplitude of this quantum superposition
of states describing innocent and non-innocent symbols is
a = O (Yvn). The labels A; and A correspond to a reference
system and to the channel input system, respectively. The
former can be interpreted as Bob’s share of the entanglement
resource. The idea is inspired by a recent work on non-covert
communication showing that controlling @ € [0, 1] using states
in (1) can outperform time division [42]. To show covertness,
we observe that tracing out the resource system A; from |¢Al A)
results in a state identical to the one in unassisted scenario
from [15] and [17].

The paper is organized as follows. In Section II, the defini-
tions and channel model are provided, including notation, an
overview of the system and coding, and a presentation of the
covert communication problem. The results are described in
Section III, with the main achievability proof in Section IV and
technical details deferred to the appendices. Section V presents
interpretation through energy-constrained communication, and
Section V concludes with a summary and discussion.

II. DEFINITIONS AND CHANNEL MODEL
A. Notation

We use standard notation in quantum information process-
ing, as, e.g., in [43, Ch. 2.2.1]. The Hilbert space for system A
is denoted by H,4. The space of linear operators (resp. density

operators) H — H is denoted by L(H) (resp. S (H)). A
positive operator-valued measure (POVM) {D,,,}ff=l is a set
of positive semidefinite linear operators in L£(7{) such that
Zgzl D,, = 1, where 1 is the identity operator on H.

Given a pair of quantum states p, o € .¥(H), the quantum
relative entropy is defined as D(pl|o") = tr[p(log(p) —log(o)], if
supp(p) C supp(o); and D(pl||o) = +oo, otherwise. In addition,
for a spectral decomposition o = ), 4;P;, let [25]:

log(4;) — log(A;
n(pllo) =y % Tri(p — )Pip — PP}
i#j v

1
+ Z 7, Tillo — IPilp — IP,). 2
Given a bipartite state psp, the quantum mutual information is
defined as I(A; B), = H(pa) + H(pp) — H(pap), where H(p) =
—tr[plogp] denotes the von Neumann entropy for a density
operator p. Furthermore, the conditional quantum entropy is
defined by H(A|B), = H(pap) — H(pp).

A quantum channel is defined as a completely-positive
trace-preserving (CPTP) linear map Ny_p : L(Ha) — L(Hp).
Every quantum channel has a Stinespring representation,
Nag(p) = Trg(VpVT), for p € L(H4), where the operator
V:Has — Hp® Hg is an isometry.

For a given function g(n), we denote by O(g(n)) the set of
functions f(n) for which there exist positive constants ¢ and n
such that | f(n)| < cg(n) for all n > ny. We write f(n) = O(g(n))
to indicate that a function f(n) belongs to the set O(g(n)) [44].
Equivalently,

f(n)

g\n

f(n) = O(g(n))if limsup

n—oo

3)

<o

Similarly, for continuous-variable functions, ¥ and G on €
[0, 00), we write

F(x)
G(x)
Additionally, for a given function g(n), we denote by

w(g(n)) the set of functions f(n), where for all positive
constants ¢, there exists ng such that 0 < cg(n) < f(n) for

F(x) = O(G(x))if lim sup

x—0

<. (4)
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all n > ng. We write f(n) = w(g(n)) to indicate that a function
f(n) belongs to the set w(g(n)). Equivalently,
f(n)

(g(n))lf lim —= = o0. 5

fn) = dm

Similarly, for a given function g(n), we denote by o(g(n)) the
set of functions f(n), where for all positive constants c, there
exists ng such that 0 < f(n) < cg(n) for all n > ny. We write
f(n) = o(g(n)) to indicate that a function f(n) belongs to the
set 0(g(n)). Equivalently,

f(n) = 0( (n))lf hm M =0. (6)

g(n)

B. Channel Model

Consider a covert communication quantum channel NVy_,pw,
which maps a quantum input state p4 to a joint output state
ppw- The systems A, B, and W are associated with the
transmitter, the legitimate receiver, and an adversarial warden,
referred to as Alice, Bob, and Willie. The marginal channels
Nap and N_w, from Alice to Bob, and from Alice to
Willie, respectively, satisfy Na_p(oa) = Trw (Nasaw(0a))
and Nyow(pa) = Trg Nampw(pa)) for ps € #(Ha). Our
channel is memoryless: for ps» occupying input systems
A" = (Ay,...,A,), the joint output state is N3 g (0an).

The depolarizing channel is a natural model for noise in
quantum systems [32], [39], [40]. The qubit depolarizing
channel with parameter g transmits the input qubit perfectly
with probability 1 — g, and outputs a completely mixed state
with probability g. Consider a qubit depolarizing channel from
Alice to Bob expressed as:

1
Nasppa) = (1 —q)pa + a5

3
= (1 - Zq)m + %(XPAX +YpaY +ZpaZ), (1)

where 0 < g < 1, with dimensions dim(H,) = dim(Hp) = 2,
X, Y, and Z are the Pauli operators, and (7) follows from the
Pauli twirl identity [41, Ch. 4.7.4]. Here, we investigate covert
communication over a depolarizing channel V4_,gg, g, given by
the Stinespring dilation:

VasBE E,(Pa)
where V : Hy — Hp ® Hg, ® Hg, is an isometry defined by

= J1-34 4
V=,/1 41®|00)+\/;X®|01)
+ \/§Y®|11)—|— \/§Z®|10). 9

Remark 1: The canonical Stinespring dilation for the qubit
depolarizing channel is defined by VA_,BE(,O) = VpV' where

V= W 1- T]l®|0)+ IXo|)+ /iYe2)+ ,/1Z®]3)
(see [40, Eq. (13)]). For E = (E, E,), our definition in (9) is
equivalent to this canonical description. Note, however, that
any other Stinespring representation is equivalent to (9) up to
an isometry on the environment E [45, Sec. III-B].

We consider three cases:

= Vpa V', (8)

e Scenario 1: Willie receives (Eq, E>)
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e Scenario 2: Willie receives E,

e Scenario 3: Willie receives E

Remark 2: In any depolarizing channel model, Scenario 1
represents the worst-case scenario where Willie is given access
to Bob’s entire environment, E = (E1, E;). This allows Willie
to acquire maximum information in the quantum setting. It is
important to note that quantum no-cloning theorem prohibits
Willie from receiving a copy of Bob’s output state, whereas
in the classical setting, Willie could have a copy of Bob’s
output. Hence, the quantum channel from Alice to Willie is
not a depolarizing channel.

Remark 3: In the boundary case of ¢ = 0, Bob receives
the qubit state as is, while Willie obtains no information, in
agreement with the no-cloning theorem. Essentially, there is
no warden in this case, hence we may transmit O(n) bits,
and achieve a positive Shannon rate in bits per channel use.
Conversely, if g = 1, Willie receives the qubit state, and Bob
gets only noise, rendering any communication impossible.

Remark 4: Scenarios 2 and 3 can be practically motivated
by Willie’s instruments not having access to the entirety of
Alice and Bob’s environment. While the model specification
of Willie’s observation may seem artificial, it allows us to
demonstrate interesting properties of covert communication
with entanglement assistance. We argue that covert communi-
cation is impossible in Scenario 1, while in Scenario 2, Alice
can transmit O(n) covert bits to Bob. Yet, Scenario 3 is the
most interesting case, where entanglement assistance increases
the scale of information bits from O(+/n) to O(ynlogn). We
observe that the performance does not only depend on the
dimension, as Willie receives a single qubit in both Scenarios 2
and 3, yet the behavior is completely different. Further details
are given in the Results section (see Section III).

C. Entanglement-Assisted Code

The definition of a code for covert communication over a
quantum channel with entanglement assistance is given below.

Definition 1: An (M,n) entanglement-assisted code
(¥, F,D) consists of: a message set [1 : M], where M is an
integer, a pure entangled state ¥r,r,, a collection of encoding
maps .7-";':)_%,, S (Hry) = L HY) for m e [1: M], and a
decoding POVM Dg.r, = {D}M_ .

The communication setting is depicted in Figure 1. Sup-
pose that Alice and Bob share the entangled state W¥r,7,,
in systems 74 and Tp, respectively. Alice wishes to send
one of M equally-likely messages. To encode a message m,
she applies the encoding map ]-";’:LAU to her share T4 of
the entanglement resource. This results in a quantum state
Phinr, = Fiton ® L)W, 1,).

Alice decides whether to transmit to Bob (Case 1), or
not (Case 0). The innocent state is |0); any other state is
non-innocent. She does not transmit in Case 0: the chan-
nel input is [0)®". In Case 1, she transmits part of pi,",f)TB
occupying systems A” through n uses of the covert commu-
nication channel Ay, pw. The joint output state is pgﬁf)w,,TB =

(NE" oy ®idr,) (pXZ)TB) Bob decodes the message from the

reduced output state anTB = Tryn [pg’,f)wnn] by applying the
POVM Dyir,.
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Remark 5: We assume without loss of generality that the
innocent state is represented by |0). However, it is important
to note that this choice is arbitrary. Since the depolarizing
channel is symmetric with respect to the input state, our
findings can easily be extended to any product state [yigie)™”
that corresponds to an idle transmission system.

Remark 6: In our achievability analysis, we identify the
entanglement resource Wr,r, with the product state y",, as
in (1). That is, we use entanglement resources such that Alice
and Bob’s entangled systems, 74 and T, consist of n copies
of A and A;, respectively.

D. Reliability and Covertness

We characterize reliability by the average probability
of decoding error for entanglement-assisted code (¥, F, D)
defined in Section II-C:

M
PY(Y, F,D) = % Z tr [(]1 - Dm)sz)rg] (10)

where pg,f)TB is the reduced state of the joint output state.

Willie does not have access to Alice and Bob’s entangle-
ment resource and receives the reduced output state p(v{,") =
Trper, pgﬂwTB:L occupying the system W”. Willie has to
determine whether Alice transmitted to Bob. To this end, he
performs a binary measurement {Ang, An1}, where the outcome
H1 represents the hypothesis that Alice sent information, while
HO indicates the contrary hypothesis.

He fails by either accusing Alice of transmitting when she
is not (false alarm), or missing Alice’s transmission (missed
detection). Denoting the probabilities of these errors by Ppa =
P(choose H1|HO is true) and Pyip = P(choose HO|H1 is true),
respectively, and assuming equally likely hypotheses, Willie’s
average probability of error is P = PetPw A random
choice yields an ineffective detector with P = % The goal
of covert communication is to design a sequence of codes
such that Willie’s detector is forced to be arbitrarily close to
ineffective. Denote the average state that Willie receives by

1 M
= _ (m)
Pwe = 7 > P
m=1
(m)

where py, is the reduced state of the joint output pg'})w,,TB. A
sufficient condition [15], [17] to render any detector ineffective
for Willie is

D(ﬁwnllwg”) ~ 0, where wy = Na_w(|0)X0]) is the output
corresponding to innocent input. Formally, an (M, n, &, §)-code
for entanglement-assisted covert communication satisfies

(1)

PO, F,D)<e (12)

and

DEyllwf™) < 6. (13)

E. Capacity

In traditional communication problems, the coding rate is
defined as R = &) i.e., the number of bits per channel use.

n >

In covert communication, however, the best achievable rate

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 5, MAY 2025

is zero, since the number of information bits is sublinear in
n. Here we prove that entanglement assistance allows reliable
transmission of log(M) = O(+/nlogn) covert bits. Hence, the
covert coding rate is characterized as in [21]:

_ _log(M)
\/ﬁlogn'

where § is the covertness level in (13).

Definition 2: A covert rate L > 0 is achievable with
entanglement assistance if for every &,0 > 0, and sufficiently
large n, there exists a (2LV01ogn p o §) code.

Remark 7: Achievable rates correspond to error and covert-
ness levels that tend to zero in the limit of n — oco. That
is, one may rewrite Definition 2 as follows [15]. A rate L is
asymptotically achievable if there exists a sequence of codes
such that

(14)

log(M)
nD(yllwg™)

for some ny > 0 and sequence ¢, that tends to zero as n — oo,
while the error probability satisfies

—4n Ynzng 15)

logn

lim P (¥, F,D) =0, (16)
and the covertness,
lim D(ﬁw,,ng”) =0. 17

Definition 3: The entanglement-assisted covert capacity is
defined as the supremum of achievable covert rates. We denote
this capacity by Ceov.sa(N), where the subscript stands for
covert communication with entanglement assistance.

Consider the following state, with a € [0, 1]:

@a = (1 = @)]0)X0] 4 al1)(1]. (18)

4
Let v, = o() Nw ((lof,ﬁ)j), that is, as n — o0, y, — 0 and

n'%y,
logn

— +o00. Choosing @ = a,, where

Yn
a, = — 19

N7 (19)
ensures covertness [15], [17].

That is, if the average state of the input system A” is given
by parn = (¢q,)®", then the covertness requirement (13) is
satisfied for large n.

III. RESULTS

We address three scenarios presented in Section II-B. We
begin with the case where Willie receives the entire envi-
ronment, i.e., both E£; and E,. This can be viewed as the
worst-case scenario (see Remark 2).

Theorem 1: Covert communication is impossible in Scenario
1. Hence, if W = (E{, E>), then Ceoypa(N) = 0.

Proof of Theorem I: Let wy and w; denote Willie’s output
states corresponding to the inputs |0) and |1), respectively. That
is wy = My w(x){(x|) for x € {0, 1}.

In this scenario, we have supp(w)Zsupp(wy). We show this
in detail in Appendix A-A. Therefore, Willie can perform a
measurement to detect a non-zero transmission with certainty.
O
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Fig. 2. The lower bound on the entanglement-assisted covert capacity of
Scenario 3 in Theorem 3, as a function of the noise parameter g.

Essentially, in Scenario 1, Willie’s entanglement with the
transmitted qubit is strong enough for him to detect any
encoding operation.

Next, we consider another extreme setting.

Theorem 2: Covert communication is trivial in Scenario 2.
That is, if W = E,, then Alice can communicate unconstrained
by the covertness requirement, and transmit O(n) bits.

Proof of Theorem 2: If W = E,, then Willie receives
wo = wy = (1=2)[0X0] + £]1)(1| (see Appendix A-B). In
this scenario, even without entanglement assistance, Alice can
transmit classical codewords as in the standard non-covert
model, while Willie cannot discern between zero and non-zero
inputs. O

We proceed to our main result on the entanglement-assisted
covert capacity Ceoy-pa Of the depolarizing channel. From this
point on, we focus on Scenario 3, where Willie receives the
first qubit of the environment (see Section II-B).

Theorem 3: Consider a qubit depolarizing channel ANy gy
as specified in Section II-B above, where W = E;. The
entanglement-assisted covert capacity is bounded as

4v2 (1 -gp

32 -9 Vn(willwo)
where wo = Nyow(l0)0)) and w; = Nyow(1)1]).

Note that n(wl|lwg) is defined in (2). Our lower bound is
depicted in Figure 2. As can be seen in the figure, our lower
bound has the expected behavior for the covert capacity in
the boundary points (see Remark 3). For ¢ = 0, we have
Ceov-EA(N) = +00 in the +/nlogn scale, because the warden
only receives noise and Alice can transmit a linear number of
information bits (effectively, there is no warden). Whereas, for
q = 1, the covert and non-covert capacities are zero.

Following the definitions in Section II-E, a bound of
the form C.ovpa = Lo implies that it is possible to
transmit Lo Vonlogn information bits reliably and covertly
(see Definitions 2 and 3). Recall that without entangle-
ment assistance, covert communication requirements limit
the message to O(+/n) information bits [15], [17]. Thereby,

Ccov»EA(N ) 2

(20)
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we have established that entanglement assistance increases
the message scale in covert communication, from O(+/n) to
O(+/nlogn) information bits. A similar result has been shown
for continuous-variable bosonic channels by Gagatsos et al.
[21]. To the best of our knowledge, our result in Theorem 3,
on the depolarizing channel, is the first demonstration of such
a property for a finite-dimensional channel.

Remark 8: In some communication settings, the coding scale
is larger for continuous-variable channels. For example, in
deterministic identification, the code size is super-exponential
and scales as 2"°27R for Gaussian channels [46] and Poisson
channels [47]. On the other hand, deterministic identification is
limited to an exponential scale for finite-dimensional channels
[48]. Nevertheless, we show here that in covert communication
over a qubit depolarizing channel, entanglement assistance
can increase the number of information bits from O(+/n)
to O(+/nlogn), as in the bosonic case. In other words, the
log n performance boost is not reserved to continuous variable
systems.

IV. PROOF OF THEOREM 3
A. Proof Idea

Consider Scenario 3 presented in Section II-B. First, we
identify an entangled state that meets the above condition
for covertness. As opposed to previous works [13], [14],
[15], we do not encode a random bit sequence with ~ /v
frequency (or probability) of 1’s. Instead, we encode “weakly”
entangled states as in (1), such that the squared amplitude of
this quantum superposition of states describing innocent and
non-innocent symbols is @ = O (!/yx). In order to guarantee
covertness, the probability amplitude must be such that the
state of the transmission is very close to that of a sequence of
innocent states |0)®". Furthermore, we adapt the approach in
[21] to analyze the order of the number of covert information
bits.

B. Position-Based Coding

The lemma below provides an achievability result for the
transmission over a memoryless quantum channel, regardless
of covertness. For every p,o € . (H), define the second and
fourth moments of the quantum relative entropy,

V(pllo) = tr[pl(log(p) — log(c) — D(pllo)], (21)

Q(plle) = tr{pl(log(p) — log(c) — D(pllo)I*], (22)
respectively.

Lemma 1 (Position-based coding [21, Lemma 1] [49],

[50], [51]): Consider a memoryless quantum channel N,_ 3.
For every pure entangled state |z//A] A) € Ha, ® Hy, arbitrarily
small € > 0, and sufficiently large n, there exists a coding
scheme that employs pre-shared entanglement resources to
transmit log(M) bits over n uses of N_,p with decoding error
probability & such that:

log(M) > nD(Y, 5lla, ® ¥p)
+ VnV(Wa,slva, ® Yp)® () - C,

(23)
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with
Wa,p = (ida, ® Nassp)(Wa,a) (24)
and
_ BsE [O(Wa, Bl A, ® Yp)li
" N2r VWaslva, ® ¥p)
n V(a,sllWa, ®¥p) + log(den) 25)

V2n

where D(:||-) is the quantum relative entropy, V(:||-), QC||-) are
the second and fourth moments in (21)—(22), Bg.g is the Berry-
Esseen constant satisfying 0.40973 < Bg g < 0.4784, and

O !(e) = suple € [0, 1]|D(e) < &}, (26)
where 1 :
O(s) = o [me%dx. (27)

The derivation of Lemma 1 builds upon a position-based
coding scheme, where each message is associated with n
entangled pairs and Bob uses sequential decoding on the
output and the entanglement resources for each message
consecutively [21], [51] (see proof of Lemma 1 in [21]).

C. Analysis

In this section, we give the proof for Theorem 3. We present
the main stages of the proof, while the technical details are
deferred to the appendix. We begin with the following lemma.

Lemma 2: Let vy, = n’"%, where 0 < v < é is arbitrary and
does not depend on n. Then, there exists an entanglement-
assisted covert coding scheme for qubit depolarizing channel
with blocklength n, size M, and average error probability &

that satisfies
(1-¢g)?

log(M)ZZ(g—v) g

Proof: To prove the lemma, we need to show that, for
arbitrarily small &, > 0 and large n, there exists an (M, n, €, 0)
code for the depolarizing channel with entanglement assis-
tance, with a code size M as in (28). To this end, we apply
Lemma 1 with |zﬁA] A) as in (1), with a parameter @ = @, as
in (19). Note that setting y,, = n’~6 as in the lemma statement
yields

Yo Vnlogn + O(Nny,). (28)

Ya _ noi
N
Intuitively, as the value of «,, is small, the input state that Alice
sends through the channel is close to the innocent state, i.e.,
Y4 = 10)(0]. Given the joint state 4,4 = [, 4){¥a,4l, the chan-
nel input A is in the reduced state 4 = Try, [Iz,bA]A)(l//AlAﬂ =
@a,, With @, as in (18). That is, the reduced input state
fits the achievability proof for the covert capacity without
entanglement assistance in [15], [17]. Based on the analysis
therein, this input state meets the covertness requirement. As
the covertness requirement does not involve the entanglement
resources, it follows that covertness holds here as well, i.e.,
D(py»llwg") tends to zero as n — oo.

Having established both reliability and covertness, it
remains to estimate the code size. To this end, consider the
joint state 4,5 of the output system B and the reference

(29)

a, =
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system Aj, as in (25). In order to estimate each term on
the right-hand side of (23), we first derive expressions for
the operator logarithms, log(¥s,5) and log(¥a, ® ¥p), and
then we approximate the relative entropy D(¥4,slla, ® ¥p),
and its second and fourth moments V(4 5llYs, ® ) and
OWa, sllya, ® Yp).

The full technical details are given in the appendices. In
Appendix B, we analyze the spectral decompositions, and
then use the Taylor expansions near @ = 0. Throughout the
derivation, we maintain the exact value of the dominant terms
and reduce the approximation error to its order class, following
the asymptotic notation in Section II-A. In Appendix C, we
estimate the quantum relative entropy and its moments, and
show that

1 _ 2
DWia,sllv, @ Ug) = —2(2 9
—-q

V(a,sllva, ® ¥p) = O(a, logi(@y))
OWa,llya, ® ¥p) = O(a, log*(ay))

a, log(a,) + O(ay,),

(30)

for @ = a,, as chosen above (see (29)).
The proof is concluded by placing the approximations above
into (23), as detailed in Appendix D. m}
We are now ready for the proof of Theorem 3.

Proof of Theorem 3: First, we observe that in this scenario,
supp(w1) € supp(wp) and, in addition, wy # w; (see derivation
in Appendix A-C), therefore, covert communication is possible
and not trivial. Then, even if Willie’s output state is w;, there
is still ambiguity whether the input is innocent or not.

By Lemma 2, we have established achievability for the
following covert rate:

2
2(3-9) 52y +0(2)
L, = . (31)
VD@yllwg™)

We have seen that covertness holds as the reduced input state
is the same as the average input in previous code constructions
[15], [17]. Furthermore, the following property extends as
well: there exists £, > 0 such that,

_ il
ID@yllw") — nD(Wa, llwo)] < €477 (32)

where py. is the actual state of Willie’s system as defined
in (11), the state wy = Ny_w(|0){0)) is the Willie’s output
corresponding to the innocent input, and w,, = Naow(@a,),
with ¢,, asin (18) and ¢, € w (Elzn) (see achievability proof
in [15] and [17, Theorem 1]). This holds since the derivation
depends on the reduced input state alone, as Willie does not
have access to the entanglement resource.

Based on a result that was recently developed for covert
sensing using entangled states [25, Lemma 5],

2

D(wq, llwo) = %77(0)1”0)0) + 0(a) (33)

for sufficiently small «,. Thus, by (32) and (33),

2

o 3
Dyl < Lntellon) + ¢+ 0 (Y—ﬁ) N
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By applying this bound to the denominator in (31), we have:

2 (-7 n
2(-) o+ 0 ()

L,> (35)
> 31 3
\/%n(wlllwo) Fetrint 40 (3—5)
Hence, in the limit of n — oo, we achieve

2(2 ) U=a?
L> —(3 ) = (36)

V 3@illwo)
for arbitrarily small v > 0, which completes the proof. O

V. ENERGY CONSTRAINT INTERPRETATION

We provide an interpretation of the logarithmic advantage.
In the bosonic case, the ratio between the entanglement-
assisted capacity and the unassisted capacity follows a
logarithmic trend of log(1/E), where E is the limit on the
transmission mean photon number [52], [53]. Yet, to ensure
covertness, the mean photon number must be restricted to
E, =0 (%) Consequently, an O(logn) factor arises [54].
Based on our derivation, a similar phenomenon is observed
for the qubit depolarizing channel.

Indeed, consider communication over a finite-dimensional
channel under an energy constraint, E, without the covertness
constraint [52, Sec. 2]. Then, the capacities with and without
entanglement assistance, are given by [52]

CoN,E) = max I(X;B), 37)
(P06 y:tr(Fpa)<E
CeaW,E)= max I(A;;B), (33)
Yaaitr(FYa)<E
with the observable (Hamiltonian) F = |1){(1|, where
pxa =Y px(0(x @ ¢y, (39)
xeX
pxs = (idx ® Nasp)(pxa) (40)
and
wa,p = (idx @ Nyp)(W¥a,4) 41)

The maximization in (37) is over all the input ensembles
{p+(x), ¢fj‘)} such that the reduced average state p4 = try(oxa)
satisfies the energy constraint tr(Fps) < E. Similarly, the
maximization in (38) is over all the entangled input states
|l,[/A|A) with a reduced state ¥4 such that tr(Fy,) < E.

Now, consider the qubit depolarizing channel with an energy
constraint E, where 0 < E < % Without assistance, the
ensemble that achieves the maximum is {(1 — E, E),|0),]|1)}.

The capacity without entanglement assistance is thus given by

CoN,E) = Iy (E x g) — (%’) ,

where ‘«’ denotes the binary convolution operation: « * 8 =
(I -a)B+ a1 -p).

As for the entanglement-assisted capacity, the maximum is
attained for

(42)

|Wa4)= VI-E|00)+ VE|11) . (43)
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Therefore,
CarlN E) = ha(E) + 1y (Ex 2 ) ~ HWap). (44
where
Yap = (d @ Nasp)(|Pa,a){Pa,al) - (45)

For completeness, we prove the capacity characterizations
above in Appendix E.

Now, based on the derivations in Subsection IV-C, for E —
0, we have

CeaN,E) _ h(E)+ hy (E * §) — HWa, )
OCNE T (e DR
—FElog(E)
T E
= —log(E),

(40)

by taking @ = E. To satisfy the covert constraint, we effectively
impose an energy constraint E, Ln, which results in
the following ratio between the entanglement-assisted and
unassisted covert capacities,

CEA-cov (N )

—Ehcovi 2 47
CO—cov (N ) ( )

~logn.

VI. SUMMARY AND DISCUSSION

We have studied covert communication through the qubit
depolarizing channel, where Alice and Bob share entanglement
resources and wish to communicate, while an adversarial war-
den, Willie, tries to detect their communication. We addressed
three scenarios. In the first scenario, Willie can determine
with certainty whether Alice has transmitted a non-innocent
state, making covert communication impossible. In the second,
Willie cannot distinguish between the |0) and |1) inputs,
making covert communication effortless. The outcomes of our
study mainly pertain to the third scenario, wherein covert
communication is both feasible and non-trivial. Our results
show that it is possible to transmit O(y/nlogn) bits reliably
and covertly. This result surpasses the maximum scaling of
O(+/n) reliable and covert bits in both the classical and
quantum cases without entanglement assistance.

The square root law for the unassisted cases (both classical
and quantum) was derived for the non-trivial scenario, in
which Bob cannot determine with certainty if Alice sends a
non-innocent symbol. However, if Bob has this capability, i.e.,
supp(Nia—p(I1)(1))) € supp(Na_,5(0)(0]), then the scaling law
becomes O(+/nlogn), even for a classical channel [13], [15],
[17]. Therefore, it appears that entanglement assistance has a
similar effect as granting Bob the capability of identifying a
non-innocent transmission with certainty. We also discussed
the energy constraint interpretation in Section V, where
we have seen that the entanglement-assisted and unassisted
capacities under an energy constraint scale as Cga(N, E) ~
—Elog(E) and Co(\N, E) ~ E, respectively, without covertness.
Hence, the ratio between those capacities follows log(1/E).
The covertness constraint effectively imposes an energy con-
straint of E, ~ % Hence, the ratio between the covert
entanglement-assisted and unassisted capacity scales as log n.
While the energy constraint interpretation provides another
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view on this behavior, a full understanding of the effect of
entanglement resources on the performance remains elusive.

A promising future research direction is to consider a more
general model, where the covert communication channel is
formed by a concatenation of the depolarizing channel V4_,pg
with a general channel Pr_y to Willie, namely, Ny_pzw =
(idp ® Pg—w) © Va—pe. Those scenarios are out of scope for
the current paper, but it would be interesting to consider in
future work. The amount of entanglement utilized also requires
further study. Recently, Wang et al. [37] improved the previous
result by Gagatsos et al. [21] and showed achievability using
~ 4/n two-mode squeezed vacuum states, i.e., entanglement of
dimension ~ 2V? which is negligible when compared to the
code size. Here, relying on position-based coding, we use n
qubit pairs per message. It would be worthwhile to explore
methods to reduce the entanglement dimension within the
finite dimensional setting as well.

Our results can be viewed as a step forward towards under-
standing covert communication via general quantum channels
in the presence of pre-shared entanglement resources. Follow-
ing the past literature, the preliminary results on entanglement-
assisted communication via the depolarizing and erasure chan-
nels [32] have led to a complete characterization for a general
quantum channel [33]. We can only hope to see the same
progress in the study of covert communication. The quantum
erasure channel is another fundamental model in quantum
information theory [55], where for an input state p, Bob
receives the original state with probability 1 —g, or an erasure
state |e){e|, which is orthogonal to the qubit space, with proba-
bility g. For this channel, Bob can determine that Alice sent |1)
with certainty, as supp(Ma_p(|1){1])) ¢ supp(Na_z(|0)0])).
Thereby, the scaling law becomes O(+/nlogn) information
bits, even without entanglement resources. At this point, it
remains unclear whether this scaling can be achieved with
entanglement assistance for every quantum channel that satis-

fies supp(Naw(I1)(1])) € supp(Na—w(l0)0]).
APPENDIX ORGANIZATION

The appendices are organized as follows. In Appendix A
we provide the technical analysis of the channel from Alice
to Willie. Appendix B presents mathematical tools and
derivations for decomposing the operators ¥4, and Y4, ®
¥, and their logarithms. In Appendix C, we provide the
detailed approximation of D(4,sll4, ® ¥ ) and its moments.
Appendix D presents the approximation of the code size.

APPENDIX A
WILLIE’S CHANNELS

A. Willie Receives (Eq, E>)

For the given scenario where Willie receives the entire
environment, it is possible to demonstrate that,

-y 00 \fi(i-¥)
0 4 _j4 0
— 1 iy
w=| o AL L@
3
(0-%)o o0 g
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and
1- % 0 0 -
wr = 0 _%% IZZ (49)
- J4(1-%) o o
The null spaces of wp and w; contain vectors,
0
=] (50)
0
and
0
en=]71 (51)
0
respectively. Since {ep) e; = 0, it follows that

supp(wi)Zsupp(wp).

B. Willie Receives E,

Suppose Alice transmits the general state p = (1 —a)|0){0|+
al1){1] + b|0){1] + b*|1){0|. Then, Willie receives the state,

_ q q
Niewto) = (1= 2) 001 + 211

3g\q | .9
+ 29%{17}( ( (1 -7 ) il ’Z) [0X1]
3g\qg .q

Substituting p = |0)(0| and p = |1)(1] into (52), respectively,
yields:

wo = Nasw(10)0])

_(1-¢ g
= (1-2) o1+ L, (53)
and
w1 = Naew (111D
_(1-¢ g
= (1-2) oo+ Zina. (54)

C. Willie Receives E,

Suppose Alice transmits the general state p = (1 —a)|0){0|+
al1){1] + b|0){1] + b*|1){0]. Then, Willie receives the state,

Niew = (1-2) o1+ 2

3g\qg .q
+(1—2a)(( (I_Z)Z_ZZ)"))(”
+< (1—2)5’+ﬂ)|1><0|)

4 )2y

(55)
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Substituting p = |0){0] and p = [1){1] into (55), respectively,

yields:
wo = Naow([0)0)
Q——ymm+—um|
<J1—§Q¢_ )uxm
(,/ 3q¢_ )mxu (56)
and
w = Naow((1X1)
= ( )|0><0| + —|1><1|
<¢1—§€J— )uxm
—wuﬁfiﬂmw 57)
4 \Va ' '
The determinant of both wg and w; is,
3
km=wn=§@—@. (58)

Since the determinant is not equal to zero (for 0 < g < 1), it
follows that wy and w; span the entire qubit space, thus, in
particular supp(w;) C supp(wy).

APPENDIX B
MATRIX LOGARITHMS ESTIMATION

A. Approximation Tools

We provide the approximation tools that are used throughout
the derivation, using the “big O-notation” in Section II-A.

e Useful Taylor expansions (at x = 0):

va+bx+cx?= \/E—FLX—FO(XZ),

T (59)
In(a) b
10g(a+bx+cx) Q) aln(Z)x
b* - 2ac 2 3
@ T O, (@
Jr(l =) = \/'+0( ) 61)
—,)C(l—_x_\/_-‘r-O(?) (62)
_ + 0O 63
'—x(l—x) \/- (Vx), (63)
; =140, (64)
cx+1
1 1 3
§+1=$\/§+(’)(x-). (65)

e The spectral decomposition of a Hermitian operator,

P = al00)(00] + b|01)(01] + ¢[10)(10] + d|11)(11]

=+ 5(100)¢11] + [11)<00[) (66)
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consists of the eigenvalues

1
=3 <a+d+ V(@ + d7 —4ad - SZ)),
1
=5 (a +d- Via+dP —4ad=),
A =b,
A=c. 67)
and the associated eigenvectors,
) = Cy (A1 100) + 1)),
a) = C4 (4 100) +]11)) ,
|[42) = |01),
|43) = [10) . (68)
where
~ -1 ~ - A
=20 == (69)
S S
1 1
Ci=—/— Cy = (70)

VA +1

The joint state 4,5 of the reference system and Bob’s
output is obtained by applying the depolarizing channel:

Ya g = 1y, ®NA—>B)(¢A1A)
3
(1 - —61) Yaa+ =~ [(]lAl @ X)Wa,a(ls, ® X)
+ (14, ® Y)lﬁAlA(]lAl ®Y)

N

B. Output Density Operators

+ (L4, ® Z)a,a(1s, ® 2)]. (71)
Algebraic manipulations yield
_ q
ap = (1 - —) (1 = )[00)00| + (1 - E) 1111
+ %’(1 — @)|01)(01] + Ea|10><10|
+ (1 = q) Va V1 — a(j00)(11] + [11)00]). (72)
The reduced matrices ¥4, and yp are, thus,
ve=[(1-2) = o]0+ [2 a]mar, @3
Ya, = (1 = a@)|0)X0] + al1)(1], (74)
where a * 8 = (1 — @)B + a(1 — B). Then,
Ya, ®Yp
1 AW
—(-a) [(1 2) a] 100)(00]
q
+d-a [5 *a/] 10101
q q
ta [(1 - 5) « a] 110)(10] + [E « a/] X1, (75)

The logarithm of Y4, ® Y5 can be computed directly as
it is diagonal in the standard basis. This is not the case for
Ya, 5. Using (67), the spectral decomposition consists of the
following eigenvalues:

/llzl(l—%
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_1 q
=5 (1-3
\/[1—2]2—4q|:1—:%q:|a+4q|:1—3—q:|a2)
44
—2(1 @)

Using the Taylor approximation in (59), we approximate A;
and A4 by

_1 q gy _44(1-39) 2
/11—5(1—5—1—(1—5)— 2(1=9) @+ O(a”)
_1 q gy _44(1-39) 2
14_5(1—5—(1—5)—2(1—%)a+0(a) . (7
That is
1-23
/llzl—g—q((l_g)q)a+0(az) (73)
2
_3
p q((]_g)q)a+0(a2> (79)
2

The eigenvectors of Y4, p are given in (68), with 71 and 74
satisfying

~ q—2

1 :WJFO(\@’ (80)
~ _ 2¢-1 3
/14——(61_—2)\/6_14-0(\/6_?)’ )
by (63). and
=49V o), =140, 6
' g2 e ’
by (65).

By applying (60), we approximate the logarithm of the
eigenvalues as follows. For the joint state 4,5,

log(4;) = log (1 - %’) + O, (83)
log(y) = log ( ) +O@), (84)
log(s) = log (5) +log(a) + O(a?), (85)
log(14) = log(C(g)) + log(@) + O@?). (86)
As for the product state ¥4, ® Y5, we have
log ((1 —a/)[(l - g) *a) = log (1 - g) + 0@, 87

(88)

log ((1 - a) [(g) * a:> = log (%) + O(a),
log ((a) [(1 - g) * a:> =log (1 - g) + log(@)

+ O(a),

log ((a) [(g) * a:) = log (g) + log(a).

Hence, the operator-logarithm for ¢4, p satisfies

IOg('J’A]B)
= log(A1)[A1 {41 + log(A2)|A2){A2]

(89)
(90)
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+ 1log(A3)|43)(A3] + log(A34)|A4){ A4l
e
_ [(1 0y 4= og(a) + O va>] 100%(00]

2 (q-27
+ 1og( ) + O(a)] 101)(01]
1o (5) +log(a) + 0@ | 110)(10)
[log(C(g)) + log(e) + O(alog(@))] [11)(11]
_ - Valog(@) + O(Va )} j00)(11]

[ 2 )
(g-

and for ¥4, ® ¥p,

log(¥a, ® ¥p)
[1og (1 - 5) + O(a)] 100)(00)

+ [log (g) + O(a)] 01)01]
+ [log (1 - g) +log(a) + O(a)] 110)(10]
+ [log (g) +log(a) + O(a)] 1Y11].

o+

_|_

+ 1)

\/_log(a)+(9(\/_)}|11><00|

92)

APPENDIX C
RELATIVE ENTROPY AND MOMENTS

In this section, we develop the approximations for the
relative entropy D(4, 5l 4, ® ¥p), and its second and fourth
moments, V(¥ sllya, ® Yp) and OWa,slla, ® ¥p).

A. Relative Entropy

Consider the relative entropy, D(¥4,slla, ® ¥p). By sub-
tracting (92) from (91),

log(Wa,8) — log(¥a, ® Yrp)

Aq- 1)
= [ TR alog(a) + O( «/E)] 100)¢00] 4 [O(e)][01)(01]

+ :log (g) —log (l - %) + O(a):
+ [log(C(g)) - log () + O(a log(a»] X1
[ 2(g-1)

[10)C10]

+ [~y V@log@) + 0(a) | 0011
N _2(;4_ 2))\/Elog(a)+(9(\/a) 111(00]. (93)

Multiplying by 4,3, we have

Wa,Bllog(Wa, ) — log(a, ® ¥p)]
3 q\ 4q-17?
- [(1_5) (q-27

261D, 1og(a) + O \/5)] 100)(00]
q-2)

+ O@) (0101 + [10)10] + [11)(11])

+ [O(Va log(@))] 100)11] + [O( v log(a))] [11)00 .
(94)

alog(a)

-2(1-¢)
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Applying the trace, we approximate the relative entropy:

D(Wa,sllya, ® ¥p)
= tr[a,5108(Wa,5) — Ya, 51084, ® Yp)]

4q-1)? 2g-1
=[(1—@) G- 1 - 924 ):|alog(a)

2
+ O(a)

)
= _2(1—q)alog(a) + O(a).
2-¢q

(g —2)* (g-2)

B. Second Moment

Next, we consider the second moment of the relative

entropy. By squaring (93), we have:

|log(Wa, 5) — log(Wa, ® Yp)
_ [4(61 - 1)
L (g-27

+[O@*]101)01]

alog(e) + O(a log(a/))i| 100)¢00]

+ [<log (£) -10g (1- %’))2 + O(a)} 110)(10)

+ [ (1og(Cign - log (g))2

4(g-1)°
(g2
+ [O(Valog(@))] (100)(1 1] + [11)(00]).

As we multiply by ¢4, ,
Ya51108Wa,5) — log(Wia, @ Yp)l’

alog’(@) + O log(a/))]ll 111

RTY
- [(1 - 2) 4g-1 alog®(a) + O(a 10g(a))i| 100500

2/ (g-2)
+ [0@»)]101)01] + [O(@)]110)10]
+ [O(alog@)] 111)(11]
+ [O(Valog(e)] (100)(11] + [11)(00]) .

Using (95) and applying the trace to the above, we obtain an

approximation of the second moment:

V(Wa,sllya, ® Yp)
=tr [lﬁA,B [log(Wa,8) — log(Wa, ® ¥s)

~DWa,sllpn, @ un)| |

= tr [y, [logWa ) — loga, @ wn)|']
= 2D, BllYa, ®Yp)
X tr [a, 5 |log(Wa,5) — 10g(Wa, ® ¥p)|]
+ D(a,sllya, @ Yp)

=tr [l//AlB |log(Wa,5) — logWa, ® WB)H

= DWa,sllya, ® ¥p)
B q\ 4g-1)
- (1 B 2) (q—2)?
+ O(a? log*(a))

2
= Z(Zf;)alogz(a) + O(alog()) .

alog’(a) + O(alog(a))

C. Fourth Moment

Consider

OWa,Bllya, ® Yp)
=1t I:'/’AlB‘ log(wAlB) - log(lfbA] ® wB)

4
= DWasln, ® )| | 99)

95
©3) We use the binomial identity: (X — c)* = X* — 4c¢X? + 6¢?X? —

43X + ¢*, for a Hermitian operator X € £(H) and a real
number c. Substituting X = log(a,s) — log(¥a, ® ¥p), and
¢ = D4, Blla, ® ), we obtain

OWa,llya, ® Yp)

=tr ['ﬁA,B (log(Wa,p) — log(Wa, ® !//B))4]
—4DWa,sllYa, @ YB)
X tr [WA,B(IOg(WAIB) —log(¥a, ® WB))S]

+ 0@ log*(a)) . (100)

Using (93) and (96),

(log(¥a, ) — logWa, ® ¥s))*
= [O(alog®(@))] 100)00] + [O(a*)][01)(01]
(96) + [OM10X10 + [OMD]I 1)L
+[O(Valog(@)] 100)(11] + [O(Varlog(@)] [11)00], .
(101

and

(log(¥a,8) — logWa, ® ¥p))’
= [O(alog())] 100)00] + [O(a?)] [01)(01]
+ [OM]10)10] + [O(D] [11)(11]
o7 + [O(Valog(@)] 100)(11] + [O( Va log(e)] 111)(00] .
(102)

Multiplying by 4,5, we have

Ya, (logWa,p) — logWa, ® l//B))4

= [O(a1og*(@))]100)(00] + [O(@*)] 01)01]
+ [O(@)] (110)10] + [11)(11]) + [O( Var log(e) ] [00)(11]
+ [O(Valog(a)] 111001, (103)

and

Ya B ‘(log(wA]B) log(ya, ® l//B))3‘

= [O(alog*(@))]100)(00] + [O(a)] 101)¢01]
+ [O(@)] (110)X10] + [11)11])
+ [O(Valog(e)] (J00)(11] + [11)(00])

+ [O(Valog(@)] 11100 (104)

Finally, by tracing out, we obtain the order of the fourth
moment:

©8) OWa,llyia, ® Yp) = O log*(@)) . (105)
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APPENDIX D
CODE SIZE

We observe that when choosing @ = «, = Zﬁ with y, =

n*~%, we obtain the following approximation for the first term

on the right-hand side of (23),
nD(Wa, sllYa, ® )

_ U-g7 Yn
= 2—2_q leOg(\/ﬁ) + O(\nyy)

- _2(12— D i log (nv—§> Lo (n”%)

2 1-g)?
=2 (3 - ) %””% logn+0 (1)

In a similar manner, we approximate the second term by

VW sllba ®U5) = O ( \/\/ﬁ)’n log? (nv—i))
-0 ( Vit log n)

=0 (rﬁ*é 1ogn) .

(106)

(107)

Finally, the last term (23) is C,, as defined in (24). To show
that this term vanishes, we write

3

<n5+% log n) !

v 1
n2tslogn

[QWaslYa, @ YR _
V(a,sllya, ® ¥p)

-0 (n-%-% 1og-%(n))

which tends to zero as n — oo. Hence,

(108)

2 1-g)?
log(M) > 2 (- - v) Q29 vtii0en+ 0 (n”%) (109)
3 2-gq
for every 0 <v < %.
APPENDIX E

ENERGY-CONSTRAINED CAPACITIES

We provide the proof for the energy-constrained capacity
formula of the qubit depolarizing channel. Note that this model
does not involve a covertness requirement.

A. Unassisted Capacity

We begin with communication without assistance.

Theorem 4: Consider a qubit depolarizing channel N,_p

as specified in Section II-B, and let E € [0, 1]. The energy-
constrained capacity without entanglement assistance is given
by

hy (E * %) —h (%) 2 (110)

Co(N,E) =
° L= (3 t<Esl,

where ‘x’ denotes the binary convolution operation: @ * 8 =
(I -a)p + a(l -p).
Proof: Consider the general capacity characterization in

(37). For 0 < E < %, the direct part follows by choosing
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the ensemble {(1 — E, E),|0),|1)}, which results in the average
input state

pa = (1= E)0XO0| + E[1)1]. (111)

Otherwise, if E > 1,

: 11

Le., {(z’ z) 5 |O> > |1>}
We move to the converse part. For £ > % the converse

part immediately follows from the capacity result without

constraints. Hence, suppose that 0 < E < % For every

input ensemble, the Holevo information functional, I(X; B),,

is bounded as follows:

set the input ensemble to be uniform,

I(X; B), = H(B), — H(B|X),

< H(B), - H™\) (112)

where H™"(\) is the minimum output entropy, H™"(N) =
min,, H(N(p4)). For the qubit depolarizing channel,

H™(\) = hy (‘—’)

5 (113)

by [41, Sec. 20.4.4].
It remains to bound H(B),. Consider a general input state

_ l—-ab
pPA = b* a

that satisfies the maximization constraint, tr(Fps) < E (see
(37)). The corresponding output state is

(114)

(I-pU-a+1 (A-gb )
= . 115
i~ ( (-gb ~ (1-ga+} (11>
The eigenvalues of pg are thus
1
4 = 5(1 +
_ _ _ 4 _ 4 2
\/1 a((a-pa-a+2)(a-ga+))+ap ) :
(116)

Hence, the output entropy is

H(pp) = -y log(my) — n_log(m_). 117)

Notice that the eigenvalues 7+ do not depend on the phase of
the off-diagonal entry, b, hence the entropies of p4 and ZpsZ
are the same. It thus follows that

H(pn) = H(Zps2) (118)
with
_(A-g1-a)+ % ~(1-gb
ZPBZ:( (- g’ 2(1—q>a+§)' (1)

Since the entropy is concave, we have
1 1
H(pp) = EH(pB) + EH(ZPBZ)

1 1
<H|= —ZppZ
< (2p3+2p3)

=H([0-p0-a+ g] 001+ [(1 - g)a + g] 1(11)

= H(Nas (1 = @I0X0] + al1X1D) ). (120)
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Therefore, the maximal output entropy can be achieved with
b =0. i.e., for an input state of the form

1-a0
o4 = ( 0 a) ) (121)

Since the energy constraint requires a < E,

H(B), < max H(Nies (1= @l0)0] +al1X(1)) )

= max hy (a * 2)

0<a<E 2

= hy (E*g) (122)

This completes the proof of Theorem 4. m}

B. Entanglement-Assisted Capacity

We move to the energy-constrained capacity of the qubit
depolarizing channel, when Alice and Bob are provided with
pre-shared entanglement.

Theorem 5: The energy-constrained entanglement-assisted
capacity is given by

CeaWNE) =
ho(E) + hy (E = 4

* —HM™,45) 0
3
2 - H(l - Tq, %,

<E<}
: (123)
) l<E<],

)

AR ~—
INEN

where Ws, 5 = (id @ N)(IWa,4)(¥a,4))-

Proof: Recall that the entanglement-assisted capacity of a
general channel N_,p is given by 38. For the qubit depolariz-
ing channel, we can restrict our attention to input states of the
form |WA1A> = V1 -al00) + +/a|l11), since the depolarizing
channel is unitarily covariant (see [41, Section 24.8]). For
E < %, the maximum is attained by the entangled state

[¥a4) = VI-E00) + VE|I1), (124)
which is associated with an energy value tr(Fy,) = E.
Whereas, for E > 1 the capacity is attained with a = . This
completes the proof of Theorem 5. [
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