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Abstract

The microbunching instability is one of the most signifi-
cant effects, which can lead to a severe degradation of the
beam quality in the linac section of free-electron lasers. Di-
rect analytical treatment of the microbunching instability
is however challenging. In particular when multiple bunch
compression stages are considered, an exact closed-form
expression for the charge density of the electron bunch typi-
cally cannot be derived. As a remedy, perturbative methods
might be considered. Here, the instability is investigated by
analyzing the propagation of small perturbations to an other-
wise stable phase-space density. One such approach is based
on the expansion of the collective Perron-Frobenius operator
of the collective system into a Fréchet-Taylor series. Ap-
plying the expanded Perron-Frobenius operator to a slightly
perturbed phase-space density allows to derive closed-form
expressions for the propagated perturbation term, potentially
to arbitrary order. In this contribution new advances in a
perturbation theory based on the Fréchet-Taylor expansion
of collective Perron-Frobenius operators are presented.

MICROBUNCHING IN FEL INJECTORS

A major factor limiting the beam quality achievable in
the linear accelerators driving free-electron lasers (FELs) is
the microbunching instability (MBI). Collective interactions
between the electrons, in conjunction with the longitudinal
dispersion introduced by the bunch compression chicanes,
can lead to an amplification of initial inhomogeneities in
the charge density of the bunch. Generally, the MBI leads
to an increased transverse emittance and energy spread of
the bunch, both of which degrade the performance of the
bunch in the subsequent FEL process. The decreased homo-
geneity of the longitudinal phase-space distribution can be
particularly impeding for advanced operation modes, such
as external seeding.

Here, we present advances in a perturbation theory for
the MBI, based on the Perron-Frobenius (PF) formalism
[1,2], which are an extension of our previous work on the
topic [3-5]. This contribution is a brief summary of parts
of [6], where the matter is presented in more detail, including
proofs which are omitted here for brevity.

Collective effects that influence the dynamics of a bunch
in an FEL injector include space-charge forces, interaction
via coherent synchrotron radiation (CSR) in the magnetic
chicanes, and wake fields, predominantly from the accelerat-
ing cavities. Especially the longitudinal space-charge (LSC)
forces are a major driver of the MBI. When only the LSC
and wake field interactions are considered, the MBI can be
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treated using a particularly benign model of the longitudinal
beam dynamics. Here, the injector beamline is subdivided
into bunch compression stages, each comprising a linac sec-
tion and a subsequent chicane. Generally, the length of
the linac section will be much larger than the length of the
magnetic chicane. This justifies the model assumption to
neglect the influence of the collective effects in the chicane,
so that its contribution on the longitudinal dynamics is given
to first-order by the drift map Lg : (g,p) = (g + Bp,p),
where the phase-space coordinates (g, p) = Z describe the
deviation of the longitudinal position g = z — z; and energy
p = E—E, from a reference particle, and the drift parameter
related to the well known longitudinal dispersion Ms¢ via
B = Mse/Ey.

In the ultra-relativistic limit, there is no significant source
of longitudinal dispersion in the linac section. Therefore,
the longitudinal coordinate of each electron does not change,
so that the charge density of the bunch is invariant along
the linac section. As a result, also any collective force that
depends on the charge density is invariant. A remarkable
property of this model is, that this invariance allows to solve
the collective equation of motion exactly, as the charge den-
sity has to be calculated only once at the start of the linac
section. The total force term can then be determined via an
effective, integrated Greens function G: R —» R, which
accounts for varying parameters such as the beamsize and
energy along the section, so that the collective dynamics are
given by the map

Keon[¥]1: (g,p) = (q,p + [¥](q)), )

where ¥ : R2 — R denotes the phase-space density and
the collective kick function is given via an operation we
denote with the ® symbol, namely a projection along the p
coordinate followed by a convolution with Greens function

c[¥1(q) = [[,, ¥ P)Gla-q)dq' dp’ = (¥ @G).
@)
To first order the effect of an rf-cavity is the linear kick
map K, : (¢,p) = (g,p + hq), so that the total map of a
linac section is Kjjpae[¥] = Keon[¥] o K, = Kj o Keon[VY1]
and that of a single complete bunch compression stage

M[VY] = Lﬂ ° Kjinac[¥] = Lﬁ o Kj o Keon[¥1. (3)

We note that the the non-collective part of the map can also
be represented as

LgoKy=KcpoSceoLcps “4)

with the symplectic scaling map Sc: (¢,p) » (¢/C,pC),
and the compression factor C = (1 + h B)~L.
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THE VLASOV PICTURE

In the Liouville picture, the bunch is described by a phase-
space density ¥ (s;q,p), which evolves according to the
Liouville equation

% ={H,¥}=:H: ¥V, ¥(0;2) = ¥o(2), )
where H : R2 - R is the Hamiltonian of the system, {-, -}
is the usual Poisson bracket, and : H : the associated Lie
operator. The solution is given by ¥(s;Z) = exp(s : H:
)W () = Wy (M712) = [WgoM ] () = MV, where
M = exp(—s :H:) is the map generated by the Hamiltonian,
and /b € aut(W") is called the Perron-Frobenius operator
(PFO) associated with M. If collective interactions can be
included by adding a dependence of the Hamiltonian on
the phase-space density, this yields the Vlasov equation in
time-continuous and equivalently in time-discrete form

as (6)

{ﬂ— CH[W]: W =0, ¥(0;2) = ¥y(3) ,
lIl}‘l-i—l = L%}‘l+l[an] \I’n , B E Z+ .

Being a non-linear integro- partial differential equation or
difference equation in W, respectively, the Vlasov equation
generally does not admit a closed-form solution. However,
in our ultra-relativistic model motivated above, the collective
Hamiltonian of a linac section depends only on the initial
value of the phase-space density ¥, at the entrance of the
section, which allows us to write the exact solution after the
first bunch compression stage as

Wy = b [Yol¥o =By, Fon, Focon1[¥ol¥o. (7)

For a collective PFO [ -] its Fréchet derivative at a given
V¥ is defined as the linear operator D #6[¥]- which fulfills
the condition

AT + @] — A6[Y] — DA[Y]Pllop

im =0, (8

Il =0 lpllop ®)
where | - |l,, is an operator norm, compatible with
e o Higher-order derivatives are given by
D" 46[¥] = D" 1 (D[¥]), which define a multi-

linear map D" #6[¥]: W' — aut(W"). For convenience
we write D" A6V ]¢" = D" M6[¥]p ** ¢ which allows to
expand the PFO into a Fréchet-Taylor series
N
1
MY+ p] =Y D A[¥]P" + o (IpIY) . )

n=0

With this, the evolution of an initial density ¥, plus a pertur-
bation density € ¢ can be written in form of the perturbative
series

N _n
ALY+ )Y +eg) = %qﬁlyn +o(eN),  (10)
n=0 """

where the nth order perturbation density is given by
G1n=D"M[Yo1 PG ¥o +n D" [ Polgg.  (11)

Given a non-collective PFO /" and a collective PFO M[¥],
it can be shown that D (N A6[¥Y]) = N DAL[Y].
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Homomorphic Collective PF Operators

If a collective PF operator fulfills the condition /6[¥ +
@1 = M[Y] M P], we call the operator homomorphic. In
particular, it can be shown that PF operators that are gen-
erated by collective Hamiltonians /6[¥] = exp(: H[¥]:)
are homomorphic if the Poisson bracket of the Hamilto-
nian vanishes for all phase-space densities {H[¥], H[¢]} =
0 VV¥,¢ € . For this type of PF operators, it can be
shown that their Fréchet derivatives are given by

D" A6[ V] ¢ = M[ Y] :H[P]:" . (12)

In this case, the expression in Eq. (11) for the nth order
perturbation density simplifies to

Gra = M[¥o] :Hlpol" " (:Hlpol: Yo +ndy).
13)
It can be seen that the collective kick operator F ) ; in
Eq. (7), which is associated to a kick map of the form shown
in Eq. (1) is generated by the Hamiltonian

Heo 1 [¥1(q.p) = =[T1(q—q") ® ¥(q.p)] (@),

where aiqu (g) = G1(q) and G; is the Greens function of
the collective kick in the first stage. Collective Hamiltonians
of this type are indeed homomorphic in the afforementioned
sense.

(14)

Monochromatic Perturbation

As a first application of the perturbation theory, one
might consider the case of an arbitrarily long bunch,
with the initial phase-space density ¥,(q,p) = w(p),
with fR w(p)dp = pg, in conjunction with a monochro-
matic perturbation ¢o(q,p) = [ar(q) + ar(q) ]y (p) with
ai(q) = %exp(ikq)y/(p). It can be seen that the Lie op-
erator of the collective Hamiltonian of the perturbation is
sHeon i lagy]: = Wik) alq) aip’ with the impedance-like
function W, (k) = ikpoT; (k), where T'; being the Fourier
transform of I'y.

First Order With the above, it can be seen that the first
term in the perturbation series (11) of the system (7) is given
by

b1 = g, (@@ |1+ W02 wi)) + e

15)
where we introduce a shorthand for the non-collective part
Mog, n, = L, Ty, Aremarkable property of this expres-
sion is, that the part on which /6 5 5, ~acts, is a factorizable
function with respect to the variables g and p. Using Eq. (4)
for the non-collective map, it can be seen that for a factoriz-
able function of the form a;(q)f (p) its charge density after
applying b g, 5, is given explicitly by

Jo Fen# cBcp(ar@f p))dp = CagC) f(kCB).
(16)
This yields for the first-order charge density

P11 =Cracy[1+ikCy Wi (k)] g (kCyBy)+c.c.. (17)
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Second Order The second-order perturbation density is

W, (k)? 62 d
P12 = Mop, (a2k(61)[ 1; ) e + W (k)%]

Wy 02 Wik) @
+[Ta_pz+T% )y/+c.c., (18)

which, again, is a factorizable function before application
of the non-collective PF operator. We see that this density
consists of a g-independent term, plus a term with double the
periodicity of the initial perturbation. Using again Eq. (16),
we obtain for the second-order charge density

p12= Caycrlq) w(2kC) | (19)

1
ikCy By W (k) = 5 {kC1 By Wy (k))? | +ce..

Higher Orders 1t becomes apparent that in the same man-
ner perturbation densities of arbitrary order can be derived.
At all orders, the perturbation densities are factorizable in
the sense introduced above, so that their associated charge
densities can be determined explicitly. A general formula
for the higher-order densities is given in Ref. [6].

Second-Order Two-Color Perturbations

Using the perturbation theory it is also possible to treat
perturbations on more than one wavelength with relative
ease. Consider the two-color perturbation ¢g(q,p) =
% [clakl (q) + czakz(q)] v (p) + c.c. with two wavenumbers
k1, ko, phase factors cq, ¢, and ¥, as before. Plugging
this into Eq. (11), it becomes apparent that the second-order
perturbation density contains terms corresponding to the in-
dividual evolution of the two perturbation colors. This term
is equal to a quarter of the sum of Eq. (18) for k; and k, and
is omitted here for the sake of brevity. The remaining term,
which encapsulates the interaction of the two perturbations
reads

¢11{2 =c.c. + %ﬁl,fn( (20)
2y

d d
clcz[W(kl)W(kz)W +{W(ky) + Wi(ky)} a_lg]akﬁk{"

_ — 3%y — Oy
CICZ[W(kl )W(kZ)W + {W(kl ) + W(kz)} a—p:lakl,kz).
It can be seen that due to the interaction two additional terms
are created, one with a frequency equal to the sum of the
two perturbation frequencies and one with the difference-
frequency.

Two Microbunching Stages

In many experimental setups, the target compression
is achieved by two bunch compression stages. After
the second stage, the phase-space density is given via
discrete Vlasov equation Eq. (5), which reads ¥, =
Moy [ Mo [Yo]¥o] Ab1[¥Yo] ¥o. A perturbation series for
this expression can be obtained by expanding all collective
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Figure 1: Two-stage gain function evaluated for a parame-
ter set similar to a projected workingpoint of the FLASH
after the FLASH2020+ upgrade [7, 8], with [, = 25A,
C; = C,/2 = 4, assuming an initially Gaussian energy
distribution with o, = SkeV and using a one-dimensional
model for the LSC impedance [9, 10]. CSR effects are ex-
cluded.

PF operators as before. Assuming again a monochromatic
perturbation, this yields for the first-order perturbation den-
sity after the second stage

¢2’1 = C.C. + %ﬁz’hzt%ﬂl’hl< (2])
. 7]
a[ 1+ (W10 + 81 Wa(Cy 0 exptik 1)} | w).

with g = = [1 + kW, (k)Cy B] # (kCy B1) and Mb g, 5,
being the non-collective part of the second stage PF opera-
tor. It can be shown, that the combination of the two non-
collective PF operators can be writtenas Mg, 5, Mg, p, =
%C;h; fC; @ﬂ;, Wlthh; = I’l2+C1]’l1, C; = (1+h3‘32)_l,
B3 = C3B,. Cy = C3Cy, and B} = By + C7p5. Using
this identity, the charge density of ¢, ; can be obtained via
Eq. (16), which yields p, | = C§ a1, (q) g} + c.c.. with
’ 2

g5 = [1+ ik BYW, ()] (k B3) (22)
+ig1 C3Cy Bok Wa(Cy k) i (CIC) Bak).

Figure 1 shows a comparison of the two-stage gain function
|g§| / po, numerical results from a semi-Lagrangian Vlasov
code [11], and a commonly encountered model, in which
the two-stage gain function is estimated by multiplying the
single-stage gain functions. It is apparent that while the the-
oretical gain function agrees excellently with the numerics,
the multiplied-gains estimation yields deviating results.
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