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Noether symmetry in teleparallel f (T ) gravity, where T is the torsion scalar, has been studied in the 
background of Robertson–Walker space–time. It is found that Noether symmetry admits f (T ) ∝ T

3
2 and 

the associated conserved current is � = aȧT
1
2 , in matter dominated era. In the process, the recent claim 

by Wei et al. [1] that Noether symmetry admits f (T ) ∝ T n , (where n is an arbitrary constant) is found 
not to be correct, since the conserved current satisfies the field equations only for a special choice of 
n = 3

2 . Further, correspondence between f (R) and f (T ) theories of gravity has also been established.
© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Luminosity-distance versus redshift curve obtained from distant 
SN1a supernovae data [2,3] unveils its non-linear feature beyond 
redshift z = 0.2. For last two decades attempts have been made 
to fit such a curve within a viable cosmological model. Almost 
all the attempts equivocally predict that at present the universe is 
undergoing an accelerated expansion. Since cosmological constant 
(�) calculated in view of quantum field theory has been found 
to be nearly 120 order of magnitudes larger than the same re-
quired to fit SN1a data, so it is ruled out. Two options therefore 
are left. The first is to modify the right hand side of Einstein’s 
equation by accommodating one or more scalar fields including 
tachyonic fields or some more exotic ones having reverse sign in 
kinetic term with some typical form of potential. Such fields inter-
act with none other than the gravitational field only, and therefore 
dubbed as dark energy. However, the field mass responsible for 
late time cosmic acceleration is very small on one hand and the 
present technology does not support detection of dark energy in 
any of its form, on the other. Therefore the second option has been 
advocated in recent years and that is to modify the left hand side 
of Einstein’s equation, viz. the geometry, and in the process by-
passing the dark energy issue. Such attempt is dubbed as modified 
theory of gravity. Several types of modified theory of gravity exists 
in the literature, such as, f (R) gravity, f (G) (Gauss–Bonnet) grav-
ity, f (T ) (Torsion) gravity, combination of all these, Gauss–Bonnet-
dilatonic coupled gravity, Lanczos–Lavlock gravity, Horava–Lifschitz 
gravity and models with extra dimensions including Kaluza–Klein, 
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Randall–Sundrum, DGP and higher co-dimension braneworlds, etc. 
Out of these, Teleparallel gravity has drawn lot of attention in the 
recent years.

To consider teleparallelism, one employs the orthonormal tetrad 
components e A(xα), where the index A runs over 0, 1, 2, 3 to the 
tangent space at each point xα of the manifold. Their relation to 
the metric gαβ is given by

gαβ = ηAB e A
αeB

β , (1)

where α and β are coordinate indices on the manifold which again 
run over 0, 1, 2, 3, while e A

α forms the tangent vector on the tan-
gent space over which the metric ηAB is defined. Instead of the 
torsionless Levi-Civita connection which is used in General Theory 
of Relativity, in Teleparallelism [4] one considers the curvatureless 
Weitzenbock connection, whose non-null torsion T ρ

αβ and contor-

sion K αβ
ρ are defined by

T ρ
αβ ≡ eρ

A[∂αe A
β − ∂βe A

α ], (2)

K αβ
ρ ≡ −1

2
[T αβ

ρ − T βα
ρ − Tρ

αβ ], (3)

respectively. Moreover, instead of the Ricci scalar R , which is used 
for the Lagrangian density in general relativity, the teleparallel La-
grangian density is represented by the torsion scalar T given by

T ≡ Sρ
αβ T ρ

αβ, (4)

where,

Sρ
αβ ≡ 1 [K αβ

ρ + δα
ρ T θβ

θ − δ
β
ρ T θα

θ ]. (5)
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Accordingly, in analogy to the f (R) theory of gravity, recently a 
new modified theory of gravity, namely the so-called f (T ) theory 
of gravity has been proposed to explain the current accelerated 
expansion of the cosmos, without invoking dark energy. Such a 
modified teleparallel action for f (T ) gravity is given by

A=
∫

d4x | e | f (T ) + Sm, (6)

where |e| = det e A
α = √−g and the units has been chosen so that 

c = 16πG = 1. It may mentioned that this is a generalized ver-
sion of the teleparallel gravity originally proposed almost a century 
back by Einstein [5,6].

Now, in order to study the cosmological consequence of the so-
called teleparallel gravity, a particular form of f (T ) is required. In-
stead of setting a form of f (T ) by hand or reconstruct it from the 
history of cosmic evolution, it is always desirable to find its form 
following some physical consideration, viz. in view of the loop 
quantum gravity or from some symmetry consideration. Since, loop 
quantum gravity does not provide a term suitable for late time cos-
mic acceleration, so Noether symmetry is usually preferred.

Noether symmetry was applied for the first time in scalar–
tensor theory of gravity by De Ritis and his collaborators [7] to 
find a form of the potential. Noether symmetry was found to select 
[7] exponential form of the potential which can trigger inflation 
in the early universe. This raise immense interest in the scientific 
community, and thereafter Noether symmetry has been extensively 
studied in cosmological models with minimally [8,9] and non-
minimally coupled [10–14] scalar–tensor theories, higher order 
theory [15] and f (R) theory [16–19] of gravity. Additionally, the 
same has also been applied in different anisotropic Bianchi models 
[20], induced gravity theory [21], Gauss–Bonnet gravity [22] and 
so on. Quantum cosmological models have also been expatiated in 
view of Noether symmetry [23]. Here, we are therefore motivated 
to study Noether symmetry in teleparallel theory of gravity, to find 
a form of f (T ).

Recently, Wei et al. [1] has claimed that Noether symmetry for 
teleparallel f (T ) theory of gravity in the background of spatially 
flat Robertson–Walker (R–W) metric described by

ds2 = −dt2 + a2(t)dX2, (7)

where a(t) is the scale factor, admits f (T ) ∝ T n , where n is an 
arbitrary constant in matter domain era. However, in the present 
study we show that the associated conserved current satisfies the 
field equations only for a special choice of n = 3

2 . Thus, it is found 
that Noether Symmetry only admits f (T ) ∝ T

3
2 along with a con-

served current � = aȧT
1
2 .

In the following section, the canonical formulations of f (T )

theory of gravity following Lagrange multiplier technique and 
its scalar–tensor counterpart have been discussed. In section 3, 
Noether symmetry has been invoked in both the canonical point 
Lagrangians corresponding to teleparallel f (T ) gravity. In section 4, 
analogy of teleparallel gravity with f (R) theory of gravity has been 
discussed in some detail. Finally we conclude in section 5.

2. Canonical formulation of f (T ) gravity

It is not possible to find solutions to the field equations cor-
responding to the above action (6) to study cosmological conse-
quence of teleparallel gravity, unless a specific form of f (T ) is 
known a priori. As already mentioned, one can choose a form 
by hand out of indefinite possibilities, or reconstruct it in view 
of cosmic evolution history. Nevertheless, it is always desirable to 
find the form in view of some physical consideration like Noether 
symmetry. Nevertheless, this requires canonical formulation of the 
theory under consideration. In fact, there exists two possible tech-
niques towards canonical formulation of f (T ) theory of gravity. 
One is Lagrange multiplier technique, which is applicable with 
finite degrees of freedom, and the other is scalar-Tensor represen-
tation of f (T ) gravity.

2.1. Lagrange multiplier technique

Unlike Scalar-Tensor representation of f (T ) Theory (as we see 
next), canonical formulation following Lagrange multiplier tech-
nique may be performed with finite degrees of freedom only. 
Therefore we restricting ourselves to the Robertson–Walker met-
ric (7), we can treat T + 6 ȧ2

a2 = 0 as a constraint and introduce it 
in the action (6) through a Lagrange multiplier λ as,

A = 2π2
∫ [

f (T ) − λ
{

T + 6
( ȧ2

a2

)}
− ρm0

a3

]
a3dt. (8)

Now varying the action with respect to T one gets λ = f ′(T ), 
where f ′(T ) is the derivative of f (T ) with respect to T . Substitut-
ing the form of λ so obtained in the above action (8) the following 
canonical action is found, viz.

A = 2π2
∫ [

f (T ) − f ′(T )
{

T + 6
( ȧ2

a2

)}
− ρm0

a3

]
a3dt. (9)

Therefore, the point Lagrangian in the presence of ordinary matter 
may be expressed in Robertson–Walker metric (7) as

L(a, ȧ, T , Ṫ ) =
[
−6aȧ2 f ′ + a3( f − f ′T ) − ρm0

]
. (10)

In the above, ρm0 stands for the matter density at the present 
epoch.

2.2. Scalar–tensor representation of f (T ) gravity

As already mentioned, it is also possible to translate the action 
(6) in its scalar–tensor equivalent form, in analogy to f (R) theory 
of gravity. The Scalar–Tensor representation [24] of f (T ) gravity 
reads

A=
∫

d4x | h | [
T − U (
)] + Sm. (11)

where,


 = f ′(T ); U (
) = T f ′(T ) − f (T ). (12)

The corresponding point Lagrangian in Robertson–Walker (7)
space–time reads

L(a,
, ȧ, 
̇) =
[

6aȧ2
 − a3U (
) − ρm0

]
, (13)

where, ρm0 is the matter density at the present epoch, as already 
mentioned.

3. Noether symmetries

In view of the canonical Lagrangians obtained in the previous 
subsections, we now move on to explore Noether symmetry. It 
is well known that Noether symmetry (£X L = X L = 0) in f (R)

theory of gravity yields nothing other than f (R) = f0 R
3
2 along 

with a conserved current d
dt (a

√
R) in R–W metric, when cou-

pled to pressure-less dust or in vacuum [16–18]. Despite such 
unique result, Noether symmetry of f (R) theory of gravity had 
been reopened by some authors [25,26], who claimed to find 
new conserved currents in the name of Noether gauge symme-
try. Particularly, it was claimed by Hussain et al. [25] that Noether 
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gauge symmetry admits f (R) ∝ Rn , where n is an arbitrary con-
stant. Jamil et al. [26] on the other hand found f (R) ∝ R2 and 
V (φ) ∝ φ−4, considering Noether gauge symmetry with Tachyonic 
field. The claim [25] had been reviewed by the present author and 
his collaborator (Sk and Sanyal) [27] taking both vanishing and 
non-vanishing gauge into account. It was found that the conserved 
currents so obtained do not satisfy the field equations, particu-
larly the (0

0) equation of Einstein, unless n = 3
2 . Thus, the claim 

that arbitrary power of R generates Noether symmetry is not cor-
rect. The claim of Jamil et al. [26] had also been reviewed by the 
same authors Sk and Sanyal [28] and it was shown that f (R) ∝ R2

do not satisfy the Tachyonic field equations. Shamir et al. [29] on 
the contrary, had claimed that Noether symmetry of f (R) ∝ R

3
2

admits four different generators corresponding to which four dif-
ferent conserved currents exist in the presence of non-zero gauge. 
In a subsequent communication, the same authors Sk and Sanyal 
[30] reviewed the work and proved that the claim is not correct, 
for the same reason that not all the conserved currents satisfy 
the (0

0) equation of Einstein. Later, Roshan et al. [31] claimed that 
Noether symmetry in the context of Palatini f (�) theory of grav-
ity admits f (�) ∝ �n , (where n is again an arbitrary constant) 
in matter dominated era. This claim had also been reviewed by 
the present author [32] and it has been also shown that Noether 
Symmetry only admits f (�) ∝ � 3

2 in Palatini gravity. Under such 
circumstances, it would really be interesting if f (T ) theory of grav-
ity yields new forms of f (T ) as claimed by Wei et al. [1]. In the 
following subsections we therefore review the claim [1] in the 
process of finding Noether symmetries of f (T ) theory of gravity, 
which satisfy the field equations.

3.1. Noether symmetry following Lagrange multiplier technique

The field equations constructed out of the point Lagrangian (13)
in the Robertson–Walker metric (7) are,
(

f − f ′T + 2 f ′H2
)

+ 4

(
2 f ′ ä

a
+ H f ′′ Ṫ

)
= 0, (14)

a3 f ′′
(

T + 6
ȧ2

a2

)
= 0. (15)

In the above H = ȧ
a stands for the Hubble parameter. The (0

0) equa-
tion of Einstein is[
−6aȧ2 f ′ + a3( f − f ′T ) − ρm0

]
= 0. (16)

Now, Noether theorem state that, if there exists a vector field X , 
for which the Lie derivative of a given Lagrangian L vanishes i.e. 
£X L = X L = 0, the Lagrangian admits a Symmetry and thus yields 
a conserved current. For the Lagrangian (10) under consideration, 
the configuration space is M(a, T ) and the corresponding tangent 
space is TM(a, T , ̇a, Ṫ ). Hence the generic infinitesimal generator 
of the Noether Symmetry is

X = γ
∂

∂a
+ ζ

∂

∂T
+ γ̇

∂

∂ȧ
+ ζ̇

∂

∂ Ṫ
, (17)

where, γ = γ (a, T ), ζ = ζ(a, T ). The constant of motion is given 
by

� = γ
∂L

∂ȧ
+ ζ

∂L

∂ Ṫ
. (18)

Finding the Noether equation in view of the existence condition 
£X L = X L = 0, and equating the coefficients of ȧ2, Ṫ 2, ȧṪ along 
with the term free from derivative respectively to zero as usual, 
we obtain the following set of partial differential equations,
aγ ′ = 0, γ f ′ + ζaf ′′ + 2af ′γ,a = 0,

3γ
(

f − T f ′) − aζ T f ′′ = 0.
(19)

The above set of partial differential equations admit the following 
set of solutions, viz.

γ = γ0a1−s, ζ = −2sγ0a−s T , f (T ) = f0T
3
2s . (20)

The corresponding conserved current is

� = a2−sȧ f ′(T ). (21)

It may be trivially checked that the above conserved current sat-
isfies the field equations (14) through (16) only for s = 1. The 
expression of the conserved current (21) for s = 1 therefore reads,

� = aȧ f ′(T ). (22)

It is interesting to note that the reduced form of f (T ) turns out to 
be,

f (T ) = f0T
3
2 . (23)

In view of the above form of f (T ) and the conserved current (22), 
ȧ(t) turns out to be a constant, and therefore the cosmic scale fac-
tor a(t) admits the solution,

a(t) = a1t + a0, (24)

where a1, a0 are constants of integration. In this context we men-
tion that the same solution [32] has also been found in the context 
of Palatini f (�) theory of gravity. However, the above coasting so-
lution although fits SnIa data perfectly in the matter dominated 
era [33], does not fit to other available cosmological data.

3.1.1. Comments on Hao Wei et al. work
It is important to note that the (0

0) equation of Einstein is es-
sentially the Hamiltonian constraint equation, when expressed in 
terms of phase-space variables. It is the outcome of diffeomor-
phic invariance of the theory of gravity. Since Noether equation 
£X L = X L = 0 does not recognize the constraint, therefore one 
can not expect that the solutions of Noether equations would sat-
isfy the Hamilton constraint equation automatically. This has been 
proved by Wald and Zoupas [34]. This means that Noether theo-
rem is not on-shell for constrained system. Conserved current is 
not an independent equation, but rather it is the first integral of 
certain combination of the field equations. Thus, it is essential to 
check if the conserved current satisfies the (0

0) equation of Ein-
stein. Like earlier authors [25,26,29,31] it has not been checked by 
the present authors [1]. However, it is not difficult to check that 
the conserved current satisfies the field equations only under the 
special choice n = 3

2 . Therefore, the claim of finding f (T ) ∝ T n by 
Wei et al. [1] is not correct.

3.2. Noether symmetry in scalar–tensor representation of f (T ) gravity

Let us now turn our attention in this subsection, to explore 
Noether symmetry in scalar–tensor representation of f (T ) theory 
of gravity. The field equations constructed out of the point La-
grangian (11) in the Robertson–Walker metric (7) are,[

ä

a
+ ȧ2

2a2
+ ȧ
̇

a

+ U

4


]
= 0, (25)

[
ȧ2

a2
− U ,


6

]
= 0. (26)

The (0
0) equation of Einstein is[

6aȧ2
 + a3U (
) + ρm0

]
= 0. (27)
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In order to apply Noether symmetry approach, let us again in-
troduce the lift vector X as an infinitesimal generator of Noether 
symmetry in the tangent space [a, ̇a, 
, 
̇] as follows

X = γ
∂

∂a
+ ζ

∂

∂

+ γ̇

∂

∂ȧ
+ ζ̇

∂

∂
̇
, (28)

and the existence condition for symmetry, X L = 0, leads to the 
following system of partial differential equations

γ,
 = 0, 
γ + aζ + 2a
γ,a = 0, 3γ U + aζ U ,
 = 0. (29)

The solution of the above set of equations reads,

γ = −γ0da
1−d
2d , ζ = γ0a

1−3d
2d 
, U = U0


3d, (30)

while the expression of conserved current is

� = a
1+d
2d ȧ
. (31)

Again, it has been shown that the above conserved current satisfies 
the field equations (25) to (27) only for d = 1. The expression for 
the conserved current for d = 1 is therefore,

� = aȧ
. (32)

Now, using the transformation relations (12), we rewrite U (
) as 
U (
) = T f ′(T ) − f (T ) = U0


3 = U0[ f ′(T )]3. Equation (30) there-
fore yields the following form of f (T ), viz.

f (T ) = f0T
3
2 , (33)

Note that the form of f (T ) and the associated conserved current 
so obtained is identical with those obtained following Lagrange 
multiplier technique. The solution to the scale factor therefore re-
mains unchanged

a(t) = a1t + a0, (34)

which as already stated is not a viable solution to fit available 
cosmological data. Nevertheless, one important issue has been re-
vealed and that is Noether symmetry is independent on the choice 
of the configuration space variables.

One of the main advantages of Noether conserved current is 
that one can express the field equations in terms of a cyclic co-
ordinate, so that finding solutions becomes easier, and sometimes 
the cosmological solution emerges directly from Noether conserved 
current [35]. Being a first integral, one can even use it to find 
the solutions without even finding cyclic coordinate. In any case, 
one has to use the conserved current to find the solutions to the 
field equations. In a recent article [36], power-law teleparallel f (T )

gravity is discussed in details. The authors first applied Noether 
symmetry to find the form f (T ) ∝ f0T n , and the associated con-
served current. Thereafter, they explored the cosmological solution 
of the above mentioned form of f (T ) analytically with the help 
of the field equations and claimed the solutions to be outcome of 
Noether symmetry. One can easily check that the solutions do not 
satisfy Noether conserved current. Therefore such solutions can-
not be an outcome of Noether symmetry, rather, it is like setting a 
form of f (T ) ∝ f0T n by hand, and solving the field equations.

4. Analogy with f (R) gravity

The teleparallel f (T ) gravity is not equivalent to metric f (R)

gravity in general, since they differ by an appropriate boundary 
term (B) [37,38]. The relation between torsion scalar (T ) and the 
Ricci scalar (R) is given by

R = −T + 2
∂ρ(eT ρ) = −T +B, (35)
e

where, B = 2
e ∂ρ(eT ρ) is the boundary term. The action generally 

can be expressed as

AB,T =
∫

d4x | e | f (T ,B) + Sm. (36)

It has been mentioned in a recent article [38] that both the met-
ric f (R) and the teleparallel f (T ) gravity can be recovered from 
f (T , B) theory of gravity under suitable limit. Now, the expres-
sions of torsion scalar (T ) and boundary term (B) in a flat R–W 
metric are, T = −6( ȧ2

a2 ) and B = −6( ä
a + 2 ȧ2

a2 ). Therefore, the Ricci 
scalar is

R = −T +B = −6(
ä

a
+ ȧ2

a2
). (37)

In this present article, we observe that Noether symmetry of 
teleparallel f (T ) theory of gravity in matter dominated only yields 
f (T ) ∝ f0T

3
2 . Such a form of f (T ) admits a solution of the cosmo-

logical scale factor, a(t) = a1t + a0, in a flat R–W metric. This par-

ticular solution implies ä = 0. On the contrary, f (R) ∝ R
3
2 yields 

a cosmological solution a(t) =
√

a4t4 + a3t3 + a2t2 + a1t + a0. So, 
in general the two differs. However, when t is small enough, i.e. 
in the early matter dominated era, the two match. In particu-
lar, under the condition ä = 0, teleparallel f (T ) gravity becomes 
equivalent to metric f (R) gravity, since B = 2T and R = T , in 
view of equation (37). Essentially, Noether symmetry puts up a 
limit under which the two theories become equivalent. This clearly 
demonstrates that at least in the context of Noether symmetry it 
is practically of no use to consider teleparallel gravity over f (R)

theory of gravity.

5. Concluding remarks

In the present work we studied teleparallel gravity and ex-
plored the form of f (T ) invoking Noether symmetry in the 
background of isotropic and homogeneous R–W metric. Both the 
canonical point Lagrangians obtained following Lagrange multiplier 
method and the scalar–tensor equivalent one, have been found to 
admit the only symmetry f (T ) = f0T

3
2 in the matter dominated 

era. This reveals the fact that Noether symmetry, when applied to 
explore the form of an unknown parameter, is independent of the 
choice of the configuration space variables. We have also noticed 
that in R–W metric, Noether symmetry yields identical form of 
the cosmic scale factor (a(t) = a1t + a0) both in teleparallel f (T )

theory of gravity and Palatini f (�) theory of gravity [32], in the 
matter dominated era. This establishes a sort of equivalence be-
tween the two. It has also been demonstrated that in the context 
of Noether symmetry teleparallel gravity turns out to be a special 
case of f (R) theory of gravity.

It is clear that the form of f (T ) so obtained is not much ap-
preciable. This is because, the coasting solution so obtained al-
though fits SnIa data perfectly in the matter dominated era [33]
fails to fit other available cosmological data. Particularly, it does 
not admit a long Friedmann-like matter dominated era, prior to 
the recent accelerated expansion of the universe. So application of 
Noether symmetry to choose a form of f (T ) becomes useless. In 
this context, we would like to mention that recently it has been 
observed that indeed Noether symmetry of f (R) theory of grav-

ity yields forms other than f (R) ∝ R
3
2 [39]. In particular the other 

forms are f (R) ∝ R2, 1
R , R

7
5 . However, this requires a new sym-

metry generator, which includes the (0
0) equation of Einstein in 

the form £X L − ηH = X L − ηH = 0, where, H is the Hamiltonian 
constraint of the theory being expressed in terms of configuration 
space variables (the 0 equation of Einstein) and η is a function of 
0
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the coordinates in general. There is also possibility of finding other 
forms of f (R) under proper investigation. Likewise, we do expect 
that several other forms of f (T ) might also emerge in view of the 
above mentioned symmetry generator. This we pose in a future 
communication.
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