Fermion Mass Generation without Spontaneous
Symmetry Breaking
by
Venkitesh P Ayyar

Department of Physics
Duke University

Date:

Approved:

Shailesh Chandrasekharan, Supervisor

Mark Kruse

Ronen Plesser

Harold Baranger

Joshua Socolar

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Physics
in the Graduate School of Duke University
2016



ABSTRACT

Fermion Mass Generation without Spontaneous Symmetry
Breaking

by
Venkitesh P Ayyar

Department of Physics
Duke University

Date:
Approved:

Shailesh Chandrasekharan, Supervisor

Mark Kruse

Ronen Plesser

Harold Baranger

Joshua Socolar

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Physics
in the Graduate School of Duke University
2016



Copyright (© 2016 by Venkitesh P Ayyar
All rights reserved except the rights granted by the
Creative Commons Attribution-Noncommercial Licence


http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

The conventional mechanism of fermion mass generation in the Standard Model
involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate
mechanism for the generation of fermion masses that does not require SSB, in the
context of lattice field theories. Being inherently strongly coupled, this mechanism
requires a non-perturbative approach like the lattice approach.

In order to explore this mechanism, we study a simple lattice model with a
four-fermion interaction that has massless fermions at weak couplings and massive
fermions at strong couplings, but without any spontaneous symmetry breaking. Prior
work on this type of mass generation mechanism in 4D, was done in the late 1980’s
using either mean-field theory or Monte-Carlo calculations on small lattices. In this
thesis, we have developed a new computational approach that enables us to perform
large scale quantum Monte-Carlo calculations to study the phase structure of this
theory. In 4D, our results confirm prior results, but differ in some quantitative details
of the phase diagram. In contrast, in 3D, we discover a new second order critical
point using calculations on lattices up to size 603. Such large scale calculations are
unprecedented. The presence of the critical point implies the existence of an alternate
mechanism of fermion mass generation without any SSB, that could be of interest in

continuum quantum field theory.
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1

Introduction

The origin of fermion mass is a fundamental problem in particle physics [1]. Fermion
mass terms in a free theory break certain symmetries which we call generically as
"chiral symmetries’. One way to produce fermion masses is by explicitly breaking
these symmetries. Fermion masses can also be produced dynamically, through the
physics of Spontaneous Symmetry Breaking (SSB) [2]. This latter scenario is real-
ized in the Standard Model. The action of a system undergoing SSB preserves the
symmetries of interest, however the vacuum is not invariant under the full symmetry.

In the Standard Model, SSB occurs in two different sectors:
i) The Higgs mechanism in the Electro-weak sector.

ii) Chiral symmetry breaking in the Strong sector.

The electro-weak sector of the Standard Model has an SU(2); x U(1)y gauge
symmetry [3]. Fermion mass terms break this symmetry and are hence not allowed
in the action. In order to give fermions their mass, a Higgs field is introduced that
couples to the fermions via Yukawa couplings. The Higgs field gets an expectation
value that spontaneously breaks the SU(2), x U(1)y symmetry thus giving masses

1



to the fermions. This results in the formation of fermion bilinear condensates. This
mechanism also provides masses to the W*, W~ and Z gauge bosons.

In contrast, in the strong sector of the Standard Model SSB is achieved with-
out the introduction of a Higgs field. The QCD Lagrangian with gluons and two
flavors of massless quarks has an SU(2);, x SU(2)g chiral symmetry in addition to
an SU(3) color gauge symmetry. The chiral symmetry breaks spontaneously due to
non-perturbative dynamics. This results in the formation of fermion bilinear con-
densates that make the quarks massive. This phenomenon is often referred to as
"dynamical symmetry breaking’ [4, 5].

In this thesis work, we explore an alternate mechanism for fermion mass gener-
ation that does not involve any SSB. Starting with an action that forbids fermion
bilinear mass terms, we find that fermions become massive without breaking any

symmetries at strong couplings .
1.1 Review of SSB

The mechanism of SSB can be elucidated by a simple toy model of fermions interact-
ing with a complex scalar field. Consider a model with one flavor of four-component
Dirac fermions represented by the Grassman fields ¢ and 1, coupled to a complex

scalar field ¢. The Euclidean action for this theory is given by
Sp = Jd4${ %ﬁm + (0u0")(0ud) + V() — g pe? ¢} (1.1)

where V(¢) = m?|¢|” + %|ng|4 (A > 0) and the complex field ¢ is written as ¢ =
pe'?. The Dirac matrices v, are 4 x 4 Hermitian matrices that satisfy the algebra
{1} = 20,,,. This action is symmetric under the transformation Uy (1) x Ux(1)
given by

Uy(1) : @ — ey, =™ ¢ — ¢

UA(l) : w — e—i’750,4w ’ E_’EG_MSGA>¢ N ¢ eQiGA

(1.2)
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FIGURE 1.1: Plot of the potential V(¢) for m* > 0 as a function of ¢. The left
figure shows the variation of V(¢) in the complex ¢ plane while the right figure shows
this variation along ¢; = 0. For m? > 0, we have a global minimum at |¢| = 0. This
corresponds to a single complex massive scalar particle.

where 75 is defined as v5 = v1727374. From the action, it is clear that a fermion mass
term of the form mav explictly breaks the Uy(1) symmetry. In fact, one can argue
that no fermion bilinear term that is invariant under all the symmetries of the action
exists.

The action in Eq. (1.1) can be rewritten in terms of left and right handed fields
given by ¥, = (552)6 , gn = (52)0, Tr = P(52) , T = H(552). The action

now takes the form

Sg = Jd“x{ VL + VrIUR + (0407)(0u0) + V() — g¥rrd — gvryre™} (1.3)

where ¢ = ~,0,. In this form, it can be seen that the action has an explicit Ur(1) x

Ugr(1) symmetry given by
U, — €% g — €Rp s Y — e s g — e RYp ¢ — TR

This is related to the Uy (1) x Ua(1) symmetry in Eq. (1.2). 6, = 0 corresponds to
the Uy (1) symmetry while 0, = —0g corresponds to the U4 (1) symmetry.
For m? > 0, the potential has a minimum at ¢ = 0. This is shown in Fig. (1.1).

In this regime, the action describes a theory of massless fermions interacting with a

3
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FIGURE 1.2: Plot of the potential V(¢) for m* < 0 as a function of ¢. The left
figure shows the variation of V' (¢) vs ¢ in the complex plane while the right figure
shows this variation along ¢; = 0. In addition to a local maximum at |¢| = 0, there
exist an infinite number of minima at |¢|?> = v. This corresponds to a massless scalar
7 and a massive scalar o.

complex boson ¢ of mass m. On the other hand, if m? < 0, V(¢) is the well known

Mexican-hat potential. It has a local maximum at ¢ = 0 and an infinite number of

minima along |¢|? = v with v = ’2;”2 as shown in Fig. (1.2). Without loss of

generality, we can expand ¢ about one of these minima as ¢ = v + \%(a +4m) and

write the above action as
a — 1 2 1 2 5 1 2 s
Sp= | d'z{ Odp + 5(0u0)” + 5(\/ém) 0%+ S(0um)” = guibtp + ... (1.4)

where the dots denote higher order interaction terms. Thus, although the action
preserves the axial symmetry, the choice of the vacuum v has broken this symmetry.
This is the phenomenon of SSB. The theory now describes fermions interacting with
two fields o and 7. The field o describes a real massive scalar particle of mass v/2m.
The field 7 describing a massless scalar particle is called a Goldstone boson. Ac-
cording to Goldstone’s theorem [6], SSB creates a massless boson for every generator
of a continuous symmetry broken by the vacuum. In this case, since the vacuum v
breaks the U4 (1) symmetry, we have a single Goldstone boson 7. Interestingly, the
term guit) resembles a mass term for the fermion. Thus, the fermions have acquired

4



FM

(m2 <0) Massive fermions

PMW

Symmetric phase

2
m 0
( = Massless fermions

g2

FiGURE 1.3: The Phase diagram showing the phase transition between the massless
and massive fermionic phases. The red region represents a symmetric massless phase
called the PMW phase. The grey region represents the spontaneously broken massive
phase called the FM phase. m? is negative at the top and positive at the bottom.

a mass gv through the SSB of the axial symmetry Us(1). It can be shown that the
fermion bilinear condensate (1)) is non-zero.

It is interesting to look at the phase diagram in the m? — ¢? plane for a fixed
value of A > 0. When m? > 0, for small Yukawa couplings, we get massless fermions.
However, as the coupling g crosses a threshold, previous work shows that the fermions
become massive via SSB [7]. The phase with massless fermions at weak couplings is
symmetric and hence called the Paramagnetic Weak phase (PMW), while the massive
fermion phase is spontaneously broken and hence referred to as the Ferromagnetic
phase (FM). This general phase diagram in the m? — g2 plane is qualitatively shown
in Fig. (1.3).



1.2 Alternate mechanism of mass generation

As explained above, SSB provides a way to generate fermion masses without explicitly
breaking chiral symmetries. However, the vacuum does break the symmetry. Can
there be other mechanisms to generate fermion masses that do not require SSB?

Lattice field theories are a good place to look for such alternate mechanisms,
since they can be studied non-perturbatively and hence often show a much richer
phase structure. Indeed, previous studies of lattice Yukawa models have shown the
existence of a more interesting phase structure than that in Fig. (1.3) [8, 9]. These
studies have found that, in addition to the symmetric massless (PMW) phase and
the spontaneously broken massive (FM) phase obtained in the continuum, there can
be an additional exotic phase at strong Yukawa couplings [10, 11]. In this phase,
all fermion bilinear condensates vanish, but fermions are still massive. This exotic
phase is thus a massive symmetric phase and is hence referred to as the Paramagnetic
Strong phase (or the PMS phase). This qualitative phase structure is shown in Fig.
(1.2).

The presence of the PMS phase indicates an alternate mechanism for fermion mass
generation without SSB in lattice field theories. But, such a phase could very well
be a lattice artifact without a continuum analog. However, if we could find a lattice
model in which PMW and PMS phase boundaries touch each other at a second-order
critical point, this would imply the existence of a continuum limit for the PMS phase
and thus make this alternate mechanism of fermion mass generation of interest even
in continuum field theory. In this thesis, we discover one such critical point in a
specific lattice model in three dimensions. Further, it is a second order transition
between two phases with the same symmetries that cannot be distinguished by a

local order parameter.
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FM
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92

FI1GURE 1.4: The complex phase structure obtained in some lattice field theories. In
addition to the PMW and FM phases, these lattice theories show an exotic symmetric
massive phase at strong couplings called the strong paramagnetic phase or PMS
phase.

1.3  Four-fermion field theories

So far, we have focused on Yukawa models. However, we can also discuss the same
physics using four-fermion models where the Higgs field is absent. For example, the
action of one such four-fermion model that reproduces the physics of the Yukawa

model in Eq. (1.5) is given by

Sy = Jd%{ VLdr + Urdr — U(Pprrtn)} (1.5)

Since the four-fermion coupling is perturbatively irrelevant, for small couplings
we expect massless fermions. Previous studies of similar four-fermion models in
the continuum using mean-field analysis [12, 13] have shown the existence of the
spontaneously broken FM phase at larger values of the coupling U. Since we expect

7



FiGURE 1.5: The three phase structure seen in four-fermion lattice models. The
exotic PMS phase is expected as in Yukawa models.

the four-fermion theory to capture the physics along the horizontal line at large
values of m? in Fig. (1.2), we also expect a PMS phase in an appropriate lattice
four-fermion model at large U. The expected qualitative phase diagram in the space
of the coupling constant U for these four-fermion lattice theories is shown in Fig.
(1.5). The exotic scenario where the PMW phase touches the PMS phase is shown
in Fig. (1.6).

In addition to retaining the rich phase structure of the Yukawa models, four-
fermion models have become easier to study, thanks to recent Monte Carlo techniques
like the Fermion Bag approach [14, 15]. In this thesis, we study a simple four-fermion
lattice model in order to explore the phenomenon of fermion mass generation without
SSB. While the phase diagram in 3D is consistent with Fig. (1.6), in 4D we find the
phase diagram to be consistent with Fig. (1.5). Our results in 3D have also been
observed recently using similar models motivated in both particle physics [16] and

[17, 18, 19] condensed matter physics.



F1GURE 1.6: The phase structure seen in our four-fermion lattice model in 3D. The
presence of a second-order critical point at U, separating the PMW and PMS phases
points to a continuum theory that exhibits fermion mass generation without SSB.

1.4 Organization of thesis

The thesis is organized as follows. Section 2 introduces the lattice field theory ap-
proach and its connection to continuum quantum field theory. Section 3 introduces
the model we study, its symmetry properties, and the approach we use to solve it.
Section 4 discusses the concept of Monte-Carlo methods used in lattice field theo-
ries. It also discusses the computational methods used. Sections 5 and 6 present the
results in 3D and 4D. Section 7 summarises the conclusions and the implications of

this work.



2

The Lattice Approach

The standard method for solving continuum quantum field theories (QFTs) is by
using perturbation theory. In this approach, one computes quantities analytically
using Feynman diagrams up to a certain order in the coupling constants. When loop
diagrams arise, they can diverge and so one needs to develop a renormalization pro-
cedure with an appropriate regulator so that physical observables are finite, when the
regulator is removed. Further, due to the sharp rise in the number of Feynman dia-
grams with the order of perturbation theory, computations are not practical beyond
4th or 5th order. In most cases, the perturbative expansion is also an asymptotic
series. Hence, while the perturbative approach is very useful to compute a large
number of quantities like scattering cross-sections, decay rates, etc., it only works for
weakly coupled theories. For strongly coupled theories like QCD, one needs to turn
to non-perturbative approaches like lattice field theory.

A lattice field theory can be understood from two different perspectives:

i) As a regularization of a continuum QFT.

In this perspective, a lattice field theory is constructed to study a continuum

10



QFT with an ultraviolet momentum cut-off, obtained by discretizing it in position
space. If A is the usual ultraviolet cut-off of the continuum theory, the lattice
spacing a of the lattice theory acts as this cut-off and is related to it as a ~ %
The continuum theory with a momentum cutoff and the lattice theory can be
matched in perturbation theory. However, the lattice theory can also explore the
strong coupling regime of the theory. In other words, the lattice theory helps to

define the original continuum QFT even in the strong coupling regime.

ii) As an interesting quantum many-body theory in its own right.

In this perspective, the lattice theory is taken to be a quantum many-body theory
in its own right that can be studied non-perturbatively to explore interesting
phase structures and continuum limits, if they exist. For example, the theory
may model a condensed matter system, which has a natural lattice spacing.
Such lattice theories often exhibit a rich phase structure. Moreover, if the phase
diagram harbors second-order critical points, then a continuum limit of the lattice
theory exists, where a continuum QFT should emerge. This will be explained

later in this chapter.
2.1 Lattice field theory as a regularized continuum QFT

Let us first explain the view point that lattice field theory is a way to nonpertur-
batively regulate a continuum QFT using examples of free field theory. For this
purpose we start with simple, free continuum field theories containing either bosons
or fermions, and discretize them and compare their properties with the corresponding

continuum theory. The discussion below follows [20].
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2.1.1 Lattice bosons

Our aim is to discretize a simple continuum field theory with a single scalar field

¢(z). Its continuum action in Euclidean space is given by

1

Si= 5 | dte o) (-8,0, + mP)o(w)]. (2.1

In the path integral approach in Euclidean space, the propagator is defined as the
two point correlation function of the statistical mechanical system defined by the

above action. It is given by

§ldo] (d(z)¢(y)) e
§[d¢] e5

Dp(x,y) = {p(x)o(y)) = (2.2)

The expression for the bosonic propagator in position space for the action defined in

Eq. (2.1) is given by

4
Bk ey

2y B 23)

Dp(z,y) :J

Let us now see how this propagator is reproduced from a lattice regulated theory.
Using a lattice spacing a, we can discretize space-time on a hypercubic lattice so that
the fields are defined on the space-time lattice site na. We can then discretize the

second derivative term as
B
0ulp(w) = — 3 (6(na+ 1) + ¢(na — 1) — 2¢(na)) (2.4)
p=1

where [i represents the unit vector along the direction pu = 1,2,3,4. With this

substitution the continuum action is transformed into the lattice action

4
a
Sb(lattice) = 5 Z ¢nKn,m¢m (2’5)
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1
Kn,n/ = E [— Z (6n+ﬂ,n’ + 5n,ﬂ7n/ - 25n7n/) + m2a2(5n7n/] (26)

m

where ¢, = ¢(na) is the lattice field. The bosonic propagator in the lattice theory

can be calculated easily and one gets

= dAk 6z'l~c-(71—n’) a

D n!) = (but) = a2 J (2.7)

1
= (27) Zu4sin2 <’%a> + a?m?

In the above expression, it is clear that, 2sin <§> — kya as a — 0, and we recover

the continuum expression in Eq. (2.3). Thus, the lattice propagator yields the
continuum propagator in the continuum limit (¢ — 0). When a # 0, it gives a

regulated theory with a momentum cut-off 7/a.
2.1.2  Lattice fermions

We would like to repeat this procedure for free fermions. Let us consider the Dirac

action representing one flavor of free massive fermions.

Sp = fd‘*x [6(2) (38 + M) ()] (2.8)

where the 7, are the Dirac matrices defined in Section 1.1. In analogy with Eq.

(2.2), the fermionic propagator is defined as

De(.y) = ((@)d(y)) = (@ (2.0)

where the path integral is defined over Grassmann valued fields ¢ and 1. Note
Dp(x,y)is a4 x 4 matrix in the Dirac space. Performing the Grassmann integration

with the action given in Eq. (2.8), one obtains

d4k —ik-x
Dp(z,y) = fﬁe g

13
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Discretizing space-time on a hypercubic lattice as before and using the symmetric

lattice derivative with lattice spacing a given by

QLZ Y(na + i) — ¥(na — ) (2.11)

we obtain the lattice fermion action

Sf(lattice) = CZ4 Z En,aKn,n'wn’,,B ) (212)
n,m,a,3
where
1 1
Knw = - > 5 Odag Onspnr = Onr) + MaAdnndap | (2.13)
m

and «, 8 denote spinor indices. The lattice fermionic propagator is given by

z ik-(n—n)a (__; :
DF(TL, n/) _ <¢1‘1/}_y> _ CLJ d4]€ e ( Zz,u T Sln(kua) + ma) (2‘14)

== (2m)* (> sin®(k,a) + m2a?)

Since the sine function has zeros at all points where k, = 0 or m/a, in the limit
a — 0, the above propagator gets contributions from a total of 16 poles in momen-
tum space. Close to these poles, the propagator in momentum space looks exactly
the same as the continuum propagator given in Eq. (2.10). In other words, there
exists a 16-fold degeneracy in the ground-state physics and this can be interpreted as
though the lattice theory describes 16 flavors of fermions. Thus, discretization has
created multiple flavors of fermions. This phenomenon is called Fermion doubling. In
general, discretizing a fermionic theory in a d dimensional Fuclidean space produces
2¢ fermion flavors.

The phenomenon of fermion doubling has significant implications when relating
the lattice theory back to the continuum theory. For bosons, the lattice theory will

reproduce the continuum physics in the limit @ — 0. In contrast, for fermions,

14



the lattice theory now needs to be mapped to a continuum theory having 2¢ times
the original number of fermion flavors. There are ways to circumvent this doubling
problem at the cost of breaking the chiral symmetry using what are called Wilson
fermions [20]. Other formulations that retain the chiral symmetry at the cost of

making the action non-local are Domain wall fermions, SLAC fermions [21, 22].
2.2 Lattice field theory as an interesting quantum many-body theory.

Let us now explain the second view point that lattice field theories can be studied
as quantum many-body theories that are interesting in their own right. This is espe-
cially true in the presence of fermions, due to the phenomenon of fermion doubling.
Examples of such interesting lattice field theories often arise in condensed matter
physics. A simple example is the tight binding model of graphene, where electrons
hop on a honeycomb lattice. In this model, massless Dirac fermions appear naturally
at low energies. In the action formulation, they are similar to staggered fermions

23] discussed below.
2.2.1 Staggered fermions

We begin with the lattice fermion action in Eq. (2.13) representing 16 fermion flavors
and set a = 1. In this new notation, all lengths are measured in terms of the lattice

spacing. The resulting action has the form
[ _
5=3 2 U [Vtbnis = Wtbn—g] + Mt (2.15)
n,f

where n = (ny,ng, n3, ny) represents the lattice site. We then perform the variable

transformation

Un =723 78 Xn (2.16)
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and rewrite the action as

1 N —
Szgz%ﬂwkwrﬂwd+mmm (2.17)
nn&‘

where 01, =1 nop = (—1)™ n3, = (=1)™"2 1y, = (—1)"F"2"8 and y and Y are
four-component Grassmann variables. Since the spinor space has been diagonalized,
we obtain four identical copies of fermions. We throw away three of these to get the

Staggered fermion action

Sstaggered = ZExMx,yd}y + max%

z?y

1
Mxvy = Z §nac,d [5x,y+6¢ - (ngy_&] (218)

4=1,2,34

Nae,t = 1 Nz2 = (_1)$1 Nx,3 = (_1)x1+m2 Nxa = (_1)x1+x2+$3

where we now define the one-component Grassmann fields 1) and ) on each lattice
site. As opposed to the 16 flavors in the naive lattice fermion action, the staggered
fermion action has only four extra flavors in 4D. The Staggered fermion formulation
preserves some remnants of the continuum symmetries that keep fermions massless
at the cost of retaining some of the extra flavors obtained due to fermion doubling.

For completeness, we present the form of the staggered fermion propagator below.

Dn n’

)

1 —sink.(n' —n)(X, Nansinky) + mcosk.(n' —n)
:E; (2.19)

28 sin? kg + m?2
2.2.2  Reduced staggered fermions
In the above section, we defined the action for one flavor of staggered fermions

with two Grassmann fields ¢ and ¢ defined at every point on the lattice. A slight

redefinition of the fields yields the reduced staggered fermion action [24, 25| given by

1 2
Sreduced staggered — 5 Z Z wz,iMx,ywy,i + mwz,lwzﬁ (220>

=1 2,y
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where, the ¥ and 9 at each site have been replaced by the two flavors YPz1 and Py 9.
Thus, one flavor of staggered fermions is equivalent to 2 flavors of reduced staggered
fermions. In the massless limit, the two flavors decouple from each other. In our

work, we will use 4 flavors of reduced staggered fermions.
2.3 Continuum limit

Let us consider a lattice field theory with spacing a and some coupling Y which can
be tuned to a second-order critical point Y = Y.. From the theory of second-order
phase transitions, we know that correlation functions diverge at Y,. If ¢ is one such
physical correlation length, since all lengths are measured in terms of the lattice
spacing a,

lim & - oo (2.21)
Y-Y. a

In condensed matter physics, the lattice spacing is natural and hence, one can in-
terpret the physical correlation length ¢ to diverge as we approach Y.. On the other
hand, in particle physics, the correlation length £ is related to m™!, where m is mass
of a particle, which is a physical quantity. Hence one can interpret the approach
to the critical point as though the lattice spacing a vanishes as Y — Y.. This im-
plies that as Y approaches Y., the physics of the lattice theory is described by a
renormalizable continuum theory.

Wilson has argued that the divergence of the correlation length is related to
the renormalization group (RG) flows near a fixed point in the space of coupling
constants of a continuum QFT [26]. In particular, a diverging correlation length is

related to a relevant (or marginally relevant) direction at the fixed point. Using the

Y-Y,
Ye

dimensionless variable y = , an RG calculation shows that the correlation length
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for relevant couplings diverges as

€~ " (2.22)

where v is called a critical exponent [27]. We can use the above expression to derive
a finite size scaling relation for a general observable O in the critical region. In a
lattice theory with lattice size L, the only length scales in the critical region are L

and £. Hence, the observable O can only depend on L through the relation
O~ L f(L/§) (2.23)

where p is the length dimension of O. Using & ~ 1% from Eq. (2.22), the above

equation becomes

O~ LP f(y" L) (2.24)
This can be simplified to give

O~ LP f(y L'") (2.25)

where f(x) is a function that must be analytic near = 0. Eq. (2.25) expresses the
observable O in terms of the coupling Y and lattice size L. We will use this form
later in Chapter 5 to estimate the critical exponents close to the transition.

Since it is the only currently known technique to study strongly interacting sys-
tems ab initio, the lattice method has been used extensively to study QCD. These
have provided accurate theoretical predictions of experimentally measured quanti-
ties like hadron spectrum, form factors, etc. [28, 29, 30, 31, 32]. In addition, lattice
field theories with critical points are by themselves very interesting. At these points,
different lattice systems are expected to flow to the same fixed points at long dis-
tances and hence describe the same low-energy physics. This leads to the concept of

universality classes that are classified by the fixed points [27].
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Symmetric phase
Massless fermions
0

0 Yhe o0

FiGurRE 2.1: The Phase diagram for the hypercubic Yukawa model. This model
contains the PMW phase and the FM phase.

2.4 Lattice Yukawa models

As explained in the Introduction, lattice field theories with Yukawa couplings have
been studied extensively on the lattice and these show a rich phase structure. Here,
we discuss two such models that give qualitatively different phase diagrams.

These models were first studied by Lee, Shigemitsu and Shrock in [10] with stag-
gered fermions interacting with a scalar field ¢ in 4 Euclidean dimensions. Two
types of interactions were explored: a local and a hypercubic Yukawa interaction.

The actions for these two models are given by

S = Sg+ Sp+ Sy (226)
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FiGURE 2.2: The phase diagram for the local Yukawa model. It shows the strong
paramagnetic phase (PMS) phase in addition to the PMW and FM phases seen in
the hypercubic Yukawa model.

where Sp and Sg are the same for both models and are given by

Sp o= D =26 Gubuip +AY (62— 1)’ (2.27)
n T, n
1
SF = 5 Z menn,u(Xn-I-[L - Xn—ﬂ) + meyan,f (228)
n,, f n,f

The two models differ in their Yukawa interactions. In one model, the bosonic field
is associated with the center of a hypercube (hc) and couples to the fermion fields
at all the corners of the hypercube, while in the other model, it is associated with a
lattice site (local) and only couples to the fermion fields on that site. The hypercubic
and local Yukawa interactions are given by
Sy = Syne =2""ne > bn D\ X pXoos (2.29)
n n'ehe(n);f
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Sy = SY,local = U Z ganYn,an,f (230)
n !

where hc(n) denotes the corners associated with the hypercube centered at n, f
donotes fermion flavor and as before, ji denotes the unit vector in the direction .

It was discovered in [10] that the hypercubic Yukawa model shows a phase struc-
ture with just PMW and FM phases as shown in Fig. (2.1), while the phase diagram
of the local Yukawa model contains the exotic PMS phase at strong couplings in
addition to the PMW and FM phases discussed in the Introduction as shown in Fig.
(2.2). In fact, some mean field calculations for the local Yukawa coupling [33, 34]
have predicted a direct first order transition between the PMW and PMS phases in
3D. In this thesis, we find a single second-order critical point separating the PMS
and PMW phases in 3D at k = 0.
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3

Model and Symmetries

In this thesis, we wish to use lattice field theory in order to explore if the PMW
and PMS phases, introduced in Chapter 1, may be connected through a direct phase
transition as suggested in Fig. (1.6). If this phase transition turns out to be second
order, we would establish that the PMS phase is of interest in continuum quantum
field theory since we can use the critical point to define a continuum limit. To
simplify our computations, instead of studying the Yukawa model discussed in the
previous chapter, we study its four-fermion limit. While earlier work was done in 4D

mostly using mean field theory, here we study the theory in both 3D and 4D.
3.1 Model

Our model contains 4 flavors of massless reduced staggered fermions interacting via

an on-site four-fermion interaction. The action of our model is given by

S = SO - UZ (1/}a:,11/}:c,2¢x,3¢x,4> ) (31)
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where Sy is the free part of the action and is given by

4
SO = % 2 Z lpx,iMa:,ylpy,i‘ (32)

=1 z,y

Here, 1., i = 1,2,3,4 are four independent Grassmann valued fields that represent
the four flavors of reduced staggered fermions, = represents the sites of a cubic (3D)
or hypercubic (4D) lattice, and the free staggered fermion matrix M has been defined
in Eq. (2.18). Four flavors of reduced staggered fermions are equivalent to two flavors
of regular staggered fermions as described in Chapter 2. More details can be found

in [35]. The partition function for this system can be written as
7 = J[dwldw2d¢3d¢4] 500U 2y bu1¥2,2¢2,3%2,4 (3.3)

The functional integration is over all the four independent Grassmann fields ¢, ;, 7 =
1,2,3,4.

We define the parity of each site as ¢, = (—1)"***2"%3_ Sites with ¢, = 1 are
called even sites and those with ¢, = —1 are called odd sites. In our work, we use
symmetrical lattices of equal size L in each direction and take the large L limit to
explore ground state properties. In order to extract results using finite lattices, we
need to define boundary conditions. The most common ones are periodic boundary
conditions (PBC) or anti-periodic boundary conditions (APBC). These give rise to

momenta of the form

2r L. for PBC
Py = { T Nu or sk, =0,1,2...(L —1). (3.4)

2 (k, + 1) for APBC
where = 1,2, 3,4 represents the direction. Since, imposing PBCs in every direction
results in zero modes, in the massless limit, Eq. (2.19) shows that the resulting
propagators will be singular. To avoid this, APBCs are often imposed in at least one

direction. In this work, we impose anti-periodic boundary conditions in all directions.
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3.2

Symmetries

The action given in Eq. (3.1) is symmetric under the usual space-time lattice trans-

formations and an internal SU(4) transformation in 3D and 4D [25, 36]. For three

dimensions, these are listed below.

(i)

(iii)

(iv)

Shift Symmetry:
Vei = EoaWrranis (3.5)

where 51371 = (—1)r2tes, z2 = (=1)**, and fz,:% =1

Space-time rotations:
Vi — Sr(R™'@)p-1,, (3.6)
where R = R\ p # ¢ is the rotation Ty = To,Ty — —T,, and x, — x, when

7 # p,0 and Sg(x) = (1 £ 05(2)0s(2) F &(2)60 () + np(2)ns(2)8, ()60 (7))

where the two signs represent the cases p > ¢ and p < ¢ respectively.
Axis reversal:
Vo = (1)U (1024 (3.7)

where [Pz is the axis reversal operation on x which changes z, — —x, and

Ty — Ty, 0 F .

Global SU(4) transformations:

wxe,l wze,l
¢x 2 wm 2

-V © 3.8a
¢ze,3 ¢xe,3 ( )
wwe,ll ¢$e,4
wmo,l wmo,l
¢x 2 * @Z)x 2

” -V > 3.8b
¢$o,3 ,QZ}:CO,S ( )
wxo,ll 7%0,4
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where x. and z, refer to even and odd lattice sites respectively, and V' is an

SU(4) matrix in the fundamental representation.

Similar transformations exist even in 4D. In addition, the free action Sy is also

symmetric under the U(1) symmetry given by

2/}:Jc,i - ei@ez ¢x,i (39)

where €, is the site-parity of site z. In many four-fermion models, spontaneous break-
ing of this symmetry results in massive fermions. However in our model, although
this symmetry is broken explicitly by the interaction, the fermions remain massless
at weak couplings because the other symmetries forbid fermion bilinear mass terms.

The corresponding mass order parameters were constructed in [25, 36] and are given

by
O%4(%) = Vr.atles (3.10a)
O} (%) = €x8uatheaSutiea (3.10D)
022 () = &uobariluaSuStisa (3.10¢)
027 (%) = €2pabvatiVeaSuSulea (3.10d)
O3 2o () = EpabuwribvatiriVe,aSuSySitle.a (3.10e)

where S,z 0 = Votpa + Vo—jia- For fermions to become massive through the con-
ventional mechanism, one or more of these order parameters must acquire a non-zero
expectation value. This can only occur when one or more of the lattice symmetries

are spontaneously broken. In this work, we only focus on the order parameter Ogvb(x)
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given in Eq. (3.10a) which is the order parameter for the SU(4) symmetry. Some of
the other order parameters were studied recently in [16]. In our recent paper [37], we
argue why all bilinear order parameters will vanish at sufficiently strong couplings.

We repeat some of these arguments in Section 3.5.
3.3 General observables of interest

Since four-fermion couplings are perturbatively irrelevant and the lattice symmetries
of the action do not allow the formation of bilinear condensates, the theory remains
massless at weak couplings. This is the PMW phase. At strong couplings, as we
will explain later in Section 3.5, one expects fermions to become massive without
breaking any lattice symmetries. This is the PMS phase. However, at intermediate
couplings, there could be a spontaneously broken FM phase where one or more of the
symmetries of the action are broken spontaneously and fermions become massive due
to the formation of fermion bilinear condensates. To study if such an intermediate
phase exists, we need to compute masses of the particles in the theory and the
mass order parameters that distinguish the spontaneously broken phase from the
symmetric phase. A brief discussion of how to choose an order parameter is given in

Appendix A. Observables that are of interest include

e Fermion bilinear (bosonic) correlators and susceptibilities:
To infer the presence of non-zero fermion bilinear order parameters, we can

compute correlators of the form
C(z,y) = (0,0,) (3.11)

where O is one of the fermion bilinear mass order parameters defined in Eq.

(3.10). Using the cluster property, we expect

lim (0,0,) ~ {0,)". (3.12)

lz—y|—0
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This implies that C'(z,y) ~ (O,)* as |r —y| — oo. The expectation value
of such an order parameter is also referred to as a condensate (®). Thus,
the presence of a condensate can be inferred if C'(z,y) approaches a constant
at large separations. However, if the correlation function vanishes at large
separations, then the corresponding condensate is zero. In the PMS phase, since
we expect all lattice symmetry order parameters to vanish, all these correlators

must decay to zero at large separations.

From the bosonic correlator C'(z,y), we can also compute the susceptibility
Y = l20(0 z) = VP? (3.13)
2 - ’ '

In a massive theory, where the correlation functions decay exponentially, the
susceptibilities saturate to a constant value at large volumes. On the other
hand, when the correlation function decays like a power, depending on the
power, the susceptibility could grow, but the growth will not be proportional
to the volume. For a non-zero condensate, the corresponding susceptibility will
grow with the volume V. In the PMS phase, we expect the susceptibility to

saturate to a constant.

Fermionic correlators:
To infer the mass of the fermions we can measure fermionic correlators of the

form
F(%,y) = <¢az,a ¢yaa> (314)

As explained in Appendix B, exponential decay of such a correlator indicates
that the particle is massive, while a power-law decay indicates that the particle
is massless. In the PMS phase, we expect massive fermions, while in the PMW

phase the fermions will be massless.
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e Four-fermion condensates:
Four-fermion condensates measure the explicit breaking of the U(1) symmetry
discussed in Eq. (3.9) by the interaction term. We define this condensate

pm 1’,1 a:,2 {E,3 CC,4 '15

This order parameter is non-zero for all values of U. We will argue that these

serve as pseudo-order parameters.
3.4 The Fermion Bag approach

The conventional way to solve four-fermion models is to introduce an auxiliary scalar
field [38]. This approach involves the conversion of the four-fermion coupling into
a Yukawa coupling by introducing the auxiliary field. This allows one to perform
the Grassmann integral and write the partition function as an integral purely over
the auxiliary field. The fermionic physics is encoded as a determinant of a fermion
matrix that depends on the auxiliary field. If this determinant is positive, one can
use the Hybrid Monte-Carlo Method [39] to solve the problem. While such methods
have been used by other groups, we employ a different method that deals directly
with the fermionic degrees of freedom, called the Fermion Bag Approach [14].

The Fermion Bag Approach was proposed a few years ago and has enabled the
solution of many problems that could not be solved earlier [40, 41]. A review of this
approach is given in [42]. We will illustrate this method by applying it to our model.
In the fermion bag approach, we expand the partition function in Eq. (3.3) as follows

4
Z = J{H[dd}z]} =50 U Xy Yo, 1¥0,2%0,3%a,4

=1

(3.16)

— J{H[d%]} e~ 50 H (1 + Ut 1% 292 302.4) -

=1 T
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We define a binary field m, that takes values 0 or 1 on each site x. Sites with m, = 0
are called free sites and sites with m, = 1 are called monomers. In terms of this

field, we can re-write the partition function as :

Z = ;J {H[dwl]} 6_50 H (wa,lwx,wa,ZwaA)mz (317)

xT

where [m] denotes a configuration of monomers m, at all the sites x and the summa-
tion denotes a sum over all possible monomer configurations. Thus each monomer
contributes a U, 115215 3¢5 4 to the Grassmann integration. On a lattice with V'
number of sites, there are 2" monomer configurations. One such configuration is
illustrated on a 2D lattice in Fig. (3.1). Performing a sum over all configurations
gives us the exact value of the partition function. Let us consider a configuration C
with & monomers. Let [z,,] and [zf] denote the sets of lattice sites containing the
monomer sites and free sites respectively. If the lattice contains V sites, then [z,,]
contains k sites and [z ] contains (V —k) sites. The contribution of this configuration

C' to the partition function in Eq. (3.17) is given by

Z2(0) = J{H[dwi]}e‘&) U%) 1] Weathentbestins)

=1 T € Tm

4
_ o H[ [lagesesvmisns T ., (3.18)
i=1

T € Tm

Note that the four flavors of the reduced staggered fermions have been decoupled in
the partition function.

The matrix M has some special properties that help us simplify this expression
even further. Let n,44, Neven be the number of odd and even monomer sites in a
configuration. From Eq. (2.18), it can be seen that the matrix M has non-zero
values only when connecting an odd site to an even site or an even site to an odd

site. Let us write M in the form
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even odd

even 0 A
M = (3.19)

odd | —AT 0

Hence, the inverse matrix G = M ™!, which gives the propagator between any two

sites, also has the same property and can be written in the form

even odd
even 0 —wT
G = (3.20)
odd W 0

where W = A~!. Tt can be shown that any configuration with neyen # 7odq does
not contribute to the partition function. This has been discussed in Appendix C.
For configurations with neyen = Noqq, the matrices A and W are square matrices. In
this case, we can use the properties of the matrix M and the rules of Grassmann
integration to prove the following two relations [43] for one flavor of reduced staggered

fermion ):
ﬁmaﬁww%%%%,:axwm@mw (3.21)

f [d)e™ 7 Zow VeMoas 4 4p, = o x (DetA) (3.22)

where 2/ and y’ have opposite parity i.e. one is even (odd) and the other is odd

(even). The matrix A is a sub-matrix of A obtained by removing one row and one
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FiGURE 3.1: Fermion bag configuration with the circles indicating the presence of
monomers. In the weak coupling picture, when there are very few monomers, ob-
servables can be expressed in terms of propagators between monomers. The fermions
at the monomer sites can hop on to other monomer sites.

column corresponding to the sites 2’ and 3’ and ¢ is a sign factor that depends on the
ordering of the Grassmann variables. Since we have four flavors of reduced staggered
fermions, this sign factor will eventually get cancelled. Using these relations, we can
perform the Grassmann integral in Eq. (3.18) in two dual ways. We call these the

weak coupling and the strong coupling approach as discussed below.
3.4.1 Weak coupling approach

Using the relation in Eq. (3.21) and Wick’s theorem [44], we can simplify the ex-

pression in Eq. (3.18) in terms of propagators linking the monomer sites to get
Z(C) = U" DetA* DetWy* (3.23)

where A has been defined in Eq. (3.19) and W, is a sub-matrix of the matrix
W defined in Eq. (3.20). The matrix Wy depends on the monomer configuration,
connects odd monomers to even monomers and has dimensions (k/2 x k/2). The
matrix A is independent of the monomer configuration and will cancel out in all

observables.
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Configurations with large number of monomers are suppressed for small values
of the coupling, due to the presence of the term U* in Eq. (3.18). In this limit,
configuration weights are easier to compute using Eq. (3.23) since W is a small
matrix. In this picture, fermions can be viewed as existing on the monomer sites and
hopping onto other monomer sites through the free propagator. The collection of
monomer sites can be thought of as a fermion bag, within which fermions can hop.
Fig. (3.1) shows this view point.

For completeness, we list expressions similar to Eq. (3.23) for some important
observables. The four-point condensate p,, defined in Eq. (3.15) is simply the density
of monomer sites. For each monomer configuration ', the contribution to p,, is given

by
pm(C) = & (3.24)

where k = Nepen + Nogq 18 the total number of monomers in the configuration. Two
other important observables of interest are the bosonic and fermionic correlators
defined in Eqs. (3.11) and (3.14). For the order parameter O , in Eq. (3.10a), we list
expressions for the two independent bosonic correlators Cy(x, y) = (Vg 19420y 10y 2),
Cy(z,y) = (YuiPs2y30y4) and the fermionic correlator Fi(x,y) = (Wp1tPy1). It
can be shown that the correlators Cy(x,y) and Fi(x,y) can get non-zero contributions
only when nepenn, = Mogq and the sites x and y have opposite site-parity i.e. one is
odd and the other even. The contribution to these quantities in the configuration C
is given by

Ci(z,y)c = UF(Det A)* (DetW))*(DetWy)?/Z

(3.25)

Fi(2,y)c = of UM(DetA)* (DetW,)(DetWy)?/Z
where W, is the propagator matrix connecting every even monomer site to every odd
monomer site in the configuration, W; is the matrix obtained from W, by adding

an extra column and row corresponding to the source sites x and y and oy is a sign
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FiGUuRE 3.2: Fermion bag configurations with the circles indicating the presence
of monomers. In the strong coupling picture, when there are very few free sites,
observables can be expressed in terms of the staggered matrix elements between free
sites. The fermions in a bag of free sites can only hop within the bag.

factor that depends on the ordering of the sites in W, and W;. W, has dimensions
Nodd X Meven, While Wi has dimensions (ny4q + 1) X (Neyen + 1). The expression for

Cy(x,y) is a bit more complicated and we discuss this in Section 4.7.
3.4.2  Strong coupling approach

In this approach, we perform the Grassmann integral over the monomer terms first.
Using the relation in Eq. (3.22), we can express the partition function in Eq. (3.18)
in terms of a smaller reduced staggered matrix A as
4

Z(C) = U* (Detfl) (3.26)

where A is the sub-matrix of A obtained by including only the rows and columns

corresponding to the free sites. It has dimensions @ X (V—Q_k)
For large values of the coupling, configurations with large number of monomers
are enhanced due to the presence of the term U* in Eq. (3.18). Since k is large,

computations using Eq. (3.23) are cumbersome. However in this limit, the number of
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free sites (V' — k) is small and hence the configuration weights are easier to compute
using Eq. (3.26). In this picture, the fermions can be thought of as hopping within
the set of free sites. Fig. (3.2) shows this limit.

Since the matrix A connects only nearest-neighbors, when the lattice is discon-
nected into many regions of free sites, then A has a special property. It is block-
diagonal with each block corresponding to a set of connected points. This is equiva-
lent to the view point that fermions can hop only within a fermion bag. This property
is crucial in arguing for the presence of the PMS phase and we will come back to
this later.

To summarize, in the fermion bag approach, the partition function can be ex-
pressed as a sum over determinants of fermion matrices that depend on the monomer
configurations in two different but equivalent ways. All correlation functions can also
be expressed in a similar manner. As we will explain in the next chapter, since it is
not practically possible to compute the exact sum, we will use Monte Carlo methods

to estimate the observables.
3.5 Fermion Bags at strong couplings

The Fermion Bag approach also gives us an intuitive understanding of the PMS
phase. It can be argued that all fermionic and bosonic correlators decay exponentially
at large U. First, let us consider the fermionic correlator Fi(x,y). In the strong

coupling picture, it can be written as

Fi(x,y) = <¢z,1¢y,1>

1 .
= ZZUkDet(A)‘lA;; (3.27)
[m]

where A has been defined in Eq. (3.26) and the sum is over all monomer configura-
tions. Since the matrix A is block diagonal as discussed in Section 3.4.2, A is also
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block diagonal. Hence, its inverse is also block diagonal. As a result, fl;; is zero if
x and y belong to different fermion bags. Hence the fermionic correlator gets zero
contributions from configurations if the source points are placed in different bags, as
shown in Fig. (3.3).

Now, let us understand the behavior of the bosonic correlator Cy(x,y) at strong
couplings. Consider a fermion bag configuration with four disconnected fermion bags
in the strong coupling approach. The matrix A that links the free even and odd sites,

will be block-diagonal with the form shown below.

bag1 bag2 bag3 bag4

bagl s B 0 0 0

~ bag?2 0 B, 0 0

A= (3.28)
bag3 0 0 Bs 0
bagd | O 0 0 By

The contribution of this configuration to the bosonic correlator C(z,y) is given by

Cl (LL’, y)C’ = <ww,1¢x,2¢y,1¢y,2>c’

1 . _
_ ZU’C(DetA’f (Det A’ (3.29)

where x and y are the source points. These have to be free sites with opposite parity
and without loss of generality, we can assume x to be even and y to be odd. The
matrix A’ is obtained from A by removing one row and one column corresponding
to the source points 2 and y. Since A given in Eq. (3.28) is block diagonal, A’ will
also be block diagonal. In Eq. (3.29), the fermion flavors 1 and 2 contribute a factor

Det A’ each, while flavors 3 and 4 contribute a factor DetA. The matrix A’ can be
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written in the form

bag1 bag2 bag3 bag4

bagl ;s B, 0 0 0

. bag2| O B, 0 0

A = (3.30)
bagd | 0 0 B, 0
bagd | O 0 0 B,

Here, the block matrices B;’ are obtained from the matrices B; in the following
way. If the block B; contains the row corresponding to the even site x, B; will
be obtained from B; by removing that row. Similarly, if the block B; contains the
column corresponding to the site y, B;’ will be obtained from B; by removing that
column. For all blocks B; that contain neither x nor y, B;’ will be the same as B;.

The determinant of both A and A’ can be written as
DetA = Det(By) x Det(By) x Det(Bs) x Det(By) (3.31)
DetA’ = Det(B)]) x Det(Bb) x Det(B}) x Det(B}). (3.32)

Using the Leibniz formula for the determinant of a matrix [45], it can be argued
that in a block diagonal matrix, even if a single block is not a square matrix, the
determinant of the matrix is zero. Hence, for the right hand side in Eq. (3.29) to
be non-zero, each of the blocks B; and B] must be square matrices. It is easy to
argue that unless both x and y belong to the same bag, determinant of either A or
A" will be zero. A similar argument can be used for the correlator Cy(z,%). Thus,
all contributions with the source points x and y in different bags as shown in Fig.
(3.3), give zero contributions to correlators F(z,y) and Ci(x,y) and Cy(z,y).
Since the bosonic and fermionic correlators get zero contributions from discon-
nected fermion bags, for a configuration to give a non-zero contribution to the corre-
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FIGURE 3.3: Fermion bag configuration with the source points (denoted by stars) in
disconnected bags. In the strong coupling limit, such monomer configurations give a
null contribution.
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FIGURE 3.4: Fermion bag configuration with both the source points (denoted by
stars) in the same fermion bag. In the strong coupling limit, the leading contribution
comes from such configurations.
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lators, there must be a path of free sites connecting the two source points x and y as
shown in Fig. (3.4). In the limit |z — y| — oo , the contributions of such configura-
tions to the bosonic and fermionic correlators have the form U~(#—%) = e=(z=y)In(U)
Thus, in the large U limit all correlators will decay exponentially.

We will now argue that all correlators of the form C(z,y) = (O,0,) defined in
Eq. (3.11) have the same behavior. The argument used in the previous paragraph
for the order parameter O° in Eq. (3.10) can also applied to O?** and O?Z . But, the
correlators of O! and O? can get contributions from configurations with source points
in two different bags. However, in these cases we can argue that such contributions
from fermion bag configurations that are related by symmetry transformations will
cancel each other when the fermion bags are far separated.

Thus, all correlators decay exponentially in the limit of large U. Based on the
argument in Section 3.3, the exponential decay of the fermionic correlator Fi(x,y) at
large U implies the existence of massive fermions. In addition, the exponential decay
of all bosonic correlators C(z, y) implies the absence of fermion bilinear condensates.
This massive symmetric phase at strong couplings is the PMS phase.

Thus, the phase diagram has a massless PMW phase at weak couplings and a
massive PMS phase at strong couplings. This implies that a phase transition from
the massless to the massive phase must occur somewhere in between. Our aim is to

study this intermediate region to look one or more phase transitions.
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4

Monte-Carlo methods

In the previous chapter we explained how the Fermion bag approach helps us express
all observables of interest as a classical statistical mechanics problem. The next step
is to compute these expressions numerically for finite lattice systems. However,
the exact answer involves a sum over an exponentially large number of terms. For
example, on a lattice with V sites, the sum involves 2" terms. Even for a 43 lattice,
this involves about 10'” terms. Since the exact sum cannot be practically computed,
one needs alternative ways to perform the sum. Thanks to powerful computers
today, such calculations can be done efficiently using Monte Carlo methods [46], by

employing the idea of importance sampling [47, 48].
4.1 Importance Sampling

Although the configuration space is exponentially large, in statistical mechanics, only
a very small subset of these configurations are important. Importance sampling is
a technique to sample such distributions using a simpler distribution. Consider a

statistical mechanics system with partition function Z. The general form of the
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expectation value of an observable for this system can be written in the form

0= L3 0(0) = 22N (1)

- 2 W(O)
where both O and Z have been expressed as a sum of terms over the configurations
C. W(C) is the Boltzmann weight of the configuration C. We can express the

numerator in Eq. (4.1) in terms of W(C'), to get :

R e teinate)
©==5 o)

(4.2)

where O(C’ ) = %. If we sample configurations according to the Boltzmann weight

W (C) and compute O(C) for that sample, then the resulting average of this sample
would be a good estimate of <O>, if the distribution functions of O and Z behave
in a similar manner. By increasing the sample size, we can systematically reduce
the errors. This is the concept of Importance Sampling. However, if there exist
configurations C” for which O(C”) is large but W(C") is small, then the sampling
method will not be effective. For example, if there exist configurations for which
W(C") = 0 but O(C") # 0, then such configurations will never be sampled and the
sampled sum will not be correct. Such problems can sometimes be seen as large

fluctuations in the value of observables in the sampled configurations.
4.1.1 Sign Problems

It is not always possible to use importance sampling while studying quantum sta-
tistical mechanics problems. The barrier comes in the form of negative or complex
Boltzmann weights, which is referred to as the Sign Problem. In these cases, the
concept of probability is not clearly defined and the sampling process cannot be per-

formed. Even if the sampling is performed using the absolute values of the Boltzmann
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weights, the negative signs cause large fluctuations rendering the sampling process in-
effective. One way to solve sign problems is to find a representation or re-summation
of the partition function so that all configuration weights are non-negative. Solving
sign problems is an interesting area of research. Some solutions have emerged in the
Fermion Bag approach [41, 49] discussed before in Section 3.4 and the Meron cluster
method [50, 51, 52]. Other methods that have been tried to solve the sign problem
include the Complex Langevin method [53], Lefschetz thimbles [54], Density of states
[55] [56], etc. Our model does not suffer from sign problems and the Fermion Bag
approach makes this very explicit. As we showed in Eq. (3.23), the configuration
weights can be expressed as a fourth-power of the determinant of real matrices and

hence they are all positive.
4.2 Update algorithms

For a system without a sign problem, we can generate configurations distributed ac-
cording to their Boltzmann weights and use them to compute observables. To sample
configurations with the correct distribution, we have to design update algorithms.
Efficient algorithms enable us to move around in configuration space quickly in what
is called simulation time 7.

Update algorithms are constructed through a transition probability, that must
satisfy two important conditions. Let C' be the current configuration and C’ be
the target configuration. The transition probability P(C' — C") is defined as the
probability to move from C to C’. The two conditions the transition probability

matrix must satisfy are:

1. Detailed Balance

If W(C) and W(C") represent the configuration weights of configurations C'
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and C’, then the condition of detailed balance is given by

W(C)P(C — C') = W(C")P(C' — C) (4.3)

2. Ergodicity
The transition probability matrix is said to be ergodic if it allows one to reach
every configuration, starting from any configuration. In other words, the up-

date algorithm must keep the configuration space connected.

Detailed balance and ergodicity ensure that configurations obtained after suf-
ficiently many steps are sampled appropriately according to the Boltzmann
weight of the configurations. Practical Monte-Carlo algorithms often involve
multiple algorithms that are implemented in sequence. As long as the condi-
tion of detailed balance is obeyed by each algorithm and ergodicity is obtained

due to all the algorithms working together, correct sampling can be achieved.
4.3 Autocorrelation and Equilibriation

Since it is difficult to design update algorithms that satisfy detailed balance when
configurations change by a large amount, most updates have proposal functions that
modify the configurations by small amounts. As a result, successive configurations
are highly correlated and hence do not serve as independent samples. On the other
hand, the error in an observable can only be reduced when many uncorrelated con-
figurations can be generated. An update algorithm is considered efficient when many
independent configurations can be generated quickly. The efficiency of update algo-
rithms can be quantified using the concepts of equilibriation time and autocorre-
lation time.

Autocorrelation is a measure of the correlation among a sequence of configurations

as computed through the values of observables as a function of simulation time.
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Consider an observable O that assumes the value O, at the simulation time 7. The

autocorrelation A(t) between observable values separated by time ¢ is defined as

. <(Ot+r - ,u) (OT - N)>T
A= 0 - w, 44

where p = (O), = Ziv;ol % is the average of the sample and N is the sample
size, which is assumed to be large. Typically, the autocorrelation function decays as
e(—t/Taut) for large times t, where 7,,; is defined as the autocorrelation time. However,
a practical definition of the autocorrelation time is the time taken for the autocorre-
lation function to approach zero within errors.

The first independent configuration is usually obtained with an update algorithm,
by starting from some initial configuration that is not part of the representative
sample. During this process, many transient configurations are generated until the
system thermalizes. This is known as Equilibriation. The time taken to thermalize is
called Fquilibriation time. The configurations obtained before the system thermalizes
are not representative of the actual distribution and hence need to be discarded. For
example, if we start from a configuration with no monomers and perform a series
of updates for a non-zero U, the initial configurations will have very few monomers.

These will not be representatives of the actual distribution and hence need to be

discarded.
4.4  Standard update algorithms

As mentioned earlier, a complete Monte-Carlo update involves multiple update al-
gorithms that are impelemented in sequence. Although the choice of these updates
is dependent on the physical system, there are some standard procedures used to
construct them. We describe two of the most popular ones below [57].

The Metropolis algorithm is one of the most widely used algorithms. The
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transition probability P(C' — C’) in a Metropolis algorithm consists of two parts,
a proposal function, which is a rule to propose a new configuration and an accep-
tance function, which either accepts the target configuration or retains the original

configuration. This can be written as
P(C - C") =p(C—C") a(C—C (4.5)

where p(C' — C') and a(C' — C") represent the proposal and acceptance functions for
the move from configurations C' to C’. The acceptance function for the Metropolis

algorithm is given by :

N p( ) W(C)
a(C — C") = min (17]9(0 )W(C)) (4.6)
a(C’ — C) = min (1, ig ;Kv/égo (4.7)

where W (C') and W (C") are the configuration weights for configurations C' and C"’ re-
spectively. A careful choice of the proposal function p can help improve the efficiency
of the Metropolis algorithm.

Another commonly used algorithm is the Heat-bath algorithm. In the heat-bath
algorithm, instead of looking at just one target configuration, we look at a small set
of target configurations. Let {C} ... C,} be a set of n target configurations. In the
heat bath update, the target configuration is chosen from this set according to the

transition probability given by

where C; and Cf represent the initial and final configurations. Thus a heat-bath

update has no memory of the previous configuration, at least within the chosen set.
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4.5 Fermion bag updates

In our first paper [35], we performed calculations on lattices up to size 28% using three
different and independent update algorithms. These updates have been explained
in detail in that paper. In order to perform computations on larger lattices, we
developed a new set of more efficient algorithms. In this section, we briefly describe
these latter update algorithms. In particular we will discuss two different update
algorithms that we use.

First, we discuss some notation. As mentioned earlier, lattice sites are defined
according to their site-parity as odd (e, = —1) or even (e, = +1). Lattice sites are
defined according to their filling state as filled when the site contains a monomer
(m, = 1) or empty if the site does not contain a monomer (m, = 0). The nearest-
netgbors of a lattice site are the set of sites at a distance of one lattice unit from
the original site. The next-nearest-neighbors of a lattice site are the set of sites at a
distance of v/2 lattice units. For example in 3D, each site has 6 nearest-neighbors and
12 next-neighbors. Two sites are defined to be compatible if either of the following

conditions are met:
a: They have the same site-parity but different filling.
b: They have different site-parities but the same filling.

For example, two even sites are compatible if and only if one is a monomer and the

other is a free site.
4.5.1  Worm algorithm with heat-bath

The first update algorithm that we discuss is a worm algorithm with a heat-bath
acceptance condition. The worm update starts at a lattice site, moves around the

lattice while changing monomers on the sites it visits. Like other worm algorithms
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[58, 59], this method is very efficient in propagating a local change around the lattice.

We have designed two forms of this algorithm:

A) Complete monomer update

In this update, while the worm moves around, it adds and removes monomers

and also moves them around. The steps involved are:

Step 1

Step 2

Step 3

Step 4

Step 5

Choose a site at random that has at least one compatible neighbor (either
nearest or next-nearest) and introduce a worm head on that site. This

starts the worm update.

With probability P, the head on the site is removed and the worm

update ends. Otherwise the algorithm moves on to step 3.

Pick a neighbor site at random and check if the two points are compatible.
If the answer is no, do nothing and go to step 2. Otherwise, propose
flipping the filling state of both sites and go to step 4. For two sites with
the same filling, this can add or subtract two monomers from both sites.
For two sites with different filling, this can move an existing monomer

around.

Perform a heat bath update with transition probability P(Cyq — Chew) =

Whew — Wold
Whew+Woia and P(COId - COZd) Whew+Woia

If the new configuration is accepted, then move the worm head to the new
neighbor. If the older configuration is retained, then keep the worm head

at the same point. Now return to step 2.

This algorithm is ergodic and hence it is sufficient to implement the sampling.

However, empirical evidence suggests that its efficiency is not as high as the

other algorithms we discuss below.
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B) Monomer move update

In this update, as the worm moves, only the existing monomers are moved

around and the monomer number remains unchanged. The steps involved are:

Step 1

Step 2

Step 3

Step 4

Step 5

Choose a monomer site at random that has at least one next-nearest free

site and use that as the worm head. This starts the worm update.

With probability P, the head on the site is removed and the worm

update ends. Otherwise the algorithm moves on to step 3.

Pick a next-neighbor site at random and check if the two points are com-
patible. If the answer is no, do nothing and return to step 2. Otherwise,
propose flipping the filling state of both sites and go to step 4. This

becomes a proposal to move an existing monomer.

Perform a heat bath update with transition probability P(Cyq — Chew) =

Whew — Woid
Wnew+Wold and P(COld - OOld) - Wnew‘f’Wold.

If the new configuration is accepted, then move the worm head to the new
neighbor. If the older configuration is retained, then keep the worm head

at the same point. Now return to step 2.

This algorithm is not ergodic and needs to be combined with another algorithm

to sample configurations correctly. However, it is very efficient at making

quick global changes to the configurations, without altering the total monomer

number.

4.5.2  Enhanced Metropolis update

This update modifies the monomer configurations using a Metropolis update that

takes into account the number of allowed sites where the updates can be made.

This additional global information helps in enhancing the acceptance probabilities.
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Although each update is local, the use of the global information makes it efficient.

We designed two forms of this algorithm as given below:

A) Monomer add-remove update

This method creates and destroys monomers on the lattice. The steps involved

are:

Step 1

Step 2

Step 3

Compute all possible pairs of nearest-neighbor sites that are compatible

and store them.

With a probability of half, choose to either add or subtract monomers.
Accordingly, pick a pair of compatible sites at random and propose a new
configuration obtained by flipping the filling of the two sites. This has the
effect of adding or removing 2 monomers. For example, if the two sites

have monomers initially, they will become free sites after the flip.

Use a Metropolis update to accept or reject the new configuration with

probability given by

p_ Ninitiat Winai

Ntinat Winitial
where W;,itia1 18 the weight of the initial configuration Ciyiriq and Nipiria 1S
the number of possible compatible sites for adding (removing) monomers
from Cipitiar, while Wing is the weight of the final configuration C't;,q and
Nyina is the number of possible compatible sites for the reverse process
of removing (adding) monomers from CY;,q. For example, while adding
monomers, N;,iria 1S the number of compatible pairs of free sites in Cipizia

while Nyinq is the number of compatible monomer pairs in Cipg.

Step 4 If the flip is accepted, modify the monomer configuration.

This update is ergodic and is very effective in decreasing the equilibriation
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time, due to a large value of the ratio Ninitiar/Nfina at weak couplings. It is

repeated a fixed number of times.

B) Monomer move update
This method moves existing monomers around on the lattice. The steps in-

volved are:

Step 1 Compute all possible pairs of next-nearest-neighbor sites that are com-

patible and store them.

Step 2 Pick a pair of these at random and propose a new configuration obtained
by flipping the filling of the two sites. This has the effect of moving a

monomer.

Step 3 Use a Metropolis update to accept or reject the new configuration with

probability given by

P= Ninitial Wfinal

Nfinal VVz'nitial
where N;,;tiq is the number of possible compatible sites and W,z is the
configuration weight of the initial configuration Cjitiar, While Nyinq and

W tina are similar quantities for the final configuration C'pq.
Step 4 If the flip is accepted, modify the monomer configuration.

This algorithm is not ergodic and hence needs to be combined with another

algorithm to achieve ergodicity. It is repeated a fixed number of times.

It can be shown that all the algorithms discussed above satisfy detailed balance.
In the testing phase, we found that the add-remove monomer part of the Metropolis
update had the best acceptance ratio while the monomer move part of the Heat-bath

update was the most economical in terms of computational cost since it made fast
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FIGURE 4.1: This figure shows the a plot of the autocorrelation for the observable
pm for a lattice of size L=28 at U=0.95. The errors have been obtained using 10
parallel runs, each having 2000 sweeps. The autocorrelation time is seen to be roughly
10 sweeps.

global changes with minimal modifications. Hence, for actual data-runs, we used

only these 2 algorithms.
4.6 A Monte-Carlo sweep

A Monte-Carlo sweep is defined as a set of updates on the entire lattice such that the
configuration obtained after these updates is significantly different from the original
configuration. To define a sweep, we divided the lattice into blocks and performed up-
dates within the block. By repeating this process multiple times on many randomly
selected blocks, we updated the entire lattice. If B, is the volume of the block used
for update, then we define a block update as a set of B,,;/20 monomer-move heat-bath

updates and another B,,/3 monomer add-remove Metropolis updates. A sweep is
then defined as a set of (BL + 1) such block updates performed on randomly chosen

vol

blocks of the lattice.
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FIGURE 4.2: The two figures show the behavior of the observable p,, in simulation
time for sequential runs starting with 0 monomers at U = 0.95, for the lattice sizes
L=44 and L=60. The top figure shows the entire run, while the bottom figure shows
the first 30 sweeps. The system seems to thermalize within the first 30 sweeps. But,
to be conservative, we take the equilibriation time to be 50 sweeps. Note that the
number of sweeps need for equilibriation does not seem to depend on the lattice size.
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We have found that the above definition of the sweep gives us an autocorrelation
of about 10 sweeps for the monomer density close to the transition. Fig. (4.1) shows
the autocorrelation for one sequential run for the observable p,,. From the graph, we
see that the auto-correlation time is roughly 10 sweeps. Hence, we strive to keep at
least 100 sweeps of data before we compute our results from a single sequential run.
This ensures at least 10 independent configurations from each sequential run. We
also run these simulations in parallel on different computing nodes. With N nodes,
we can obtain about 10N independent configurations. In our case, N is of the order
of 100.

In order to estimate the number of sweeps needed for equilibriating a random
configuration, we plot the variation of the observable p,, for a coupling U = 0.95 for
the lattice sizes L = 44 and L = 60 in Fig. (4.2). It can be seen that, the system
seems to thermalize within the first 50 sweeps for both lattices. Typically, we take
equilibriation to be at least 50 sweeps.

All our computations were performed using the Open Science Grid (OSG) [60, 61]
and the local Duke cluster. We obtained data for a range of couplings and lattice
sizes. In 3D, a calculation on a 60 x 60 x 60 lattice at the coupling U = 0.95 took
about 19700 seconds per sweep and needed a peak memory of about 7GB, while the
same for a 40 x 40 x 40 lattice took about 1400 seconds per sweep and needed a peak

memory of about 1.2 GB.
4.7 Reducing fluctuations

In this section, we present some technical details of our computation that help in
reducing fluctuations in observables. Observables obtained using the importance
sampling procedure described in Eq. (4.2) often show large fluctuations in sample
values. One way to decrease fluctuations is to compute observables for pairs of con-

figurations and average them to create what are referred to as Improved Estimators
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that show less fluctuations. In this work, we use such a technique and we describe
this procedure below. The expression for the expectation value of an observable O

given in Eq. (4.1) can also be written as

- Y.0(0)
=S W)

oC)+o(C!
e s W)
2 WI(C)

(4.9)

where we assume there is an invertible mapping from C' to a unique configuration
C" and W(C') , W(C") represent configuration weights of these two configurations
and O(C) and O(C") represent the values of the observable in them. The sum is

over all configurations which includes C' and C’. Being an average, the quantity

O — 1.0)+0C)
= 2W(@)+w(C)

typically has lesser fluctuations. If we estimate the observable
through this improved estimator O, we should see reduced errors.

We apply this technique to our model and give expressions for the improved
estimators of the observables Cy (z,y), Ca(x,y) and Fi(z,y). Consider a configuration
C with 2k monomers. As explained before, for the configuration to have a non-zero
contribution to the partition function, there should be an equal number of even and
odd monomers. Let  and y be two free sites such that z is odd and y is even. Let

C’" be the unique configuration obtained by flipping monomers at x and y. From Eq.

(3.23), the configuration weights of C' and C” are given by

W (C) = Det(A) U Det(W,)*
(4.10)
W (C") = Det(A)'U**2Det(W;)*

where W) is the propagator matrix of size k x k connecting even and odd monomers

of C' and W] is obtained from W, by adding one row and one column corresponding
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to the addition of monomers at sites z and y. Wy and W, will have the form:

Wi W2 - Wik
Wo1 Wo2 -+ Wk
Wy = (4.11)
W1 Wg2 - Wik
Wy Wiz - Wik | Wiy
Wo1 Wo2 -+ Wk | Wy
Wy = (4.12)
Wg1 Wr2 - Wik | Wy
| W1 Wg2 - Wrk | Wry ]

where w; ; corresponds to the propagator between the i odd site and the j even
site. First, let us write an expression for the improved estimator of the bosonic
correlator Cy(x,y) = (31903210y1%y,2). This observable can be obtained from C by
inserting the fields 1); and 15 in the integrand of the partition function at the source
points z and y. It can also be obtained from C’ by removing the fields 3 and 1)y
from the integrand of the partition function at x and y. Its value in both C' and C’

is the same and is given by:
Cy(,y) ) = Ch(2,y) (o = Det(A)*U Det(Wp)? Det(W))? (4.13)

Substituting this in Eq. (4.9), the improved estimator for C(z,y) in configurations

C and (' is given by
~ w?
Gl Y)eon = T e (4.14)

DetWy

where w = Detive -

Similarly, for the fermionic correlator Fi(z,y) = (¥, 11y 2), the

values in C' and C” are given by

Fi(2,9) ) = Fi(z,y)cn = oy Det(A) U det(Wo)? det(W;) (4.15)
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where o is the sign factor that we encountered in Eq. (3.25). Substituting this in
Eq. (4.9), the improved estimator for Fi(z,y) in configurations C' and C” is given by

~ w

F(z,y)ccoy = T T Ut (4.16)

The computation of the bosonic correlator Ca(x,y) = (Wy 152y 310y4) is a bit
more subtle. It can get non-zero contributions only when both z and y have the
same site-parity i.e., both are odd or both are even. Let configuration C' have 2k
monomers with the site  among them. Let configuration C” also have 2k monomers
with the monomer at site x being replaced by y. Assuming both x and y are odd,
we choose to move the sites z and y to the last row in the computation of the matrix
W for each reduced staggered flavor. Then the two matrices W) (contaning the v
field at ) and W5 (contaning the 1) field at y) are given by

W11 W1,2 W1, k-1 W1,k
W21 (] W2, k—1 W2k
Wy = : : : (4.17)
Wrg—-1,1 Wk—1,2 Wg—1,k—1 Wk—1k
Wy 1 Wy 2 Wy k—1 Wy k
Wi,1 wWq,2 W1, k—1 W1,k
Wa,1 W2, 2 W2, k—1 W2,k
Wy = : : (4.18)
Wr—-1,1 Wk—1,2 Wr—1,k—1 Wk—1,k
Wy,1 Wy,2 Wy, k—1 Wy, k
The configuration weights of C' and C" are given by
4
W(C) = Det(A)'U?* det(1W,)*
(4.19)

W(C")

The bosonic correlator Cy(z,y)

— Det(A) U det(W,)*

= (Y31Vz2Yy 30y 4) can be obtained from C by

removing the fields ¥3 and v, at x and adding them at the site y in the integrand
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of the partition function. It can also be obtained from C” by removing the fields v
and 1 at y and adding them to the site z in the integrand of the partition function.

The value of this observable in both C' and C’ is given by
Co(,y) () = Colz,y)(ory = Det(A)'U1 det(W,)? det(Ws)? (4.20)

Substituting these in Eq. (4.9), the improved estimator for Cs(z,y) in configuration

C is given by
~ ’LU2

Co(x,y)(ccry = T+ wd (4.21)

DetW;

where w = Dt -

Note that the bosonic correlators are always positive but the
fermionic correlator F(z,y) can be negative and hence will contain greater fluctua-
tions.

In addition to decreasing the fluctuations, the improved estimator serves another
purpose. Since it is a sum over 2 configurations, the improved estimator will repro-
duce the actual result only if both configurations are sampled appropriately. If the
sampling is not appropriate, the improved estimator will show large deviations from

the actual value. This helps us confirm our sampling procedure.
4.8 Fast Updates : The Background Field Method

Configuration weights in the sampling process contain matrix determinants of free
propagators connecting monomer sites in the weak coupling fermion bag picture (Eq.
(3.23)) and of the free staggered matrix connecting free sites in the strong coupling
picture (Eq. (3.26)). Hence, as we move around in configuration space, each proposal
of a new configuration involves the computation of ratios of determinants. This
ratio can be computed as an inverse of an appropriate matrix, which takes O(N?)
operations for an N x N matrix. However, this method computes the inverse from

the information of the current configuration. It does not have any memory of earlier
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configurations, and hence it does not take into account the possibility of retracement
of the path in configuration space. In such cases, the same calculation may be
repeated several times, resulting in a waste of computing cycles. In our work, we
have developed a new technique that is capable of reducing the computing time when
there is retracement. The idea is to view every new configuration as a perturbation
about an initial background configuration. Using the idea of computing Feynman
diagrams in a background field configuration, we can compute the weights of all
possible perturbations of the background configuration at the beginning and store
them. Using this information, we can compute configuration weights and observables
for any perturbation as a determinant of a matrix whose size scales with the size of
the perturbation. In particular, when there is a retracement of configurations, the
size of the perturbation does not increase. We illustrate this idea below.

Let us consider a background configuration Cj with equal number of even and
odd monomers sites m. A configuration update involves adding and removing some
monomers to obtain a new configuration C; which should also contain an equal
number of odd and even monomers. Let the configuration C; be obtained from Cj,
by removing the odd and even monomer sites [a] and [b] respectively and adding
new monomers at the odd and even free sites [c] and [d]. Let the sizes of the sets
[a], [b], [c], [d] be a,b,c,d respectively. Let Wy and W, be the propagator matrices
connecting odd and even monomer sites corresponding to configurations Cy and Cf.
Hence, Wy has dimensions m xm and W has dimensions (m—a+c) x (m—b+d). Since
the configuration weights are functions of determinants of the propagator matrices
connecting the monomers in the weak coupling approach as seen in Eq. (3.23), it is
clear that the ratio of the configuration weights of C; and Cj is related to the ratio

of the determinants of Wy and W;. It can be shown that this ratio is given by
Det(Wy)/Det(Wy) = Det(W')o (4.22)
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where o is a sign factor that cancels in our computations since the determinants

appear only as squares. W' is a (b + ¢) x (a + d) matrix defined as

<« a — <« d —
!
b _Vval VVi’rw? O
W= * (4.23)
C BWmvg D—BW(flC
l

where W~ !is the inverse of the matrix Wy and Winu1, Winva, Wines are sub-matrices
of W' connecting the removed monomers and added monomers. For example,
Winve has dimensions of (b x m) and connects the removed b even monomer sites to
the original m odd monomer sites. The matrices B, C, D are propagator matrices
connecting the newly added monomer sites with the old monomer sites. For example,
the matrix B has dimensions (¢ x m) and connects the newly added ¢ odd monomer
sites with the original m even monomer sites. Refer to Appendix D for a more general
discussion.

Thus, the ratio of the configuration weight of any new configuration C; to the
weight of the background configuration can be obtained by computing the deter-
minant of W’. Now, by allowing [a] and [b] to include all odd and even monomer
sites and [c] and [d] to include all odd and even free sites, we can compute the

corresponding matrix W’ in Eq. (4.23). Let us call this W/ It is clear that

master*

any sub-matrix of W), corresponds to the matrix W' in Eq. (4.23) for a cer-

master
tain perturbation about the background configuration and the configuration weight
ratio can be obtained by computing the determinant of this sub-matrix W’. Thus,
W/

T aster contains the information to compute the ratio of configuration weight for

all possible new configurations with respect to the background configuration. Thus,
starting from a given background configuration Cp, we first need to compute Wj*,
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whose computation time scales as O(N?) [62]. Using this we can compute the matrix

W) oster and store it. The ratio of the configuration weight of any new configuration

to the configuration weight of Cy can be obtained by computing the determinant of

the corresponding sub-matrix W' of W/

aster- Hence, the time for subsequent updates

now scales as O(n®), where n = (a + b+ ¢ + d) is assumed to be small. As we move
around in configuration space, n increases. Once it becomes sufficiently large, we

can reset the background configuration and recompute the matrix W/

master llSll’lg a

method that scales as O(N?). The real advantage of this method comes from the
fact that a retracement of the path in configuration space does not increase n. For
example, while a monomer is being moved from one end of the lattice to the other
through a series of updates, n is always two. We have empirical proof that this
method is very efficient.

In addition to the update, the elements of W/

T aster Canl also be used to compute

the observables through Eqs. (4.14,4.16,4.21). For example, every element in the
matrix D — BW,; 'C in the lower right block of W’ in Eq. (4.23) gives the weight
ratio for an update that involves the addition of an even and an odd monomer, while
every element of the matrix —Wj,,; in the upper left block of W' gives the same for
the removal of an even monomer and an odd monomer. Thus, these correspond to
the ratio w appearing in Eqgs. (4.14,4.16) for the observables C and Fj. Similarly,
every element of the matrix B Wj,,3 in the lower left block of W’ gives the weight
ratio for moving an even monomer from an existing site to a new site and every
element of Wj,,» C in the upper right block of W’ gives the ratio for moving an odd
monomer to a new site. These are the elements appearing as w in Eq. (4.21) for
the observable C5. A similar fast computational scheme can be formulated in the
strong coupling limit using the free staggered matrix connecting free sites instead of
the propagator matrix connecting monomer sites.

One drawback of this method is the large memory required to store the matrix
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W) ster- For example, for a lattice of size 40 x 40 x 40, this matrix has a size of
roughly 32000 x 32000. Storing such a large matrix requires about 8 gigabytes of
memory. To make calculations more amenable, we divide the lattice into sub-blocks
of volume roughly 20? as discussed at the end of in Section 4.5. Using this technique,
we have been able to perform computations on lattices upto size 60°. Calculations

on such large lattices with exactly massless fermions are unprecedented.
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5

Results: 3D

In Chapter 3 we introduced a lattice four-fermion model through the action described
in Eq. (3.1) and argued that, the model contains a massless fermion (PMW) phase
at weak couplings and a massive fermion (PMS) phase at strong couplings. No
spontaneous symmetry breaking of any lattice symmetries occurs at strong couplings.
In this chapter, we present results in 3D at intermediate couplings obtained using
the Monte Carlo methods discussed in Chapter 4 and argue for the presence of a

direct second order PMW-PMS phase transition.
5.1 Observables and finite size scaling

In order to explore the physics of our model, we focus on the following observables.

e Average monomer density:

U
Pm = V ; <¢x,1wx,2wx,3w:r,4> (51)
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e Bosonic correlators:

Ci(z,y) = Wuiteothy ity (5.2)

Co(w,y) = (untheptbysihya) (5.3)
e Bosonic Susceptibilites:

X1 = 53 Wtz e (5.4

X2 = 33 Woatoabasted 53

Below, we discuss the expected finite size scaling of these observables in different

phases.
5.1.1 Scaling in free theory

First we consider the expected scaling of the observables in the free theory. Here
we can obtain the results using simple dimensional analysis. Generalizing the con-
tinuum free fermionic action given in Eq. (2.8) to d dimensions, it is clear that the
fermion field ¢ has a mass dimensions (d—1)/2. Hence, the long distance correlation
functions C;(0,L/2 — 1) and C5(0, L/2) that contain 4 fermion fields should have
mass dimensions 2(d — 1). Assuming that the only scale in the problem is the length
of the box L, one expects

C, ~ L7201 (5.6)

for a = 1,2. The susceptibilities are obtained by integrating the correlation func-
tions over the space-time volume. However in 3D and 4D, since the correlations
decay sufficiently rapidly at large distances, the susceptibilities xy; and ys will be in-
dependent of L. The corresponding observables in the lattice theory obtained upon

discretizing this continuum theory should behave similarly. The average monomer
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density vanishes in the free theory since the Boltzmann weights of a single monomer

configuration is zero.
5.1.2  Critical scaling

Assuming our model has a second order critical point at U,., it would be useful to
understand the finite size scaling in the critical region. As we argued in Section 2.3,

the form of an observable O with length dimension p near a critical point is given by
O~1LFyg ((U - UC)L%) (5.7)

where U is the coupling, ¢g(z) is an analytic function near x = 0 and v is one of the
critical exponents.

However, in this critical region, the dimension p of the observable is not the
same as that in the free theory. In principle, every field in the theory gets a new
scaling dimension. Usually, in a four-fermion theory, an on site fermion bilinear term
like ¢1) is thought of as a bosonic field whose scaling mass dimension is defined as
(d—2+mn)/2, where the exponent 7 quantifies the anomalous dimension with respect
to the free scaling dimension. In our model, due to the SU(4) symmetry, we expect
V1V and ¥, 31,4 to have the same scaling dimension. This means that in the

critical region, the correlators should scale as
C, = L@y ((U - UC)L%) (5.8)

Assuming 7 is smaller than 2, we also obtain
Yo = Lo ((U = Uo)L¥) (5.9)

where f,, g, for a = 1,2 are universal functions that are in general, different. In
contrast to the correlation functions, the leading behavior of the average monomer
density p,, is expected to be a smooth function at U,, since it behaves like a density

and is insensitive to long range correlations.
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5.1.3  Scaling in the PMS phase

In the PMS phase, one expects massive fermions without any fermion bilinear con-
densates. This is signalled by exponentially decaying correlation functions. Hence,

the correlators and susceptibilities should scale as

C, ~emOL (5.10)

Xo  ~ Constant (5.11)

where a = 1,2 and m(U) is the mass of a bosonic particle that depends on U. In
the critical region, as one approaches the critical point U, from PMS phase, the
correlation lengths diverge as discussed in Eq. (2.22). Since the mass is the inverse

of the correlation length, it should scale as
m~ (U—-U.,)" (5.12)

For large couplings in the PMS phase, since configurations with more monomers are

enhanced, the average monomer density p,, should smoothly approach the value 1.
5.2 General behavior of Observables

The goal of this study is to look for one or more phase transitions between the
PMW and PMS phases. The presence of an intermediate phase will mean at least
two transitions. However, in case there is just a single transition, we wish to find
if it is second order by exploring if the observables show critical scaling. We have
performed large scale computations to calculate observables for a range of values of
the coupling U. The average monomer density p,, and susceptibilities y; and y, were
calculated in our first study [35] on lattice sizes up to L = 28. In our second study
[63], we measured p,,, C; and Cy on much larger lattices up to L = 60, using a more
efficient technique discussed in Section 4.8. We first present the general behavior of

our observables as a function of the bare coupling U and lattice size L.
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FIGURE 5.1: Figure showing the variation of the average monomer density p,, with
coupling U for various lattice sizes. p,, does not show any discontinuity but increases
sharply near U ~ 1.

We first plot the variation of the average monomer density p,, as a function of
the coupling U in Fig. (5.1). It increases smoothly with U as expected, showing a
rapid increase around U ~ 1. Although it does not vanish in either phase, we believe
pm acts as a pseudo order parameter, in the sense that it is small in the PMW phase
and large in the PMS phase. Curves for different values of L fall on top of each other
for larger lattices, indicating that finite size effects are negligible for lattices beyond
size L = 16 for this observable.

To understand the physics of the model in more detail, we plot the variation of
the bosonic susceptibilities x; and x, with coupling U in Fig. (5.2) for various lattice
sizes. Note that for a fixed value of L, the susceptibilities increase as a function of
U, reaching a maximum somewhere near U ~ 1 and then decrease again at large
couplings. The value of the peak susceptibility (Xpeqx) increases while the location of
the peak (Upear) decreases with L. In order to qualitatively understand the scaling of

these susceptibilities with L, we plot these susceptibilities as a function of lattice size
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FIGURE 5.2: Plot of the susceptibilities x; and x5 as a function of U. The suscep-
tibilities increase sharply near U ~ 1 to reach a maximum and then decrease in the
strong coupling limit.
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FiGURE 5.3: Plot of the susceptibilities y; and x» as a function of L. The sus-
ceptibilities saturate for small (U=0.88) and large (U=1.2) couplings. The steepest
growth of y; and x5 in the intermediate region is at U=1.0, where they grow as
~ L'5. The absence of an L? growth of the susceptibilities in the coupling space
points to the absence of SSB.
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L in Fig. (5.3). For small couplings (U = 0.88), the susceptibilities saturate with an
increase in the lattice size, as expected in the PMW phase. For couplings close to
U = 0.95, both susceptibilities grow linearly with the lattice size. For large couplings
(U = 1.2), the susceptibilities again saturate, as expected in the PMS phase. The
steepest growth of the susceptibilities is near U = 1.0, where they grow as L'6. As
indicated in Eq. (3.13), if a fermion bilinear condensate forms (i.e. (¢,1%2) # 0),
we expect x; ~ L3. Thus, based on Fig. (5.3), it is quite clear that there is no
coupling where fermion bilinear condensates form. Thus, data from our first study
with L < 28 points to a single phase transition between the PMW and PMS phases.

To explore this phase transition further, we looked at the behavior of the corre-
lators on much larger lattices. The long distance behavior of the correlators C(z, y)

and Cy(z,y) can be studied using the correlator ratios defined as

G (0,5 -1)
I = C1(0,1)
(5.13)
-G (0,3)
Ity = C5(0,0)

These correlator ratios scale like the correlation functions.

Fig. (5.4) shows the behavior of these correlator ratios as a function of coupling
U for various lattice sizes. Like the susceptibilities, these ratios show a maximum
for an intermediate value of U. However, the correlator ratios decrease with lattice
size L as opposed to the susceptibilities which increase with lattice size. Fig. (5.5)
shows the behavior of the correlator ratios R, and Ry as a function of lattice size L
for various couplings in a log-linear plot. The correlators decay as a power-law for
small (U = 0.85) and intermediate couplings (U = 0.95). At large couplings close

007L and this indicates the onset

to U = 1.03, the decay becomes exponential as e
of the massive phase at large U. At U = 1.0 (not shown in the figure), where the
susceptibilities showed the steepest rise, we find that the correlator ratios decay as a
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FIGURE 5.4: Plot of the correlator ratios R; and Ry as a function of U. The cor-
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exponentially to zero at large couplings.
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FIGURE 5.5: Log-linear plot of the correlator ratios Ry and Ry as a function of L.
For small couplings (U = 0.85), the correlator ratios decay roughly as L=36 which
is close to the free theory behavior of L=*. Near U = 0.945, the decay is a power-law
given by ~ L~2. For large couplings (U = 1.03), the decay is exponential, thereby
indicating the onset of the massive phase.
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power-law and the decay gets steeper as we include data for larger lattices. All this
implies the absence of any condensates and hence an intermediate FM phase. Thus,
the large lattice data confirms the earlier prediction that the PMW and PMS phases
in this model are separated by a single phase transition, without the presence of any

intermediate phase. Our entire 3D data has been tabulated in Appendix E.
5.3 Analysis

The qualitative behavior of the correlator ratios R; and Ry clearly indicate the
presence of a single phase transition between the PMW and PMS phases at a point
U.. We now wish to perform an analysis to see if the data is consistent with a single
second order transition. Our approach is to try fitting the data to the expected
forms given in Eq. (5.8) for a second-order phase transition. For a first order phase
transition, this procedure will fail since correlation lengths do not diverge.

At the critical point, it is clear from Eq. (5.8) that the correlators must decay as a
power-law and such a fit should enable the extraction of critical exponents. However,
even with high precision data on large lattices up to size L = 60, we found it difficult
to extract the critical quantities by performing a simple power-law fit. Hence, we
had to carry out a more sophisticated analysis to understand the nature of the phase
transition and compute the critical exponents and we describe this below. This

analysis has been published as part of the supplementary material to [63].
5.83.1  Clritical finite size scaling

From Eq. (5.8) we expect the correlation ratios R; and Rs to scale according to the

form

RiUL) = ey 00 (U~ U2 L2) (5.14)

71



where gq(), @ = 1,2 are universal functions of the variable z = (U—U,) Lv. Usually,
by expanding ¢,(x) in a power series and fitting the data to Eq. (5.14), the unknown
coefficients and critical quantities (U., v, 1) can be extracted. However, such fits
with unknown powers are known to be unstable. Hence we use a more elaborate
analysis. We first note that when U = U, we expect

Ja

Ro(Ue, L) = 755

(5.15)

where f, is a constant and the critical exponent 7 is the same for both R; and R,.

Since neither the location of the critical point nor the value of n at that point
are known, it is difficult to compute U, and 7n together using the above relation.
This is typical for all second order critical points and one usually finds that many
couplings near the critical point obey power law scaling with slightly different values
of n. A combined fit of both correlation ratios to the form given in Eq. (5.15) for the
couplings in the range 0.85 < U < 0.96 and lattice sizes L > 32, yields the results
shown in Table 5.1.

The low 2 values of the fits imply that the critical point could be at any value
of U in the range 0.93 < U, < 0.95. Note that the fit is poor for U = 0.96, indicating
perhaps that we have reached the massive phase. The behavior of n as a function of
U is shown in Fig. (5.6). While this figure gives us a relation between U, and 7, it
does not constrain them. Hence, we have used an independent analysis to constrain

them and this is dicussed below.
5.8.2  Scaling of Pseudo-Critical Points

While critical points are defined only in the thermodynamic limit, there exists a
notion of pseudo-critical points even in a finite system. Interestingly, quantities
close to the pseudo-critical points also obey critical scaling and thus can help in the
extraction of critical quantities independently. Consider for example the variation of
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Table 5.1: The critical exponent 1 as a function of the critical coupling U, from the
powerlaw fits ignoring corrections to scaling.

Ue fi fo 7 x>
0.85 | 68(10) | 38(5) | 2.34(4) | 2.2
0.92 | 15(3) | 8(1) | 1.64(5) | 4.1
0.93 | 9(1) | 4.5(5) | 1.44(3) | 1.9
0.94 | 4.8(4) | 2.4(2) | 1.22(2) | 1.0
0.945 | 2.5(2) | 1.2(1) | 1.00(2) | 0.7
0.95 | 1.2(1) | 0.59(5) | 0.77(2) | 1.1
0.96 | 1.0(2) | 0.46(8) | 0.63(5) | 6.4

correlation ratios Ry and Ry with coupling U for different lattice sizes shown in Fig.
(5.7). It is clear from the figure that the ratios display a maximum for certain value
of the coupling (which we refer to as U,,). These define one set of pseudo-critical
couplings. At the peak, the value of the ratio itself is given by R, ,. From the scaling
relation in Eq. (5.14), we note that the peak occurs when the function g,(z) reaches

a maximum. Assuming this occurs at x = d,, it can be shown that:

ba
Ra,p = (516)

L1+77

Usp = U.+do/L7. (5.17)

Thus, if we can compute R, , as a function of L, we would have an independent way
to estimate n using Eq. (5.16). We can then use the n vs U, plot of Fig. (5.6) to
estimate U.. Using this value of U, in Eq. (5.17) we can compute v.

In order to extract U, , and R, ), we approximate the behavior of the correlation
ratios around the peak as a quadratic. Table 5.2 shows the results of such fits. The
errors in the fits include systematic errors associated with choosing a quadratic form
near the peak instead of say a cubic or quartic form.

Using the data for R, and Ry ), from Table 5.2, we have performed a combined fit
of the form expected in Eq. (5.16). Including the entire data from above (24 < L <
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the power-law fits to obtain the n values assuming the location of the critical point.

44) gives us by = 6.3(9), by = 2.4(4), n = 0.91(4), x* = 94.9. A closer examination
shows that while R;, fits well to a single power law in the entire region giving
by = 11.2(2), n = 1.08(1) with a x?/d.o.f = 1, Ra, is not consistent with a single
power law. Table 5.3 shows the results of fitting R, , individually and dropping the
lower lattice sizes systematically.

We interpret the drift of 7 to larger values as a sign that R, contains pronounced
corrections to scaling. If we only keep the lattice sizes of L = 40,44 in the R, data
and perform a combined fit of both R, , and R, , we obtain b; = 11.1(2), by = 4.6(1),
n = 1.08(1), x* = 0.77. The goodness of the fit is shown in the top plot of Fig. (5.8).

In order to confirm that the drift of 7 is consistent with the presence of corrections

to scaling, we added a correction term for Ry, and performed a combined fit of the
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Table 5.2: Results for the value of Ry, Uy p, Ry, and Us ), obtained from a quadratic
fit of the data near the peak.

’ L ‘ Usp ‘ RLP‘ X H Uszp ‘ RZP‘ X ‘
24.0 | 1.0420(8) | 1.517(3) x 1092 | 0.473 | 1.0299(8) | 5.391(9) x 103 | 1.734
28.0 | 1.0318(8) | 1.103(3) x 1072 | 0.1622 || 1.0215(8) | 4.105(9) x 10~°3 | 0.8016
32.0 | 1.0226(8) | 8.38(3) x 1079 | 1.519 | 1.0140(8) | 3.235(9) x 10~ | 1.407
36.0 | 1.0156(8) | 6.54(3) x 1079 | 1.752 || 1.0080(8) | 2.608(9) x 10~% | 2.004
40.0 | 1.0085(8) | 5.26(3) x 1079 | 0.4788 || 1.0032(8) | 2.146(9) x 10 | 0.21
44.0 | 1.0041(8) | 4.28(3) x 10793 | 0.7981 | 0.9986(8) | 1.776(9) x 10~%3 | 0.9341

Table 5.3: Fits of Ry, as a function of L to the expected scaling form for different
ranges of lattice sizes. Importantly n drifts upwards.

L-Range bo n x>
24-44 1.68(3) | 0.81(1) || 6.3
28-44 1.84(5) | 0.83(1) || 3.9
32-44 | 2.10(11) | 0.86(2) || 2.3
(3)
(6)

36-44 | 2.38(25) | 0.90 2.2
40-44 | 3.25(76) | 0.99 0.0

entire data to the form:

b
Ry, = — (5.18)

L1+n

b
Ryy = —2 -2 (5.19)

Li+n = [1+n+w

Now including the entire data set in Table 5.2, we find a good fit as shown in the
bottom plot of Fig. (5.8), giving us by = 11.2(2), by = 5.6(4), co = —25(12),
n = 1.08(1), w = 0.9(2), x* = 0.752. This gives some credence to our belief that Ry,
data contains corrections to scaling.

However, there is a bias in the above analysis since it is likely that the presence
of smaller lattice data in R;, affects the fitting. Hence we roughly estimate the

systematic errors in 7 due to the the range of lattice sizes we use in the fit. Keeping
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are fits to Eq. (5.17) assuming U, = 0.943. We obtain d; = 1.14(6) and dy = 1.02(5)
and the x?/dof = 1.0.

only L = 40,44 data for both R;, and Ry, and ignoring corrections to scaling we
obtained 1 ~ 1.05 but with a x?/dof = 2.5 which is rather large. But by keeping
L = 36 and dropping L = 44 instead, we get a good fit but with n ~ 1.02. Thus, a
conservative estimate would be n = 1.05(5).

Using n = 1.05(5) we can again conservatively estimate U. from Fig. (5.6) to
be U, = 0.943(2). We can then use Eq. (5.17) to estimate v. Again assuming no
corrections to scaling we find that a combined fit of both the data U, , and U, fits
well to single power law. Performing two fits by fixing U. = 0.945 and U, = 0.941
we obtain v = 1.30(7). The goodness of the fits, assuming U, = 0.943, are shown in
Fig. (5.9). For this value of U, we obtain d; = 1.14(6) and dy = 1.02(5) with x?/dof
= 1.0.
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5.4 Corrections to Scaling

Since we have ignored corrections to scaling in the analysis above, one might wonder
if introducing corrections to scaling can change the results. Experience tells us that
usually once we include corrections to scaling the fits become unstable unless we can
constrain at least some of the exponents by other arguments. This is difficult in our
context due to the exotic nature of the phase transition. Here we use corrections to
scaling to check if our data is consistent with the exponents from large N predictions
in a typical Gross Neveu model, i.e. n =1 and v = 1.

Assuming no corrections to scaling, but fixing » = 1 and removing data for
L = 24,28, 32,36 for Ry, which gave a good fit above yields b; = 8.5(1), by = 3.4(1),
with a x?/dof= 21. The fit is shown on the top plot of Fig. (5.10). We note that
the fit does seems to roughly pass through all the points although the the x?/dof is
large. The reason for this is that our data is quite precise and we are sensitive to
corrections to scaling assuming they are present. Indeed, if we introduce corrections

to scaling and assume

ba a
Rap = +— (5.20)

Li+n | [J4ntw

and fix for example w = 1 then one can fit the entire data set (24 < L < 44) for
both correlation ratios very well. We obtain by = 7.92(8), ¢; = 20(2), by = 3.91(2),
co = —19.2(6), with a x?/dof = 1.1. The goodness of the fit is shown in the bottom
plot of Fig. (5.10).

From Table 5.1, we note that n = 1 gives U, = 0.945 assuming corrections to
scaling are small at the critical point. Fixing v = 1 and U, = 0.945, a combined fit
of Uy, and Us, data to the form Eq. (5.17) gives d; = 2.45(5), do = 2.18(5) with a
x?/dof = 20. This is clearly a bad fit as shown in the top plot of Fig. (5.11). On
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the other hand if we introduce corrections to scaling and assume

hq

d,
Uam =U, + — + —
Ly (+e)

: (5.21)

with U, = 0.945, v = 1 and w = 1 as before, we obtain a good fit as shown in the
bottom plot of Fig (5.11). The fit yields dy = 2.91(2), hy = —13.9(7), d2 = 2.74(2),
hy = —16.9(7) which a x?/dof = 0.2. If we do not fix U, while ignoring the corrections
to scaling, again we obtain a good fit with U. = 0.960(1), d; = 1.98(4), dy = 1.70(4),
and x?/dof = 1.18. However, this value of U, cannot be consistent with our data in
Table 5.1, again suggesting the presence of large corrections to scaling.

Thus, we believe that including scaling corrections will enable us to fit the data
to large N exponents of n = 1 and v = 1. However, if we take this view point one
has to argue that there are significant corrections to scaling even up to L = 44. On
the other hand since we were able to fit the data without corrections to scaling to a

different set of exponents, we believe that our original analysis should be correct.
5.5 Universal Function

A good way to further test if the PMW-PMS transition is second order is to look
at the behavior of the universal functions g, in Eq. (5.14). It is clear from Eq.
(5.14) that a plot R,L**" as a function of (U — U,)L> should be a smooth function
for a second order transition. Fig. (5.12) shows such a plot assuming U. = 0.943,
n = 1.05 and v = 1.30 obtained from our analysis. We also plot the universal
functions obtained using the large N exponents n = 1 and v = 1, with U, = 0.945.
This is shown in Fig. (5.13). All these plots look reassuring and seem to indicate
that the transition is indeed second order.

Based on the above analysis we can conclude that either we have a new set of

exponents with 7 = 1.05(5) and v = 1.30(7), or there are large corrections to scaling
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up to lattice sizes of the order of L = 44 and the exponents are very close to the large
N values. While calculations at larger lattices may be useful to get better estimates
of the critical exponents, given the difficulty in performing large scale Monte Carlo

calculations, it will be useful to explore new techniques of analysis that reduces the
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systematic errors due to corrections to scaling.
5.6 Summary of results

To summarize, our analysis of the Monte Carlo data up to lattices L = 60 provides
strong evidence that the lattice model studied in our work has a single phase tran-
sition between the PMW and the PMS phase, without any intermediate FM phase.
Our analysis shows that this transition is second order. We estimate U, = 0.943(2),
n = 1.05(5) and v = 1.30(7). However, we cannot rule out the large N exponents

n =1, v=1with U, = 0.945 if we allow for large corrections to scaling in our data.
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6

Results: 4D

In the previous chapter, we discussed the results in 3 Euclidean dimensions. We
have also performed calculations using the same model in 4 Euclidean dimensions.
Unfortunately, the extra dimension increases both the time of computation and also
the memory requirements. As a result, we could only explore lattices as large as 14%.
In 4D, the goal is either to confirm earlier findings of a wide spontaneously broken
intermediate phase [10] or find some evidence of a direct second order transition like
in 3D. We will argue below that in contrast to 3D, we do find a narrow intermediate

phase which spontaneously breaks the SU(4) symmetry.
6.1 General Behavior of Observables

We first look at the general behavior of the observables as a function of the bare
coupling U and lattice size L. Fig. (6.1) shows the variation of the average monomer
density p,, as a function of the coupling U for various values of L. As in the 3D case,
the average monomer density increases smoothly with U, but shows a rapid increase
around U ~ 1.75. Finite size effects seem to be negligible for lattices larger than

L =12
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FIGURE 6.1: Plot of the variation of the average monomer density p,, with coupling
U. The average monomer density rises sharply in the region close to U = 1.75.

The qualitative behavior of the susceptibilities is also similar to 3D. As seen in
Fig. (6.2), the bosonic susceptibilities x; and x» increase with the coupling to reach
a maximum and then decrease again at large couplings. Deviations from the 3D
case begin to emerge when we start looking at the variation of the susceptibilities
with lattice size L. This is shown as a log-log plot in Fig. (6.3). For small (U =
1.4) and large (U = 1.9) couplings, the susceptibilities seem to saturate as the
lattice size increases. These correspond to the PMW and PMS phases respectively,
where bilinear condensates vanish. However, for intermediate couplings close to
U = 1.75, both susceptibilities seem to grow rapidly. As indicated in Eq. (3.13),
if a fermion bilinear condensate forms (i.e. {(¥,1¢,2) # 0), we expect x12 ~ L*.
To investigate the presence of such a condensate at intermediate couplings, we plot
the variation of x1/L* and x»/L* as a function of lattice size L in Fig. (6.4). The
curves seem to saturate with lattice size, thereby indicating the presence of fermion

bilinear condensates in a range of intermediate couplings. Thus the behavior of both
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susceptibilities points to a three phase structure with a spontaneously broken FM
phase separating the PMW and PMS phases. We present our entire data for 4D in

Appendix F.

6.2 Analysis

6.2.1 Critical points

The behavior of the susceptibilities y; and xo suggests the existence of two phase
transitions. It is clear from Eq. (5.9) that the susceptibilities near a second-order
critical point must scale as x, = L* "¢, ((U — UC)L%>. Hence, a plot of x, /L*7"
as a function of the coupling U should intersect at the critical points where U = U..
Making an ansatz that the two critical points are second order with the mean field
critical exponents n = 0 and v = 0.5, we plot x12 /L*" as a function of the coupling
U in Fig. (6.5). It is clear that both the curves intersect quite well at two different
couplings. Thus our data is consistent with two second order transitions with mean
field exponents separating the three phases. The approximate locations of the critical
points are U, = 1.60 and U, = 1.81. Thus the FM phase is quite narrow as

compared to previous results [8].
6.2.2 Presence of condensates in the FM phase

As discussed in the previous section, the susceptibilities seem to grow as L* in the
intermediate phase, thereby indicating the presence of fermion bilinear condensates.

To understand this in more detail, we fit the susceptibilities to the form

1
Yo = PIL+BL (6.1)

for a = 1,2. Here, ®, denotes the fermion bilinear condensate. Due to the SU(4)
symmetry, we expect ®; and ®, to be the same. Given the small range of lattice

sizes available to us and the possibility that we may have underestimated the errors
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FIGURE 6.5: Plot of x /L*7" as a function of U for the susceptibilities x; (top figure)
and x2 (bottom figure) using the large N critical exponents n = 0 and v = 0.5. It
is clear that the curves intersect at two critical points located roughly at 1.60 and
1.81, which we believe is the region of the intermediate FM phase.
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Table 6.1: Table containing the fit parameters obtained by fitting x; and x» to the
form given in Eq. (6.1).

X1 X2
U O b X ®, by X
1.61 |  13(3) x 1073 40(2) x 1073 0.3 16(2) x 107*  37(1) x 1072 0.2
1.62 |  31(1) x 107*  32(1) x 107* 0.1 32(1) x 1073 29(2) x 1073 0.2
1.63 | 417(2) x 107* 257(3) x 107* 0.0 || 423(2) x 107* 227(4) x 107* 0.0
1.64 | 499(9) x 107%  24(2) x 1073 0.1 || 507(10) x 107*  21(2) x 107% 0.1
1.65 | 60(4) x 1073 14(9) x 1073 1.6 61(4) x 1072 11(9) x 1073 1.7
1.66 |  71(1) x 107*  6(4) x 107* 0.4 71(1) x 107*  2(5) x 107* 0.5
1.67 | 78(3) x 1073 3(10) x 1073 1.5 78(3) x 1073 0(1) x 1072 1.5
1.68 | 84(3) x107®  0(1) x 1072 1.8 85(3) x 107*  0(1) x 1072 2.1
1.69 | 871(9) x 107*  10(4) x 107* 0.2 88(1) x 107%  6(5) x 107* 0.3
1.7 91(4) x 107%  1(1) x 107% 2.6 92(4) x 107 1(1) x 1072 3.0
171 91(2) x 107*  32(7) x 107* 0.5 91(2) x 1073 29(7) x 107* 0.6
172 | 913(6) x 107*  41(3) x 1073 0.1 || 917(8) x 107*  38(3) x 1072 0.2
173  92(2) x 1073 48(7) x 1073 0.8 92(2) x 107%  44(7) x 107* 0.9
1.74 | 903(6) x 107*  58(2) x 1072 0.1 || 907(7) x 10™*  55(3) x 1072 0.1
1.75 | 858(9) x 107*  72(4) x 107* 0.3 86(1) x 102 69(4) x 10* 0.3
1.76 | 835(2) x 107* 734(6) x 107* 0.0 || 8391(5) x 107> 702(2) x 10~* 0.0
177  75(2) x 1073 92(6) x 1073 0.6 76(2) x 1073 89(6) x 107* 0.6
1.78 | 662(10) x 107*  99(3) x 1073 0.1 || 667(8) x 10~*  96(3) x 1072 0.1
1.79 | 565(6) x 107* 105(2) x 107* 0.0 || 571(7) x 107* 102(2) x 107* 0.0
1.8 | 324(8) x 107* 125(1) x 10™* 0.0 || 333(6) x 107* 122(1) x 107* 0.0

due to our Monte Carlo runs being short, we multiply the Monte Carlo errors by a
factor of two before performing these fits. Table 6.1 shows the results of these fits for
x1 and x». It is clear that the fits work well at most couplings. Fig. (6.6) shows the
variation of the condensates as a function of the coupling U. The condensate value
increases smoothly in the FM phase to reach a maximum and then decreases to zero
at the phase boundary. As expected, both susceptibilities give the same condensate.
Although the results have been obtained using data on small lattices, the evidence
for a narrow intermediate FM phase is striking.

To summarize, our results in 4D show the presence of a spontaneously broken FM
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FIGURE 6.6: Plot of the condensates extracted from the susceptibilities y; (left
figure) and xo (right figure) as a function of the coupling U in the intermediate
region. Both susceptibilities give the same condensate as expected.

phase at intermediate couplings separating the PMW and PMS phases. Both the
PMS-FM and the FM-PMS transitions seem second order with mean field critical
exponents 7 = 0 and v = 0.5. The intermediate FM phase seems rather narrow,
extending from about U, = 1.60 to U, = 1.81. These results are summarized in

37).
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7

Conclusions

Our study of a lattice field theory model with four flavors of reduced staggered
fermions and interacting via a local four fermion interaction in 3D has revealed the
existence of a two phase (PMW-PMS) system. Interestingly, the transition from the
massless PMW phase to the massive PMS phase seems to be second-order. There
are no fermion bilinear condensates in either of the two phases and there is no
spontaneous symmetry breaking of any lattice symmetries in both the phases. As
mentioned in the Introduction, the existence of such a mechanism has been inde-
pendently reported by other studies [16, 17, 18, 19]. Although we study a lattice
model, the physics close to the second order transition must be describable by a
continuum quantum field theory. Computation of the critical exponents has proved
quite challenging due the absence of bilinear condensates. Still, using large scale
calculations, we estimate the critical exponents as n = 1.05(5), v = 1.30(7) and
U. = 0.943(2), assuming the absence of corrections to scaling in our data at large
values of L. However, we cannot rule out the large N exponents v = 1 and n = 1, if
we allow corrections to scaling.

In contrast to 3D, the phase diagram in 4D looks different. Data from small
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lattices points to the more conventional three phase system (PMW-FM-PMS) with
an intermediate spontaneously broken FM phase at intermediate couplings separating
the PMW and PMS phases. While this was already found much earlier [10], our work
shows that the FM phase is much narrower. The fermions in the FM phase seem
to acquire a mass via the conventional mechanism of SSB. Both the PMW-FM and
the FM-PMS phase transitions seem second order. Our data is consistent with the
mean field critical exponents n = 0 and v = 0.5, as expected. Given the narrow FM
phase, we wonder if an extension of the model could reveal the existence of a direct
second order PMW-PMS phase transition.

It would be very interesting to understand how the fermions acquire a mass in
the PMS phase. One possibility is that non-perturbative dynamics creates a fermion
bound state containing three fundamental fermions [64, 65]. This composite fermion
could couple to a fundamental fermion and such a mass term would appear like a
four-fermion condensate in the microscopic theory.

Computing the particle spectrum in the PMS phase close to the critical point
in 3D is an interesting direction for future research. Boson and fermion masses can
be estimated by computing the correlators discussed in Chapter 3, on asymmetric
lattices. The ratio of fermionic mass to bosonic mass as we approach the critical
point is an interesting quantity and should be universal. The fermionic correlators
show large fluctuations due to presence of the sign factors. This makes them difficult

to compute. We are currently exploring ways to reduce these fluctuations.
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Appendix A

Symmetry Order Parameters

Spontaneous symmetry breaking is signalled by the non-zero expectation value of a
symmetry order parameter. For an operator to serve as a symmetry order parameter,
it must vanish in the symmetric phase without vanishing in the spontaneously broken
phase. Consider a theory that is invariant under some symmetry group G. Assume
that this symmetry is broken down to a subgroup H by the vacuum. If |Q) is the
vacuum of the theory, P is an element of H and () is an element of G but not H,

then SSB implies
Pl = [

QY = 12) (A1)

where |Q) # |Q). Our aim is to choose an operator O, such that its vacuum expec-
tation value (Q|O|)) becomes non-zero only under SSB.

All operators O constructed with the fundamental fields of the theory transform
under some representation of the group G and hence also H. This means the operator
O’ = POP' can be represented as ZB Va,80s, where Og represent a set of basis

operators that mix under the action of H and V' is the transformation matrix. Then,
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for any O, we can write

(Q]0a|Q2) = (Q|PTPO,P'P|Q)

Q60,5051 = Q| Y. Va 505l Q)
5 5

This implies that

D (Bas = Vas) Q1052 = 0 (A.2)
5

Since the above equation must be valid for all elements of P that belong to H, it

can be shown that the only solution is
Q0| = 0 (A-3)

unless Vo3 = 0ap (1.e. O is invariant under P). In other words, the symmetry P
protects every operator O from getting an expectation value. Hence, to serve as
a suitable order parameter, we choose the operator O to be symmetric under the
preserved symmetries P i.e. PTOP = O.

Since we want (Q|O|Q) # 0 if G is broken to H, we choose QTOQ # O. Then, if
SSB does not occur, (O) = 0 using the same argument as above for @ instead of P.

But, if SSB occurs, then the argument no longer holds and (O) can be nonzero.
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Appendix B

Extracting particle masses from lattice field theory

Continuum QFTs are defined by symmetries of the ground state and the particle
spectrum of low energy excitations. The goal of a lattice field theory is to be able to
extract these properties non-perturbatively, starting from a lattice regulated theory.

One such quantity is the mass of a physical particle with specific quantum num-
bers. In perturbation theory, particle mass is defined as the pole of the corresponding
propagator. The non-perturbative definition of mass suitable for a lattice calculation
is the minimum energy of the particle. To compute it, one starts with a lattice the-
ory defined in a finite box with the Euclidean time dimension S being much larger
than the space dimensions L. If H represents the lattice Hamiltonian, the partition
function is given by Z = Tr [e7##]. If O is an operator with the right quantum
numbers that can create the particle from the vacuum, then the two point correlation
function

T [~ G-DH Ot O]
Z

G(t,0) =
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can be used to compute the mass of the particle. Inserting the complete set of energy

eigenstates, we get

I R sl G o
Z
D € PEne” BB | Ol )(n!| O |n)
Zn 6_5En

G(t,0) =

In the limit of large 3, we get

e(_ﬁEO) COn/ e_t(En/ _EO)

G(t,0) = ), p—Tc7 (B.3)

where Cy = [(n/|0]0)*. Taking the limit ¢ — o we can neglect all but the lowest

energy level E,, = E; to obtain
G(t, O) = COleitAE(L) (B4)

where AE(L) = E; — Ejy is the lowest energy of the particle in a finite spatial box of
size L.

To extract the mass, one performs a series of calculations on larger and larger
lattices and fits AE(L) to the form m + a/L?. In contrast, for a massless particle

one expects AE(L) to scale as 1/L for large L.
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Appendix C

Zero weight configurations.

Here we prove why fermion bag configurations with unequal number of odd and even
monomer sites do not contribute to the partition function.

If neyen and nyqq represent the number of even and odd monomer sites in a
configuration C| its contribution to the partition function is given by Eq. (3.18). We

can perform the Grassmann integral over the monomer sites in Eq. (3.18) to obtain
4 1 )
2(0) = U T [fduiled Zowvesieavas, )
i=1

where the Grassmann integral is only defined over the free sites and M is a sub-
matrix of M obtained by removing the monomer sites. Let us consider the integral

for one of the four flavors

I = J[d¢i]€_ézz,y ¢x’iMm’y¢y,i (CQ)

Since M has the form given in Eq. (3.19), M also has the same form and hence can
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be written as

even odd
_ even 0 A
M = (C.3)
odd —AT 0

where A has dimensions (V /2 —=Nepen) X (V /2 —n44q) on a lattice with V sites. Using
the above form of M and the rules for Grassmann algebra, it can be shown that the
I in Eq. (C.2) vanishes unless the matrix Ais a square-matrix. This can happen

only if Neyen = Noda-
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Appendix D

Relating matrix determinants in terms of the
mverse

Here, we discuss Eq. (4.23) for a more general case. Consider two square matri-
ces Wy and Wy such that Wj is obtained from W, by removing the rows [a] and
columns [b] and adding some new rows [c] and columns [d]. Let the sizes of the sets
[a], [b], [c], [d] be a,b,c,d respectively. Let Wy have dimensions m x m. Hence W,

will have dimensions (m — a + ¢) x (m — b + d) with the condition
a+d=0b+c (D.1)

Consider a matrix Wp,; obtained by adding the [c] rows and [d] columns to Wj.

It can be written in the form

<« m — <« d —
1
Wit = # (D.2)
c k B D )
l
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where the matrices B, C and D connect the old rows and columns with the newly
added rows and columns as described below. B has dimensions ¢ xm and connects the
newly added ¢ rows to the original m columns in the matrix W,. C has dimensions
m x d and connects the original m rows in the matrix W, to the newly added d
columns. D has dimensions ¢ x d and connects the newly added ¢ rows to the newly
added d columns.

The matrix W, is a sub-matrix of Wy,;, obtained by removing the a rows and b

columns. Its determinant can be expressed as
Det(W7)/Det(Wy) = Det(W')o (D.3)

where o is a sign factor and W’ is a matrix of the form

<« a —> <« d —>
!
b _VVinvl VVinvZ C
W = * (D.4)
c B Winus D—-BW;tC
l

where W, ! is the inverse of the matrix Wy and Wi, Winve, Wines are sub-matrices
of Wy L Winer has dimensions of (b x a) and connects the removed b columns and
a rows. Wine has dimensions of (b x m) and connects the removed b columns and
the original m rows. Wj,,s has dimensions of (m x a) and connects the original m

columns and the removed a rows.

104



Appendix E

Complete 3D Data

For completeness, we present all our 3D data for p,,, R; and Ry in Table E.1.

Table E.1: Results from Monte Carlo calculations in 3D
for p,,, Ry and R, various values of coupling U and lattice

size L.
U L Pm R1 RQ
0.8 |28 | 6438(5) x 107> | 727(7) x 1075 | 398(4) x 107
0.8 | 32| 6446(3) x 107> | 450(4) x 1075 | 253(2) x 1076
0.8 |36 | 6441(3)x 107> | 285(4) x 1075 | 161(2) x 1076
0.8 |40 | 6446(3) x 107° | 186(2) x 1075 |  106(1) x 1076
0.8 |44 | 6443(3) x 107° | 136(2) x 1076 80(1) x 1076
0.8 |48 | 6448(2) x107° | 94(1) x 1076 | 561(9) x 1077
0.8 | 52| 6452(5) x 107° | 73(2) x 1076 45(2) x 10~¢
0.8 |56 | 6447(4) x107°| 55(2)x 1076 35(1) x 107°
0.85 |28 | 7689(4) x 107> | 1048(7) x 1075 |  565(4) x 1076
0.85 | 32| 7682(5) x 107° | 642(7) x 1075 |  353(4) x 1076
0.85 |36 | 7693(4) x 107° | 420(5) x 1076 |  235(3) x 10~°
0.85 |40 | 7697(4) x 107> | 311(5) x 1076 | 176(3) x 1076
0.85 |44 | 7692(3) x 107° | 222(4) x 1076 |  124(2) x 10~°
0.85 |48 | 7695(3) x 107° | 160(3) x 1076 92(1) x 107°
0.85 | 52| 7692(5) x 107° | 118(4) x 1076 68(2) x 1076
0.85 |56 | 7705(5) x 107> | 100(6) x 106 57(3) x 107°
0.9 | 16| 9245(6) x 1075 | 1012(2) x 1075 |  449(1) x 10~°

Continued on next page

105



Table E.1 — Continued from previous page

U L Pm R, R,
09 |20 9238(7) x 107> | 486(2) x 107> [ 233(1) x 10~°
0.9 |24 9253(7) x 107° | 277(2) x 107° | 1399(7) x 10~°
0.9 |28 | 9250(6) x 107> | 178(1) x 107> |  918(5) x 107°
0.9 |32 9247(7) x 107° | 118(1) x 1075 |  619(6) x 10~°
0.9 |36 9240(6) x 107> | 808(10) x 1076 |  435(5) x 10~°
0.9 |40 | 9248(5) x 107° | 598(8) x 1076 |  324(4) x 10~°
0.9 |44 | 9251(7) x 107° | 455(10) x 1076 | 252(5) x 10~°
0.9 |48 | 9253(6) x 107> | 360(8) x 1076 | 196(4) x 10°
0.9 |52 927(1) x 107* | 26(1) x 107 |  148(8) x 10~°
0.9 |56 927(2) x 107* | 177(9) x 1076 99(6) x 10~°
0.9 |60 9260(9) x107° | 19(1) x 107° | 100(6) x 10~°
091 |24 | 9606(7) x 107> | 307(2) x 107> | 1535(8) x 107°
091 |28 | 9602(6) x 107> | 197(1) x 107> | 1009(6) x 10~°
091 | 32| 9609(5) x 1075 | 1349(9) x 1075 |  706(5) x 10~°
091 | 36| 9606(6) x 107> | 96(1) x 1075 | 507(5) x 1076
0.91 |40 | 9610(5) x 107> | 714(8) x 1076 |  381(4) x 10~°
0.91 |44 | 9615(5) x 107° | 526(6) x 1076 |  284(3) x 10~°
0.91 |48 | 9618(8) x 107> | 441(9) x 1076 |  234(4) x 107°
0.91 |52 962(2) x 107* | 37(2) x 107° 20(1) x 107°
0.91 |56 963(2) x 107* | 24(1) x 107° 13(1) x 107
0.91 |60 961(1) x 107* | 21(2) x 107 | 110(7) x 10~°
0.92 |20 | 9997(7) x 107° | 580(2) x 107> |  274(1) x 107°
0.92 | 24| 9993(8) x 107° | 338(2) x 107° | 1674(9) x 107°
0.92 |28 | 9984(7) x 107> | 226(1) x 107> | 1139(7) x 107°
0.92 | 32| 9994(8) x 107° | 156(1) x 1075 |  802(7) x 10~°
0.92 |36 | 10004(8) x 107> | 115(1) x 1075 |  598(7) x 10~°
0.92 |40 | 10001(7) x 107° | 89(1) x 107> |  466(6) x 10°
0.92 |44 | 10007(7) x 107> | 64(1) x 107> |  342(5) x 107°
0.92 |48 | 10006(7) x 107> | 547(9) x 1076 |  289(4) x 10~°
0.92 | 52| 1004(2) x 107*| 48(6) x 107 23(2) x 107°
0.92 |56 | 1001(1) x 107*| 34(2) x 107° 19(1) x 107
0.92 | 60| 1000(1) x 107* | 26(1) x 1075 | 140(7) x 10~°
0.93 |20 | 10402(9) x 107° | 639(3) x 107> |  299(1) x 10~°
0.93 |24 | 10420(9) x 107> | 394(2) x 107° | 1923(10) x 10~°
0.93 | 28 | 10399(10) x 107° | 255(2) x 1075 |  128(1) x 107°
0.93 | 32| 10410(8) x 107° | 185(2) x 1075 |  933(8) x 10~°
0.93 |36 | 10404(8) x 107° | 139(1) x 1075 |  714(7) x 10~°
0.93 |40 | 10410(7) x 107° | 104(1) x 107> |  541(6) x 10~°
0.93 |44 | 10418(8) x 107> | 85(1) x 107> |  440(6) x 107°
0.93 | 48 | 10418(7) x 1075 |  66(1) x 1075 |  349(5) x 10~°
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Table E.1 — Continued from previous page

U L Om I Ry
093 [52| 1045(2) x 10°*| 56(3) x 107 29(1) x 107°
0.93 |56 | 1043(3) x 107* | 60(7) x 107> 29(3) x 107°
0.93 |60 | 1045(1) x 107 | 41(2) x 107> 22(1) x 107°
0.94 |20 | 10846(9) x 107> | 713(3) x 1075 | 329(1) x 1075
0.94 |24 | 10841(9) x 107> | 442(2) x 1075 |  211(1) x 10~°
0.94 |28 | 1085(1) x 107* | 306(2) x 1075 |  150(1) x 1075
0.94 |32 | 10852(9) x 107° | 223(2) x 107° | 1109(9) x 10~
0.94 |36 | 10857(9) x 107° | 170(2) x 107> |  855(9) x 1076
0.94 |40 | 10855(7) x 107> | 136(1) x 1075 |  693(7) x 1076
0.94 |44 | 10861(8) x 107> | 109(2) x 107 556(7) x 107°
0.94 |48 | 1089(3) x 107*| 91(4) x 107 47(2) x 107°
094 | 52| 1088(3) x107*| 70(4) x 107 36(2) x 107°
094 |56 | 1090(3) x 107* | 64(4) x 107> 35(2) x 107°
094 |60 | 1087(2) x 107*| 51(2) x 107 27(1) x 107°
0.945 | 20 | 11066(7) x 107> | 744(2) x 1075 | 3404(9) x 10~°
0.945 | 24 | 11075(7) x 107> | 480(2) x 1075 | 2285(8) x 1076
0.945 | 28 | 11082(6) x 107> | 330(1) x 107° | 1602(6) x 106
0.945 | 32 | 11088(9) x 107> | 243(2) x 107° | 1198(9) x 1076
0.945 | 36 | 11104(8) x 107° | 191(2) x 107 |  945(8) x 1076
0.945 | 40 | 11099(7) x 107> | 155(1) x 107 |  773(6) x 1076
0.945 | 44 | 11104(6) x 107> | 127(1) x 1075 638(6) x 107°
0.945 | 48 | 1107(2) x 107* | 106(3) x 107 54(2) x 107°
0.945 | 52 | 1114(3) x 107 | 88(4) x 107> 44(2) x 107°
0.945 | 56 | 1110(2) x 107* |  77(3) x 107 39(2) x 107°
0.945 | 60 | 1111(2) x 107* | 72(3) x 1075 36(1) x 107°
0.95 |20 | 11306(8) x 107> | 789(3) x 1075 |  359(1) x 1075
0.95 |24 | 11322(9) x 107° | 517(2) x 107° | 2441(10) x 10~
0.95 |28 | 11335(7) x 107° | 367(2) x 107° | 1755(8) x 1076
0.95 |32 | 11326(9) x 107° | 265(2) x 107° | 1294(9) x 1076
0.95 |36 | 11355(8) x 107° | 214(2) x 1075 | 1047(8) x 10~°
0.95 |40 | 11343(8) x 107> | 175(1) x 1075 |  868(7) x 1076
0.95 | 44| 1136(1) x 107*| 150(2) x 107 748(9) x 107°
0.95 |48 | 1141(3) x 107* | 127(5) x 107> 64(2) x 107°
0.95 |52 | 1137(3) x 107* | 107(4) x 107° 53(2) x 107°
0.95 |56 | 1138(4) x 107* | 105(5) x 1075 53(3) x 107°
095 | 60| 1138(1) x10™* | 86(3) x 107 44(1) x 107°
0.96 |20 | 11809(7) x 107> | 880(2) x 107° | 3940(9) x 10~
0.96 |24 | 11849(10) x 107° | 598(2) x 107° | 2763(10) x 10~
0.96 |28 | 11862(8) x 107> | 437(2) x 107° | 2055(8) x 1076
0.96 |32 | 1189(1) x 107*| 340(2) x 1075 | 162(1) x 107°

Continued on next page
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Table E.1 — Continued from previous page

U L Om I Ry
0.96 [36| 1189(1) x 107* ] 268(2) x 107° | 1288(9) x 10~°
0.96 |40 | 11893(8) x 107> | 228(2) x 107° | 1103(8) x 1076
0.96 |44 | 1191(1) x 107* | 205(2) x 107 986( 0) x 1076
0.96 |48 | 1192(4) x 107* | 165(5) x 1075 79(3) x 107°
0.96 | 52| 1187(3) x 107* | 140(7) x 107° 68(3) x 107°
0.96 |56 | 1189(7) x 107* | 130(6) x 107 65(3) x 107°
096 |60 | 1195(2) x 107* | 128(4) x 107> 63(2) x 107°
0.97 |20 | 1238(1) x 107* | 1006(3) x 107° |  442(1) x 107>
0.97 |24 | 1241(1) x 107* | 692(2) x 1075 | 313(1) x 1075
0.97 |28 | 12441(9) x 107° | 530(2) x 1075 | 2443(9) x 1076
0.97 | 32| 1247(1) x 107* | 427(2) x 1075 |  198(1) x 10~°
0.97 |36 | 1249(1) x 107* | 348(2) x 107° |  162(1) x 107°
0.97 |40 | 12514(9) x 107° | 306(2) x 107° | 1433(9) x 1076
0.97 | 44| 1251(1) x 107* | 264(2) x 1075 | 124(1) x 10~°
0.97 |48 | 1252(5) x 107* | 242(8) x 1075 114(3) x 1075
0.97 | 52| 1250(3) x 107*| 196(7) x 1075 93(3) x 107°
0.98 |24 | 1305(1) x 107*| 820(3) x 107 |  361(1) x 107>
0.98 |28 | 1311(1) x 107* | 650(3) x 107> | 290(1) x 107>
0.98 |32 | 1316(1) x 107 | 530(3) x 1075 | 238(1) x 1075
0.98 |36 | 1318(2) x 107* | 444(3) x 1075 |  200(1) x 10~°
0.98 |40 | 1320(1) x 107* | 382(2) x 1075 | 1728(9) x 1076
0.98 |44 | 1324(2) x 107*| 347(3) x 1075 | 157(1) x 10~°
0.99 |36 | 1393(2) x 107*| 534(3) x 107° | 232(1) x 107>
0.99 |40 | 1397(2) x 107* | 463(3) x 107> | 200(1) x 107>
0.99 |44 | 1400(2) x 107* | 399(3) x 1075 | 174(1) x 1075
1.0 | 20| 1446(2) x 107* | 1472(5) x 107° | 597(2) x 107
1.0 | 24| 1458(2) x 107* | 1111(4) x 107° | 459(1) x 107
1.0 [ 28| 1467(2) x 107* | 896(3) x 10™° |  373(1) x 107°
1.0 [32] 1475(2) x 107* | 743(4) x 107° |  309(1) x 107°
1.0 [ 36| 1478(2) x 107* | 616(3) x 107° |  257(1) x 107°
1.0 [ 40| 1482(1) x 107* | 514(3) x 107° |  214(1) x 107°
1.0 [ 44| 1485(1) x 107* | 428(3) x 107° | 178(1) x 107°
1.01 [ 32| 1562(2) x 107* | 804(4) x 107° |  322(1) x 107°
1.01 [ 36| 1569(2) x 107* | 647(3) x 107° |  259(1) x 107°
1.01 [ 40| 1572(1) x 107* | 526(3) x 107° |  211(1) x 107°
1.01 |44 | 1575(2) x 107* | 420(3) x 107° |  169(1) x 107
1.02 [ 20| 1624(2) x 107* | 1837(5) x 10™° |  695(2) x 107°
1.02 | 24| 1642(2) x 107* | 1386(4) x 107° |  529(2) x 107°
1.02 | 28| 1656(2) x 107* | 1075(4) x 10™° |  411(1) x 107°
1.02 [ 32| 1661(2) x 107* | 841(4) x 10™° |  323(1) x 107°
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1.02 [36] 1667(2) x 107% | 656(3) x 107° | 252(1) x 107°
1.02 [ 40| 1671(1) x 107* | 502(2) x 10~° | 1926(10) x 1075
1.02 [ 44| 1671(2) x 107* | 394(3) x 10™° |  151(1) x 107°
1.03 [ 24| 1751(2) x 107* | 1478(4) x 107° |  541(2) x 107°
1.03 | 28| 1758(2) x 107* | 1101(4) x 107° |  404(2) x 107
1.03 [ 32| 1765(2) x 107* | 825(4) x 107° |  302(1) x 107°
1.03 [ 36| 1771(2) x 107* | 618(3) x 107° |  227(1) x 107°
1.03 [ 40 | 1773(2) x 107* | 464(3) x 107° | 1707(9) x 1076
1.03 |44 | 1774(2) x 107* | 353(3) x 107° |  129(1) x 107°
1.04 |16 | 1802(4) x 107* | 3079(8) x 107° | 1052(3) x 1073
1.04 |20 | 1844(3) x 107* | 2117(6) x 10™° |  737(2) x 107°
1.04 | 24| 1863(3) x 107* | 1513(5) x 10™° |  528(2) x 107°
1.04 | 28| 1872(2) x 107* | 1090(4) x 10=° | ~ 382(1) x 107°
1.04 | 32| 1878(2) x 107* | 781(4) x 107° | 274(1) x 107
1.04 36| 1879(2) x 107* | 559(3) x 107° |  196(1) x 1073
1.04 |40 | 1881(2) x 107* | 409(2) x 107° | 1438(9) x 1076
1.05 |16 | 1917(4) x 107* | 3270(9) x 10=° | 1074(3) x 107°
1.05 [ 20| 1960(3) x 107* | 2191(6) x 10=° |  730(2) x 107°
1.05 |24 1979(3) x 107* | 1504(5) x 10™° |  503(2) x 107°
1.05 | 28| 1993(3) x 107* | 1035(4) x 107° | 345(1) x 107°
1.05 |40 | 1997(2) x 107* | 347(2) x 107° | 1168(7) x 1076
1.06 |16 | 2041(4) x 107* | 3396(9) x 10=° | 1070(3) x 107°
1.06 |20 | 2080(3) x 107* | 2200(5) x 10=° |  702(2) x 107°
1.06 |24 | 2104(3) x 107* | 1428(5) x 10™° |  457(1) x 107°
1.06 |28 | 2110(2) x 107* | 956(3) x 10™° |  306(1) x 107°
1.06 |32 2120(3) x 107* | 633(4) x 107° |  202(1) x 107°
1.06 |36 2119(2) x 107* | 426(3) x 107° | 1360(9) x 1076
1.07 [ 12| 2073(4) x 107* | 6110(8) x 107° | 1762(3) x 107°
1.07 |16 | 2181(5) x 107* | 345(1) x 10~* | 1039(3) x 107°
1.07 [ 20| 2210(3) x 107* | 2150(6) x 10™° |  656(2) x 1073
1.08 | 12| 2201(4) x 107* | 6273(8) x 107° | 1745(2) x 107°
1.08 |16 | 2310(5) x 107* | 3469(9) x 10=° | 1002(3) x 107°
1.08 |20 | 2348(3) x 107* | 2055(6) x 10™° |  599(2) x 107°
1.08 | 24| 2369(3) x 107* | 1231(4) x 107 |  359(1) x 107
1.09 | 12| 2351(5) x 107 | 6425(8) x 107° | 1715(3) x 107°
1.09 |16 | 2457(5) x 107* | 3418(9) x 107° |  942(3) x 107°
1.1 |12 2499(5) x 107* | 6514(9) x 107> | 1668(2) x 107
1.1 [ 16| 2598(5) x 107% | 3314(9) x 10=° |  876(2) x 107°
1.1 [ 20| 2634(3) x 107* | 1770(5) x 10™° |  471(1) x 107°
111 | 12| 2661(5) x 107* | 6523(8) x 107° | 1597(3) x 107
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1.12 |12 2818(5) x 10~* | 6456(8) x 107> | 1516(2) x 10~
113 [ 12| 2984(5) x 107* | 6270(9) x 107° | 1409(2) x 107°
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Appendix F

Complete 4D data

For completeness, we present all our 4D data for for p,,, x1 and ys in Table F.1.

Table F.1: Results from Monte Carlo calculations in 4D
for pm,, x1 and yo for various values of coupling U and

lattice size L.

U L Pm X1 X2
1.4 4] 852(3) x 107* | 404(3) x 1073 | 251(4) x 1073
1.5 4| 1058(4) x 107* |  455(4) x 1073 | 308(5) x 1073
1.55 4 1170(2) x 107* | 482(5) x 1073 | 335(6) x 1073
1.56 41 1194(2) x 107* | 487(5) x 1073 | 341(5) x 1073
1.57 4] 1221(2) x 107* | 488(5) x 1073 | 342(6) x 1073
1.58 4] 1249(2) x 107* | 486(5) x 1073 | 340(5) x 1073
1.59 4| 1276(2) x 107* | 500(5) x 1073 | 354(6) x 1073
1.5925 | 4| 1285(2) x 107* | 506(5) x 1073 | 362(6) x 1073
1.595 | 4] 1292(2) x 107* | 512(5) x 1073 | 368(6) x 1073
1.5975 | 4| 1299(2) x 107* | 507(5) x 1073 | 364(6) x 1073
1.6 4 1309(2) x 107* | 527(5) x 1073 | 386(6) x 1073
1.6025 | 4| 1311(2) x 107* | 517(5) x 1072 | 375(6) x 1073
1.605 | 4] 1318(2) x 107* | 514(5) x 107® | 369(6) x 1073
1.6075 | 4| 1329(2) x 107* | 519(5) x 1073 | 378(6) x 1073
1.61 41 1336(2) x 107* | 516(5) x 1073 | 371(6) x 1073
1.62 4| 1368(2) x 107* | 528(5) x 1073 | 386(6) x 1073
1.63 4| 1397(2) x 107* | 535(5) x 1073 | 393(6) x 103
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1.64 4| 1431(2) x 107* | 554(6) x 1073 | 413(6) x 1073
1.65 4| 1468(2) x 107* |  547(5) x 1073 | 405(6) x 103
1.66 4| 1507(3) x 107* | 565(6) x 1073 | 424(6) x 103
1.67 4| 1537(3) x 107* | 578(6) x 1073 | 437(7) x 1073
1.68 4| 1574(3) x 107* | 583(6) x 1073 | 442(7) x 1073
1.69 4| 1612(3) x 107* | 590(6) x 1073 | 449(7) x 1073
1.7 4| 1653(3) x 107 | 601(6) x 1073 | 462(7) x 1073
1.71 4| 1697(3) x 107* | 609(6) x 1073 | 469(7) x 1073
1.72 4 1746(3) x 1074 | 627(7) x 1073 | 488(8) x 1073
1.73 41 1790(4) x 107* | 634(7) x 1073 | 496(8) x 1073
1.74 4| 1836(4) x 107* | 643(7) x 1073 | 507(8) x 1073
1.75 4| 1892(4) x 107* | 657(7) x 1073 | 520(8) x 1073
1.76 4| 1944(4) x 107* | 679(7) x 1073 | 544(8) x 1073
1.77 41 1995(4) x 107* | 700(8) x 1073 | 565(9) x 1073
1.78 4| 2054(4) x 107* | 712(8) x 1073 | 575(9) x 1073
1.79 4| 2118(5) x 107* |  726(9) x 1072 | 589(10) x 1073
1.7925 | 4| 2142(5) x 107* | 736(9) x 1072 | 602(9) x 1073
1.795 | 4] 2148(5) x 107* | 740(8) x 107® | 606(8) x 1073
17975 | 4| 2171(5) x 107* | 739(8) x 1073 | 605(9) x 1073
1.8 4| 2189(5) x 107* |  730(8) x 1073 | 597(9) x 1073
1.8025 | 4| 2204(6) x 107* |  741(8) x 1072 | 607(9) x 1073
1.8075 | 4| 2241(6) x 107* | 755(8) x 1072 | 621(9) x 1073
1.81 4| 2252(5) x 107* | 738(9) x 1073 | 600(9) x 103
1.82 4| 2334(6) x 107 | 762(9) x 1073 | 628(9) x 1073
1.83 4| 2409(6) x 107* | 791(10) x 1073 | 66(1) x 1072
1.84 4| 2491(7) x 107* | 809(9) x 1073 | 675(10) x 1073
1.85 4| 2590(7) x 107* 854(10) x 1073 | 72(1) x 1072
1.9 4| 313(1) x 1073 96(1) x 1072 | 83(1) x 102
1.95 41 397(2) x 1073 | 104(1) x 1072 | 91(1) x 1072
2.0 4| 502(2) x 1073 | 1081(10) x 1073 | 95(1) x 1072
1.4 6| 902(2) x107*| 671(6) x 1073 | 508(6) x 1073
1.5 6| 1143(2) x 107* | 849(9) x 1073 | 694(9) x 1073
1.55 6 | 1305(2) x 107* | 103(1) x 1072 | 88(1) x 1072
1.56 6| 1338(2) x 107* | 109(1) x 1072 |  94(1) x 102
1.57 6| 1377(2) x 107* | 112(2) x 1072 | 97(2) x 102
1.58 6| 1418(2) x 107* |  116(2) x 1072 | 101(2) x 1072
1.59 6| 1462(2) x 107* | 125(2) x 1072 | 110(2) x 1072
1.5925 | 6| 1475(2) x 107* |  127(2) x 1072 | 112(2) x 1072
1.595 | 6| 1488(2) x 107*| 127(2) x 1072 | 112(2) x 1072
1.5975 | 6| 1496(2) x 107* |  124(2) x 1072 | 109(2) x 1072
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1.6025 | 6| 1518(2) x 107* [ 128(2) x 1072 [ 113(2) x 1072
1.605 | 6| 1532(2) x 107*| 131(2) x 1072 | 116(2) x 1072
1.6075 | 6| 1549(3) x 107* | 133(2) x 1072 | 118(2) x 1072
1.61 6| 1556(3) x 107* | 136(2) x 1072 | 121(2) x 1072
1.62 6| 1610(3) x 107* |  146(2) x 1072 | 131(2) x 1072
1.63 6| 1669(3) x 107* | 150(2) x 1072 | 135(2) x 1072
1.64 6| 1734(3) x 107* | 168(3) x 1072 | 153(3) x 1072
1.65 6| 1811(4) x 107* | 172(3) x 1072 | 157(3) x 1072
1.66 6| 1875(4) x 107* |  184(3) x 1072 | 169(3) x 1072
1.67 6| 1969(5) x 107*| 201(3) x 1072 | 187(3) x 1072
1.68 6| 2061(5) x 107*| 213(3) x 1072 | 197(3) x 1072
1.69 6| 2176(6) x 107* | 235(3) x 1072 | 220(3) x 1072
1.7 6| 2298(7) x 107* |  252(4) x 1072 | 238(4) x 1072
1.71 6| 2423(7) x 107* | 275(4) x 1072 | 261(4) x 1072
1.72 6| 2593(8) x 107* | 302(4) x 1072 | 288(4) x 1072
1.73 6| 277(1) x 1073 | 334(4) x 1072 | 320(4) x 1072
1.74 6| 299(1) x 1073 | 361(4) x 1072 | 347(4) x 1072
1.75 6| 321(1) x 1073 | 385(4) x 1072 | 371(4) x 1072
1.76 6| 345(1) x 1073 | 411(4) x 1072 | 397(4) x 1072
1.77 6| 373(1) x 1073 |  434(4) x 1072 | 420(4) x 1072
1.78 6| 403(1) x 1073 |  442(4) x 1072 | 428(4) x 1072
1.79 6| 432(2) x 1073 | 456(4) x 1072 | 442(4) x 1072
1.7925 | 6| 440(2) x 1073 | 448(4) x 1072 | 435(4) x 1072
1.795 | 6| 445(2) x 1073 |  444(4) x 1072 | 431(4) x 1072
1.7975 | 6| 453(2) x 1073 | 441(4) x 1072 | 428(4) x 1072
1.8 6| 464(1) x 1073 | 438(4) x 1072 | 425(4) x 1072
1.8025 | 6| 468(1) x 1073 |  449(4) x 1072 | 435(4) x 1072
1.8075 | 6| 480(1) x 1073 |  433(4) x 1072 | 420(4) x 1072
1.81 6| 492(1) x 1073 | 426(4) x 1072 | 413(4) x 1072
1.82 6| 517(1) x 1073 |  422(4) x 1072 | 408(4) x 1072
1.83 6| 544(1) x 1073 | 387(4) x 1072 | 373(4) x 1072
1.84 6| 568(1) x 1073 | 368(4) x 1072 | 355(4) x 1072
1.85 6| 591(1) x 1073 | 336(4) x 1072 | 323(4) x 1072
1.9 6| 6738(7) x 107* | 221(3) x 1072 | 208(3) x 1072
1.95 6| 7232(4) x 107* | 152(2) x 1072 | 139(2) x 1072
2.0 6| 7578(3) x 107* | 115(1) x 1072 | 103(1) x 1072
0.8 8| 223(2) x 107* |  373(3) x 1073 | 171(4) x 1073
1.2 8| 580(2) x 107* | 546(7) x 1073 | 367(7) x 1073
1.4 8 | 9057(10) x 107° | 830(10) x 1073 | 664(8) x 1073
1.5 8| 1151(2) x 1074 | 120(1) x 1072 | 104(1) x 1072
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1.55 8| 1317(3) x 107* |  158(2) x 1072 | 142(2) x 1072
1.56 8| 1358(3) x 107* | 171(3) x 1072 | 155(2) x 1072
1.57 8| 1408(4) x 107* | 188(3) x 1072 | 173(3) x 1072
1.58 8| 1454(4) x 107* |  203(3) x 1072 | 187(3) x 102
1.59 8| 1513(5) x 107* | 229(4) x 1072 | 214(4) x 1072
1.5925 | 8| 1510(5) x 107* |  224(4) x 1072 | 208(4) x 1072
1.595 | 8| 1519(6) x 107* | 224(4) x 1072 | 209(4) x 1072
1.5975 | 8| 1528(5) x 107* |  233(4) x 1072 | 218(4) x 1072
1.6 8| 1562(5) x 1074 |  249(4) x 1072 | 234(4) x 1072
1.6025 | 8| 1568(5) x 107* |  247(4) x 1072 | 232(4) x 1072
1.605 | 8| 1583(6) x 107* | 258(5) x 1072 | 243(5) x 1072
1.6075 | 8| 1596(6) x 107% |  265(5) x 1072 | 250(4) x 1072
1.61 8| 1628(6) x 107* | 276(4) x 1072 | 261(4) x 102
1.62 8| 1677(5) x 107* |  304(5) x 1072 | 289(5) x 102
1.63 8| 1764(7) x 107* |  342(6) x 1072 | 329(6) x 102
1.64 8| 186(1) x 1073 | 411(8) x 1072 | 396(8) x 1072
1.65 8| 1960(9) x 107* |  459(8) x 1072 | 445(8) x 1072
1.66 8| 2095(9) x 107* | 544(9) x 1072 | 529(9) x 1072
1.67 8| 223(1) x 1073 63(1) x 1071 | 61(1) x 107!
1.68 8| 241(1) x 1073 72(1) x 1071 | 70(1) x 107!
1.69 8| 261(2) x 1073 83(1) x 1071 | 82(1) x 107!
1.7 8| 281(2) x 1073 93(1) x 107* | 92(1) x 107!
1.71 8| 303(2) x 1073 | 104(1) x 1071 | 102(1) x 107*
1.72 8| 328(2) x 1073 | 111(1) x 107* | 110(1) x 10~
1.73 8| 350(1) x 1073 | 116(1) x 107! | 114(1) x 107"
1.74 8| 376(2) x 1072 | 121(1) x 1071 | 119(1) x 10~
1.75 8| 404(3) x 1073 | 121(1) x 107 | 120(1) x 10~
1.76 8| 433(3) x 107* | 118(1) x 1071 | 117(1) x 1071
1.77 8| 454(2) x 107* |  118(1) x 1071 | 116(1) x 1071
1.78 8| 485(2) x 1073 | 108(1) x 1071 | 107(1) x 107!
1.79 8| 511(2) x 1073 | 100(1) x 1071 | 98(1) x 107!
1.7925 | 8| 517(3) x 1073 98(1) x 10°* | 97(1) x 107!
1.795 | 8| 525(3) x 1073 94(1) x 107* | 93(1) x 107!
1.7975 | 8| 528(3) x 1073 95(1) x 107* | 94(1) x 107!
1.8 8| 536(3) x 1073 91(1) x 1071 | 90(1) x 107!
1.8025 | 8| 548(2) x 1073 85(1) x 1071 | 83(1) x 107!
1.805 | 8| 547(3) x 1073 87(1) x 1071 | 85(1) x 107!
1.8075 | 8| 551(2) x 1072 84(1) x 1071 | 82(1) x 107!
1.81 8| 562(2) x 1073 80(1) x 107* | 79(1) x 107!
1.8125 | 8| 567(2) x 1073 75(1) x 1071 | 74(1) x 107!
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1.815 | 8| 576(2) x 1072 73(1) x 1071 | 71(1) x 107!
1.8175 | 8| 579(3) x 1073 71(1) x 1071 | 70(1) x 107!
1.82 8| 588(2) x 1073 69(1) x 1071 | 68(1) x 107!
1.83 8| 606(2) x 1073 59(1) x 1071 | 57(1) x 107!
1.84 8| 623(2) x 1072 | 520(10) x 1072 | 506(10) x 102
1.85 8| 639(2) x 1073 | 441(8) x 1072 | 428(8) x 1072
1.9 8 | 7002(10) x 107* |  226(3) x 1072 | 213(3) x 102
1.95 8| 737T1(7) x 107* |  153(2) x 1072 | 140(2) x 1072
2.0 8| 7642(6) x 107* | 1153(9) x 1073 | 1031(9) x 1073
1.4 10 | 903(1) x 107* | 914(9) x 1073 | 747(9) x 1073
1.5 10 | 1150(2) x 107* |  141(2) x 1072 | 125(2) x 1072
1.55 | 10| 1317(3) x 107* | 207(3) x 1072 | 192(3) x 1072
1.56 | 10| 1358(3) x 107* | 237(5) x 1072 | 220(5) x 1072
157 [ 10| 1395(4) x 107* | 248(4) x 1072 | 232(4) x 1072
1.58 | 10 | 1447(4) x 107* | 289(5) x 1072 | 273(5) x 1072
1.59 | 10| 1510(5) x 107* |  332(8) x 1072 | 317(8) x 1072
1.5925 | 10 | 1510(4) x 107* | 330(7) x 1072 | 315(7) x 1072
1.595 | 10 | 1523(4) x 107* |  355(6) x 1072 | 340(6) x 1072
1.5975 | 10 | 1546(5) x 107* | 365(7) x 1072 | 350(7) x 1072
1.6 10 | 1558(4) x 107* | 372(7) x 1072 | 356(7) x 1072
1.6025 | 10 | 1575(5) x 107* | 386(9) x 1072 | 372(8) x 1072
1.605 | 10 | 1604(7) x 107* | 435(10) x 1072 | 420(9) x 1072
1.6075 | 10 | 1605(6) x 10~% | 435(10) x 1072 | 420(10) x 102
1.61 | 10| 1617(6) x 107* 437(10) x 1072 | 422(10) x 1072
1.62 [ 10| 1716(7) x 1074 57(1) x 1071 | 56(1) x 107!
1.63 | 10 | 1801(10) x 10~* 69(2) x 1071 | 68(2) x 107!
1.64 | 10| 192(1) x 1073 88(2) x 1071 |  86(2) x 107!
1.65 | 10| 207(1) x 1072 | 110(2) x 107! | 109(2) x 1071
1.66 | 10| 222(1) x 1072 | 133(2) x 107! | 131(2) x 1071
1.67 | 10| 239(1) x 1073 | 158(2) x 107! | 156(2) x 107*
1.68 | 10| 259(1) x 1073 | 183(2) x 107! | 181(2) x 107*
1.69 | 10| 277(2) x 1072 | 201(2) x 107! | 200(2) x 1071
1.7 10| 299(1) x 1073 | 228(2) x 107+ | 226(2) x 107!
171 [ 10| 320(2) x 1072 | 240(3) x 107! | 239(3) x 1071
1.72 | 10| 344(2) x 1073 | 251(2) x 107! | 249(2) x 107!
173 | 10| 366(2) x 1073 |  261(2) x 107! | 259(2) x 10~
1.74 |10 392(2) x 1073 | 263(2) x 107! | 262(2) x 107*
1.75 | 10| 417(2) x 1072 | 258(2) x 107! | 256(2) x 1071
1.76 | 10 | 443(3) x 1072 | 247(2) x 107! | 246(2) x 1071
177 [ 10| 470(2) x 1073 | 232(2) x 107! | 230(2) x 1071
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1.78 [10] 499(2) x 1072 | 207(2) x 1071 [ 206(2) x 1071
1.79 | 10| 525(2) x 1072 | 185(3) x 107! | 184(3) x 1071
1.7925 | 10 | 532(2) x 1072 | 176(3) x 107! | 174(3) x 10~*
1.795 | 10 | 538(2) x 1073 | 170(3) x 107! | 168(3) x 10~*
1.7975 | 10 | 545(2) x 1073 | 160(3) x 107! | 159(3) x 1071
1.8 10 | 552(2) x 1073 | 151(3) x 1071 | 149(3) x 107¢
1.8025 | 10 | 558(2) x 1072 | 145(3) x 107! | 144(3) x 1071
1.805 | 10 | 568(2) x 1072 | 133(3) x 107! | 131(3) x 1071
1.8075 | 10 | 570(3) x 1073 | 130(4) x 107! | 128(4) x 107!
1.81 | 10| 578(2) x 1073 | 119(2) x 107! | 118(2) x 107*
1.8125 | 10 | 586(2) x 1072 | 110(2) x 107! | 109(2) x 1071
1.815 |10 | 590(2) x 1072 | 102(3) x 107! | 101(3) x 1071
1.8175 | 10 | 594(2) x 1073 102(2) x 1071 101(2) x 1071
1.82 | 10| 600(2) x 1073 95(2) x 1071 | 94(2) x 107!
1.83 | 10| 618(1) x 1073 74(2) x 1071 | 72(2) x 107!
1.84 | 10| 635(1) x 1073 59(1) x 1071 | 58(1) x 107!
1.85 | 10| 649(1) x 1073 48(1) x 1071 | 47(1) x 107!
1.86 | 10 | 6622(9) x 107* |  406(6) x 1072 | 392(6) x 1072
1.87 | 10| 6718(9) x 107* |  348(6) x 1072 | 334(6) x 1072
1.9 10 | 7012(7) x 107* | 236(3) x 1072 | 223(3) x 1072
1.95 | 10| 7379(6) x 107* | 153(1) x 1072 | 141(1) x 1072
2.0 10 | 7658(4) x 1074 | 1151(8) x 1073 | 1029(8) x 1073
1.4 12| 903(1) x 107* | 949(9) x 1073 | 782(8) x 1073
1.5 12| 1150(2) x 1074 | 154(2) x 1072 | 139(2) x 1072
1.55 [ 12| 1316(3) x 107* | 244(4) x 1072 | 228(4) x 1072
1.56 | 12| 1359(3) x 107* | 272(6) x 1072 | 257(5) x 1072
1.57 | 12| 1398(3) x 107* |  306(6) x 1072 | 291(6) x 1072
1.58 | 12| 1452(3) x 1074 373(9) x 1072 358(8) x 1072
1.59 | 12| 1502(4) x 1074 46(1) x 1071 | 45(1) x 107!
1.5925 | 12 | 1515(4) x 1074 46(1) x 1071 | 45(1) x 107!
1.595 | 12| 1526(4) x 1074 50(1) x 1071 | 48(1) x 107!
1.5975 | 12 | 1535(4) x 1074 50(1) x 1071 | 48(1) x 107!
1.6 12 | 1558(4) x 10~* 53(1) x 107* | 52(1) x 107!
1.6025 | 12 | 1567(5) x 1074 58(2) x 1071 | 56(2) x 107!
1.605 | 12| 1592(5) x 1074 61(1) x 1071 | 59(1) x 107!
1.6075 | 12 | 1616(6) x 1074 67(2) x 1071 | 65(2) x 107!
1.61 | 12| 1619(4) x 1074 68(2) x 1071 | 66(2) x 107!
1.62 | 12| 1716(7) x 1074 96(3) x 1071 | 94(3) x 1071
1.63 | 12| 1819(8) x 107* | 127(4) x 107! | 125(4) x 1071
1.64 [ 12| 194(1) x 1073 | 163(4) x 107! | 162(4) x 1071

Continued on next page
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Table F.1 — Continued from previous page

U L Pm X1 X2
1.65 |12 ]2057(10) x 10~* | 202(5) x 10~ [ 200(5) x 1071
1.66 | 12| 2255(9) x 107* | 264(4) x 107! | 263(4) x 1071
1.67 [ 12| 242(1) x 1073 | 312(4) x 107! | 311(5) x 107*
1.68 | 12 | 2623(10) x 107* |  362(5) x 107! | 361(4) x 107*
1.69 | 12| 282(1) x 1073 | 406(4) x 107! | 404(4) x 1071
1.7 12| 302(2) x 1073 | 440(6) x 1071 | 439(6) x 107*
171 |12 324(2) x 1072 | 469(5) x 107! | 468(5) x 1071
172 |12 348(2) x 1072 | 490(4) x 107! | 489(4) x 1071
1.73 | 12| 371(1) x 1073 | 500(4) x 107! | 499(4) x 1071
1.74 | 12| 393(1) x 1073 | 505(5) x 107! | 503(5) x 10~*
175 | 12| 422(2) x 1073 | 483(4) x 107! | 482(4) x 1071
1.76 | 12| 445(1) x 1072 | 468(5) x 107! | 466(5) x 1071
177 |12 475(2) x 1072 | 433(5) x 107! | 431(5) x 1071
1.78 [ 12| 504(2) x 1073 | 371(6) x 1071 | 370(6) x 10!
179 | 12| 529(2) x 1073 | 316(5) x 107! | 314(5) x 10~
1.7925 | 12 | 539(2) x 1072 | 285(5) x 107! | 284(5) x 10~*
1.795 |12 | 541(2) x 1072 | 279(8) x 107! | 278(8) x 1071
1.7975 | 12 | 549(2) x 1072 | 258(7) x 107! | 256(7) x 1071
1.8 12| 557(1) x 1073 | 235(4) x 1071 | 234(4) x 107!
1.8025 | 12 |  561(2) x 1073 | 230(5) x 107! | 228(5) x 10~*
1.805 [ 12| 570(2) x 1073 | 202(5) x 107! | 201(5) x 1071
1.8075 | 12|  576(2) x 1073 | 184(6) x 107! | 183(6) x 1071
1.81 | 12| 5841(9) x 107* | 163(3) x 107! | 161(3) x 1071
1.8125 | 12 | 590(2) x 1072 | 153(5) x 107! | 152(5) x 107*
1.815 | 12| 596(1) x 1073 | 135(4) x 107! | 133(4) x 107*
1.8175 [ 12|  598(1) x 1073 | 128(5) x 1071 | 127(5) x 1071
1.82 | 12| 6068(9) x 1074 111(2) x 1071 110( ) x 1071
1.83 [ 12| 6228(9) x 1074 83(2) x 1071 | 81(2) x 107!
1.84 | 12| 640(1) x 1073 62(2) x 107* | 60(2) x 107!
1.85 | 12 | 6520(10) x 1074 49(1) x 1071 | 48(1) x 107!
1.9 12| 7023(6) x 107* | 235(2) x 1072 | 222(2) x 1072
1.95 | 12| 7378(4) x 107* | 157(1) x 1072 | 144(1) x 1072
2.0 12 | 7654(4) x 10~* 1158(7) x 1073 | 1035(7) x 1073
1.75 | 14 | 416(2) x 1073 88(1) x 10° 88(1) x 10°
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