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Abstract
We present an interesting application of the solution to the simple harmonic oscillator (SHO) that can serve as a computation 
of � . We begin with a review of a compact teaching strategy for solving its equation of motion through integration in a general 
physics course, where many students face difficulties with conventional methods for solving differential equations. This 
integration approach leads to the arcsine function, the inverse of the sine function, ultimately providing the solution to the 
SHO. We investigate various series for approximating � , focusing on the arcsine series and their difference in convergence 
speed. We begin with Newton’s arcsine series for � = 2 arcsin 1 . We then explore a series based on powers of sin 𝜋

2k+1
≪ 1 , 

where k is a large positive integer and the sine term is computed using nested radicals through half-angle formulas, resembling 
Viète’s formula. The small sine term acts as a power-counting parameter, making the series better convergent to � with 
reliable error estimation. We extend this approach to a fractional-angle method, generalizing the factor from 1/2 to 1∕p� for 
a prime number p′ , by employing Chebyshev polynomials of the second kind, which commonly arise in physics problems. 
This leads to a series involving powers of sin �

p
 , where p is an arbitrary integer expressed as a product of prime factors, further 

enhancing convergence with a smaller power-counting parameter. The power counting allows us to identify significant terms 
in the Chebyshev polynomials and to truncate numerically insignificant contributions that optimize and simplify the 
computation of the sine term. Our novel strategies are pedagogical and suitable for advanced physics undergraduates, enabling 
them to approximate � with high accuracy using techniques covered in physics courses.

Keywords  �-series · Chebyshev Polynomials · Convergence of � series

1  Introduction

The sine function is one of the most important mathematical 
functions, appearing frequently in physics problems from 
the elementary level throughout. It describes the solution 
of the simple harmonic oscillator and it serves as the basis 
of the Fourier-series expansion of waves. Freshmen taking 
a general physics course first encounter the sine function 
when learning about the simple harmonic oscillator. Usually, 
these students are acquainted with various formulas involv-
ing trigonometric functions and take calculus to learn how 
to differentiate and integrate a sinusoidal function and its 
inverse function. Unfortunately, in a typical general physics 
course, the instructor teaches what the solution of the simple 
harmonic oscillator is but not why. For example, readers 
are referred to conventional textbooks like Serway [1] or 
Halliday and Resnick [2]. The primary reason for this omis-
sion is that the equation of motion for the simple harmonic 
oscillator is the second-order linear differential equation and 
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solving the differential equation is out of the scope of the 
general physics course.

In fact, many authors have developed methods for solving 
the equation of motion for the harmonic oscillator without 
relying on the standard approach of solving differential 
equations. Weinstock [3], Bush [4], Gauthier [5], and Tisdell 
[6] use the conservation of the total mechanical energy to 
parameterize the dimensionless velocity and dimensionless 
displacement at a point on a circle. However, given that the 
students know the integral representation of the arcsine 
function that is the inverse of the sine function, it is possible, 
in principle, to avoid solving the differential equation 
directly. Since general physics covers the conservation of 
the total mechanical energy in a simple harmonic oscillator, 
one can solve for the oscillator’s velocity and reorganize the 
equation so that the variables are separated. Then, finding 
the velocity reduces to evaluating a definite integral, the 
arcsine function. Nevertheless, few instructors employ 
this well-known teaching strategy. For examples of this 
approach, readers may refer to Eq. (15) of Lenz [7], Eqs. 
(3.213) and (3.214) on p. 125 of Symon [8] and Eqs. (8.15) 
and (8.17) on p. 291 of [9].

In this paper, we review a compact teaching strategy 
for solving the equation of motion for the simple 
harmonic oscillator by integration. The equation of 
motion is multiplied by the velocity to construct the total 
differential form of the Hamiltonian, which represents 
the total mechanical energy. The quantities with non-
vanishing physical dimensions are factored out to find that 
the product of the characteristic frequency �0 =

√
k∕m 

multiplied by time t is proportional to a definite integral 
of a displacement from the equilibrium point, which is an 
integral representation of the arcsine function. Here, k is the 
spring constant of the restoring force, and m is the mass of 
the oscillator.

Since the arcsine function is the inverse of the sine function, 
it is evident that the definite integral involves � , the one-half 
period of the sine function. As a result, we obtain 
T
√
k∕m = 2� , where T is the period of the oscillation. By 

choosing all of the physically dimensionless quantities in units, 
we can identify that the integral can be used to compute 
� = 2 arcsin 1 that is indeed what Newton found to compute 
the fluxion (derivative) of a fluent (variable) as is written on p. 
140 of Beckmann [10] in which the history of computing � is 
reviewed. This is one of the oldest methods of computing � 
whose convergence is very slow. The Gregory–Leibniz series 
� = 4 arctan 1 = 4

��
1 −

1

3

�
+
�

1

5
−

1

7

�
+⋯

�
= 4

∑∞

n=0

(−1)n

2n+1

= 4
∑∞

n=0

2

4(2n+1)2−1
 is an alternating series that converges much 

faster than � = 2 arcsin 1. As is stated on p. 141 of Beckmann 
[10], however, � = 6 arcsin

1

2
 converges in comparably more 

quickly than the Gregory–Leibniz series. This indicates that 

the arcsine function is still useful in computing � if there is a 
systematic way to evaluate the value of sine at small angles.

We focus on the fact that freshmen taking a general 
physics course know how to apply binomial theorem gen-
eralized to non-integer powers as developed by Newton 
around 1665. By employing this method, we can expand 
the integrand as an infinite power series. Since the definite 
integral can be evaluated from the initial position to any 
position, we can vary the upper limit of the integral. By 
applying the half-angle formulas for the cosine and sine 
functions that are familiar to freshmen, we compute the 
numerical value of � = sin

�

2k+1
 for a large positive integer 

k. We demonstrate that the convergence of the power series 
for 2k+1 arcsin � is significantly improved compared to that 
of Newton’s formula. The initial term 2k+1 arcsin � in the 
series is in agreement with findings by Chang and Chang 
[11] variated from Vète’s formula [12].

As a further improvement in convergence, we 
employ Chebyshev’s polynomials of the second kind 
Up−1(cos �) = sin[p�]∕ sin � , with a sufficiently large index 
p ≫ 2. This generalizes the half-angle method to the frac-
tional-angle method, dividing the angle into p parts. In 
general, the computation with Chebyshev’s polynomials 
of large indices should be carried out numerically. We 
provide systematic power-counting rules, a useful tool for 
systematic expansions in quantum field theory, to signifi-
cantly reduce computation time.

Perhaps, our strategy would not outperform well-
established methods such as Machin-like formulas [13], 
Chudnovsky’s algorithm [14, 15], or Gauss–Legendre 
methods [16] and not be comparable to state-of-the-art 
computational algorithms developed by advanced digit 
hunters. However, our strategies are suitable for advanced 
freshmen and physics majors, enabling them to achieve an 
approximate value of � to high accuracies using knowl-
edge obtained in physics courses. The systematic devel-
opment of computational algorithms is quite pedagogical 
and can serve as a valuable exercise in computational and 
mathematical physics courses.

This paper is organized as follows. In Sect. 2, we review 
a teaching strategy to find the solution of the equation of 
motion for the simple harmonic oscillator without rely-
ing on the conventional approach for solving differential 
equations. Instead, we find the solution by integration. The 
integral table illustrated in Sect. 2 is used to compute � in 
power series expansions in Sect. 3. Arcsine at a tiny argu-
ment � = sin

�

2k+1
 is determined by making use of the half-

angle formulas for the trigonometric functions. In Sect. 4, 
we generalize this strategy by employing Chebyshev’s 
polynomials of the second kind to construct a series of 
arcsine that converges much faster than the former series 
introduced in Sect. 3. A conclusion is given in Sect. 5.
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2 � Solving simple harmonic motion 
with arcsine

The arcsine function is the inverse function of the sine 
function and has the following integral representation:

Typically, students take a calculus-based general physics 
course alongside calculus often before becoming familiar 
with solving the second-order linear differential equation. 
Hence, the integral in Eq. (1) is very convenient in teaching 
how to solve the equation of motion for the simple harmonic 
oscillator,

in a general physics class. Here, x is the displacement from 
the equilibrium position of a particle with mass m attached 
to a spring with spring constant k and �0 is the characteristic 
angular frequency of the simple harmonic motion.

One can multiply the velocity by Eq. (2) to express 
it as the total differential of the total mechanical energy 
(Hamiltonian). The total mechanical energy is given by 
the sum of the kinetic and potential energies as follows:

where the amplitude A  of the oscillation is related to the 
positions x = ±A  of the turning points.

Introducing a dimensionless displacement u defined by

we can rewrite Eq. (3) in terms of u. Solving for the velocity 
u̇ = ẋ∕A  , we obtain

where the sign in front of the square root is positive when x 
varies from −A  to +A  . The negative sign corresponds to 
the motion from +A  to −A .

The energy conservation constraint in Eq. (5) can be 
used to compute the time interval corresponding to the 
differential du of the dimensionless displacement as

Since time flows forward only, ±du must be positive definite. 
We can make use of the symmetry of the motion to find that 

(1)∫
�

0

du√
1 − u2

= arcsin �.

(2)mẍ + kx = 0, 𝜔0 =

√
k

m
,

(3)
1

2
mẋ

2 +
1

2
kx

2 =
1

2
kA

2
,

(4)u =
x

A
,

(5)u̇ = ±𝜔0

√
1 − u2,

(6)dt = ±
du

�0

√
1 − u2

.

these two time intervals from ∓A  to ±A  are identical to 
one-half of the period T:

where we have made use of the identity sin �

2
= 1 → 

arcsin 1 =
�

2
. Thus, we have reached the identity

If the initial conditions are given by

then Eq. (1) can be modified as

The solution is

We have demonstrated that the arcsine function is highly 
useful in teaching simple harmonic motion in general 
physics. The approach described in this section is a well-
known strategy. Readers are referred to equation (15) 
of Lenz [7] for further details. This method is a standard 
technique to find the solution for the radial equation of the 
planetary motion that can be found in equations (3.213) and 
(3.214) on p. 125 of Symon [8] and equations (8.15) and 
(8.17) on p. 291 of [9], for instance.

3 � Computation of �

In this section, we illustrate how to compute � by making 
use of the integral representation (1) in association with 
the binomial expansion of the integrand in powers of u. 
The resulting series for the integral converges slowly to 
arcsin 1 =

�

2
 . By restricting the upper limit of the integral 

from 1 to � = sin
�

2k+1
 , where k is a non-negative integer, 

we improve the convergence of the series by choosing a 
sufficiently large k. The method is based on the elementary 
trigonometric identity known as the half-angle formula.

3.1 � Binomial expansion

In physics, there are many applications of Newton’s 
generalized binomial theorem. For all |x| < 1 and for any 
constant � , (1 + x)� can be expanded in powers of x as

(7)

�0

2
T = ∫

+1

−1

du√
1 − u2

= 2∫
1

0

du√
1 − u2

= 2 arcsin 1 = �,

(8)T =
2�

�0

.

(9)x
0
= x(0) = A u

0
, ẋ = ẋ(0) = A u̇

0
,

(10)�0 ∫
t

0

dt = ∫
u

u0

du√
1 − u2

= arcsin u − arcsin u0.

(11)x(t) = A sin
(
�
0
t + �

)
, � = arcsin

x
0

A
.
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For example, the electrostatic potential or corresponding 
electric field due to an electric dipole can be approximated 
using the generalized binomial expansion. In ordinary 
physics problems, the power � in Eq. (12) is either an integer 
or a half-integer. If � is a non-negative integer, then the 
series terminates. If � is a half-integer or a negative integer, 
then the expansion is an infinite series. When � is a half-
integer, as in the integrand in Eq. (1), the general term of the 
generalized binomial expansion contains double factorials:

The gamma function is closely related to the factorial 
through the formula Γ[n] = (n − 1)! providing an extension 
of the factorial to real and complex numbers [17]. The 
gamma function satisfies the following recurrence relation 
(See, for example, chapter 8 of [17].):

This function is convenient for expressing factors that 
involve factorials or double factorials. Euler’s integral 
definition of the Gamma function is given by

By multiplying the coefficient in Eq. (13) by 1 = Γ[
1

2
]∕Γ[

1

2
] 

and applying the recurrence relation (14), we can rewrite the 
expression in Eq. (13) as

This simplification stems from the Legendre duplication 
formula:

(12)

(1 + x)� = 1 + �x +
�(� − 1)

2!
x2 +

�(� − 1)(� − 2)

3!
x3 +⋯

(13)

n factors

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
−
1

2

)(
−
3

2

)
⋯

(
−
2n − 1

2

)

n!

= (−1)n

n factors

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1

2
⋅

3

4
⋅ ⋯

2n − 1

2n
= (−1)n

(2n − 1)!!

(2n)!!
.

(14)zΓ[z] = Γ[z + 1], ℜ𝔢(z) > 0,

(15)Γ[z] = ∫
∞

0

du uz−1e−u.

(16)

n factors

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
−
1

2

)(
−
3

2

)
⋯

(
−
2n − 1

2

)

n!
× 1

= (−1)n

n factors

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Γ[
1

2
] ⋅

1

2
⋅

3

2
⋯ (n −

1

2
)

Γ[
1

2
]Γ[n + 1]

= (−1)n
Γ[n +

1

2
]

Γ[
1

2
]Γ[n + 1]

.

The identities given in Eqs. (16) and (17) are quite useful in 
solving various problems in physics. For example, the power 
series expansion of a special function using Rodrigues’ 
formula usually contains double factorials that can be 
simplified using these identities.

It is apparent that Γ[ 1
2
] reduces to the Gaussian integral 

by changing the variable u = x2:

Then, the square of the Gaussian integral can be evaluated 
in two-dimensional polar coordinates using x = r cos � and 
y = r sin � as follows:

Since the Gaussian integral is positive definite, we can 
determine the value of Γ[ 1

2
] as

Hence, a direct numerical evaluation of the definite integral 
(18) can determine the numerical value of 

√
�.

By employing the identity in Eq. (12), we can expand 
the integrand in Eq. (1) in powers of t and evaluate the 
integral over t as

The resultant expression for arcsin � of the power series in 
� is obtained as

When transitioning from the second to the third line, the 
summation symbol and the Gamma function terms are 
moved out of the integration because they are independent 

(17)
Γ[n +

1

2
]

Γ[
1

2
]

=
Γ[2n + 1]

22nΓ[n + 1]
=

(2n − 1)!!

2n
.

(18)

Γ[
1

2
] = ∫

∞

0

du u−
1

2 e−u = 2∫
∞

0

e−x
2

dx = ∫
+∞

−∞

e−x
2

dx.

(19)
∫

+∞

−∞

e−x
2

dx∫
+∞

−∞

e−y
2

dy = ∫
2�

0

d� ∫
∞

0

e−r
2

r dr = �.

(20)Γ[
1

2
] =

√
�.

(21)∫
�

0

dt t2n =
�
2n+1

2n + 1
.

(22)

arcsin � =∫
�

0

dt√
1 − t2

=∫
�

0

dt

∞�
n=0

t2n
Γ[n +

1

2
]

Γ[
1

2
]Γ[n + 1]

=

∞�
n=0

Γ[2n + 1]

22nΓ2[n + 1]
× ∫

�

0

dt t2n

=

∞�
n=0

�
2n+1 Γ[2n + 1]

22n(2n + 1)Γ2[n + 1]
.
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of t. Equations (17) and (20) can be employed to rewrite 
Eq. (22) as

However, Eq. (23) is not useful to determine � because 
Γ[n +

1

2
] in the numerator contains a factor of Γ[ 1

2
] =

√
�.

As a byproduct, we can use Eq. (22) to compute � . While 
various efficient computation strategies exist, our primary 
focus in the remainder of this paper will be on the arcsine 
function. For example, the Gregory–Leibniz series for the 
arctangent function �

4
= arctan 1 converges faster than the 

expression in Eq. (22). Readers are referred to Frame [18], 
Kobayashi [19], and Alzer [20] for more details about the 
Leibniz series. Machin-like formulas, based on the inverse 
tangent function, offer rapid convergence [13]:

where ck are small integers (often positive or negative) and 
mk are integers chosen such that their reciprocals provide 
rapidly converging series for � . Chudnovsky’s algorithm, 
rooted in elliptic curve theory and based on Ramanujan-like 
series, provides extremely fast convergence and is used in 
modern record computations [14, 15]:

Additionally, Gauss–Legendre methods, which are iterative 
algorithms, exhibit quadratic convergence [16]. These 
methods significantly outperform the series in Eq. (23) 
in terms of computational efficiency. We refer readers to 
Castellano’s reviews [21, 22] and to Beckmann’s book [10] 
regarding various methods for computing �.

While such state-of-the-art techniques listed above are 
based on high-performance numerical algorithms, they 
are not suitable for teaching physics-major undergraduate 
students. Instead, we introduce more heuristically 
meaningful approaches that are based on the building blocks 
that are already familiar to physics-major students.

3.2 � Approach using arcsine 1

Equation (22) serves as our master formula from which 
we compute approximate values of � with quantitatively 
controlled errors. Since the maximum value of the arcsine 
function is arcsin � =

�

2
 at � = 1 , we multiply both sides of 

Eq. (22) by 2 and substitute � = 1 to compute � as follows: 

(23)
√
� arcsin � =

∞�
n=0

�
2n+1

Γ[n +
1

2
]

(2n + 1)Γ[n + 1]
.

�

4
=
∑
k

ck arctan
1

mk

,

1

�

= 12

∞∑
k=0

(−1)k(6k)!(545140134k + 13591409)

(3k)!(k!)3(640320)3k+
3

2

.

(24a)� =2 arcsin 1 = lim
N→∞

SN ,

 The convergence of the series in Eq. (24) is very poor. For 
example, the partial sum SN converges to � very slowly: 

 We observe that the correct values for the first, second, and 
third digits are achieved by adding terms of order 102 , 103 , 
and 105 , respectively.1

3.3 � Approach using half‑angle formula

Another way to determine � using the arcsine function is to 
apply L’Hôpital’s theorem to the sine function:

At first glance, equation (26) appears to suggest that we need 
to know the value of � to compute �. However, if we choose 
a tiny number �x whose sine is known from the half-angle 
formula, then we do not need the explicit value of � to evalu-
ate the right-hand side of Eq. (26).

We shall find that the sine function of �

2k+1
 for any integer 

k ≥ 0 can be computed and the corresponding sequence �k 
approaches � as k → ∞:

Leading entries of the sequence �k are

(24b)SN =2

N∑
n=0

Γ[2n + 1]

22n(2n + 1)Γ2[n + 1]
.

(25a)S0 =2,

(25b)S1 =2.3333⋯ ,

(25c)S10 =2.8002⋯ ,

(25d)S102 =3.0293⋯ ,

(25e)S103 =3.1059⋯ ,

(25f)S104 =3.1303⋯ ,

(25g)S105 =3.1380⋯ .

(26)� = lim
x→0

sin�x

x
.

(27)�k ≡
sin

�

2k+1

1

2k+1

= 2k+1 sin
�

2k+1
, k = 0, 1, 2, ⋯

(28)
�0 = 2, �1 ≈ 2.83, �2 ≈ 3.06, �3 ≈ 3.12, �4 ≈ 3.14.

1  Rounded to the second decimal place.
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The value of sin �

2k+1
 can be computed by applying the half-

angle formula for the sine function recursively. For any 
� ∈ [0,

�

2
] , the half-angle formulas are given by

It is straightforward to construct the following recurrence 
relations:

Substituting �
2
 for � in (30) and varying k recursively, we 

find that 

 The expression for the sine in Eq. (31e) agrees with 
the theorem given by Chang and Chang [11], which is a 
variation of Viète’s original formula [12].

(29)
[
cos

�

2
, sin

�

2

]
=

[√
1

2
(1 + cos �),

√
1

2
(1 − cos �)

]
.

(30)

[
cos

�

2k
, sin

�

2k

]
=

[√
1

2

(
1 + cos

�

2k−1

)
,

√
1

2

(
1 − cos

�

2k−1

)]
.

(31a)
(
cos

�

2
, sin

�

2

)
= (0, 1),

(31b)
�
cos

�

22
, sin

�

22

�
=

�√
2

2
,

√
2

2

�
,

(31c)
�
cos

�

23
, sin

�

23

�
=

⎛⎜⎜⎜⎝

�
2 +

√
2

2
,

�
2 −

√
2

2

⎞⎟⎟⎟⎠
,

(31d)

�
cos

�

24
, sin

�

24

�
=

⎛
⎜⎜⎜⎜⎝

�
2 +

�
2 +

√
2

2
,

�
2 −

�
2 +

√
2

2

⎞
⎟⎟⎟⎟⎠
,

(31e)

⋮�
cos

�

2k+1
, sin

�

2k+1

�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
2 +

�
2 +⋯

�
2 +

√
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k roots

2
,

�
2 −

�
2 +⋯

�
2 +

√
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k roots

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The numerical value for �k = 2k+1 sin
�

2k+1
 in Eq. (27) can 

be computed by making use of the formula given in the last 
line of Eq. (31). At k = 80 , �k reproduces � up to 50 digits:

The error is � − �k ≈
�
3

3! 4k+1
≈ 8.8 × 10−49 , where we Taylor 

expanded �k to identify the dominant contribution to � − �k . 
Indeed, it is the single-term contribution S(k)

0
 of the series: 

where sin �

2k+1
 is given in Eq. (31). Equation (32) derives 

from Eq. (22) by substituting sin �

2k+1
 for � and multiplying 

by 2k+1. A similar series based on the half-angle formula is 
presented in [23], but its alternating nature, arising from the 
expansion of an arctangent term, distinguishes it from our 
series. The numerical error of S(k)

N
 decreases exponentially 

as we increase the number of terms N. The ratio of the 
(N + 1) th entry of the sequence to the Nth entry scales like

which is a power-counting parameter that indicates the size 
of the relative correction of the series sum as N increases by 
1, thus representing the relative error of S(k)

N
 . Consequently, 

the error of S(k)
N

 scales like

Knowing the definite scaling of the error is useful since it 
immediately tells us how many sequences are needed to 
achieve the desired accuracy. Numerically, it scales like 
10−6(N+1), 10−30(N+1), and 10−60(N+1) for k = 10, 50, and 100, 
respectively. We verify the scaling behavior from an explicit 
example below. It is convenient to define the error vector 
ΔS(k) as

where the vector remains positive because each term in the 
series (32) is positive definite. An explicit computation of 
the partial sum (32) for various values of k reveals that the 
error decreases dramatically as both k and N increase: 

� =3.1415926535897932384626433

83279502884197169399374222⋯ ,

(32a)� = lim
N→∞

S
(k)

N
,

(32b)S
(k)

N
≡2k+1

N∑
n=0

[
sin

�

2k+1

]2n+1 Γ[2n + 1]

22n(2n + 1)Γ2[n + 1]
,

(33)sin2
𝜋

2k+1
∼

1

4k
, for k ≫ 1,

(34)ΔS
(k)

N
= � − S

(k)

N
≈ S

(k)

N+1
− S

(k)

N
∼

1

4k(N+1)
.

(35)
ΔS(k) =

[
� − S

(k)

0
,� − S

(k)

1
,� − S

(k)

2
,� − S

(k)

3
,� − S

(k)

4
,⋯

]
,

(36a)ΔS(0) =[1.1, 0.81, 0.66, 0.57, 0.51,⋯],
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The size of the errors agrees with the predictions for 
k = 10, 50 , and 100 from the scaling behavior in Eq. (34). 
According to the errors in Eq. (36) for the series in Eq. (35), 
we conclude that the evaluation at � = sin

�

2k+1
 is far more 

efficient than the original series expansion in Eq. (24), whose 
errors can be determined from Eq. (25). There is a trade-off in 
achieving efficiency. While each sequence in Eq. (24) consists 
of rational numbers with infinite precision, the factor sin �

2k+1
 in 

Eq. (35) is irrational and must be computed numerically using 
Eq. (31e) to the desired accuracy, which can be costly.

While the expression for the sine in Eq. (31e) corresponds 
to the theorem established by Chang and Chang [11], which 
pertains only to the first term, to the best of our knowledge, 
the complete series presented in Eq. (32) and the scaling of the 
error in Eq. (34) is novel.

(36b)
ΔS(10) =[1.2 × 10

−6
, 1.3 × 10

−12
, 1.8 × 10

−18
,

2.9 × 10
−24

, 5.1 × 10
−30

,⋯],

(36c)
ΔS(20) =[1.2 × 10−12, 1.2 × 10−24, 1.6 × 10−36, 2.4×

10−48, 4.0 × 10−60,⋯],

(36d)
ΔS(30) =[1.1 × 10

−18
, 1.1 × 10

−36
, 1.4 × 10

−54
,

2.0 × 10
−72

, 3.2 × 10
−90

,⋯],

(36e)
ΔS(40) =[1.1 × 10

−24
, 9.8 × 10

−49
, 1.2 × 10

−72
,

1.7 × 10
−96

, 2.5 × 10
−120

,⋯],

(36f)
ΔS(50) =[1.0 × 10

−30
, 8.9 × 10

−61
, 1.0 × 10

−90
,

1.4 × 10
−120

, 2.0 × 10
−150

,⋯],

(36g)
ΔS(60) =[9.7 × 10

−37
, 8.1 × 10

−73
, 9.0 × 10

−109
,

1.1 × 10
−144

, 1.5 × 10
−180

,⋯],

(36h)
ΔS(70) =[9.3 × 10

−43
, 7.4 × 10

−85
, 7.8 × 10

−127
,

9.4 × 10
−169

, 1.2 × 10
−210

,⋯],

(36i)
ΔS(80) =[8.8 × 10

−49
, 6.7 × 10

−97
, 6.7 × 10

−145
,

7.8 × 10
−193

, 9.6 × 10
−241

,⋯],

(36j)
ΔS(90) =[8.4 × 10

−55
, 6.1 × 10

−109
, 5.9 × 10

−163
,

6.4 × 10
−217

, 7.6 × 10
−271

,⋯],

(36k)
ΔS(100) =[8.0 × 10

−61
, 5.6 × 10

−121
, 5.1 × 10

−181
,

5.3 × 10
−241

, 6.0 × 10
−301

,⋯].

4 � Fractional‑angle method

One might wonder whether the convergence of the series in 
Eq. (32) could be further improved by generalizing the factor 
2k+1 to an arbitrarily large integer p, expressed as a product 
of prime factors:

where p′
i
 are prime numbers and ki are non-negative integer 

powers, respectively. Then, we can replace 2k+1 ’s in Eq. 
(32b) with p’s to find that

Now, the power-counting parameter 2k+1 in Eq. (33) is 
replaced by the factor p:

The corresponding error scales like

The expression in Eq. (38) is fully determined once an 
expression for the sine of the fractional angle, sin �

p
 , is found. 

For instance, when p = 2k , the formulation naturally aligns 
with a Viète-like formula due to the recursive application of 
the half-angle formula, resulting in a nested square root 
structure with a convergence rate of (1∕2)2k(N+1) . For p = 3k , 
the formulation extends to triple-angle formulas, introducing 
cubic polynomial dependencies instead of simple nested 
radicals, leading to an alternative rapidly converging series 
with a rate of (1∕3)2k(N+1) . For higher prime numbers, similar 
formulations and convergence behaviors can be inferred.

4.1 � Chebyshev polynomials of the second kind

We demonstrate an angle-chopping strategy for an arbitrary 
integer p by making use of Chebyshev polynomials of the 
second kind, Un(x) . In physics, Chebyshev polynomials are 
orthogonal polynomials that serve as basis functions for the 
Fourier expansion of waves generated by a vibrating string 
(see, for example, Jung et al. [24]) and appear in various 
other physics applications, including charge distribution on a 
conducting disk or thin wire in electrostatics, approximations 
of wavefunctions and eigenvalues in numerical quantum 

(37)p =
∏
i

p
�ki
i
,

(38)S
{ki}

N
≡ p

N∑
n=0

[
sin

�

p

]2n+1
Γ[2n + 1]

22n(2n + 1)Γ2[n + 1]
.

(39)sin2
�

p
∼

1

p2
=

1

(p�
2k1
1

) (p�
2k2
2

) (p�
2k3
2

) ⋯
.

(40)

ΔS
{ki}

N
= � − S

{ki}

N
∼

1

p2(N+1)

=
1

(p�
2k1(N+1)

1
) (p�

2k2(N+1)

2
) (p�

2k3(N+1)

2
) ⋯

.
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mechanics, and rapid numerical approximations for Lorentz 
factor-dependent functions in high-energy physics. They have 
the geometric implication that

An elementary way to verify the factorization formula in 
Eq. (41) is to apply the addition formula for the sinusoidal 
functions recursively: 

 One can also employ de Moivre’s theorem to confirm that 
sin[(n + 1)�] can always be factorized into the product of 
sin � and a polynomial in cos �:

where ⌊x⌋ is the floor function, which gives the greatest 
integer less than or equal to x:

According to Eqs. (41) and (43), the Chebyshev polynomials 
of the second kind Un(cos �) is determined as

One could also extract the polynomial by expanding the 
corresponding generating function:

The first ten entries of the polynomials are given by 

(41)Un(cos �) =
sin[(n + 1)�]

sin �
.

(42a)cos[(n + 1)�] = cos n� cos � − sin n� sin �,

(42b)sin[(n + 1)�] = sin n� cos � + cos n� sin �.

(43)

sin[(n + 1)�] = ℑ𝔪
�
(cos � + i sin �)n+1

�

=

⌊ 1

2
(n+1)⌋�
k=0

(−1)k
(n + 1)!

(2k + 1)!(n − 2k)!
cos

n−2k
� sin

2k+1
�

= sin � ×

⌊ 1

2
(n+1)⌋�
k=0

(−1)k
(n + 1)!

(2k + 1)!(n − 2k)!

× cos
n−2k

�(1 − cos
2
�)k,

(44)⌊x⌋ = m, if and only if m ≤ x < m + 1, m ∈ Z.

(45)Un(cos �) =

⌊ 1

2
(n+1)⌋�
k=0

(−1)k
(n + 1)!

(2k + 1)!(n − 2k)!

× cos
n−2k

�(1 − cos
2
�)k.

(46)
1

1 − 2xt + t2
=

∞∑
t=0

Un(x)t
n.

(47a)U0(x) =1,

(47b)U1(x) =2x,

(47c)U2(x) =4x
2 − 1,

4.2 � Special values of sine

The identity in Eq. (41) is particularly useful for expressing 
the sine of an angle � in terms of the sine and cosine of the 
fractional angle �∕(n + 1):

Since (n + 1)� ∈ [0,
�

2
] , Eq. (48) has only a single solution 

for �.
For an integer p = 2kp� , where p′ is a prime number greater 

than or equal to 2, we can find sin �

2kp′
 by solving the following 

equation:

For p� = 2 , the equation simplifies to one whose analytic 
solution is given by the half-angle formula in Eq. (31e). 
Thus, the half-angle formula represents a special case of 
the fractional-angle method in Eq. (49). For higher prime 
numbers, Up�−1 in Eq. (49) becomes a cubic or higher order 
polynomial, and analytic solutions exist only for a few 
specific cases. In general, a numerical approach is required, 
which is discussed in the next subsection.

To obtain sin �

2kp��+1
 , one can repeatedly solve the following 

equation:

(47d)U3(x) =8x
3 − 4x,

(47e)U4(x) =16x
4 − 12x2 + 1,

(47f)U5(x) =32x
5 − 32x3 + 6x,

(47g)U6(x) =64x
6 − 80x4 + 24x2 − 1,

(47h)U7(x) =128x
7 − 192x5 + 80x3 − 8x,

(47i)U8(x) =256x
8 − 448x6 + 240x4 − 40x2 + 1,

(47j)U9(x) =512x
9 − 1024x7 + 672x5 − 160x3 + 10x.

(48)
Un(cos �) sin � = Un

�√
1 − sin2 �

�
sin � = sin[(n + 1)�].

(49)

sin
�

2k
=

1

2

�
2 −

�
2 +⋯

�
2 +

√
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k−1 roots

= Up�−1

��
1 − sin

2 �

2kp�

�
sin

�

2kp�
, k ≥ 0.

(50)

sin
�

2kp��
=Up�−1

[√
1 − sin2

�

2kp��+1

]
sin

�

2kp��+1
, k ≥ 0,
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where � is an integer starting from 0. In the same way, we 
can find sin �

p
 for an arbitrary integer p in Eq. (37).

Although Eqs. (49) and (50) do not have analytic solutions 
except for p = 2k+1 , in many cases, an integer of form p = 2p� 
has analytic result for sin �

2p′
 . The leading entries of Eq. (49) 

for k = 0 are 

where, for completeness, non-prime numbers p� ∈ [2, 11] are 
included. Except for sin �

14
 , sin �

18
 , and sin �

22
 , the remaining 

equations in Eq. (51) are exactly solvable: 

(51a)x = sin
�

4
∶ 1 = 2x

√
1 − x2,

(51b)x = sin
�

6
∶ 1 = 3x − 4x3,

(51c)x = sin
�

8
∶ 1 = 4x(1 − 2x2)

√
1 − x2,

(51d)x = sin
�

10
∶ 1 = x(5 − 20x2 + 16x4),

(51e)x = sin
�

12
∶ 1 = 2x(3 − 16x2 + 16x4)

√
1 − x2,

(51f)x = sin
�

14
∶ 1 = 7x − 56x3 + 112x5 − 64x7,

(51g)

x = sin
�

16
∶ 1 = 8x(1 − 10x2 + 24x4 − 16x6)

√
1 − x2,

(51h)

x = sin
�

18
∶ 1 = x(9 − 120x2 + 432x4 − 576x6 + 256x8),

(51i)
x = sin

�

20
∶ 1 = 2x(5 − 80x2 + 336x4

− 512x6 + 256x8)
√
1 − x2,

(51j)
x = sin

�

22
∶ 1 = 11x − 220x3 + 1232x5

− 2816x7 + 2816x9 − 1024x11,

(52a)sin
�

2
=1,

(52b)sin
�

4
=

1√
2
= 0.70710678118654752440⋯ ,

(52c)sin
�

6
=
1

2
= 0.5,

 The results in Eq. (52) illustrate that the special values of the 
sine function derive from sin �

2
= 1 . This provides a unique 

elementary demonstration of the usefulness of Chebyshev 
polynomials of the second kind in verifying trigonometric 
identities.

4.3 � Power counting and convergence

Unlike the case of sin �

2k+1
 , which can be expressed 

analytically in Eq. (31e) sin �

2kp′
 with p′ > 2 in Eq. (49) 

should be solved numerically to the desired accuracy. 
Fortunately, the initial positioning of an approximate trial 
solution for sin �

2kp′
 is relatively straightforward, making it 

easier to meet the accuracy requirements. For better 
convergence, the prime number p′ can be chosen to be 
arbitrarily large, provided that the internal precision of a 
numerical package allows it.

However, this leads to a substantial increase in the 
number of terms in the Chebyshev polynomials, which 
grows rapidly as p′ increases. By applying the power-
counting method described in Eq. (39), we can safely neglect 
insignificant contributions in the polynomials, such as higher 
order terms in power-counting parameter that are negligible 
to the desired accuracy. This will be discussed in greater 
detail shortly. One can recursively apply the fractional-angle 
method and the power-counting method by solving Eq. (50) 
multiple times to obtain sin �

2kp��+1
 . In the same way, the angle 

can also be arbitrarily chopped, yielding sin �

p
 . Among 

various ways to divide the angle, we focus on the following 
case to simplify our discussion:

(52d)

sin
�

8
=
1

2

�
2 −

√
2 = 0.38268343236508977173⋯ ,

(52e)sin
�

10
=
1

4

�√
5 − 1

�
= 0.30901699437494742410,

(52f)
sin

�

12
=
1

2

�
2 −

√
3 = 0.25881904510252076235⋯ ,

(52g)sin
�

16
=

1

2

�
2 −

�
2 +

√
2

= 0.19509032201612826785⋯ ,

(52h)sin
�

20
=

1

2

����1

2

�
4 −

�
2

�
5 +

√
5

��

= 0.15643446504023086901⋯ .

(53)p = 2k+1p�
�+1

.



1034	 S. Cho et al.

Vol.:(0123456789)1 3

In order to discuss the truncation of the Chebyshev 
polynomials using the power-counting method, let us expand 
the right side of Eq. (49) and truncate the terms beyond the 
nth order

where we introduce the simplified notation � = sin
�

2k+1
 and 

x = sin
�

2k+1p�
 , which is the power-counting parameter in this 

equation and scales like �∕p� . The coefficient cn is obtained 
by expanding Chebyshev polynomials and for n = 0 , it is 
c0 = p� . Let us denote xn as the solution to the truncated 
equation (54). Then, xn+1 is the solution to the equation of 
one-order higher and can be expressed as xn+1 = xn + �n , 
where �n is a truncation error scaling like (�∕p�)2n+3 . 
Inserting the relation into the equation for xn+1 and keeping 
dominant contributions of order (�∕p�)2n+3 , one finds a linear 
equation c0�n + cn+1x

2n+3
n+1

= 0 , which gives �n = −
cn+1

p�2n+4
�
2n+3 . 

By replacing � with �
�
= sin

�

2k+1p��
 and by solving the 

equation � + 1 times from � = 0 , we obtain the solution for 
sin

�

2k+1p��+1
 . According to the expression for �n , the error is 

dominated by the contribution at � = 0 : �n ≈ −
cn+1

p�2n+4
�
2n+3
0

 . 

Thus, the truncation error in S(k,�)
N

 scales as follows:

An optimal truncation, which minimizes the number of 
terms, requires the truncation error to be comparable to the 
summation errors that follow the scaling in Eq. (40). By 
equating (40) and (55) and solving for n, we obtain

Note that the relation (56) depends on the coefficient cn+1 , as 
well as the parameters p′ , k, � , and N. If � = 0 , the relation 
simplifies and n increases at the same rate as N. However, for 
a sufficiently large � , the rate of increase in n grows larger 
than that of N. For a sufficiently large k, n approaches N 
because the second term on the right-hand side of Eq. (56) 
is proportional to 1/k. In contrast, if k is small, the second 
term becomes significant, making n sensitive to the values 
of other parameters such as � , p′ , and cn+1 as well as N. The 
calculation of n is illustrated in the following example.

To illustrate the efficiency of numerical computation 
using power counting, we will first retain the higher-
order terms by choosing a moderately large p′ . For this 
demonstration, we choose p� = 101 in Eq. (53). Then, Eq. 
(38) becomes

(54)� = c0x + c1x
3 + c2x

5 +⋯ + cnx
2n+1,

(55)ΔtruncS(k,�) ≈ 2k+1p�
�+1|�n| ∼ |cn+1|p

��−2n−3

4k(n+1)
.

(56)
n ≈ N +

(N + 1)� ln p� + ln
|cn+1|
p�

ln(2kp�)
.

The value of sin �

2k+1⋅101𝓁+1
 can be computed numerically by 

making use of the following equation:

By solving Eq. (58) � + 1 times starting from � = 0 
and increasing it by 1, we can determine the value of 
sin

�

2k+1⋅101𝓁+1
.

The expression in Eq. (57) approaches � arbitrarily 
closely as N increases. The rate of the convergence is 
enhanced as k or � or both increase. We define the error 
vector ΔS(k,�) as

where S(k,�)
N

 is defined in Eq. (57). For k = 100 , we find that 

(57)

S
(k,𝓁)

N
≡ 2

k+1
⋅ 101

𝓁+1

N∑
n=0

×
[
sin

�

2k+1 ⋅ 101𝓁+1

]2n+1 Γ[2n + 1]

22n(2n + 1)Γ2[n + 1]
.

(58)
sin

�

2k+1 ⋅ 101𝓁
= U

100

[√
1 − sin

2 �

2k+1 ⋅ 101𝓁+1

]

× sin
�

2k+1 ⋅ 101𝓁+1
.

(59)

ΔS(k,𝓁)

= [� − S
(k,𝓁)

0
,� − S

(k,𝓁)

1
,� − S

(k,𝓁)

2
,

� − S
(k,𝓁)

3
,� − S

(k,𝓁)

4
,⋯],

(60a)
ΔS(100,0) =[7.9 × 10

−65
, 5.3 × 10

−129
, 4.8 × 10

−193
,

4.9 × 10
−257

, 5.4 × 10
−321

,⋯],

(60b)
ΔS(100,1) =[7.7 × 10

−69
, 5.1 × 10

−137
, 4.5 × 10

−205
,

4.5 × 10
−273

, 4.9 × 10
−341

,⋯],

(60c)
ΔS(100,2) =[7.6 × 10

−73
, 5.1 × 10

−145
, 4.2 × 10

−217
,

4.2 × 10
−289

, 4.5 × 10
−361

,⋯],

(60d)
ΔS(100,3) =[7.4 × 10

−77
, 4.7 × 10

−153
, 4.0 × 10

−229
,

3.9 × 10
−305

, 4.0 × 10
−381

,⋯],

(60e)
ΔS(100,4) =[7.3 × 10

−81
, 4.6 × 10

−161
, 3.8 × 10

−241
,

3.6 × 10
−321

, 3.6 × 10
−401

,⋯],

(60f)
ΔS(100,5) =[7.1 × 10

−85
, 4.4 × 10

−169
, 3.5 × 10

−253
,

3.3 × 10
−337

, 3.3 × 10
−421

,⋯],

(60g)
ΔS(100,6) =[7.0 × 10

−89
, 4.2 × 10

−177
, 3.3 × 10

−265
,

3.0 × 10
−353

, 3.0 × 10
−441

,⋯],
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 The computed errors are consistent with the scaling 
prediction in Eq. (40). Note that every component is positive 
definite because the series in Eq. (57) is monotonically 
increasing. The result in Eq. (60) demonstrates that the 
accuracy increases systematically as the parameters � and 
N increase.

According to Eq. (56), we can find the minimal number 
of terms n needed in the Chebyshev polynomials for 
k = 100 and p� = 101 . For the coefficient cn , we take an 
empirical scaling obtained from a fit: cn ∼ 102n . Then, Eq. 
(56) simplifies as n ≈ [N + (N + 1)��]∕(1 − �) , where 
� = ln p�∕ ln(2kp�) ≈ 0.06 . For the case � = 0 , this yields 
n ≈ 1.07N  , and we can choose n to be the integer greater 
than this value, n = N + 1 . For � = 10 , n ≈ 1.7N + 0.7 , 
resulting in corresponding integers n is n = {1, 3, 5, 6, 8} for 
N = {0, 1, 2, 3, 4} , respectively. Note that these values of n 
are a small fraction of 50, the total number of polynomials 
in U100(x) . We confirmed that the errors computed using the 
equations with n terms agree with those errors in Eqs. (60a) 
and (60k).

To our best knowledge, the expressions in Eqs. (32) and 
(57) are new. Note that p� = 101 in Eq. (57) is a simple 
choice for demonstration purposes; however, the large 
integer p′ can be any sufficiently large value.

5 � Conclusion

Starting from the teaching strategy to solve the equation of 
motion for the simple harmonic oscillator through the 
process of integration, we have investigated the mathematical 
properties of the integral representation for the arcsine 
function, which Newton used for computing � . The power-
series expansion of the integral was carried out by making 
use of the binomial theorem generalized for non-integer 
powers. Although the original series for 2 arcsin 1 in Eq. (24) 
converges very slowly to � , the novel power series of sin �

2k+1
 

(60h)
ΔS(100,7) =[6.9 × 10

−93
, 4.0 × 10

−185
, 3.1 × 10

−277
,

2.8 × 10
−369

, 2.7 × 10
−461

,⋯],

(60i)
ΔS(100,8) =[6.7 × 10

−97
, 3.9 × 10

−193
, 3.0 × 10

−289
,

2.6 × 10
−385

, 2.4 × 10
−481

,⋯],

(60j)
ΔS(100,9) =[6.6 × 10

−101
, 3.7 × 10

−201
, 2.8 × 10

−301
,

2.4 × 10
−401

, 2.2 × 10
−501

,⋯],

(60k)

ΔS(100,10) =[6.5 × 10
−105

, 3.6 × 10
−209

,

2.6 × 10
−313

, 2.2 × 10
−417

, 2.0 × 10
−521

,⋯].

given in Eq. (32), expressed as nested radicals in Eq. (31e) 
by applying the half-angle formulas, shows boosting the 
convergence as k increases, as demonstrated in Eq. (36). 
However, there is a trade-off in boosting convergence. While 
the original series consists of sums of rational numbers with 
infinite precision, the term sin �

2k+1
 turns the expression into 

a sum of irrational numbers that must be numerically 
computed to the desired accuracy and costly. Furthermore, 
our fractional-angle method generalizes the half-angle 
method from a factor of 1/2 to 1∕p� with a prime number p′ , 
thereby enhancing convergence significantly for a large 
value of p′ . This is achieved through the elementary property 
of Chebyshev polynomials of the second kind, as given in 
Eq. (41). The resulting series in Eq. (38) is expressed in 
powers of sin �

p
 , where p is an arbitrary integer written as a 

product of prime factors, with its value computed 
numerically using Eq. (50). Systematic power-counting 
rules, as provided in Eqs. (33) and (39), allow for the 
estimation of errors in the series. This enables the safe 
omission of numerically suppressed contributions, 
improving computational efficiency without affecting the 
desired level of accuracy. Nevertheless, our strategy is 
unlikely to outperform well-established methods and may 
not be directly comparable to the state-of-the-art algorithms 
used by advanced � hunters. However, we think that its true 
strength lies in its pedagogical value, as it provides advanced 
freshmen and physics majors with a concrete way to engage 
with and reinforce key concepts and techniques learned in 
physics courses through � computation.
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