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Abstract In this paper, we study the viability and stability
of anisotropic compact stars in the context of f(Q) theory,
where Q is non-metricity scalar. We use Finch—Skea solu-
tions to investigate the physical properties of compact stars.
To determine the values of unknown constants, we match
internal spacetime with the exterior region at the boundary
surface. Furthermore, we study the various physical quan-
tities, including effective matter variables, energy condi-
tions and equation of state parameters inside the considered
compact stars. The equilibrium and stability states of the
proposed compact stars are examined through the Tolman—
Oppenheimer—Volkoff equation, causality condition, Herrera
cracking approach and adiabatic index, respectively. It is
found that viable and stable compact stars exist in f(Q) the-
ory as all the necessary conditions are satisfied.

1 Introduction

The study of cosmos and its components inspired many
researchers in the last few years due to their mysterious
nature. Stars are considered the basic components of astron-
omy and the essential building blocks of galaxies. Fusion
processes have significant effects on the development of stars
and planets. The equilibrium position of stars is maintained
through the fusion process if there is a balance between
the inward force of gravity and the outward pressure. After
the consumption of nuclear fuel, the star collapses and as a
result new compact objects like white dwarfs, neutron stars
and black holes are formed depending on their initial mass.
Compact stars have a different nature than ordinary stars as
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they have large masses and small radii. These cosmic objects
have attracted the attention of many researchers due to their
significant features. Baade and Zwicky [1] investigated the
geometry of compact objects and proposed the concept of
pulsars like Her X-1. After discovering pulsars, the theory of
neutron stars acquired observational validation [2]. Dev and
Gleiser [3,4] analyzed the physical behavior of pulsars with
different considerations. Mak and Harko [5] used the mass-
radius relationship to analyze the stability of pulsars. Kalam
et al. [6] examined the viability and stability of compact stars
using the Karori-Barua technique. The dynamics of compact
objects near the boundary with massless and massive scalar
field are explored in [7,8].

The anisotropy modifies some significant characteristics
of relativistic objects. According to Ruderman [9], nuclear
matter demonstrates anisotropy if the matter density of
relativistic particles is equivalent to 10'> g/cm3. Due to
phase transition and viscosity, the distribution of matter
exhibits pressure anisotropy [10-12]. Bowers and Liang [13]
examined the anisotropy of a relativistic sphere and the
physical characteristics of anisotropic pressure. The effects
of local anisotropy for self-gravitating systems have been
examined in [14]. The equilibrium composition and static
spherical anisotropic solution have been studied in [15].
Karori—Barua solutions were used to analyze the behavior
of anisotropic quark stars in [16]. Dourah and Ray [17] stud-
ied the metric solutions for compact stars. Later, Finch and
Skea [18,19] modified the metric solutions in four dimen-
sions for anisotropic star models. The Finch—Skea solutions
were used to develop relativistic star models [20]. Bhar [21]
determined the physical characteristics of compact stars by
using the equation of state (EoS) parameter and Finch—Skea
solutions. Anisotropic stellar structures using Finch—Skea
potentials have been examined in [22]. These solutions were
also used to evaluate the anisotropic compact configurations
[23].
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In modified theories of gravity, the study of stellar struc-
tures is a major topic for discussion. Numerous studies on
star structures have been analyzed in the last few decades.
Accordingly, the Symmetric teleparallel gravity, which is
also known as f(Q) is an intriguing theory that has gained
attention in recent years [24-26]. The study of f(Q) grav-
ity is the most debatable phenomenon of the current time.
Lazkoz et al. [27] established a credible set of limitations
on f(Q) gravity, where the polynomial expression of grav-
ity is given as a function of redshift. Moreover, the f(Q)
gravity showed some fascinating results using observational
measurements [28-33]. Furthermore, the study of different
cosmic objects with different matter configurations in the
framework of f(Q) gravity has been discussed in [34-37].
Olmo [38] studied the geometry of compact stellar objects
using polytropic EoS in Palatini f(R) gravity. Arapoglu et
al. [39] used barotropic EoS to examine the compactness of
pulsars in the same theory. Zubair et al. [40] investigated the
viable behavior of rotating neutron stars in the background
of f(R, T) theory. Mustafa and his collaborators [41-47]
studied compact spherical structures with different consider-
ations. Maurya et al. [48] analyzed the effect of charge on the
stability of spherical objects through the Karmarkar condi-
tion in f(G, T') gravity. Sharif and Gul studied the Noether
symmetry approach [49-55], stability of the Einstein uni-
verse [56-58] and dynamics of gravitational collapse [59—63]
in modified theory. In the framework of off-diagonal tetrad,
the study of anisotropic strange stars in f(t, T') gravity pre-
sented in [64]. Das et al. [65] considered Finch—Skea geom-
etry to study the viable behavior of pulsars in the context
of Einstein Gauss-Bonnet gravity. Dita et al. [66] studied
the characteristics of celestial objects using a modified Van
der Waals EoS in the presence of charge in f(Q) gravity.
Recently, the study of observational constraints in modified
f(Q) gravity discussed in [67] and thermal fluctuations of
compact objects as charged and uncharged BHs in f(Q)
gravity are explored in [68,69]. Some people have also stud-
ied the characteristics of celestial objects in different sce-
narios of modified gravity and obtained interesting results
[70-74].

In this article, we analyzed the viability and stability of
compact objects by considering Finch Skea solutions in f(Q)
theory. The manuscript is arranged as follows. The basics of
f(Q) gravity with anisotropic matter configuration is pre-
sented in Sect. 2. The geometrical explanation of metric and
the evaluation of unknown constant is given in Sect. 3. Sec-
tion 4 analyzes some physical features to determine the via-
bility of compact stars. Further, we check the stability anal-
ysis in Sect. 5. Our results are summarized in Sect. 6.
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2 f(Q) theory: field equations

The corresponding integral action with coupling constant as
a unity is expressed as

1
s=3 [ r@v=gats+ [ Lay=gats m

where L, represents Lagrangian density of matter and g
is determinant of metric tensor. The non-metricity tensor is
defined as

Qe = Vigne = 8ek — Thegie — Thy gz, )

where V. covariant derivative and Ffﬁ is affine connection,
given by

I _ gl l
Toe = Kpe + Lye S
where L ¢ and K ! ¢ are deformation and contortion tensors,
respectively, defined as
L, = lQl oy Kl =Lt gl (4)
n§ T o =g §)° n§ — o 'ng &)
The antisymmetric component of affine connection reduces
to torsion tensor as Trfg = 2I‘fn§]. The super potential can be
written as
1 ~
k _ 1ok k ko o Oko .. _ sk
Pre = 11=Qne +2Q0e) + @ ne — Lgne — 80, -
%)
The non-metricity scalar is expressed as

Q = — Qe P, ©)

Variation of action (1) corresponding to metric tensor yields
field equations of f(Q) gravity as

2 1
= Vi8Sl + S8ue

+fo (P QF — 2Que P = Ty @)

where fg depicts the partial derivative with respect to non-
metricity.

Now, we use the static spherically symmetric spacetime
to examine the stellar structures as

ds?> = —e"Vdt* + Vdr* + do? + sin® 0d¢>. (®)
We assume anisotropic matter distribution as

Tye = (p + Pouyug + Prgyz + (Pr — P)&pé:, ©))

where p, P; and P, depict the energy density, tangential pres-
sure and radial pressure, respectively. By using Eq. (9), the
value of non-metricity becomes

—A(r) /
Q:_Ze (12—|—rv(r))’ (10)
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where prime is the derivative with respect to radial coordi-
nate. The resulting field equations turn out to be

ot
p=T2 poler L+ Wl an
Pr:—f(—Q)+f [Q+—] (12)
__ Q@ Q v (v 1
bi=-m"t/le|5 2+(4+2r)
x(' =) |, (13)
6
=29 foo. (14)
Solving Eq. (14), we have
foo=0= fo=k = f(Q) =k Q+k, (15)

where k; and k» are integration constants. Now using
gs. (10)—(15), the corresponding equations of motion

become
1 —A / 2
p = —2[2k1+2e ki(rX —1) —r<ks], (16)
2r
1
P = —[=2ki +2e Mk (rv' + 1) + 7k, (17)
r
e_}L s / / / /"
P = —12e"rky + ki 24+ rv)(v' — L) + 2rkv’].
r
(18)
By using field equations (16)—(18), we obtain
v/ , 2
- 3(p+Pr) —(P) +;(Pt - P)=0. (19)

This is known as Tolman—Oppenheimer—Volkoff (TOV)
equation in f(Q) gravity.

3 Finch-Skea solutions and matching conditions

Compact stars are fascinating objects that result from the
gravitational collapse of massive stars. Understanding their
structure, composition and behavior is crucial for advanc-
ing our knowledge of fundamental physics and astrophysics.
Different solutions, including Finch—Skea solutions are con-
sidered to describe the properties of compact stars and their
various aspects, such as density profiles, pressure, and tem-
perature distributions. Finch—Skea solutions provide insights
into the behavior of matter at extreme conditions in compact

stars. These solutions predict distinct gravitational wave sig-
natures that could be compared with observations to validate
or refine the models. Finch—Skea solutions provide insights
into the interior structure of compact stars, helping astro-
physicists to understand phenomena such as the formation
of quark—gluon plasma or other exotic states of matter. The
Finch—Skea solutions are finite and non-singular, ensuring
that the spacetime is smooth and free from singularities.
The modeling of stellar objects using Finch—Skea solu-
tions has attained a lot of interest in recent years due to their
non-singular behavior. These solutions are defined as [18, 19]

1 2
= (A + zBr\/ﬂC) , e =(1+Cr?), (20)

where arbitrary constants are denoted by A, B and C, respec-
tively. The set of constants can be evaluated by smoothly
matching the inner and outer regions. The Schwarzschild
spacetime is used to investigate the outer geometry of the
compact stars as

oM oM\ !
ds? = (1 - —> dr* + <1 - —> dr?
r r

—r2d6? — r? sin® 9d¢2, 2D

where M and R depict the total mass and radius of the sphere,
respectively. The continuity of metric tensors at the boundary

surface gives
_ VR 2M VR —2M

4 3M 2R
2VRVE —2M JAR}
2M
C= ko (22)

Now, using the Finch Skea metric in Eqgs. (16)—(18), we
obtain

1
p=22|:4 2072 —ri| (23)
1 Br«/r2C
P =— —2—2(1+Cr2)<—+1>+r2],
' 72|: A—l—%Br\/rzC
(24)
—(1+Cr? 2 ( Br/r2C )
Pp=——204+Cr)+| ——F——= 12
t A+ 1Brvi2C
< Br«/r2C 2Cr )
X J—
A+1Brvi?c 1+Cr?
Ar + %BrZ\/rZC —2BCr?
+ - (25)
( Br/r:C )
A+1Brvric
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Table 1 For the considered compact star approximate values of unknown constants

Star models M (Mg) R (km) A (km™2) B (km™2) C (km™2)
Her X-1 0.85 8.1 0.0082 0.5725 0.1216
EXO 1785-248 1.3 8.84 0.0065 0.8586 0.1842
Vela X-1 1.77 9.55 0.0076 0.9464 0.1212
PSR J1614-2230 1.97 9.70 0.0089 0.3475 0.1854
LMC X-4 1.04 8.30 0.0024 0.7867 0.2144
SMC X-4 1.29 8.83 0.0051 0.2662 0.1924
PSR J1903+327 1.66 9.43 0.0026 0.5283 0.1798
4U 1538-52 0.87 7.68 0.0039 0.7249 0.2117
4U 1820-30 1.58 9.31 0.0068 0.4539 0.2097
Cen X-3 1.49 9.178 0.0053 0.5850 0.2187

24F ]

22F b

Fig. 1 Plot of metric elements versus r

We use green, red, blue, orange, purple, brown, yellow, black,
pink and gray colors for Her X-1, EXO 1785-248, Vela X-1,
PSR J1614-2230, LMC X-4, SMC X-4, PSR J1903+327, 4U
1538-52, 4U 1820-30, Cen X-3 compact stars, respectively
for all graphs. Table 1 provides the values of unknown con-
stants. Figure 1 shows that the metric elements are regular
and show positively increasing behavior as required.

4 Physical attributes

In this section, we examine the physical characteristics of
compact stars through graphs in the background of f(Q)
gravity. We evaluate the behavior of effective matter vari-
able, anisotropy, energy condition, mass, compactness, red-
shift and EoS parameters in the interior of proposed compact
stars. Further, we use the TOV equation, sound speed and
adiabatic index to analyze the equilibrium stability state of
considered stars.

4.1 Energy density and pressure components

Figure 2 shows that the behavior of energy density, radial
pressure and tangential pressure is positive and decreasing

@ Springer

for all considered compact star candidates. It can also be
seen that matter variables are maximum at the center of stars.
Figure 3 represents that the radial derivative of energy den-
sity, radial and tangential pressure components are negative,
which ensures the presence of a highly compact picture of the
considered compact stars in the framework of f(Q) gravity.

4.2 Anisotropy

The anisotropy of compact objects can be evaluated by using
Egs. (24) and (25) as

A=P —P,
—(1+Cr? Br/r2C
:M 2014+ Cr?) + _OINTY 4
4 A+ 1Brvr2c

Bra/r2C 2Cr
X J—
A+ 3Brvr2c  1+Cr?

Ar + %BrZ\/rzc —2BCr3

( Bry/r2C )2
A+%Brx/r2C
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+1) + rz].

Anisotropy determines the direction of pressure, i.e., when
A > 0 the pressure is directed outward and when A < 0,
the direction of the pressure is inward. Figure 4 determines

that the pressure is in the outward direction as anisotropy is
positive, which is required for compact star configuration.

4.3 Energy bounds

Energy conditions are essential for understanding several
cosmological findings connected to significant gravitational
fields. Due to the vital role of energy bounds, some interest-
ing results have been published in [75-77]. For anisotropic
fluid, V'EC (null energy condition), WEC (weak energy con-
dition), SEC (strong energy condition) and DEC( dominant
energy condition) can be classified as

NEC:p+P. >0, p+ P >0,

WEC:p>, p+P- >0, p+P >0,
DEC:p—P- >0, p— P >0,
SEC:p+P- >0, p+P>0,p+2P;+ P >0.

Figure 5 shows that all energy conditions are satisfied for all
star models.

4.4 EoS parameters

Here, we investigate the crucial EoS parameters in describing
the relationship between pressure and energy density in var-
ious physical systems. The radial (¢, = %) and transverse
(¢ = %) components must lie in [0, 1] for a physically
viable model. The corresponding parameters are expressed
as

@ Springer

o — | —4BNr2C —4BCr?vJ/r2C
' 2r2 A—I—%Br\/rzC
4BCr*vr2C s
- r
A+%Br\/r2C
1 2 2 -
x[ﬁ(4—2Cr —r)] ,
—(14+Cr?) ) Brv/r2C
¢ =] ————QU+CrH+ | ——F—==+2
' 4 A+3Brv/r2C

Br/r2C 2Cr
X —_—
A+iBrr2c 1+Cr?

Ar + $Br2Vr2C — ZBCr3)

( Brm )2)
A+%Brm

1 2 2 -
x[ﬁ(4—2Cr —r )] .

The graphical behavior of ¢, and ¢, for considered com-
pact star models is given in Fig. 6, which shows that EoS
parameters satisfy the required condition (0 < ¢, < 1 and
0<¢r <1).

4.5 Mass, compactness and redshift

Mass function for the anisotropic compact stars is given by

M(R2—r2)
Mi3e R2eM-R)

(26)

m =

M(R2—r2) *
R2(2M — R) + 2Mr2e R*eM-B

Figure 7 shows that the mass is increasing in a positive direc-
tion and regular at the center of stars. The compactness func-
tion is essential for examining the viability of compact stars,
expressed as

M(R2—r2)
Mr2e R2eM—R)

m(r)

u(r) = = 27
r

M@R2—2) *
R2(2M — R) + 2Mr2e R*eM-B

According to Buchdahl [78] compact stellar objects are
feasible if this factor has the limit () < g. The gravitational
redshift (Z = (1 — 2,u)771 — 1) is considered to be the key
concept to understand the nature of compact objects.

Figure 8 determines that the compactness and redshift lie
in the required limits (u < g, Z <5.2).
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5 Stability analysis

It is more interesting to examine celestial objects that main-
tain their stability in the presence of external disturbances.
Here, we use the TOV equation to explore the equilibrium
state of the star candidates and sound speed/adiabatic index
to check the stability.

5.1 Tolman—Oppenheimer—Volkoff equation

The TOV equation in the framework of f(Q) is formulated
in Eq. (19). This provides information regarding the cosmic
balance as a consequence of the several forces, including

the gravitational force (Fy), anisotropic force (fy) and the
hydrostatic force (Fj,), expressed as

AN

”3 Sa—20r =) ]

L I er o LI Lo
2r2 1 2

r A+ 5Brvr-C
+r2 4.
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( 4BCr*v/r2C )
=)+
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Figure 9 shows that the our system is in the equilibrium state

as the sum of all forces is zero (Fy + Fj, + F, = 0).

5.2 Sound speed

The development of cracking technique has been explored
spherically for compact objects using various methodologies
[79-81]. The radial and transverse sound speed components,
represented as v2, and v?, are used to determine the stability
of compact star candidates. The expressions for speed of

sounds are given as follows

5 —1 5 Br«/r2C
v = | =351 —2-200+Cr) — =
r A + EBI"\/ r2C
2| | -(1+cr?
F,="= w(z(l +Cr?)
r 4 )
+r
Br/r2C
* A+ L1Brviric 2
>Bra/r
: ; 1 —4B+/r2C — 4BCr2J/r2C
y Br~r=C _ 2Cr + 52 PRy T
A+iBrVr2c 14+Cr? 27T
2
0_30:v A T T T T T
F 12F ]
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020F ]
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3. 015F o6k ]
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o.osé 02F ]
000k , . . . 00— ]
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Fig. 8 Behavior of Compactness and redshift functions versus r
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The causality condition in the case of anisotropic matter con-
figuration is defined as

2 2
O0<v, <1, 0=y

<1

The range for radial sound speed and transverse sound speed
must satisfy the following inequality 0 < |v2, —v2| < 1 for
stable compact stars. We observed that desired condition are
fulfilled as shown in Figs. 10 and 11. This proves the stability
of our compact star models in the framework of f(Q) gravity.

5.3 Adiabatic index

The another alternative technique to investigate the stability
of compact stars is adiabatic index. The radial and transverse
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components of adiabatic index are defined as

+

|

1

2

r

—4B~r2C —4BCr*v/r2C

I

A+ %Br«/rQC

)

Pr+pdP, Pr+,02 P+ pdP;
I = = Vs e = —
P dp P, P, dp
Pi+p
= ’Tuf,. (28)
Using Eqgs. (23)—(25), we have
r, = i(4—2c 2
" 22 mor
1 Br/r2C
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According to adiabatic index criteria, the system is stable
if I > 3 otherwise, it is unstable [82]. Figure 12 shows
that our system is stable in the presence of modified terms
corresponding to all considered compact stars.

6 Final remarks

In this paper, we have examined the viability and stability of
compact stars in the background of f(Q) theory. To evaluate
the graphical characteristics of compact stars, we formulate
the functional form as f(Q) = k1 Q + k. The main results
are given by

e The graphical behavior of energy density versus radial
coordinate depicts that energy density approaches to the
maximum value when r — 0 as shown in Fig. 2. We
have noted the same behavior for P, and P, that is pos-
itive and decreasing. The radial derivative of the energy
density and pressure components are negative for con-
sidered compact star candidates as shown in Fig. 3.

e The anisotropy for the compact star candidates is directed
outward as shown in Fig. 4.

e Energy conditions for compact star candidates are posi-
tive, which ensure the presence of normal matter in the
proposed compact stars as shown in Fig. 5.

e Itisexamined thatthe EoS parameters satisfy the required
bound for radial component 0 < ¢, < 1 and tangential
component 0 < ¢; < 1 as given in Fig. 6.

e There is a direct relation between the mass and radius
of the compact stars, suggesting that the mass function
remains regular at the center of the compact stars (Fig. 7).

e Compactness and redshift functions satisfied the required
limits in the presence of modified terms as presented in
Fig. 8.

e Itisfound that the proposed compact stars are stable as all
the necessary conditions are fulfilled as shown in Figs. 9,
10, 11 and 12.
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It is noteworthy to mention here that we have obtained more
stable anisotropic stellar structures due to the presence of
f(Q) terms as compared to GR and other modified theories
[83-88]. We can conclude that viable and stable compact
stars exist in this modified theory.
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