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1 Introduction

Supersymmetry (SUSY) [1-8] is an attractive extension of the standard model (SM) of particle
physics. It potentially provides solutions to some of the shortcomings affecting the SM, such as
the need for fine tuning [9-14] to explain the observed value of the Higgs boson mass [15-20],
and the absence of a dark matter (DM) candidate. Supersymmetric models are characterized
by the presence of a superpartner for every SM particle with the same quantum numbers ex-
cept that its spin differs from that of its SM counterpart by half a unit. The cancellation of
quadratic divergences in quantum corrections to the Higgs boson mass from SM particles and
their superpartners could resolve the fine-tuning problem. In SUSY models with R-parity con-
servation [21], the lightest supersymmetric particle (LSP) is stable [22, 23] and could be a DM
candidate [24]. The superpartners of the electroweak gauge and Higgs bosons, namely the
bino, winos, and Higgsinos, mix to form neutral and charged mass eigenstates, referred to as
the neutralinos (X?) and charginos (X;°), respectively. Here we assume %', the lightest neu-
tralino, to be the LSP.

The analysis reported in this note investigates the production of the hypothetical T slepton
(stau, denoted by T), the superpartner of the T lepton. Supersymmetric scenarios in which the T
is light, lead to final states with one or more 7 leptons. Coannihilation scenarios, characterized
by a light T that has a small mass splitting with an almost pure bino-like LSP, lead to a DM
relic density consistent with cosmological observations [25-30], making the search for new
physics in these final states particularly interesting. In this analysis, we examine simplified
SUSY models [31-34] in which the T can be produced directly through pair production and
decays to a T lepton and the LSP. The most sensitive searches for direct T pair production to date
were performed at the CERN LEP collider [35-39]. At the CERN LHC, the ATLAS [40, 41] and
CMS [42, 43] Collaborations have both performed searches for direct and indirect T production
with 8 TeV LHC data. CMS has also investigated T production with 13 TeV data [44].

In many SUSY scenarios the T mass is lighter than the one of selectrons and smuons. The
large data set expected at the HL-LHC provides an unprecedented opportunity to probe for
the direct production of 7, which is a challenge due to the relatively small production cross
section. For example, the cross section in the mass-degenerate scenario, where we assume that
the left- and right-handed T have the same mass and add up their cross sections, for a T mass of
100 GeV is 0.41 pb, and for 300 GeV it is reduced to 0.0071 pb, while for a T mass of 500 GeV we
expect only a cross section of 0.79 fb [45]. A search is therefore developed in events where both
T leptons decay either hadronically (“7,7,” analysis), and in events where one of the T leptons
decays hadronically (denoted in the following by T7,) and the other one to a muon or electron
and neutrinos (“/1,” analysis).

The simplified model used for the optimization of the search and the interpretation of the re-
sults is shown in Fig. 1. The search assumes T pair production in the mass-degenerate scenario.
The cross sections have been computed for /s = 14 TeV at next-to-leading order (NLO) using
the Prospino code [46]. Final values are calculated using the PDFALHC recommendations for
the two sets of cross sections following the prescriptions of the LHC SUSY Cross Section Work-
ing Group [45]. The branching ratio of the T into the T lepton and the X! is assumed to be 100%.

2 The upgraded CMS detector

The CMS detector [47] will be substantially upgraded in order to fully exploit the physics po-
tential offered by the increase in luminosity at the HL-LHC [48], and to cope with the demand-



Figure 1: Diagram for the T pair production.

ing operational conditions at the HL-LHC [49-53]. The upgrade of the first level hardware
trigger (L1) will allow for an increase of L1 rate and latency to about 750 kHz and 12.5 us, re-
spectively, and the high-level software trigger (HLT) is expected to reduce the rate by about a
factor of 100 to 7.5 kHz. The entire pixel and strip tracker detectors will be replaced to increase
the granularity, reduce the material budget in the tracking volume, improve the radiation hard-
ness, and extend the geometrical coverage and provide efficient tracking up to pseudorapidities
of about |57| = 4. The muon system will be enhanced by upgrading the electronics of the ex-
isting cathode strip chambers (CSC), resistive plate chambers (RPC) and drift tubes (DT). New
muon detectors based on improved RPC and gas electron multiplier (GEM) technologies will
be installed to add redundancy, increase the geometrical coverage up to about || = 2.8, and
improve the trigger and reconstruction performance in the forward region. The barrel electro-
magnetic calorimeter (ECAL) will feature the upgraded front-end electronics that will be able
to exploit the information from single crystals at the L1 trigger level, to accommodate trigger
latency and bandwidth requirements, and to provide 160 MHz sampling allowing high preci-
sion timing capability for photons. The hadronic calorimeter (HCAL), consisting in the barrel
region of brass absorber plates and plastic scintillator layers, will be read out by silicon pho-
tomultipliers (SiPMs). The endcap electromagnetic and hadron calorimeters will be replaced
with a new combined sampling calorimeter (HGCal) that will provide highly segmented spa-
tial information in both transverse and longitudinal directions, as well as high-precision tim-
ing information. Finally, the addition of a new timing detector for minimum ionizing particles
(MTD) in both barrel and endcap region is envisaged to provide capability for 4-dimensional
reconstruction of interaction vertices that will allow to significantly offset the CMS performance
degradation due to high PU rates.

A detailed overview of the CMS detector upgrade program is presented in Ref. [49-53], while
the expected performance of the reconstruction algorithms and the mitigation of pileup, i.e.,
additional proton-proton collisions within the same or neighboring bunch crossings, is sum-
marized in Ref. [54].

3 Object reconstruction and simulated samples

The event reconstruction uses a particle-flow (PF) algorithm [55], combining information from
the tracker, calorimeter, and muon systems to identify charged and neutral hadrons, photons,
electrons, and muons in an event. Candidate events are expected to contain at least two lep-
tons: either two 7, candidates, or one 7, and one muon or electron from T lepton decays. In
order to pass the selection, electrons (muons) are required to have a transverse momentum
pr > 30GeV and pseudorapidity || < 1.6(2.4). Dedicated lepton identification criteria are
applied, providing 50% to 90% efficiency for muons and 25% to 80% efficiency for electrons,
depending on the lepton pr and 7. Both muons and electrons are required to be isolated. The
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isolation is calculated from the scalar sum of the pr of all particles within a cone of radius
R = /(An)? + (A¢)? = 0.3 around the lepton momentum vector, excluding the contribution
of the lepton and applying an area-based correction to remove the contribution of particles from
pileup [56]. The ratio I of the scalar sum of the pr in the cone to the transverse momentum of
the lepton itself is required to be smaller than 0.05.

Jets are reconstructed using the anti-kt algorithm [57, 58], with a distance parameter of 0.4.
For this study we use PUPPI jets [59] which are required to have pr > 30GeV and |y| < 2.7.
Jets originating from b quarks are identified with the loose working point of the combined
secondary vertex b tagging algorithm (CSVv2) [60], which corresponds to an efficiency of about
60-65%.

The 7, candidates must satisfy pt > 40GeV in the {7, final states, while a slightly higher
threshold of pr > 50GeV is required for the 7,7, final state, driven by the trigger thresholds
foreseen for the HL-LHC. Since the main background in this analysis is due to events with jets
misidentified as T, leptons, a tight working point with a small misidentification rate is chosen
for 7, identification. The 7, reconstruction efficiency for this working point is about 30%, with a
misidentification rate of about 0.08% assuming a multivariate analysis optimization. Overlaps
between the two reconstructed leptons in the /7, final state are avoided by requiring them to
have a minimum separation in AR of 0.3.

In order to ensure orthogonality between the different final states and suppress background,
we reject events with additional electrons or muons beyond the two selected leptons that satisfy
slightly less stringent selection criteria and transverse momentum of pr > 20GeV and || <
27.

The object selection requirements implemented in the analysis are summarized in Table 1.

Table 1: Summary of object selection requirements for the analysis.

Selection requirement (T, ThTh
Muon (electron) pr > 30GeV —
Muon (electron) pr (veto) > 30GeV > 20GeV
Muon (electron) || < 2.4(1.6) —
Muon (electron) |#| (veto) <27 <27
Th PT >40GeV > 50GeV
T |7] <23 <23
pT (Th ) — > 50GeV
jet pr (veto) >30GeV > 30GeV
jet || (veto) <27 <27
b jet pr (veto) >20GeV > 30GeV

The MADGRAPH5_aMC@NLO 2.3.3 generator [61] is used to produce the parton-level back-
ground processes at leading order (LO), with the parton showering and hadronization pro-
vided by PYTHIA 8.212 [62, 63]. Signal models of direct T pair production are generated with
MADGRAPH5_aMC@NLO at LO precision in perturbative quantum chromodynamics (QCD) up
to the production of 7 leptons, which are then decayed with PYTHIA 8.212. The NNPDF3.0LO
set of parton distribution functions is used in the generation of all signal models.

The potential effect of pileup is estimated by overlaying the hard scatter event with minimum
bias events drawn from a Poisson distribution with a mean of 200.

The generated signal and background events are processed with the fast-simulation package
Delphes [64] in order to simulate the expected response of the upgraded CMS detector. The



object reconstruction and identification efficiencies, as well as the detector response and resolu-
tion, are parameterized in Delphes using the detailed simulation of the upgraded CMS detector
based on GEANT4 package [65, 66].

The detailed simulation of the upgraded CMS detector and objects performance at HL-LHC
include the effects of aging in the barrel calorimeter that correspond to an integrated luminosity
of 1000 fb~".

4 Event selection

The event selection for each final state requires the presence of exactly two reconstructed lep-
tons with opposite charges, corresponding to the 7,7, or /T, final states. In order to suppress
backgrounds with top quarks, we veto events containing any b-tagged jet in both final states.
For the /7, analysis, the pr threshold for b-tagged jets is lowered to 20 GeV, as this allows to
significantly reduce the background from W+jets events, where the W boson decays into an
electron or muon and a neutrino, and a jet is misidentified as .

The main background for the 7,7, final state after this selection consists of QCD multijet events,
Wjets, DY+ets, and top quark events. Separating the background into prompt T, events,
where both reconstructed 7 leptons are matched to a generator 7,, and misidentified events,
where one or more non-generator matched jets have been misidentified as prompt 7,, we find
that the misidentified background dominates our search regions.

In the /T, final state, all events with at least one jet are rejected. Due to kinematical constraints
in the signal, we reduce the background from QCD multijet events by requiring a maximum
separation of the two leptons in AR of 3.5.

The baseline selection criteria described above are summarized in Table 2. The baseline events
are then further selected using kinematic variables for each of the three final states to improve
the sensitivity of the search to a range of sparticle masses.

Table 2: Summary of the baseline selection requirements in each final state.

Selection requirement N ThTh
A(P(fl,gz) > 1.5 > 1.5
AR(€1,£2) 0.3 < AR <35 —
Veto of events with b-tagged jets yes yes
I\]jet =0 -

In order to further improve discrimination against the SM background, we take advantage of
the expected presence of two ! in the final state for signal events, which would lead to missing
transverse momentum, pi*. The missing transverse momentum vector FIs is defined as the
negative vector sum of all PF candidates with corresponding transverse momenta weighted

miss

through the PUPPI method. Its magnitude is referred to as pf

In addition, mass observables that can be calculated from the reconstructed leptons and the
p1"** provide strong discriminants between signal and background. For a mother particle de-
caying to a visible and an invisible particle, the transverse mass Mt has a kinematic endpoint

at the mass of the mother particle, and is calculated as follows:

M (€, ) = \/2pepiss(1 — cos Ap(Fi, F) ). ()
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In addition, the scalar sum of the My calculated with the first and second lepton and the missing
transverse momentum, respectively, is used to further reduce the background events: XMt =
Mr (61, PT5°) + Mr (Lo, Pr*°).

We also calculate the stransverse mass M, [67, 68], defined as:

2miss.

MTZ(mS/ g’/ my, ?, pT X1/ XZ) = _’n_’}ln {max [MT(ms/ g‘/ X1, ﬁ)/ MT(mt/?/XZI Ei)] } (2)
p,qst
P = e

where the transverse mass is given by

Ma(n,3,,7) = [+ 42+ 2 + 522+ |7~ 207,

in whichs, t, g, §, and ﬁr}mss are all real two-vectors, and the remaining quantities are real scalars

which may all be assumed to be nonnegative as they only enter through their squares. As input
for the visible particles (s'and ) we give the four-vectors of the two leptons, and we define the
mass of the invisible particles x1 = X2 = 0. The M, requirement reduces background from
diboson production.

4.1 Search regions for the 1, 7, analysis

The main variables that are used to define the search regions are *Mt and Mr,, which are
shown for the baseline selection in Fig. 2. All processes containing top quarks, i.e., tt, single
top quark, and tt +X production are combined and referred to “Top Quark” in the figure, while
”"Other SM” corresponds to background processes with low cross section that are combined,
namely diboson and triboson production.
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Figure 2: The main search variables for the 7,7, analysis, (left) XMt and (right) Mr,, both after
the baseline selection. Scaled signal yields for direct T production with the mass-degenerate
cross section are shown for three separate scenarios of T and LSP masses. All processes con-
taining top quarks, i.e. tt, single top quark, and tt +X production are combined and referred to
"Top Quark” in the figure, while "Other SM” corresponds to background processes with a low
number of events that are combined, diboson and triboson production.

While we apply a stringent requirement of at least 400 GeV for XMr, we require Mr; to be
above 50 GeV.



The search regions, binned in Mt,, XMr, and the number of jets njet, are summarized in Table 3.
There are 24 regions in total.

Table 3: Definition of the search regions (SR) used in the 7,7, analysis. Signal depleted bins
(low ZMr, high Mr,) are omitted. The full list of bins and background yields is presented in
Table 6.

Variable Bin 0 Bin 1 Bin 2 Bin 3
M, 50 < Mty < 100 GeV 100 < Mty < 150GeV | 150 < My, < 200GeV | M1, > 200 GeV
My 400 < ZMt1 < 500GeV | 500 < M7 < 600GeV XMt > 600 GeV —
Miet =0 >0 —_ —

4.2 Search regions for the ¢t;, analysis

In the (1, final state, we require Mr (¥, prT“iSS) > 120 GeV, which reduces the W+jets background
significantly. To further suppress the SM background in the leptonic final states, we require
pRiss to be at least 150 GeV, which mainly reduces QCD multijets and Drell-Yan events. Ad-
ditional requirements on Mr; and the 7, pr are applied to define the search regions, as sum-
marized in Table 4. Figures 3 and 4 show the distributions of My, Mr, and Mr; before the
signal region selection for the et, and 1, channel, respectively. In these figures, the "Other
SM” refers to processes with a low number of events after the baseline selection and includes
diboson, triboson, tt and single top production.

Table 4: Search region requirements in the £7, analysis.

Variable Bin 0 Bin 1 Bin 2 Bin 3
M M > 120 GeV My > 120GeV 80 < Mty < 120GeV 80 < Mt < 120GeV
p1(Th) >200GeV | 40 < pr(Th) < 200GeV > 200 GeV 40 < pr(m) < 120GeV

5 Systematic uncertainties

The dominant experimental uncertainties are those originating from jets being misidentified as
Th, the lepton efficiency, the jet energy scale and resolution, b tagging efficiency and integrated
luminosity. These systematic uncertainties are correlated between the signal and the irreducible
background yields. The sources of the systematic uncertainties and their values are reported in
Table 5.

6 Results

The expected yields in the 7,7, final state after all selection requirements are given in Table 6.

The expected yields for the et, and the uT, analysis are given in Tables 7 and 8, respectively,
for all signal regions.

The expected upper limits at the 95% confidence level (CL), calculated using the asymptotic
formulae [69] of the CL; criterion [70, 71], and the 5¢ discovery potential are given in Fig. 5.
The T, 73, analysis has been found to drive the sensitivity, but adding the /7, channel enlarges
the exclusion bounds by about 60-80 GeV.



6. Results 7

CMS 3ab? (14 TeV) CMS 3ab™ (14 TeV)
S FTI T I e e e S ETTTTTT T e e o
(‘]510g Phase2 Simulation . 8109 Phase2 Simulation .
put ot b0 = 2001 Gev - %P = 3001 Gev > e P = 2001 Gev - %P = 3001 Gev
o©10° : : ©10° : :
= =
107 e 50 = 20071 Gev .W+jas L1’ w150 = 2001 Gev .W+je[s
gloe : g 6 :
it} @0

DY +jets DY +jets Other SM

10° S A N PN PR O PO PPN ) i 10" S T N D B
0 50 100 150 200 250 300 350 400 450 500 550 600 200 300 400 500 600 700
prTmss [GeV] M; [GeV]

CMS 3ab™ (14 TeV)
S T e
8109 Phase2 Simulation . N
put ---f---@%f:zooueev ---E—--@Q:SOO/lGeV E
©10° : f -
Ny - 1Y = 40011 Gev .W+jels -
g 3
10 3
. DY +jets Other SM b
10 E
10* -
1= -
10 S N[00 R O =

O m

100 150 200 250
My, (T,

e
Figure 3: The variables used to determine the search regions in the e, analysis after the base-
line selection: (upper left) the prT“iss distribution, (upper right) the Mt distribution, and (lower)
the My, distribution using p%ﬁss after the baseline selection. "Other SM” refers to processes
with a low number of events after the baseline selection and includes diboson, triboson, tt and

single top quark production.

Table 5: Summary of the experimental systematic uncertainties.

Source of systematic uncertainty | Value
T efficiency 2.5%
T, misidentification rate 15%
Muon efficiency 0.5%
Electron efficiency 1%
Jet energy scale 1-3.5%
Jet energy resolution 3-5%
b tagging 1%
Integrated luminosity 1%
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Table 6: Signal region yields for for background and signal simulation in the 7,7, channel. The
three rightmost columns show the signal predictions in the degenerate scenario, for masses
given in the form of (mz/ m;({ly) in GeV.

Bin DY+jets Wets tt QCD Other SM Sum (200/100) (500/200) | (700/300)

SR-7; Ty-M12-0-M1-0_N; 0 | 79.67 & 32.14 | 58.80 = 43.95 | 13.21 +3.86 541 +£0.17 | 292 £2.35 | 160.00 £ 54.63 | 104.79 £4.62 | 1.19 £ 0.05 | 0.22 £ 0.01
SR-7,j-M12 0-M710_N; 1 | 57.76 £15.39 | 5.07 £0.52 | 104.54 +11.30 | 28.19 +£0.33 | 8.78 4 2.62 | 204.33 = 19.28 | 56.96 & 3.40 | 0.79 +0.04 | 0.16 + 0.01
SR-7, T~ M12-0-M1-1_N; -0 9.86 £ 6.28 3.96 £0.29 453 £224 1.26 £0.09 | 3.70 £1.54 | 23.31 £6.85 26.51 £2.32 | 0.72 £0.04 | 0.17 £0.01
SR-7, Ty~ M12-0-M7-1_N; 1 1.36 £ 0.06 1.33 £0.13 31.25 £ 6.01 3.84+0.11 | 279 £154 | 4057 +6.21 18.99 +£1.96 | 0.62 £0.04 | 0.14 £ 0.01
SR-7, Tj-M12-0-M1-2_N; 0 0.51 £ 0.04 2.854+0.25 2.61 £1.79 0.38 = 0.05 - 6.35 £ 1.81 21.82+2.11 | 1.33 £0.06 | 0.40 £ 0.02
SR-7, T~ Mr2-0-M1-2_N; 1 9.69 & 6.28 0.86 +0.10 26.11 £ 5.56 0.86 £0.03 | 277 =1.54 | 40.28 & 8.53 15324+ 1.76 | 1.11 £0.05 | 0.35 £ 0.02
SR-7;Tj-M12 1 M1 0_N; 0 | 32.60 £11.17 | 6.15+0.53 16.36 4= 4.32 2.89 £0.18 | 499 =1.85 | 6298 £12.13 | 83.71 £4.13 | 1.14+£0.05 | 0.19 £0.01
SR-7, T~ Mr2-1-M1-0_N;-1 2.034+0.10 1.34£025 6690 +874 | 1817+0.33 | 1.44+1.62 | 89.89 & 8.90 40.00 £2.84 | 0.74+0.04 | 0.13 £0.01
SR-7, Tj-Mr2-1_-M1-1.N; 0 19.59 +9.63 1.14 £0.20 3.96 £2.19 1.52+£0.11 | 0.56 =0.89 | 26.78 £9.92 2573 £2.29 | 1.26 = 0.05 | 0.25 4+ 0.01
SR-7; Tj-M72-1-M1-1_N;-1 0.47 £ 0.05 0.56 £ 0.44 13.32 £ 3.91 519+£0.15 | 270 £1.36 | 22.24 +4.17 1293 £1.62 | 0.91 +£0.05 | 0.16 &+ 0.01
SR-T, Tj-Mr2-1-M1-2_N; 0 9.08 & 6.28 0.28 £ 0.06 0.05 £+ 0.01 0.68 £0.07 | 211+£1.03 | 12.20 £6.37 10.83 +1.48 | 2.13 £0.07 | 0.57 £ 0.02
SR-7; Ty~ M12-1-M1-2_Nj-1 3.79 £251 0.06 £ 0.02 5.65 £2.53 137 £0.06 | 1.18 £1.03 | 12.05+£3.71 9.03 £1.35 | 1.78 £0.06 | 0.57 £ 0.02
SR-7, Tj-Mr2-2-M1-1.N; 0 0.17 £ 0.03 0.324+0.10 0.05 £+ 0.01 0.55 £0.08 | 1.03+0.73 2124074 2.69+0.73 | 0.63£0.04 | 0.11£0.01
SR-7, Tj-MT2-2-M1-1_Nj-1 3.73 £251 0.22 4 0.07 8.71+3.13 1.84 £0.11 | 1.06 =0.73 | 15.57 £4.08 1.71£058 | 0.39+£0.03 | 0.07 £0.01
SR-7, T~ Mr2-2-M1-2_N; 0 0.23 £ 0.04 0.17 £ 0.05 0.04 +0.01 0.73 £0.07 | 0.02+0.73 1.18 £0.73 248 +0.71 | 2.95+0.08 | 0.80 4 0.02
SR-7,Tj-MT122 Mt 2 N; 1 0.19 £ 0.02 0.04 £ 0.01 559 +£2.53 1.51 £0.07 | 0.06 = 0.73 7.38 £2.64 152 +£054 | 219 £0.07 | 0.67 £ 0.02
SR-T, Tcdh-M12-3-Mr12_N; 0 | 53.02 £30.56 | 0.03 & 0.02 0.02 £ 0.00 0.27 £0.03 | 0.03 +0.02 | 53.36 + 30.56 024 +0.20 | 3.61+0.09 | 1.74 +0.04
SR-7, Tj-Mrp-3 M7 2_N; 1 0.06 = 0.01 0.02 £ 0.01 2.52 +£1.59 0.50 £0.03 | 0.54 +0.51 3.66 & 1.67 0.90 041 | 3.17£0.09 | 1.72 +0.04
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Table 7: Signal region yields for background and signal simulation in the e7;, channel. The three
rightmost columns show the signal predictions in the degenerate scenario, for masses given in

the form of (m;/mgtl)) in GeV.

SR name

DY

W-+]ets

Other SM

Sum

(200/1)

(300/1)

(400/1)

SR-e'rh 1
SR-eT}, 2
SR-eT;, 3
SR-e’rh 4

0.18 £ 0.07
0.44 £0.11
0.15 £ 0.06
0.10 = 0.05

6.83 £ 1.45
10.06 £ 1.52
10.11 £ 1.41
3.42 £0.87

0.03 £ 0.06
0.98 £0.13
0.62 £0.10
0.38 £ 0.08

7.03 £1.45
11.00 £ 1.53
10.57 £ 1.41
431 £0.97

3.13+£0.78
8.60 £ 1.30
5.86 =+ 1.07
4.10 £0.90

6.83 £ 0.71
742 £0.74
3.71 £0.52
2.60 £ 0.44

254 +0.24
2.36 £0.23
1.30 + 0.17
0.58 £+ 0.11

Table 8: Signal region yields for background and signal simulation in the yt, channel. The
three rightmost columns show the signal predictions in the degenerate scenario, for masses
given in the form of (mz/ m;?{f) in GeV.

SR name

DY

W-]ets

Other SM

Sum

(200/1)

(300/1)

(400/1)

SR-ut,-0
SR-ut,-1
SR-ut, 2
SR-ut,-3

0.06 + 0.02
0.13 £ 0.04
0.07 £ 0.03
0.03 £ 0.02

7.82+1.27
20.51 £2.11
12.02 £ 1.65
3.19+£0.74

0.12 £ 0.13
0.76 = 0.29
0.72 £ 0.19
1.88 £ 0.31

794 +1.28
21.62 £2.16
12.53 £ 1.66
4.86 £ 0.87

457 £ 091
749 +1.17
6.76 £ 1.11
4.38 + 0.89

9.50 + 0.81
9.43 + 0.81
6.03 = 0.65
1.25 +£0.29

7.14 + 047
5.02 £ 0.39
2.68 £0.29
0.68 £+ 0.14
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CMS Phase-2 simulation 3ab™ (14 TeV)

------ Expected exclusion —— Expected discovery
300

> T 1
O,

a 250

n
E_I

107

2001

1072

1073

95% CL upper limit on cross section [pb]

200 400 600 800
mo [GeV]

Figure 5: The expected upper limits at the 95% CL and the 5¢ discovery potential for the com-
bination of the results of the 1,7, and /7, channels.
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7 Summary

A search for the direct production of T sleptons has been presented, assuming 3000 b~ of
proton-proton collision data produced by the HL-LHC at a center-of-mass energy of 14 TeV.
Expected limits have been calculated for the final states that contain either two hadronically
decaying T leptons and missing transverse momentum, or one hadronically decaying T lepton
and one T decaying to a muon or electron and neutrinos. The analysis is performed using the
Delphes simulation of the CMS Phase-2 detector where the object reconstruction performance
is tuned to the one achieved with CMS Phase-2 full simulation. In mass-degenerate scenarios,
degenerate production of T sleptons are excluded up to 650 GeV with the discovery contour
reaching up to 470 GeV for a massless lightest neutralino.
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