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Noether symmetry in teleparallel f(T) gravity, where T is the torsion scalar, has been studied in the
background of Robertson-Walker space-time. It is found that Noether symmetry admits f(T) T3 and
the associated conserved current is X = adT%, in matter dominated era. In the process, the recent claim
by Wei et al. [1] that Noether symmetry admits f(T) o« T", (where n is an arbitrary constant) is found
not to be correct, since the conserved current satisfies the field equations only for a special choice of
n = 3. Further, correspondence between f(R) and f(T) theories of gravity has also been established.
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1. Introduction

Luminosity-distance versus redshift curve obtained from distant
SN1a supernovae data [2,3] unveils its non-linear feature beyond
redshift z = 0.2. For last two decades attempts have been made
to fit such a curve within a viable cosmological model. Almost
all the attempts equivocally predict that at present the universe is
undergoing an accelerated expansion. Since cosmological constant
(A) calculated in view of quantum field theory has been found
to be nearly 120 order of magnitudes larger than the same re-
quired to fit SN1a data, so it is ruled out. Two options therefore
are left. The first is to modify the right hand side of Einstein’s
equation by accommodating one or more scalar fields including
tachyonic fields or some more exotic ones having reverse sign in
kinetic term with some typical form of potential. Such fields inter-
act with none other than the gravitational field only, and therefore
dubbed as dark energy. However, the field mass responsible for
late time cosmic acceleration is very small on one hand and the
present technology does not support detection of dark energy in
any of its form, on the other. Therefore the second option has been
advocated in recent years and that is to modify the left hand side
of Einstein’s equation, viz. the geometry, and in the process by-
passing the dark energy issue. Such attempt is dubbed as modified
theory of gravity. Several types of modified theory of gravity exists
in the literature, such as, f(R) gravity, f(G) (Gauss-Bonnet) grav-
ity, f(T) (Torsion) gravity, combination of all these, Gauss-Bonnet-
dilatonic coupled gravity, Lanczos-Lavlock gravity, Horava-Lifschitz
gravity and models with extra dimensions including Kaluza-Klein,
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Randall-Sundrum, DGP and higher co-dimension braneworlds, etc.
Out of these, Teleparallel gravity has drawn lot of attention in the
recent years.

To consider teleparallelism, one employs the orthonormal tetrad
components e (x*), where the index A runs over 0, 1, 2, 3 to the
tangent space at each point x* of the manifold. Their relation to
the metric gyp is given by

Sup =NABEGE). (1)

where o« and S are coordinate indices on the manifold which again
run over 0, 1, 2, 3, while e2 forms the tangent vector on the tan-
gent space over which the metric n4p is defined. Instead of the
torsionless Levi-Civita connection which is used in General Theory
of Relativity, in Teleparallelism [4] one considers the curvatureless
Weitzenbock connection, whose non-null torsion Té’ﬂ and contor-

sion K% are defined by

Thy =ehldues — dpel], (2)
1
1<g‘ﬁz_5[ “f P, TP, (3)

respectively. Moreover, instead of the Ricci scalar R, which is used
for the Lagrangian density in general relativity, the teleparallel La-
grangian density is represented by the torsion scalar T given by

T=S,PTPyp, (4)
where,

1
§,%F = E[K“ﬁp 84Ty — ShTO%). (5)
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Accordingly, in analogy to the f(R) theory of gravity, recently a
new modified theory of gravity, namely the so-called f(T) theory
of gravity has been proposed to explain the current accelerated
expansion of the cosmos, without invoking dark energy. Such a
modified teleparallel action for f(T) gravity is given by

A:/d4x|e|f(T)+Sm, (6)

where |e| = deteg = ./—g and the units has been chosen so that
¢ =16 G = 1. It may mentioned that this is a generalized ver-
sion of the teleparallel gravity originally proposed almost a century
back by Einstein [5,6].

Now, in order to study the cosmological consequence of the so-
called teleparallel gravity, a particular form of f(T) is required. In-
stead of setting a form of f(T) by hand or reconstruct it from the
history of cosmic evolution, it is always desirable to find its form
following some physical consideration, viz. in view of the loop
quantum gravity or from some symmetry consideration. Since, loop
quantum gravity does not provide a term suitable for late time cos-
mic acceleration, so Noether symmetry is usually preferred.

Noether symmetry was applied for the first time in scalar-
tensor theory of gravity by De Ritis and his collaborators [7] to
find a form of the potential. Noether symmetry was found to select
[7] exponential form of the potential which can trigger inflation
in the early universe. This raise immense interest in the scientific
community, and thereafter Noether symmetry has been extensively
studied in cosmological models with minimally [8,9] and non-
minimally coupled [10-14] scalar-tensor theories, higher order
theory [15] and f(R) theory [16-19] of gravity. Additionally, the
same has also been applied in different anisotropic Bianchi models
[20], induced gravity theory [21], Gauss-Bonnet gravity [22] and
so on. Quantum cosmological models have also been expatiated in
view of Noether symmetry [23]. Here, we are therefore motivated
to study Noether symmetry in teleparallel theory of gravity, to find
a form of f(T).

Recently, Wei et al. [1] has claimed that Noether symmetry for
teleparallel f(T) theory of gravity in the background of spatially
flat Robertson-Walker (R-W) metric described by

ds® = —dt? + a®(H)dX?, (7)

where a(t) is the scale factor, admits f(T) oc T", where n is an
arbitrary constant in matter domain era. However, in the present
study we show that the associated conserved current satisfies the
field equations only for a special choice of n = % Thus, it is found

that Noether Symmetry only admits f(T) o T3 along with a con-
1

served current ¥ =adaT?2.

In the following section, the canonical formulations of f(T)
theory of gravity following Lagrange multiplier technique and
its scalar-tensor counterpart have been discussed. In section 3,
Noether symmetry has been invoked in both the canonical point
Lagrangians corresponding to teleparallel f(T) gravity. In section 4,
analogy of teleparallel gravity with f(R) theory of gravity has been
discussed in some detail. Finally we conclude in section 5.

2. Canonical formulation of f(T) gravity

It is not possible to find solutions to the field equations cor-
responding to the above action (6) to study cosmological conse-
quence of teleparallel gravity, unless a specific form of f(T) is
known a priori. As already mentioned, one can choose a form
by hand out of indefinite possibilities, or reconstruct it in view
of cosmic evolution history. Nevertheless, it is always desirable to
find the form in view of some physical consideration like Noether
symmetry. Nevertheless, this requires canonical formulation of the

theory under consideration. In fact, there exists two possible tech-
niques towards canonical formulation of f(T) theory of gravity.
One is Lagrange multiplier technique, which is applicable with
finite degrees of freedom, and the other is scalar-Tensor represen-
tation of f(T) gravity.

2.1. Lagrange multiplier technique

Unlike Scalar-Tensor representation of f(T) Theory (as we see
next), canonical formulation following Lagrange multiplier tech-
nique may be performed with finite degrees of freedom only.
Therefore we restricting ourselves to the Robertson-Walker met-
ric (7), we can treat T + 6% =0 as a constraint and introduce it
in the action (6) through a Lagrange multiplier A as,

w=ar? [ [rm —afrv(5)] - 2o Q

Now varying the action with respect to T one gets A = f'(T),
where f'(T) is the derivative of f(T) with respect to T. Substitut-
ing the form of A so obtained in the above action (8) the following
canonical action is found, viz.

ezt [ rofreo( ) - lea o

Therefore, the point Lagrangian in the presence of ordinary matter
may be expressed in Robertson-Walker metric (7) as

La,a T, T)= [—Badzf’+a3(f —f'T) —pmo]. (10)

In the above, oy stands for the matter density at the present
epoch.

2.2. Scalar-tensor representation of f(T) gravity

As already mentioned, it is also possible to translate the action
(6) in its scalar-tensor equivalent form, in analogy to f(R) theory
of gravity. The Scalar-Tensor representation [24] of f(T) gravity
reads

A:fd4x|h|[®T—U(¢)]+Sm. (11)
where,
®=f'(T); U@ =Tf'(T)— f(T). (12)

The corresponding point Lagrangian in Robertson-Walker (7)
space-time reads

L(a,dD,d,dD):[6ad2d>—a3U(d>)—pmo], (13)

where, pmo is the matter density at the present epoch, as already
mentioned.

3. Noether symmetries

In view of the canonical Lagrangians obtained in the previous
subsections, we now move on to explore Noether symmetry. It
is well known that Noether symmetry (ExL = XL = 0) in f(R)

theory of gravity yields nothing other than f(R) = foR% along
with a conserved current %(a\/ﬁ) in R-W metric, when cou-
pled to pressure-less dust or in vacuum [16-18]. Despite such
unique result, Noether symmetry of f(R) theory of gravity had
been reopened by some authors [25,26], who claimed to find
new conserved currents in the name of Noether gauge symme-
try. Particularly, it was claimed by Hussain et al. [25] that Noether
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gauge symmetry admits f(R) o R", where n is an arbitrary con-
stant. Jamil et al. [26] on the other hand found f(R) « R? and
V(¢) x ¢4, considering Noether gauge symmetry with Tachyonic
field. The claim [25] had been reviewed by the present author and
his collaborator (Sk and Sanyal) [27] taking both vanishing and
non-vanishing gauge into account. It was found that the conserved
currents so obtained do not satisfy the field equations, particu-
larly the (8) equation of Einstein, unless n = % Thus, the claim
that arbitrary power of R generates Noether symmetry is not cor-
rect. The claim of Jamil et al. [26] had also been reviewed by the
same authors Sk and Sanyal [28] and it was shown that f(R) o R?
do not satisfy the Tachyonic field equations. Shamir et al. [29] on
the contrary, had claimed that Noether symmetry of f(R) x R>
admits four different generators corresponding to which four dif-
ferent conserved currents exist in the presence of non-zero gauge.
In a subsequent communication, the same authors Sk and Sanyal
[30] reviewed the work and proved that the claim is not correct,
for the same reason that not all the conserved currents satisfy
the (8) equation of Einstein. Later, Roshan et al. [31] claimed that
Noether symmetry in the context of Palatini f () theory of grav-
ity admits f(M) o« R", (where n is again an arbitrary constant)
in matter dominated era. This claim had also been reviewed by
the present author [32] and it has been also shown that Noether
Symmetry only admits f () o M2 in Palatini gravity. Under such
circumstances, it would really be interesting if f(T) theory of grav-
ity yields new forms of f(T) as claimed by Wei et al. [1]. In the
following subsections we therefore review the claim [1] in the
process of finding Noether symmetries of f(T) theory of gravity,
which satisfy the field equations.

3.1. Noether symmetry following Lagrange multiplier technique

The field equations constructed out of the point Lagrangian (13)
in the Robertson-Walker metric (7) are,

(f—f’T—l—Zf’Hz)+4<2f/g+Hf”T):0, (14)
d2

af” (T+6—2) =0. (15)
a

In the above H = % stands for the Hubble parameter. The (8) equa-
tion of Einstein is

| -6’ +*(f = f'T) — pmo | = 0. (16)

Now, Noether theorem state that, if there exists a vector field X,
for which the Lie derivative of a given Lagrangian L vanishes i.e.
£xL = XL =0, the Lagrangian admits a Symmetry and thus yields
a conserved current. For the Lagrangian (10) under consideration,
the configuration space is M(a, T) and the corresponding tangent
space is TM(a, T, a, T). Hence the generic infinitesimal generator
of the Noether Symmetry is

XeyLael oyl il (17)
TR RS TR

where, y = y(a,T),¢ = ¢(a, T). The constant of motion is given
by

T=y— A+l (18)

Finding the Noether equation in view of the existence condition
£xL = XL =0, and equating the coefficients of a2, T2, aT along
with the term free from derivative respectively to zero as usual,
we obtain the following set of partial differential equations,

ay'=0, yf' +caf” +2af'yq=0,
3y (f=Tf)—acTf" =0.

The above set of partial differential equations admit the following
set of solutions, viz.

Y =y0a"%, ¢ =—2s00a"T, f(T)=foT%. (20)

The corresponding conserved current is

(19)

T =a*"Saf'(T). (21)

It may be trivially checked that the above conserved current sat-
isfies the field equations (14) through (16) only for s = 1. The
expression of the conserved current (21) for s =1 therefore reads,

T =aaf'(T). (22)

It is interesting to note that the reduced form of f(T) turns out to
be,

F(T) = foT?. (23)

In view of the above form of f(T) and the conserved current (22),
a(t) turns out to be a constant, and therefore the cosmic scale fac-
tor a(t) admits the solution,

a(t) =ait + ao, (24)

where aq, ap are constants of integration. In this context we men-
tion that the same solution [32] has also been found in the context
of Palatini f (M) theory of gravity. However, the above coasting so-
lution although fits Snla data perfectly in the matter dominated
era [33], does not fit to other available cosmological data.

3.1.1. Comments on Hao Wei et al. work

It is important to note that the (8) equation of Einstein is es-
sentially the Hamiltonian constraint equation, when expressed in
terms of phase-space variables. It is the outcome of diffeomor-
phic invariance of the theory of gravity. Since Noether equation
£xL = XL = 0 does not recognize the constraint, therefore one
can not expect that the solutions of Noether equations would sat-
isfy the Hamilton constraint equation automatically. This has been
proved by Wald and Zoupas [34]. This means that Noether theo-
rem is not on-shell for constrained system. Conserved current is
not an independent equation, but rather it is the first integral of
certain combination of the field equations. Thus, it is essential to
check if the conserved current satisfies the (8) equation of Ein-
stein. Like earlier authors [25,26,29,31] it has not been checked by
the present authors [1]. However, it is not difficult to check that
the conserved current satisfies the field equations only under the
special choice n = % Therefore, the claim of finding f(T) o< T" by
Wei et al. [1] is not correct.

3.2. Noether symmetry in scalar-tensor representation of f(T) gravity

Let us now turn our attention in this subsection, to explore
Noether symmetry in scalar-tensor representation of f(T) theory
of gravity. The field equations constructed out of the point La-
grangian (11) in the Robertson-Walker metric (7) are,

a+a2+aci>+u =0 (25)
a 2a2 ad 4o

-2

a Uqu

—_ _ " l=o. 26
[az 6] (26)

The (J) equation of Einstein is

[6ad2®+a3U(<I>) —l—pmo] —0. 27)
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In order to apply Noether symmetry approach, let us again in-
troduce the lift vector X as an infinitesimal generator of Noether
symmetry in the tangent space [a, d, ®, ®] as follows

POV S A A (28)
RS R ST REET S

and the existence condition for symmetry, XL = 0, leads to the
following system of partial differential equations

Yo=0, ®&y+al+2ady,=0, 3yU+atUe=0. (29)

The solution of the above set of equations reads,

y=—pda's . (=yad @, U=Ugd™, (30)

while the expression of conserved current is
14d |
Y =a2d ad. (31)

Again, it has been shown that the above conserved current satisfies
the field equations (25) to (27) only for d = 1. The expression for
the conserved current for d =1 is therefore,

Y =aad. (32)

Now, using the transformation relations (12), we rewrite U(®) as
U(®) =Tf(T) — f(T) = Upg®3 = Uo[f'(T)]?. Equation (30) there-
fore yields the following form of f(T), viz.

F(T) = foT?, (33)

Note that the form of f(T) and the associated conserved current
so obtained is identical with those obtained following Lagrange
multiplier technique. The solution to the scale factor therefore re-
mains unchanged

a(t) =ait + ao, (34)

which as already stated is not a viable solution to fit available
cosmological data. Nevertheless, one important issue has been re-
vealed and that is Noether symmetry is independent on the choice
of the configuration space variables.

One of the main advantages of Noether conserved current is
that one can express the field equations in terms of a cyclic co-
ordinate, so that finding solutions becomes easier, and sometimes
the cosmological solution emerges directly from Noether conserved
current [35]. Being a first integral, one can even use it to find
the solutions without even finding cyclic coordinate. In any case,
one has to use the conserved current to find the solutions to the
field equations. In a recent article [36], power-law teleparallel f(T)
gravity is discussed in details. The authors first applied Noether
symmetry to find the form f(T) « foT", and the associated con-
served current. Thereafter, they explored the cosmological solution
of the above mentioned form of f(T) analytically with the help
of the field equations and claimed the solutions to be outcome of
Noether symmetry. One can easily check that the solutions do not
satisfy Noether conserved current. Therefore such solutions can-
not be an outcome of Noether symmetry, rather, it is like setting a
form of f(T) o foT" by hand, and solving the field equations.

4. Analogy with f (R) gravity

The teleparallel f(T) gravity is not equivalent to metric f(R)
gravity in general, since they differ by an appropriate boundary
term (B) [37,38]. The relation between torsion scalar (T) and the

Ricci scalar (R) is given by

2
R=—T+dpT”)=~T+B, (35)

where, B = %3/) (eT?) is the boundary term. The action generally
can be expressed as

hor= [ d*1el (T B)+ 5. (36)

It has been mentioned in a recent article [38] that both the met-
ric f(R) and the teleparallel f(T) gravity can be recovered from
f(T,B) theory of gravity under suitable limit. Now, the expres-
sions of torsion scalar (T) and boundary term (B) in a flat R-W
metric are, T = —6(2—2) and B = —6(% + 22—2). Therefore, the Ricci
scalar is

i a®
R=-T+B=-6(-+ ). (37)
a a
In this present article, we observe that Noether symmetry of

teleparallel f(T) theory of gravity in matter dominated only yields
f(T) x foT%. Such a form of f(T) admits a solution of the cosmo-
logical scale factor, a(t) = aqt + ap, in a flat R-W metric. This par-
ticular solution implies d = 0. On the contrary, f(R) R3 yields
a cosmological solution a(t) = v/ast? + ast3 + axt? + ait + ag. So,
in general the two differs. However, when ¢t is small enough, i.e.
in the early matter dominated era, the two match. In particu-
lar, under the condition d = 0, teleparallel f(T) gravity becomes
equivalent to metric f(R) gravity, since B =2T and R=T, in
view of equation (37). Essentially, Noether symmetry puts up a
limit under which the two theories become equivalent. This clearly
demonstrates that at least in the context of Noether symmetry it
is practically of no use to consider teleparallel gravity over f(R)
theory of gravity.

5. Concluding remarks

In the present work we studied teleparallel gravity and ex-
plored the form of f(T) invoking Noether symmetry in the
background of isotropic and homogeneous R-W metric. Both the
canonical point Lagrangians obtained following Lagrange multiplier
method and the scalar-tensor equivalent one, have been found to

admit the only symmetry f(T) = foT% in the matter dominated
era. This reveals the fact that Noether symmetry, when applied to
explore the form of an unknown parameter, is independent of the
choice of the configuration space variables. We have also noticed
that in R-W metric, Noether symmetry yields identical form of
the cosmic scale factor (a(t) = ajt + ap) both in teleparallel f(T)
theory of gravity and Palatini f(0) theory of gravity [32], in the
matter dominated era. This establishes a sort of equivalence be-
tween the two. It has also been demonstrated that in the context
of Noether symmetry teleparallel gravity turns out to be a special
case of f(R) theory of gravity.

It is clear that the form of f(T) so obtained is not much ap-
preciable. This is because, the coasting solution so obtained al-
though fits Snla data perfectly in the matter dominated era [33]
fails to fit other available cosmological data. Particularly, it does
not admit a long Friedmann-like matter dominated era, prior to
the recent accelerated expansion of the universe. So application of
Noether symmetry to choose a form of f(T) becomes useless. In
this context, we would like to mention that recently it has been
observed that indeed Noether symmetry of f(R) theory of grav-

ity yields forms other than f(R) R3 [39]. In particular the other

forms are f(R)  RZ, %,Ré. However, this requires a new sym-
metry generator, which includes the (8) equation of Einstein in
the form £xL — nH = XL — nH =0, where, H is the Hamiltonian
constraint of the theory being expressed in terms of configuration

space variables (the g equation of Einstein) and 7 is a function of
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the coordinates in general. There is also possibility of finding other
forms of f(R) under proper investigation. Likewise, we do expect
that several other forms of f(T) might also emerge in view of the
above mentioned symmetry generator. This we pose in a future
communication.
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