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Abstract

We present an interesting application of the solution to the simple harmonic oscillator (SHO) that can serve as a computation
of 7. We begin with a review of a compact teaching strategy for solving its equation of motion through integration in a general
physics course, where many students face difficulties with conventional methods for solving differential equations. This
integration approach leads to the arcsine function, the inverse of the sine function, ultimately providing the solution to the
SHO. We investigate various series for approximating z, focusing on the arcsine series and their difference in convergence
speed. We begin with Newton’s arcsine series for 7 = 2 arcsin 1. We then explore a series based on powers of sin 2; - <<,
where £ is a large positive integer and the sine term is computed using nested radicals through half-angle formulas, resembling
Viete’s formula. The small sine term acts as a power-counting parameter, making the series better convergent to z with
reliable error estimation. We extend this approach to a fractional-angle method, generalizing the factor from 1/2 to 1/p’ for
a prime number p’, by employing Chebyshev polynomials of the second kind, which commonly arise in physics problems.
This leads to a series involving powers of sin f, where p is an arbitrary integer expressed as a product of prime factors, further

enhancing convergence with a smaller power-counting parameter. The power counting allows us to identify significant terms
in the Chebyshev polynomials and to truncate numerically insignificant contributions that optimize and simplify the
computation of the sine term. Our novel strategies are pedagogical and suitable for advanced physics undergraduates, enabling
them to approximate z with high accuracy using techniques covered in physics courses.

Keywords z-series - Chebyshev Polynomials - Convergence of z series
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ing trigonometric functions and take calculus to learn how
to differentiate and integrate a sinusoidal function and its
inverse function. Unfortunately, in a typical general physics
course, the instructor teaches what the solution of the simple
harmonic oscillator is but not why. For example, readers
are referred to conventional textbooks like Serway [1] or
Halliday and Resnick [2]. The primary reason for this omis-
sion is that the equation of motion for the simple harmonic
oscillator is the second-order linear differential equation and
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solving the differential equation is out of the scope of the
general physics course.

In fact, many authors have developed methods for solving
the equation of motion for the harmonic oscillator without
relying on the standard approach of solving differential
equations. Weinstock [3], Bush [4], Gauthier [5], and Tisdell
[6] use the conservation of the total mechanical energy to
parameterize the dimensionless velocity and dimensionless
displacement at a point on a circle. However, given that the
students know the integral representation of the arcsine
function that is the inverse of the sine function, it is possible,
in principle, to avoid solving the differential equation
directly. Since general physics covers the conservation of
the total mechanical energy in a simple harmonic oscillator,
one can solve for the oscillator’s velocity and reorganize the
equation so that the variables are separated. Then, finding
the velocity reduces to evaluating a definite integral, the
arcsine function. Nevertheless, few instructors employ
this well-known teaching strategy. For examples of this
approach, readers may refer to Eq. (15) of Lenz [7], Egs.
(3.213) and (3.214) on p. 125 of Symon [8] and Egs. (8.15)
and (8.17) on p. 291 of [9].

In this paper, we review a compact teaching strategy
for solving the equation of motion for the simple
harmonic oscillator by integration. The equation of
motion is multiplied by the velocity to construct the total
differential form of the Hamiltonian, which represents
the total mechanical energy. The quantities with non-
vanishing physical dimensions are factored out to find that
the product of the characteristic frequency w, = \/k/_m
multiplied by time ¢ is proportional to a definite integral
of a displacement from the equilibrium point, which is an
integral representation of the arcsine function. Here, k is the
spring constant of the restoring force, and m is the mass of
the oscillator.

Since the arcsine function is the inverse of the sine function,
it is evident that the definite integral involves z, the one-half
period of the sine function. As a result, we obtain
T\/k/m =2z, where T is the period of the oscillation. By
choosing all of the physically dimensionless quantities in units,
we can identify that the integral can be used to compute
7 = 2 arcsin 1 that is indeed what Newton found to compute
the fluxion (derivative) of a fluent (variable) as is written on p.
140 of Beckmann [10] in which the history of computing 7 is
reviewed. This is one of the oldest methods of computing z
whose convergence is very slow. The Gregory—Leibniz series

_ _ S P R O I D
7r_4arctan1—4[(l 3>+<5 7)"‘ ]_4Zn=02n+l

=4y = jsanalternating series that converges much
zn=0 42n+1)2-1 g g

faster than # = 2 arcsin 1. As is stated on p. 141 of Beckmann
[10], however, # = 6 arcsin % converges in comparably more
quickly than the Gregory—Leibniz series. This indicates that
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the arcsine function is still useful in computing z if there is a
systematic way to evaluate the value of sine at small angles.

We focus on the fact that freshmen taking a general
physics course know how to apply binomial theorem gen-
eralized to non-integer powers as developed by Newton
around 1665. By employing this method, we can expand
the integrand as an infinite power series. Since the definite
integral can be evaluated from the initial position to any
position, we can vary the upper limit of the integral. By
applying the half-angle formulas for the cosine and sine
functions that are familiar to freshmen, we compute the
numerical value of £ = sin % for a large positive integer
k. We demonstrate that the convergence of the power series
for 25*! arcsin & is significantly improved compared to that
of Newton’s formula. The initial term 2%*! arcsin £ in the
series is in agreement with findings by Chang and Chang
[11] variated from Vete’s formula [12].

As a further improvement in convergence, we
employ Chebyshev’s polynomials of the second kind
U, (cos 0) = sin[pf]/ sin 6, with a sufficiently large index
p > 2. This generalizes the half-angle method to the frac-
tional-angle method, dividing the angle into p parts. In
general, the computation with Chebyshev’s polynomials
of large indices should be carried out numerically. We
provide systematic power-counting rules, a useful tool for
systematic expansions in quantum field theory, to signifi-
cantly reduce computation time.

Perhaps, our strategy would not outperform well-
established methods such as Machin-like formulas [13],
Chudnovsky’s algorithm [14, 15], or Gauss—Legendre
methods [16] and not be comparable to state-of-the-art
computational algorithms developed by advanced digit
hunters. However, our strategies are suitable for advanced
freshmen and physics majors, enabling them to achieve an
approximate value of z to high accuracies using knowl-
edge obtained in physics courses. The systematic devel-
opment of computational algorithms is quite pedagogical
and can serve as a valuable exercise in computational and
mathematical physics courses.

This paper is organized as follows. In Sect. 2, we review
a teaching strategy to find the solution of the equation of
motion for the simple harmonic oscillator without rely-
ing on the conventional approach for solving differential
equations. Instead, we find the solution by integration. The
integral table illustrated in Sect. 2 is used to compute 7 in
power series expansions in Sect. 3. Arcsine at a tiny argu-

ment & = sin —— is determined by making use of the half-

k+1
angle formulafs for the trigonometric functions. In Sect. 4,
we generalize this strategy by employing Chebyshev’s
polynomials of the second kind to construct a series of
arcsine that converges much faster than the former series

introduced in Sect. 3. A conclusion is given in Sect. 5.
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2 Solving simple harmonic motion
with arcsine

The arcsine function is the inverse function of the sine
function and has the following integral representation:

 du .
/ ———— =arcsiné. (D)
Typically, students take a calculus-based general physics
course alongside calculus often before becoming familiar
with solving the second-order linear differential equation.
Hence, the integral in Eq. (1) is very convenient in teaching
how to solve the equation of motion for the simple harmonic
oscillator,

k
@y =4[ @

mx + kx =0,

in a general physics class. Here, x is the displacement from
the equilibrium position of a particle with mass m attached
to a spring with spring constant k and @) is the characteristic
angular frequency of the simple harmonic motion.

One can multiply the velocity by Eq. (2) to express
it as the total differential of the total mechanical energy
(Hamiltonian). The total mechanical energy is given by
the sum of the kinetic and potential energies as follows:

1 . 1., 1

= ~k? = Sk,

2"t 2 )
where the amplitude 7 of the oscillation is related to the
positions x = +.¢7 of the turning points.

Introducing a dimensionless displacement u defined by
W= )
we can rewrite Eq. (3) in terms of u. Solving for the velocity
i =x/9/, we obtain

i=+wyV1—u?, 5)

where the sign in front of the square root is positive when x
varies from — to +.o/. The negative sign corresponds to
the motion from +.o7 to —<7.

The energy conservation constraint in Eq. (5) can be
used to compute the time interval corresponding to the
differential du of the dimensionless displacement as

du

wVT— ©

Since time flows forward only, +du must be positive definite.
We can make use of the symmetry of the motion to find that

dr =+

these two time intervals from ¥/ to +/ are identical to
one-half of the period T

+1 1
@T:/ L:Z/ d—u:2arcsin1:ﬂ,
2 1Al —u? 0 V1—u?

@)
where we have made use of the identity sin% =1-

arcsinl = % Thus, we have reached the identity

2z
T=—.

o ®)
If the initial conditions are given by
Xo = x(0) = u,, X = x(0) = i, )

then Eq. (1) can be modified as

t u
[oN / dr = / e arcsin y — arcsin u,. (10)
0 uy A/ 1 —u?

The solution is

. X
6 = arcsin —. (11)

x(1) = @/sin (wyt + ), ~

We have demonstrated that the arcsine function is highly
useful in teaching simple harmonic motion in general
physics. The approach described in this section is a well-
known strategy. Readers are referred to equation (15)
of Lenz [7] for further details. This method is a standard
technique to find the solution for the radial equation of the
planetary motion that can be found in equations (3.213) and
(3.214) on p. 125 of Symon [8] and equations (8.15) and
(8.17) on p. 291 of [9], for instance.

3 Computationof 1

In this section, we illustrate how to compute 7 by making
use of the integral representation (1) in association with
the binomial expansion of the integrand in powers of u.
The resulting series for the integral converges slowly to
arcsin 1 = % By restricting the upper limit of the integral
from 1 to & = sin 2[,’1, where k is a non-negative integer,
we improve the convergence of the series by choosing a
sufficiently large k. The method is based on the elementary
trigonometric identity known as the half-angle formula.

3.1 Binomial expansion
In physics, there are many applications of Newton’s

generalized binomial theorem. For all |x| < 1 and for any
constant @, (1 + x)* can be expanded in powers of x as

,,,,,,,,,,,,,,,,,,,,,,
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ala — 1)x2 + ala — D)(a—2) N

@ _
A+x)*"=14ax+ 2 3

12)

For example, the electrostatic potential or corresponding
electric field due to an electric dipole can be approximated
using the generalized binomial expansion. In ordinary
physics problems, the power « in Eq. (12) is either an integer
or a half-integer. If @ is a non-negative integer, then the
series terminates. If a is a half-integer or a negative integer,
then the expansion is an infinite series. When « is a half-
integer, as in the integrand in Eq. (1), the general term of the
generalized binomial expansion contains double factorials:

n factors

B
" n factors (13)
N
=iyl 2.l :(_l)n%

The gamma function is closely related to the factorial
through the formula I'[#] = (n — 1)! providing an extension
of the factorial to real and complex numbers [17]. The
gamma function satisfies the following recurrence relation
(See, for example, chapter 8 of [17].):

Azl =Tz+ 1], Re(z) >0, (14)

This function is convenient for expressing factors that
involve factorials or double factorials. Euler’s integral
definition of the Gamma function is given by

F[z]:/ duwe™. (15)
0

By multiplying the coefficient in Eq. (13) by 1 = F[%]/F[%]
and applying the recurrence relation (14), we can rewrite the
expression in Eq. (13) as

n factors

ANV -1y
() (5) - (5)
x 1
n!
n factors
;1.1.3...( _l; In+ 1]

= (=1)" 2 ? 2 n—s = (=1) 1n—2
[[510n + 1] [0 + 1]

(16)
This simplification stems from the Legendre duplication
formula:

@ Springer KCJS 'E E]§|l§_]

I'ln+ %]
I[3]

I'2n + 1] (2n— 1)”
22T+ 1] 21

a7

The identities given in Egs. (16) and (17) are quite useful in
solving various problems in physics. For example, the power
series expansion of a special function using Rodrigues’
formula usually contains double factorials that can be
simplified using these identities.

It is apparent that F[%] reduces to the Gaussian integral

by changing the variable u = x*:

[s5) (o9 +00
F[%] = / du u_%e_” = 2/ e dx = / e dx
0 0 -0
(13)

Then, the square of the Gaussian integral can be evaluated
in two-dimensional polar coordinates using x = rcos 6 and
y = rsin 0 as follows:

+00 R +00 ! 2 o0
/ e""dx/ e dy :/ d0/ e rdr=nx.
o — 0 0

(19)
Since the Gaussian integral is positive definite, we can
determine the value of F[%] as

rizl= V. (20)

Hence, a direct numerical evaluation of the definite integral
(18) can determine the numerical value of \/7_1

By employing the identity in Eq. (12), we can expand
the integrand in Eq. (1) in powers of ¢ and evaluate the
integral over ¢ as

£
/ dr? =
0

The resultant expression for arcsin & of the power series in
£ is obtained as

¢
arcsin & =/
0 V1-¢
1
[n+ 7]
/ dr Z [2”

n=0 ]F[ + 1]

Y T[2n + 1] x/ 4
&2 +1] " o

€2n+l

> 21
2n+1 @D

(22)

=Z§2n+l F[2n+ 1]
~ 220Qn+ DI2[n+ 1]

When transitioning from the second to the third line, the
summation symbol and the Gamma function terms are
moved out of the integration because they are independent
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I(Z:f t. ;quuations (17) and (20) can be employed to rewrite o i I2n + 1] oab)
q. (22) as NTT & m2n + D20+ 1]

I'ln+ %]

S L— (23)
Qn+ Dn + 1]

(o]
\/marcsin & = Z g+l

n=0

However, Eq. (23) is not useful to determine z because
I'n+ %] in the numerator contains a factor of F[%] = \/;

As a byproduct, we can use Eq. (22) to compute z. While
various efficient computation strategies exist, our primary
focus in the remainder of this paper will be on the arcsine
function. For example, the Gregory—Leibniz series for the
arctangent function % = arctan | converges faster than the
expression in Eq. (22). Readers are referred to Frame [18],
Kobayashi [19], and Alzer [20] for more details about the
Leibniz series. Machin-like formulas, based on the inverse
tangent function, offer rapid convergence [13]:

y 1 1
- = Z ¢, arctan —,
4 T my,

where ¢, are small integers (often positive or negative) and
my, are integers chosen such that their reciprocals provide
rapidly converging series for z. Chudnovsky’s algorithm,
rooted in elliptic curve theory and based on Ramanujan-like
series, provides extremely fast convergence and is used in
modern record computations [14, 15]:

1_4 S (= DE(6k)!(545140134k + 13591409)

n =0 (3K)1(k!)3(640320)%F+3

Additionally, Gauss—Legendre methods, which are iterative
algorithms, exhibit quadratic convergence [16]. These
methods significantly outperform the series in Eq. (23)
in terms of computational efficiency. We refer readers to
Castellano’s reviews [21, 22] and to Beckmann’s book [10]
regarding various methods for computing .

While such state-of-the-art techniques listed above are
based on high-performance numerical algorithms, they
are not suitable for teaching physics-major undergraduate
students. Instead, we introduce more heuristically
meaningful approaches that are based on the building blocks
that are already familiar to physics-major students.

3.2 Approach using arcsine 1

Equation (22) serves as our master formula from which
we compute approximate values of # with quantitatively
controlled errors. Since the maximum value of the arcsine
function is arcsiné = % at £ = 1, we multiply both sides of
Eq. (22) by 2 and substitute £ = 1to compute z as follows:

x =2arcsinl = lim Sy,

—00

(24a)

The convergence of the series in Eq. (24) is very poor. For
example, the partial sum Sy, converges to = very slowly:

Sy =2, (25a)
S, =2.3333 -, (25b)
S10 =2.8002 -+, (25¢)
Sy =3.0293 -, (25d)
Sy =3.1059 -, (25¢)
Sy =3.1303 -+, (25f)
S0 =3.1380 - . (259)

‘We observe that the correct values for the first, second, and
third digits are achieved by adding terms of order 102, 103,
and 10, respectively.'

3.3 Approach using half-angle formula

Another way to determine z using the arcsine function is to
apply L’Hopital’s theorem to the sine function:
sin zx

7 =lim
x—=0 X

(26)

At first glance, equation (26) appears to suggest that we need
to know the value of z to compute z. However, if we choose
a tiny number zx whose sine is known from the half-angle
formula, then we do not need the explicit value of z to evalu-
ate the right-hand side of Eq. (26).

We shall find that the sine function of zk% for any integer

k > 0 can be computed and the corresponding sequence 7,
approaches r as k — oo:

k: 0’ 1’ 2’ (27)

Leading entries of the sequence x, are

wy=2, mn ~283, =m,~3006, m3x3.12, x,=~3.14.

(28)

! Rounded to the second decimal place.

,,,,,,,,,,,,,,,,,,,,,,
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The value of sin =— T

angle formula for the sine function recursively. For any
0 € [0, %], the half-angle formulas are given by

[cos— sm l\/ (1 +cos0), \/ (1 —cos 9)] 29)

It is straightforward to construct the following recurrence
relations:

[cos%,sm%] = [\/;<l+cos%> \/%(1—(:052:;_1)}

Substituting % for 6 in (30) and varying k recursively, we
find that

can be computed by applying the half-

(cos %,sin %) = (0, 1), (la)

(cos 7 sin %) = <% ) (31b)

\/2+\/§ \/z—

(cos ek sin %) = 3 , 3 , 31c)

e

NSNS SN
2 ’ 2 ’

” —
(cos 24,sm ?) =

(31d)

cos —— il sin d
k1’ 2k+1

k roots

2 ’ 2

k roots

(le)

The expression for the sine in Eq. (31e) agrees with
the theorem given by Chang and Chang [11], which is a
variation of Viete’s original formula [12].

@ Springer KCJS 'E E]§|l§_]

k+1
be computed by making use of the formula given in the last

line of Eq. (31). At k = 80, &, reproduces x up to 50 digits:

The numerical value for z, = 2%*! sin 2— in Eq. (27) can

7w =3.1415926535897932384626433
83279502884197169399374222 --- ,

. 3
The erroris 7 — 7, ~ ﬂﬂ ~ 8.8 x 107%°, where we Taylor
expanded 7, to identify the dominant contribution to 7 — 7.

Indeed, it is the single-term contribution Sf)k) of the series:
— (k)
= Jim, S G20
2n+1 I'2n+ 1]
B =kt [s n-"_ . (32b
nZ:; M%et|  mipRmr1; O

where sin 2— is given in Eq. (31) Equation (32) derives
from Eq. (22) by substituting sin — for £ and multiplying

2k+1
by 2¢*1. A similar series based on the half-angle formula is
presented in [23], but its alternating nature, arising from the
expansion of an arctangent term, distinguishes it from our
series. The numerical error of Sx‘) decreases exponentially
as we increase the number of terms N. The ratio of the
(N + Dth entry of the sequence to the Nth entry scales like
sin —— ~ — for k>1, (33)
which is a power-counting parameter that indicates the size
of the relative correction of the series sum as N increases by
1, thus representing the relative error of S%(). Consequently,

the error of Sf\f) scales like

1
AkN+1)

A S%‘) S(k) ~ S(k) S(k) ~

N+1 T PN (34)

Knowing the definite scaling of the error is useful since it
immediately tells us how many sequences are needed to
achieve the desired accuracy. Numerically, it scales like
1076W+D 10730N+D "and 10~5°V+D for k = 10, 50, and 100,
respectively. We verify the scaling behavior from an explicit
example below. It is convenient to define the error vector
AS® as
AS® = [77 - S(()k), - S(lk), - S(zk), - S;k), T = Sik), ] )
(35)

where the vector remains positive because each term in the
series (32) is positive definite. An explicit computation of
the partial sum (32) for various values of k reveals that the
error decreases dramatically as both k and N increase:

AS© =[1.1,0.81,0.66,0.57,0.51, ---], (36a)
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AS" =[12x107%,1.3x 10712, 1.8 x 10718,

36b
29%x1074,5.1x 1079, ..., (360
AS® =[12x107"2,1.2x 107%,1.6 x 1076, 2.4x 360)
C
107,40 x 107, ...],
ASCY =[1.1 x 10718, 1.1 x 107, 1.4 x 107, 36d)
20%x107%,32%x 107, ...,
ASUY =[1.1x 10724,9.8 X 107,12 x 10772, (36¢)
&
1.7x107%,2.5x 10712, ...],
AS®Y =[1.0x 1073°,8.9 x 1071, 1.0 x 107, 36D
1.4x1071%0,2.0 x 10715, ...,
AS® =[9.7x 10737,8.1 x 10773,9.0 x 107'%°,
1.1x 1071 1.5 x 10718, ..., (362
ASTY =[9.3x 107,74 x 107%,7.8 x 107177,
9.4x 1071, 1.2x 107219, ...], 6w
AS®Y =[8.8x 107,67 x 1077,6.7 x 10714, ,
7.8x1071%,0.6 x 107241, ..], (360
ASP =[8.4x 107%,6.1 x 10719°,5.9 x 107163, ,
6.4x107217,7.6 x 107271 ..], %)
AST =[8.0x 107",5.6 x 107"*',5.1 x 107"%,
(36K)

53%x 107" 6.0 x 10739 ...].

The size of the errors agrees with the predictions for
k =10, 50, and 100 from the scaling behavior in Eq. (34).
According to the errors in Eq. (36) for the series in Eq. (35),
we conclude that the evaluation at & = sin %
efficient than the original series expansion in Eq. (24), whose
errors can be determined from Eq. (25). There is a trade-off in
achieving efficiency. While each sequence in Eq. (24) consists
of rational numbers with infinite precision, the factor sin zkﬂT in
Eq. (35) is irrational and must be computed numerically using
Eq. (31e) to the desired accuracy, which can be costly.

While the expression for the sine in Eq. (31e) corresponds
to the theorem established by Chang and Chang [11], which
pertains only to the first term, to the best of our knowledge,
the complete series presented in Eq. (32) and the scaling of the
error in Eq. (34) is novel.

is far more

4 Fractional-angle method

One might wonder whether the convergence of the series in
Eq. (32) could be further improved by generalizing the factor
2%+ to an arbitrarily large integer p, expressed as a product
of prime factors:

p= Hl’ﬁk’7 (37)

where p/ are prime numbers and ; are non-negative integer
powers, respectively. Then, we can replace 2+!’s in Eq.
(32b) with p’s to find that

N 2n+1
(Y} _ . I'2n+ 1]
stk = z .
V=P [Sm p] 22020+ D20 + 1] (38)

Now, the power-counting parameter 2¥*! in Eq. (33) is
replaced by the factor p:

sin® Z L _ !
P TNV T (39
PP @)W
The corresponding error scales like
ky _ _ olky ]
AS" =w =Sy e
1 (40)

T T WNHD . 20N+, 2N+
(pl] 1 )(p/22 )(p/23 ) e

The expression in Eq. (38) is fully determined once an
expression for the sine of the fractional angle, sin 157, is found.

For instance, when p = 2k the formulation naturally aligns
with a Viete-like formula due to the recursive application of
the half-angle formula, resulting in a nested square root
structure with a convergence rate of (1/2)*®™+D, For p = 3%,
the formulation extends to triple-angle formulas, introducing
cubic polynomial dependencies instead of simple nested
radicals, leading to an alternative rapidly converging series
with a rate of (1/3)%W+D, For higher prime numbers, similar
formulations and convergence behaviors can be inferred.

4.1 Chebyshev polynomials of the second kind

We demonstrate an angle-chopping strategy for an arbitrary
integer p by making use of Chebyshev polynomials of the
second kind, U, (x). In physics, Chebyshev polynomials are
orthogonal polynomials that serve as basis functions for the
Fourier expansion of waves generated by a vibrating string
(see, for example, Jung et al. [24]) and appear in various
other physics applications, including charge distribution on a
conducting disk or thin wire in electrostatics, approximations
of wavefunctions and eigenvalues in numerical quantum

,,,,,,,,,,,,,,,,,,,,,,
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mechanics, and rapid numerical approximations for Lorentz
factor-dependent functions in high-energy physics. They have
the geometric implication that

sin[(n + 1)0]

U,(cosf) = S0

(41)
An elementary way to verify the factorization formula in
Eq. (41) is to apply the addition formula for the sinusoidal
functions recursively:

cos[(n + 1)8] =cosnf cosf — sinnf sin b, (42a)

sin[(n + 1)8] =sinné cos § + cos nf sin H. (42b)

One can also employ de Moivre’s theorem to confirm that
sin[(n + 1)@] can always be factorized into the product of
sin @ and a polynomial in cos 6:

sin[(n + 1)0] = Sm [(COS 0 + isin 9)n+1]
= LE(I’Z-H)J(_Dk n+ 1!
B k=0 2k + D(n — 2k)!

cos" % 9 sin**1 9

[5+D) (nt 1)
- k; D S D =20

x cos" 2k (1 — cos? O,

(43)

where | x| is the floor function, which gives the greatest
integer less than or equal to x:

|x] =m, ifandonlyif m<x<m+1,

meZ. (44)

According to Egs. (41) and (43), the Chebyshev polynomials
of the second kind U, (cos ) is determined as

L5041

Uycosf) = Y (=DF (n+1)!
k=0

2k + D(n — 2k)! (45)

% cos" 2 9(1 = cos? ).

One could also extract the polynomial by expanding the
corresponding generating function:

1 o0
—_— = U (x)".
1 —2xt+ 72 g:j W) (46)

The first ten entries of the polynomials are given by

Up(x) =1, (47a)
U, (x) =2x, (47b)
U, (x) =4x* — 1, (47¢)

O springer KES Y3

Us(x) =8x° — 4x, (47d)
U,(x) =16x* — 1262 + 1, (47e)
Us(x) =32x° — 32x° + 6x, (471
Ug(x) =64x5 — 80x* + 2422 — 1, 47g)
U, (x) =128x" — 192x° + 80x° — 8x, (47h)
Ug(x) =256x% — 4485 + 240x* — 40x% + 1, (471)
Uy(x) =512x° — 1024x" 4 672x° — 160x> + 10x. 47))

4.2 Special values of sine

The identity in Eq. (41) is particularly useful for expressing
the sine of an angle 6 in terms of the sine and cosine of the
fractional angle 6 /(n + 1):

U, (cos 0)sin6 = U, [\/1 — sin? 0] sin@ = sin[(n + 1)0].

(43)
Since (n + 1)8 € [0, %], Eq. (48) has only a single solution
for 6.

For an integer p = 2¥p’, where p’ is a prime number greater
than or equal to 2, we can find sin ZkLp’ by solving the following

equation:
s1n§=—\/ -V2+-- \/2+\/§
k—lzots (49)
= —sin2 % T
= Up,_l[ 1 —sin 2kp’] S 2kp” >0

For p’ = 2, the equation simplifies to one whose analytic
solution is given by the half-angle formula in Eq. (31e).
Thus, the half-angle formula represents a special case of
the fractional-angle method in Eq. (49). For higher prime
numbers, Uy in Eq. (49) becomes a cubic or higher order
polynomial, and analytic solutions exist only for a few
specific cases. In general, a numerical approach is required,
which is discussed in the next subsection.

To obtain sin zkp”m, one can repeatedly solve the following

equation:

T

sin sin Syt s k>0,

T _ win? T
2kpt _UP’—I[ I'=sin kam+1]
(50)
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where £ is an integer starting from 0. In the same way, we o 1./

can find sin 122 for an arbitrary integer p in Eq. (37). s =3 2 - V2 =0.38268343236508977173 ---,
Although Eqgs. (49) and (50) do not have analytic solutions (52d)

except for p = 2%+ in many cases, an integer of form p = 2p’
has analytic result for sin ZLp’ The leading entries of Eq. (49)

for k = 0 are
x:sin% D I=2xV1 =2, (51a)
x =sin = 1 =3x —4x°, (51b)
x =sin = 1 =4x(1 =2x)V1 -2, (51c)
Cowin T _ 2 4
x= smm D1 =x(5—-20x" + 16x7), (51d)
x = sin 1”—2 D 1=2@ - 167 +16:YV1 - 22, (51e)
_un _ 3 5 7
x—smﬁ. 1 =7x—56x" +112x° — 64x’, (51f)
x = sin 1”—6 © 1 =8x(1 — 1022 + 24x* — 16x5V1 — 22,
(5lg)
x= sinli8 ¢ 1 =x(9 — 12007 + 432x* — 576x° + 256x%),
(51h)
x=sin= : 1=2x5—-80x%+336x*

20 (51i)

—512x° + 25623 V1 — 2,

x=sinZ ;1= 11x—220x + 12322
22 (51j)
—2816x7 +2816x° — 1024x'!,

where, for completeness, non prime numbers p' €12, 11]are

included. Except for sin = 14 sin = 1 5 and sm the remaining

equations in Eq. (51) are exactly solvable

L

sin 5 =L (52a)

. T 1

sin 7 =$ =0.70710678118654752440 --- , (52b)

sin Z l =0.5 52
6 7= (52¢0)

sin = =1 (\/3 - 1) = 0.30901699437494742410,  (52¢)

sin % =% V2 - v3=025881904510252076235 ---,

(52f)
sin — l V -V2+ \/—
2 (52¢g)
= 0.19509032201612826785 --
. T 1 1
Z 2 2la=4/2 )
30 2\le <5+\/§] (52h)

= 0.15643446504023086901 --- .

The results in Eq. (52) illustrate that the special values of the
sine function derive from sin % = 1. This provides a unique
elementary demonstration of the usefulness of Chebyshev
polynomials of the second kind in verifying trigonometric
identities.

4.3 Power counting and convergence

Unlike the case of sin — 2k+1’

analytically in Eq. (31e) sin -——

Which can be expressed
zk - with p’ > 2 in Eq. (49)
should be solved numerically to the desired accuracy.
Fortunately, the initial positioning of an approximate trial
solution for sin 2kLpf is relatively straightforward, making it

easier to meet the accuracy requirements. For better
convergence, the prime number p’ can be chosen to be
arbitrarily large, provided that the internal precision of a
numerical package allows it.

However, this leads to a substantial increase in the
number of terms in the Chebyshev polynomials, which
grows rapidly as p’ increases. By applying the power-
counting method described in Eq. (39), we can safely neglect
insignificant contributions in the polynomials, such as higher
order terms in power-counting parameter that are negligible
to the desired accuracy. This will be discussed in greater
detail shortly. One can recursively apply the fractional-angle
method and the power—counting method by solving Eq. (50)

multiple times to obtain sin —— kp,m In the same way, the angle
can also be arbitrarily chopped, yielding sin %. Among

various ways to divide the angle, we focus on the following
case to simplify our discussion:

p =281 (53)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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In order to discuss the truncation of the Chebyshev
polynomials using the power-counting method, let us expand
the right side of Eq. (49) and truncate the terms beyond the
nth order

€= coX + 10 + X" + o + o X (54)

where we introduce the simplified notation ¢ = sin zk”j and

X = sin 2k+p/’ which is the power-counting parameter in this
equation and scales like ¢ /p’. The coefficient ¢, is obtained
by expanding Chebyshev polynomials and for n = 0, it is
¢ =p'. Let us denote x, as the solution to the truncated
equation (54). Then, x,,, is the solution to the equation of
one-order higher and can be expressed as x,,; = x,, + 6,,
where §, is a truncation error scaling like (e/p’)*"*3.
Inserting the relation into the equation for x,, ; and keeping
dominant contributions of order (e /p’)***3, one finds a linear

. . . C
equation ¢y6, + ¢, +1xiﬁ3 = 0, which gives 5, = —#62’”3.

By replacing ¢ with €, = sinW and by solving the
equation £ + 1 times from £ = 0, we obtain the solution for
si According to the expression for §,, the error is

n F4
2k+1prf+1 . n

dominated by the contribution at £ = 0: 6, ~ — l%eé””.

Thus, the truncation error in Sg;f) scales as follows:

1—2n-3

AtruncS(k,f) ~ 2k+1p/f+1 |5n| (55)

~ |Cn+1|m~
An optimal truncation, which minimizes the number of
terms, requires the truncation error to be comparable to the
summation errors that follow the scaling in Eq. (40). By
equating (40) and (55) and solving for n, we obtain

|Cn+l|

N+1DZ Inp’+1n
( )¢ Inp p 56)

n~N+

In(2p")

Note that the relation (56) depends on the coefficient ¢, , as
well as the parameters p’, k, £, and N. If £ = 0, the relation
simplifies and » increases at the same rate as N. However, for
a sufficiently large ¢, the rate of increase in n grows larger
than that of N. For a sufficiently large k, n approaches N
because the second term on the right-hand side of Eq. (56)
is proportional to 1/k. In contrast, if k is small, the second
term becomes significant, making n sensitive to the values
of other parameters such as Z, p/, and ¢, +1aswellas N. The
calculation of n is illustrated in the following example.

To illustrate the efficiency of numerical computation
using power counting, we will first retain the higher-
order terms by choosing a moderately large p’. For this
demonstration, we choose p’ = 101 in Eq. (53). Then, Eq.
(38) becomes

D Springer KESYAEAY

N
Sj\]/(f) = 2k+1 . 10]f+1 Z
n=0
[ . 7 ]2"“ I2n+1]
X [sin )
2+ 101741 220Qn+ D20 + 1]

(57)

The value of sin m can be computed numerically by
making use of the following equation:

. T _ ain? T
st 2k+l . 1017 Uioo [\/1 st 2kl . 101 £+!

X sin

x (58)
2k+1 . 1014+1°

By solving Eq. (58) £+ 1 times starting from # =0
and increasing it by 1, we can determine the value of

in ————.
2k+1.101¢+1
The expression in Eq. (57) approaches z arbitrarily

closely as N increases. The rate of the convergence is
enhanced as k or £ or both increase. We define the error
vector AS®?) as

AS®D

=[x - 8§ n =% 7 — 580, (59)
m =880 1= SE0

where S is defined in Eq. (57). For k = 100, we find that

AST0D =79 % 107%,53 x 107'2°,4.8 x 1079,

60a

49x 10727, 54 % 10732, ...], (0

ASUOD =[7.7 x 107%°,5.1 x 107137, 4.5 10725, (605)
45%107273,49 x 10734 ..],

AS1? =[7.6 x 1077,5.1 x 107'%°,4.2 x 10717, (600)

C
42x107%°, 45 % 107301 ...],

AS1D) =[7.4 % 10777,4.7 x 1071%3,4.0 x 1072, 600
3.9%1073% 40x 10738 ...],

ASUOY —[73 % 10781, 4.6 X 10711, 3.8 107241, (600)

c
3.6 x 107321 3.6 x 10741 ..],

ASU05) =71 x 10785, 4.4 x 10719, 3.5 107253, (600
33 %1077, 33 % 1074, ...],

AS19 =[7.0 x 107%,4.2 x 107'77,3.3 x 10725,
(60g)

3.0%x 10733,3.0x 10741, .1,
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AS19D =[6.9 x 1073,4.0 x 107'8%,3.1 x 107277,

2.8x 10739 2.7 x 107461 .1, (60

AS19® =167 % 1077,3.9x 107193,3.0 x 10725, ,
2.6x 10735 24 x 107481 .., (0D

AS19) —[6.6 x 1071%1,3.7 x 1072°!, 2.8 x 107!, .
(60j)

24%x 1074 22 %1079 ...,

AST0010 =165 % 107195 3.6 x 107299,

2.6x107°5,2.2%x1077,2.0 x 10721, --].

(60k)

The computed errors are consistent with the scaling

prediction in Eq. (40). Note that every component is positive

definite because the series in Eq. (57) is monotonically

increasing. The result in Eq. (60) demonstrates that the

accuracy increases systematically as the parameters £ and
N increase.

According to Eq. (56), we can find the minimal number
of terms n needed in the Chebyshev polynomials for
k=100 and p’ = 101. For the coefficient c,, we take an
empirical scaling obtained from a fit: ¢, ~ 10%". Then, Eq.
(56) simplifies as n~ [N+ (N + 1)Za]/(1 — @), where
a =Inp’'/In(2%p") ~ 0.06. For the case Z = 0, this yields
n =~ 1.07N, and we can choose 7 to be the integer greater
than this value, n=N+1. For £ =10, n~ 1.7N + 0.7,
resulting in corresponding integers nis n = {1, 3,5, 6, 8} for
N ={0,1,2,3,4}, respectively. Note that these values of n
are a small fraction of 50, the total number of polynomials
in U, (x). We confirmed that the errors computed using the
equations with n terms agree with those errors in Egs. (60a)
and (60k).

To our best knowledge, the expressions in Eqs. (32) and
(57) are new. Note that p’ = 101 in Eq. (57) is a simple
choice for demonstration purposes; however, the large
integer p’ can be any sufficiently large value.

5 Conclusion

Starting from the teaching strategy to solve the equation of
motion for the simple harmonic oscillator through the
process of integration, we have investigated the mathematical
properties of the integral representation for the arcsine
function, which Newton used for computing z. The power-
series expansion of the integral was carried out by making
use of the binomial theorem generalized for non-integer
powers. Although the original series for 2 arcsin 1in Eq. (24)

. .
converges very slowly to z, the novel power series of sin ZoT

given in Eq. (32), expressed as nested radicals in Eq. (31e)
by applying the half-angle formulas, shows boosting the
convergence as k increases, as demonstrated in Eq. (36).
However, there is a trade-off in boosting convergence. While
the original series consists of sums of rational numbers with
infinite precision, the term sin % turns the expression into
a sum of irrational numbers that must be numerically
computed to the desired accuracy and costly. Furthermore,
our fractional-angle method generalizes the half-angle
method from a factor of 1/2 to 1/p’ with a prime number p’,
thereby enhancing convergence significantly for a large
value of p’. This is achieved through the elementary property
of Chebyshev polynomials of the second kind, as given in
Eq. (41). The resulting series in Eq. (38) is expressed in
powers of sin %, where p is an arbitrary integer written as a

product of prime factors, with its value computed
numerically using Eq. (50). Systematic power-counting
rules, as provided in Egs. (33) and (39), allow for the
estimation of errors in the series. This enables the safe
omission of numerically suppressed contributions,
improving computational efficiency without affecting the
desired level of accuracy. Nevertheless, our strategy is
unlikely to outperform well-established methods and may
not be directly comparable to the state-of-the-art algorithms
used by advanced z hunters. However, we think that its true
strength lies in its pedagogical value, as it provides advanced
freshmen and physics majors with a concrete way to engage
with and reinforce key concepts and techniques learned in
physics courses through 7 computation.
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