

Flavor Asymmetry $(\bar{d} - \bar{u})$ in Termodynamics Model for the Nucleon.

A. F. Grashin, A. A. Fomin

Moscow Engineering Physics Institute
Moscow, 115409, RUSSIA
grashin@cyber.mephi.ru

Abstract

On the basis of thermodynamic model, difference of antiquark distributions $(\bar{d} - \bar{u})$ is constructed. The comparison with other models is carried out.

The precise knowledge of the u , \bar{u} , d and \bar{d} quark distributions in the nucleon is very important for theoretical investigations. The flavor asymmetry

$$f(x, Q^2) = \bar{d} - \bar{u} \quad (1)$$

as a function of two invariant variables is of special interest. There are several parametrizations for function (1) elaborated by Gluck, Reya, Vogt[1], CTEQ-Collab.[2], Martin, Robert, Stirling[3], however they have been thought not to be reliable for precise description of the nucleon structure.

In this work we suggest a simple analytical expression for flavor asymmetry obtained in the framework of the thermodynamical model, which was reported at the Workshop in Samara [4, 5]. A modification for the neutron structure function F_2^n also reported at this Workshop[6] In this model structure function is described by 3-term expression

$$F_2^N = F^{SEA} + F^R + F^{PL} \quad (2)$$

where each term has the exponential form

$$\frac{N x \exp(-z)}{z^n}, \quad (3)$$

$$z = \sqrt{a^2 + \frac{\Delta(x - x_0)^2}{x(1-x)}} \quad (4)$$

with $n=3,1,0$ for the 1st, 2d and 3d term respectively. A normalization factor N and parameters a , Δ , x_0 are different for each term and denoted by the additional index SEA, R, PL.

The function (1) is constructed in the two-term form:

$$\bar{d} - \bar{u} = N^{RH} \frac{\exp(-z_{RH})}{z_{RH}} + N_1^{PL} \exp(-z_{PL}) \quad (5)$$

where

$$N^{RH} = \frac{0.1137 \Delta_{RH} \exp(a_{RH})}{1 + 2 \cdot 10^{-4} \Delta_{RH}^2} \quad (6)$$

$$N_1^{PL} = -\frac{0.01 \Delta_{PL} \exp(a_{PL})}{1 + 2 \cdot 10^{-4} \Delta_{PL}^3} \quad (7)$$

Function (3) depends on 2 arguments of the form (4) with the parameters which determine Q^2 – evolution by the following formulas:

$$\Delta = \Phi \ln(1 + p + \lambda Q^2) \quad (8)$$

$$a_{RH}^2 = \Delta_{RH}(1 + a_{RH})/C_{RH} \quad (9)$$

$$a_{PL} = \Delta_{PL}/C_{PL} \quad (10)$$

$$x_0^{RH} = 0, x_0^{PL} = B_{PL}/(\Delta_{PL} C_{PL}) \quad (11)$$

$$C = C^0 + d_{PL}/\Delta_{PL} \quad (12)$$

	C^0	d	B	Φ	p	λ
RH	24	0	0	16.29	0.00318	0.486
PL_1	6	5.73	1.91	2.85	0.07	5.7

Here C^0 is heat capacity of the excited remnant system R which appears in the virtual transition $\gamma^* + p \rightarrow q + R$.

This system has the temperature T related to the mass of the virtual state by the classical formula

$$M = CT \quad (13)$$

Parameters in the formulas (6,7) have been obtained when experimental data [7, 8] are used.

Figs.1,2 show our function (1) together with the experimental points and GRV94 [1] - parametrization. GRV parametrization gives a monotonic function decreasing with x, contrary to our function changing the sign at about 0.4 for $Q^2 = 54 \text{ GeV}^2$. The same peculiarity has the MRST 98-parametrization.

It is important that we see an essential Q^2 -dependence which yields a significant effect in the neutron structure function F_2^N [6].

References

- [1] M.Gluck et al., Z. Phys. C 67 (1995) 433; hep-ph/9806404.
- [2] CTEQ Collab., H.L.Lai et al., Phys. Rev. D 55(1997) 1280.
- [3] A.D. Martin et al., Phys.Lett. B 387(1996) 419; hep-ph/9803445.
- [4] Grashin A.F., Lukasevich I.B., Proc. of the XII Int. Workshop on HEP and QFT, Samara, Sept. 4-10, 1997; Moscow, 1999, p.105.
- [5] A.F.Grashin , A.D. Efimenko, Yad. Fizika 56, N11 (1993) 114.
- [6] VALENCE u- and d- DISTRIBUTION FUNCTIONS in THERMODYNAMICAL MODEL for the NUCLEON and SHADOWING in the DEUTRON. Grashin A.F., Fomin A.A. in these Proc..
- [7] HERMES Collab., K.Ackerstaff et al., Phys. Rev. Lett., 81 (1998)5519.
- [8] E866 Collab., E.A. Hawker et al., Phys. Rev. Lett., 80, (1998) 3715: hep-ph/9804288.

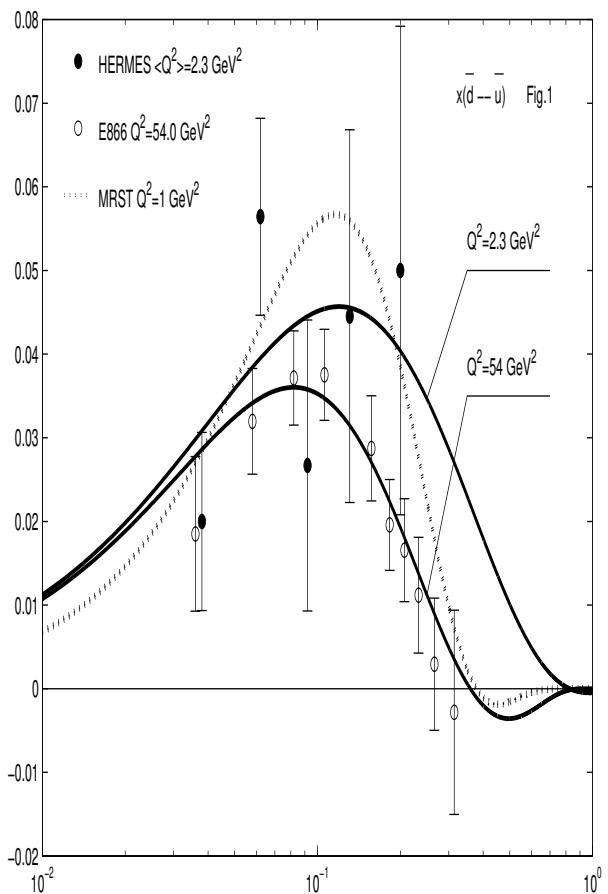


Figure 1: Termodinamical model for function $x(\bar{d} - \bar{u})$ and MRST98-parametrization [3] , solid and dashed lines respectively. Experimental points are from [7, 8] .

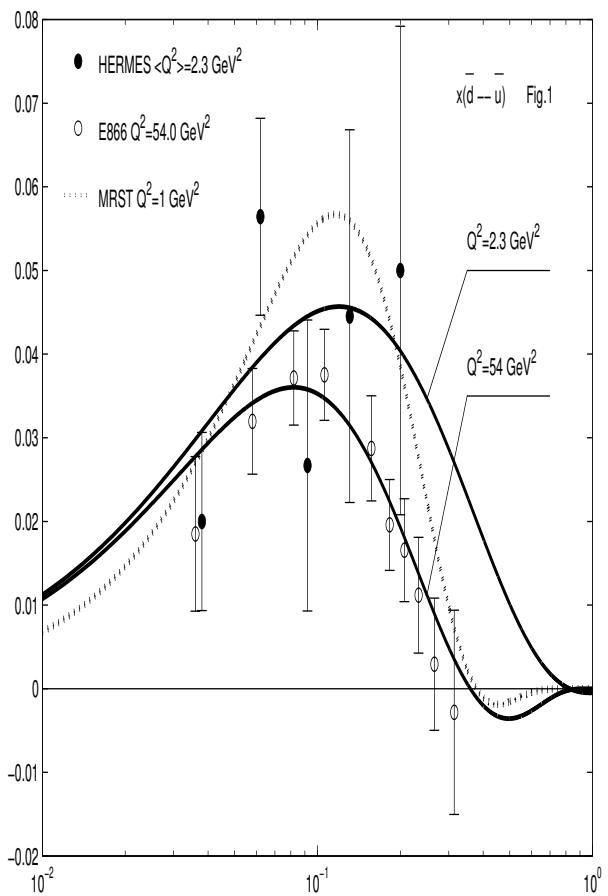


Figure 2: Termodinamical model for function $\bar{d} - \bar{u}$ together with the experimental points [7, 8] and GRV94-parametrization [1].