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Abstract

The conventional mechanism of fermion mass generation in the Standard Model

involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate

mechanism for the generation of fermion masses that does not require SSB, in the

context of lattice field theories. Being inherently strongly coupled, this mechanism

requires a non-perturbative approach like the lattice approach.

In order to explore this mechanism, we study a simple lattice model with a

four-fermion interaction that has massless fermions at weak couplings and massive

fermions at strong couplings, but without any spontaneous symmetry breaking. Prior

work on this type of mass generation mechanism in 4D, was done in the late 1980’s

using either mean-field theory or Monte-Carlo calculations on small lattices. In this

thesis, we have developed a new computational approach that enables us to perform

large scale quantum Monte-Carlo calculations to study the phase structure of this

theory. In 4D, our results confirm prior results, but differ in some quantitative details

of the phase diagram. In contrast, in 3D, we discover a new second order critical

point using calculations on lattices up to size 603. Such large scale calculations are

unprecedented. The presence of the critical point implies the existence of an alternate

mechanism of fermion mass generation without any SSB, that could be of interest in

continuum quantum field theory.
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1

Introduction

The origin of fermion mass is a fundamental problem in particle physics [1]. Fermion

mass terms in a free theory break certain symmetries which we call generically as

’chiral symmetries’. One way to produce fermion masses is by explicitly breaking

these symmetries. Fermion masses can also be produced dynamically, through the

physics of Spontaneous Symmetry Breaking (SSB) [2]. This latter scenario is real-

ized in the Standard Model. The action of a system undergoing SSB preserves the

symmetries of interest, however the vacuum is not invariant under the full symmetry.

In the Standard Model, SSB occurs in two different sectors:

i) The Higgs mechanism in the Electro-weak sector.

ii) Chiral symmetry breaking in the Strong sector.

The electro-weak sector of the Standard Model has an SUp2qL ˆ Up1qY gauge

symmetry [3]. Fermion mass terms break this symmetry and are hence not allowed

in the action. In order to give fermions their mass, a Higgs field is introduced that

couples to the fermions via Yukawa couplings. The Higgs field gets an expectation

value that spontaneously breaks the SUp2qL ˆ Up1qY symmetry thus giving masses

1



to the fermions. This results in the formation of fermion bilinear condensates. This

mechanism also provides masses to the W`, W´ and Z gauge bosons.

In contrast, in the strong sector of the Standard Model SSB is achieved with-

out the introduction of a Higgs field. The QCD Lagrangian with gluons and two

flavors of massless quarks has an SUp2qL ˆ SUp2qR chiral symmetry in addition to

an SU(3) color gauge symmetry. The chiral symmetry breaks spontaneously due to

non-perturbative dynamics. This results in the formation of fermion bilinear con-

densates that make the quarks massive. This phenomenon is often referred to as

’dynamical symmetry breaking’ [4, 5].

In this thesis work, we explore an alternate mechanism for fermion mass gener-

ation that does not involve any SSB. Starting with an action that forbids fermion

bilinear mass terms, we find that fermions become massive without breaking any

symmetries at strong couplings .

1.1 Review of SSB

The mechanism of SSB can be elucidated by a simple toy model of fermions interact-

ing with a complex scalar field. Consider a model with one flavor of four-component

Dirac fermions represented by the Grassman fields ψ and ψ, coupled to a complex

scalar field φ. The Euclidean action for this theory is given by

SE “

ż

d4x
 

ψγµBµψ ` pBµφ
˚
qpBµφq ` V pφq ´ gψ ρeiγ5ϕ ψ

(

(1.1)

where V pφq “ m2|φ|2 ` λ
4
|φ|4 (λ ą 0) and the complex field φ is written as φ “

ρeiϕ. The Dirac matrices γµ are 4 ˆ 4 Hermitian matrices that satisfy the algebra

tγµ, γνu “ 2δµ,ν . This action is symmetric under the transformation UV p1q ˆ UAp1q

given by

UV p1q : ψ Ñ e´iθV ψ , ψ Ñ ψeiθV , φÑ φ

UAp1q : ψ Ñ e´iγ5θAψ , ψ Ñ ψe´iγ5θA , φÑ φ e2iθA

(1.2)

2
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Figure 1.1: Plot of the potential V pφq for m2 ą 0 as a function of φ. The left
figure shows the variation of V pφq in the complex φ plane while the right figure shows
this variation along φI “ 0. For m2 ą 0, we have a global minimum at |φ| “ 0. This
corresponds to a single complex massive scalar particle.

where γ5 is defined as γ5 “ γ1γ2γ3γ4. From the action, it is clear that a fermion mass

term of the form mψψ explictly breaks the UAp1q symmetry. In fact, one can argue

that no fermion bilinear term that is invariant under all the symmetries of the action

exists.

The action in Eq. (1.1) can be rewritten in terms of left and right handed fields

given by ψL “ p
1´γ5

2
qψ , ψR “ p

1`γ5
2
qψ , ψL “ ψp1`γ5

2
q , ψR “ ψp1´γ5

2
q. The action

now takes the form

SE “

ż

d4x
 

ψL {BψL ` ψR {BψR ` pBµφ
˚
qpBµφq ` V pφq ´ gψLψRφ´ gψRψLφ

˚
(

(1.3)

where {B “ γµBµ. In this form, it can be seen that the action has an explicit ULp1q ˆ

URp1q symmetry given by

ψL Ñ eiθLψL ; ψR Ñ eiθRψR ; ψL Ñ e´iθLψL ; ψR Ñ e´iθRψR ; φÑ eipθL´θRqφ

This is related to the UV p1q ˆUAp1q symmetry in Eq. (1.2). θL “ θR corresponds to

the UV p1q symmetry while θL “ ´θR corresponds to the UAp1q symmetry.

For m2 ą 0, the potential has a minimum at φ “ 0. This is shown in Fig. (1.1).

In this regime, the action describes a theory of massless fermions interacting with a

3
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Figure 1.2: Plot of the potential V pφq for m2 ă 0 as a function of φ. The left
figure shows the variation of V pφq vs φ in the complex plane while the right figure
shows this variation along φI “ 0. In addition to a local maximum at |φ| “ 0, there
exist an infinite number of minima at |φ|2 “ v. This corresponds to a massless scalar
π and a massive scalar σ.

complex boson φ of mass m. On the other hand, if m2 ă 0, V pφq is the well known

Mexican-hat potential. It has a local maximum at φ “ 0 and an infinite number of

minima along |φ|2 “ v with v “
b

´2m2

λ
as shown in Fig. (1.2). Without loss of

generality, we can expand φ about one of these minima as φ “ v ` 1?
2
pσ ` iπq and

write the above action as

SE “

ż

d4x

"

ψ {Bψ `
1

2
pBµσq

2
`

1

2
p
?

2mq
2
σ2
`

1

2
pBµπq

2
´ gvψψ ` ...

*

(1.4)

where the dots denote higher order interaction terms. Thus, although the action

preserves the axial symmetry, the choice of the vacuum v has broken this symmetry.

This is the phenomenon of SSB. The theory now describes fermions interacting with

two fields σ and π. The field σ describes a real massive scalar particle of mass
?

2m.

The field π describing a massless scalar particle is called a Goldstone boson. Ac-

cording to Goldstone’s theorem [6], SSB creates a massless boson for every generator

of a continuous symmetry broken by the vacuum. In this case, since the vacuum v

breaks the UAp1q symmetry, we have a single Goldstone boson π. Interestingly, the

term gvψψ resembles a mass term for the fermion. Thus, the fermions have acquired
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Figure 1.3: The Phase diagram showing the phase transition between the massless
and massive fermionic phases. The red region represents a symmetric massless phase
called the PMW phase. The grey region represents the spontaneously broken massive
phase called the FM phase. m2 is negative at the top and positive at the bottom.

a mass gv through the SSB of the axial symmetry UAp1q. It can be shown that the

fermion bilinear condensate xψψy is non-zero.

It is interesting to look at the phase diagram in the m2 ´ g2 plane for a fixed

value of λ ą 0. When m2 ą 0, for small Yukawa couplings, we get massless fermions.

However, as the coupling g crosses a threshold, previous work shows that the fermions

become massive via SSB [7]. The phase with massless fermions at weak couplings is

symmetric and hence called the Paramagnetic Weak phase (PMW), while the massive

fermion phase is spontaneously broken and hence referred to as the Ferromagnetic

phase (FM). This general phase diagram in the m2´ g2 plane is qualitatively shown

in Fig. (1.3).
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1.2 Alternate mechanism of mass generation

As explained above, SSB provides a way to generate fermion masses without explicitly

breaking chiral symmetries. However, the vacuum does break the symmetry. Can

there be other mechanisms to generate fermion masses that do not require SSB?

Lattice field theories are a good place to look for such alternate mechanisms,

since they can be studied non-perturbatively and hence often show a much richer

phase structure. Indeed, previous studies of lattice Yukawa models have shown the

existence of a more interesting phase structure than that in Fig. (1.3) [8, 9]. These

studies have found that, in addition to the symmetric massless (PMW) phase and

the spontaneously broken massive (FM) phase obtained in the continuum, there can

be an additional exotic phase at strong Yukawa couplings [10, 11]. In this phase,

all fermion bilinear condensates vanish, but fermions are still massive. This exotic

phase is thus a massive symmetric phase and is hence referred to as the Paramagnetic

Strong phase (or the PMS phase). This qualitative phase structure is shown in Fig.

(1.2).

The presence of the PMS phase indicates an alternate mechanism for fermion mass

generation without SSB in lattice field theories. But, such a phase could very well

be a lattice artifact without a continuum analog. However, if we could find a lattice

model in which PMW and PMS phase boundaries touch each other at a second-order

critical point, this would imply the existence of a continuum limit for the PMS phase

and thus make this alternate mechanism of fermion mass generation of interest even

in continuum field theory. In this thesis, we discover one such critical point in a

specific lattice model in three dimensions. Further, it is a second order transition

between two phases with the same symmetries that cannot be distinguished by a

local order parameter.
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Figure 1.4: The complex phase structure obtained in some lattice field theories. In
addition to the PMW and FM phases, these lattice theories show an exotic symmetric
massive phase at strong couplings called the strong paramagnetic phase or PMS
phase.

1.3 Four-fermion field theories

So far, we have focused on Yukawa models. However, we can also discuss the same

physics using four-fermion models where the Higgs field is absent. For example, the

action of one such four-fermion model that reproduces the physics of the Yukawa

model in Eq. (1.5) is given by

S4f “

ż

d4x
 

ψL {BψL ` ψR {BψR ´ UpψLψRψRψLq
(

(1.5)

Since the four-fermion coupling is perturbatively irrelevant, for small couplings

we expect massless fermions. Previous studies of similar four-fermion models in

the continuum using mean-field analysis [12, 13] have shown the existence of the

spontaneously broken FM phase at larger values of the coupling U . Since we expect
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Figure 1.5: The three phase structure seen in four-fermion lattice models. The
exotic PMS phase is expected as in Yukawa models.

the four-fermion theory to capture the physics along the horizontal line at large

values of m2 in Fig. (1.2), we also expect a PMS phase in an appropriate lattice

four-fermion model at large U . The expected qualitative phase diagram in the space

of the coupling constant U for these four-fermion lattice theories is shown in Fig.

(1.5). The exotic scenario where the PMW phase touches the PMS phase is shown

in Fig. (1.6).

In addition to retaining the rich phase structure of the Yukawa models, four-

fermion models have become easier to study, thanks to recent Monte Carlo techniques

like the Fermion Bag approach [14, 15]. In this thesis, we study a simple four-fermion

lattice model in order to explore the phenomenon of fermion mass generation without

SSB. While the phase diagram in 3D is consistent with Fig. (1.6), in 4D we find the

phase diagram to be consistent with Fig. (1.5). Our results in 3D have also been

observed recently using similar models motivated in both particle physics [16] and

[17, 18, 19] condensed matter physics.
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Figure 1.6: The phase structure seen in our four-fermion lattice model in 3D. The
presence of a second-order critical point at Uc1 separating the PMW and PMS phases
points to a continuum theory that exhibits fermion mass generation without SSB.

1.4 Organization of thesis

The thesis is organized as follows. Section 2 introduces the lattice field theory ap-

proach and its connection to continuum quantum field theory. Section 3 introduces

the model we study, its symmetry properties, and the approach we use to solve it.

Section 4 discusses the concept of Monte-Carlo methods used in lattice field theo-

ries. It also discusses the computational methods used. Sections 5 and 6 present the

results in 3D and 4D. Section 7 summarises the conclusions and the implications of

this work.
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2

The Lattice Approach

The standard method for solving continuum quantum field theories (QFTs) is by

using perturbation theory. In this approach, one computes quantities analytically

using Feynman diagrams up to a certain order in the coupling constants. When loop

diagrams arise, they can diverge and so one needs to develop a renormalization pro-

cedure with an appropriate regulator so that physical observables are finite, when the

regulator is removed. Further, due to the sharp rise in the number of Feynman dia-

grams with the order of perturbation theory, computations are not practical beyond

4th or 5th order. In most cases, the perturbative expansion is also an asymptotic

series. Hence, while the perturbative approach is very useful to compute a large

number of quantities like scattering cross-sections, decay rates, etc., it only works for

weakly coupled theories. For strongly coupled theories like QCD, one needs to turn

to non-perturbative approaches like lattice field theory.

A lattice field theory can be understood from two different perspectives:

i) As a regularization of a continuum QFT.

In this perspective, a lattice field theory is constructed to study a continuum

10



QFT with an ultraviolet momentum cut-off, obtained by discretizing it in position

space. If Λ is the usual ultraviolet cut-off of the continuum theory, the lattice

spacing a of the lattice theory acts as this cut-off and is related to it as a „ 1
Λ

.

The continuum theory with a momentum cutoff and the lattice theory can be

matched in perturbation theory. However, the lattice theory can also explore the

strong coupling regime of the theory. In other words, the lattice theory helps to

define the original continuum QFT even in the strong coupling regime.

ii) As an interesting quantum many-body theory in its own right.

In this perspective, the lattice theory is taken to be a quantum many-body theory

in its own right that can be studied non-perturbatively to explore interesting

phase structures and continuum limits, if they exist. For example, the theory

may model a condensed matter system, which has a natural lattice spacing.

Such lattice theories often exhibit a rich phase structure. Moreover, if the phase

diagram harbors second-order critical points, then a continuum limit of the lattice

theory exists, where a continuum QFT should emerge. This will be explained

later in this chapter.

2.1 Lattice field theory as a regularized continuum QFT

Let us first explain the view point that lattice field theory is a way to nonpertur-

batively regulate a continuum QFT using examples of free field theory. For this

purpose we start with simple, free continuum field theories containing either bosons

or fermions, and discretize them and compare their properties with the corresponding

continuum theory. The discussion below follows [20].
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2.1.1 Lattice bosons

Our aim is to discretize a simple continuum field theory with a single scalar field

φpxq. Its continuum action in Euclidean space is given by

Sb “
1

2

ż

d4x
“

φpxqp´BµBµ `m
2
qφpxq

‰

. (2.1)

In the path integral approach in Euclidean space, the propagator is defined as the

two point correlation function of the statistical mechanical system defined by the

above action. It is given by

DBpx, yq “ xφpxqφpyqy “

ş

rdφs pφpxqφpyqq e´S
ş

rdφs e´S
(2.2)

The expression for the bosonic propagator in position space for the action defined in

Eq. (2.1) is given by

DBpx, yq “

ż

d4k

p2πq4
e´ik¨px´yq

1

k2 `m2
(2.3)

Let us now see how this propagator is reproduced from a lattice regulated theory.

Using a lattice spacing a, we can discretize space-time on a hypercubic lattice so that

the fields are defined on the space-time lattice site na. We can then discretize the

second derivative term as

BµBµφpxq Ñ
1

a2

4
ÿ

µ“1

pφpna` µ̂q ` φpna´ µ̂q ´ 2φpnaqq (2.4)

where µ̂ represents the unit vector along the direction µ “ 1, 2, 3, 4. With this

substitution the continuum action is transformed into the lattice action

Sbplatticeq “
a4

2

ÿ

n,m

φnKn,mφm (2.5)
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Kn,n1 “
1

a2

«

´
ÿ

µ

pδn`µ̂,n1 ` δn´µ̂,n1 ´ 2δn,n1q `m
2a2δn,n1

ff

(2.6)

where φn “ φpnaq is the lattice field. The bosonic propagator in the lattice theory

can be calculated easily and one gets

DBpn, n
1
q “ xφnφn1y “ a2

ż π
a

´π
a

d4k

p2πq4
eik¨pn´n

1q a

ř

µ 4 sin2
´

kµa

2

¯

` a2m2
(2.7)

In the above expression, it is clear that, 2 sin
´

kµa

2

¯

Ñ kµa as aÑ 0, and we recover

the continuum expression in Eq. (2.3). Thus, the lattice propagator yields the

continuum propagator in the continuum limit (a Ñ 0). When a ‰ 0, it gives a

regulated theory with a momentum cut-off π{a.

2.1.2 Lattice fermions

We would like to repeat this procedure for free fermions. Let us consider the Dirac

action representing one flavor of free massive fermions.

Sf “

ż

d4x
“

ψpxqpγµBµ `mqψpxq
‰

(2.8)

where the γµ are the Dirac matrices defined in Section 1.1. In analogy with Eq.

(2.2), the fermionic propagator is defined as

DF px, yq “ xψpxqψpyqy “

ş

rdψsrdψs pψpxqψpyqq e´S
ş

rdψsrdψs e´S
(2.9)

where the path integral is defined over Grassmann valued fields ψ and ψ. Note

DF px, yq is a 4 ˆ 4 matrix in the Dirac space. Performing the Grassmann integration

with the action given in Eq. (2.8), one obtains

DF px, yq “

ż

d4k

2π4
e´ik¨x

´iγµkµ `m

k2 `m2
(2.10)
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Discretizing space-time on a hypercubic lattice as before and using the symmetric

lattice derivative with lattice spacing a given by

Bµψpxq Ñ
1

2a

4
ÿ

µ“1

pψpna` µ̂q ´ ψpna´ µ̂qq (2.11)

we obtain the lattice fermion action

Sf platticeq “ a4
ÿ

n,m,α,β

ψn,αKn,n1ψn1,β , (2.12)

where

Kn,n1 “
1

a

«

ÿ

µ

1

2
pγµqαβ pδn`µ̂,n1 ´ δn´µ̂,n1q `maδn,n1δα,β

ff

, (2.13)

and α, β denote spinor indices. The lattice fermionic propagator is given by

DF pn, n
1
q “ xψxψyy “ a

ż π
a

´π
a

d4k

p2πq4
eik¨pn´n

1qa p´i
ř

µ γµ sinpkµaq `maq

p
ř

µ sin2pkµaq `m2a2q
(2.14)

Since the sine function has zeros at all points where kµ “ 0 or π{a, in the limit

a Ñ 0, the above propagator gets contributions from a total of 16 poles in momen-

tum space. Close to these poles, the propagator in momentum space looks exactly

the same as the continuum propagator given in Eq. (2.10). In other words, there

exists a 16-fold degeneracy in the ground-state physics and this can be interpreted as

though the lattice theory describes 16 flavors of fermions. Thus, discretization has

created multiple flavors of fermions. This phenomenon is called Fermion doubling. In

general, discretizing a fermionic theory in a d dimensional Euclidean space produces

2d fermion flavors.

The phenomenon of fermion doubling has significant implications when relating

the lattice theory back to the continuum theory. For bosons, the lattice theory will

reproduce the continuum physics in the limit a Ñ 0. In contrast, for fermions,
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the lattice theory now needs to be mapped to a continuum theory having 2d times

the original number of fermion flavors. There are ways to circumvent this doubling

problem at the cost of breaking the chiral symmetry using what are called Wilson

fermions [20]. Other formulations that retain the chiral symmetry at the cost of

making the action non-local are Domain wall fermions, SLAC fermions [21, 22].

2.2 Lattice field theory as an interesting quantum many-body theory.

Let us now explain the second view point that lattice field theories can be studied

as quantum many-body theories that are interesting in their own right. This is espe-

cially true in the presence of fermions, due to the phenomenon of fermion doubling.

Examples of such interesting lattice field theories often arise in condensed matter

physics. A simple example is the tight binding model of graphene, where electrons

hop on a honeycomb lattice. In this model, massless Dirac fermions appear naturally

at low energies. In the action formulation, they are similar to staggered fermions

[23] discussed below.

2.2.1 Staggered fermions

We begin with the lattice fermion action in Eq. (2.13) representing 16 fermion flavors

and set a “ 1. In this new notation, all lengths are measured in terms of the lattice

spacing. The resulting action has the form

S “
1

2

ÿ

n,µ̂

ψn rγµψn`µ̂ ´ γµψn´µ̂s `mψnψn (2.15)

where n ” pn1, n2, n3, n4q represents the lattice site. We then perform the variable

transformation

ψn “ γn1
1 γn2

2 γn3
3 γn4

4 χn (2.16)
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and rewrite the action as

S “
1

2

ÿ

n,µ̂

χnηµ,n rχn`µ̂ ´ χn´µ̂s `mχnχn (2.17)

where η1,n “ 1 η2,n “ p´1qn1 η3,n “ p´1qn1`n2 η4,n “ p´1qn1`n2`n3 and χ and χ are

four-component Grassmann variables. Since the spinor space has been diagonalized,

we obtain four identical copies of fermions. We throw away three of these to get the

Staggered fermion action

Sstaggered “
ÿ

x,y

ψxMx,yψy `mψxψx

Mx,y “
ÿ

α̂“1,2,3,4

1

2
ηx,α̂ rδx,y`α̂ ´ δx,y´α̂s

ηx,1 “ 1 ηx,2 “ p´1qx1 ηx,3 “ p´1qx1`x2 ηx,4 “ p´1qx1`x2`x3

(2.18)

where we now define the one-component Grassmann fields ψ and ψ on each lattice

site. As opposed to the 16 flavors in the naive lattice fermion action, the staggered

fermion action has only four extra flavors in 4D. The Staggered fermion formulation

preserves some remnants of the continuum symmetries that keep fermions massless

at the cost of retaining some of the extra flavors obtained due to fermion doubling.

For completeness, we present the form of the staggered fermion propagator below.

Dn,n1 “
1

L3

ÿ

k

´ sin k.pn1 ´ nqp
ř

α ηα,n sin kαq `m cos k.pn1 ´ nq
ř

β sin2 kβ `m2
(2.19)

2.2.2 Reduced staggered fermions

In the above section, we defined the action for one flavor of staggered fermions

with two Grassmann fields ψ and ψ defined at every point on the lattice. A slight

redefinition of the fields yields the reduced staggered fermion action [24, 25] given by

Sreduced staggered “
1

2

2
ÿ

i“1

ÿ

x,y

ψx,iMx,yψy,i `mψx,1ψx,2 (2.20)
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where, the ψ and ψ at each site have been replaced by the two flavors ψx,1 and ψx,2.

Thus, one flavor of staggered fermions is equivalent to 2 flavors of reduced staggered

fermions. In the massless limit, the two flavors decouple from each other. In our

work, we will use 4 flavors of reduced staggered fermions.

2.3 Continuum limit

Let us consider a lattice field theory with spacing a and some coupling Y which can

be tuned to a second-order critical point Y “ Yc. From the theory of second-order

phase transitions, we know that correlation functions diverge at Yc. If ξ is one such

physical correlation length, since all lengths are measured in terms of the lattice

spacing a,

lim
YÑYc

ξ

a
Ñ 8 (2.21)

In condensed matter physics, the lattice spacing is natural and hence, one can in-

terpret the physical correlation length ξ to diverge as we approach Yc. On the other

hand, in particle physics, the correlation length ξ is related to m´1, where m is mass

of a particle, which is a physical quantity. Hence one can interpret the approach

to the critical point as though the lattice spacing a vanishes as Y Ñ Yc. This im-

plies that as Y approaches Yc, the physics of the lattice theory is described by a

renormalizable continuum theory.

Wilson has argued that the divergence of the correlation length is related to

the renormalization group (RG) flows near a fixed point in the space of coupling

constants of a continuum QFT [26]. In particular, a diverging correlation length is

related to a relevant (or marginally relevant) direction at the fixed point. Using the

dimensionless variable y “ Y´Yc
Yc

, an RG calculation shows that the correlation length

17



for relevant couplings diverges as

ξ „
1

yν
(2.22)

where ν is called a critical exponent [27]. We can use the above expression to derive

a finite size scaling relation for a general observable O in the critical region. In a

lattice theory with lattice size L, the only length scales in the critical region are L

and ξ. Hence, the observable O can only depend on L through the relation

O „ Lp fpL{ξq (2.23)

where p is the length dimension of O. Using ξ „ 1
yν

from Eq. (2.22), the above

equation becomes

O „ Lp fpyν Lq (2.24)

This can be simplified to give

O „ Lp f̃py L1{ν
q (2.25)

where f̃pxq is a function that must be analytic near x “ 0. Eq. (2.25) expresses the

observable O in terms of the coupling Y and lattice size L. We will use this form

later in Chapter 5 to estimate the critical exponents close to the transition.

Since it is the only currently known technique to study strongly interacting sys-

tems ab initio, the lattice method has been used extensively to study QCD. These

have provided accurate theoretical predictions of experimentally measured quanti-

ties like hadron spectrum, form factors, etc. [28, 29, 30, 31, 32]. In addition, lattice

field theories with critical points are by themselves very interesting. At these points,

different lattice systems are expected to flow to the same fixed points at long dis-

tances and hence describe the same low-energy physics. This leads to the concept of

universality classes that are classified by the fixed points [27].
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Figure 2.1: The Phase diagram for the hypercubic Yukawa model. This model
contains the PMW phase and the FM phase.

2.4 Lattice Yukawa models

As explained in the Introduction, lattice field theories with Yukawa couplings have

been studied extensively on the lattice and these show a rich phase structure. Here,

we discuss two such models that give qualitatively different phase diagrams.

These models were first studied by Lee, Shigemitsu and Shrock in [10] with stag-

gered fermions interacting with a scalar field φ in 4 Euclidean dimensions. Two

types of interactions were explored: a local and a hypercubic Yukawa interaction.

The actions for these two models are given by

S “ SB ` SF ` SY (2.26)
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Figure 2.2: The phase diagram for the local Yukawa model. It shows the strong
paramagnetic phase (PMS) phase in addition to the PMW and FM phases seen in
the hypercubic Yukawa model.

where SB and SF are the same for both models and are given by

SB “
ÿ

n

φ2
n ´ 2κ

ÿ

n,µ

φnφn`µ̂ ` λ
ÿ

n

pφ2
n ´ 1q

2
(2.27)

SF “
1

2

ÿ

n,µ,f

χn,fηn,µpχn`µ̂ ´ χn´µ̂q `
ÿ

n,f

mfχnχn,f (2.28)

The two models differ in their Yukawa interactions. In one model, the bosonic field

is associated with the center of a hypercube (hc) and couples to the fermion fields

at all the corners of the hypercube, while in the other model, it is associated with a

lattice site (local) and only couples to the fermion fields on that site. The hypercubic

and local Yukawa interactions are given by

SY “ SY,hc “ 2´dyhc
ÿ

n

φn
ÿ

n1εhcpnq;f

χn1,fχn1,f (2.29)
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SY “ SY,local “ yl
ÿ

n

φn
ÿ

f

χn,fχn,f (2.30)

where hcpnq denotes the corners associated with the hypercube centered at n, f

donotes fermion flavor and as before, µ̂ denotes the unit vector in the direction µ.

It was discovered in [10] that the hypercubic Yukawa model shows a phase struc-

ture with just PMW and FM phases as shown in Fig. (2.1), while the phase diagram

of the local Yukawa model contains the exotic PMS phase at strong couplings in

addition to the PMW and FM phases discussed in the Introduction as shown in Fig.

(2.2). In fact, some mean field calculations for the local Yukawa coupling [33, 34]

have predicted a direct first order transition between the PMW and PMS phases in

3D. In this thesis, we find a single second-order critical point separating the PMS

and PMW phases in 3D at κ “ 0.
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3

Model and Symmetries

In this thesis, we wish to use lattice field theory in order to explore if the PMW

and PMS phases, introduced in Chapter 1, may be connected through a direct phase

transition as suggested in Fig. (1.6). If this phase transition turns out to be second

order, we would establish that the PMS phase is of interest in continuum quantum

field theory since we can use the critical point to define a continuum limit. To

simplify our computations, instead of studying the Yukawa model discussed in the

previous chapter, we study its four-fermion limit. While earlier work was done in 4D

mostly using mean field theory, here we study the theory in both 3D and 4D.

3.1 Model

Our model contains 4 flavors of massless reduced staggered fermions interacting via

an on-site four-fermion interaction. The action of our model is given by

S “ S0 ´ U
ÿ

x

pψx,1ψx,2ψx,3ψx,4q , (3.1)
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where S0 is the free part of the action and is given by

S0 “
1

2

4
ÿ

i“1

ÿ

x,y

ψx,iMx,yψy,i. (3.2)

Here, ψx,i, i “ 1, 2, 3, 4 are four independent Grassmann valued fields that represent

the four flavors of reduced staggered fermions, x represents the sites of a cubic (3D)

or hypercubic (4D) lattice, and the free staggered fermion matrix M has been defined

in Eq. (2.18). Four flavors of reduced staggered fermions are equivalent to two flavors

of regular staggered fermions as described in Chapter 2. More details can be found

in [35]. The partition function for this system can be written as

Z “

ż

rdψ1dψ2dψ3dψ4s e
´S0e´U

ř

x ψx,1ψx,2ψx,3ψx,4 . (3.3)

The functional integration is over all the four independent Grassmann fields ψx,i, i “

1, 2, 3, 4.

We define the parity of each site as εx “ p´1qx1`x2`x3 . Sites with εx “ 1 are

called even sites and those with εx “ ´1 are called odd sites. In our work, we use

symmetrical lattices of equal size L in each direction and take the large L limit to

explore ground state properties. In order to extract results using finite lattices, we

need to define boundary conditions. The most common ones are periodic boundary

conditions (PBC) or anti-periodic boundary conditions (APBC). These give rise to

momenta of the form

pµ “

#

2π
L
kµ for PBC

2π
L
pkµ `

1
2
q for APBC

; kµ “ 0, 1, 2...pL´ 1q. (3.4)

where µ “ 1, 2, 3, 4 represents the direction. Since, imposing PBCs in every direction

results in zero modes, in the massless limit, Eq. (2.19) shows that the resulting

propagators will be singular. To avoid this, APBCs are often imposed in at least one

direction. In this work, we impose anti-periodic boundary conditions in all directions.
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3.2 Symmetries

The action given in Eq. (3.1) is symmetric under the usual space-time lattice trans-

formations and an internal SUp4q transformation in 3D and 4D [25, 36]. For three

dimensions, these are listed below.

(i) Shift Symmetry:

ψx,i Ñ ξx,α̂ψx`α̂,i, (3.5)

where ξx,1̂ “ p´1qx2`x3 , ξx,2̂ “ p´1qx3 , and ξx,3̂ “ 1.

(ii) Space-time rotations:

ψx,i Ñ SRpR
´1xqψR´1x,i, (3.6)

where R ” Rpρσq, ρ ‰ σ is the rotation xρ Ñ xσ,xσ Ñ ´xρ, and xτ Ñ xτ when

τ ‰ ρ, σ and SRpxq “
1
2
p1 ˘ ηρ̂pxqησ̂pxq ¯ ξρpxqξσpxq ` ηρ̂pxqησ̂pxqξρpxqξσpxqq

where the two signs represent the cases ρ ą σ and ρ ă σ respectively.

(iii) Axis reversal:

ψx,i Ñ p´1qxρψpIρxq,i (3.7)

where Iρx is the axis reversal operation on x which changes xρ Ñ ´xρ and

xσ Ñ xσ, σ ‰ ρ.

(iv) Global SUp4q transformations:

¨

˚

˚

˝

ψxe,1
ψxe,2
ψxe,3
ψxe,4

˛

‹

‹

‚

Ñ V

¨

˚

˚

˝

ψxe,1
ψxe,2
ψxe,3
ψxe,4

˛

‹

‹

‚

(3.8a)

¨

˚

˚

˝

ψxo,1
ψxo,2
ψxo,3
ψxo,4

˛

‹

‹

‚

Ñ V ˚

¨

˚

˚

˝

ψxo,1
ψxo,2
ψxo,3
ψxo,4

˛

‹

‹

‚

(3.8b)
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where xe and xo refer to even and odd lattice sites respectively, and V is an

SUp4q matrix in the fundamental representation.

Similar transformations exist even in 4D. In addition, the free action S0 is also

symmetric under the Up1q symmetry given by

ψx,i Ñ eiθεxψx,i (3.9)

where εx is the site-parity of site x. In many four-fermion models, spontaneous break-

ing of this symmetry results in massive fermions. However in our model, although

this symmetry is broken explicitly by the interaction, the fermions remain massless

at weak couplings because the other symmetries forbid fermion bilinear mass terms.

The corresponding mass order parameters were constructed in [25, 36] and are given

by

O0
a,bpxq “ ψx,aψx,b (3.10a)

O1
µ,apxq “ εxξµ,xψx,aSµψx,a (3.10b)

O2A
µν,apxq “ ξµ,xξν,x`µ̂ψx,aSµSνψx,a (3.10c)

O2B
µν,apxq “ εxξµ,xξν,x`µ̂ψx,aSµSνψx,a (3.10d)

O3
µνλ,apxq “ ξµ,xξν,x`µ̂ξν,x`µ̂`ν̂ψx,aSµSνSλψx,a (3.10e)

where Sµψx,a “ ψx`µ̂,a ` ψx´µ̂,a. For fermions to become massive through the con-

ventional mechanism, one or more of these order parameters must acquire a non-zero

expectation value. This can only occur when one or more of the lattice symmetries

are spontaneously broken. In this work, we only focus on the order parameter O0
a,bpxq
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given in Eq. (3.10a) which is the order parameter for the SUp4q symmetry. Some of

the other order parameters were studied recently in [16]. In our recent paper [37], we

argue why all bilinear order parameters will vanish at sufficiently strong couplings.

We repeat some of these arguments in Section 3.5.

3.3 General observables of interest

Since four-fermion couplings are perturbatively irrelevant and the lattice symmetries

of the action do not allow the formation of bilinear condensates, the theory remains

massless at weak couplings. This is the PMW phase. At strong couplings, as we

will explain later in Section 3.5, one expects fermions to become massive without

breaking any lattice symmetries. This is the PMS phase. However, at intermediate

couplings, there could be a spontaneously broken FM phase where one or more of the

symmetries of the action are broken spontaneously and fermions become massive due

to the formation of fermion bilinear condensates. To study if such an intermediate

phase exists, we need to compute masses of the particles in the theory and the

mass order parameters that distinguish the spontaneously broken phase from the

symmetric phase. A brief discussion of how to choose an order parameter is given in

Appendix A. Observables that are of interest include

• Fermion bilinear (bosonic) correlators and susceptibilities:

To infer the presence of non-zero fermion bilinear order parameters, we can

compute correlators of the form

Cpx, yq “ xOxOyy (3.11)

where O is one of the fermion bilinear mass order parameters defined in Eq.

(3.10). Using the cluster property, we expect

lim
|x´y|Ñ8

xOxOyy „ xOxy
2. (3.12)
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This implies that Cpx, yq „ xOxy
2 as |x ´ y| Ñ 8. The expectation value

of such an order parameter is also referred to as a condensate (Φ). Thus,

the presence of a condensate can be inferred if Cpx, yq approaches a constant

at large separations. However, if the correlation function vanishes at large

separations, then the corresponding condensate is zero. In the PMS phase, since

we expect all lattice symmetry order parameters to vanish, all these correlators

must decay to zero at large separations.

From the bosonic correlator Cpx, yq, we can also compute the susceptibility

χ “
1

2

ÿ

x

Cp0, xq “ V Φ2 (3.13)

In a massive theory, where the correlation functions decay exponentially, the

susceptibilities saturate to a constant value at large volumes. On the other

hand, when the correlation function decays like a power, depending on the

power, the susceptibility could grow, but the growth will not be proportional

to the volume. For a non-zero condensate, the corresponding susceptibility will

grow with the volume V . In the PMS phase, we expect the susceptibility to

saturate to a constant.

• Fermionic correlators:

To infer the mass of the fermions we can measure fermionic correlators of the

form

F px, yq “ xψx,a ψy,ay (3.14)

As explained in Appendix B, exponential decay of such a correlator indicates

that the particle is massive, while a power-law decay indicates that the particle

is massless. In the PMS phase, we expect massive fermions, while in the PMW

phase the fermions will be massless.
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• Four-fermion condensates:

Four-fermion condensates measure the explicit breaking of the Up1q symmetry

discussed in Eq. (3.9) by the interaction term. We define this condensate

through the relation

ρm “
U

V

ÿ

x

xψx,1ψx,2ψx,3ψx,4y (3.15)

This order parameter is non-zero for all values of U . We will argue that these

serve as pseudo-order parameters.

3.4 The Fermion Bag approach

The conventional way to solve four-fermion models is to introduce an auxiliary scalar

field [38]. This approach involves the conversion of the four-fermion coupling into

a Yukawa coupling by introducing the auxiliary field. This allows one to perform

the Grassmann integral and write the partition function as an integral purely over

the auxiliary field. The fermionic physics is encoded as a determinant of a fermion

matrix that depends on the auxiliary field. If this determinant is positive, one can

use the Hybrid Monte-Carlo Method [39] to solve the problem. While such methods

have been used by other groups, we employ a different method that deals directly

with the fermionic degrees of freedom, called the Fermion Bag Approach [14].

The Fermion Bag Approach was proposed a few years ago and has enabled the

solution of many problems that could not be solved earlier [40, 41]. A review of this

approach is given in [42]. We will illustrate this method by applying it to our model.

In the fermion bag approach, we expand the partition function in Eq. (3.3) as follows

Z “

ż

#

4
ź

i“1

rdψis

+

e´S0eU
ř

x ψx,1ψx,2ψx,3ψx,4

“

ż

#

4
ź

i“1

rdψis

+

e´S0

ź

x

p1` Uψx,1ψx,2ψx,3ψx,4q .

(3.16)
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We define a binary field mx that takes values 0 or 1 on each site x. Sites with mx “ 0

are called free sites and sites with mx “ 1 are called monomers. In terms of this

field, we can re-write the partition function as :

Z “
ÿ

rms

ż

#

4
ź

i“1

rdψis

+

e´S0

ź

x

pUψx,1ψx,2ψx,3ψx,4q
mx (3.17)

where rms denotes a configuration of monomers mx at all the sites x and the summa-

tion denotes a sum over all possible monomer configurations. Thus each monomer

contributes a Uψx,1ψx,2ψx,3ψx,4 to the Grassmann integration. On a lattice with V

number of sites, there are 2V monomer configurations. One such configuration is

illustrated on a 2D lattice in Fig. (3.1). Performing a sum over all configurations

gives us the exact value of the partition function. Let us consider a configuration C

with k monomers. Let rxms and rxf s denote the sets of lattice sites containing the

monomer sites and free sites respectively. If the lattice contains V sites, then rxms

contains k sites and rxf s contains pV ´kq sites. The contribution of this configuration

C to the partition function in Eq. (3.17) is given by

ZpCq “

ż

#

4
ź

i“1

rdψis

+

e´S0
`

Uk
˘

ź

x ε xm

pψx,1ψx,2ψx,3ψx,4q

“ Uk
4
ź

i“1

«

ż

rdψise
´ 1

2

ř

x,y ψx,iMx,yψy,i
ź

x ε xm

ψx,i

ff

(3.18)

Note that the four flavors of the reduced staggered fermions have been decoupled in

the partition function.

The matrix M has some special properties that help us simplify this expression

even further. Let nodd, neven be the number of odd and even monomer sites in a

configuration. From Eq. (2.18), it can be seen that the matrix M has non-zero

values only when connecting an odd site to an even site or an even site to an odd

site. Let us write M in the form
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M “

even odd

»

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

fl

even 0 A

odd ´AT 0

(3.19)

Hence, the inverse matrix G “ M´1, which gives the propagator between any two

sites, also has the same property and can be written in the form

G “

even odd

»

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

fl

even 0 ´W T

odd W 0

(3.20)

where W “ A´1. It can be shown that any configuration with neven ‰ nodd does

not contribute to the partition function. This has been discussed in Appendix C.

For configurations with neven “ nodd, the matrices A and W are square matrices. In

this case, we can use the properties of the matrix M and the rules of Grassmann

integration to prove the following two relations [43] for one flavor of reduced staggered

fermion ψ:

ż

rdψse´
1
2

ř

x,y ψxMx,yψy ψx1ψy1 “ σ ˆ pDetAq Wy1,x1 (3.21)

ż

rdψse´
1
2

ř

x,y ψxMx,yψy ψx1ψy1 “ σ ˆ pDetÃq (3.22)

where x1 and y1 have opposite parity i.e. one is even (odd) and the other is odd

(even). The matrix Ã is a sub-matrix of A obtained by removing one row and one
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Figure 3.1: Fermion bag configuration with the circles indicating the presence of
monomers. In the weak coupling picture, when there are very few monomers, ob-
servables can be expressed in terms of propagators between monomers. The fermions
at the monomer sites can hop on to other monomer sites.

column corresponding to the sites x1 and y1 and σ is a sign factor that depends on the

ordering of the Grassmann variables. Since we have four flavors of reduced staggered

fermions, this sign factor will eventually get cancelled. Using these relations, we can

perform the Grassmann integral in Eq. (3.18) in two dual ways. We call these the

weak coupling and the strong coupling approach as discussed below.

3.4.1 Weak coupling approach

Using the relation in Eq. (3.21) and Wick’s theorem [44], we can simplify the ex-

pression in Eq. (3.18) in terms of propagators linking the monomer sites to get

ZpCq “ Uk DetA4 DetW0
4 (3.23)

where A has been defined in Eq. (3.19) and W0 is a sub-matrix of the matrix

W defined in Eq. (3.20). The matrix W0 depends on the monomer configuration,

connects odd monomers to even monomers and has dimensions pk{2 ˆ k{2q. The

matrix A is independent of the monomer configuration and will cancel out in all

observables.
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Configurations with large number of monomers are suppressed for small values

of the coupling, due to the presence of the term Uk in Eq. (3.18). In this limit,

configuration weights are easier to compute using Eq. (3.23) since W is a small

matrix. In this picture, fermions can be viewed as existing on the monomer sites and

hopping onto other monomer sites through the free propagator. The collection of

monomer sites can be thought of as a fermion bag, within which fermions can hop.

Fig. (3.1) shows this view point.

For completeness, we list expressions similar to Eq. (3.23) for some important

observables. The four-point condensate ρm defined in Eq. (3.15) is simply the density

of monomer sites. For each monomer configuration C, the contribution to ρm is given

by

ρmpCq “
k

V
(3.24)

where k “ neven ` nodd is the total number of monomers in the configuration. Two

other important observables of interest are the bosonic and fermionic correlators

defined in Eqs. (3.11) and (3.14). For the order parameter O0
a,b in Eq. (3.10a), we list

expressions for the two independent bosonic correlators C1px, yq “ xψx,1ψx,2ψy,1ψy,2y,

C2px, yq “ xψx,1ψx,2ψy,3ψy,4y and the fermionic correlator F1px, yq “ xψx,1ψy,1y. It

can be shown that the correlators C1px, yq and F1px, yq can get non-zero contributions

only when neven “ nodd and the sites x and y have opposite site-parity i.e. one is

odd and the other even. The contribution to these quantities in the configuration C

is given by

C1px, yqC “ Uk
pDetAq4 pDetW1q

2
pDetW0q

2
{Z

F1px, yqC “ σf U
k
pDetAq4 pDetW1qpDetW0q

3
{Z

(3.25)

where W0 is the propagator matrix connecting every even monomer site to every odd

monomer site in the configuration, W1 is the matrix obtained from W0 by adding

an extra column and row corresponding to the source sites x and y and σf is a sign
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Figure 3.2: Fermion bag configurations with the circles indicating the presence
of monomers. In the strong coupling picture, when there are very few free sites,
observables can be expressed in terms of the staggered matrix elements between free
sites. The fermions in a bag of free sites can only hop within the bag.

factor that depends on the ordering of the sites in W0 and W1. W0 has dimensions

nodd ˆ neven, while W1 has dimensions pnodd ` 1q ˆ pneven ` 1q. The expression for

C2px, yq is a bit more complicated and we discuss this in Section 4.7.

3.4.2 Strong coupling approach

In this approach, we perform the Grassmann integral over the monomer terms first.

Using the relation in Eq. (3.22), we can express the partition function in Eq. (3.18)

in terms of a smaller reduced staggered matrix Ã as

ZpCq “ Uk
´

DetÃ
¯4

, (3.26)

where Ã is the sub-matrix of A obtained by including only the rows and columns

corresponding to the free sites. It has dimensions pV´kq
2

ˆ
pV´kq

2
.

For large values of the coupling, configurations with large number of monomers

are enhanced due to the presence of the term Uk in Eq. (3.18). Since k is large,

computations using Eq. (3.23) are cumbersome. However in this limit, the number of
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free sites pV ´ kq is small and hence the configuration weights are easier to compute

using Eq. (3.26). In this picture, the fermions can be thought of as hopping within

the set of free sites. Fig. (3.2) shows this limit.

Since the matrix Ã connects only nearest-neighbors, when the lattice is discon-

nected into many regions of free sites, then Ã has a special property. It is block-

diagonal with each block corresponding to a set of connected points. This is equiva-

lent to the view point that fermions can hop only within a fermion bag. This property

is crucial in arguing for the presence of the PMS phase and we will come back to

this later.

To summarize, in the fermion bag approach, the partition function can be ex-

pressed as a sum over determinants of fermion matrices that depend on the monomer

configurations in two different but equivalent ways. All correlation functions can also

be expressed in a similar manner. As we will explain in the next chapter, since it is

not practically possible to compute the exact sum, we will use Monte Carlo methods

to estimate the observables.

3.5 Fermion Bags at strong couplings

The Fermion Bag approach also gives us an intuitive understanding of the PMS

phase. It can be argued that all fermionic and bosonic correlators decay exponentially

at large U . First, let us consider the fermionic correlator F1px, yq. In the strong

coupling picture, it can be written as

F1px, yq “ xψx,1ψy,1y

“
1

Z

ÿ

rms

UkDetpÃq4Ã´1
x,y (3.27)

where Ã has been defined in Eq. (3.26) and the sum is over all monomer configura-

tions. Since the matrix A is block diagonal as discussed in Section 3.4.2, Ã is also
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block diagonal. Hence, its inverse is also block diagonal. As a result, Ã´1
x,y is zero if

x and y belong to different fermion bags. Hence the fermionic correlator gets zero

contributions from configurations if the source points are placed in different bags, as

shown in Fig. (3.3).

Now, let us understand the behavior of the bosonic correlator C1px, yq at strong

couplings. Consider a fermion bag configuration with four disconnected fermion bags

in the strong coupling approach. The matrix Ã that links the free even and odd sites,

will be block-diagonal with the form shown below.

Ã “

bag1 bag2 bag3 bag4

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

bag1 B1 0 0 0

bag2 0 B2 0 0

bag3 0 0 B3 0

bag4 0 0 0 B4

(3.28)

The contribution of this configuration to the bosonic correlator C1px, yq is given by

C1px, yqC “ xψx,1ψx,2ψy,1ψy,2yC

“
1

Z
Uk
pDetÃ1q

2
pDetÃq

2
(3.29)

where x and y are the source points. These have to be free sites with opposite parity

and without loss of generality, we can assume x to be even and y to be odd. The

matrix Ã1 is obtained from Ã by removing one row and one column corresponding

to the source points x and y. Since Ã given in Eq. (3.28) is block diagonal, Ã1 will

also be block diagonal. In Eq. (3.29), the fermion flavors 1 and 2 contribute a factor

DetÃ1 each, while flavors 3 and 4 contribute a factor DetÃ. The matrix Ã1 can be
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written in the form

Ã1 “

bag1 bag2 bag3 bag4

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

bag1 B
1

1 0 0 0

bag2 0 B
1

2 0 0

bag3 0 0 B
1

3 0

bag4 0 0 0 B
1

4

(3.30)

Here, the block matrices Bi
1 are obtained from the matrices Bi in the following

way. If the block Bi contains the row corresponding to the even site x, Bi
1 will

be obtained from Bi by removing that row. Similarly, if the block Bi contains the

column corresponding to the site y, Bi
1 will be obtained from Bi by removing that

column. For all blocks Bi that contain neither x nor y, Bi
1 will be the same as Bi.

The determinant of both Ã and Ã1 can be written as

DetÃ “ DetpB1q ˆDetpB2q ˆDetpB3q ˆDetpB4q (3.31)

DetÃ1 “ DetpB11q ˆDetpB
1
2q ˆDetpB

1
3q ˆDetpB

1
4q. (3.32)

Using the Leibniz formula for the determinant of a matrix [45], it can be argued

that in a block diagonal matrix, even if a single block is not a square matrix, the

determinant of the matrix is zero. Hence, for the right hand side in Eq. (3.29) to

be non-zero, each of the blocks Bi and B1i must be square matrices. It is easy to

argue that unless both x and y belong to the same bag, determinant of either A or

Ã1 will be zero. A similar argument can be used for the correlator C2px, yq. Thus,

all contributions with the source points x and y in different bags as shown in Fig.

(3.3), give zero contributions to correlators F1px, yq and C1px, yq and C2px, yq.

Since the bosonic and fermionic correlators get zero contributions from discon-

nected fermion bags, for a configuration to give a non-zero contribution to the corre-
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Figure 3.3: Fermion bag configuration with the source points (denoted by stars) in
disconnected bags. In the strong coupling limit, such monomer configurations give a
null contribution.

Figure 3.4: Fermion bag configuration with both the source points (denoted by
stars) in the same fermion bag. In the strong coupling limit, the leading contribution
comes from such configurations.

37



lators, there must be a path of free sites connecting the two source points x and y as

shown in Fig. (3.4). In the limit |x ´ y| Ñ 8 , the contributions of such configura-

tions to the bosonic and fermionic correlators have the form U´px´yq “ e´px´yq lnpUq.

Thus, in the large U limit all correlators will decay exponentially.

We will now argue that all correlators of the form Cpx, yq “ xOxOyy defined in

Eq. (3.11) have the same behavior. The argument used in the previous paragraph

for the order parameter O0 in Eq. (3.10) can also applied to O2A and O2B . But, the

correlators of O1 and O3 can get contributions from configurations with source points

in two different bags. However, in these cases we can argue that such contributions

from fermion bag configurations that are related by symmetry transformations will

cancel each other when the fermion bags are far separated.

Thus, all correlators decay exponentially in the limit of large U . Based on the

argument in Section 3.3, the exponential decay of the fermionic correlator F1px, yq at

large U implies the existence of massive fermions. In addition, the exponential decay

of all bosonic correlators Cpx, yq implies the absence of fermion bilinear condensates.

This massive symmetric phase at strong couplings is the PMS phase.

Thus, the phase diagram has a massless PMW phase at weak couplings and a

massive PMS phase at strong couplings. This implies that a phase transition from

the massless to the massive phase must occur somewhere in between. Our aim is to

study this intermediate region to look one or more phase transitions.
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4

Monte-Carlo methods

In the previous chapter we explained how the Fermion bag approach helps us express

all observables of interest as a classical statistical mechanics problem. The next step

is to compute these expressions numerically for finite lattice systems. However,

the exact answer involves a sum over an exponentially large number of terms. For

example, on a lattice with V sites, the sum involves 2V terms. Even for a 43 lattice,

this involves about 1019 terms. Since the exact sum cannot be practically computed,

one needs alternative ways to perform the sum. Thanks to powerful computers

today, such calculations can be done efficiently using Monte Carlo methods [46], by

employing the idea of importance sampling [47, 48].

4.1 Importance Sampling

Although the configuration space is exponentially large, in statistical mechanics, only

a very small subset of these configurations are important. Importance sampling is

a technique to sample such distributions using a simpler distribution. Consider a

statistical mechanics system with partition function Z. The general form of the
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expectation value of an observable for this system can be written in the form

xÔy “
1

Z

ÿ

C

OpCq “

ř

C OpCq
ř

CW pCq
(4.1)

where both Ô and Z have been expressed as a sum of terms over the configurations

C. W pCq is the Boltzmann weight of the configuration C. We can express the

numerator in Eq. (4.1) in terms of W pCq, to get :

xÔy “

ř

C ÕpCqW pCq
ř

CW pCq
(4.2)

where ÕpCq “ OpCq
W pCq

. If we sample configurations according to the Boltzmann weight

W pCq and compute ÕpCq for that sample, then the resulting average of this sample

would be a good estimate of xÔy, if the distribution functions of O and Z behave

in a similar manner. By increasing the sample size, we can systematically reduce

the errors. This is the concept of Importance Sampling. However, if there exist

configurations C 1 for which OpC 1q is large but W pC 1q is small, then the sampling

method will not be effective. For example, if there exist configurations for which

W pC 1q “ 0 but OpC 1q ‰ 0, then such configurations will never be sampled and the

sampled sum will not be correct. Such problems can sometimes be seen as large

fluctuations in the value of observables in the sampled configurations.

4.1.1 Sign Problems

It is not always possible to use importance sampling while studying quantum sta-

tistical mechanics problems. The barrier comes in the form of negative or complex

Boltzmann weights, which is referred to as the Sign Problem. In these cases, the

concept of probability is not clearly defined and the sampling process cannot be per-

formed. Even if the sampling is performed using the absolute values of the Boltzmann
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weights, the negative signs cause large fluctuations rendering the sampling process in-

effective. One way to solve sign problems is to find a representation or re-summation

of the partition function so that all configuration weights are non-negative. Solving

sign problems is an interesting area of research. Some solutions have emerged in the

Fermion Bag approach [41, 49] discussed before in Section 3.4 and the Meron cluster

method [50, 51, 52]. Other methods that have been tried to solve the sign problem

include the Complex Langevin method [53], Lefschetz thimbles [54], Density of states

[55] [56], etc. Our model does not suffer from sign problems and the Fermion Bag

approach makes this very explicit. As we showed in Eq. (3.23), the configuration

weights can be expressed as a fourth-power of the determinant of real matrices and

hence they are all positive.

4.2 Update algorithms

For a system without a sign problem, we can generate configurations distributed ac-

cording to their Boltzmann weights and use them to compute observables. To sample

configurations with the correct distribution, we have to design update algorithms.

Efficient algorithms enable us to move around in configuration space quickly in what

is called simulation time τ .

Update algorithms are constructed through a transition probability, that must

satisfy two important conditions. Let C be the current configuration and C 1 be

the target configuration. The transition probability P pC Ñ C 1q is defined as the

probability to move from C to C 1. The two conditions the transition probability

matrix must satisfy are:

1. Detailed Balance

If W pCq and W pC 1q represent the configuration weights of configurations C
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and C 1, then the condition of detailed balance is given by

W pCqP pC Ñ C 1q “ W pC 1qP pC 1 Ñ Cq (4.3)

2. Ergodicity

The transition probability matrix is said to be ergodic if it allows one to reach

every configuration, starting from any configuration. In other words, the up-

date algorithm must keep the configuration space connected.

Detailed balance and ergodicity ensure that configurations obtained after suf-

ficiently many steps are sampled appropriately according to the Boltzmann

weight of the configurations. Practical Monte-Carlo algorithms often involve

multiple algorithms that are implemented in sequence. As long as the condi-

tion of detailed balance is obeyed by each algorithm and ergodicity is obtained

due to all the algorithms working together, correct sampling can be achieved.

4.3 Autocorrelation and Equilibriation

Since it is difficult to design update algorithms that satisfy detailed balance when

configurations change by a large amount, most updates have proposal functions that

modify the configurations by small amounts. As a result, successive configurations

are highly correlated and hence do not serve as independent samples. On the other

hand, the error in an observable can only be reduced when many uncorrelated con-

figurations can be generated. An update algorithm is considered efficient when many

independent configurations can be generated quickly. The efficiency of update algo-

rithms can be quantified using the concepts of equilibriation time and autocorre-

lation time.

Autocorrelation is a measure of the correlation among a sequence of configurations

as computed through the values of observables as a function of simulation time.
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Consider an observable O that assumes the value Oτ at the simulation time τ . The

autocorrelation Aptq between observable values separated by time t is defined as

At “
xpOt`τ ´ µq pOτ ´ µqyτ

xpOτ ´ µq2yτ
(4.4)

where µ “ xOyτ “
řN´1
τ“0

Oτ
N

is the average of the sample and N is the sample

size, which is assumed to be large. Typically, the autocorrelation function decays as

ep´t{τautq for large times t, where τaut is defined as the autocorrelation time. However,

a practical definition of the autocorrelation time is the time taken for the autocorre-

lation function to approach zero within errors.

The first independent configuration is usually obtained with an update algorithm,

by starting from some initial configuration that is not part of the representative

sample. During this process, many transient configurations are generated until the

system thermalizes. This is known as Equilibriation. The time taken to thermalize is

called Equilibriation time. The configurations obtained before the system thermalizes

are not representative of the actual distribution and hence need to be discarded. For

example, if we start from a configuration with no monomers and perform a series

of updates for a non-zero U , the initial configurations will have very few monomers.

These will not be representatives of the actual distribution and hence need to be

discarded.

4.4 Standard update algorithms

As mentioned earlier, a complete Monte-Carlo update involves multiple update al-

gorithms that are impelemented in sequence. Although the choice of these updates

is dependent on the physical system, there are some standard procedures used to

construct them. We describe two of the most popular ones below [57].

The Metropolis algorithm is one of the most widely used algorithms. The
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transition probability P pC Ñ C 1q in a Metropolis algorithm consists of two parts,

a proposal function, which is a rule to propose a new configuration and an accep-

tance function, which either accepts the target configuration or retains the original

configuration. This can be written as

P pC Ñ C 1q “ ppC Ñ C 1q apC Ñ C 1q (4.5)

where ppC Ñ C 1q and apC Ñ C 1q represent the proposal and acceptance functions for

the move from configurations C to C 1. The acceptance function for the Metropolis

algorithm is given by :

apC Ñ C 1q “ min

ˆ

1,
ppC 1 Ñ Cq

ppC Ñ C 1q

W pC 1q

W pCq

˙

(4.6)

apC 1 Ñ Cq “ min

ˆ

1,
ppC Ñ C 1q

ppC 1 Ñ Cq

W pCq

W pC 1q

˙

(4.7)

where W pCq and W pC 1q are the configuration weights for configurations C and C 1 re-

spectively. A careful choice of the proposal function p can help improve the efficiency

of the Metropolis algorithm.

Another commonly used algorithm is the Heat-bath algorithm. In the heat-bath

algorithm, instead of looking at just one target configuration, we look at a small set

of target configurations. Let tC1 ... Cnu be a set of n target configurations. In the

heat bath update, the target configuration is chosen from this set according to the

transition probability given by

P pCi Ñ Cf q “

ˆ

W pCf q
řn
t“1W pCtq

˙

, (4.8)

where Ci and Cf represent the initial and final configurations. Thus a heat-bath

update has no memory of the previous configuration, at least within the chosen set.
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4.5 Fermion bag updates

In our first paper [35], we performed calculations on lattices up to size 283 using three

different and independent update algorithms. These updates have been explained

in detail in that paper. In order to perform computations on larger lattices, we

developed a new set of more efficient algorithms. In this section, we briefly describe

these latter update algorithms. In particular we will discuss two different update

algorithms that we use.

First, we discuss some notation. As mentioned earlier, lattice sites are defined

according to their site-parity as odd (εx “ ´1) or even (εx “ `1). Lattice sites are

defined according to their filling state as filled when the site contains a monomer

(mx “ 1) or empty if the site does not contain a monomer (mx “ 0). The nearest-

neigbors of a lattice site are the set of sites at a distance of one lattice unit from

the original site. The next-nearest-neighbors of a lattice site are the set of sites at a

distance of
?

2 lattice units. For example in 3D, each site has 6 nearest-neighbors and

12 next-neighbors. Two sites are defined to be compatible if either of the following

conditions are met:

a: They have the same site-parity but different filling.

b: They have different site-parities but the same filling.

For example, two even sites are compatible if and only if one is a monomer and the

other is a free site.

4.5.1 Worm algorithm with heat-bath

The first update algorithm that we discuss is a worm algorithm with a heat-bath

acceptance condition. The worm update starts at a lattice site, moves around the

lattice while changing monomers on the sites it visits. Like other worm algorithms
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[58, 59], this method is very efficient in propagating a local change around the lattice.

We have designed two forms of this algorithm:

A) Complete monomer update

In this update, while the worm moves around, it adds and removes monomers

and also moves them around. The steps involved are:

Step 1 Choose a site at random that has at least one compatible neighbor (either

nearest or next-nearest) and introduce a worm head on that site. This

starts the worm update.

Step 2 With probability Pquit, the head on the site is removed and the worm

update ends. Otherwise the algorithm moves on to step 3.

Step 3 Pick a neighbor site at random and check if the two points are compatible.

If the answer is no, do nothing and go to step 2. Otherwise, propose

flipping the filling state of both sites and go to step 4. For two sites with

the same filling, this can add or subtract two monomers from both sites.

For two sites with different filling, this can move an existing monomer

around.

Step 4 Perform a heat bath update with transition probability P pCold Ñ Cnewq “

Wnew

Wnew`Wold
and P pCold Ñ Coldq “

Wold

Wnew`Wold
.

Step 5 If the new configuration is accepted, then move the worm head to the new

neighbor. If the older configuration is retained, then keep the worm head

at the same point. Now return to step 2.

This algorithm is ergodic and hence it is sufficient to implement the sampling.

However, empirical evidence suggests that its efficiency is not as high as the

other algorithms we discuss below.
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B) Monomer move update

In this update, as the worm moves, only the existing monomers are moved

around and the monomer number remains unchanged. The steps involved are:

Step 1 Choose a monomer site at random that has at least one next-nearest free

site and use that as the worm head. This starts the worm update.

Step 2 With probability Pquit, the head on the site is removed and the worm

update ends. Otherwise the algorithm moves on to step 3.

Step 3 Pick a next-neighbor site at random and check if the two points are com-

patible. If the answer is no, do nothing and return to step 2. Otherwise,

propose flipping the filling state of both sites and go to step 4. This

becomes a proposal to move an existing monomer.

Step 4 Perform a heat bath update with transition probability P pCold Ñ Cnewq “

Wnew

Wnew`Wold
and P pCold Ñ Coldq “

Wold

Wnew`Wold
.

Step 5 If the new configuration is accepted, then move the worm head to the new

neighbor. If the older configuration is retained, then keep the worm head

at the same point. Now return to step 2.

This algorithm is not ergodic and needs to be combined with another algorithm

to sample configurations correctly. However, it is very efficient at making

quick global changes to the configurations, without altering the total monomer

number.

4.5.2 Enhanced Metropolis update

This update modifies the monomer configurations using a Metropolis update that

takes into account the number of allowed sites where the updates can be made.

This additional global information helps in enhancing the acceptance probabilities.
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Although each update is local, the use of the global information makes it efficient.

We designed two forms of this algorithm as given below:

A) Monomer add-remove update

This method creates and destroys monomers on the lattice. The steps involved

are:

Step 1 Compute all possible pairs of nearest-neighbor sites that are compatible

and store them.

Step 2 With a probability of half, choose to either add or subtract monomers.

Accordingly, pick a pair of compatible sites at random and propose a new

configuration obtained by flipping the filling of the two sites. This has the

effect of adding or removing 2 monomers. For example, if the two sites

have monomers initially, they will become free sites after the flip.

Step 3 Use a Metropolis update to accept or reject the new configuration with

probability given by

P “
Ninitial

Nfinal

Wfinal

Winitial

where Winitial is the weight of the initial configuration Cinitial and Ninitial is

the number of possible compatible sites for adding (removing) monomers

from Cinitial, while Wfinal is the weight of the final configuration Cfinal and

Nfinal is the number of possible compatible sites for the reverse process

of removing (adding) monomers from Cfinal. For example, while adding

monomers, Ninitial is the number of compatible pairs of free sites in Cinitial

while Nfinal is the number of compatible monomer pairs in Cfinal.

Step 4 If the flip is accepted, modify the monomer configuration.

This update is ergodic and is very effective in decreasing the equilibriation
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time, due to a large value of the ratio Ninitial{Nfinal at weak couplings. It is

repeated a fixed number of times.

B) Monomer move update

This method moves existing monomers around on the lattice. The steps in-

volved are:

Step 1 Compute all possible pairs of next-nearest-neighbor sites that are com-

patible and store them.

Step 2 Pick a pair of these at random and propose a new configuration obtained

by flipping the filling of the two sites. This has the effect of moving a

monomer.

Step 3 Use a Metropolis update to accept or reject the new configuration with

probability given by

P “
Ninitial

Nfinal

Wfinal

Winitial

where Ninitial is the number of possible compatible sites and Winitial is the

configuration weight of the initial configuration Cinitial, while Nfinal and

Wfinal are similar quantities for the final configuration Cfinal.

Step 4 If the flip is accepted, modify the monomer configuration.

This algorithm is not ergodic and hence needs to be combined with another

algorithm to achieve ergodicity. It is repeated a fixed number of times.

It can be shown that all the algorithms discussed above satisfy detailed balance.

In the testing phase, we found that the add-remove monomer part of the Metropolis

update had the best acceptance ratio while the monomer move part of the Heat-bath

update was the most economical in terms of computational cost since it made fast
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Figure 4.1: This figure shows the a plot of the autocorrelation for the observable
ρm for a lattice of size L=28 at U=0.95. The errors have been obtained using 10
parallel runs, each having 2000 sweeps. The autocorrelation time is seen to be roughly
10 sweeps.

global changes with minimal modifications. Hence, for actual data-runs, we used

only these 2 algorithms.

4.6 A Monte-Carlo sweep

A Monte-Carlo sweep is defined as a set of updates on the entire lattice such that the

configuration obtained after these updates is significantly different from the original

configuration. To define a sweep, we divided the lattice into blocks and performed up-

dates within the block. By repeating this process multiple times on many randomly

selected blocks, we updated the entire lattice. If Bvol is the volume of the block used

for update, then we define a block update as a set of Bvol{20 monomer-move heat-bath

updates and another Bvol{3 monomer add-remove Metropolis updates. A sweep is

then defined as a set of
´

V
Bvol

` 1
¯

such block updates performed on randomly chosen

blocks of the lattice.
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Figure 4.2: The two figures show the behavior of the observable ρm in simulation
time for sequential runs starting with 0 monomers at U “ 0.95, for the lattice sizes
L=44 and L=60. The top figure shows the entire run, while the bottom figure shows
the first 30 sweeps. The system seems to thermalize within the first 30 sweeps. But,
to be conservative, we take the equilibriation time to be 50 sweeps. Note that the
number of sweeps need for equilibriation does not seem to depend on the lattice size.
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We have found that the above definition of the sweep gives us an autocorrelation

of about 10 sweeps for the monomer density close to the transition. Fig. (4.1) shows

the autocorrelation for one sequential run for the observable ρm. From the graph, we

see that the auto-correlation time is roughly 10 sweeps. Hence, we strive to keep at

least 100 sweeps of data before we compute our results from a single sequential run.

This ensures at least 10 independent configurations from each sequential run. We

also run these simulations in parallel on different computing nodes. With N nodes,

we can obtain about 10N independent configurations. In our case, N is of the order

of 100.

In order to estimate the number of sweeps needed for equilibriating a random

configuration, we plot the variation of the observable ρm for a coupling U “ 0.95 for

the lattice sizes L “ 44 and L “ 60 in Fig. (4.2). It can be seen that, the system

seems to thermalize within the first 50 sweeps for both lattices. Typically, we take

equilibriation to be at least 50 sweeps.

All our computations were performed using the Open Science Grid (OSG) [60, 61]

and the local Duke cluster. We obtained data for a range of couplings and lattice

sizes. In 3D, a calculation on a 60 ˆ 60 ˆ 60 lattice at the coupling U “ 0.95 took

about 19700 seconds per sweep and needed a peak memory of about 7GB, while the

same for a 40ˆ40ˆ40 lattice took about 1400 seconds per sweep and needed a peak

memory of about 1.2 GB.

4.7 Reducing fluctuations

In this section, we present some technical details of our computation that help in

reducing fluctuations in observables. Observables obtained using the importance

sampling procedure described in Eq. (4.2) often show large fluctuations in sample

values. One way to decrease fluctuations is to compute observables for pairs of con-

figurations and average them to create what are referred to as Improved Estimators
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that show less fluctuations. In this work, we use such a technique and we describe

this procedure below. The expression for the expectation value of an observable Ô

given in Eq. (4.1) can also be written as

xÔy “

ř

C OpCq
ř

CW pCq

“

ř

C

!

1
2
OpCq`OpC1q
W pCq`W pC1q

)

W pCq
ř

CW pCq

(4.9)

where we assume there is an invertible mapping from C to a unique configuration

C 1 and W pCq , W pC 1q represent configuration weights of these two configurations

and OpCq and OpC 1q represent the values of the observable in them. The sum is

over all configurations which includes C and C 1. Being an average, the quantity

Õ “ 1
2
OpCq`OpC1q
W pCq`W pC1q

typically has lesser fluctuations. If we estimate the observable

through this improved estimator Õ, we should see reduced errors.

We apply this technique to our model and give expressions for the improved

estimators of the observables C1px, yq, C2px, yq and F1px, yq. Consider a configuration

C with 2k monomers. As explained before, for the configuration to have a non-zero

contribution to the partition function, there should be an equal number of even and

odd monomers. Let x and y be two free sites such that x is odd and y is even. Let

C 1 be the unique configuration obtained by flipping monomers at x and y. From Eq.

(3.23), the configuration weights of C and C 1 are given by

W pCq “ DetpAq4U2kDetpW0q
4

W pC 1q “ DetpAq4U2k`2DetpW1q
4

(4.10)

where W0 is the propagator matrix of size kˆ k connecting even and odd monomers

of C and W1 is obtained from W0 by adding one row and one column corresponding
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to the addition of monomers at sites x and y. W0 and W1 will have the form:

W0 “

»

—

—

—

–

w1,1 w1,2 ¨ ¨ ¨ w1,k

w2,1 w2,2 ¨ ¨ ¨ w2,k
...

. . .
...

wk,1 wk,2 ¨ ¨ ¨ wk,k

fi

ffi

ffi

ffi

fl

(4.11)

W1 “

»

—

—

—

—

—

–

w1,1 w1,2 ¨ ¨ ¨ w1,k w1,y

w2,1 w2,2 ¨ ¨ ¨ w2,k w2,y
...

. . .
...

...
wk,1 wk,2 ¨ ¨ ¨ wk,k wk,y
wx,1 wx,2 ¨ ¨ ¨ wx,k wx,y

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.12)

where wi,j corresponds to the propagator between the ith odd site and the jth even

site. First, let us write an expression for the improved estimator of the bosonic

correlator C1px, yq “ xψx,1ψx,2ψy,1ψy,2y. This observable can be obtained from C by

inserting the fields ψ1 and ψ2 in the integrand of the partition function at the source

points x and y. It can also be obtained from C 1 by removing the fields ψ3 and ψ4

from the integrand of the partition function at x and y. Its value in both C and C 1

is the same and is given by:

C1px, yqpCq “ C1px, yqpC1q “ DetpAq4U2kDetpW0q
2DetpW1q

2 (4.13)

Substituting this in Eq. (4.9), the improved estimator for C1px, yq in configurations

C and C 1 is given by

C̃1px, yqpC,C1q “
w2

1` U2w4
(4.14)

where w “ DetW1

DetW0
. Similarly, for the fermionic correlator F1px, yq “ xψx,1ψy,2y, the

values in C and C 1 are given by

F1px, yqpCq “ F1px, yqpC1q “ σfDetpAq
4U2k detpW0q

3 detpW1q (4.15)
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where σf is the sign factor that we encountered in Eq. (3.25). Substituting this in

Eq. (4.9), the improved estimator for F1px, yq in configurations C and C 1 is given by

F̃ px, yqpC,C1q “ σf
w

1` U2w4 (4.16)

The computation of the bosonic correlator C2px, yq “ xψx,1ψx,2ψy,3ψy,4y is a bit

more subtle. It can get non-zero contributions only when both x and y have the

same site-parity i.e., both are odd or both are even. Let configuration C have 2k

monomers with the site x among them. Let configuration C 1 also have 2k monomers

with the monomer at site x being replaced by y. Assuming both x and y are odd,

we choose to move the sites x and y to the last row in the computation of the matrix

W for each reduced staggered flavor. Then the two matrices W1 (contaning the ψ

field at x) and W2 (contaning the ψ field at y) are given by

W1 “

»

—

—

—

—

—

–

w1,1 w1,2 ¨ ¨ ¨ w1,k´1 w1,k

w2,1 w2,2 ¨ ¨ ¨ w2,k´1 w2,k
...

. . .
...

...
wk´1,1 wk´1,2 ¨ ¨ ¨ wk´1,k´1 wk´1,k

wx,1 wx,2 ¨ ¨ ¨ wx,k´1 wx,k

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.17)

W2 “

»

—

—

—

—

—

–

w1,1 w1,2 ¨ ¨ ¨ w1,k´1 w1,k

w2,1 w2,2 ¨ ¨ ¨ w2,k´1 w2,k
...

. . .
...

...
wk´1,1 wk´1,2 ¨ ¨ ¨ wk´1,k´1 wk´1,k

wy,1 wy,2 ¨ ¨ ¨ wy,k´1 wy,k

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.18)

The configuration weights of C and C 1 are given by

W pCq “ DetpAq4U2k detpW1q
4

W pC 1q “ DetpAq4U2k detpW2q
4

(4.19)

The bosonic correlator C2px, yq “ xψx,1ψx,2ψy,3ψy,4y can be obtained from C by

removing the fields ψ3 and ψ4 at x and adding them at the site y in the integrand

55



of the partition function. It can also be obtained from C 1 by removing the fields ψ1

and ψ2 at y and adding them to the site x in the integrand of the partition function.

The value of this observable in both C and C 1 is given by

C2px, yqpCq “ C2px, yqpC1q “ DetpAq4U2k´1 detpW1q
2 detpW2q

2 (4.20)

Substituting these in Eq. (4.9), the improved estimator for C2px, yq in configuration

C is given by

C̃2px, yqpC,C1q “
w2

U p1` w4q
(4.21)

where w “ DetW1

DetW2
. Note that the bosonic correlators are always positive but the

fermionic correlator F1px, yq can be negative and hence will contain greater fluctua-

tions.

In addition to decreasing the fluctuations, the improved estimator serves another

purpose. Since it is a sum over 2 configurations, the improved estimator will repro-

duce the actual result only if both configurations are sampled appropriately. If the

sampling is not appropriate, the improved estimator will show large deviations from

the actual value. This helps us confirm our sampling procedure.

4.8 Fast Updates : The Background Field Method

Configuration weights in the sampling process contain matrix determinants of free

propagators connecting monomer sites in the weak coupling fermion bag picture (Eq.

(3.23)) and of the free staggered matrix connecting free sites in the strong coupling

picture (Eq. (3.26)). Hence, as we move around in configuration space, each proposal

of a new configuration involves the computation of ratios of determinants. This

ratio can be computed as an inverse of an appropriate matrix, which takes OpN2q

operations for an N ˆ N matrix. However, this method computes the inverse from

the information of the current configuration. It does not have any memory of earlier
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configurations, and hence it does not take into account the possibility of retracement

of the path in configuration space. In such cases, the same calculation may be

repeated several times, resulting in a waste of computing cycles. In our work, we

have developed a new technique that is capable of reducing the computing time when

there is retracement. The idea is to view every new configuration as a perturbation

about an initial background configuration. Using the idea of computing Feynman

diagrams in a background field configuration, we can compute the weights of all

possible perturbations of the background configuration at the beginning and store

them. Using this information, we can compute configuration weights and observables

for any perturbation as a determinant of a matrix whose size scales with the size of

the perturbation. In particular, when there is a retracement of configurations, the

size of the perturbation does not increase. We illustrate this idea below.

Let us consider a background configuration C0 with equal number of even and

odd monomers sites m. A configuration update involves adding and removing some

monomers to obtain a new configuration C1 which should also contain an equal

number of odd and even monomers. Let the configuration C1 be obtained from C0,

by removing the odd and even monomer sites ras and rbs respectively and adding

new monomers at the odd and even free sites rcs and rds. Let the sizes of the sets

ras, rbs, rcs, rds be a, b, c, d respectively. Let W0 and W1 be the propagator matrices

connecting odd and even monomer sites corresponding to configurations C0 and C1.

Hence, W0 has dimensionsmˆm andW1 has dimensions pm´a`cqˆpm´b`dq. Since

the configuration weights are functions of determinants of the propagator matrices

connecting the monomers in the weak coupling approach as seen in Eq. (3.23), it is

clear that the ratio of the configuration weights of C1 and C0 is related to the ratio

of the determinants of W0 and W1. It can be shown that this ratio is given by

DetpW1q{DetpW0q “ DetpW 1
qσ (4.22)
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where σ is a sign factor that cancels in our computations since the determinants

appear only as squares. W 1 is a pb` cq ˆ pa` dq matrix defined as

W 1
“

Ð a Ñ Ð d Ñ
¨

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‚

Ò

b ´Winv1 Winv2 C
Ó

Ò

c B Winv3 D ´B W´1
0 C

Ó

(4.23)

where W´1
0 is the inverse of the matrix W0 and Winv1,Winv2,Winv3 are sub-matrices

of W´1
0 connecting the removed monomers and added monomers. For example,

Winv2 has dimensions of pbˆmq and connects the removed b even monomer sites to

the original m odd monomer sites. The matrices B,C,D are propagator matrices

connecting the newly added monomer sites with the old monomer sites. For example,

the matrix B has dimensions pcˆmq and connects the newly added c odd monomer

sites with the original m even monomer sites. Refer to Appendix D for a more general

discussion.

Thus, the ratio of the configuration weight of any new configuration C1 to the

weight of the background configuration can be obtained by computing the deter-

minant of W 1. Now, by allowing ras and rbs to include all odd and even monomer

sites and rcs and rds to include all odd and even free sites, we can compute the

corresponding matrix W 1 in Eq. (4.23). Let us call this W 1
master. It is clear that

any sub-matrix of W 1
master corresponds to the matrix W 1 in Eq. (4.23) for a cer-

tain perturbation about the background configuration and the configuration weight

ratio can be obtained by computing the determinant of this sub-matrix W 1. Thus,

W 1
master contains the information to compute the ratio of configuration weight for

all possible new configurations with respect to the background configuration. Thus,

starting from a given background configuration C0, we first need to compute W´1
0 ,
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whose computation time scales as OpN3q [62]. Using this we can compute the matrix

W 1
master and store it. The ratio of the configuration weight of any new configuration

to the configuration weight of C0 can be obtained by computing the determinant of

the corresponding sub-matrix W 1 of W 1
master. Hence, the time for subsequent updates

now scales as Opn3q, where n “ pa` b` c` dq is assumed to be small. As we move

around in configuration space, n increases. Once it becomes sufficiently large, we

can reset the background configuration and recompute the matrix W 1
master using a

method that scales as OpN2q. The real advantage of this method comes from the

fact that a retracement of the path in configuration space does not increase n. For

example, while a monomer is being moved from one end of the lattice to the other

through a series of updates, n is always two. We have empirical proof that this

method is very efficient.

In addition to the update, the elements of W 1
master can also be used to compute

the observables through Eqs. (4.14,4.16,4.21). For example, every element in the

matrix D ´ BW´1
0 C in the lower right block of W 1 in Eq. (4.23) gives the weight

ratio for an update that involves the addition of an even and an odd monomer, while

every element of the matrix ´Winv1 in the upper left block of W 1 gives the same for

the removal of an even monomer and an odd monomer. Thus, these correspond to

the ratio w appearing in Eqs. (4.14,4.16) for the observables C1 and F1. Similarly,

every element of the matrix B Winv3 in the lower left block of W 1 gives the weight

ratio for moving an even monomer from an existing site to a new site and every

element of Winv2 C in the upper right block of W 1 gives the ratio for moving an odd

monomer to a new site. These are the elements appearing as w in Eq. (4.21) for

the observable C2. A similar fast computational scheme can be formulated in the

strong coupling limit using the free staggered matrix connecting free sites instead of

the propagator matrix connecting monomer sites.

One drawback of this method is the large memory required to store the matrix
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W 1
master. For example, for a lattice of size 40 ˆ 40 ˆ 40, this matrix has a size of

roughly 32000 ˆ 32000. Storing such a large matrix requires about 8 gigabytes of

memory. To make calculations more amenable, we divide the lattice into sub-blocks

of volume roughly 203 as discussed at the end of in Section 4.5. Using this technique,

we have been able to perform computations on lattices upto size 603. Calculations

on such large lattices with exactly massless fermions are unprecedented.
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5

Results: 3D

In Chapter 3 we introduced a lattice four-fermion model through the action described

in Eq. (3.1) and argued that, the model contains a massless fermion (PMW) phase

at weak couplings and a massive fermion (PMS) phase at strong couplings. No

spontaneous symmetry breaking of any lattice symmetries occurs at strong couplings.

In this chapter, we present results in 3D at intermediate couplings obtained using

the Monte Carlo methods discussed in Chapter 4 and argue for the presence of a

direct second order PMW-PMS phase transition.

5.1 Observables and finite size scaling

In order to explore the physics of our model, we focus on the following observables.

• Average monomer density:

ρm “
U

V

ÿ

x

xψx,1ψx,2ψx,3ψx,4y (5.1)
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• Bosonic correlators:

C1px, yq “ xψx,1ψx,2ψy,1ψy,2y (5.2)

C2px, yq “ xψx,1ψx,2ψy,3ψy,4y (5.3)

• Bosonic Susceptibilites:

χ1 “
1

2

ÿ

x

xψ0,1ψ0,2ψx,1ψx,2y (5.4)

χ2 “
1

2

ÿ

x

xψ0,1ψ0,2ψx,3ψx,4y (5.5)

Below, we discuss the expected finite size scaling of these observables in different

phases.

5.1.1 Scaling in free theory

First we consider the expected scaling of the observables in the free theory. Here

we can obtain the results using simple dimensional analysis. Generalizing the con-

tinuum free fermionic action given in Eq. (2.8) to d dimensions, it is clear that the

fermion field ψ has a mass dimensions pd´1q{2. Hence, the long distance correlation

functions C1p0, L{2 ´ 1q and C2p0, L{2q that contain 4 fermion fields should have

mass dimensions 2pd´ 1q. Assuming that the only scale in the problem is the length

of the box L, one expects

Ca „ L´2pd´1q (5.6)

for a “ 1, 2. The susceptibilities are obtained by integrating the correlation func-

tions over the space-time volume. However in 3D and 4D, since the correlations

decay sufficiently rapidly at large distances, the susceptibilities χ1 and χ2 will be in-

dependent of L. The corresponding observables in the lattice theory obtained upon

discretizing this continuum theory should behave similarly. The average monomer
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density vanishes in the free theory since the Boltzmann weights of a single monomer

configuration is zero.

5.1.2 Critical scaling

Assuming our model has a second order critical point at Uc, it would be useful to

understand the finite size scaling in the critical region. As we argued in Section 2.3,

the form of an observable O with length dimension p near a critical point is given by

O „ Lp g
´

pU ´ UCqL
1
ν

¯

(5.7)

where U is the coupling, gpxq is an analytic function near x “ 0 and ν is one of the

critical exponents.

However, in this critical region, the dimension p of the observable is not the

same as that in the free theory. In principle, every field in the theory gets a new

scaling dimension. Usually, in a four-fermion theory, an on site fermion bilinear term

like ψψ is thought of as a bosonic field whose scaling mass dimension is defined as

pd´2`ηq{2, where the exponent η quantifies the anomalous dimension with respect

to the free scaling dimension. In our model, due to the SUp4q symmetry, we expect

ψx,1ψx,2 and ψx,3ψx,4 to have the same scaling dimension. This means that in the

critical region, the correlators should scale as

Ca “ L´pd´2`ηqga

´

pU ´ UCqL
1
ν

¯

(5.8)

Assuming η is smaller than 2, we also obtain

χa “ L2´ηfa

´

pU ´ UCqL
1
ν

¯

(5.9)

where fa, ga for a “ 1, 2 are universal functions that are in general, different. In

contrast to the correlation functions, the leading behavior of the average monomer

density ρm is expected to be a smooth function at Uc, since it behaves like a density

and is insensitive to long range correlations.
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5.1.3 Scaling in the PMS phase

In the PMS phase, one expects massive fermions without any fermion bilinear con-

densates. This is signalled by exponentially decaying correlation functions. Hence,

the correlators and susceptibilities should scale as

Ca „ e´mpUqL (5.10)

χa „ Constant (5.11)

where a “ 1, 2 and mpUq is the mass of a bosonic particle that depends on U . In

the critical region, as one approaches the critical point Uc from PMS phase, the

correlation lengths diverge as discussed in Eq. (2.22). Since the mass is the inverse

of the correlation length, it should scale as

m „ pU ´ Ucq
ν (5.12)

For large couplings in the PMS phase, since configurations with more monomers are

enhanced, the average monomer density ρm should smoothly approach the value 1.

5.2 General behavior of Observables

The goal of this study is to look for one or more phase transitions between the

PMW and PMS phases. The presence of an intermediate phase will mean at least

two transitions. However, in case there is just a single transition, we wish to find

if it is second order by exploring if the observables show critical scaling. We have

performed large scale computations to calculate observables for a range of values of

the coupling U . The average monomer density ρm and susceptibilities χ1 and χ2 were

calculated in our first study [35] on lattice sizes up to L “ 28. In our second study

[63], we measured ρm, C1 and C2 on much larger lattices up to L “ 60, using a more

efficient technique discussed in Section 4.8. We first present the general behavior of

our observables as a function of the bare coupling U and lattice size L.
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Figure 5.1: Figure showing the variation of the average monomer density ρm with
coupling U for various lattice sizes. ρm does not show any discontinuity but increases
sharply near U „ 1.

We first plot the variation of the average monomer density ρm as a function of

the coupling U in Fig. (5.1). It increases smoothly with U as expected, showing a

rapid increase around U „ 1. Although it does not vanish in either phase, we believe

ρm acts as a pseudo order parameter, in the sense that it is small in the PMW phase

and large in the PMS phase. Curves for different values of L fall on top of each other

for larger lattices, indicating that finite size effects are negligible for lattices beyond

size L “ 16 for this observable.

To understand the physics of the model in more detail, we plot the variation of

the bosonic susceptibilities χ1 and χ2 with coupling U in Fig. (5.2) for various lattice

sizes. Note that for a fixed value of L, the susceptibilities increase as a function of

U , reaching a maximum somewhere near U „ 1 and then decrease again at large

couplings. The value of the peak susceptibility (χpeak) increases while the location of

the peak (Upeak) decreases with L. In order to qualitatively understand the scaling of

these susceptibilities with L, we plot these susceptibilities as a function of lattice size
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Figure 5.2: Plot of the susceptibilities χ1 and χ2 as a function of U . The suscep-
tibilities increase sharply near U „ 1 to reach a maximum and then decrease in the
strong coupling limit.
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Figure 5.3: Plot of the susceptibilities χ1 and χ2 as a function of L. The sus-
ceptibilities saturate for small (U=0.88) and large (U=1.2) couplings. The steepest
growth of χ1 and χ2 in the intermediate region is at U=1.0, where they grow as
„ L1.6. The absence of an L3 growth of the susceptibilities in the coupling space
points to the absence of SSB.
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L in Fig. (5.3). For small couplings (U “ 0.88), the susceptibilities saturate with an

increase in the lattice size, as expected in the PMW phase. For couplings close to

U “ 0.95, both susceptibilities grow linearly with the lattice size. For large couplings

(U “ 1.2), the susceptibilities again saturate, as expected in the PMS phase. The

steepest growth of the susceptibilities is near U = 1.0, where they grow as L1.6. As

indicated in Eq. (3.13), if a fermion bilinear condensate forms (i.e. xψx,1ψx,2y ‰ 0),

we expect χ1 „ L3. Thus, based on Fig. (5.3), it is quite clear that there is no

coupling where fermion bilinear condensates form. Thus, data from our first study

with L ď 28 points to a single phase transition between the PMW and PMS phases.

To explore this phase transition further, we looked at the behavior of the corre-

lators on much larger lattices. The long distance behavior of the correlators C1px, yq

and C2px, yq can be studied using the correlator ratios defined as

R1 “
C1

`

0, L
2
´ 1

˘

C1p0, 1q

R2 “
C2

`

0, L
2

˘

C2p0, 0q

(5.13)

These correlator ratios scale like the correlation functions.

Fig. (5.4) shows the behavior of these correlator ratios as a function of coupling

U for various lattice sizes. Like the susceptibilities, these ratios show a maximum

for an intermediate value of U . However, the correlator ratios decrease with lattice

size L as opposed to the susceptibilities which increase with lattice size. Fig. (5.5)

shows the behavior of the correlator ratios R1 and R2 as a function of lattice size L

for various couplings in a log-linear plot. The correlators decay as a power-law for

small (U “ 0.85) and intermediate couplings (U “ 0.95). At large couplings close

to U “ 1.03, the decay becomes exponential as e0.07L and this indicates the onset

of the massive phase at large U . At U “ 1.0 (not shown in the figure), where the

susceptibilities showed the steepest rise, we find that the correlator ratios decay as a
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Figure 5.4: Plot of the correlator ratios R1 and R2 as a function of U . The cor-
relator ratios show a peak for intermediate values of the coupling U before decaying
exponentially to zero at large couplings.
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Figure 5.5: Log-linear plot of the correlator ratios R1 and R2 as a function of L.
For small couplings (U “ 0.85), the correlator ratios decay roughly as L´3.6, which
is close to the free theory behavior of L´4. Near U “ 0.945, the decay is a power-law
given by „ L´2. For large couplings (U “ 1.03), the decay is exponential, thereby
indicating the onset of the massive phase.
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power-law and the decay gets steeper as we include data for larger lattices. All this

implies the absence of any condensates and hence an intermediate FM phase. Thus,

the large lattice data confirms the earlier prediction that the PMW and PMS phases

in this model are separated by a single phase transition, without the presence of any

intermediate phase. Our entire 3D data has been tabulated in Appendix E.

5.3 Analysis

The qualitative behavior of the correlator ratios R1 and R2 clearly indicate the

presence of a single phase transition between the PMW and PMS phases at a point

Uc. We now wish to perform an analysis to see if the data is consistent with a single

second order transition. Our approach is to try fitting the data to the expected

forms given in Eq. (5.8) for a second-order phase transition. For a first order phase

transition, this procedure will fail since correlation lengths do not diverge.

At the critical point, it is clear from Eq. (5.8) that the correlators must decay as a

power-law and such a fit should enable the extraction of critical exponents. However,

even with high precision data on large lattices up to size L “ 60, we found it difficult

to extract the critical quantities by performing a simple power-law fit. Hence, we

had to carry out a more sophisticated analysis to understand the nature of the phase

transition and compute the critical exponents and we describe this below. This

analysis has been published as part of the supplementary material to [63].

5.3.1 Critical finite size scaling

From Eq. (5.8) we expect the correlation ratios R1 and R2 to scale according to the

form

RapU,Lq “
1

Lp1`ηq
ga

´

pU ´ Ucq L
1
ν

¯

(5.14)
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where gapxq, a “ 1, 2 are universal functions of the variable x “ pU´Ucq L
1
ν . Usually,

by expanding gapxq in a power series and fitting the data to Eq. (5.14), the unknown

coefficients and critical quantities (Uc, ν, η) can be extracted. However, such fits

with unknown powers are known to be unstable. Hence we use a more elaborate

analysis. We first note that when U “ Uc we expect

RapUc, Lq “
fa
L1`η

(5.15)

where fa is a constant and the critical exponent η is the same for both R1 and R2.

Since neither the location of the critical point nor the value of η at that point

are known, it is difficult to compute Uc and η together using the above relation.

This is typical for all second order critical points and one usually finds that many

couplings near the critical point obey power law scaling with slightly different values

of η. A combined fit of both correlation ratios to the form given in Eq. (5.15) for the

couplings in the range 0.85 ď U ď 0.96 and lattice sizes L ě 32, yields the results

shown in Table 5.1.

The low χ2 values of the fits imply that the critical point could be at any value

of U in the range 0.93 ă Uc ă 0.95. Note that the fit is poor for U “ 0.96, indicating

perhaps that we have reached the massive phase. The behavior of η as a function of

U is shown in Fig. (5.6). While this figure gives us a relation between Uc and η, it

does not constrain them. Hence, we have used an independent analysis to constrain

them and this is dicussed below.

5.3.2 Scaling of Pseudo-Critical Points

While critical points are defined only in the thermodynamic limit, there exists a

notion of pseudo-critical points even in a finite system. Interestingly, quantities

close to the pseudo-critical points also obey critical scaling and thus can help in the

extraction of critical quantities independently. Consider for example the variation of
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Table 5.1: The critical exponent η as a function of the critical coupling Uc from the
powerlaw fits ignoring corrections to scaling.

Uc f1 f2 η χ2

0.85 68(10) 38(5) 2.34p4q 2.2
0.92 15(3) 8(1) 1.64p5q 4.1
0.93 9(1) 4.5(5) 1.44p3q 1.9
0.94 4.8(4) 2.4(2) 1.22p2q 1.0
0.945 2.5(2) 1.2(1) 1.00p2q 0.7
0.95 1.2(1) 0.59(5) 0.77p2q 1.1
0.96 1.0(2) 0.46(8) 0.63p5q 6.4

correlation ratios R1 and R2 with coupling U for different lattice sizes shown in Fig.

(5.7). It is clear from the figure that the ratios display a maximum for certain value

of the coupling (which we refer to as Ua,p). These define one set of pseudo-critical

couplings. At the peak, the value of the ratio itself is given by Ra,p. From the scaling

relation in Eq. (5.14), we note that the peak occurs when the function gapxq reaches

a maximum. Assuming this occurs at x “ da, it can be shown that:

Ra,p “
ba
L1`η

(5.16)

Ua,p “ Uc ` da{L
1
ν . (5.17)

Thus, if we can compute Ra,p as a function of L, we would have an independent way

to estimate η using Eq. (5.16). We can then use the η vs Uc plot of Fig. (5.6) to

estimate Uc. Using this value of Uc in Eq. (5.17) we can compute ν.

In order to extract Ua,p and Ra,p, we approximate the behavior of the correlation

ratios around the peak as a quadratic. Table 5.2 shows the results of such fits. The

errors in the fits include systematic errors associated with choosing a quadratic form

near the peak instead of say a cubic or quartic form.

Using the data for R1,p and R2,p from Table 5.2, we have performed a combined fit

of the form expected in Eq. (5.16). Including the entire data from above (24 ď L ď
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Figure 5.6: Plot of η as a function of Uc using the fits in Table 5.1. We have used
the power-law fits to obtain the η values assuming the location of the critical point.

44) gives us b1 “ 6.3p9q, b2 “ 2.4p4q, η “ 0.91p4q, χ2 “ 94.9. A closer examination

shows that while R1,p fits well to a single power law in the entire region giving

b1 “ 11.2p2q, η “ 1.08p1q with a χ2{d.o.f “ 1, R2,p is not consistent with a single

power law. Table 5.3 shows the results of fitting R2,p individually and dropping the

lower lattice sizes systematically.

We interpret the drift of η to larger values as a sign that R2,p contains pronounced

corrections to scaling. If we only keep the lattice sizes of L “ 40, 44 in the R2,p data

and perform a combined fit of both R1,p and R2,p we obtain b1 “ 11.1p2q, b2 “ 4.6p1q,

η “ 1.08p1q, χ2 “ 0.77. The goodness of the fit is shown in the top plot of Fig. (5.8).

In order to confirm that the drift of η is consistent with the presence of corrections

to scaling, we added a correction term for R2,p and performed a combined fit of the
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Figure 5.7: Plot of correlation ratios Ra, a “ 1, 2 as a function of coupling U .
These ratios display a maximum at (Ua,p,Ra,p). We use these peak values to estimate
the critical exponents.
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Figure 5.8: Plots of R1,p and R2,p as a function of L. In the top plot, the solid and
dashed lines show fits to the form Eq. (5.16), while in the bottom plot these lines
show fits to the form in Eqs. (5.18) and (5.19) that include corrections to scaling. To
achieve a good fit, in the top figure it was necessary to drop the data for R2,p in the
region L ď 36, while in the bottom figure we could fit the entire data by assuming
the correction to the scaling exponent ω “ 1.
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Table 5.2: Results for the value of R1,p, U1,p, R2,p and U2,p obtained from a quadratic
fit of the data near the peak.

L U1,p R1,p χ2 U2,p R2,p χ2

24.0 1.0420p8q 1.517p3q ˆ 10´02 0.473 1.0299p8q 5.391p9q ˆ 10´03 1.734
28.0 1.0318p8q 1.103p3q ˆ 10´02 0.1622 1.0215p8q 4.105p9q ˆ 10´03 0.8016
32.0 1.0226p8q 8.38p3q ˆ 10´03 1.519 1.0140p8q 3.235p9q ˆ 10´03 1.407
36.0 1.0156p8q 6.54p3q ˆ 10´03 1.752 1.0080p8q 2.608p9q ˆ 10´03 2.004
40.0 1.0085p8q 5.26p3q ˆ 10´03 0.4788 1.0032p8q 2.146p9q ˆ 10´03 0.21
44.0 1.0041p8q 4.28p3q ˆ 10´03 0.7981 0.9986p8q 1.776p9q ˆ 10´03 0.9341

Table 5.3: Fits of R2,p as a function of L to the expected scaling form for different
ranges of lattice sizes. Importantly η drifts upwards.

L-Range b2 η χ2

24-44 1.68p3q 0.81p1q 6.3
28-44 1.84p5q 0.83p1q 3.9
32-44 2.10p11q 0.86p2q 2.3
36-44 2.38p25q 0.90p3q 2.2
40-44 3.25p76q 0.99p6q 0.0

entire data to the form:

R1,p “
b1

L1`η
(5.18)

R2,p “
b2

L1`η
`

c2

L1`η`ω
(5.19)

Now including the entire data set in Table 5.2, we find a good fit as shown in the

bottom plot of Fig. (5.8), giving us b1 “ 11.2p2q, b2 “ 5.6p4q, c2 “ ´25p12q,

η “ 1.08p1q, ω “ 0.9p2q, χ2 “ 0.752. This gives some credence to our belief that R2,p

data contains corrections to scaling.

However, there is a bias in the above analysis since it is likely that the presence

of smaller lattice data in R1,p affects the fitting. Hence we roughly estimate the

systematic errors in η due to the the range of lattice sizes we use in the fit. Keeping
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Figure 5.9: Plots of U1,p and U2,p as a function of L. The solid and dashed lines
are fits to Eq. (5.17) assuming Uc “ 0.943. We obtain d1 “ 1.14p6q and d2 “ 1.02p5q
and the χ2/dof = 1.0.

only L “ 40, 44 data for both R1,p and R2,p and ignoring corrections to scaling we

obtained η « 1.05 but with a χ2{dof “ 2.5 which is rather large. But by keeping

L “ 36 and dropping L “ 44 instead, we get a good fit but with η « 1.02. Thus, a

conservative estimate would be η “ 1.05p5q.

Using η “ 1.05p5q we can again conservatively estimate Uc from Fig. (5.6) to

be Uc “ 0.943p2q. We can then use Eq. (5.17) to estimate ν. Again assuming no

corrections to scaling we find that a combined fit of both the data U1,p and U2,p fits

well to single power law. Performing two fits by fixing Uc “ 0.945 and Uc “ 0.941

we obtain ν “ 1.30p7q. The goodness of the fits, assuming Uc “ 0.943, are shown in

Fig. (5.9). For this value of Uc we obtain d1 “ 1.14p6q and d2 “ 1.02p5q with χ2/dof

= 1.0.
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5.4 Corrections to Scaling

Since we have ignored corrections to scaling in the analysis above, one might wonder

if introducing corrections to scaling can change the results. Experience tells us that

usually once we include corrections to scaling the fits become unstable unless we can

constrain at least some of the exponents by other arguments. This is difficult in our

context due to the exotic nature of the phase transition. Here we use corrections to

scaling to check if our data is consistent with the exponents from large N predictions

in a typical Gross Neveu model, i.e. η “ 1 and ν “ 1.

Assuming no corrections to scaling, but fixing η “ 1 and removing data for

L “ 24, 28, 32, 36 for R2,p which gave a good fit above yields b1 “ 8.5p1q, b2 “ 3.4p1q,

with a χ2/dof= 21. The fit is shown on the top plot of Fig. (5.10). We note that

the fit does seems to roughly pass through all the points although the the χ2/dof is

large. The reason for this is that our data is quite precise and we are sensitive to

corrections to scaling assuming they are present. Indeed, if we introduce corrections

to scaling and assume

Ra,p “
ba
L1`η

`
ca

L1`η`ω
(5.20)

and fix for example ω “ 1 then one can fit the entire data set (24 ď L ď 44) for

both correlation ratios very well. We obtain b1 “ 7.92p8q, c1 “ 20p2q, b2 “ 3.91p2q,

c2 “ ´19.2p6q, with a χ2/dof “ 1.1. The goodness of the fit is shown in the bottom

plot of Fig. (5.10).

From Table 5.1, we note that η “ 1 gives Uc “ 0.945 assuming corrections to

scaling are small at the critical point. Fixing ν “ 1 and Uc “ 0.945, a combined fit

of U1,p and U2,p data to the form Eq. (5.17) gives d1 “ 2.45p5q, d2 “ 2.18p5q with a

χ2/dof “ 20. This is clearly a bad fit as shown in the top plot of Fig. (5.11). On
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Figure 5.10: Plots of R1,p, R2,p as a function of L showing fits to large N exponents
with (bottom) and without (top) corrections to scaling. In the fits we fix η “ 1 and
ω “ 1. The χ2/dof for the fits are 21 when the corrections to scaling are omitted
and 1.1 when they are included.
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the other hand if we introduce corrections to scaling and assume

Ua,p “ Uc `
da

L
1
ν

`
ha

Lp
1
ν
`ωq

, (5.21)

with Uc “ 0.945, ν “ 1 and ω “ 1 as before, we obtain a good fit as shown in the

bottom plot of Fig (5.11). The fit yields d1 “ 2.91p2q, h2 “ ´13.9p7q, d2 “ 2.74p2q,

h2 “ ´16.9p7q which a χ2/dof “ 0.2. If we do not fix Uc while ignoring the corrections

to scaling, again we obtain a good fit with Uc “ 0.960p1q, d1 “ 1.98p4q, d2 “ 1.70p4q,

and χ2/dof “ 1.18. However, this value of Uc cannot be consistent with our data in

Table 5.1, again suggesting the presence of large corrections to scaling.

Thus, we believe that including scaling corrections will enable us to fit the data

to large N exponents of η “ 1 and ν “ 1. However, if we take this view point one

has to argue that there are significant corrections to scaling even up to L “ 44. On

the other hand since we were able to fit the data without corrections to scaling to a

different set of exponents, we believe that our original analysis should be correct.

5.5 Universal Function

A good way to further test if the PMW-PMS transition is second order is to look

at the behavior of the universal functions ga in Eq. (5.14). It is clear from Eq.

(5.14) that a plot RaL
1`η as a function of pU ´ UcqL

1
ν should be a smooth function

for a second order transition. Fig. (5.12) shows such a plot assuming Uc “ 0.943,

η “ 1.05 and ν “ 1.30 obtained from our analysis. We also plot the universal

functions obtained using the large N exponents η “ 1 and ν “ 1, with Uc “ 0.945.

This is shown in Fig. (5.13). All these plots look reassuring and seem to indicate

that the transition is indeed second order.

Based on the above analysis we can conclude that either we have a new set of

exponents with η “ 1.05p5q and ν “ 1.30p7q, or there are large corrections to scaling
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Figure 5.11: Plots of U1,p, U2,p as a function of L showing fits to large N exponents
with (bottom) and without (top) corrections to scaling. In the fits we fix Uc “ 0.945,
ν “ 1 and ω “ 1. The χ2/dof for the fits are 20 when the corrections to scaling are
omitted and 0.2 when they are included.

up to lattice sizes of the order of L “ 44 and the exponents are very close to the large

N values. While calculations at larger lattices may be useful to get better estimates

of the critical exponents, given the difficulty in performing large scale Monte Carlo

calculations, it will be useful to explore new techniques of analysis that reduces the
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Figure 5.12: Plots of the universal functions g1pxq (top) and g2pxq (bottom) as-
suming Uc “ 0.943, ν “ 1.30, and η “ 1.05. A smooth curve confirms that the
transition is second order.
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Figure 5.13: Plots of the universal functions g1pxq (top) and g2pxq (bottom) as-
suming Uc “ 0.945, ν “ 1, and η “ 1. Again we find a smooth curve. Hence, we
cannot rule out the large N exponents ν “ 1, η “ 1.
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systematic errors due to corrections to scaling.

5.6 Summary of results

To summarize, our analysis of the Monte Carlo data up to lattices L “ 60 provides

strong evidence that the lattice model studied in our work has a single phase tran-

sition between the PMW and the PMS phase, without any intermediate FM phase.

Our analysis shows that this transition is second order. We estimate Uc “ 0.943p2q,

η “ 1.05p5q and ν “ 1.30p7q. However, we cannot rule out the large N exponents

η “ 1, ν “ 1 with Uc “ 0.945 if we allow for large corrections to scaling in our data.
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6

Results: 4D

In the previous chapter, we discussed the results in 3 Euclidean dimensions. We

have also performed calculations using the same model in 4 Euclidean dimensions.

Unfortunately, the extra dimension increases both the time of computation and also

the memory requirements. As a result, we could only explore lattices as large as 144.

In 4D, the goal is either to confirm earlier findings of a wide spontaneously broken

intermediate phase [10] or find some evidence of a direct second order transition like

in 3D. We will argue below that in contrast to 3D, we do find a narrow intermediate

phase which spontaneously breaks the SUp4q symmetry.

6.1 General Behavior of Observables

We first look at the general behavior of the observables as a function of the bare

coupling U and lattice size L. Fig. (6.1) shows the variation of the average monomer

density ρm as a function of the coupling U for various values of L. As in the 3D case,

the average monomer density increases smoothly with U , but shows a rapid increase

around U „ 1.75. Finite size effects seem to be negligible for lattices larger than

L “ 12.
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Figure 6.1: Plot of the variation of the average monomer density ρm with coupling
U . The average monomer density rises sharply in the region close to U “ 1.75.

The qualitative behavior of the susceptibilities is also similar to 3D. As seen in

Fig. (6.2), the bosonic susceptibilities χ1 and χ2 increase with the coupling to reach

a maximum and then decrease again at large couplings. Deviations from the 3D

case begin to emerge when we start looking at the variation of the susceptibilities

with lattice size L. This is shown as a log-log plot in Fig. (6.3). For small (U “

1.4) and large (U “ 1.9) couplings, the susceptibilities seem to saturate as the

lattice size increases. These correspond to the PMW and PMS phases respectively,

where bilinear condensates vanish. However, for intermediate couplings close to

U “ 1.75, both susceptibilities seem to grow rapidly. As indicated in Eq. (3.13),

if a fermion bilinear condensate forms (i.e. xψx,1ψx,2y ‰ 0), we expect χ1,2 „ L4.

To investigate the presence of such a condensate at intermediate couplings, we plot

the variation of χ1{L
4 and χ2{L

4 as a function of lattice size L in Fig. (6.4). The

curves seem to saturate with lattice size, thereby indicating the presence of fermion

bilinear condensates in a range of intermediate couplings. Thus the behavior of both
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Figure 6.2: Plot of the susceptibilities χ1 and χ2 as a function of U . As in the 3D
case, the susceptibilities rise sharply at intermediate couplings to show a peak and
then decay at large couplings.
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susceptibilities points to a three phase structure with a spontaneously broken FM

phase separating the PMW and PMS phases. We present our entire data for 4D in

Appendix F.

6.2 Analysis

6.2.1 Critical points

The behavior of the susceptibilities χ1 and χ2 suggests the existence of two phase

transitions. It is clear from Eq. (5.9) that the susceptibilities near a second-order

critical point must scale as χa “ L2´ηga

´

pU ´ UCqL
1
ν

¯

. Hence, a plot of χa {L
2´η

as a function of the coupling U should intersect at the critical points where U “ Uc.

Making an ansatz that the two critical points are second order with the mean field

critical exponents η “ 0 and ν “ 0.5, we plot χ1,2 {L
2´η as a function of the coupling

U in Fig. (6.5). It is clear that both the curves intersect quite well at two different

couplings. Thus our data is consistent with two second order transitions with mean

field exponents separating the three phases. The approximate locations of the critical

points are Uc1 “ 1.60 and Uc2 “ 1.81. Thus the FM phase is quite narrow as

compared to previous results [8].

6.2.2 Presence of condensates in the FM phase

As discussed in the previous section, the susceptibilities seem to grow as L4 in the

intermediate phase, thereby indicating the presence of fermion bilinear condensates.

To understand this in more detail, we fit the susceptibilities to the form

χa “
1

4
Φ2
aL

4
` baL

2 (6.1)

for a “ 1, 2. Here, Φa denotes the fermion bilinear condensate. Due to the SUp4q

symmetry, we expect Φ1 and Φ2 to be the same. Given the small range of lattice

sizes available to us and the possibility that we may have underestimated the errors
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Figure 6.3: Log-log plot of the susceptibilities χ1 and χ2 as a function of L for
various couplings. The susceptibilities saturate at weak (U=1.4) and strong (U=1.9)
couplings. In the intermediate region, they grow quite rapidly.
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expects the formation of fermion bilinear condensates.
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Figure 6.5: Plot of χ {L2´η as a function of U for the susceptibilities χ1 (top figure)
and χ2 (bottom figure) using the large N critical exponents η “ 0 and ν “ 0.5. It
is clear that the curves intersect at two critical points located roughly at 1.60 and
1.81, which we believe is the region of the intermediate FM phase.
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Table 6.1: Table containing the fit parameters obtained by fitting χ1 and χ2 to the
form given in Eq. (6.1).

χ1 χ2

U Φ1 b1 χ2 Φ2 b2 χ2

1.61 13p3q ˆ 10´3 40p2q ˆ 10´3 0.3 16p2q ˆ 10´3 37p1q ˆ 10´3 0.2
1.62 31p1q ˆ 10´3 32p1q ˆ 10´3 0.1 32p1q ˆ 10´3 29p2q ˆ 10´3 0.2
1.63 417p2q ˆ 10´4 257p3q ˆ 10´4 0.0 423p2q ˆ 10´4 227p4q ˆ 10´4 0.0
1.64 499p9q ˆ 10´4 24p2q ˆ 10´3 0.1 507p10q ˆ 10´4 21p2q ˆ 10´3 0.1
1.65 60p4q ˆ 10´3 14p9q ˆ 10´3 1.6 61p4q ˆ 10´3 11p9q ˆ 10´3 1.7
1.66 71p1q ˆ 10´3 6p4q ˆ 10´3 0.4 71p1q ˆ 10´3 2p5q ˆ 10´3 0.5
1.67 78p3q ˆ 10´3 3p10q ˆ 10´3 1.5 78p3q ˆ 10´3 0p1q ˆ 10´2 1.5
1.68 84p3q ˆ 10´3 0p1q ˆ 10´2 1.8 85p3q ˆ 10´3 0p1q ˆ 10´2 2.1
1.69 871p9q ˆ 10´4 10p4q ˆ 10´3 0.2 88p1q ˆ 10´3 6p5q ˆ 10´3 0.3
1.7 91p4q ˆ 10´3 1p1q ˆ 10´2 2.6 92p4q ˆ 10´3 1p1q ˆ 10´2 3.0
1.71 91p2q ˆ 10´3 32p7q ˆ 10´3 0.5 91p2q ˆ 10´3 29p7q ˆ 10´3 0.6
1.72 913p6q ˆ 10´4 41p3q ˆ 10´3 0.1 917p8q ˆ 10´4 38p3q ˆ 10´3 0.2
1.73 92p2q ˆ 10´3 48p7q ˆ 10´3 0.8 92p2q ˆ 10´3 44p7q ˆ 10´3 0.9
1.74 903p6q ˆ 10´4 58p2q ˆ 10´3 0.1 907p7q ˆ 10´4 55p3q ˆ 10´3 0.1
1.75 858p9q ˆ 10´4 72p4q ˆ 10´3 0.3 86p1q ˆ 10´3 69p4q ˆ 10´3 0.3
1.76 835p2q ˆ 10´4 734p6q ˆ 10´4 0.0 8391p5q ˆ 10´5 702p2q ˆ 10´4 0.0
1.77 75p2q ˆ 10´3 92p6q ˆ 10´3 0.6 76p2q ˆ 10´3 89p6q ˆ 10´3 0.6
1.78 662p10q ˆ 10´4 99p3q ˆ 10´3 0.1 667p8q ˆ 10´4 96p3q ˆ 10´3 0.1
1.79 565p6q ˆ 10´4 105p2q ˆ 10´3 0.0 571p7q ˆ 10´4 102p2q ˆ 10´3 0.0
1.8 324p8q ˆ 10´4 125p1q ˆ 10´3 0.0 333p6q ˆ 10´4 122p1q ˆ 10´3 0.0

due to our Monte Carlo runs being short, we multiply the Monte Carlo errors by a

factor of two before performing these fits. Table 6.1 shows the results of these fits for

χ1 and χ2. It is clear that the fits work well at most couplings. Fig. (6.6) shows the

variation of the condensates as a function of the coupling U . The condensate value

increases smoothly in the FM phase to reach a maximum and then decreases to zero

at the phase boundary. As expected, both susceptibilities give the same condensate.

Although the results have been obtained using data on small lattices, the evidence

for a narrow intermediate FM phase is striking.

To summarize, our results in 4D show the presence of a spontaneously broken FM

93



1.55 1.60 1.65 1.70 1.75 1.80 1.85

U

0.00

0.02

0.04

0.06

0.08

0.10

Φ1  

1.55 1.60 1.65 1.70 1.75 1.80 1.85

U

0.00

0.02

0.04

0.06

0.08

0.10

Φ2  

Figure 6.6: Plot of the condensates extracted from the susceptibilities χ1 (left
figure) and χ2 (right figure) as a function of the coupling U in the intermediate
region. Both susceptibilities give the same condensate as expected.

phase at intermediate couplings separating the PMW and PMS phases. Both the

PMS-FM and the FM-PMS transitions seem second order with mean field critical

exponents η “ 0 and ν “ 0.5. The intermediate FM phase seems rather narrow,

extending from about Uc1 “ 1.60 to Uc2 “ 1.81. These results are summarized in

[37].
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7

Conclusions

Our study of a lattice field theory model with four flavors of reduced staggered

fermions and interacting via a local four fermion interaction in 3D has revealed the

existence of a two phase (PMW-PMS) system. Interestingly, the transition from the

massless PMW phase to the massive PMS phase seems to be second-order. There

are no fermion bilinear condensates in either of the two phases and there is no

spontaneous symmetry breaking of any lattice symmetries in both the phases. As

mentioned in the Introduction, the existence of such a mechanism has been inde-

pendently reported by other studies [16, 17, 18, 19]. Although we study a lattice

model, the physics close to the second order transition must be describable by a

continuum quantum field theory. Computation of the critical exponents has proved

quite challenging due the absence of bilinear condensates. Still, using large scale

calculations, we estimate the critical exponents as η “ 1.05p5q, ν “ 1.30p7q and

Uc “ 0.943p2q, assuming the absence of corrections to scaling in our data at large

values of L. However, we cannot rule out the large N exponents ν “ 1 and η “ 1, if

we allow corrections to scaling.

In contrast to 3D, the phase diagram in 4D looks different. Data from small
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lattices points to the more conventional three phase system (PMW-FM-PMS) with

an intermediate spontaneously broken FM phase at intermediate couplings separating

the PMW and PMS phases. While this was already found much earlier [10], our work

shows that the FM phase is much narrower. The fermions in the FM phase seem

to acquire a mass via the conventional mechanism of SSB. Both the PMW-FM and

the FM-PMS phase transitions seem second order. Our data is consistent with the

mean field critical exponents η “ 0 and ν “ 0.5, as expected. Given the narrow FM

phase, we wonder if an extension of the model could reveal the existence of a direct

second order PMW-PMS phase transition.

It would be very interesting to understand how the fermions acquire a mass in

the PMS phase. One possibility is that non-perturbative dynamics creates a fermion

bound state containing three fundamental fermions [64, 65]. This composite fermion

could couple to a fundamental fermion and such a mass term would appear like a

four-fermion condensate in the microscopic theory.

Computing the particle spectrum in the PMS phase close to the critical point

in 3D is an interesting direction for future research. Boson and fermion masses can

be estimated by computing the correlators discussed in Chapter 3, on asymmetric

lattices. The ratio of fermionic mass to bosonic mass as we approach the critical

point is an interesting quantity and should be universal. The fermionic correlators

show large fluctuations due to presence of the sign factors. This makes them difficult

to compute. We are currently exploring ways to reduce these fluctuations.
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Appendix A

Symmetry Order Parameters

Spontaneous symmetry breaking is signalled by the non-zero expectation value of a

symmetry order parameter. For an operator to serve as a symmetry order parameter,

it must vanish in the symmetric phase without vanishing in the spontaneously broken

phase. Consider a theory that is invariant under some symmetry group G. Assume

that this symmetry is broken down to a subgroup H by the vacuum. If |Ωy is the

vacuum of the theory, P is an element of H and Q is an element of G but not H,

then SSB implies

P |Ωy “ |Ωy

Q|Ωy “ |Ω
1

y (A.1)

where |Ωy ‰ |Ω
1

y. Our aim is to choose an operator O, such that its vacuum expec-

tation value xΩ|O|Ωy becomes non-zero only under SSB.

All operators O constructed with the fundamental fields of the theory transform

under some representation of the group G and hence also H. This means the operator

O1 “ POP : can be represented as
ř

β Vα,βOβ, where Oβ represent a set of basis

operators that mix under the action of H and V is the transformation matrix. Then,
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for any Oα we can write

xΩ|Oα|Ωy “ xΩ|P
:POαP

:P |Ωy

xΩ|
ÿ

β

δα,βOβ|Ωy “ xΩ|
ÿ

β

Vα,βOβ|Ωy

This implies that
ÿ

β

pδα,β ´ Vα,βq xΩ|Oβ|Ωy “ 0 (A.2)

Since the above equation must be valid for all elements of P that belong to H, it

can be shown that the only solution is

xΩ|Oβ|Ωy “ 0 (A.3)

unless Vα,β “ δα,β (i.e. O is invariant under P ). In other words, the symmetry P

protects every operator O from getting an expectation value. Hence, to serve as

a suitable order parameter, we choose the operator O to be symmetric under the

preserved symmetries P i.e. P :OP “ O.

Since we want xΩ|O|Ωy ‰ 0 if G is broken to H, we choose Q:OQ ‰ O. Then, if

SSB does not occur, xOy “ 0 using the same argument as above for Q instead of P .

But, if SSB occurs, then the argument no longer holds and xOy can be nonzero.
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Appendix B

Extracting particle masses from lattice field theory

Continuum QFTs are defined by symmetries of the ground state and the particle

spectrum of low energy excitations. The goal of a lattice field theory is to be able to

extract these properties non-perturbatively, starting from a lattice regulated theory.

One such quantity is the mass of a physical particle with specific quantum num-

bers. In perturbation theory, particle mass is defined as the pole of the corresponding

propagator. The non-perturbative definition of mass suitable for a lattice calculation

is the minimum energy of the particle. To compute it, one starts with a lattice the-

ory defined in a finite box with the Euclidean time dimension β being much larger

than the space dimensions L. If H represents the lattice Hamiltonian, the partition

function is given by Z “ Tr re´βHs. If O: is an operator with the right quantum

numbers that can create the particle from the vacuum, then the two point correlation

function

Gpt, 0q “
Tr

“

e´pβ´tqHOep´tHqO:
‰

Z

(B.1)
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can be used to compute the mass of the particle. Inserting the complete set of energy

eigenstates, we get

Gpt, 0q “

ř

n,n1xn|e
´pβ´tqHO|n1yxn1|ep´tHqO:|ny

Z

“

ř

n,n1 e
´βEne´tpEn1´Enqxn|O|n1yxn1|O:|ny

ř

n e
´βEn

(B.2)

In the limit of large β, we get

Gpt, 0q “
ÿ

n1

ep´βE0qC0n1e
´tpEn1´E0q

e´βE0
(B.3)

where C0n1 “ |xn
1|O|0y2. Taking the limit t Ñ 8 we can neglect all but the lowest

energy level En1 “ E1 to obtain

Gpt, 0q “ C01e
´t∆EpLq (B.4)

where ∆EpLq “ E1´E0 is the lowest energy of the particle in a finite spatial box of

size L.

To extract the mass, one performs a series of calculations on larger and larger

lattices and fits ∆EpLq to the form m ` a{L2. In contrast, for a massless particle

one expects ∆EpLq to scale as 1{L for large L.
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Appendix C

Zero weight configurations.

Here we prove why fermion bag configurations with unequal number of odd and even

monomer sites do not contribute to the partition function.

If neven and nodd represent the number of even and odd monomer sites in a

configuration C, its contribution to the partition function is given by Eq. (3.18). We

can perform the Grassmann integral over the monomer sites in Eq. (3.18) to obtain

ZpCq “ Uk
4
ź

i“1

ż

rdψise
´ 1

2

ř

x,y ψx,iM̃x,yψy,i . (C.1)

where the Grassmann integral is only defined over the free sites and M̃ is a sub-

matrix of M obtained by removing the monomer sites. Let us consider the integral

for one of the four flavors

I “

ż

rdψise
´ 1

2

ř

x,y ψx,iM̃x,yψy,i (C.2)

Since M has the form given in Eq. (3.19), M̃ also has the same form and hence can
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be written as

M̃ “

even odd

»

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

fl

even 0 Ã

odd ´ÃT 0

(C.3)

where Ã has dimensions pV {2´nevenqˆpV {2´noddq on a lattice with V sites. Using

the above form of M̃ and the rules for Grassmann algebra, it can be shown that the

I in Eq. (C.2) vanishes unless the matrix Ã is a square-matrix. This can happen

only if neven “ nodd.
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Appendix D

Relating matrix determinants in terms of the
inverse

Here, we discuss Eq. (4.23) for a more general case. Consider two square matri-

ces W0 and W1 such that W1 is obtained from W0 by removing the rows ras and

columns rbs and adding some new rows rcs and columns rds. Let the sizes of the sets

ras, rbs, rcs, rds be a, b, c, d respectively. Let W0 have dimensions m ˆm. Hence W1

will have dimensions pm´ a` cq ˆ pm´ b` dq with the condition

a` d “ b` c (D.1)

Consider a matrix Wfull obtained by adding the rcs rows and rds columns to W0.

It can be written in the form

Wfull “

Ð m Ñ Ð d Ñ
¨

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‚

Ò

m W0 C
Ó

Ò

c B D
Ó

(D.2)
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where the matrices B,C and D connect the old rows and columns with the newly

added rows and columns as described below. B has dimensions cˆm and connects the

newly added c rows to the original m columns in the matrix W0. C has dimensions

m ˆ d and connects the original m rows in the matrix W0 to the newly added d

columns. D has dimensions cˆ d and connects the newly added c rows to the newly

added d columns.

The matrix W1 is a sub-matrix of Wfull, obtained by removing the a rows and b

columns. Its determinant can be expressed as

DetpW1q{DetpW0q “ DetpW 1
qσ (D.3)

where σ is a sign factor and W 1 is a matrix of the form

W 1
“

Ð a Ñ Ð d Ñ
¨

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‚

Ò

b ´Winv1 Winv2 C
Ó

Ò

c B Winv3 D ´B W´1
0 C

Ó

(D.4)

where W´1
0 is the inverse of the matrix W0 and Winv1,Winv2,Winv3 are sub-matrices

of W´1
0 . Winv1 has dimensions of pb ˆ aq and connects the removed b columns and

a rows. Winv2 has dimensions of pb ˆmq and connects the removed b columns and

the original m rows. Winv3 has dimensions of pm ˆ aq and connects the original m

columns and the removed a rows.
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Appendix E

Complete 3D Data

For completeness, we present all our 3D data for ρm, R1 and R2 in Table E.1.

Table E.1: Results from Monte Carlo calculations in 3D
for ρm, R1 and R2 various values of coupling U and lattice
size L.

U L ρm R1 R2

0.8 28 6438p5q ˆ 10´5 727p7q ˆ 10´6 398p4q ˆ 10´6

0.8 32 6446p3q ˆ 10´5 450p4q ˆ 10´6 253p2q ˆ 10´6

0.8 36 6441p3q ˆ 10´5 285p4q ˆ 10´6 161p2q ˆ 10´6

0.8 40 6446p3q ˆ 10´5 186p2q ˆ 10´6 106p1q ˆ 10´6

0.8 44 6443p3q ˆ 10´5 136p2q ˆ 10´6 80p1q ˆ 10´6

0.8 48 6448p2q ˆ 10´5 94p1q ˆ 10´6 561p9q ˆ 10´7

0.8 52 6452p5q ˆ 10´5 73p2q ˆ 10´6 45p2q ˆ 10´6

0.8 56 6447p4q ˆ 10´5 55p2q ˆ 10´6 35p1q ˆ 10´6

0.85 28 7689p4q ˆ 10´5 1048p7q ˆ 10´6 565p4q ˆ 10´6

0.85 32 7682p5q ˆ 10´5 642p7q ˆ 10´6 353p4q ˆ 10´6

0.85 36 7693p4q ˆ 10´5 420p5q ˆ 10´6 235p3q ˆ 10´6

0.85 40 7697p4q ˆ 10´5 311p5q ˆ 10´6 176p3q ˆ 10´6

0.85 44 7692p3q ˆ 10´5 222p4q ˆ 10´6 124p2q ˆ 10´6

0.85 48 7695p3q ˆ 10´5 160p3q ˆ 10´6 92p1q ˆ 10´6

0.85 52 7692p5q ˆ 10´5 118p4q ˆ 10´6 68p2q ˆ 10´6

0.85 56 7705p5q ˆ 10´5 100p6q ˆ 10´6 57p3q ˆ 10´6

0.9 16 9245p6q ˆ 10´5 1012p2q ˆ 10´5 449p1q ˆ 10´5

Continued on next page
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Table E.1 – Continued from previous page
U L ρm R1 R2

0.9 20 9238p7q ˆ 10´5 486p2q ˆ 10´5 233p1q ˆ 10´5

0.9 24 9253p7q ˆ 10´5 277p2q ˆ 10´5 1399p7q ˆ 10´6

0.9 28 9250p6q ˆ 10´5 178p1q ˆ 10´5 918p5q ˆ 10´6

0.9 32 9247p7q ˆ 10´5 118p1q ˆ 10´5 619p6q ˆ 10´6

0.9 36 9240p6q ˆ 10´5 808p10q ˆ 10´6 435p5q ˆ 10´6

0.9 40 9248p5q ˆ 10´5 598p8q ˆ 10´6 324p4q ˆ 10´6

0.9 44 9251p7q ˆ 10´5 455p10q ˆ 10´6 252p5q ˆ 10´6

0.9 48 9253p6q ˆ 10´5 360p8q ˆ 10´6 196p4q ˆ 10´6

0.9 52 927p1q ˆ 10´4 26p1q ˆ 10´5 148p8q ˆ 10´6

0.9 56 927p2q ˆ 10´4 177p9q ˆ 10´6 99p6q ˆ 10´6

0.9 60 9260p9q ˆ 10´5 19p1q ˆ 10´5 100p6q ˆ 10´6

0.91 24 9606p7q ˆ 10´5 307p2q ˆ 10´5 1535p8q ˆ 10´6

0.91 28 9602p6q ˆ 10´5 197p1q ˆ 10´5 1009p6q ˆ 10´6

0.91 32 9609p5q ˆ 10´5 1349p9q ˆ 10´6 706p5q ˆ 10´6

0.91 36 9606p6q ˆ 10´5 96p1q ˆ 10´5 507p5q ˆ 10´6

0.91 40 9610p5q ˆ 10´5 714p8q ˆ 10´6 381p4q ˆ 10´6

0.91 44 9615p5q ˆ 10´5 526p6q ˆ 10´6 284p3q ˆ 10´6

0.91 48 9618p8q ˆ 10´5 441p9q ˆ 10´6 234p4q ˆ 10´6

0.91 52 962p2q ˆ 10´4 37p2q ˆ 10´5 20p1q ˆ 10´5

0.91 56 963p2q ˆ 10´4 24p1q ˆ 10´5 13p1q ˆ 10´5

0.91 60 961p1q ˆ 10´4 21p2q ˆ 10´5 110p7q ˆ 10´6

0.92 20 9997p7q ˆ 10´5 580p2q ˆ 10´5 274p1q ˆ 10´5

0.92 24 9993p8q ˆ 10´5 338p2q ˆ 10´5 1674p9q ˆ 10´6

0.92 28 9984p7q ˆ 10´5 226p1q ˆ 10´5 1139p7q ˆ 10´6

0.92 32 9994p8q ˆ 10´5 156p1q ˆ 10´5 802p7q ˆ 10´6

0.92 36 10004p8q ˆ 10´5 115p1q ˆ 10´5 598p7q ˆ 10´6

0.92 40 10001p7q ˆ 10´5 89p1q ˆ 10´5 466p6q ˆ 10´6

0.92 44 10007p7q ˆ 10´5 64p1q ˆ 10´5 342p5q ˆ 10´6

0.92 48 10006p7q ˆ 10´5 547p9q ˆ 10´6 289p4q ˆ 10´6

0.92 52 1004p2q ˆ 10´4 48p6q ˆ 10´5 23p2q ˆ 10´5

0.92 56 1001p1q ˆ 10´4 34p2q ˆ 10´5 19p1q ˆ 10´5

0.92 60 1000p1q ˆ 10´4 26p1q ˆ 10´5 140p7q ˆ 10´6

0.93 20 10402p9q ˆ 10´5 639p3q ˆ 10´5 299p1q ˆ 10´5

0.93 24 10420p9q ˆ 10´5 394p2q ˆ 10´5 1923p10q ˆ 10´6

0.93 28 10399p10q ˆ 10´5 255p2q ˆ 10´5 128p1q ˆ 10´5

0.93 32 10410p8q ˆ 10´5 185p2q ˆ 10´5 933p8q ˆ 10´6

0.93 36 10404p8q ˆ 10´5 139p1q ˆ 10´5 714p7q ˆ 10´6

0.93 40 10410p7q ˆ 10´5 104p1q ˆ 10´5 541p6q ˆ 10´6

0.93 44 10418p8q ˆ 10´5 85p1q ˆ 10´5 440p6q ˆ 10´6

0.93 48 10418p7q ˆ 10´5 66p1q ˆ 10´5 349p5q ˆ 10´6

Continued on next page

106



Table E.1 – Continued from previous page
U L ρm R1 R2

0.93 52 1045p2q ˆ 10´4 56p3q ˆ 10´5 29p1q ˆ 10´5

0.93 56 1043p3q ˆ 10´4 60p7q ˆ 10´5 29p3q ˆ 10´5

0.93 60 1045p1q ˆ 10´4 41p2q ˆ 10´5 22p1q ˆ 10´5

0.94 20 10846p9q ˆ 10´5 713p3q ˆ 10´5 329p1q ˆ 10´5

0.94 24 10841p9q ˆ 10´5 442p2q ˆ 10´5 211p1q ˆ 10´5

0.94 28 1085p1q ˆ 10´4 306p2q ˆ 10´5 150p1q ˆ 10´5

0.94 32 10852p9q ˆ 10´5 223p2q ˆ 10´5 1109p9q ˆ 10´6

0.94 36 10857p9q ˆ 10´5 170p2q ˆ 10´5 855p9q ˆ 10´6

0.94 40 10855p7q ˆ 10´5 136p1q ˆ 10´5 693p7q ˆ 10´6

0.94 44 10861p8q ˆ 10´5 109p2q ˆ 10´5 556p7q ˆ 10´6

0.94 48 1089p3q ˆ 10´4 91p4q ˆ 10´5 47p2q ˆ 10´5

0.94 52 1088p3q ˆ 10´4 70p4q ˆ 10´5 36p2q ˆ 10´5

0.94 56 1090p3q ˆ 10´4 64p4q ˆ 10´5 35p2q ˆ 10´5

0.94 60 1087p2q ˆ 10´4 51p2q ˆ 10´5 27p1q ˆ 10´5

0.945 20 11066p7q ˆ 10´5 744p2q ˆ 10´5 3404p9q ˆ 10´6

0.945 24 11075p7q ˆ 10´5 480p2q ˆ 10´5 2285p8q ˆ 10´6

0.945 28 11082p6q ˆ 10´5 330p1q ˆ 10´5 1602p6q ˆ 10´6

0.945 32 11088p9q ˆ 10´5 243p2q ˆ 10´5 1198p9q ˆ 10´6

0.945 36 11104p8q ˆ 10´5 191p2q ˆ 10´5 945p8q ˆ 10´6

0.945 40 11099p7q ˆ 10´5 155p1q ˆ 10´5 773p6q ˆ 10´6

0.945 44 11104p6q ˆ 10´5 127p1q ˆ 10´5 638p6q ˆ 10´6

0.945 48 1107p2q ˆ 10´4 106p3q ˆ 10´5 54p2q ˆ 10´5

0.945 52 1114p3q ˆ 10´4 88p4q ˆ 10´5 44p2q ˆ 10´5

0.945 56 1110p2q ˆ 10´4 77p3q ˆ 10´5 39p2q ˆ 10´5

0.945 60 1111p2q ˆ 10´4 72p3q ˆ 10´5 36p1q ˆ 10´5

0.95 20 11306p8q ˆ 10´5 789p3q ˆ 10´5 359p1q ˆ 10´5

0.95 24 11322p9q ˆ 10´5 517p2q ˆ 10´5 2441p10q ˆ 10´6

0.95 28 11335p7q ˆ 10´5 367p2q ˆ 10´5 1755p8q ˆ 10´6

0.95 32 11326p9q ˆ 10´5 265p2q ˆ 10´5 1294p9q ˆ 10´6

0.95 36 11355p8q ˆ 10´5 214p2q ˆ 10´5 1047p8q ˆ 10´6

0.95 40 11343p8q ˆ 10´5 175p1q ˆ 10´5 868p7q ˆ 10´6

0.95 44 1136p1q ˆ 10´4 150p2q ˆ 10´5 748p9q ˆ 10´6

0.95 48 1141p3q ˆ 10´4 127p5q ˆ 10´5 64p2q ˆ 10´5

0.95 52 1137p3q ˆ 10´4 107p4q ˆ 10´5 53p2q ˆ 10´5

0.95 56 1138p4q ˆ 10´4 105p5q ˆ 10´5 53p3q ˆ 10´5

0.95 60 1138p1q ˆ 10´4 86p3q ˆ 10´5 44p1q ˆ 10´5

0.96 20 11809p7q ˆ 10´5 880p2q ˆ 10´5 3940p9q ˆ 10´6

0.96 24 11849p10q ˆ 10´5 598p2q ˆ 10´5 2763p10q ˆ 10´6

0.96 28 11862p8q ˆ 10´5 437p2q ˆ 10´5 2055p8q ˆ 10´6

0.96 32 1189p1q ˆ 10´4 340p2q ˆ 10´5 162p1q ˆ 10´5

Continued on next page

107



Table E.1 – Continued from previous page
U L ρm R1 R2

0.96 36 1189p1q ˆ 10´4 268p2q ˆ 10´5 1288p9q ˆ 10´6

0.96 40 11893p8q ˆ 10´5 228p2q ˆ 10´5 1103p8q ˆ 10´6

0.96 44 1191p1q ˆ 10´4 205p2q ˆ 10´5 986p10q ˆ 10´6

0.96 48 1192p4q ˆ 10´4 165p5q ˆ 10´5 79p3q ˆ 10´5

0.96 52 1187p3q ˆ 10´4 140p7q ˆ 10´5 68p3q ˆ 10´5

0.96 56 1189p7q ˆ 10´4 130p6q ˆ 10´5 65p3q ˆ 10´5

0.96 60 1195p2q ˆ 10´4 128p4q ˆ 10´5 63p2q ˆ 10´5

0.97 20 1238p1q ˆ 10´4 1006p3q ˆ 10´5 442p1q ˆ 10´5

0.97 24 1241p1q ˆ 10´4 692p2q ˆ 10´5 313p1q ˆ 10´5

0.97 28 12441p9q ˆ 10´5 530p2q ˆ 10´5 2443p9q ˆ 10´6

0.97 32 1247p1q ˆ 10´4 427p2q ˆ 10´5 198p1q ˆ 10´5

0.97 36 1249p1q ˆ 10´4 348p2q ˆ 10´5 162p1q ˆ 10´5

0.97 40 12514p9q ˆ 10´5 306p2q ˆ 10´5 1433p9q ˆ 10´6

0.97 44 1251p1q ˆ 10´4 264p2q ˆ 10´5 124p1q ˆ 10´5

0.97 48 1252p5q ˆ 10´4 242p8q ˆ 10´5 114p3q ˆ 10´5

0.97 52 1250p3q ˆ 10´4 196p7q ˆ 10´5 93p3q ˆ 10´5

0.98 24 1305p1q ˆ 10´4 820p3q ˆ 10´5 361p1q ˆ 10´5

0.98 28 1311p1q ˆ 10´4 650p3q ˆ 10´5 290p1q ˆ 10´5

0.98 32 1316p1q ˆ 10´4 530p3q ˆ 10´5 238p1q ˆ 10´5

0.98 36 1318p2q ˆ 10´4 444p3q ˆ 10´5 200p1q ˆ 10´5

0.98 40 1320p1q ˆ 10´4 382p2q ˆ 10´5 1728p9q ˆ 10´6

0.98 44 1324p2q ˆ 10´4 347p3q ˆ 10´5 157p1q ˆ 10´5

0.99 36 1393p2q ˆ 10´4 534p3q ˆ 10´5 232p1q ˆ 10´5

0.99 40 1397p2q ˆ 10´4 463p3q ˆ 10´5 200p1q ˆ 10´5

0.99 44 1400p2q ˆ 10´4 399p3q ˆ 10´5 174p1q ˆ 10´5

1.0 20 1446p2q ˆ 10´4 1472p5q ˆ 10´5 597p2q ˆ 10´5

1.0 24 1458p2q ˆ 10´4 1111p4q ˆ 10´5 459p1q ˆ 10´5

1.0 28 1467p2q ˆ 10´4 896p3q ˆ 10´5 373p1q ˆ 10´5

1.0 32 1475p2q ˆ 10´4 743p4q ˆ 10´5 309p1q ˆ 10´5

1.0 36 1478p2q ˆ 10´4 616p3q ˆ 10´5 257p1q ˆ 10´5

1.0 40 1482p1q ˆ 10´4 514p3q ˆ 10´5 214p1q ˆ 10´5

1.0 44 1485p1q ˆ 10´4 428p3q ˆ 10´5 178p1q ˆ 10´5

1.01 32 1562p2q ˆ 10´4 804p4q ˆ 10´5 322p1q ˆ 10´5

1.01 36 1569p2q ˆ 10´4 647p3q ˆ 10´5 259p1q ˆ 10´5

1.01 40 1572p1q ˆ 10´4 526p3q ˆ 10´5 211p1q ˆ 10´5

1.01 44 1575p2q ˆ 10´4 420p3q ˆ 10´5 169p1q ˆ 10´5

1.02 20 1624p2q ˆ 10´4 1837p5q ˆ 10´5 695p2q ˆ 10´5

1.02 24 1642p2q ˆ 10´4 1386p4q ˆ 10´5 529p2q ˆ 10´5

1.02 28 1656p2q ˆ 10´4 1075p4q ˆ 10´5 411p1q ˆ 10´5

1.02 32 1661p2q ˆ 10´4 841p4q ˆ 10´5 323p1q ˆ 10´5
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1.02 36 1667p2q ˆ 10´4 656p3q ˆ 10´5 252p1q ˆ 10´5

1.02 40 1671p1q ˆ 10´4 502p2q ˆ 10´5 1926p10q ˆ 10´6

1.02 44 1671p2q ˆ 10´4 394p3q ˆ 10´5 151p1q ˆ 10´5

1.03 24 1751p2q ˆ 10´4 1478p4q ˆ 10´5 541p2q ˆ 10´5

1.03 28 1758p2q ˆ 10´4 1101p4q ˆ 10´5 404p2q ˆ 10´5

1.03 32 1765p2q ˆ 10´4 825p4q ˆ 10´5 302p1q ˆ 10´5

1.03 36 1771p2q ˆ 10´4 618p3q ˆ 10´5 227p1q ˆ 10´5

1.03 40 1773p2q ˆ 10´4 464p3q ˆ 10´5 1707p9q ˆ 10´6

1.03 44 1774p2q ˆ 10´4 353p3q ˆ 10´5 129p1q ˆ 10´5

1.04 16 1802p4q ˆ 10´4 3079p8q ˆ 10´5 1052p3q ˆ 10´5

1.04 20 1844p3q ˆ 10´4 2117p6q ˆ 10´5 737p2q ˆ 10´5

1.04 24 1863p3q ˆ 10´4 1513p5q ˆ 10´5 528p2q ˆ 10´5

1.04 28 1872p2q ˆ 10´4 1090p4q ˆ 10´5 382p1q ˆ 10´5

1.04 32 1878p2q ˆ 10´4 781p4q ˆ 10´5 274p1q ˆ 10´5

1.04 36 1879p2q ˆ 10´4 559p3q ˆ 10´5 196p1q ˆ 10´5

1.04 40 1881p2q ˆ 10´4 409p2q ˆ 10´5 1438p9q ˆ 10´6

1.05 16 1917p4q ˆ 10´4 3270p9q ˆ 10´5 1074p3q ˆ 10´5

1.05 20 1960p3q ˆ 10´4 2191p6q ˆ 10´5 730p2q ˆ 10´5

1.05 24 1979p3q ˆ 10´4 1504p5q ˆ 10´5 503p2q ˆ 10´5

1.05 28 1993p3q ˆ 10´4 1035p4q ˆ 10´5 345p1q ˆ 10´5

1.05 40 1997p2q ˆ 10´4 347p2q ˆ 10´5 1168p7q ˆ 10´6

1.06 16 2041p4q ˆ 10´4 3396p9q ˆ 10´5 1070p3q ˆ 10´5

1.06 20 2080p3q ˆ 10´4 2200p5q ˆ 10´5 702p2q ˆ 10´5

1.06 24 2104p3q ˆ 10´4 1428p5q ˆ 10´5 457p1q ˆ 10´5

1.06 28 2110p2q ˆ 10´4 956p3q ˆ 10´5 306p1q ˆ 10´5

1.06 32 2120p3q ˆ 10´4 633p4q ˆ 10´5 202p1q ˆ 10´5

1.06 36 2119p2q ˆ 10´4 426p3q ˆ 10´5 1360p9q ˆ 10´6

1.07 12 2073p4q ˆ 10´4 6110p8q ˆ 10´5 1762p3q ˆ 10´5

1.07 16 2181p5q ˆ 10´4 345p1q ˆ 10´4 1039p3q ˆ 10´5

1.07 20 2210p3q ˆ 10´4 2150p6q ˆ 10´5 656p2q ˆ 10´5

1.08 12 2201p4q ˆ 10´4 6273p8q ˆ 10´5 1745p2q ˆ 10´5

1.08 16 2310p5q ˆ 10´4 3469p9q ˆ 10´5 1002p3q ˆ 10´5

1.08 20 2348p3q ˆ 10´4 2055p6q ˆ 10´5 599p2q ˆ 10´5

1.08 24 2369p3q ˆ 10´4 1231p4q ˆ 10´5 359p1q ˆ 10´5

1.09 12 2351p5q ˆ 10´4 6425p8q ˆ 10´5 1715p3q ˆ 10´5

1.09 16 2457p5q ˆ 10´4 3418p9q ˆ 10´5 942p3q ˆ 10´5

1.1 12 2499p5q ˆ 10´4 6514p9q ˆ 10´5 1668p2q ˆ 10´5

1.1 16 2598p5q ˆ 10´4 3314p9q ˆ 10´5 876p2q ˆ 10´5

1.1 20 2634p3q ˆ 10´4 1770p5q ˆ 10´5 471p1q ˆ 10´5

1.11 12 2661p5q ˆ 10´4 6523p8q ˆ 10´5 1597p3q ˆ 10´5
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1.12 12 2818p5q ˆ 10´4 6456p8q ˆ 10´5 1516p2q ˆ 10´5

1.13 12 2984p5q ˆ 10´4 6270p9q ˆ 10´5 1409p2q ˆ 10´5
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Appendix F

Complete 4D data

For completeness, we present all our 4D data for for ρm, χ1 and χ2 in Table F.1.

Table F.1: Results from Monte Carlo calculations in 4D
for ρm, χ1 and χ2 for various values of coupling U and
lattice size L.

U L ρm χ1 χ2

1.4 4 852p3q ˆ 10´4 404p3q ˆ 10´3 251p4q ˆ 10´3

1.5 4 1058p4q ˆ 10´4 455p4q ˆ 10´3 308p5q ˆ 10´3

1.55 4 1170p2q ˆ 10´4 482p5q ˆ 10´3 335p6q ˆ 10´3

1.56 4 1194p2q ˆ 10´4 487p5q ˆ 10´3 341p5q ˆ 10´3

1.57 4 1221p2q ˆ 10´4 488p5q ˆ 10´3 342p6q ˆ 10´3

1.58 4 1249p2q ˆ 10´4 486p5q ˆ 10´3 340p5q ˆ 10´3

1.59 4 1276p2q ˆ 10´4 500p5q ˆ 10´3 354p6q ˆ 10´3

1.5925 4 1285p2q ˆ 10´4 506p5q ˆ 10´3 362p6q ˆ 10´3

1.595 4 1292p2q ˆ 10´4 512p5q ˆ 10´3 368p6q ˆ 10´3

1.5975 4 1299p2q ˆ 10´4 507p5q ˆ 10´3 364p6q ˆ 10´3

1.6 4 1309p2q ˆ 10´4 527p5q ˆ 10´3 386p6q ˆ 10´3

1.6025 4 1311p2q ˆ 10´4 517p5q ˆ 10´3 375p6q ˆ 10´3

1.605 4 1318p2q ˆ 10´4 514p5q ˆ 10´3 369p6q ˆ 10´3

1.6075 4 1329p2q ˆ 10´4 519p5q ˆ 10´3 378p6q ˆ 10´3

1.61 4 1336p2q ˆ 10´4 516p5q ˆ 10´3 371p6q ˆ 10´3

1.62 4 1368p2q ˆ 10´4 528p5q ˆ 10´3 386p6q ˆ 10´3

1.63 4 1397p2q ˆ 10´4 535p5q ˆ 10´3 393p6q ˆ 10´3
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1.64 4 1431p2q ˆ 10´4 554p6q ˆ 10´3 413p6q ˆ 10´3

1.65 4 1468p2q ˆ 10´4 547p5q ˆ 10´3 405p6q ˆ 10´3

1.66 4 1507p3q ˆ 10´4 565p6q ˆ 10´3 424p6q ˆ 10´3

1.67 4 1537p3q ˆ 10´4 578p6q ˆ 10´3 437p7q ˆ 10´3

1.68 4 1574p3q ˆ 10´4 583p6q ˆ 10´3 442p7q ˆ 10´3

1.69 4 1612p3q ˆ 10´4 590p6q ˆ 10´3 449p7q ˆ 10´3

1.7 4 1653p3q ˆ 10´4 601p6q ˆ 10´3 462p7q ˆ 10´3

1.71 4 1697p3q ˆ 10´4 609p6q ˆ 10´3 469p7q ˆ 10´3

1.72 4 1746p3q ˆ 10´4 627p7q ˆ 10´3 488p8q ˆ 10´3

1.73 4 1790p4q ˆ 10´4 634p7q ˆ 10´3 496p8q ˆ 10´3

1.74 4 1836p4q ˆ 10´4 643p7q ˆ 10´3 507p8q ˆ 10´3

1.75 4 1892p4q ˆ 10´4 657p7q ˆ 10´3 520p8q ˆ 10´3

1.76 4 1944p4q ˆ 10´4 679p7q ˆ 10´3 544p8q ˆ 10´3

1.77 4 1995p4q ˆ 10´4 700p8q ˆ 10´3 565p9q ˆ 10´3

1.78 4 2054p4q ˆ 10´4 712p8q ˆ 10´3 575p9q ˆ 10´3

1.79 4 2118p5q ˆ 10´4 726p9q ˆ 10´3 589p10q ˆ 10´3

1.7925 4 2142p5q ˆ 10´4 736p9q ˆ 10´3 602p9q ˆ 10´3

1.795 4 2148p5q ˆ 10´4 740p8q ˆ 10´3 606p8q ˆ 10´3

1.7975 4 2171p5q ˆ 10´4 739p8q ˆ 10´3 605p9q ˆ 10´3

1.8 4 2189p5q ˆ 10´4 730p8q ˆ 10´3 597p9q ˆ 10´3

1.8025 4 2204p6q ˆ 10´4 741p8q ˆ 10´3 607p9q ˆ 10´3

1.8075 4 2241p6q ˆ 10´4 755p8q ˆ 10´3 621p9q ˆ 10´3

1.81 4 2252p5q ˆ 10´4 738p9q ˆ 10´3 600p9q ˆ 10´3

1.82 4 2334p6q ˆ 10´4 762p9q ˆ 10´3 628p9q ˆ 10´3

1.83 4 2409p6q ˆ 10´4 791p10q ˆ 10´3 66p1q ˆ 10´2

1.84 4 2491p7q ˆ 10´4 809p9q ˆ 10´3 675p10q ˆ 10´3

1.85 4 2590p7q ˆ 10´4 854p10q ˆ 10´3 72p1q ˆ 10´2

1.9 4 313p1q ˆ 10´3 96p1q ˆ 10´2 83p1q ˆ 10´2

1.95 4 397p2q ˆ 10´3 104p1q ˆ 10´2 91p1q ˆ 10´2

2.0 4 502p2q ˆ 10´3 1081p10q ˆ 10´3 95p1q ˆ 10´2

1.4 6 902p2q ˆ 10´4 671p6q ˆ 10´3 508p6q ˆ 10´3

1.5 6 1143p2q ˆ 10´4 849p9q ˆ 10´3 694p9q ˆ 10´3

1.55 6 1305p2q ˆ 10´4 103p1q ˆ 10´2 88p1q ˆ 10´2

1.56 6 1338p2q ˆ 10´4 109p1q ˆ 10´2 94p1q ˆ 10´2

1.57 6 1377p2q ˆ 10´4 112p2q ˆ 10´2 97p2q ˆ 10´2

1.58 6 1418p2q ˆ 10´4 116p2q ˆ 10´2 101p2q ˆ 10´2

1.59 6 1462p2q ˆ 10´4 125p2q ˆ 10´2 110p2q ˆ 10´2

1.5925 6 1475p2q ˆ 10´4 127p2q ˆ 10´2 112p2q ˆ 10´2

1.595 6 1488p2q ˆ 10´4 127p2q ˆ 10´2 112p2q ˆ 10´2

1.5975 6 1496p2q ˆ 10´4 124p2q ˆ 10´2 109p2q ˆ 10´2
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1.6025 6 1518p2q ˆ 10´4 128p2q ˆ 10´2 113p2q ˆ 10´2

1.605 6 1532p2q ˆ 10´4 131p2q ˆ 10´2 116p2q ˆ 10´2

1.6075 6 1549p3q ˆ 10´4 133p2q ˆ 10´2 118p2q ˆ 10´2

1.61 6 1556p3q ˆ 10´4 136p2q ˆ 10´2 121p2q ˆ 10´2

1.62 6 1610p3q ˆ 10´4 146p2q ˆ 10´2 131p2q ˆ 10´2

1.63 6 1669p3q ˆ 10´4 150p2q ˆ 10´2 135p2q ˆ 10´2

1.64 6 1734p3q ˆ 10´4 168p3q ˆ 10´2 153p3q ˆ 10´2

1.65 6 1811p4q ˆ 10´4 172p3q ˆ 10´2 157p3q ˆ 10´2

1.66 6 1875p4q ˆ 10´4 184p3q ˆ 10´2 169p3q ˆ 10´2

1.67 6 1969p5q ˆ 10´4 201p3q ˆ 10´2 187p3q ˆ 10´2

1.68 6 2061p5q ˆ 10´4 213p3q ˆ 10´2 197p3q ˆ 10´2

1.69 6 2176p6q ˆ 10´4 235p3q ˆ 10´2 220p3q ˆ 10´2

1.7 6 2298p7q ˆ 10´4 252p4q ˆ 10´2 238p4q ˆ 10´2

1.71 6 2423p7q ˆ 10´4 275p4q ˆ 10´2 261p4q ˆ 10´2

1.72 6 2593p8q ˆ 10´4 302p4q ˆ 10´2 288p4q ˆ 10´2

1.73 6 277p1q ˆ 10´3 334p4q ˆ 10´2 320p4q ˆ 10´2

1.74 6 299p1q ˆ 10´3 361p4q ˆ 10´2 347p4q ˆ 10´2

1.75 6 321p1q ˆ 10´3 385p4q ˆ 10´2 371p4q ˆ 10´2

1.76 6 345p1q ˆ 10´3 411p4q ˆ 10´2 397p4q ˆ 10´2

1.77 6 373p1q ˆ 10´3 434p4q ˆ 10´2 420p4q ˆ 10´2

1.78 6 403p1q ˆ 10´3 442p4q ˆ 10´2 428p4q ˆ 10´2

1.79 6 432p2q ˆ 10´3 456p4q ˆ 10´2 442p4q ˆ 10´2

1.7925 6 440p2q ˆ 10´3 448p4q ˆ 10´2 435p4q ˆ 10´2

1.795 6 445p2q ˆ 10´3 444p4q ˆ 10´2 431p4q ˆ 10´2

1.7975 6 453p2q ˆ 10´3 441p4q ˆ 10´2 428p4q ˆ 10´2

1.8 6 464p1q ˆ 10´3 438p4q ˆ 10´2 425p4q ˆ 10´2

1.8025 6 468p1q ˆ 10´3 449p4q ˆ 10´2 435p4q ˆ 10´2

1.8075 6 480p1q ˆ 10´3 433p4q ˆ 10´2 420p4q ˆ 10´2

1.81 6 492p1q ˆ 10´3 426p4q ˆ 10´2 413p4q ˆ 10´2

1.82 6 517p1q ˆ 10´3 422p4q ˆ 10´2 408p4q ˆ 10´2

1.83 6 544p1q ˆ 10´3 387p4q ˆ 10´2 373p4q ˆ 10´2

1.84 6 568p1q ˆ 10´3 368p4q ˆ 10´2 355p4q ˆ 10´2

1.85 6 591p1q ˆ 10´3 336p4q ˆ 10´2 323p4q ˆ 10´2

1.9 6 6738p7q ˆ 10´4 221p3q ˆ 10´2 208p3q ˆ 10´2

1.95 6 7232p4q ˆ 10´4 152p2q ˆ 10´2 139p2q ˆ 10´2

2.0 6 7578p3q ˆ 10´4 115p1q ˆ 10´2 103p1q ˆ 10´2

0.8 8 223p2q ˆ 10´4 373p3q ˆ 10´3 171p4q ˆ 10´3

1.2 8 580p2q ˆ 10´4 546p7q ˆ 10´3 367p7q ˆ 10´3

1.4 8 9057p10q ˆ 10´5 830p10q ˆ 10´3 664p8q ˆ 10´3

1.5 8 1151p2q ˆ 10´4 120p1q ˆ 10´2 104p1q ˆ 10´2
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1.55 8 1317p3q ˆ 10´4 158p2q ˆ 10´2 142p2q ˆ 10´2

1.56 8 1358p3q ˆ 10´4 171p3q ˆ 10´2 155p2q ˆ 10´2

1.57 8 1408p4q ˆ 10´4 188p3q ˆ 10´2 173p3q ˆ 10´2

1.58 8 1454p4q ˆ 10´4 203p3q ˆ 10´2 187p3q ˆ 10´2

1.59 8 1513p5q ˆ 10´4 229p4q ˆ 10´2 214p4q ˆ 10´2

1.5925 8 1510p5q ˆ 10´4 224p4q ˆ 10´2 208p4q ˆ 10´2

1.595 8 1519p6q ˆ 10´4 224p4q ˆ 10´2 209p4q ˆ 10´2

1.5975 8 1528p5q ˆ 10´4 233p4q ˆ 10´2 218p4q ˆ 10´2

1.6 8 1562p5q ˆ 10´4 249p4q ˆ 10´2 234p4q ˆ 10´2

1.6025 8 1568p5q ˆ 10´4 247p4q ˆ 10´2 232p4q ˆ 10´2

1.605 8 1583p6q ˆ 10´4 258p5q ˆ 10´2 243p5q ˆ 10´2

1.6075 8 1596p6q ˆ 10´4 265p5q ˆ 10´2 250p4q ˆ 10´2

1.61 8 1628p6q ˆ 10´4 276p4q ˆ 10´2 261p4q ˆ 10´2

1.62 8 1677p5q ˆ 10´4 304p5q ˆ 10´2 289p5q ˆ 10´2

1.63 8 1764p7q ˆ 10´4 342p6q ˆ 10´2 329p6q ˆ 10´2

1.64 8 186p1q ˆ 10´3 411p8q ˆ 10´2 396p8q ˆ 10´2

1.65 8 1960p9q ˆ 10´4 459p8q ˆ 10´2 445p8q ˆ 10´2

1.66 8 2095p9q ˆ 10´4 544p9q ˆ 10´2 529p9q ˆ 10´2

1.67 8 223p1q ˆ 10´3 63p1q ˆ 10´1 61p1q ˆ 10´1

1.68 8 241p1q ˆ 10´3 72p1q ˆ 10´1 70p1q ˆ 10´1

1.69 8 261p2q ˆ 10´3 83p1q ˆ 10´1 82p1q ˆ 10´1

1.7 8 281p2q ˆ 10´3 93p1q ˆ 10´1 92p1q ˆ 10´1

1.71 8 303p2q ˆ 10´3 104p1q ˆ 10´1 102p1q ˆ 10´1

1.72 8 328p2q ˆ 10´3 111p1q ˆ 10´1 110p1q ˆ 10´1

1.73 8 350p1q ˆ 10´3 116p1q ˆ 10´1 114p1q ˆ 10´1

1.74 8 376p2q ˆ 10´3 121p1q ˆ 10´1 119p1q ˆ 10´1

1.75 8 404p3q ˆ 10´3 121p1q ˆ 10´1 120p1q ˆ 10´1

1.76 8 433p3q ˆ 10´3 118p1q ˆ 10´1 117p1q ˆ 10´1

1.77 8 454p2q ˆ 10´3 118p1q ˆ 10´1 116p1q ˆ 10´1

1.78 8 485p2q ˆ 10´3 108p1q ˆ 10´1 107p1q ˆ 10´1

1.79 8 511p2q ˆ 10´3 100p1q ˆ 10´1 98p1q ˆ 10´1

1.7925 8 517p3q ˆ 10´3 98p1q ˆ 10´1 97p1q ˆ 10´1

1.795 8 525p3q ˆ 10´3 94p1q ˆ 10´1 93p1q ˆ 10´1

1.7975 8 528p3q ˆ 10´3 95p1q ˆ 10´1 94p1q ˆ 10´1

1.8 8 536p3q ˆ 10´3 91p1q ˆ 10´1 90p1q ˆ 10´1

1.8025 8 548p2q ˆ 10´3 85p1q ˆ 10´1 83p1q ˆ 10´1

1.805 8 547p3q ˆ 10´3 87p1q ˆ 10´1 85p1q ˆ 10´1

1.8075 8 551p2q ˆ 10´3 84p1q ˆ 10´1 82p1q ˆ 10´1

1.81 8 562p2q ˆ 10´3 80p1q ˆ 10´1 79p1q ˆ 10´1

1.8125 8 567p2q ˆ 10´3 75p1q ˆ 10´1 74p1q ˆ 10´1
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1.815 8 576p2q ˆ 10´3 73p1q ˆ 10´1 71p1q ˆ 10´1

1.8175 8 579p3q ˆ 10´3 71p1q ˆ 10´1 70p1q ˆ 10´1

1.82 8 588p2q ˆ 10´3 69p1q ˆ 10´1 68p1q ˆ 10´1

1.83 8 606p2q ˆ 10´3 59p1q ˆ 10´1 57p1q ˆ 10´1

1.84 8 623p2q ˆ 10´3 520p10q ˆ 10´2 506p10q ˆ 10´2

1.85 8 639p2q ˆ 10´3 441p8q ˆ 10´2 428p8q ˆ 10´2

1.9 8 7002p10q ˆ 10´4 226p3q ˆ 10´2 213p3q ˆ 10´2

1.95 8 7371p7q ˆ 10´4 153p2q ˆ 10´2 140p2q ˆ 10´2

2.0 8 7642p6q ˆ 10´4 1153p9q ˆ 10´3 1031p9q ˆ 10´3

1.4 10 903p1q ˆ 10´4 914p9q ˆ 10´3 747p9q ˆ 10´3

1.5 10 1150p2q ˆ 10´4 141p2q ˆ 10´2 125p2q ˆ 10´2

1.55 10 1317p3q ˆ 10´4 207p3q ˆ 10´2 192p3q ˆ 10´2

1.56 10 1358p3q ˆ 10´4 237p5q ˆ 10´2 220p5q ˆ 10´2

1.57 10 1395p4q ˆ 10´4 248p4q ˆ 10´2 232p4q ˆ 10´2

1.58 10 1447p4q ˆ 10´4 289p5q ˆ 10´2 273p5q ˆ 10´2

1.59 10 1510p5q ˆ 10´4 332p8q ˆ 10´2 317p8q ˆ 10´2

1.5925 10 1510p4q ˆ 10´4 330p7q ˆ 10´2 315p7q ˆ 10´2

1.595 10 1523p4q ˆ 10´4 355p6q ˆ 10´2 340p6q ˆ 10´2

1.5975 10 1546p5q ˆ 10´4 365p7q ˆ 10´2 350p7q ˆ 10´2

1.6 10 1558p4q ˆ 10´4 372p7q ˆ 10´2 356p7q ˆ 10´2

1.6025 10 1575p5q ˆ 10´4 386p9q ˆ 10´2 372p8q ˆ 10´2

1.605 10 1604p7q ˆ 10´4 435p10q ˆ 10´2 420p9q ˆ 10´2

1.6075 10 1605p6q ˆ 10´4 435p10q ˆ 10´2 420p10q ˆ 10´2

1.61 10 1617p6q ˆ 10´4 437p10q ˆ 10´2 422p10q ˆ 10´2

1.62 10 1716p7q ˆ 10´4 57p1q ˆ 10´1 56p1q ˆ 10´1

1.63 10 1801p10q ˆ 10´4 69p2q ˆ 10´1 68p2q ˆ 10´1

1.64 10 192p1q ˆ 10´3 88p2q ˆ 10´1 86p2q ˆ 10´1

1.65 10 207p1q ˆ 10´3 110p2q ˆ 10´1 109p2q ˆ 10´1

1.66 10 222p1q ˆ 10´3 133p2q ˆ 10´1 131p2q ˆ 10´1

1.67 10 239p1q ˆ 10´3 158p2q ˆ 10´1 156p2q ˆ 10´1

1.68 10 259p1q ˆ 10´3 183p2q ˆ 10´1 181p2q ˆ 10´1

1.69 10 277p2q ˆ 10´3 201p2q ˆ 10´1 200p2q ˆ 10´1

1.7 10 299p1q ˆ 10´3 228p2q ˆ 10´1 226p2q ˆ 10´1

1.71 10 320p2q ˆ 10´3 240p3q ˆ 10´1 239p3q ˆ 10´1

1.72 10 344p2q ˆ 10´3 251p2q ˆ 10´1 249p2q ˆ 10´1

1.73 10 366p2q ˆ 10´3 261p2q ˆ 10´1 259p2q ˆ 10´1

1.74 10 392p2q ˆ 10´3 263p2q ˆ 10´1 262p2q ˆ 10´1

1.75 10 417p2q ˆ 10´3 258p2q ˆ 10´1 256p2q ˆ 10´1

1.76 10 443p3q ˆ 10´3 247p2q ˆ 10´1 246p2q ˆ 10´1

1.77 10 470p2q ˆ 10´3 232p2q ˆ 10´1 230p2q ˆ 10´1
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1.78 10 499p2q ˆ 10´3 207p2q ˆ 10´1 206p2q ˆ 10´1

1.79 10 525p2q ˆ 10´3 185p3q ˆ 10´1 184p3q ˆ 10´1

1.7925 10 532p2q ˆ 10´3 176p3q ˆ 10´1 174p3q ˆ 10´1

1.795 10 538p2q ˆ 10´3 170p3q ˆ 10´1 168p3q ˆ 10´1

1.7975 10 545p2q ˆ 10´3 160p3q ˆ 10´1 159p3q ˆ 10´1

1.8 10 552p2q ˆ 10´3 151p3q ˆ 10´1 149p3q ˆ 10´1

1.8025 10 558p2q ˆ 10´3 145p3q ˆ 10´1 144p3q ˆ 10´1

1.805 10 568p2q ˆ 10´3 133p3q ˆ 10´1 131p3q ˆ 10´1

1.8075 10 570p3q ˆ 10´3 130p4q ˆ 10´1 128p4q ˆ 10´1

1.81 10 578p2q ˆ 10´3 119p2q ˆ 10´1 118p2q ˆ 10´1

1.8125 10 586p2q ˆ 10´3 110p2q ˆ 10´1 109p2q ˆ 10´1

1.815 10 590p2q ˆ 10´3 102p3q ˆ 10´1 101p3q ˆ 10´1

1.8175 10 594p2q ˆ 10´3 102p2q ˆ 10´1 101p2q ˆ 10´1

1.82 10 600p2q ˆ 10´3 95p2q ˆ 10´1 94p2q ˆ 10´1

1.83 10 618p1q ˆ 10´3 74p2q ˆ 10´1 72p2q ˆ 10´1

1.84 10 635p1q ˆ 10´3 59p1q ˆ 10´1 58p1q ˆ 10´1

1.85 10 649p1q ˆ 10´3 48p1q ˆ 10´1 47p1q ˆ 10´1

1.86 10 6622p9q ˆ 10´4 406p6q ˆ 10´2 392p6q ˆ 10´2

1.87 10 6718p9q ˆ 10´4 348p6q ˆ 10´2 334p6q ˆ 10´2

1.9 10 7012p7q ˆ 10´4 236p3q ˆ 10´2 223p3q ˆ 10´2

1.95 10 7379p6q ˆ 10´4 153p1q ˆ 10´2 141p1q ˆ 10´2

2.0 10 7658p4q ˆ 10´4 1151p8q ˆ 10´3 1029p8q ˆ 10´3

1.4 12 903p1q ˆ 10´4 949p9q ˆ 10´3 782p8q ˆ 10´3

1.5 12 1150p2q ˆ 10´4 154p2q ˆ 10´2 139p2q ˆ 10´2

1.55 12 1316p3q ˆ 10´4 244p4q ˆ 10´2 228p4q ˆ 10´2

1.56 12 1359p3q ˆ 10´4 272p6q ˆ 10´2 257p5q ˆ 10´2

1.57 12 1398p3q ˆ 10´4 306p6q ˆ 10´2 291p6q ˆ 10´2

1.58 12 1452p3q ˆ 10´4 373p9q ˆ 10´2 358p8q ˆ 10´2

1.59 12 1502p4q ˆ 10´4 46p1q ˆ 10´1 45p1q ˆ 10´1

1.5925 12 1515p4q ˆ 10´4 46p1q ˆ 10´1 45p1q ˆ 10´1

1.595 12 1526p4q ˆ 10´4 50p1q ˆ 10´1 48p1q ˆ 10´1

1.5975 12 1535p4q ˆ 10´4 50p1q ˆ 10´1 48p1q ˆ 10´1

1.6 12 1558p4q ˆ 10´4 53p1q ˆ 10´1 52p1q ˆ 10´1

1.6025 12 1567p5q ˆ 10´4 58p2q ˆ 10´1 56p2q ˆ 10´1

1.605 12 1592p5q ˆ 10´4 61p1q ˆ 10´1 59p1q ˆ 10´1

1.6075 12 1616p6q ˆ 10´4 67p2q ˆ 10´1 65p2q ˆ 10´1

1.61 12 1619p4q ˆ 10´4 68p2q ˆ 10´1 66p2q ˆ 10´1

1.62 12 1716p7q ˆ 10´4 96p3q ˆ 10´1 94p3q ˆ 10´1

1.63 12 1819p8q ˆ 10´4 127p4q ˆ 10´1 125p4q ˆ 10´1

1.64 12 194p1q ˆ 10´3 163p4q ˆ 10´1 162p4q ˆ 10´1

Continued on next page
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Table F.1 – Continued from previous page
U L ρm χ1 χ2

1.65 12 2057p10q ˆ 10´4 202p5q ˆ 10´1 200p5q ˆ 10´1

1.66 12 2255p9q ˆ 10´4 264p4q ˆ 10´1 263p4q ˆ 10´1

1.67 12 242p1q ˆ 10´3 312p4q ˆ 10´1 311p5q ˆ 10´1

1.68 12 2623p10q ˆ 10´4 362p5q ˆ 10´1 361p4q ˆ 10´1

1.69 12 282p1q ˆ 10´3 406p4q ˆ 10´1 404p4q ˆ 10´1

1.7 12 302p2q ˆ 10´3 440p6q ˆ 10´1 439p6q ˆ 10´1

1.71 12 324p2q ˆ 10´3 469p5q ˆ 10´1 468p5q ˆ 10´1

1.72 12 348p2q ˆ 10´3 490p4q ˆ 10´1 489p4q ˆ 10´1

1.73 12 371p1q ˆ 10´3 500p4q ˆ 10´1 499p4q ˆ 10´1

1.74 12 393p1q ˆ 10´3 505p5q ˆ 10´1 503p5q ˆ 10´1

1.75 12 422p2q ˆ 10´3 483p4q ˆ 10´1 482p4q ˆ 10´1

1.76 12 445p1q ˆ 10´3 468p5q ˆ 10´1 466p5q ˆ 10´1

1.77 12 475p2q ˆ 10´3 433p5q ˆ 10´1 431p5q ˆ 10´1

1.78 12 504p2q ˆ 10´3 371p6q ˆ 10´1 370p6q ˆ 10´1

1.79 12 529p2q ˆ 10´3 316p5q ˆ 10´1 314p5q ˆ 10´1

1.7925 12 539p2q ˆ 10´3 285p5q ˆ 10´1 284p5q ˆ 10´1

1.795 12 541p2q ˆ 10´3 279p8q ˆ 10´1 278p8q ˆ 10´1

1.7975 12 549p2q ˆ 10´3 258p7q ˆ 10´1 256p7q ˆ 10´1

1.8 12 557p1q ˆ 10´3 235p4q ˆ 10´1 234p4q ˆ 10´1

1.8025 12 561p2q ˆ 10´3 230p5q ˆ 10´1 228p5q ˆ 10´1

1.805 12 570p2q ˆ 10´3 202p5q ˆ 10´1 201p5q ˆ 10´1

1.8075 12 576p2q ˆ 10´3 184p6q ˆ 10´1 183p6q ˆ 10´1

1.81 12 5841p9q ˆ 10´4 163p3q ˆ 10´1 161p3q ˆ 10´1

1.8125 12 590p2q ˆ 10´3 153p5q ˆ 10´1 152p5q ˆ 10´1

1.815 12 596p1q ˆ 10´3 135p4q ˆ 10´1 133p4q ˆ 10´1

1.8175 12 598p1q ˆ 10´3 128p5q ˆ 10´1 127p5q ˆ 10´1

1.82 12 6068p9q ˆ 10´4 111p2q ˆ 10´1 110p2q ˆ 10´1

1.83 12 6228p9q ˆ 10´4 83p2q ˆ 10´1 81p2q ˆ 10´1

1.84 12 640p1q ˆ 10´3 62p2q ˆ 10´1 60p2q ˆ 10´1

1.85 12 6520p10q ˆ 10´4 49p1q ˆ 10´1 48p1q ˆ 10´1

1.9 12 7023p6q ˆ 10´4 235p2q ˆ 10´2 222p2q ˆ 10´2

1.95 12 7378p4q ˆ 10´4 157p1q ˆ 10´2 144p1q ˆ 10´2

2.0 12 7654p4q ˆ 10´4 1158p7q ˆ 10´3 1035p7q ˆ 10´3

1.75 14 416p2q ˆ 10´3 88p1q ˆ 100 88p1q ˆ 100
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