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Abstract
The microbunching instability is one of the most signifi-

cant effects, which can lead to a severe degradation of the
beam quality in the linac section of free-electron lasers. Di-
rect analytical treatment of the microbunching instability
is however challenging. In particular when multiple bunch
compression stages are considered, an exact closed-form
expression for the charge density of the electron bunch typi-
cally cannot be derived. As a remedy, perturbative methods
might be considered. Here, the instability is investigated by
analyzing the propagation of small perturbations to an other-
wise stable phase-space density. One such approach is based
on the expansion of the collective Perron-Frobenius operator
of the collective system into a Fréchet-Taylor series. Ap-
plying the expanded Perron-Frobenius operator to a slightly
perturbed phase-space density allows to derive closed-form
expressions for the propagated perturbation term, potentially
to arbitrary order. In this contribution new advances in a
perturbation theory based on the Fréchet-Taylor expansion
of collective Perron-Frobenius operators are presented.

MICROBUNCHING IN FEL INJECTORS
A major factor limiting the beam quality achievable in

the linear accelerators driving free-electron lasers (FELs) is
the microbunching instability (MBI). Collective interactions
between the electrons, in conjunction with the longitudinal
dispersion introduced by the bunch compression chicanes,
can lead to an amplification of initial inhomogeneities in
the charge density of the bunch. Generally, the MBI leads
to an increased transverse emittance and energy spread of
the bunch, both of which degrade the performance of the
bunch in the subsequent FEL process. The decreased homo-
geneity of the longitudinal phase-space distribution can be
particularly impeding for advanced operation modes, such
as external seeding.

Here, we present advances in a perturbation theory for
the MBI, based on the Perron-Frobenius (PF) formalism
[1, 2], which are an extension of our previous work on the
topic [3–5]. This contribution is a brief summary of parts
of [6], where the matter is presented in more detail, including
proofs which are omitted here for brevity.

Collective effects that influence the dynamics of a bunch
in an FEL injector include space-charge forces, interaction
via coherent synchrotron radiation (CSR) in the magnetic
chicanes, and wake fields, predominantly from the accelerat-
ing cavities. Especially the longitudinal space-charge (LSC)
forces are a major driver of the MBI. When only the LSC
and wake field interactions are considered, the MBI can be
∗ philipp.amstutz@desy.de

treated using a particularly benign model of the longitudinal
beam dynamics. Here, the injector beamline is subdivided
into bunch compression stages, each comprising a linac sec-
tion and a subsequent chicane. Generally, the length of
the linac section will be much larger than the length of the
magnetic chicane. This justifies the model assumption to
neglect the influence of the collective effects in the chicane,
so that its contribution on the longitudinal dynamics is given
to first-order by the drift map 𝐿𝛽 ∶ (𝑞, 𝑝) ↦ (𝑞 + 𝛽𝑝, 𝑝),
where the phase-space coordinates (𝑞, 𝑝) ≡ ⃗𝑧 describe the
deviation of the longitudinal position 𝑞 = 𝑧 − 𝑧0 and energy
𝑝 = 𝐸 −𝐸0 from a reference particle, and the drift parameter
related to the well known longitudinal dispersion 𝑀56 via
𝛽 = 𝑀56/𝐸0.

In the ultra-relativistic limit, there is no significant source
of longitudinal dispersion in the linac section. Therefore,
the longitudinal coordinate of each electron does not change,
so that the charge density of the bunch is invariant along
the linac section. As a result, also any collective force that
depends on the charge density is invariant. A remarkable
property of this model is, that this invariance allows to solve
the collective equation of motion exactly, as the charge den-
sity has to be calculated only once at the start of the linac
section. The total force term can then be determined via an
effective, integrated Greens function 𝐺 ∶ ℝ → ℝ, which
accounts for varying parameters such as the beamsize and
energy along the section, so that the collective dynamics are
given by the map

𝐾coll[Ψ]∶ (𝑞, 𝑝) ↦ (𝑞, 𝑝 + 𝜅[Ψ](𝑞)), (1)

where Ψ ∶ ℝ2 → ℝ denotes the phase-space density and
the collective kick function is given via an operation we
denote with the ⊛ symbol, namely a projection along the 𝑝
coordinate followed by a convolution with Greens function

𝜅[Ψ](𝑞) = ∬
ℝ2 Ψ(𝑞′, 𝑝′)𝐺(𝑞 − 𝑞′) d𝑞′ d𝑝′ ≡ (Ψ ⊛ 𝐺) .

(2)
To first order the effect of an rf-cavity is the linear kick

map 𝐾ℎ ∶ (𝑞, 𝑝) ↦ (𝑞, 𝑝 + ℎ 𝑞), so that the total map of a
linac section is 𝐾linac[Ψ] = 𝐾coll[Ψ] ∘ 𝐾ℎ = 𝐾ℎ ∘ 𝐾coll[Ψ]
and that of a single complete bunch compression stage

𝑀[Ψ] = 𝐿𝛽 ∘ 𝐾linac[Ψ] = 𝐿𝛽 ∘ 𝐾ℎ ∘ 𝐾coll[Ψ] . (3)

We note that the the non-collective part of the map can also
be represented as

𝐿𝛽 ∘ 𝐾ℎ ≡ 𝐾𝐶ℎ ∘ 𝑆𝐶 ∘ 𝐿𝐶𝛽, (4)

with the symplectic scaling map 𝑆𝐶 ∶ (𝑞, 𝑝) ↦ (𝑞/𝐶, 𝑝𝐶),
and the compression factor 𝐶 = (1 + ℎ𝛽)−1.
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THE VLASOV PICTURE
In the Liouville picture, the bunch is described by a phase-

space density Ψ(𝑠; 𝑞, 𝑝), which evolves according to the
Liouville equation

𝜕Ψ
𝜕𝑠 = {𝐻, Ψ} ≡ ∶𝐻∶ Ψ , Ψ(0; ⃗𝑧) = Ψ0( ⃗𝑧), (5)

where 𝐻 ∶ ℝ2 → ℝ is the Hamiltonian of the system, {⋅, ⋅}
is the usual Poisson bracket, and ∶ 𝐻 ∶ the associated Lie
operator. The solution is given by Ψ(𝑠; ⃗𝑧) = exp(𝑠 ∶ 𝐻 ∶
)Ψ0( ⃗𝑧) = Ψ0 (𝑀−1𝑧) = [Ψ0 ∘ 𝑀−1] ( ⃗𝑧) ≡ ℳ Ψ0, where
𝑀 = exp(−𝑠 ∶𝐻∶) is the map generated by the Hamiltonian,
and ℳ ∈ aut(𝒲) is called the Perron-Frobenius operator
(PFO) associated with 𝑀. If collective interactions can be
included by adding a dependence of the Hamiltonian on
the phase-space density, this yields the Vlasov equation in
time-continuous and equivalently in time-discrete form

⎧{
⎨{⎩

𝜕Ψ
𝜕𝑠 − ∶𝐻[Ψ]∶ Ψ = 0 , Ψ(0; ⃗𝑧) = Ψ0( ⃗𝑧) ,

Ψ𝑛+1 = ℳ𝑛+1[Ψ𝑛] Ψ𝑛 , 𝑛 ∈ ℤ+ .
(6)

Being a non-linear integro- partial differential equation or
difference equation in Ψ, respectively, the Vlasov equation
generally does not admit a closed-form solution. However,
in our ultra-relativistic model motivated above, the collective
Hamiltonian of a linac section depends only on the initial
value of the phase-space density Ψ0 at the entrance of the
section, which allows us to write the exact solution after the
first bunch compression stage as

Ψ1 = ℳ1[Ψ0]Ψ0 = ℒ𝛽1
𝒦ℎ1

𝒦coll,1[Ψ0]Ψ0. (7)

For a collective PFO ℳ[⋅] its Fréchet derivative at a given
Ψ is defined as the linear operator Dℳ[Ψ]⋅ which fulfills
the condition

lim
‖𝜙‖𝒲→0

‖ℳ[Ψ + 𝜙] − ℳ[Ψ] − Dℳ[Ψ]𝜙‖op
‖𝜙‖𝒲

= 0, (8)

where ‖ ⋅ ‖op is an operator norm, compatible with
‖ ⋅ ‖𝒲. Higher-order derivatives are given by
D𝑛ℳ[Ψ] ≡ D𝑛−1(Dℳ[Ψ]⋅), which define a multi-
linear map D𝑛ℳ[Ψ] ∶ 𝒲𝑛 → aut(𝒲). For convenience
we write D𝑛ℳ[Ψ]𝜙𝑛 ≡ D𝑛ℳ[Ψ]𝜙 ×𝑛⋯ 𝜙 which allows to
expand the PFO into a Fréchet-Taylor series

ℳ[Ψ + 𝜙] =
𝑁

∑
𝑛=0

1
𝑛!D𝑛ℳ[Ψ]𝜙𝑛 + 𝑜 (‖𝜙‖𝑁) . (9)

With this, the evolution of an initial density Ψ0 plus a pertur-
bation density 𝜖𝜙0 can be written in form of the perturbative
series

ℳ[Ψ + 𝜖𝜙](Ψ + 𝜖𝜙) =
𝑁

∑
𝑛=0

𝜖𝑛

𝑛! 𝜙1,𝑛 + 𝑜 (𝜖𝑁) , (10)

where the 𝑛th order perturbation density is given by

𝜙1,𝑛 = D𝑛ℳ[Ψ0]𝜙𝑛
0Ψ0 + 𝑛 D𝑛−1ℳ[Ψ0]𝜙𝑛

0. (11)

Given a non-collective PFO 𝒩 and a collective PFO 𝑀[Ψ],
it can be shown that D (𝒩 ℳ[Ψ]) = 𝒩 Dℳ[Ψ].

Homomorphic Collective PF Operators
If a collective PF operator fulfills the condition ℳ[Ψ +

𝜙] = ℳ[Ψ]ℳ[𝜙], we call the operator homomorphic. In
particular, it can be shown that PF operators that are gen-
erated by collective Hamiltonians ℳ[Ψ] = exp(∶ 𝐻[Ψ] ∶)
are homomorphic if the Poisson bracket of the Hamilto-
nian vanishes for all phase-space densities {𝐻[Ψ], 𝐻[𝜙]} =
0 ∀ Ψ, 𝜙 ∈ 𝒲. For this type of PF operators, it can be
shown that their Fréchet derivatives are given by

D𝑛ℳ[Ψ]𝜙𝑛 = ℳ[Ψ] ∶𝐻[𝜙]∶𝑛 . (12)

In this case, the expression in Eq. (11) for the 𝑛th order
perturbation density simplifies to

𝜙1,𝑛 = ℳ[Ψ0] ∶𝐻[𝜙0] ∶𝑛−1 (∶𝐻[𝜙0] ∶ Ψ0 + 𝑛 𝜙0) .
(13)

It can be seen that the collective kick operator 𝒦coll,1 in
Eq. (7), which is associated to a kick map of the form shown
in Eq. (1) is generated by the Hamiltonian

𝐻coll,1[Ψ](𝑞, 𝑝) = − [Γ1(𝑞 − 𝑞′) ⊛ Ψ(𝑞, 𝑝)] (𝑞), (14)

where 𝜕
𝜕𝑞Γ1(𝑞) = 𝐺1(𝑞) and 𝐺1 is the Greens function of

the collective kick in the first stage. Collective Hamiltonians
of this type are indeed homomorphic in the afforementioned
sense.

Monochromatic Perturbation
As a first application of the perturbation theory, one

might consider the case of an arbitrarily long bunch,
with the initial phase-space density Ψ0(𝑞, 𝑝) = 𝜓(𝑝),
with ∫ℝ 𝜓(𝑝)d𝑝 = 𝜌0, in conjunction with a monochro-
matic perturbation 𝜙0(𝑞, 𝑝) = [𝑎𝑘(𝑞) + ̄𝑎𝑘(𝑞)]𝜓(𝑝) with
𝑎𝑘(𝑞) ≡ 1

2 exp(𝑖𝑘𝑞)𝜓(𝑝). It can be seen that the Lie op-
erator of the collective Hamiltonian of the perturbation is
∶ 𝐻coll,1[𝑎𝑘𝜓] ∶ = 𝑊1(𝑘) 𝑎𝑘(𝑞) 𝜕

𝜕𝑝 , with the impedance-like
function 𝑊1(𝑘) = 𝑖𝑘𝜌0Γ̃1(𝑘), where Γ̃1 being the Fourier
transform of Γ1.

First Order With the above, it can be seen that the first
term in the perturbation series (11) of the system (7) is given
by

𝜙1,1 = ℳ𝛽1,ℎ1
(𝑎𝑘(𝑞) [1 + 𝑊1(𝑘) 𝜕

𝜕𝑝] 𝜓(𝑝)) + c.c.,
(15)

where we introduce a shorthand for the non-collective part
ℳ𝛽1,ℎ1

≡ ℒ𝛽1
𝒦ℎ1

. A remarkable property of this expres-
sion is, that the part on which ℳ𝛽1,ℎ1

acts, is a factorizable
function with respect to the variables 𝑞 and 𝑝. Using Eq. (4)
for the non-collective map, it can be seen that for a factoriz-
able function of the form 𝑎𝑘(𝑞)𝑓 (𝑝) its charge density after
applying ℳ𝛽1,ℎ1

is given explicitly by

∫
ℝ

𝒦𝐶ℎ𝒮𝐶ℒ𝐶𝛽(𝑎𝑘(𝑞)𝑓 (𝑝))d𝑝 = 𝐶 𝑎𝑘(𝑞𝐶) ̃𝑓 (𝑘𝐶𝛽).
(16)

This yields for the first-order charge density

𝜌1,1 = 𝐶1 𝑎𝐶𝑘 [1 + 𝑖𝑘𝐶1𝛽1𝑊1(𝑘)] 𝜓̃(𝑘𝐶1𝛽1)+c.c.. (17)



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL183

MC5.D05: Coherent and Incoherent Instabilities Theory, Simulations, Code Developments

3547

WEPL: Wednesday Poster Session: WEPL

WEPL183

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Second Order The second-order perturbation density is

𝜙1,2 = ℳ𝛽1,ℎ1
(𝑎2𝑘(𝑞) [𝑊1(𝑘)2

2
𝜕2

𝜕𝑝2 + 𝑊1(𝑘) 𝜕
𝜕𝑝]

+ ⎡⎢
⎣

∣𝑊1(𝑘)∣2

4
𝜕2

𝜕𝑝2 + 𝑊1(𝑘)
2

𝜕
𝜕𝑝

⎤⎥
⎦

)𝜓 + c.c., (18)

which, again, is a factorizable function before application
of the non-collective PF operator. We see that this density
consists of a 𝑞-independent term, plus a term with double the
periodicity of the initial perturbation. Using again Eq. (16),
we obtain for the second-order charge density

𝜌1,2 = 𝐶 𝑎2𝐶𝑘(𝑞) 𝜓̃(2𝑘𝐶𝛽) [ (19)

𝑖𝑘𝐶1𝛽1𝑊1(𝑘) − 1
2 {𝑘𝐶1𝛽1𝑊1(𝑘)}2 ] + c.c..

Higher Orders It becomes apparent that in the same man-
ner perturbation densities of arbitrary order can be derived.
At all orders, the perturbation densities are factorizable in
the sense introduced above, so that their associated charge
densities can be determined explicitly. A general formula
for the higher-order densities is given in Ref. [6].

Second-Order Two-Color Perturbations
Using the perturbation theory it is also possible to treat

perturbations on more than one wavelength with relative
ease. Consider the two-color perturbation 𝜙0(𝑞, 𝑝) =
1
2 [𝑐1𝑎𝑘1

(𝑞) + 𝑐2𝑎𝑘2
(𝑞)] 𝜓(𝑝)+c.c. with two wavenumbers

𝑘1, 𝑘2, phase factors 𝑐1, 𝑐2, and Ψ0 as before. Plugging
this into Eq. (11), it becomes apparent that the second-order
perturbation density contains terms corresponding to the in-
dividual evolution of the two perturbation colors. This term
is equal to a quarter of the sum of Eq. (18) for 𝑘1 and 𝑘2 and
is omitted here for the sake of brevity. The remaining term,
which encapsulates the interaction of the two perturbations
reads

𝜙𝐼𝐼
1,2 = c.c. + ℳ𝛽1,ℎ1

( (20)

𝑐1𝑐2[𝑊(𝑘1)𝑊(𝑘2)𝜕2𝜓
𝜕𝑝2 + {𝑊(𝑘1) + 𝑊(𝑘2)} 𝜕𝜓

𝜕𝑝 ]𝑎𝑘1+𝑘2
+

𝑐1𝑐2[𝑊(𝑘1)𝑊(𝑘2)𝜕2𝜓
𝜕𝑝2 + {𝑊(𝑘1) + 𝑊(𝑘2)} 𝜕𝜓

𝜕𝑝 ]𝑎𝑘1−𝑘2
).

It can be seen that due to the interaction two additional terms
are created, one with a frequency equal to the sum of the
two perturbation frequencies and one with the difference-
frequency.

Two Microbunching Stages
In many experimental setups, the target compression

is achieved by two bunch compression stages. After
the second stage, the phase-space density is given via
discrete Vlasov equation Eq. (5), which reads Ψ2 =
ℳ2[ℳ1[Ψ0]Ψ0] ℳ1[Ψ0] Ψ0. A perturbation series for
this expression can be obtained by expanding all collective
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Figure 1: Two-stage gain function evaluated for a parame-
ter set similar to a projected workingpoint of the FLASH
after the FLASH2020+ upgrade [7, 8], with 𝐼0 = 25 A,
𝐶1 = 𝐶2/2 = 4, assuming an initially Gaussian energy
distribution with 𝜎𝑝 = 5 keV and using a one-dimensional
model for the LSC impedance [9, 10]. CSR effects are ex-
cluded.

PF operators as before. Assuming again a monochromatic
perturbation, this yields for the first-order perturbation den-
sity after the second stage

𝜙2,1 = c.c. + ℳ𝛽2,ℎ2
ℳ𝛽1,ℎ1

( (21)

𝑎𝑘 [1 + {𝑊1(𝑘) + 𝑔1 𝑊2(𝐶1 𝑘) exp(𝑖𝑘 𝐶1𝛽1𝑝)} 𝜕
𝜕𝑝] 𝜓),

with 𝑔1 ≡ 1
𝜌0

[1 + 𝑖 𝑘𝑊1(𝑘)𝐶1𝛽1] 𝜓̃(𝑘𝐶1𝛽1) and ℳ𝛽2,ℎ2
being the non-collective part of the second stage PF opera-
tor. It can be shown, that the combination of the two non-
collective PF operators can be written as ℳ𝛽2,ℎ2

ℳ𝛽1,ℎ1
=

𝒦𝐶∗
2ℎ∗

2
𝒮𝐶†

2
𝒟𝛽†

2
, with ℎ∗

2 = ℎ2+𝐶1ℎ1, 𝐶∗
2 = (1+ℎ∗

2𝛽2)−1,
𝛽∗

2 = 𝐶∗
2𝛽2, 𝐶†

2 = 𝐶∗
2𝐶1, and 𝛽†

2 = 𝛽1 + 𝐶2
1𝛽∗

2. Using
this identity, the charge density of 𝜙2,1 can be obtained via
Eq. (16), which yields 𝜌2,1 = 𝐶†

2 𝑎𝐶†
2𝑘(𝑞) 𝑔†

2 + c.c.. with

𝑔†
2 ≡ [1 + 𝑖𝑘 𝛽†

2𝑊1(𝑘)]𝜓̃(𝑘 𝛽†
2) (22)

+ 𝑖 𝑔1 𝐶†
2𝐶1𝛽2𝑘 𝑊2(𝐶1 𝑘) 𝜓̃(𝐶†

2𝐶1𝛽2𝑘).

Figure 1 shows a comparison of the two-stage gain function
|𝑔†

2|/𝜌0, numerical results from a semi-Lagrangian Vlasov
code [11], and a commonly encountered model, in which
the two-stage gain function is estimated by multiplying the
single-stage gain functions. It is apparent that while the the-
oretical gain function agrees excellently with the numerics,
the multiplied-gains estimation yields deviating results.
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