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Abstract

We review Zimmermann’s forest formula, which solves Bogoliubov’s recursive R-operation for the sub-
traction of ultraviolet divergences in perturbative Quantum Field Theory. We further discuss a generalisation 
of the R-operation which subtracts besides ultraviolet also Euclidean infrared divergences. This generali-
sation, which goes under the name of the R∗-operation, can be used efficiently to compute renormalisation 
constants. We will discuss several results obtained by this method with focus on the QCD beta function at 
five loops as well as the application to hadronic Higgs boson decay rates at N4LO. This article summarizes 
a talk given at the Wolfhart Zimmermann Memorial Symposium.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Despite the enormous success in describing the interactions of elementary particles the ap-
pearance of ultraviolet (UV) divergences make it difficult to establish Quantum Field Theory as 
a fundamental theory of nature. A solution which at least grants the interpretation of Quantum 
Field Theories as low energy effective theories is given by the procedure of renormalisation. This 
is the procedure to absorb the troublesome infinities, present at small distances, into the physical 
parameters of the theory.
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An important development in the establishment of renormalisation theory has been the 
Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) renormalisation scheme. This scheme was 
originally developed by Bogoliubov and Parasiuk [1] in terms of a recursive subtraction opera-
tion, often called Bogoliubov’s R-operation. This method of renormalisation makes it possible to 
subtract the complicated overlapping and nested UV-divergences which can appear in Feynman 
integrals, the building blocks of the perturbative expansion.

An important aspect of the BPHZ scheme is that it connects the renormalisation constants, 
which are usually associated to counterterms at the Lagrangian level, to explicit local countert-
erms at the level of the integrands associated to Feynman graphs. Beyond this the BPHZ scheme 
is also practical, as it allows one (surely in massive theories and at least in principle also in 
massless theories) to arrive at absolutely convergent representations for renormalised Feynman 
integrals. Working in the BPHZ scheme Feynman integral computations can thus be carried out 
without the need of regulation. But also in the presence of a (dimensional or analytic) regulator 
the BPHZ-scheme provides an elegant way to separate the potentially complicated finite parts of 
Feynman integrals from their much simpler divergent parts.

Bogoliubov’s and Parasiuk’s proof for the finiteness of Feynman Integrals renormalised via 
the R-operation was however not completely satisfactory, and was later corrected by Hepp [2]. 
Hepp’s proof was based on a method to decompose the domain of integration of Schwinger pa-
rameters into different sectors to avoid the overlapping divergences which created difficulties in 
the proof of Bogoliubov and Parasiuk. An alternative proof for the finiteness of the renormalised 
Feynman Integral was given by Zimmermann [3,4]. He realised in particular that the recursion in 
Bogoliubov’s R-operation gives rise to a sum over forests of graphs. This allowed him to rewrite 
the R-operation into a form which is now often referred to as Zimmermann’s forest formula. Us-
ing the combinatoric properties of forests Zimmermann formulated an elegant and comparably 
simple proof for the finiteness of Feyman Integrals directly in momentum space.

This article is organised as follows. We will give an overview of further extensions of BPHZ 
in section 2. In section 3 we will review the R-operation and in particular Zimmermann’s forest 
formula. We will then consider an infrared (IR) generalisation of the R-operation in section 4. 
This R∗-operation is a powerful tool in modern computations of renormalisation constants in 
gauge and scalar quantum field theories. We will continue by discussing applications of this 
method. In section 5 we will focus on the calculation of the five-loop beta function in QCD 
and report briefly on hadronic Higgs boson decay rates at next-to-next-to-next-to-next-to-leading 
order (N4LO) in perturbative QCD in section 6.

2. Extensions of BPHZ

The BPHZ scheme, with it’s underlying forest formula, has been extended in several different 
directions which we attempt to briefly summarise in the following.

2.1. BPHZL

One such extension, introduced by Zimmermann and Lowenstein, goes by the name of the 
BPHZL scheme [5–7]. Since the BPHZ scheme is not properly equipped to deal with massless 
particles, such as gauge bosons or massless fermions, BPHZL extents BPHZ to such cases. The 
problem which occurs when applying the original BPHZ scheme to massless theories, is that 
IR-divergences could appear in the counterterms constructed by the BPHZ procedure. It is a 
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well known fact, guaranteed by the KLN theorem [8,9], that the IR divergences are spurious and 
must cancel in properly defined physically measurable quantities. The BPHZL scheme carefully 
introduces masses into the UV counterterms in order to regulate their IR divergences, thereby 
avoiding the introduction of new (un-physical) IR divergences into the theory.

2.2. The R∗-operation

Another extension of BPHZ is the R∗-operation by Chetyrkin, Tkachov and Smirnov [10,11]. 
The R∗-operation is equipped to subtract besides the UV also IR divergences of Euclidean Feyn-
man integrals. This is how it differs substantially from the BPHZL scheme which does not intend 
to subtract the IR divergences, but rather tries to avoid them in UV counterterms – thereby leav-
ing their cancellation to the mechansims beneath the KLN theorem. The R∗-operation should be 
regarded more as a mathematical trick – rather than a renormalisation scheme – which allows 
one to extract the renormalisation constants of Feynman integrals or correlators from maximally 
simple one-scale Feynman Integrals. It achieves this by making use of the technique of IR re-
arrangement (IRR) [12] in dimensional regularisation. IRR essentially builds on the observation 
that the local counterterms in dimensional regularisation must be independent (up to polynomial 
dependence) of the kinematic data of Green’s functions [13].

2.3. Mass divergences in Minkowski space

A variant of BPHZ subtraction has been extended to the subtraction of collinear divergences 
in hadronic collisions by van Neerven and Humpert in [14]. There an explicit forest formula is 
given which describes how collinear divergences can be treated in an analagous diagrammatic 
approach to UV divergences. The subtraction of soft and collinear divergences has also been 
described in a BPHZ like setting by Collins in his book “Foundations of perturbative QCD” [15]. 
There also exist several works by Kinoshita and his collaborators Cvitanovic and Ukawa [16,17]
which describe forest formulas for the subtraction of IR divergences in the Feynman parameteric 
representation in g − 2 calculations in QED.

2.4. Hopf algebraic formulation

A more mathematical development by Kreimer and his collaborators, notably among others 
Connes, is the discovery that the recursive R-operation gives rise to a Hopf algebra [18,19]. This 
development has thus uncovered the fundamental mathematical structure behind the renormal-
isation procedure and may shed further light into the mathematics underlying Quantum Field 
Theory as a whole, which is still poorly understood from a rigorous point of view. Another in-
teresting development in this direction was made quite recently by the mathematician Brown. 
He showed that the Hopf algebra present in a certain linear blow-up or slicing scheme in projec-
tive Schwinger parameters can also lead to a more general Hopf algebra which covers also the 
infra-red divergences present in euclidean Feynman integrals [20]. It remains yet to connect this 
work with that of the R∗-operation which is formulated in momentum space; although it appears 
clear that the two are related. For instance the notion of motic subgraphs introduced by Brown in 
[20] is equivalent to the notion of infrared irreducibility introduced in [11]. In fact it has already 
been used to build an efficient IR-subgraph search algorithm in the context of the R∗-operation 
in momentum space in [21].
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Fig. 1. This figure shows several examples of 1PI subgraphs. a) shows an example of a �-forest which is also a spinney, 
since the two subgraphs γ1 and γ2 are disjoint. b) shows an example of a �-forest which is not a spinney since γ3 ⊂
γ2 ⊂ γ1. The two subgraphs γ1 and γ2 in c) are neither a spinney nor a �-forest since they overlap.

3. The BPHZ R-operation

3.1. Bogoliubov’s recursion

We begin with a brief review of Bogoliubov’s recursive R-operation. We shall in the following 
denote by � either a Feynman graph or its associated momentum space integrand or integral; thus 
leaving its precise meaning to be determined by the circumstances of its appearance.

The renormalised integrand of the Feynman Graph �, R(�), is then defined as follows:

R(�) =
∑
S⊆�

Z(S) ∗ �/S , Z(S) =
∏
γ∈S

Z(γ ) . (1)

Here the sum goes over all spinneys S contained in �. Spinneys are possibly disjoint sets of 
UV-divergent 1PI subgraphs (γ s) of �. A valid spinney can also be the empty graph or the full 
graph � itself. The contracted graph �/S is constructed by contracting to points in � each of the 
disjoint 1PI components γ in the spinney S. The functions Z(γ ) can be identified with the local 
UV counterterm – or “renormalisation constant” – of a 1PI subgraph γ . Here the word local 
signifies that Z(γ ) is a homogeneous polynomial in the external momenta and masses whose 
degree equals the superficial degree of divergence of the Feynman graph γ , denoted by ω(γ ). 
The ∗ symbol indicates insertion of the local counterterm Z(γ ) into the vertex into which γ was 
contracted in �/S.

The local UV-counterterm Z(�) is itself defined recursively:

Z(�) = −K

( ∑
S��

∏
γ∈S

Z(γ ) ∗ �/S

)
, (2)

where the sum goes over all spinneys S which do not contain the full graph �. The K-operation 
is defined to isolate, according to a certain renormalisation scheme, the singular part of its ar-
gument. For example the K-operation, in the minimal subtraction (MS) scheme, acting on a 
meromorphic function F(ε) will return only the pole part of F(ε). In a momentum subtraction 
scheme the K-operation may instead act as a Taylor expansion operator around a certain fixed or 
vanishing external momentum configuration. Thus, while the general form of the R-operation is 
unique, the precise value of the local counterterm Z is scheme dependent. Let us further remark 
that for the empty subgraph, which we will denote by ∅, one requires Z(∅) = 1.
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3.2. Zimmermann’s forest formula

Zimmermann’s forest formula arises as a consequence of the recursive structure of the 
R-operation. The recursion essentially generates nested sets of subgraphs. The nested structures 
thus arising are called �-forests by Zimmermann. A �-forest U(�) is a set of subgraphs of �, 
which are either disjoint or are subgraphs of one another, or more abstractly

U(�) = {γ1, ..., γn |γi ∈ � and (γi ∩ γj = ∅ or γi ⊂ γj or γi ⊃ γj )} . (3)

If a �-forest contains only UV divergent subgraphs it is called a restricted �-forest and is denoted 
by Ur(�). Let us remark at this point that with this definition a spinney is always a restricted 
�-forest but a restricted �-forest is not always a spinney. Some examples for �-forests and spin-
neys are illustrated in Fig. 1.

Let us further define the set Ur (�) as the set of all restricted �-forests. The R-operation can 
then be written as Zimmermann’s forest formula:

R(�) =
∑

U∈Ur (�)

∏
γ∈U

(−Kγ ) � , (4)

where Kγ � = K(γ ) ∗�/γ and if the forest contains nested subgraphs the operations Kγ should 
be applied from inside out.

3.3. Example

Let us consider the following Feynman integral as an example:

� =
k1

k2

k1 + k2

k1 + p

(5)

=
∫

dDk1

iπD/2

dDk2

iπD/2

1

(k2
1 + m2)((k1 + k2)2 + m2)(k2

2 + m2)((k1 + p)2 + m2)

Acting with the R-operation in a momentum subtraction scheme, where the action K onto a 
graph corresponds to a Taylor expansion around vanishing external momenta, yields:

R

( )
= − K

( )
− K

( )
·

+K

(
K

( )
·

)
(6)

= − − · + ·

4. The R∗-operation

The R∗-operation acting on a Euclidean Feynman graph � can be written as

R∗(�) =
∑

S⊆�,S̃⊆�

Z̃(S̃) ∗ Z(S) ∗ �/S \ S̃ . (7)
S∩S̃=∅
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Here the sum goes over disjoint pairs of UV and IR spinneys S and S̃ respectively. The UV 
spinney is defined identically as in the case of the R-operation. To define the IR spinney S̃ is 
slightly more involved than for UV spinneys and is for this reason referred to the literature [11,
21,22]. The remaining contracted graph �/S \ S̃ is constructed by first contracting the S in � and 
then deleting the lines and vertices contained in S̃ in �/S. The case in which S̃ = � can occur 
only if � is a scaleless vacuum graph of logarithmic superficial degree of divergence. In this case 
� \ S̃ is defined as the unit 1. The UV and IR counterterm operations Z and Z̃ are then defined 
recursively via:

Z(�) = −K
( ∑

S��,S̃⊆�

S∩S̃=∅

Z̃(S̃) ∗ Z(S) ∗ �/S \ S̃
)

, (8)

where one omits in the sum over UV spinneys the full graph � and

Z̃(�0) = −K
( ∑

S⊆�0,S̃��0
S∩S̃=∅

Z̃(S̃) ∗ Z(S) ∗ �0/S \ S̃
)

, (9)

where one omits in the sum over IR spinneys the scaleless vacuum Feynman graph �0. The 
identity R∗(�0) = 0 can be used to find relations among IR and UV counterterms in dimensional 
regularisation.

4.1. Example

Let us consider the Feynman integral:

� =
1

2

3
=

∫
dDk1

iπD/2

dDk2

iπD/2

1

(k2
1)2(k2 + P)2(k1 + k2)2

(10)

Here we have labeled the lines from 1–3, such that their corresponding momenta are parame-
terised as q1 = k1, q2 = k2 +P , q3 = k1 +k2 respectively. The example features an IR divergence 
when the momentum is flowing through the dotted line 1 vanishes. It also features two UV diver-
gent subgraphs, corresponding to the full graph or the subgraph which consists of lines 2 and 3. 
The action of the R∗ operation yields:

R∗
( 1

2

3

)
=

1

2

3
+ Z

( 1

2

3

)
+ Z

(
2

3

)
∗ 1

(11)

+ Z̃

(
1

)
∗ 2

3
+ Z̃

(
1

)
∗ Z

(
2

3

)
∗ 1 .

The IR counterterm can be evaluated as

Z̃

( )
= Z̃

( )
= −Z

( )
= K

( )
. (12)

5. The QCD beta function at five loops

By governing the scale evolution of the (reduced) strong coupling constant,

a(μ) = αs(μ) =
(

gs(μ)
)2

, (13)

4π 4π
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Fig. 2. This figure shows a typical five-loop Feynman graph contributing to the background field self energy.

Fig. 3. This figure illustrates the procedure of IR rearrangement to simplify the calculation of UV poles of Feynman 
integrals.

the beta function (in the MS scheme of dimensional regularisation [35]),

β(a) = da

d logμ2 = −
∞∑

n=0

βna
n+2 , (14)

is of fundamental importance to QCD. Pioneering calculations of the 1-loop beta function in 
the 60s and early 70s [23–27] lead to the discovery of asymptotic freedom in QCD. Since then 
tremendous progress in perturbative calculations has lead to the determination of the beta func-
tion up to five loops [28–34,36–41]. Several of these calculations were based on the use of the 
R∗-operation which we briefly discussed in section 4. Here we wish to report in particular on 
the calculation of ref. [39]. This calculation made use of the background field method, where the 
renormalisation constant, associated to the background field ZB , is related to that of the running 
coupling via [42,43]:

ZaZB = 1 (15)

This relation allows the extraction of Za and therefore also β at five loops from the knowldege 
of the poles of the 5-loop background field self energy (see Fig. 2).

Utilising the techniques of IR rearrangement (see Fig. 3) and the R∗ methods introduced in 
[21] we were able to extract these poles from five-loop Feynman graphs which can be factorised 
into products of trivial one-loop graphs times four-loop graphs, which in turn can be computed 
efficiently with the FORCER program [44–46]. In order to perform these calculations we build a 
computational framework based on FORM [49–51], QGRAF [47] for the generation of diagrams 
and the colour package of ref. [48].

Let us now present some numeric results for the beta-function for the gauge group SU(3), 
fixing also the number of quark flavours nf to a few physically relevant values:

β̃(αs, nf =3)=1 + 0.565884αs + 0.453014α 2
s + 0.676967α 3

s + 0.580928α 4
s ,

β̃(αs, nf =4)=1 + 0.490197αs + 0.308790α 2
s + 0.485901α 3

s + 0.280601α 4
s ,

β̃(αs, nf =5)=1 + 0.401347αs + 0.149427α 2
s + 0.317223α 3

s + 0.080921α 4
s ,

β̃(αs, nf =6)=1 + 0.295573αs − 0.029401α 2 + 0.177980α 3 + 0.001555α 4 , (16)
s s s
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Fig. 4. Left panel: The total 3-, 4- and 5-loop results results for the beta function of QCD for four flavours, normalized 
to the 2-loop approximation. Right panel: The resulting scale dependence of αs for a value of 0.2 at 40 GeV2, also 
normalized to the 2-loop result in order to show the small higher-order effects more clearly, for the scale range 1 GeV2 ≤
μ2 ≤ 10 4 GeV2.

where β̃ ≡ −β(as)/(a
2

s β0). These numbers indeed show excellent perturbative convergence of 
the beta-function across this physically relevant range of nf . It appears in particular that the 
convergence is enhanced for increasing values of nf at the five-loop level. It would indeed be 
very interesting to see whether such a pattern would continue at yet higher orders or represents a 
mere accident at the five loop level.

In Fig. 4 we show two plots illustrating the small effect of the five-loop coefficient on the 
scale evolution of the coupling. These effects are indeed rather mild, and show that the coupling 
evolution even at lower scales (which correspond to larger values of the coupling) appears now 
to be under excellent control.

6. Hadronic Higgs decays and the R-ratio at N4LO

Let us briefly report here also on several N4LO calculations which were completed in ref. [52]
using essentially the same techniques which we described for the calculation of the five-loop 
beta function in section 5. Namely these are the calculations of the Higgs boson decay rate into 
massless bottom quarks, the Higgs boson decay rate into gluons in the heavy top quark effective 
theory and the hadronic R-ratio mediated by an off-shell photon, all of which in massless QCD. 
These calculations were made possible by the use of unitarity which allows one to relate decay 
rates to the imaginary part of a corresponding self energy. Since such self energy diagrams are 
real valued in Euclidean space, their imaginary pieces are suppressed by a factor of ε which 
originates from the analytic continuation of the phase

Im(−p2 − iδ)−Lε = Lπε

(
1 − (Lπε)2

3! + ...

)
(p2)−Lε . (17)

This suppression factor (Lπε) allows one to extract the decay rate from the UV divergences 
of the self energy to which it is related by unitarity. Consequentially the R∗-method can be 
applied to this problem. Since the result for the gluonic Higgs boson decay rate is new let us 
present here the variation of the renormalisation scale to emphasise its perturbative convergence 
in two different renormalisation schemes in Fig. 5. Although different patterns are observed at 
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Fig. 5. The renormalization scale dependence of the decay width �H→ gg , for an on-shell top mass of 173 GeV in MS
and the miniMOM scheme.

lower orders both schemes converge to the same numerical values at this high perturbative order 
providing further confidence for the reliability of perturbation theory in QCD.

7. Summary

In this talk we reviewed the basic concepts behind Zimmermann’s forest formula and em-
phasised its various extensions. In particular we discussed the R∗-operation, which generalises 
the forest formula to the subtraction of Euclidean infrared divergences, and its applications in 
multi-loop calculations of anomalous dimensions and decay rates. We also discussed results for 
the five-loop beta function and briefly mentioned results for hadronic Higgs boson decay rates 
which were obtained using this technique.
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