
Mach. Learn.: Sci. Technol. 6 (2025) 015012 https://doi.org/10.1088/2632-2153/ada71d

OPEN ACCESS

RECEIVED

23 March 2024

REVISED

15 December 2024

ACCEPTED FOR PUBLICATION

7 January 2025

PUBLISHED

22 January 2025

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

A reinforcement learning approach to the design of quantum
chains for optimal energy and state transfer
S Sgroi1,2,∗, G Zicari1, A Imparato3,4 and M Paternostro1,2

1 Centre for QuantumMaterials and Technologies, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN,
United Kingdom

2 Dipartimento di Fisica e Chimica—Emilio Segrè, Universit̀a degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy
3 Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste, Italy
4 Trieste Section, Istituto Nazionale di Fisica Nucleare, 34127 Trieste, Italy
∗ Author to whom any correspondence should be addressed.

E-mail: sofiasgroi.w@gmail.com

Keywords: reinforcement learning, quantum chains, energy transfer, quantum networks

Abstract
We propose a bottom–up approach, based on reinforcement learning, to the design of a chain
achieving efficient excitation-transfer performances. We assume distance-dependent interactions
among particles arranged in a chain under tight-binding conditions. Starting from two particles
and a localised excitation, we gradually increase the number of constitutents of the system so as to
improve the transfer probability. We formulate the problem of finding the optimal locations and
numbers of particles as a Markov decision process: we use proximal policy optimization to find the
optimal chain-building policies and the optimal chain configurations under different scenarios. We
consider both the case in which the target is a sink connected to the end of the chain and the case in
which the target is the right-most particle in the chain. We address the problem of disorder in the
chain induced by particle positioning errors. We apply our methodology to a simplified model of a
relevant physical platform, consisting of trapped ions. We are able to achieve extremely high
excitation transfer in all cases, with different chain configurations and properties depending on the
specific conditions.

1. Introduction

Studying and optimizing energy, information or state transfer across physical systems are problems of great
importance in a multitude of contexts in physics: the field of quantum physics, and quantum technologies in
particular, is certainly not an exception. Among the various quantum systems whose transport properties are
of special interest, particle chains play a special role for quantum technologies, both for their relative
simplicity and for their wide range of applicability. Quantum communications [1, 2] and quantum internet
[3] would obviously benefit from a better understanding of transport properties of particle chains together
with better tools to design optimal state transfer across them. This would also be beneficial for quantum
computing as, for example, particle chains can be used to describe spin-like systems which might be useful to
connect distinct quantum processors and registers [4–8]. Implementation of quantum networks simulators
[9–12] might in principle also be realised by optimized particle chains with long-range interactions. Even our
understanding of biological photosynthetic processes [13–15] might benefit from the study and optimization
of quantum transport among relatively simple structures. It is not surprising, then, that given the relevance
of the problem, various techniques have been developed to realize transport across these structures [4].

Designing optimal couplings among the particles in such chains would allows us to avoid or minimize the
control we have to exert during the system dynamics to achieve effective transfer. While arbitrary couplings
engineering between particles in a chain can be a difficult task to accomplish for generic physical systems,
some platforms where the couplings can be distance-dependent, such as ion traps [16], could allow some
degree of control over their design while, at the same time, potentially avoiding the need to have different
kind of physical platforms for processors [17–21] and busses when performing quantum computation.
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One possible way to optimizing such couplings is by making use of reinforcement learning (RL) [22].
Machine Learning techniques have been extensively used in recent years to solve different physical problems
with great success [23], even in the quantum realm [24]. In particular, RL has been proved especially useful
in the context of quantum control, in some cases even clearly outperforming most commonly used optimal
control algorithms [25]. RL has also been applied to realise fast transfer across particle chains via magnetic
fields control [26]. However, its potential for optimal quantum system design remains largely unexplored.

In this work, we use a RL approach to design optimal particle chains for excitation transfer when the
particles interactions depend on their relative position in space. We consider one excitation at maximum in
the chain to ease numerical simulations, and we assume dipole-dipole interactions between particles.
However, the approach can be easily extended beyond these conditions, and can, in principle, be directly
used in an experimental setting without the need of simulating the system dynamics. In particular, we deploy
a spatial approach to find the optimal chain design instead of considering arbitrary couplings, making it
closer to realistic physical problems. We consider the chain as a fully connected quantum network with
distance dependent couplings, hence we do not resort to nearest neighbours interactions or other
approximations. Furthermore, we allow for a variable number of particles in the chain (instead of fixing it
beforehand), while encouraging the use of less nodes if possible. We discretize the space between the starting
particle and the target in a certain number of cells. First we study extensively the simpler case where there can
be maximum one particle in each cell, highlighting various cases of interests and finding effective solutions.
Then, we specifically consider a simplified model of the more physically relevant platform of trapped ions
described in [16], by allowing the chain to have more than one particle in each cell and changing the
Hamiltonian accordingly.

Our approach offers multiple advantages compared to most analytical or numerical optimization
approaches. The RL approach we have deployed allows us to perform the optimization without fixing the
number of particles and it is readily suited for the discrete optimization considered and to solve the problem
in the presence of disorder. Moreover it allows us to find an agent’s policy that adapts to different disordered
configurations, instead of a single solution that only maximize the average performance.

The paper is organized as follows. In section 2 we describe the system of interest and introduce physical
problem. In particular, we propose a spatial, bottom-up approach to build a particle chain for optimal
excitation transfer, which—in order to address it with RL—we formulate as a decision process. In section 3,
we briefly introduce the RL framework and we present our RL approach for optimal chain design. In
section 4 we show our numerical study on the effectiveness of such RL approach, along with our optimal
chain solutions under different conditions. In particular, we consider the scenario where we are not
interested in coherence preservation in section 4.1; we then study the effects of errors and disorder in
section 4.2, where we also introduce a possible adaptation of the original technique to further improve the
transfer in this case. We address the problem of excitation transfer without coherence loss in section 4.3. In
section section 5, we apply our approach to trapped ions, specifically considering the platform in [16]. In
section 6, we discuss the geometrical properties of the solutions. Our conclusions are drawn in section 7,
together with future outlooks.

2. Physical problem

Let us consider a system of two particles, A and B, coupled through the Hamiltonian

ĤAB =∆E
∑
i=A,B

|i⟩⟨i |+VAB (|A⟩⟨B|+ |A⟩⟨B|) (1)

with |i⟩ identifying a state where particle i = A,B is in the excited state. We have assumed that the coupling
originates from a dipole–dipole-like interaction whose strength scales with the (dimensionless) distance dAB
between them as

VAB = J/d3AB, (2)

where the coupling constant J is written in units such that VAB has the dimensions of an energy. This implies
that dAB is rescaled by a typical distance dictated by the specifics of the implementation of the chain at hand.
Note that we assume that both particles have the same energy∆E and, for the sake of simplicity, we focus on
the case in which one excitation at a time is allowed in the whole system.

Let us suppose that A is prepared in the excited state, while B is initially in its ground state. The unitary
evolution of the system is governed by equation (1), while we allow for the incoherent transfer of the
excitation from B to a sink S through an incoherent damping mechanism. Such evolution is described by a
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Figure 1. (a) Instance of final excitation transferred to the sink [(b) maximum excitation transferred to B] within the evolution
time T, against the coupling constant J (in units of∆E) in the case of two particles when the evolution is described by
equation (1). Here T= 5/∆E, dAB = 1 and Γsink/∆E= 5.

master equation in the Lindblad form

˙̂ρ=−i
[
ĤAB, ρ̂

]
+D

[
L̂
]
ρ̂ , (3)

where the first term accounts for the unitary evolution while the second involves the dissipator accounting
for the incoherent process. The latter is given by D[L̂]ρ̂≡ L̂ρ̂L̂† −

{
L̂†L̂, ρ̂

}
/2, with the Lindblad operator

L̂≡ L̂sink =
√
Γ|S⟩⟨B| and the damping rate Γ.

Given the distance dAB, the amount of excitation psink(T) transferred from A to the sink within a given
interval of time T will be determined by the coupling constant J: the stronger the coupling between the two
particles, the higher will be the population transferred to the sink. A similar behaviour is observed either
when one extends the evolution time T while keeping J and dAB constant, or decreases the distance dAB while
having T and J fixed. Alternatively, one can consider a second scenario where we are simply interested in the
population transfer from A to B. In such a case we do not need to include the sink S, therefore the system’s
dynamics is fully unitary, and in equation (3) only the fist term on the right-hand side appears. In this case
there is a coherent excitation exchange between the two sites, which results in revivals. Regardless of the
formulation being chosen, it is natural to cast the problem in terms of maximum population transferred to B
within the time interval T, i.e. maxt∈[0,T] pB(t). With such a formulation of the problem, maxt∈[0,T] pB(t)
showcases a monotonic behavior against J [cf figure 1]. However, estimating maxt∈[0,T] pB(t) is
computationally more demanding than calculating a sink population at the end of the evolution, as it
requires to track the entire dynamics. Therefore, for the sake of simplicity, we will focus on the first scenario
for most of this study, while the second scenario will be addressed in section 4.3.

In both cases, given A and B, our goal is to enhance the mutual transfer of excitations by designing a
suitable particle chain. For simplicity, we assume the particles to have all the same∆E. Hence, the system
Hamiltonian is a straightforward generalisation of equation (1), i.e.

Ĥ=∆E
∑
i

|i⟩⟨i |+
∑
j ̸=i

Vij (|i⟩⟨j |+ |j⟩⟨i |) , (4)
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Figure 2. Sketch of the physical problem: two mutually interacting particles, A and B, undergo excitation-transfer processes
from A, initially prepared in its excited state, to B. The latter is also incoherently coupled to a sink. We consider this as a
starting configuration for the building up of a network: one by one, we add particles between A and B and seek for the
potential increase of the excitation-transfer efficiency. The inter-particle interactions depends on their relative positions.

where the sum runs over all the possible particles of the chain, while the hopping potential is

Vij =
J

|xi − xj|3
. (5)

The coupling constant J is assumed to be equal across the chain, while xi and xj denote the positions of the
ith and the jth particle, respectively. The Hamiltonian in equation (4), which straightforwardly generalizes
the model in equation (1), represents a tight binding-model where the states {|i⟩} are associated with some
spatial degrees of freedom, i.e. the system is found in the state |i⟩ when the excitation is located in the particle
in site i while∆E is the site energy resulting from the presence of such excitation. We stress that, in our
model, all particles interact with each other, making the chain a fully connected quantum network.

Designing an optimal chain is equivalent to finding the best number and relative positions of its
elements. To achieve this goal, we propose a bottom–up approach: we start with a chain composed of A and
B only. Then, for a certain number of steps, we decide if and where to add individual sites to the chain and
see how the population transfer is improved [cf figure 2]. We are interested in the cumulative improvement,
i.e. in the final or maximal population transfer accomplished at the very end of the building process.

Having formulated the problem of chain design as a decision process, the next natural step is the search
of its optimal working point through RL.

3. RL approach

RL problems are characterized by an agent observing and interacting with its environment while being
assigned with a specific task. The performance of the agent with respect to the given task must be expressible
via a numerical feedback, called reward, received as results of its interactions with the environment. The
purpose of the agent is to learn how to interact optimally with the environment by trial and error, trying to
maximize its (long term) reward.

Such agent-environment, interactions-feedback process can be formalized as a Markov decision process
(MDP) [22]: at each interaction step, the agent observe the state of the environment Si and performs an
action Ai based on the current observation. As a result, the environment state is changed (the next
observation will be Si+1) and the agent receives a reward Ri+1 [cf figure 3(a)]. Here we consider an episodic
task in which the environment is reset after a certain number of interactions, an episode, or after reaching a
terminal state.

The behaviour of the agent can be expressed by the agent’s policy π(Ai = a|Si = s), which is the
probability of performing an action a at step i conditioned on the observation of state s. The agent’s goal will
be to find the policy πopt(Ai = a|Si = s) that maximizes the return function

Gi = Ri+1 + γRi+2 + γ2Ri+3 + . . . , (6)

where the discount factor γ ∈ [0,1] (γ= 1 being included only in episodic tasks) expresses how much we
want to weight immediate and long term rewards.

RL provides numerous ways of approaching such problems. One possibility consists in parametrizing the
policy πθ(Ai = a|Si = s), usually via a Neural Network, and optimizing the expectation value of G, or an
estimate of it, with respect to the parameters θ, e.g. via gradient ascent. To perform such optimization, data
needs to be gathered by observing the MDP. This can also be done in various ways and multiple algorithms
have been proposed. In our work we used proximal policy optimization (PPO) [27], which is one of the most
successful and widespread algorithms today.

Regardless of the particular algorithm being chosen, a RL approach to our problem requires the
definition of the corresponding MDP, i.e. to define Observations, Actions and Rewards. This can be done
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Figure 3. (a) Sketch of a Markov decision process. An Agent interacts with its environment with the purpose of performing a
given task. At each interaction step, the Agent observes the state of the environment Si and, based on this observation, performs
an action Ai, which in turn changes the state of the environment and hence the next observation Si+1. Based on its performance
relative to the task, the agent receives feedback in the form of a reward Ri+1. (b) Agent’s operations in the discretized-space
configuration. The available spacial cells are illustrated by the dotted circles and the presence of a particle is represented by a filled
area. Following observation Si, the Agent’s action is to decide which cell (if any) to populate at step i+ 1.

Figure 4. Example of learning process. Notice that G0 ≈ psink(T) if Ri+1 = psink(T)i+1 − psink(T)i and γ≈ 1. Here dAB = 1,
T∆E= 5, Γsink/∆E= 5, J/∆E= 0.05, while γ/∆E= 0.99.

straightforwardly in our case: at each step, the Observation will be the spatial configuration of the chain,
i.e. the relative positions of the particles; the Action will be the absence/presence, and the position, of the
next particle to be added to the system; the Reward will be the change in the sink population at time T,
psink(T)i+1 − psink(T)i. Alternatively, in the unitary case, the latter is given by the change in the maximum
probability to occupy site B within the time interval T, i.e. maxt∈[0,T] pB(t)

i+1 −maxt∈[0,T] pB(t)
i.

To describe the physical positions of the particles, we discretize the space between A and B by considering
Ncells equally spaced cells, all of the same width, so that the state of the environment is described by a binary
string of 0s and 1s describing the absence or presence of a particle in the respective cell. The Action will be
the index of the next cell to populate with a particle, while no particle will be added if a cell is already
populated [cf figure 3(b) for an illustration of the process]. Although such discretization is not strictly
required, its use resulted in a better performance of the preliminary numerical experiments that we have
performed and, in general, allows us to provide a simplified description of the approach we have taken.

We introduce an upper bound νsteps to the number of steps before ending an episode. Needless to say, this
sets a constraint to the maximum number of particles that could be allocated in the chain. We set a second
strong constraint by imposing the end of an episode whenever the population being transferred from A to B
exceeds 0.99. Both conditions serve the purpose of limiting the physical resources used to build the chain,
and can be modified or removed altogether, should it be needed.

Figure 4 shows an example of learning curve for our problem, where it can be seen how the Agent
performance, and thus the chain’s ability to transfer the excitation, improves episode by episode as a result of
the correspondingly improving Agent’s policy. It is worth noticing that, iif no sources of errors, disorder or
noise affect the dynamics of the chain, we often would not need to find a fine solution for the RL problem, as
in this case we are not interested in the actual policy but in the best chain configuration. Such optimum will
be found during the learning process, before an optimal policy is found.
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4. Case studies and results

In this section, we present some numerical results and optimal solutions, i.e. optimal chain designs under
various conditions. Unless otherwise specified, we have set dAB = 1 (in arbitrary units of length), T∆E= 5,
Γsink/∆E= 5, J/∆E= 0.05. For such a choice of physical parameters, which allow for an effective illustration
of the performance of our protocol, the excitation transfer is close to zero when the system reduces to a chain
only made of particles A and B. Quantitatively, we find psink(T)0 ≈ 0.005 when the sink is present, while
maxt pB(t)0 ≈ 0.06 when the system dynamics if fully unitary. These results were obtained by discretizing the
space in Ncells = 21 cells, and setting a maximum of νsteps = 11 steps. Details on the numerical simulations of
the system evolution can be found in appendix A, PPO algorithm informations, hyperparameters and neural
network architectures can be found in appendix B and a brief discussion on the challenges encountered in
training the RL agents, along with our strategies to approach them, is reported in appendix C.

4.1. Optimal design
We start by considering the case where the target site is the sink and the Agent makes no errors in placing the
particles in the desired locations.

As a first test, we applied the approach described in section 3 when J=∆E, for which the excitation
transfer is already high, as it provides psink(T)≈ 0.86. With Ncells = 11, we find psink(T)> 0.99 after applying
our RL approach. The optimum consists in placing a third particle right half-way between A and B, as it
might have been guessed. We also noticed that filling all the cells with particles yields psink(T)≈ 0.97, making
the RL solution more effective with noticeably less resources. For J/∆E= 0.05, the best configuration for
Ncells = 11 turns out to be

Sopt = 10101010101, (7)

where 0 and 1 stand for the absence or presence of a particle in a cell (including A and B). We thus obtain a
configuration of equally spaced particles, which allows a population transfer to the sink of psink(T)≈ 0.98.
However, these features are not general. For instance, by increasing the number of cells to Ncells = 21 allows
us to achieve a population transfer of psink(T)> 0.99 through the asymmetric configuration

Sopt = 100000100010010010001. (8)

It is interesting to notice that we only need to add 4 unevenly distributed particles to realize the ideal chain
configuration, thus raising the performance of excitation transfer—in the given time—from negligible to
nearly perfect. This result is even more noticeable when compared to the naive decision to fill all the available
cells with particles, which corresponds to psink(T)≈ 0.97.

To test the generality of the approach, we performed the same optimization for a different system, for
which

Vij =
J

|xi − xj|6
, (9)

where again, J/∆E= 0.05. Once again, the agent was able to realize almost perfect transfer psink(T)≈ 0.992,
with a chain configuration

Sopt = 100000001000010000001. (10)

4.2. Addressing errors and disorder
So far we have consider the ideal case where no source of disorder is present. Such an assumption can be
relaxed to address the effects of imperfections in the performance of our protocol. We thus consider the case
in which the positioning of the particles across the chain is affected by static disorder. We can thus associate
an uncertainty δxj to the position of the jth element of a chain as determined by the action of the Agent, who
will allocate the particle at position xj ± δxj. We further assume that

δxj < d/2 , (11)

where d= dAB/(Ncells − 1) is the distance between two adjacent spatial cells, so that we can still assign the
particle to cell j (as the latter is the closest cell). This implies that the cells are still distinguishable (cf figure 5).
These errors will affect the expected dynamics, but will not change the formulation of the MDP. The
observation of the Agent can still be expressed as a string of dichotomic variables (being either 0 or 1).

6
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Figure 5. Error made by the agent in the positioning operation. The particle is not found exactly at the desired location. However
we assume that the error is not large enough to make the assignation of the particle to a given spatial cell undecidable.

Table 1. From the left: error probability distribution, optimal chain found with the RL approach, average psink(T) over 5000 random
chain extractions using the corresponding optimal chain and error distribution, average psink(T) over 5000 random chain extractions
using the chain given in equation (8) perturbed by the corresponding error distribution and average psink(T) over 100 random chain
extractions when all the cells are filled, perturbed by the corresponding error distribution.

δxj Chain ⟨popt⟩ ⟨pδxj=0⟩ ⟨pfilled⟩

U([0,d/20]) Equation (8) 0.998 0.998 0.796
U([0,d/8]) Equation (12) 0.995 0.989 0.300
U([0,d/4]) Equation (13) 0.988 0.943 0.045
N (0,d/10) Equation (12) 0.979 0.972 0.188

We first considered uniformly distributed errors, i.e. δxj ∈ U([0, rd/2]), with 0< r< 1, where U([α,β])
denotes the uniform distribution over the interval [α,β]. For r= 0.1, the optimal chain configuration in
equation (8) already yields psink(T)> 0.99. This is no longer true if we increase the maximum error. For
r= 0.25, the optimal configuration is

Sopt = 100010001000100010001, (12)

whose Hamming distance with the string in equation (8) is 6. For r= 0.5, we have

Sopt = 100001000010000100001, (13)

which has an Hamming distance 5 with the string in equation (8) and 7 with the string in equation (12).
We also considered the case of normally distributed errors, i.e. δxj ∈N (0,σ), whereN (µ,σ) denotes the

normal distribution with mean µ and standard deviation σ. Note that equation (11) sets a bound on the
maximum extracted values, while we consider σ such that 5σ = d/2. We found the optimal configuration to
be given by equation (12). All results are reported in table 1, which show that, for different error
distributions, we are always able to reach higher population transfers than those obtained by the mere
application of equation (8). Interestingly, we gather numerical evidence that, as opposed to case of small or
no errors, the best chain configurations for large error are given by equally spaced particles. Moreover, we
found that applying either equation (12) or (13) to the case of low or no errors leads to worse results than
those achieved through equation (8), making the equally spaced particles solutions characteristic of the
moderate-high disorder scenario.

However, we have not leveraged the full potential of RL so far, as we were mostly interested in the optimal
chain discovered through policy learning, rather than the agent’s policy itself. This change of perspective
leaves room for further improvement of the excitation transfer, provided that we are not interested in a single
chain configuration that maximizes the average transfer. Alternatively, we might be interested in finding a
way to optimize each chain configuration adaptively, taking into account the specific disorder without
measuring the errors in the particle positioning. To this end, we can notice that, even if we do not measure
the positions of the particles, we already gain some information on the errors made during the particles
positioning operations. For the Agent to receive its reward, we need to measure at each step the target
population psink(T), which is itself implicitly affected by the positions of the particles in the cells. We replace
the 1’s in the string describing the environment state with a function of psink(T) for the chain configurations
obtained when adding the particles. Therefore, the Agent can take different actions depending on such
values, which in turn depend on the current information available on the disorder. In particular, at each step,
after adding a particle to the chain, we change the value of the corresponding cell in the string that represents
the environment state from 0 to

η =
1+ psink (T)

2
∈ [1/2,1] . (14)

7
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This choice yields the desired information more effectively, as it is still well separated from the case in which
a cell in empty.

We apply this approach to the case of δxj ∈N (0,σ), for which the previous method was less effective: we
obtained ⟨psink(T)⟩= 0.979 over 5000 simulations. By contrast, using the whole Agent’s policy learned with
the new version of the environment state, we were able to visibly improve the excitation transfer, obtaining
⟨psink(T)⟩= 0.987 over 5000 simulations, with an average of 5 particles in the chain.

4.3. Unitary case
Our discussion has been hitherto focused only on the the case in which the excitation in the system is
irreversibly transferred to a sink via spontaneous emission. This results into a monotonic behaviour of the
target (i.e. sink) excitation over time, as shown in figure 6(a). Hence, it makes sense to frame the problem as
the optimization of the target population at a time T. However, this scenario might be of limited interest for
applications, especially for quantum communication purposes, as the irreversibility of the process causes the
system to lose coherence. To circumvent the coherence loss, we can remove the sink and directly consider the
population transferred to B. This choice results into a different time behaviour of the target excitation: it does
not increase monotonically in time, as shown in figure 6(b). Therefore, instead of looking at the excitation
transferred at a time T, it is better to optimize the maximal excitation transfer within a time interval T, i.e.
maxt∈[0,T] pB(t).

This requires to sample the dynamics at different instants of time. In our simulations we considered
nT = 20 equally spaced points over the time interval [0,T] to calculate the maximum population transfer,
hence the reward Ri+1 at each step. Besides the change in the definition of the Agent’s reward, the MDP is
identical to the scenario where the target is the sink. For this case, we assume no errors are made in the
particle positioning operation as in section 4.1. The optimal chain configuration found during learning is

Sopt = 100010111010111010001, (15)

for which maxt∈[0,T] pB(t)> 0.99.
Notice that in this instance, despite the particles not being all equally spaced, the chain is symmetrical;

furthermore, compared to the sink scenario, we need a larger number of particles to realize almost perfect
excitation transfer. In this case, filling all the cells with particles yields maxt∈[0,T] pB(t)≈ 0.3. We also noticed
that, using equation (15) for the sink-target case, we could still achieve high final excitation transfer (0.991
compared to the optimum 0.998). Conversely, using equation (8) in the no-sink scenario, we found the
maximum excitation transfer to be low, i.e. maxt∈[0,T] pB(t)≈ 0.5.

5. Application to trapped ions

In this section, we apply our methodology to optimize state transport across distant trapped ions. We
consider the platform described in [16], consisting of trapped Ca+ ions, with trap separation of 54µm. The
latter will be the cell-to-cell distance in our discretised space. We aim to realise transport across 10 cells. As in
[16], we allow multiple ions to reside in the same trap well (cell), and assume to have cooled down the system
all the way to a regime where we have one phonon at most. This simplifies the analysis, as it allows us to
decrease the effective system dimensions. Under such conditions, the cell-to-cell interaction is described by

Vij =−0.5h̄ΩC

√
NiNj

|i− j|3
(16)

with ΩC = 4.5πkHz and where Ni (Nj) is the number of ions in the ith (jth) cell.
We can hence approximate the system Hamiltonian with equation (4), where now the index i (j)

represents the whole cell with possibly multiple ions in it, instead of a single particle, and we set∆E= 0. In
accordance with [16], the first peak in the average phonon number transferred from one ion to another at a
distance of 54µm is found after T≈ 0.22ms, which we set as the maximum evolution time of the system. We
initialize our system with one ion in the first cell and one in the 10th, we prepare it with a single excitation in
the first cell and we use our RL approach to maximize F=maxt∈[0,T] f(t), where f(t) = |⟨10|e− i

h̄ Ĥt|1⟩|. Since
we do not want the agent to stop to maximum one particle in each cell, we now allow these to accumulate
and we introduce a further action that brings the agent to a terminal state (in case it decides to interrupt the
episode earlier i.e. not to use all the available ions). We compare the chain found by the RL agents with that
in which all the ions are distributed between cell 1 and cell 10 and that in which all the ions are equally
distributed among the cells. Results are shown in table 2. We can see that in all cases the RL agent is able to
improve the transfer, although a sufficiently high number of ions is required to achieve efficient transfer.
Notice that, f (t) uniquely determines the average fidelity of state transfer over all possible qubit states [8] and
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Figure 6. (a) Final excitation transferred to the sink and (b) maximum excitation transferred to B within the evolution time T as
function of time when the particle chains are given by the optima found during the RL agent’s learning (equations (8) and (15),
respectively).

Table 2. Excitation transfer for increasing number of maximum ions. From the left, transfer with all ions equally distributed among the
two ends, transfer with all ions equally distributed across the chain, optimal transfer found by the RL agent.

Nions Chain FNC FFC Fopt

30 Equation (17) 0.0320 0.423 0.443
40 Equation (18) 0.0427 0.838 0.904
50 Equation (19) 0.0533 0.840 0.967

not just the energy transfer, making optimal chains potentially useful as quantum wires for state transfer
across qubits in quantum communication or quantum computing as quantum busses. The optimal chains
found are

Sopt = 2433333342, (17)

Sopt = 2445555442, (18)

Sopt = 2468548742, (19)

for maximum total number of ions equal to 30, 40 and 50 respectively.
While we focused on a specific platform and we made a significant number of simplifications, we want to

stress that the methodology presented here can be extended to different systems and can in principle be used
with experimental data directly

6. Optimal chain properties

In this small section, we briefly discuss the geometric properties of the optimal configurations found and
give a possible physical interpretation for the differences. First, we notice that the chain in equation (8) is the
only asymmetrical chain in sections 4.1 and 4.2. This seems reasonable, since when the error in the location
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of the particle within the cell is large enough, a symmetrical chain with equally spaced particles might be
more robust. It is possible that in those cases the agent is trying to achieve high transfer while simultaneously
maximizing the distance between particles, so that the relative error in the particle position within the cell is
less relevant. It is also worth noticing that the chain in section 4.3 is also symmetrical, although the particles
are not equally spaced. This might be due to the reversibility of the transformation and, in fact, a similar
spatial symmetry is also observed in the chains in section 5, except for that in equation (19), which is only
slightly asymmetrical. We conjecture that equation (19) is not perfectly symmetrical because the agent got
stuck in a local optimum (which is common in RL as in most non-analytical optimization approaches and
might be overcome by changing hyperparameters). Having assumed that the agent is not far from the global
optimum, we tried to transfer a single ion between cells that break the symmetry. First we moved an ion from
cell 8 to cell 6 with no success in improving the transfer. Then, we moved an ion from cell 5 to cell 3,
obtaining

Sopt = 2478558742, (20)

which slightly increased the value of F to 0.973.

7. Conclusions

We have developed a spatial, bottom-up, RL-based approach to the design of particle chains for optimal
excitation transfer. We studied the effectiveness of such approach under different conditions. In particular,
we considered two different scenarios, i.e. with or without a sink attached to the chain. In the former case,
where we we are not interested in preserving coherence, we consider our target to be a sink where excitation
is irreversibly transferred from the end of the chain. In the latter case, instead, since we want to avoid
coherence loss, our target is the last particle of the chain. We also tested our approach in the presence of
agent’s errors, adapting our technique to minimize their effects when we build the chain.

We were able to achieve extremely high excitation transfer across particles in all scenarios, resulting into
different particle chain design for each case. Our solutions exhibit some interesting properties. In particular,
we found an optimal asymmetrical chain with a smaller number of particles in the sink scenario, while the
optimal chain found in the no-sink case is symmetrical, presents a peculiar structure, and it is made of a
larger number of particles. In the presence of moderate or large agent’s errors (which we studied only in the
sink case), we found that, to maximize the average excitation transfer, the optimal chains are composed of
equally spaced particles, where the spacing dependent of the amount of errors. If we are willing to renounce
to a single chain design for all disorder configurations from the error distribution, the full potential of RL can
be deployed: we can adaptively build the optimal chain without making additional measurements, further
improving the excitation transfer in this case. We applied our methodology to a platform consisting of
trapped ions and we were able to optimize state transfer fidelity. Besides being attuned to experimental
applications, this further demonstrates the capabilities of our approach to handle slightly more complex
tasks than the one considered in the previous scenarios

Our approach presents multiple advantages compared to other techniques. In particular, the spatial
dependency of the couplings makes it closer to realistic physical problems and allows us to go beyond some
of the usual approximations (e.g. the nearest-neighbour approximation), without rendering the
optimization problem extremely complex. Furthermore, when we rely on RL, we do not need to fix the
number of particles beforehand, though we can limit such number, hence the resources used to build the
optimal chain. Moreover, since the agent searches for an optimal policy and not necessarily a single
optimum, it can learn to adapt to disorder introduced by errors or physical limitations and respond with
different configurations, in contrast to analytical or numerical optimizations.

Finally, the methodology presented can easily be extended beyond the scenario considered here, as long as
the Hamiltonian controlling the interaction between the particles depends on their relative position in space.
In principle, one can introduce some changes without substantially affecting the formulation of the problem
in terms of MDP. For instance, we could change the specific form of the interaction, we could allow the
particles’ local energies depend on their positions, we could add some environmental effects, or go beyond
the one-excitation approximation. More complex scenarios can be then addressed with the same technique,
as long as we are able to simulate the system dynamics or measure the amount of transfer. Its effectiveness for
more complex cases is yet to be ascertained, but, given the widespread success of RL for complex tasks, it is
reasonable to believe that this approach might still work. It would then be relevant to apply it to a more
realistic model of a technologically relevant quantum system, maybe in a real experimental setting. It would
also be interesting to extend the use or RL for quantum system design to solve different physical problems.
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Appendix A. Numerical simulations

In order to solve the system dynamics, we first vectorise equation (3) [28]. This transforms the density
matrix as

ρ→ r⃗= (ρ00,ρ01, . . .,ρ0K,ρ10, . . .,ρKK) (A1)

with K= N+ 1 in the presence of the sink, and K =N in the unitary case. Here, N is the current number of
particles in the chain. The unitary part of the master equation becomes

[H,ρ]→LU⃗r≡
(
I⊗H−HT ⊗ I

)
r⃗, (A2)

while the dissipative one transforms as

LρL† − 1

2

{
L†L,ρ

}
→

LD r⃗=

[(
L†
)T ⊗ L− 1

2

(
I⊗ L†L+

(
L†L

)T ⊗ I
)]

r⃗.
(A3)

By defining L= LD +LU , we obtain ˙⃗r= L[⃗r(t)], hence the state of the system at a time t reads
r⃗(t) = e−itL r⃗(0), where r⃗(0) = (1,0, . . .,0). To calculate the excitation transfer at a time t, we project r⃗(t) into
the target rttarget = r⃗(t) · r⃗target. Note that r⃗target is either the N + 1 dimensional vector r⃗S = (1,0, . . .,0) in the
sink case, or the N dimensional vector r⃗B = (1,0, . . .,0) in the no-sink case. Then, in the former case, we
simply have psink(T) = rTtarget while in the latter maxt∈[0,T] pB(t)≈max(⃗r(0), . . ., rtnB , r

tn+1

B , . . ., rTB), where we
have divided the time interval [0,T] in nT equally spaced points, as explained in section 4.3.

We performed all our numerical calculations using Python, in particular the modules NumPy [29] and
SciPy [30].

Appendix B. Algorithm hyperparameters and neural network architectures

Throughout this work we used the clipped PPO algorithm described in [27] with clipping parameter ϵ= 0.2,
100 agents and 4 epochs of learning with minibatch size 128 in all cases except for the uniform error
distributions in section 4.2, where the minibatch size was 64. The number of episodes considered was always
<1500. We fixed the discount factor γ= 0.99 and the parameter λ= 0.95 for the generalized advantage
estimation, while λ= 0.98 in section 4.3.

We used two separate neural networks for the Actor and the Critic. All hidden layers have a ReLu
activation function and the output layer for the Critic has a linear activation function while the ouptut for
the Actor is given by a softmax activation function. For the results of section 4 The Actor has 2 hidden layers
of 128 neurons in all cases except for the adaptive error case described at the end of section 4.2, where the
hidden layers are 3. The Critic has 2 layers of 64 Neurons in all no-error cases and 3 hidden layers of 128
neurons in all other cases except the adaptive case, where the hidden layers are 4. For the results in section 5,
both the Actor and the Critic had 5 hidden layers with 128 neurons. The optimizations were performed using
Adam [31] with different learning rates lrA and lrC for the Actor and the Critic, respectively (cf table B1 for
the values being used in each section of the paper).
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Table B1. Values of the learning rates used for Actor and Critic in the various case studies reported in the paper.

Section lrA lrC

Section 4.1 3× 10−4 5× 10−4

Section 4.2 1× 10−4 1× 10−4

Section 4.3 8× 10−5 1× 10−4

Section 5 3× 10−4 3× 10−4

All neural networks and their parameters optimization were implemented using Tensorflow [32] and
Keras [33].

Appendix C. Training challenges

We now briefly discuss the challenges encountered in training our RL agents and how we approached them.
Before perfecting the approach illustrated and used in the main body of the paper, we attempted to solve the
problem presented in section 2 without discretizing the space between A and B and using a mixed
discrete-continuous action space. In such approach, the actor outputted both the probability of adding/not
adding a new particle to the chain and the parameters of a Gaussian defining the probability distribution of
positioning the new particle at position x ∈]xA,xB[. The performance was significantly lower than that of the
method presented in this work, though, making it barely usable with our computational resources, even in
the simplest scenario. This was probably due to the complexity of the decision process associated (despite the
fact that the physical problem was the same).

In what follows, we describe the process of choosing the PPO and neural networks hyperparameters and
the neural network architectures. We started from some of the examples in [27] to chose the PPO parameters
and changed some of these parameters only when the transfer was not satisfactory. We did not follow any
specific protocol to change such parameters. Unfortunately, to the best of our knowledge, there is currently
no known and universally agreed-upon strategy to find the optimal hyperparameters or neural network
architecture. We reduced the learning rates when we noticed that the return was rapidly reaching a local
maximum and we increased the learning rate of the critic when the actor’s policy was converging too fast
compared to the critic loss. We progressively increased the number of neurons and layers in the networks
when needed to improve performance and we maintained the architecture with the largest number of
neuron and layers as a new starting point to address successive problems that we deemed more complex. In
particular, our strategy was to start with networks of two layers of 64 neurons for the simplest scenario,
increase the number of neurons to 128, and then increase the number of layers. This was sufficient for the
problems considered in this work. However, changing the network architecture might prove beneficial when
addressing problems with increased number of particles or when a linear array of particles is not sufficient to
achieve the desired transfer and two or three dimensions must be considered. In those cases, we conjecture
that a Convolutional Neural network might work better than a fully connected one. Training in the unitary
case was significantly more time consuming (and hence difficult) than training in the presence of a sink due
to the fact that, in the former case, we needed to simulate the whole dynamics within a time T. We did not
find any effective strategy to overcome this issue. The attempt to include the optimal transfer time in the
agent’s action only hindered the performance.
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