

ANALYSIS OF THE DECAY $K^+ \rightarrow \pi^0 + e^+ + \nu^*$

George E. Kalmus and Anne Kernan,

Lawrence Radiation Laboratory, University of California, USA

Ugo Camerini,

University of Wisconsin, USA

Cyril Henderson

University College, London

(Presented by Ugo CAMERINI)

We have studied the decay

$$K^+ \rightarrow \pi^0 + e^+ + \nu \quad | \quad 2\gamma \rightarrow 2e^\pm \quad (1)$$

using stopping K^+ mesons in the Berkeley 30-inch heavy liquid bubble chamber. The chamber filling was freon, C_3F_8 having a density 1.22 gm cm^{-3} and radiation length 28 cm. A total of 250,000 pictures containing 2.9×10^6 stopped K^+ 's was taken. A two-constraint fit for the Ke_3 hypothesis was made for each event. A total of 242 events, from 15% of the film, fitted the hypothesis.

The most general form of the matrix element for Ke_3 decay is

$$M \sim \bar{u}_\nu O_j u_e A_j$$

where the O_j 's are the Dirac matrices corresponding to the three possible types of coupling scalar, vector, and tensor, and $\bar{u}_\nu O_j u_e$ is the lepton current. The strong-interaction currents A_j are of the form:

$$\text{Scalar } A_j \sim f_s;$$

$$\text{Vector } A_j \sim f_+(P_K + P_\pi) - f_-(P_K - P_\pi);$$

$$\text{Tensor } A_j \sim f_t P_K P_\pi.$$

The P 's are 4-momenta, and the f 's are dimensionless form factors that depend on the pion energy alone.

The distribution in $\cos \alpha$ (the angle between the direction of the neutrino or positron momentum in the dilepton center-of-mass system and the direction of the pion) is independent of the energy dependence of the form factors and provides a sensitive test of the nature

of the interaction [1]. In Fig. 1 the sum of the experimental distributions in $\cos \alpha_{e\pi}$ and $\cos \alpha_{\nu\pi}$ is compared with the distributions predicted for pure vector, scalar, and tensor.

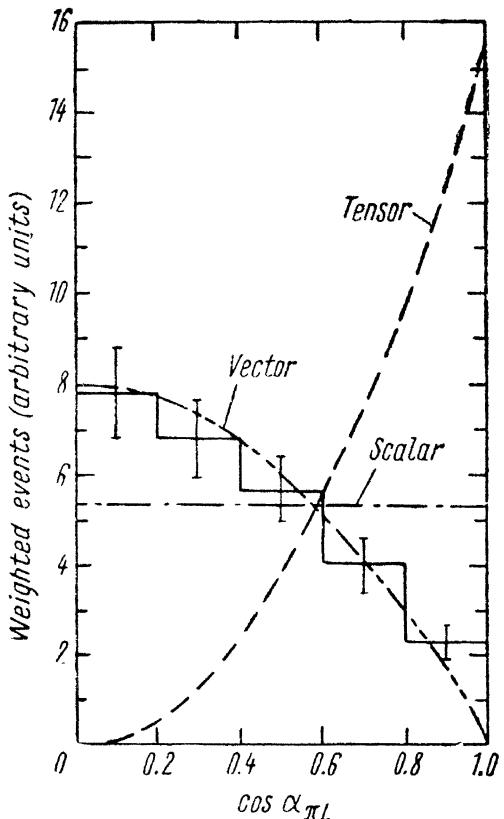


Fig. 1 The sum of the weighted distributions in $\cos \alpha_{e\pi}$ and $\cos \alpha_{\nu\pi}$. The smooth curves are the distributions predicted for a pure vector, scalar, and tensor interaction. The distribution is symmetrical about $\cos \alpha_{\pi L} = 0$.

The distribution is shown for only $0 \leq \cos \alpha \leq 1$ since the distribution from $0 > \cos \alpha \geq -1$ is a mirror image of the former ($\cos \alpha_{e\pi} = -\cos \alpha_{\nu\pi}$). Vector is very strongly favored in arrangement with the $V - A$ theory of weak interactions. A (V, S) or (V, T) mixture is also possible but less likely than pure vector.

* This work was performed under the auspices of the U. S. Atomic Energy Commission.

If the coupling in Ke_3 decay is pure vector, the distribution in pion kinetic energy is given by

$$N(T_\pi) dT_\pi \sim F_+^2 P_\pi^3 dT_\pi \quad (2)$$

and hence can be used to investigate the energy dependence of the form factor f_+ . The term containing f_- is negligible in Ke_3 decay. It is

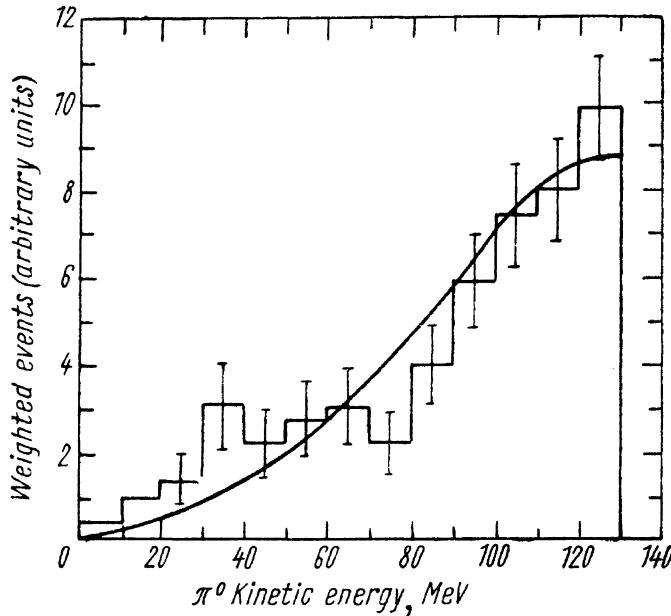


Fig. 2. Weighted pion-kinetic-energy spectrum. The smooth curve is a best fit of our data to Eq. (2), with the error spread in pion energy folded in.

generally believed that f_+ is a slowly varying function of the 4-momentum transfer $q^2 = M_K^2 + M_\pi^2 - 2M_K E_\pi$ and it may, therefore, be explained in a power series in q^2 . We have fitted the π^0 energy spectrum, Fig. 2, to Eq. (2) with $f_+ \sim 1 + q^2/M_\pi^2$ and with the experimental error distribution folded in. The χ^2 probability for the fit is 5%. The poor fit is due to an excess of events at low pion momenta and may arise from a tail in the π^0 momentum error distribution. The value of λ , which minimizes χ^2 , is $\lambda = 0.02^{+0.04}_{-0.03}$. Since only the high-momentum end of the spectrum is sensitive to the possible energy dependence of the form factor, the value of λ is almost independent of the low-energy tail.

Fig. 3 shows the combined electron- and neutrino-momentum spectrum, the distribu-

tion is in excellent agreement with the hypothesis of a pure vector interaction with constant form factor.

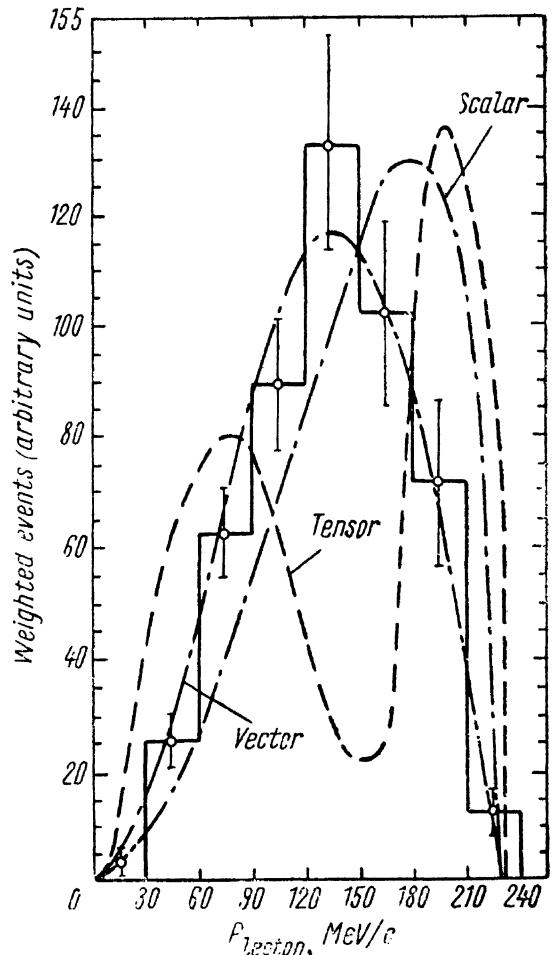


Fig. 3. Sum of the weighted positron and neutrino momentum distributions. The curve shows the distributions for a pure vector, scalar, and tensor interaction, assuming a constant form factor.

Our results are in good agreement with the previous study of Ke_3^+ decay [2]. However, in contrast to this previous experiment, our events are kinematically over-determined and hence have been completely reconstructed.

REFERENCES

1. Mac Dowell S. W. Ann. Phys., 18, 171 (1962).
2. Brown J. L. et al. Phys. Rev. Lett., 7, 423 (1961); Phys. Rev. Lett., 8, 450 (1962).