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Abstract
We consider pseudoconvexity properties in Lorentzian and Riemannian man-
ifolds and their relationship in static spacetimes. We provide an example of
a causally continuous and maximal null pseudoconvex spacetime that fails to
be causally simple. Its Riemannian factor provides an analogous example of a
manifold that is minimally pseudoconvex, but fails to be convex.

Keywords: causality theory, causal simplicity, null pseudoconvexity, static
spacetime, convexity

1. Introduction

A pseudo-Riemannian manifold is said to have a pseudoconvex class of geodesics, if for each
compact subset K there is a larger compact subset K′, such that any geodesic segment of the
class with endpoints in K lies entirely in K′. Causal pseudoconvexity is a kind of an ‘internal
completeness’ assumption for spacetimes akin to, but strictly weaker than global hyperbolicity.
Similar to the latter, it is a causality notion with strong ties to the theory of PDE. Pseudocon-
vexity of bicharacteristics characterizes the existence of a parametrix for pseudodifferential
operators of real principal type, cf [12, section 6], [6].
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John Beem and his coauthors have used pseudoconvexity in several contexts in causal-
ity theory. In [4] causal pseudoconvexity together with causal geodesic non-imprisonment
(inextendible causal geodesics leave every compact set) appear as sufficient conditions
for the stability of causal geodesic completeness, cf [5, theorem 7.35]. Geodesic non-
imprisonment and pseudoconvexity of all geodesics together with the absence of conjugate
points implies geodesic connectedness and serve as conditions for a pseudo-Riemannian
version of the Hadamard–Cartan theorem [7], [5, chapter 11]. For a recent generalization
see [11].

Here we are especially interested in the relation between pseudoconvex and causally simple
spacetimes, i.e. causal spacetimes with closed causal relation. Indeed, every causally simple
spacetime is maximal null pseudoconvex by [8, theorem 1], for which we provide a sim-
plified proof in theorem 2.7, below. Concerning the reverse implication it has been conjec-
tured in [3, section 1] that strongly causal (i.e. there are no ‘almost closed’ causal curves)
and null pseudoconvex spacetimes are causally simple. Finally, in [20, theorem 2] it was
claimed that for strongly causal spacetimes maximal null pseudoconvexity and causal sim-
plicity are equivalent. Here we provide a counterexample to this statement, i.e. we establish
that

causal continuity and maximal null pseudoconvexity
do not imply causal simplicity.

Our counterexample is a static spacetime based on a corresponding Riemannian counter
example, that enjoys a certain limiting property for minimizing geodesics, but fails to be con-
vex. This counterexample adds to the list of recently found counterexamples involving the
notion of causal simplicity [10, 14].

In section 2 we provide some general results on pseudoconvexity and in section 3 we spe-
cialize to static spacetimes. This will allow us to ‘lift’ the corresponding properties of the
Riemannian counterexample to the spacetime level in section 4.

In the remainder of this introduction we fix some notations and conventions. All mani-
folds are assumed to be smooth, connected, Hausdorff, second countable, of arbitrary dimen-
sion n � 2, and without boundary. By a minimizing geodesic in a Riemannian manifold
(Σ, h) we mean a geodesic whose length equals the distance dh(x, y) between its endpoints
x and y. We call Σ convex if any pair of its points can be connected via a minimizing
geodesic.

A spacetime (M, g) is a time oriented Lorentzian manifold, where we use the signature
(−,+, . . . ,+). A causal geodesic in M is called maximizing if its length equals the Lorentzian
distance dg(p, q) between its endpoints p and q. We denote the chronological and the causal
relation by I and J respectively. A spacetime is called causal if there are no closed causal
curves. If in addition the causal relation J is closed, it is called causally simple. A space-
time is non-total imprisoning if no inextendible causal curve is contained in a compact
set. We shall only consider causal spacetimes, in which case the non-total imprisonment
property is equivalent with the causal geodesic non-imprisonment property mentioned above
[17, proposition 4.41]. A spacetime is called strongly causal if for every point and for every
neighborhood of the point there is a smaller neighborhood such that no causal curve inter-
sects it more than once. A spacetime is called causally continuous if it is strongly causal
and reflective: I+(q) ⊂ I+(p) ⇔ I−(p) ⊂ I−(q). It is known that causal simplicity ⇒ causal
continuity ⇒ strong causality ⇒ non-total imprisonment ⇒ causality. For other results and
conventions on causality not explicitly mentioned in this work, we refer the reader to the
review [17].

2



Class. Quantum Grav. 38 (2021) 227002 Note

2. General results on pseudoconvexity

We start recalling some definitions, cf [5, chapters 7, 11].

Definition 2.1. A spacetime (M, g) is called (causal, null or maximally null) pseudoconvex,
if for any compact set K, there exists another compact set K′, such that each geodesic of the
respective type with both endpoints in K must be entirely contained in K′.

Clearly pseudoconvexity implies causal pseudoconvexity which implies null pseudocon-
vexity which again is stronger than maximal null pseudoconvexity. There is also a Riemannian
version of the notion:

Definition 2.2. A Riemannian manifold (Σ, h) is called (minimally) pseudoconvex, if for
any compact set C, there exists another compact set C′, such that each (minimal) geodesic with
endpoints in C must be entirely contained in C′.

Clearly, pseudoconvexity implies minimal pseudoconvexity. Often it is useful to relate
pseudoconvexity to a certain limiting property of geodesic segments which we define next.

Definition 2.3. We say a pseudo-Riemannian manifold M has the limit geodesic segment
property (LGS) if the following holds true: given any pair of converging sequences of points
pn → p and qn → q �= p and any sequence σn of geodesic segments connecting pn to qn, there
is a subsequence of σn (in a suitable affine reparametrization) converging (locally uniformly)
to a geodesic σ from p to q.

In the Riemannian case we will speak of the minimal LGS if all σn (and hence σ) have the
corresponding property. Similarly, in the Lorentzian case, we will speak of the causal, null,
maximal null LGS, if all σn (and hence σ) have the corresponding property.

Recall from [7, definition 2] that a Riemannian manifold (Σ, h) is disprisoning if no forward
inextensible geodesic γ : [0,ω) → Σ has compact closure.

Lemma 2.4. A Riemannian manifold (Σ, h) satisfies the LGS if and only if it is disprisoning
and pseudoconvex.

Proof. First assume that LGS holds. Let C ⊂ Σ compact be given. Choose a compact exhaus-
tion {Cn}n∈N of Σ. If pseudoconvexity fails for C there exists a sequence γn : [0, 1] → Σ with
endpoints in C such that γn leaves Cn. By the LGS {γn}n∈N contains a convergent subsequence.
The limit geodesic γ : [0, 1] → Σ is contained in some CN . This clearly contradicts the initial
assumption. Therefore (Σ, h) is pseudoconvex.

Next assume that LGS holds and there exists a inextensible geodesic ray γ : [0,ω) → Σ with
compact closure. Then we have ω = ∞ and γ has infinite length. In that case the sequence
γn : [0, 1] → Σ where γn(t) := γ(nt) has no convergent subsequence.

Finally, assume that (Σ, h) is pseudoconvex and disprisoning. Let pn, qn ∈ Σ be sequences
converging to p and q �= p respectively and γn : [0, 1] → Σ be a sequence of geodesics from
pn to qn. Let C be a compact set given by the union of a compact neighborhood of p with a
compact neighborhood of q. Without loss of generality we can assume pn, qn ∈ C for each n.
There exists a compact set C′ ⊂ Σ such that γn ⊂ C′ for all n ∈ N by pseudoconvexity. Since
the manifold is disprisoning the length Lh(γn) is uniformly bounded from above. Then by a
standard argument for geodesics it follows that there exists a convergent subsequence. �

By the previous result every compact (closed) Riemannian manifold is trivially pseudo-
convex but fails to satisfy the LGS as, certainly, it is not disprisoning. For instance, T2 is
pseudoconvex but does not satisfy the LGS. Choosing a geodesic σ with irrational slope, which
hence is dense in T2, we may choose a point x /∈ σ and tn such that σ(tn) → x. But the sequence
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of geodesic segments σ|[0,tn] has no subsequence converging to a geodesic between σ(0)
and x.

In this connection we mention a theorem of Serre, see [19], implying that any pair of points
in a noncontractible complete Riemannian manifold are connected by a sequence of geodesics
whose lengths are diverging.

Completeness implies convexity by the Hopf–Rinow theorem [15], but completeness (hence
convexity) does not imply pseudoconvexity (e.g. a complete surface with infinitely many
holes), cf [18]. For another example of convex but not pseudoconvex space see theorem 2.7
in [14].

The next result is analogous to the previous one, but for the ‘minimal’ case.

Lemma 2.5. A Riemannian manifold (Σ, h) satisfies the minimal LGS if and only if it is
minimally pseudoconvex.

Proof. We already know that if LGS holds then pseudoconvexity holds, which implies
minimal pseudoconvexity.

For the converse, let Σ be minimally pseudoconvex.Further let σn : [0, bn] → Σ be minimiz-
ing geodesics from xn to yn, parametrized by arc length, and let xn → x, yn → y �= x. Let C be a
compact set given by the union of a compact neighborhood of x with a compact neighborhood
of y. Without loss of generality we can assume xn, yn ∈ C for each n. By compactness σ′

n(0)
converges up to a subsequence to a unit vector v ∈ TxΣ. Let σ : [0, β) → Σ be the maximally
extended geodesic with initial vector v. Then σn converges to σ locally uniformly on [0, β). By
minimal pseudoconvexity all σn are contained in some compact C′ and so Lh(σn) � diamh(C′).
Hence, again up to a subsequence, bn converge to some b < β. Hence σn(bn) → σ(b) = q and
we are done. �

The next result is a Lorentzian analog to lemma 2.4. It slightly improves [5, lemma 11.20].

Lemma 2.6. (M, g) satisfies the (maximal) null LGS iff it is non-total imprisoning and
(maximal) null pseudoconvex.

A similar result with ‘causal’ replacing the two instances of ‘null’ holds.

Proof. The proof of ‘(maximal) null LGS ⇒ (maximal) null pseudoconvex’, can be done
in the same way as the proof of lemma 2.4 (first paragraph). If non-total imprisonment were
violated we could find a future inextendible lightlike geodesic γ : [0, a) → M, achronal hence
maximizing, contained in a compact set C cf [17, theorem 2.77]. Let an → a, and pass to a
subsequence (denoted in the same way) so that γ(an) → q. But then the maximizing lightlike
geodesics γn = γ|[0,an] with an → a, do not converge to a geodesic η connecting p := γ(0) to
q, for if that were the case, as each γn coincides with a segment of γ, η would coincide with
a segment of γ, which is impossible since certainly γn converges on a domain larger than any
subinterval [0, b] ⊂ [0, a).

For the converse, assume non-total imprisonment and (maximal) null pseudoconvexity. Let
σn be (maximal) null geodesics with endpoints pn, qn converging to p and q, respectively. Let
C be a compact set given by the union of a compact neighborhood of p with a compact neigh-
borhood of q. Without loss of generality we can assume pn, qn ∈ C for each n. By (maximal)
null pseudoconvexity there is a compact set C′ containing all the curves σn. By the limit curve
theorem (two endpoints case [17]), the sequence must admit a converging subsequence, other-
wise we could find a future inextendible causal curve σp ⊂ C′ starting from p to which some,
suitably parametrized, subsequence of σn converges uniformly on compact subset. But then σp

would contradict non-total imprisonment. �
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In a globally hyperbolic spacetime for every compact subset K, J+(K) ∩ J−(K) is compact.
As a consequence, global hyperbolicity trivially implies causal pseudoconvexity (and hence
maximal causal pseudoconvexity). However, causal pseudoconvexity does not imply global
hyperbolicity, e.g. a strip |x| < 1 in Minkowski 1 + 1 spacetime [5].

We now give a simplified proof of the next Lorentzian result originally proved in
[8, theorem 1]. In the last section we shall show that the reverse implication does not hold.

Theorem 2.7. If (M, g) is causally simple, then it is maximally null pseudoconvex (equiva-
lently, it satisfies the maximal null LGS).

The equivalence in the different formulations of the conclusion is given by lemma 2.6, since
causal simplicity implies non-total imprisonment.

Proof. Suppose that the claim is false, then we can find a compact set K, and maximal null
geodesic segments γn with endpoints pn, qn ∈ K, such that for some rn ∈ γn, rn escapes every
compact set. Further we can assume pn → p ∈ K, and qn → q ∈ K. As (pn, qn) ∈ J we have by
causal simplicity (p, q) ∈ J. Moreover, it cannot be (p, q) ∈ I otherwise for sufficiently large
n, (pn, qn) ∈ I which contradicts the maximality of γn. Thus (p, q) ∈ E = J\I.

By the limit curve theorem [17, theorem 2.53(ii)] there are lightlike rays σp starting from p
and σq ending at q such that for every p′ ∈ σp and q′ ∈ σq, we have (p′, q′) ∈ J̄ = J where we
used causal simplicity. For every p′ ∈ σp\{p}we have (p′, q) ∈ J but the causal curve connect-
ing p′ to q must be the prolongation of the lightlike ray σp otherwise (p, q) ∈ I, a contradiction.
Thus q ∈ σp and repeating the argument by taking p′ along σp after q one gets that σp passes
through q several times, which violates causality. �

Next we establish that for Riemannian manifolds convexity is stronger than the minimal
LGS. Again, in the last section we shall show that the reverse implication does not hold.

Theorem 2.8. If Σ is convex, then it satisfies the minimal LGS (equivalently, it is minimal
pseudoconvex).

The equivalence in the different formulations of the conclusion is given by lemma 2.5.

Proof. Let σn : [0, an] → Σ be minimizing unit speed geodesics such that pn := σn(0) → p
and qn :=σn(an) → q �= p, p, q ∈ Σ. Without loss of generality we can assume that σ̇n(0) →
u ∈ TpΣ and that an → a > 0. Let σ : I → Σ be the unit speed geodesic that starts from p with
tangent σ̇(0) = u. For every t ∈ I by the continuity of the exponential map

σn(t) = exppn
(σ̇n(0)t) → expp(ut) = σ(t).

Moreover for every c ∈ I, σn|[0,c] is minimizing and so σ|[0,c] is minimizing. If there is t ∈ I
such that σ(t) = q, then it must be t � a otherwise, as t is the length of a curve (the curve σ)
connecting p to q, no σn could be minimizing for sufficiently large n. However, t > a cannot
happen since otherwise it would be shorter to go from p to q, passing from some σn, which
would contradict that σ|[0,t] is minimizing. We conclude that if there is t such that σ(t) = q then
t = a.

We can now assume that q /∈ σ otherwise we have finished, hence we can assume I = [0, b).
Observe that d(pn, qn) = an and by the continuity of distance d(p, q) = a. Now, for 0 < ε < b,
we have d(σn(ε), qn) = an − ε as σn is minimizing, and hence d(σ(ε), q) = limnd(σn(ε), qn) =
a − ε as d is continuous. Thus any chosen minimizing curve γ connecting σ(ε) with q has
length a − ε. But d(p, q) < �(σ|[0,ε]) + �(γ) � ε+ a − ε = a where the first inequality is strict
because there must be a corner at σ(ε) between σ and γ, otherwise it would be q ∈ σ. The
contradiction proves that the connecting case is the only option. �
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We do not known if pseudoconvexity implies convexity. The next result represents an
attempt in this direction. It is not used in what follows.

Proposition 2.9. Let (Σ, h) be a Riemannian manifold which admits an equidimensional
embedding into a complete manifold (Σ̃, h̃). Then (Σ, h) is minimally pseudoconvex if and only
if it is convex.

Remark 2.10. The proof shows that a positive lower bound on the convexity radius on
bounded sets of (Σ, h) suffices at least for the conclusion that minimal pseudoconvexity implies
convexity.

Proof.

(a) By theorem 2.8 convexity implies minimal pseudoconvexity without further assumptions.
(b) Assume that (Σ, h) is minimally pseudoconvex. We will show that the closure Σ of Σ in Σ̃

is locally convex, i.e. for any x ∈ Σ there exists ε > 0 such that Σ ∩ Bh̃
ε (x) is convex in Σ̃

(i.e. any two points in this set are connected by a geodesic segment which is minimizing
among all the connecting curves contained in the same set).

We define the convexity radius for (Σ̃, h̃) as in [16, corollary 1.9.11]. All we need to know is
that this function r : Σ̃→ (0,∞] is continuous and that in Bh̃

r(x̃)(x̃) any two points are connected
by one and only one geodesic contained in the ball, and this geodesic is minimizing among all
the connecting curves in Σ̃.

We claim that for all x̃ ∈ Σ̃ and all y, z in the same connected component of Bh̃
r(x̃)(x̃) ∩ Σ

the unique minimal h̃-geodesic between y and z lies in Σ. This can be seen as follows. Let
η : [0, 1] → Bh̃

r(x̃)(x̃) ∩ Σ be a curve from y to z. The set of parameters t ∈ [0, 1] for which the

unique minimal h̃-geodesic between y and η(t) lies in Σ is nonempty. It is also open, since

Σ ⊂ Σ̃ is open and exph̃
y is a diffeomorphism defined on exph̃

y

−1
[Bh̃

r(x̃)(x̃)]. Finally it is closed

by minimal pseudoconvexity.Therefore the unique minimal h̃-geodesic between y and η(1) = z
lies in Σ. This geodesic is also a minimal geodesic for (Σ, h) as disth̃ � disth, and hence the
unique minimal geodesic for (Σ, h) connecting y and z. By considering limits of geodesics we
infer that, for every x, y ∈ Bh̃

r(x̃)(x̃) belonging to the closure of the same connected component

C of Bh̃
r(x̃)(x̃) ∩ Σ there is a h̃-minimizing geodesic entirely contained in C ⊂ Σ connecting

them.
Observe that for every point x ∈ Σ we have that every connected component of Bh̃

r(x)(x) ∩ Σ

is convex, and that the established properties provide a ‘local convexity’ property for Σ.
Now let x, y ∈ Σ be given. We will show that there exists a minimal geodesic in Σ

connecting the two points.
The following reasoning is similar to [1, Satz 2.8(i)]. Let γn : [0, 1] → Σ be a minimizing

sequence of curves connecting x with y. According to the argument above we can assume that
the curves are geodesic polygons and that the length of the individual arcs is bounded from
below by some positive constant. By the completeness of (Σ̃, h̃) a subsequence converges to a
geodesic polygon γ : [0, 1] → Σ. Using a standard argument involving the triangle inequality
we see that γ is a h̃-geodesic.

We claim that γ does not intersect the boundary ∂Σ :=Σ\Σ. Assume otherwise, i.e. there
exists t ∈ (0, 1) with γ(t) ∈ ∂Σ. W.l.o.g. we can assume that t is minimal in (0, 1). Denote with
Σt the connected component of Bh̃

r(γ(t))/4(γ(t)) ∩ Σ which contains a segment γ|[s,t) for some
s < t. Note that Σt is convex with γ(t) ∈ ∂Σt. The following argument is an adaptation of [9,
lemma 8.6] to the present situation. Choose an arbitrary small smooth hypersurface W ⊂ Σt

6
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transversal to γ and containingγ(s). Choose u > t such that γ|[t,u] ⊂ Bh̃
r(γ(t))/4(γ(t)) and consider

the set

V := {expr(λw)| h̃(w,w) < r(γ(t))2, expr(w) ∈ W, λ ∈ (0, 1)}.

Here r ∈ Σ is a point sufficiently close to γ(u) ∈ Σ which stays in the connected component
Σt (it is possible to show that it exists perturbing γ[s,u]). The set V is open and contained in
Σt by convexity. Further V is an open neighborhood of γ(t), (remember that γ is a h̃-geodesic
hence C1) a contradiction to the assumption that γ(t) ∈ ∂Σt. Therefore γ is contained in Σ.
The lower semicontinuity of the length functional implies that the curve is minimal in Σ. Note
that γ is i.g. not minimal in Σ̃. �

3. Pseudoconvexity in static spacetimes

Let (Σ, h) be a Riemannian manifold. In this section we investigate the relation of convexity
and pseudoconvexity properties of (Σ, h) to causality and pseudoconvexity properties of the
static spacetime (M, g) with

M :=R× Σ, and g = −dt2 + h. (1)

The projection onto the first factor t : M → R is a temporal function.
Observe that in semi-Riemannian product manifolds a path is, up to parametrisation, a

geodesic if and only if the projections onto the factors are geodesics. Hence in our case,
geodesics are always of the form γ = (α, σ) where α is some linear function in R and β is
a geodesic in Σ. Moreover, clearly γ is causal if and only if |α′| � ‖σ′‖h. We observe the
following relation of minimizing and maximizing geodesics.

Lemma 3.1. A causal geodesic γ = (α, σ) in M is maximizing if and only if σ is minimizing
in Σ.

Proof. It suffices to consider geodesics γ = (α, σ) of the formα : [0, 1] → R, α(s) = bt, and
σ : [0, 1] → Σ, i.e., ‖σ′(s)‖h = Lh(σ), connecting p = (0, x) and q = (b, y) with b > 0. First
observe that γ is causal iff b � Lh(σ) and so

Lg(γ) =
√

b2 − Lh(σ)2. (2)

Now suppose σ is not minimizing, then there is σ̃ : [0, 1] → Σ connecting x to y with
Lh(σ̃) < Lh(σ). But then for γ̃ = (bt, σ̃) we find Lg(γ̃) =

√
b2 − Lh(σ̃)2 >

√
b2 − Lh(σ)2 =

Lg(γ) and so γ is not maximizing.
Conversely, suppose that γ is not maximizing, then there is a future pointing timelike curve

γ̃ : [0, 1] → M, γ̃ = (bt, σ̃) with Lg(γ̃) > Lg(γ). Since γ̃ need not be a geodesic we can in gen-
eral not parametrize it both linear in the first factor and constant speed in the second. However,
we have

Lg(γ̃) =
∫ 1

0

√
b2 − ‖σ̃′‖2

hdt > Lg(γ) =
√

b2 − (Lh(σ))2.

By applying the Cauchy–Schwarz inequality to
∫ 1

0

√
b2 − ‖σ̃′‖2

hdt and by using the previous
inequality we get the second inequality in the next expression

Lh(σ̃)2 �
∫ 1

0
‖σ̃′‖2

hdt < Lh(σ)2.

7
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The first inequality is obtained through another standard application of the Cauchy–Schwarz
inequality. In conclusion, σ is not minimizing between x and y. �

Lemma 3.2. If M is maximally null pseudoconvex, then Σ is minimal pseudoconvex. Con-
versely, if Σ is minimal pseudoconvex, then M is maximally causal (hence null) pseudoconvex.
M is pseudoconvex if and only if Σ is pseudoconvex.

Proof. Let Σ be pseudoconvex and take any K ⊆ M. Then the projections of K onto R and
Σ are compact, i.e. we have K ⊆ [c, d] × C for c, d ∈ R and some compact C ⊆ Σ. By pseu-
doconvexity of Σ there exists a compact set C′ such that any geodesic starting and ending in
C is contained in C′. Now let γ be a geodesic in M, starting and ending in K. We can write
γ(t) = (a + bt, σ(t)), hence c � a, a + b � d with σ a geodesic starting and ending in C. This
however implies that γ ⊆ K′ := [c, d] × C′.

The proof that ‘Σ is minimally pseudoconvex’ implies ‘M is maximally causal
pseudoconvex’ follows from a very similar argument which makes use of lemma 3.1.

For the converse direction, we first look at the maximal–minimal case: let M be maximally
null pseudoconvex and let C ⊆ Σ be compact. Any minimizing unit speed geodesic σ start-
ing and ending in C fulfills Lh(σ) � c := diamh(C). For the compact set K := [0, c] × C by
maximal null pseudoconvexity there exists some compact set K′ containing all maximal null
geodesics starting and ending in K. Again by construction we must have K′ ⊆ [0, c] × C′ for
some compact set C′ in Σ. By lemma 3.1 the null geodesic γ(t) := (t, σ(t)) is maximizing and
hence contained in K′, but then also σ ⊆ C′.

If M is pseudoconvex then Σ is too by noticing that for any compact set C ⊆ Σ the set
{0} × C is compact in M. �

Remark 3.3. While pseudoconvexity of Σ clearly implies causal and null pseudoconvexity
of M the converse does not hold. This is due to the fact that any causal geodesic starting and
ending in a compact set in M has a projection with a length bounded by the difference of the t
components of the causal curve endpoints. So one cannot expect to gain control over sequences
in Σ with unbounded lengths.

Lemma 3.4. Σ is convex if and only if M is causally simple.

Proof. Assume Σ is convex. Observe that (M, g) is causal as t is a time function. By trans-
lational invariance over the time fiber and by time reflection symmetry, we need only to show
that J+(p) is closed for any point of the form p = (0, x).

Let qn = (bn, yn) ∈ J+(p) with qn = (bn, yn) → (b, y) = q. There exist causal paths σn from
p to qn of the form ( bn

dh(x,yn )
t, σn(t)) with σn from x to yn. The causality condition reads

‖σ′
n‖h � bn/dh(x, yn). Hence dh(x, yn) � Lh(σn) =

∫ dh(x,yn)
0 ‖σ′

n‖h � bn, which by continuity
gives dh(x, y) � b.

By convexity there exists a unit speed geodesic σ : [0, dh(x, y)] →Σ connecting x to y. Now
γ : [0, dh(x, y)] → M, γ(t) := ( b

dh(x,y) t, σ(t)) is a path from p to q that is causal iff, dh(x, y) � b,

which is the case as we just proved. Thus q ∈ J+(p) and, by the arbitrariness of q, J+(p) is
closed.

Conversely, let M be causally simple and let x, y ∈ Σ. There exist curves σn from x to y
with Lh(σn)=: ln ↘ l := dh(x, y) with ‖σ′

n‖h = 1. The curves γn : [0, ln] → M, γn(t) := (t, σn(t))
from (0, x) to (ln, y) are null and hence (l, y) ∈ J+((0, x)) by causal simplicity. So there exists
some causal curve α : [0, l] → M,α(t) = (t, β(t)) with β a path in Σ from x to y. Moreover
0 � g(α′,α′) = −1 + ‖β′‖2

h and so ‖β′‖2
h � 1, which leads to Lh(β) � l and hence β must be

a minimizing geodesic from x to y. �
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Figure 1. The counterexample consists of two cylinders H0 and H1, closed above with
cups and connected by a sequence of immersed tubes Tk, k � k̄. Adapted by permission
from Springer Nature Customer Service Centre GmbH: [Kluwer Academic Publish-
ers (Dordecht)] [Annals of Glocal Analysis and Geometry] [2, section 2.1], Copyright
(2002).

4. The counterexamples

With theorem 2.8 we learned that on a Riemannian manifold convexity implies the minimal
LGS. In this section we show that the converse does not hold.

Then we shall consider the Lorentzian theorem 2.7, analogous to theorem 2.8, according
to which causal simplicity implies the maximal null LGS. By using the results of the previous
section on static spacetimes, we shall show, once again, that the converse implication does not
hold.

Let us give an example of Riemannian space (Σ, h) which satisfies the minimal LGS but is
not convex. A very similar Riemannian space was constructed in [2, section 2.1] as a coun-
terexample to another statement also related to the notions of convexity and connectedness in
Riemannian spaces (figure 1).

Example 4.1 (A non-convex Riemannian manifold possessing the minimal LGS).
The space Σ consists of two cylinders H0 and H1 closed above with cups and then connected
in the flat region by a sequence of immersed tubes Tk, k � k̄ > 0. The Cauchy boundary of
the space can be identified with the union of two circles, which are the lower boundaries of
the cylinders used in the construction. The mouths of the tubes converge to points e0 and e1

on the Cauchy boundary of the space.
Let the geodesic distance between the center of the mouths of Tk and Tk+1 in H0 before

the discs (tube mouths) are excised, be 1
2k+2 , let the diameter of the mouths (discs) in the

same geometry be 1
4k (basically is goes so fast to zero that in our arguments this distance

becomes negligible), and let the length of the tube Tk from mouth to mouth in (Σ, h) be 1
2k−1 .

Let analogous conditions hold in H1. If γ1 is a curve passing through Tk from mouth to mouth
(here γ1 might have endpoints belonging to some tubes that might coincide with Tk or not)
then we can find a curve γ2 connecting the same endpoints of γ1 passing through Tk+1 from
mouth to mouth and such that

9
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�(γ2) � �(γ1) + 2
1

2k+2
− 1

2k−1
+

1
2k

+ O

(
1
4k

)
� �(γ1) − 1

2k+1
+ O

(
1
4k

)
.

This implies that, provided the space is defined with k̄ sufficiently large, �(γ2) < �(γ1), hence
a minimizing geodesic cannot pass through a tube from mouth to mouth and so that there are
certainly pairs of points not connected by a minimizing geodesic, for instance any pair (x0, x1)
where x0 belongs to the first cylinder and x1 belongs to the second cylinder. As a consequence,
convexity does not hold (this fact was already pointed out in [2]).

We want to show that the minimal LGS holds. Let σn : [0, an] → Σ be minimizing unit speed
geodesics such that pn := σn(0) → p and qn := σn(an) → q, p, q ∈ Σ. Without loss of general-
ity we can assume that the tangents σ̇n converge to some unit vector u ∈ T pΣ, and since the
diameter of (Σ, h) is bounded we can also assume that an → a. Let σ : I → Σ be the geodesic
that starts from p with tangent u. If its domain interval includes [0, a], then by the continuity
of the exponential map we can conclude that

qn = exppn
(σ̇n(0)an) → expp(ua) = σ(a)

that is q = σ(a). Observe that an is the length of σn and it converges to the length a of σ. Thus
σ must be minimizing otherwise for sufficiently large n, σn would not be minimizing. This
would give the desired result so we have only to show that the domain of σ includes [0, a].

Suppose not. The maximal domain of σ is [0, b) for some b � a, and by standard ODE
theory [13] σ(t) escapes every compact set as t → a (though possibly returning indefinitely to
it).

Let T p = Ts be the tube whose mouth is closest to p (which could be the tube to which p
belongs), and let Tq = Tt be the tube whose mouth is closest to q (if there are more choices
for the closest tube we choose that with larger s, resp. t). For sufficiently large k namely for
k > K > max(s, t), with suitable K > 0 the minimizing geodesics σn cannot transverse Tk

from mouth to mouth (as they are minimizing, cf the above argument).
Let us section the figure by cutting with a horizontal plane at a height y > 0 selected so that

above it we have the points p, q, and the tubes Tk, k � K, thus including T p and Tq. Then the
geodesics σn stay entirely above the horizontal section (because if they cross the plane then
they can be replaced by a shorter curve running on the plane for a geodesic segment, a fact
which would contradict the minimizing property). As a consequence σ being a limit of σn is
also entirely above the plane and so it cannot escape every compact set of Σ. The contradiction
proves that the domain of σ is [0, a] and so that the minimal LGS holds.

We are ready to give the Lorentzian example.

Example 4.2 (A maximally causal pseudoconvex and causally continuous but
non-causally simple spacetime). We consider the static spacetime (M, g) with M =
R× Σ and g = −dt2 + h, where (Σ, h) is as in example 4.1. By construction, M is strongly
causal (actually stably causal, because of the time function t). Due to the timelike Killing
vector ∂t it is reflective and hence causally continuous [17].

Now, since Σ possesses the minimal LGS, it is also minimal pseudoconvex by lemma 2.5
and hence M is maximal causal (hence null) pseudoconvex by lemma 3.2.

On the other hand Σ is not convex and so, by lemma 3.4, M is not causally simple.
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