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Introduction

The alpha particle scattering experiment is
a milestone in the development of modern
physics [1, 2]. The early explanation of the
scattering pattern by Ernest Rutherford led to
the discovery of atomic nuclei. Over time this
technique has found many applications, espe-
cially in nuclear physics and material science.
In Ref. [3, 4], we investigated the emergence
of nonclassicality in the one-dimensional ver-
sion of this experiment, and here we summa-
rize the implications on the ‘distance of closest
approach’ of the projectile.
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FIG. 1: Model of the experiment [3, 4]. The pro-
jectiles are prepared as Gaussian wave packets,
which evolve in the Coulomb potential of the tar-
get nucleus fixed at the origin. The symbols have
their usual meanings.
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Theoretical Framework

We model the simplest case of Rutherford
scattering, i.e., the head-on collision of al-
pha particles with stationary gold nuclei. The
projectile-target interaction is considered as
due to the Coulomb potential only:

V(z) = ZpZrahe/|x|, (1)

where the target is fixed at the origin. Zp
and Zr are the charges carried by the projec-
tile and the target, respectively, and « is the
fine-structure constant. We prepare the pro-
jectile in a Gaussian wave packet centered at
the separation L with a width ¢ and an av-
erage momentum P = +/2mTj. The resulting
quantum trajectories are compared with those
of a classical alpha particle with kinetic energy
To. The time-evolution of the quantum state
is calculated using the Cayley’s form of the
evolution operator [5]:

U(At) = (1 +z’HQ§t>l (1

where H is the Hamiltonian.
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Results

The convexity of Coulomb interaction im-
plies that the expected quantum force can
be very different from the force experienced
in the classical theory. This leads to many
consistent deviations between Ehrenfest’s and
Hamilton’s dynamics [3, 4]. Here we discuss
the impacts on the minimum of projectile-
target separation, i.e., the distance of closest
approach. In the classical theory this is set
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solely by the Coulomb potential:
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(3)
In the quantum theory, this is decided by the
Coulomb interaction together with Jensen’s
inequalities and the laws of quantum mechan-
ical evolution.

As an illustration, at ¢ = 0, we can use the
Jensen’s inequality to write:
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where F' is the force. This implies that the
quantum wave packet experiences a stronger
repulsion, and hence it must be reflected from
a larger separation compared to its classical
counterpart. Fig. 2 shows that this is indeed
the case for each and every quantum configu-
ration. The existence of global minimas also
proves that there is a well defined limit on the
classical-quantum agreement, and contrary to
the popular belief, the classical solutions are
never recovered [6]. These minimas are very
well approximated to occur at the initial stan-
dard deviation given by oo = /AL/2P, and
a comprehensive study of such configurations
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FIG. 2: Difference between the classical and quan-
tum distances of closest approach [3, 4]. The sym-
bols have their usual meanings and are explicitly
explained in the main text.

constrains the ‘quantum distance of closest ap-

Proceedings of the DAE Symp. on Nucl. Phys. 65 (2021)

proach’ by [3, 4]
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Conclusions

The uncertainty principle implies a nonzero
momentum variance, and hence a nonzero
kinetic energy, of practically any particle.
The differences are therefore expected be-
tween classical and quantum dynamics in sit-
uations where the classical particle stops. In
Ref. [3, 4], we have computed a number of such
differences for the case of central collision be-
tween a charge in motion and another station-
ary charge, and here we summarized the im-
plications on the distance of closest approach.
Additionally to the uncertainty principle an
important element of physical understanding
of this scenario is the convexity of Coulomb
interaction.
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