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Abstract

We explore how various topics in modern scattering amplitudes research find
application in the description of collider physics processes. After a brief review
of experimentally measured quantities and how they are related to amplitudes,
we summarise recent developments in perturbative QFT, and how they have
impacted our ability to do precision physics with colliders. Next, we explain
how the study of (next-to-)soft radiation is directly relevant to increasing theo-
retical precision for key processes at the LHC and related experiments. Finally,
we describe the various techniques that are used to turn theoretical calculations
into something more closely approaching the output of a particle accelerator.
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1. Introduction

As the SAGEX network has made clear, the study of scattering amplitudes has become an
extraordinarily broad endeavour. Theories studied range from well-established theories of
nature (e.g. the standard model, plus effective field theory corrections) right through to highly
supersymmetric versions of non-abelian gauge theories, or even string theories. The latter are
less relevant for current experiments, but can be useful for developing new calculational tech-
niques, or for showing up relationships between different types of theory. Furthermore, new
mathematics is often needed in order to bring new aspects of field theory to light, such that
dialogue between pure mathematicians and physicists has been an increasing facet of the ampli-
tudes community in recent years. What makes this mix so important is that new techniques used
to study more formal theories are very often the same techniques that have been used to gener-
ate highly non-trivial results in more physically relevant theories. However, the diversity of the
amplitudes community can be as much of a hindrance as it is a strength: it becomes ever-more
difficult for any given person—and especially a newcomer to the field—to see how different
branches of amplitudes research are related, and to know how formal ideas in one corner are
applied to very practical ends in another.

The aim of this article is to redress this balance somewhat, by focussing on one of the main
motivations for studying amplitudes in the first place, namely that they underlie the physics of
collider experiments. The latter form our main way of testing theories of fundamental physics,
which itself is at a crucial crossroads. With the discovery of the Higgs boson in 2012, the SM
is experimentally complete, but its obvious deficiencies' cry out for a deeper explanation. The
current flagship experiment is the Large Hadron Collider at CERN, which will be with us for at
least another two decades. Replacement colliders are being actively considered, although the
lack of any particularly striking new physics hints at the LHC make it rather unclear what the
optimum follow-up machine will look like.

In order to make progress, we must continue to develop new types of collider, as well as our
understanding of quantum field theory. On very general grounds, any new physics will look
QFT-like at currently available collider energies. Furthermore, the lack of any very clear new
physics means that we have to understand the old physics (i.e. the SM) extremely well. Only by
knowing the old physics very very precisely can we be sure that tiny deviations we might see
in experiments are genuine new physics, rather than poorly understood old physics. Further-
more, given that collider experiments involve scattering particles, it is the study of scattering
amplitudes in QFT that is the most relevant thing to be doing.

I'Examples include the observed matter/antimatter asymmetry in our Universe, quantum instability of the Higgs boson
mass (the hierarchy problem), the absence of gravity, lack of explanation of particle masses, dark matter or dark energy,
and much else besides.
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Given that you are reading this article, I am assuming that you will already be familiar with
what a scattering amplitude is, whether or not this is in our own apparently four-dimensional
and distinctly non-conformal world. However, you may well not be familiar with what goes
on inside a collider, what experimentalists do with it, and how you can start to turn a scattering
amplitude into something they might be interested in. Although some of the ideas may well
have already been presented to you in some region of your past light-cone, we review relevant
material in the following sections.

2. What is a collider, and what does it measure?

A particle accelerator or collider is an experiment that accelerates one or more beams of par-
ticles so that they collide. Early versions of this idea had a single beam colliding with a fixed
target, which is easier to build, but suffers from the fact that much of the energy in the initial
state gets wasted as kinetic energy in the final state. Hence, for the past few decades, colliders
have consisted of two beams of particles that collide in the centre-of-mass frame. Electric and
magnetic fields are used to accelerate the particles and focus the beams, and thus the parti-
cles being accelerated must be (electromagnetically) charged. Recent examples include LEP
(ete™), the Tevatron (pp), and the LHC (pp), where e* denotes the electron and positron, and
p(p) the (anti-)proton. Colliders tend to be circular, which gives multiple chances to acceler-
ate the particles each time they go around the ring. However, charged particles of energy E
and mass m radiate synchrotron radiation at a rate o< (E/m)*r~2, imposing a practical limit
on how much we can accelerate them. This is why the most modern collider (the LHC) uses
heavy particles (protons rather than electrons), and has a very large circumference of 27 km!
Protons are not ideal—they are composite, wobbly bags of quarks and gluons. This makes
hadron colliders messier than e~e™ colliders, making precision physics more difficult. Thus,
future colliders may return to using electrons and positrons, at the expense of needing new
technology for colliding them in a linear fashion.

The beams in a particle accelerator are focussed so that they collide, which in modern cir-
cular colliders happens at multiple points around the ring. Each collision of the beam particles
is referred to as a (scattering) event, and the aim of each experiment is to record and anal-
yse interesting-looking events. The collision points are surrounded by a cylindrical detector,
whose aim is to collect as many of the particles emerging from a collision point as possible.
The detectors contain multiple layers for capturing different types of particle, and measuring
their momenta and charges. Some particles, such as weakly-interacting neutrinos or possible
new physics particles, pass through the detector and thus appear as ‘missing four-momentum’
(i.e. a failure of momentum conservation) in a given scattering event. From a very naive
theorist’s viewpoint, one may thus characterise individual scattering events by a recorded list
of particles, together with their measured four-momenta. We will return to how accurate this
picture is in section 7, but for now let us note that in a quantum theory it is not possible to
predict exactly which particles will emerge in any given event, nor what their precise momenta
will be. Instead, we can only calculate probabilities for certain final states to appear in the
detector, and then compare the measured properties of events with predicted distributions from
a given QFT.

If we consider a simple classical scattering process, such as throwing tennis balls at a target,
it is clear that the probability of hitting the target depends on its cross-sectional area. This is
equally true of quantum scattering, for which the relevant cross-sectional area represents an
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effective range of interaction for particles incident on the target. It follows that the rate of
scattering events for a given pair of incoming beams can be written as

oo, (1)
where N is the number of events, ¢ the time, and o has units of area. It is called the cross-section,
and depends on the intrinsic properties of the incoming particles, thus is calculable from QFT.
The quantity relating the two sides of equation (1) is usually written £(¢), as it may depend on
time in general. It is called the luminosity and, roughly speaking, measures how the incoming
particles are distributed within the beams i.e. how ‘bright’ the beams are. Here we have been
talking about the total number of scattering events, but we can choose to focus on a particular
type of event e.g. those containing a pair of top quarks, or a single Higgs boson. Letting N;
denote the number of events for distinct processes {i}, we have

dn;
N= ZN = = = L0, 2)
where o; is the cross-section for process i, such that the total cross-section for interaction
is 0 = >, 0;. It is not possible to think of each individual cross-section as a physical area,
but we do not have to do this: equation (2) tells us that the cross-section for a given process
is simply given by the event rate, divided by the luminosity. Experimentalists measure the
luminosity £(#), so that they can then present results for cross-sections directly, for compari-
son with theory. For historical reasons, the conventional unit of cross-section is the barn (b),
where one barn is defined to be 1072® m?. For context, the total pp cross-section at the LHC
(at 13 TeV) is about 0.1 b. The cross-section for single Higgs boson production in its main
production mode (gluon—gluon fusion) is about 57 pb (here the ‘p’ stands for pico, or 10~'2),
which gives some indication of the huge range of cross-sections for interesting processes at
the LHC, and how very tiny signals have to be extracted from a massive amount of other
data. Given that the luminosity is related to the total event rate, it follows that the integrated
luminosity

L(t) = / dr L)
0

is a measure of the total number of events collected by a given collider after a time of operation
t. From equation (1) and the fact that the event number N is dimensionless, the integrated
luminosity has units of inverse area. As an example, the LHC delivered 156 fb~! (inverse
femtobarns) of integrated luminosity during run 2 at 13 TeV. Given the inverse units, a smaller
prefix (nano, pico, femto) means more events have been collected.

3. Cross-sections and amplitudes

In the previous section, we have seen that a given scattering process i has an associated cross-
section o;. In principle, QFT tells us how to calculate this. Let us first consider the case that
the incoming and outgoing particles are fundamental particles. Let p; and p, be the incoming
particle momenta, and {p;, . . ., p, } the final momenta, so that there are (n — 2) particles in the
final state. Then your QFT textbook will tell you that the cross-section can be decomposed into
the following form:
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Figure 1. Distribution of the azimuthal angle between leptons originating from top quark
decays. Reproduced from [1]. CC BY 4.0.

1
= —— [ A" D(ps, ..., p)AEPYD. 3
7= pos [ 6 A G)
Here

F(p1, p2) = 4l(p1 - p2)* — m3m3]'2, 4)

where m; is the mass of beam particle i, is called the Lorentz-invariant flux. It is a convenient
relativistic generalisation of the usual flux describing how the beam particles are moving rel-
ative to each other. There is also an integration over the momenta of the final state particles,
given by the Lorentz-invariant phase space

n—2 3=
d’p;
[ 4 = eny (H / WQJ‘W%‘ o N
i—1 !

Here E; is the energy of particle i, and p; its (relativistic) three-momentum. Also, P (Pfinar)
are the total four-momentum in the initial (final) state respectively. We then see that the delta
function in equation (5) implements total momentum conservation in the scattering process.
Finally in equation (3), A; is the scattering amplitude for process i, which the SAGEX collabo-
ration was set up to investigate in a myriad of ways. Equation (3) suggests how you as a theorist
might compare a given QFT with experiment: for a given process, you can calculate the appro-
priate scattering amplitude using perturbation theory, before integrating over the phase-space,
and dividing by the appropriate flux factor. The resulting number may then be compared with
something produced by experimentalists, if they have isolated the relevant events. The process
might be a potential new physics process, and if the number agrees you may end up with an
expenses-paid trip to Stockholm. Or it might be a process that occurs in the standard model,
so that your number allows an experimentalist to efficiently disentangle new from old physics,
so that they might go to Stockholm.

Total cross-sections are a very crude way of comparing theory with data. It is also possi-
ble to compare differential cross-sections, where one does not integrate over the full phase
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space in equation (3). Given an observable O, the quantity (do;/dO) represents the distri-
bution of O as measured in events collected in scattering process i. Experimentalists often
normalise this by dividing by the total cross-section, given that many uncertainties cancel out
when doing this. An example distribution is shown in figure 1, which comes from an analy-
sis of events containing (anti-)top quark pairs by the ATLAS experiment [1]. The (anti-)top
quarks decay to produce leptons, and the collaboration have measured the azimuthal angle in
the detector between these decay products, where the data is compared to various predictions
from theorists. Interestingly, the theory curves do not agree with the data particularly well by
eye. Statistically, however, there is no cause for excitement: the lower panel depicts the uncer-
tainty on the measurement as a grey band, which indeed overlaps with the (standard model)
theory.

It goes almost without saying that the above discussion is vastly oversimplified. The com-
parison of theory with data is, in practice, almost nothing like the simple procedure outlined
here. Typical complications include the following:

e Amplitudes in QFT suffer from ultraviolet (UV) divergences at loop-level. These can be
dealt with via renormalisation in some scheme, and modern-day theorists typically use
dimensional regularisationin4 — 2e dimensions. Then cross-sections for comparison with
experiment will depend on the renormalisation scale yig . In particular, the QCD expansion
parameter will become a running coupling o(11g). The coefficients of the perturbation
expansion in this parameter involve large logarithms involving ratios of ug with energy
scales typical of the scattering process (e.g. invariants formed from the particle momenta).
Thus, dependence on up is minimised at a given order in perturbation theory by choosing
g to be comparable with these energy scales.

e The incoming particles at the LHC are protons, which are not fundamental particles in
QCD, and thus not fully described by standard perturbation theory. We must then gen-
eralise the formula of equation (3), given that we can calculate scattering amplitudes in
perturbation theory for incoming (anti-)quarks and/or gluons, but not protons. We discuss
this in section 4.

e We can typically only calculate the amplitude to low orders in perturbation theory, where
the strong interaction (with expansion parameter oy = g2 /(47), where g, is the QCD cou-
pling constant) is the most relevant. The state of the art for many processes of interest
is next-to-leading order (NLO) in «, although NNLO is known for some cases. Some
cross-sections are known to a highly impressive N°LO! Examples include different pro-
duction modes for the Higgs boson [2—5], and the so-called Drell-Yan production of a
heavy particle [6], which we will see in more detail below. Proceeding order-by-order in
the coupling in this way is known as fixed-order perturbation theory, and we discuss this
in section 5.

e Perturbation theory can be unstable: for differential cross-sections, the coefficients of the
perturbation series depend on the external particle momenta, and can diverge in certain
kinematic regions (such as the soft limit, in which the four-momentum of emitted radiation
goes to zero). One must then sum up certain contributions to all orders in perturbation
theory for meaningful comparison with data, a process known as resummation, discussed
in section 6.

e Real scattering events contain huge numbers of quarks and gluons, going way beyond
what a perturbative QCD calculation can achieve. One must therefore estimate the effect
of this additional radiation using well-motivated QFT-based arguments. We return to this
in section 7.
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e Real scattering events do not contain free (anti-)quarks and gluons, due to the confinement
property of QCD. They instead contain hadrons, and we must try and estimate how. This
is also discussed in section 7.

This list—which is not even complete—is enough to scare off any theorist who hopes that
their research on scattering amplitudes might have something to say about experiments. Let us
thus retreat to the relative safety of equation (3), and get gradually closer to what happens at
the LHC.

4. Cross-sections at hadron colliders

The first thing we have to deal with is the issue of incoming protons. At first glance, one might
think that we could never calculate cross-sections with incoming protons, given that—with a
few exceptions in special circumstances or theories—we only really know how to calculate
amplitudes using perturbation theory. However, what saves us is the well-known property of
asymptotic freedom [7, 8], according to which the QCD expansion parameter o (ig ) becomes
weaker with increasing renormalisation scale piz. Given that this is identified with a typical
energy scale Q in the scattering process of interest, we find that highly energetic protons will
contain approximately free (anti-)quarks and gluons. We can indeed calculate a perturbative
cross-section for the latter, and may then combine it with appropriate distribution functions
measuring how the (anti-)quarks are distributed within the proton, in order to describe the total
proton—proton cross-section. This was first formulated by Feynman [9, 10], who called it the
parton model. At that time, partons were stipulated as hypothetical elementary constituents of
the proton, and were only later realised to be the (anti-)quarks and gluons of QCD. The word
‘parton’, however, is still in use, as it is very convenient to have a single word that can be used
to denote any (anti-)quark or gluon!

More precisely, consider partons that emerge from the incoming protons, where the latter
can be taken to have momenta P, and P,. If the protons are very fast-moving, the emerging
partons will have momenta { p;} that are approximately collinear with the {P;}, and which may
thus be written as

pi=xP;, 0<x <1, (6)

where no summation is implied on the right-hand side, and where x; represents the (longitudi-
nal) momentum fraction of parton i. The hadronic cross-section for a given process may then
be written as?

1 1
o= 3 [an [ an feoseodn)m. )
0 0

i,je{9.q.8}

Here &;; denotes the partonic cross-section, for incoming (anti-)quarks and gluons. The quan-
tity fi(x;) is a parton distribution function (PDF), that represents, loosely speaking, the proba-
bility to find a parton with momentum fraction x; inside incoming proton i. We must then sum
over all possible momentum fractions, and over all possible species of parton, including over
all possible flavours of quark g and their anti-particles. The latter might surprise you if you are
familiar only with the conventional undergraduate wisdom that protons contain two up quarks
and a down quark. Needless to say, this statement is not to be taken too literally: in quantum

2 To simplify the notation in equation (7), we have omitted the subscript on o that we used above to denote a particular
scattering process.
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Figure 2. Gluon radiation from an incoming quark leg.

field theory, partons are constantly popping in and out of the vacuum due to virtual effects,
so that the proton is some sort of localised collection of quantum partonic froth, whose net
quantum numbers are the same as two up quarks and a down quark! While the partonic cross-
section &, is calculable in perturbation theory, the parton distribution functions { f;} are not.
They can, however, be measured from experiment, and used to predict the results of subsequent
experiments.

You may be wondering if the parton model can be rigorously justified from first-principles
QFT, where the relevant field theory is QCD in this case. Indeed it can for certain scattering
processes, using the operator product expansion (see e.g. reference [11] for a textbook treat-
ment). More simply, we might ask what goes wrong if we were to ignore equation (7), and try
to use perturbation theory to describe QCD scattering. At leading order (LO) in «y, everything
is well-behaved. However, at NLO and beyond, problems occur due to emitting additional radi-
ation from either incoming or outgoing partons. An example is shown in figure 2 which, using
Feynman rules (or otherwise) results in an extra factor in the scattering amplitude for a given
process

1 1 1
_ _ _ , 8
02 2p k2[R —cos ) ®

where four-momenta are labelled as in the figure, and we neglect the mass of the incom-
ing quark, given that this is negligible at all relevant collider energies (at least for the up
and down quarks). We have also introduced the three-momenta of the quark and gluon, p;
and k, as well as the angle 0 between them. Clearly the additional factor of equation (8)
diverges in two cases: (i) the additional radiation is soft (|E\ — 0); (i1) the additional radia-
tion is collinear with the emitting particle (6 — 0). Furthermore, these cases are not mutually
exclusive: the radiation may be soft and collinear, which is even more divergent! These are
known as infrared (IR) divergences, to distinguish them from the UV divergences encountered
above. Although we considered the example of real radiation here, the virtual (loop) correc-
tions to the amplitude are also IR-divergent, and the solution to this problem is well-known.
First, one must be careful to consider only those cross-sections and related observables that
are infrared-safe, meaning that the definition is robust under the inclusion of additional soft
and/or collinear radiation. For example, the cross-section for a single Higgs boson accompa-
nied by any amount of QCD radiation is IR-safe, whereas the cross-section for a Higgs boson
plus exactly three detected gluons is not. Once we have chosen an IR-safe observable, the
divergences are guaranteed to cancel in QED by the Bloch—Nordsieck theorem [12], if we add

8
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together all virtual and real contributions at any given order in perturbation theory. In QCD,
the KLN theorem [13, 14] theorem states that this cancellation will only occur if we include
initial states containing arbitrary numbers of incoming particles, which is inconvenient for
describing scattering processes with two incoming beams. Instead requiring only two incom-
ing particles leads to cancellation of all soft singularities, together with collinear singularities
associated with the outgoing particles in the final state. However, one is left with uncancelled
collinear singularities associated with the two incoming particles, which potentially pose a
serious problem.

What saves us is the presence of the parton distributions { f;} in equation (7). We are clearly
free to redefine both the partons and the partonic cross-section such that equation (7) remains
invariant. Thus, we can choose to remove collinear divergences from the partonic cross-section
by absorbing them into the parton distributions. In other words, one replaces the bare parton
distributions appearing in equation (7) with modified ones, chosen so that singularities in the
partonic cross-section are removed. One way to do this is simply to dictate that all radiation
below a particular factorisation scale py is reabsorbed into a redefined parton distribution,
so that it is absent from the partonic cross-section. However, this procedure is typically not
used in practical calculations, given that applying momentum cut-offs is not gauge invariant.
Instead, dimensional regularisation is often used in d = 4 — 2¢ dimensions, in which IR diver-
gences show up as poles in e. The factorisation scale then emerges through the additional
scale p that is introduced to keep the coupling dimensionless. A particular means of remov-
ing divergences from the partonic cross-section is called a factorisation scheme and, while the
partonic cross-section becomes finite, the calculated parton distributions are not. This is not
a problem: we do not claim to be able to calculate the partons in perturbation theory, and so
instead can simply measure them from experiment. Indeed, this is reminiscent with what hap-
pens when we remove UV singularities via renormalisation: in doing so, we lose the ability
to calculate the coupling constant, which instead becomes a measurable parameter in some
given scheme.

The upshot of the above discussion is that equation (9) gets replaced by the more general
formula

1 1 A2
o= 3 [ [ ficn s e + 0 5 ).
0 0

2
i,je{9.q.8} Q
)

That is, both the partons and partonic cross-section now depend on the factorisation scale yi,
which typically enters through dimensionless ratios involving an energy scale Q associated
with the scattering process. As for the renormalisation scale yiz, dependence on pip cancels at
a given order in perturbation theory, but there can be a residual dependence associated with
missing higher-order corrections, and this takes the form of logarithms of ratios of the factori-
sation scale with typical energy scales involved in the scattering process. As for the case of
1g above, one can reduce this dependence by choosing i to be such a typical energy scale
0, and there is clearly some ambiguity in this choice. Varying pz and pp around some default
value then gives a measure of the theoretical uncertainty of a given cross-section prediction.
We have also noted in equation (9) that the parton model formula receives formal corrections
when derived from first-principles QFT, involving ratios of the QCD confinement scale A and
the typical energy scale Q. Provided that Q is large enough that we trust perturbation theory in
the first place, these so-called power corrections will be small.
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5. Fixed-order perturbation theory

So far the job of a theorist seems clear enough: to compare theory to data at a hadron collider
such as the LHC, we must calculate amplitudes involving incoming partons [i.e. (anti-)quarks
and gluons], turn these into partonic cross-sections using equation (3), and then combine these
with parton distributions using one of the many versions of these which are available (see e.g.
references [15—18] for recent analyses). However, anyone who has tried to calculate scattering
amplitudes for relevant scattering processes knows that this becomes extraordinarily difficult
as the number of loops or number of legs increases. Traditionally, QCD amplitudes were cal-
culated using Feynman rules and diagrams, which represent the L-loop amplitude as a sum of
integrals of the form

I = Al \ e; Ni({pi} {lh)
Al )({Pi}): Z (1(1:[1/(270‘1> Dj({]{)ﬁ?}{l{k}i : (10)

diags j

Here each individual diagram j has a colour factor c;, and integrals over the L loop momenta
{lx}. There is then a kinematic numerator \; and denominator D, each of which depends on
both the external momenta {p;} and loop momenta {/;} in general. Terms in the integrand
with zero, one or more than one powers of loop momenta in the numerator are referred to
as scalar, vector or tensor integrals respectively, and it is in fact possible to apply algebraic
identities to reduce all higher-rank integrals to scalar ones. This may be formalised in a process
known as Passarino—Veltman reduction [19], which may be automated in principle, albeit with
some subtle caveats for higher-leg processes. Then, all L-loop amplitudes can in principle be
straightforwardly calculated once a suitable basis for all L-loop scalar integrals is known, a
problem which is entirely solved for L = 1 (see e.g. reference [20]). Roughly speaking, most
QCD calculations up until the mid-2000s were calculated using this approach, which ultimately
proved to be unsustainable, not least due to the fact that the number of Feynman diagrams grows
factorially as the order in perturbation theory increases.

More modern methods for calculating amplitudes rely on the observation that, once a basis
of L-loop scalar integrals is known, one can simply expand a given amplitude in terms of
this basis, and then develop clever methods for fixing the coefficients that bypass Feynman
diagrams altogether. A heavily-used method is that of generalised unitarity [21-26], which
involves first classifying the list of scalar integrals according to how many internal lines (or
propagators) they have. Next, one may perform unitarity cuts, consisting of placing one or
more propagators on-shell. If one takes the maximal number of such cuts at a given loop order,
only the integrals with the maximal number of internal lines survive, so that one may straight-
forwardly fix their coefficients. One may then iterate the procedure to fix the integrals with
one less than the maximal number of internal lines, and so on. The so-called cut-constructible
part of the amplitude thus obtained must then be supplemented by an additional rational piece,
for which various methods exist [27-34, 34, 35] (see e.g. reference [36] for a comprehen-
sive review). Ultimately, the effect of such tools is to reduce the computational complexity of
multiloop calculations from being factorial in the perturbative order, to being merely polyno-
mial. Indeed, the calculation of one-loop processes in QCD has now been automated, such that
general purpose computer programs exist that allow users to specify a given initial and final
state (see e.g. references [37—39], or references [40—42] for their latest incarnations). One then
presses a button, waits for a reasonable (but not too inconvenient) length of time, and receives
results for (differential) cross-sections!

At two-loop level and beyond, a full basis of scalar integrals is not known, and discussion
is still ongoing regarding the best way to systematise calculations. One can of course focus

10
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on specific scattering processes rather than trying to make general statements. Then a reduced
set of integrals appear, but the difficult problem remains of carrying out the integrals them-
selves, in terms of known functions. In recent years, this has generated a fascinating dialogue
between pure mathematicians and theoretical physicists, and more details can be found in refer-
ences [43—-45] (chapters 3—5 of this review [46]). What is clear, however, is that there is a clear
direction of travel of new computational techniques on average. They tend to be developed first
in a formal hep-th context, typically due to the fact that it is easier to probe new structures
in highly symmetric theories such as N = 4 super-Yang-Mills. However, these same tech-
niques then filter down to more immediately applicable theories such as QCD, and become
a standard part of the hep-ph toolkit. Very often, individual researchers will be working in
both subfields, providing a vibrant counterpoint to the once-prevalent notion that ‘theory’ and
‘phenomenology’ are distinct activities, whose practitioners are not able—or unwilling—to
communicate with each other.

The calculation of a given scattering process at higher orders may proceed completely ana-
Iytically, or (partially) numerically (e.g. numerical integration of scalar integrals may be used).
This may seem distasteful to those formal theorists who are used to being able to fully probe the
analytic structure of their results. But numerical results are ultimately what is needed anyway
to compare with experiment, and numerical methods have allowed us to carry out calculations
that otherwise would simply not have been possible. However, the use of numerical methods
raises a significant issue: as discussed above, the calculation of physical observables involves
infrared singularities at intermediate stages. Although these cancel in final results, and may be
regulated in separate parts of a calculation (e.g. cross-section contributions involving different
numbers of loops), one cannot combine numerical results for individually IR-divergent parts
of an observable, due to the large numerical uncertainties that result. One must thus devise
a suitable infrared-subtraction scheme for organising the perturbative calculation, such that
large numerical cancellations never appear. This problem was solved a long time ago at one-
loop (for popular schemes, see references [47, 48]), and the Frontier is how to systematically
accomplish this at two-loop level and beyond [49-67].

The motivation of a phenomenologist can be very different to a more formal theorist:
the choice of which amplitude or scattering process to consider next is much more likely
to be guided by experiment. More specifically, members of the two large general-purpose
search experiments at the LHC (ATLAS and CMS) have often produced wishlists of scat-
tering processes for which they would like higher-order corrections. A recent example can
be found in reference [68], which also reviews state-of-the-art calculational tools. Various
processes are discussed, and requests made for both QCD and electro-weak (EW) correc-
tions. The interplay between including both QCD and EW perturbative information needs
some careful accountancy (see reference [69] for a review). Furthermore, differential cross-
sections are needed as well as total cross-sections. These typically lag behind total cross-
sections in terms of the available precision: the presence of more resolved momenta in the
final state means that there are more energy scales in the problem, which complicates the
computation of relevant loop integrals, as well as the general book-keeping of the calculation
itself.

The absolute cutting-edge in fixed-order perturbation theory is N°LO [2—6], and the vast
majority of interesting processes are still known only at NLO. For total cross-sections, only
a few orders in perturbation theory are typically needed in order to start to approach a the-
oretical uncertainty of sub-percent level (as estimated by variation of the factorisation and
renormalisation scales, whose residual dependence tells us about missing higher-order correc-
tions). However, for differential quantities serious problems can occur, in that the perturbation
expansion becomes unstable. We explore this in the following section.
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6. Resummation

For a classic example of how perturbation theory can go awry, let us consider the Drell-Yan
process, in which an off-shell photon is produced that eventually decays to a lepton pair. The
LO Feynman diagram is shown in figure 3(a), where we label four-momenta as shown. It is
then conventional to define the variable

==, (11)
s
which may be loosely interpreted as the fraction of the partonic centre of mass energy s that is
carried by the photon (of virtuality Q).
The LO differential partonic cross-section in this variable then has the form

97— a1 — 2, (12)

dz
for some o, where the delta function reflects the fact that the photon is carrying all of the
energy in the final state at LO, so that we must have z = 1. In computing high-order corrections,
we must define the total cross-section for Drell-Yan production to include any amount of
additional QCD radiation, in line with our earlier comments regarding infrared safety. We must
then include both virtual and real corrections, examples of which are shown in figures 3(b) and
(c). These are individually infrared divergent, such that any formal singularity cancels upon
combining all real and virtual graphs (bar those initial-state collinear singularities that must be
absorbed into the parton distributions). However, upon combining all contributions, the NLO
differential cross-section for the gg initial state turns out to have the following form:

do'l) . log(1 — 1+ 22
Y _ LCF 414+ 2% M ) Tz log(z)
dz 2m -z 4 -z

2
+6(1—z)<273r—8>], (13)

where Cr is a colour-dependent constant, and the + notation denotes a so-called plus distribu-
tion, defined by its action on a test function g(z) as:

1 1
/0 dzf1(2)8(2) = /o dzf(2)[g(z) — g(D)]. (14)

We now have a non-trivial dependence on the variable 0 < z < 1, reflecting the fact that addi-
tional radiation may carry away some of the energy in the final state. However, we also
see that equation (13) contains a term that is highly divergent as z — 1, involving a loga-
rithm of £ = (1 — z) divided by & itself. Finiteness of the total cross-section is guaranteed
by equation (14), but it is still the case that the logarithmic term becomes extremely large
near z — 1. This threatens the validity of perturbation theory: expansion in the coupling
only makes sense if the coefficients of the expansion are small. At the very least, we should
look at higher orders in perturbation theory and see how the coefficients behave as z — 1.
Unfortunately, however, the problem gets even worse! At NNLO, for example, we have

e 2 3 _
9 _ (G [ gl =2 o (log(l —2) 4| as)
dz 27 1—-z2 n 1—-z2 i
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Figure 3. (a) LO Feynman diagram for the production of an off-shell vector boson by a
quark—antiquark pair; (b) a virtual correction at NLO; (c) a real correction at NLO.

where the ellipsis denotes terms that are suppressed by a power of (1 — z). The highest power
of the log in (1 — z) has gotten larger, and one may indeed show that this pattern recurs at
higher orders, so that perturbation theory is indeed breaking down.

To understand the origin of the problem, note that z — 1 amounts to the photon carry-
ing all the final state energy, so that any additional radiation is forced to be soft. Although
the formal soft divergences cancelled when we added together real and virtual contributions,
the large logarithms are ‘echoes’ of the fact that these singularities were present in the first
place. Here we have considered the case where additional radiation is forced to be soft. In
other scattering processes, it may also be the case that the radiation is forced to be collinear
in some kinematic regions, and this also ends up leading to large logs. Indeed, the generic
nature of this explanation suggests the following general remarks. For processes involving
heavy particles being produced near threshold (i.e. with only just enough four-momentum),
we can define a threshold variable &, such that £ — 0 near threshold (in our above example,
we had & = (1 — z)). Then, the general structure of the partonic differential cross-section in £
can be shown to be

00 2n—1

dé log™ ¢
_ § n § (0) (1) m .
dg - pr as — |:cnm ( 5 >+ + Cnm log £ + . (16)

The first set of terms on the right-hand side generalise the large terms we have already seen
in equations (13) and (15). They are called leading power (LP) threshold logs, and correspond
to the emission of purely soft and/or collinear radiation. The remaining terms constitute a
systematic expansion in &, such that the second set of terms comprises the next-fo-leading
power (NLP) contributions. The ellipsis then denotes terms which are NNLP and beyond. It is
then genuinely true that we cannot trust perturbation theory as & — 0. Furthermore, this is not
just a problem in principle, but very much one in practice: there are many observables at the
LHC where the instability of perturbation theory becomes a problem.

The solution sounds impossible at first. We must somehow work out what the large log-
arithms are to all orders in «ay, and sum them up to get a function of « that is much better
behaved than any fixed-order perturbation expansion. You will be familiar with this idea from
your undergraduate days. Consider, for example, the toy function

(o @]

e 0% — Z M. (17)

n!
n=0
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Each term on the right-hand side diverges as x — oo, but the left-hand side is perfectly well-
behaved. What’s more, this example is not quite as trivial as it might first appear: when
the threshold logarithms in equation (16) are summed up, they do indeed tend to exponen-
tiate. What makes this possible is the fact that we can understand the large logs as being
related to infrared divergences. The latter, as is well-known, can be classified to all orders
in perturbation theory (see e.g. reference [70] for a review of this subject), so that sum-
ming threshold logs in perturbation theory amounts to classifying the structure of infrared
singularities.

The process of summing up the large logs is known as resummation, and typically proceeds
as follows. First, one can take the most divergent logs at each order in oy, which at LP go as
o log®" ' ¢ /€. These are referred to as leading logarithmic (LL) terms, and are the easiest to
resum. Next, one may consider the next-to-leading logarithmic (NLL) terms ~ o log™ > ¢ /¢
to all orders, and so on. This expansion implies a reordering of perturbation theory, and it is
this that the prefix ‘re-’ in ‘resummation’ is meant to signify. There are by now many different
approaches to resumming logs in QCD, involving diagrammatic arguments [71-77], use of
Wilson lines [78, 79], renormalisation group arguments [80], and effective field theory [81-84]
(see references [85-87] for pedagogical reviews). Common to all of them, however, is the
fact that soft and collinear radiation essentially factorises from the underlying hard scattering
process. That is, a general n-point amplitude dressed by soft and collinear radiation has the
following form (see e.g. reference [88]):

n
A, =H,S M (18)
[Iizi 7

Here H, is a so-called hard function. It depends on the particular scattering process, but is
infrared finite. The soft function S collects all singularities associated with purely soft radi-
ation, and the jer functions J; collect collinear singularities associated with external leg i.
However, radiation can be both soft and collinear, which means it has been counted twice
by being included in both the soft and jet functions. Thus, one must divide by eikonal jet func-
tions J; to remove the double-counting. It turns out that the soft and jet functions have universal
definitions, which are independent of the particular scattering process being considered. The
physics of this is indeed straightforward: soft radiation has vanishing momentum, and collinear
radiation has vanishing momentum transverse to the relevant particle direction. In both cases,
the emitted radiation thus has an infinite Compton wavelength, and cannot resolve the details
of the underlying hard scattering process. We then expect it to factorise, leading to something
like equation (18).

Studying the soft function in more detail allows us to make contact with more formal ampli-
tudes literature. In QCD, one may define it as a vacuum expectation value of Wilson line
operators. That is, if {;} are the four-velocities of the coloured external particles, one may
write

SH{Bi}) = (0|@ P, ...D,|0), (19)

where
®; =P exp {igs/ dxﬁ‘AZT?] (20)
Xi=T;Bi

is the usual gauge theory Wilson line consisting of the integral of the gauge field along a
curve, which has been taken in each case to be the classical straight-line trajectory x; = 7,03,
(0 < 7; < 00) associated with the four-velocity ;. Also T¢ is a colour generator associated
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with external line i, and P denotes path-ordering of the colour generators along the contour.
One way of seeing why equation (19) is correct is to note that each of the Wilson line factors
contains a coupling of the gauge field to each coloured external particle. By Fourier transform-
ing the exponent of equation (20) to momentum space, we can then interpret the Feynman rule
for this coupling. To this end, we may rewrite the exponent of equation (20) as

iy [ [ &K awen = [ S a sttt [ aneon).

It is straightforward to carry out the integral over the parameter 7;, and we obtain?

ddk
@my

o B
(){ gT; @--k}' 1)
The square bracket contains the eikonal Feynman rule for the emission of soft radiation, that
enters the well-known soft theorem in gauge theory [89], describing the emission of soft radia-
tion. The above argument is somewhat technical, but there is a more physical way to see that the
soft function should be given by equation (19). If the coloured external particles are emitting
purely soft radiation, they cannot recoil against anything, and so by definition must be follow-
ing classical straight-line trajectories. Then, the only quantum behaviour they are allowed to
have is to experience a phase change which, if it is to have the right gauge-covariance proper-
ties to form part of a scattering amplitude, must be described by a Wilson line operator, which
is known to transform covariantly.

We see, then, that classifying the structure of infrared singularities in scattering ampli-
tudes amounts to studying vacuum expectation values of Wilson lines. Computations involving
Wilson lines occur widely throughout the formal amplitudes literature, not least due to the well-
known duality between scattering amplitudes in A/ = 4 super-Yang—Mills theory, and certain
Wilson loops formed from the particle momenta [90]. A key property of Wilson lines that we
need for our present purposes is that equation (19) is subject to UV singularities, associated
with the cusp at which the Wilson lines meet. These then correspond to the IR singularities of
the original amplitude. To see how this works, consider some external particles that are emit-
ting virtual radiation, as in e.g. figure 3(b). Relative to leading order, there will be an additional
propagator on the upper line

1 1

T =k 2p kR

where k is the four-momentum of the exchanged gluon. In the soft limit, one linearises the
propagator by neglecting the term of O(k*), leading to the eikonal Feynman rule dependence
of equation (21). However, & is a loop momentum, and thus replacing the denominator in this
fashion changes the behaviour of the integrand as k becomes large. Taking also the lower line
into account, one modifies the denominators in the loop integral over k as follows:

d’k 1 d% 1
/ QM k2 (=2p - k+ k*)(2ps - k + k?) - / Q2my* k(=2p1 - k)2p2 - k)
(22)

3 The upper limit of the integral in 7; vanishes once the Feynman ic prescription is properly taken into account.
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The original integral is UV-finite, but the modified integral is logarithmically divergent. Hence,
taking the soft approximation has introduced a spurious UV divergence. Furthermore, the sec-
ond integral turns out to be scaleless in dimensional regularisation, and thus formally vanishes.
Thus, the spurious UV singularity precisely cancels the original IR singularity we are interested
in. It follows that the UV singularity of a Wilson line integral (involving the linear propagators)
matches the IR singularity of the amplitude, and this property in fact generalises to all orders
in the soft function.

The UV singularities of VEVs of Wilson lines are controlled by a quantity called the soft
anomalous dimension, otherwise known as the cusp anomalous dimension when only two
Wilson lines are involved (again, see reference [70] for a review). Its specific form depends
upon the particular theory being considered, and whether there are only two Wilson lines, or
many. From the above discussion, it follows that knowledge of the soft anomalous dimension
is a key ingredient in being able to perform resummation: (i) the soft anomalous dimension
determines the UV singularities of Wilson lines; (ii) these in turn are directly related to the IR
singularities of amplitudes; (iii) classifying the latter allows us to resum large logarithms to all-
orders in perturbation theory, thus getting sensible results for certain observables, that we can
compare with experiments. Further anomalous dimensions control the behaviour of collinear
singularities, but we stress the soft anomalous dimension here given that it is a widely studied
quantity in a variety of formal contexts, where the people involved may not have realised its
role in helping us to get the most out of LHC data: each successive order in the soft anoma-
lous dimension allows us to sum up a further tower of large logs (NLL, NNLL, NNNLL...) in
cross-sections of interest. The state of the art in QCD is three-loop order for processes involv-
ing only two coloured particles at LO [91-99] (four loops in QED [100]). For many Wilson
lines, the soft anomalous dimension is known at three-loop order [48, 88, 101-124] if the
Wilson lines are lightlike, as would be relevant for the scattering of massless particles. For
non-lightlike Wilson lines (which would be relevant for e.g. top quark pair production), the
state-of-the-art is two-loop order [84, 125—-134], although progress towards a full three-loop
result has been reported [133, 135—141]. Interestingly, the three-loop soft anomalous dimen-
sion for massless particles has a remarkably simple analytic form. It was subsequently shown
that it could be obtained without explicit calculation, by using a bootstrap approach, in which
one expands it in a basis of known functions, before applying known constraints from collinear
and high energy limits to fix the coefficients [142]. This strongly suggests that further tech-
niques from formal amplitudes research—involving both the theory of special functions, and
insights into which functions can appear at which loop orders—may prove to be highly useful
in extending our ability to resum perturbation theory. To illustrate the importance of this goal,
figure 4 shows the measured distribution of the transverse momentum (relative to the incoming
beams) of the virtual particle produced in Drell-Yan production, and which decays to a pair
of leptons. At LO in perturbation theory, the Feynman diagram of figure 3(a) tells us that the
transverse momentum must be exactly zero, as there is nothing for the virtual photon to recoil
against. At NLO, it may recoil against an emitted gluon, but the collinear singularity of this
emission means that the distribution would diverge as the transverse momentum goes to zero,
due to a large logarithm involving the transverse momentum. Only by resumming large logs
to all orders does the theory prediction match the data. This is one of probably hundreds of
individual observables at the LHC where resummation is important. Also, desired improve-
ments in the order of the logarithms summed in specific processes form part of experimental
wishlists [68].
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Figure 4. The distribution of the transverse momentum of a lepton pair in Drell-Yan
production. The curve labelled with ‘NNLO + N3LL’ includes threshold logarithms
resummed to all orders in perturbation theory.

As well as the order of the logs, another potential improvement is to include the terms that
we have so far neglected in equation (16). In particular, while a lot is known about the LP
terms, much less is known about the NLP terms. If the LP terms are dictated by the emission
of soft and collinear radiation, the NLP terms are in principle described by next-to-soft (or
next-to-collinear) radiation. Coincidentally, this is also a topic that has been widely studied on
hep-th in recent years, due in particular to the fact that next-to-soft properties of amplitudes
have been linked to symmetries at asymptotic infinity [143—145], thus starting an ongoing
programme known as celestial holography, discussed in chapter 11 of this review [146]. As for
the use of Wilson lines discussed above, practitioners in this field may be entirely unaware that
the need to understand next-to-soft physics has a highly practical application at the LHC. The
need to describe and potentially resum the NLP terms in equation (16) has been emphasised in
e.g. references [147—-151]. Indeed, the study of such corrections has a remarkably long history,
beginning with the classic work of references [152, 153] for massive external particles, which
was extended to massless particles in [154]. In QCD, next-to-soft effects have been investigated
using a variety of techniques, including diagrammatic approaches [155—165] that aim to extend
the factorisation formula of equation (18) to NLP order and/or resum NLP logs, insights from
fixed-order perturbation theory [166—177], and effective field theory [178-201]. We are just
starting to learn how to resum NLP effects for certain specific processes, and the coming years
are likely to see a rapid increasing of our understanding of their importance. Furthermore,
extensions to the factorisation formula of equation (18) involve new universal objects in field
theory, that may be of interest beyond QCD, for those wishing to classify new structures in e.g.
N = 4 SYM theory.

We have here seen some basic ideas from threshold resummation, which involves the
inclusion of arbitrary amounts of soft/collinear radiation. However, the idea of summing up
corrections to all orders in perturbation theory clearly generalises. Another kinematic limit
that has been widely studied is the Regge limit, in which the centre of mass energy is much
larger than the momentum transfer. This limit becomes experimentally more relevant as the
energy of particle accelerators increases, and there is significant evidence that the inclusion of
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enhanced effects in this limit is needed to better describe scattering data (see e.g. references
[202-212]). This makes direct contact with much earlier work on S-matrix theory (see the
classic texts of references [213, 214], and reference [215] for a more modern review), ideas
from which (e.g. the bootstrap) seem to be coming back into fashion in contemporary hep-th
physics. Of course, with any resummation, only a subset of the full information at each order
in perturbation theory is included at higher orders. Resummation thus proceeds in tandem with
fixed-order perturbation theory to provide a two-pronged attack on QFT: given any observable
we want to calculate, we must include as much information as possible. Low-order informa-
tion in perturbation theory can be calculated exactly, and then supplemented with higher-order
results from resummation, being careful that no contributions have been counted twice. There
are then two frontiers in perturbation theory, namely the inclusion of subleading terms in both
the coupling (NLO, NNLO, ...) and logarithmic (NLL, NNLL, ...) expansions. Each of these
requires clever thinking and new techniques, and also a joined-up approach. For example, new
methods for obtaining fixed-order results can often be recycled for calculating higher-order
Wilson line correlators, which are needed for resummation. There is significant scope for more
formal amplitudists to contribute to both areas.

7. From theory to experiment

In the previous two sections, we have sketched the status of modern-day efforts to calculate
perturbative QFT observables for collider physics. Anyone working in this area knows how
extraordinarily difficultit can be to squeeze new results out of a non-abelian gauge theory. How-
ever, as we already hinted at in section 3, the output of even the most intricate QFT calculation
looks almost nothing like what comes out of a particle accelerator! To illustrate this, figure 5
shows an event that was measured by the ATLAS detector in 2016, and which was believed
to be a Higgs boson decaying to two Z bosons, which themselves then decay to a pair of lep-
tons each. The upper-left panel shows a cross-sectional slice through the cylindrical detector,
where the red and green lines constitute the best guess for what the leptons did. However, there
is an enormous number of additional particles. The yellow lines denote extra charged particles
that accompanied the Higgs boson event. Many of these will be charged hadrons, which arose
from additional quark and gluon radiation. The sheer number of these goes way beyond what
we can reliably calculate in fixed-order perturbation theory. What’s more, only a tiny fraction
of these charged particles have been kept in the event display—those with sufficiently small
momentum transverse to the beam direction are thrown away so that we can even see what is
going on! The grey lines demonstrate an additional complication: the beams at the LHC do not
consist of single protons, but bunches of many protons (with over 100 billion protons per bunch
in fact). This means that a large number of collisions happen simultaneously, so that any event
we want to look at is swamped not just by its own mess, but by that of many other indepen-
dent collisions! This is called pile-up, and can be corrected for by carefully ascertaining that
the various particle tracks originate from different scattering vertices, as is shown in the lower
panel of the figure. However, it is clear that many theorist’s idea of what ‘comparing theory
to data’ means, is very far indeed from what actually happens in practice. Our aim here is to
provide a brief review on how QFT can nevertheless be meaningfully applied to the analysis
of scattering events, and to point out some of the open issues.

Theory calculations have two uses. Either we are calculating a signal (e.g. a new physics
process), in which case we want to compare our prediction for a particular observable (e.g. a
cross-section) with something measured. Or we might be considering a background, namely
a standard model process that is in principle different to the signal, but which may contribute
a proportion of events that happen to look similar. If the background process is much more
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Figure 5. Event display from the ATLAS experiment, for a candidate event in which a
Higgs boson decays to two Z bosons. The event was used in the analysis of reference
[216]. Reproduced with permission from ATLAS Experiment © 2022 CERN.

probable than the signal, we will get lots of events that mimic the signal and thus act as ‘fake
news’. Experimentalists apply very stringent statistical techniques to make sure that any signal
they find has negligible probability of having been caused by a background. However, to do
this, they need to know the background processes very very precisely, and this is then the job
of theorists. But how do the latter turn their calculations into something approaching what is
seen in the collider?

The first problem is to try to estimate the effect of large amounts of additional quark and
gluon radiation, and there is a very well-established way to do this known as a parton shower
(seee.g. references [87, 217] for reviews). It relies on the observation made above, that collinear
radiation is enhanced, and also factorises off from an underlying hard scattering process in a
universal (process-independent) manner. The radiation is in fact described by known spliz-
ting functions which, roughly speaking, give the probability that a parton splits into two other
partons, each carrying a certain momentum fraction of the parent. The factorisation property
means that different collinear splittings are uncorrelated and independent, and this allows for
the construction of an algorithm for the generation of arbitrary amounts of collinear radiation,
modelled as a Markov chain process. Essentially, one can generate a set of four-momenta for
the additional particles, whose probability is given by a known distribution, which becomes
exact in the limit in which all the radiation is strictly collinear. It includes both real and virtual
QFT corrections, so that all probability weights are infrared finite, and applies this distribution
even for radiation that is not collinear. That this turns out to be a reasonable approximation
follows from the fact that collinear radiation is anyway enhanced. A schematic view of the
action of a parton shower is shown in figure 6.
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Figure 6. A parton shower algorithm dresses a given hard scattering process (whose
particles are shown here in black) with additional quark and gluon radiation (shown in
blue). The generated probability for such a process is approximate, but exact in the limit
in which the emitted radiation is collinear with the outgoing hard particles. The approx-
imation can be improved by including higher-order information in the hard scattering
process. Reproduced with permission from ATLAS Experiment © 2022 CERN.

The energy of modern colliders such as the LHC is such that many particles are produced,
which are widely separated in the detector and thus not necessarily collinear. Then the parton
shower approximation is insufficient, and must be made more accurate. One way to do this
is to include also full higher-order tree-level amplitudes, which can be done up to a few extra
legs. One can then invent a suitable matching prescription, that guarantees that the most widely
separated particles in any event are described by the tree-level amplitudes (where these are most
accurate), but the remaining particles with less separation are described by the parton shower.
Several prescriptions exist (see e.g. references [218, 219] for some of the first), and they must
carefully make sure that no radiation is double-counted, by being included in both the higher-
order tree-level matrix elements and the parton shower. From a QFT point of view, including
only tree-level amplitudes is not ideal, given that the formal accuracy of the total cross-section
then remains at LO only. Thus, it is desirable to start with full NLO amplitudes, and to match
these with a parton shower. The matching procedure is now even more delicate than the tree-
level case discussed above: the NLO matrix elements contain both real and virtual corrections,
both of which potentially overlap with what the parton shower is doing. Two NLO matching
schemes are in widespread use [220, 221], and their predictions for a given process are often
compared as a means of estimating the reliability of the matching procedure. The state-of-the
art for many LHC analyses is that either tree-level amplitudes matched to a parton shower are
used, or the NLO approach (which only includes one additional emission in the amplitude).
The choice of which approach to use is dictated by what is deemed to be more accurate for
the observable of interest. However, one can clearly go further than this, by combining as
many N"LO matrix elements as possible (including higher-order tree-level matrix elements),
and matching the whole lot to a parton shower. The subtleties in doing this are many, and the
computational expense of doing this means that more understanding is needed of where such
corrections are genuinely important. This is a topic that will evolve a great deal in the coming
years [222].

After a parton shower has been applied, our QFT results start to look a lot more like those
in figure 5. But they still contain free (anti-)quarks and gluons in the final state, rather than the
colour-singlet hadrons that we now are observed in real experiments, due to the confinement
property of QCD. For many observables this is not a problem. If all we want to do is to estimate
a total cross-section, for example, every parton will end up in some hadron, so the observables
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calculated assuming final-state partons, or final-state hadrons must be the same. But if we want
to more realistically model scattering events for use in experimental analyses, we do indeed
want to estimate how the process of hadronisation changes the final state. In practice, this
is done using a variety of phenomenological models, containing free parameters that can be
tuned to data. What helps is that the quantitative effect of hadronisation on a given observable
is known to be suppressed by powers of the QCD confinement scale A i.e. it constitutes a power
correction as appears in equation (9).

After parton showering and hadronisation, our scattering events are still not fully realistic:
we have to include the fact that the incoming partons were only part of the incoming protons.
The rest of the latter will somehow be distributed throughout a given scattering event, and their
colour information may be non-trivially entangled with the rest of the event. Various models
exist for describing this mess, which is loosely referred to as the underlying event. New ideas
are always needed, as the uncertainties involved in such models can have dramatic effects. For
example, the mass of the top quark is currently measured to within about 0.5 GeV, which is
very similar to the estimated theory uncertainty due to underlying event effects (in particular
how the colour of the top quark interacts with the colour of the beam remnants). This may not
sound like a problem, but the top quark mass enters the expression for quantum corrections
to the potential energy of the Higgs field. This can become negative for a certain range of
top mass values, which results in the vacuum of our Universe becoming unstable. Given the
measured Higgs mass value, the mass of the top quark we currently observe is perilously close
to the unstable range. We cannot quite say how close, without knowing the top quark mass
more precisely, and thus our ability to settle our collective fate rests on better modelling of
non-perturbative QCD!

The above steps are computationally technical, and clearly very complicated for the unini-
tiated. However, various general purpose computer programs exist that allow users to simu-
late scattering events for a given process, including higher-order amplitudes, parton showers,
hadronisation, underlying event modelling, and more besides. They are usually referred to
as Monte Carlo event generators, and popular programs include [40-42, 223]. The output
of such programs consists of a set of simulated scattering events, comprising a list of parti-
cles (e.g. leptons, photons, hadrons) and their four-momenta. One may then write additional
code for analysing these events, e.g. to select those events that look interesting, and then plot
distributions of various measurable quantities, to mimic what is done in an actual collider
experiment.

Monte Carlo event generators are widely used both by experimentalists, but also phenome-
nologists who are trying to find new and better things to measure. They can also be interfaced
with further simulations, that mimic the behaviour of the real ATLAS and CMS detectors, for
an even more realistic characterisation of how actual scattering events are likely to behave. This
then gives various levels at which theorists may compare their results with data, and examples
include:

e Parton level: in this case, experimentalists will try to correct for non-perturbative effects,
decays of particles etc, and present results for (differential) cross-sections containing final-
state partons, vector bosons, top quarks etc. Theorists can then calculate simple final states
involving quarks, gluons and other particles, using their favourite methods for calculating
scattering amplitudes, for direct comparison with the ‘data’. This approach is going out of
fashion for differential observables, due to the many assumptions that go in to unfolding the
raw data back to parton level. If these assumptions turn out to be incorrect or superceded
years after an experiment finishes, it can be impossible to replace them with a more correct
analysis, especially if the raw data is no longer available.
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e Farticle/hadron level: here the theory calculation will include a parton shower, hadronisa-
tion, underlying event etc, as is obtained as the output of a Monte Carlo event generator. For
some very inclusive observables (e.g. total cross-sections), this is not necessary, given that
the additional steps needed to get to particle level will not change the total cross-section.
However, the output of a particle-level calculation is a set of simulated scattering events
that looks much closer to what happens in a real detector. In particular, this allows theorists
to simulate the effect of proposed experimental analyses, including how ‘interesting’ scat-
tering events will be selected, and what the distributions of various measured quantities
will look like.

e Detector level: this is similar to particle-level, but includes an additional detector simula-
tion, which would be important for theorists if they believed that realistic detector effects
(e.g. finite energy/momentum resolution, gaps in where particles can be recorded) may be
affecting their predictions.

For differential cross-sections, particle level has become a standard way of comparing the-
ory with data. Even in that case, however, further steps are usually needed to make experimental
events look similar to particle-level predictions. Both experimental scattering events and sim-
ulated particle-level ones will contain hundreds of particles, most of which will be hadrons,
due to the large amounts of strongly-coupled quark and gluon radiation. In order to simplify
each event, we can cluster these particles into jets, using a suitable jet algorithm. We can
then select interesting events based on how many jets they have, and what the distribution
of these jets looks like in the detector. A surprising amount of care is needed to make sure that
a given definition of how to cluster particles into jets is well-defined in perturbation theory (see
reference [224] for an excellent review).

The detailed comparison of theory with data requires a constant dialogue between theorists
and experimentalists. At the heart of all event generators that are used in this process lie our
beloved scattering amplitudes, and thus new techniques from formal theory can clearly con-
tribute to the ongoing vast international efforts to understand what the Universe is trying to tell
us in our detectors.

8. Summary

In the previous sections, we have seen a large number of steps in between the calculation
of scattering amplitudes, and the direct comparison of theory with quantities measured by
experimentalists. It is thus useful to have a quick summary of these ideas, with some further
context of how they are applied in practice:

(a) Squared amplitudes must be renormalised to remove UV singularities, and converted into
cross-sections by integrating over the phase space of any final-state particles, and dividing
by the Lorentz-invariant flux factor.

(b) At hadron colliders, one must combine cross-sections for incoming partons [i.e. (anti-)
quarks and gluons] with parton distribution functions for the incoming beam particles
(e.g. protons).

(c) Theoretical quantities [e.g. (differential) cross-sections] should be such that they are
infrared-safe: final states with different numbers of particles must be combined so that
there are no IR singularities in the final results. One should then include as many pertur-
bative orders in each amplitude as possible.

(d) If the coefficients of the perturbation expansion are unstable, it may be necessary to
include additional logarithmically-enhanced terms to all orders in perturbation theory
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(‘resummation’), and to avoid double-counting contributions which have already been
included in the fixed-order expansion.

(e) One can approximate the emission of additional QCD radiation by applying a parton
shower algorithm to the theoretical prediction for a given final state. Care is needed if
combining higher-order amplitudes with the parton shower, to avoid double-counting
contributions.

(f) After the parton shower, one may include further algorithms that simulate the combination
of outgoing partons into colour-singlet hadrons, interactions with the beam remnants etc.

Depending on what data we are comparing to, it is not necessary to include all of these steps.
To clarify this, let us consider one of the simplest types of observable that an experiment might
measure, namely the cross-section for a given process. Experiments sometimes present a best
estimate for the total cross-section, having attempted to reconstruct any intermediate unstable
particles, and corrected for the finite detector volume etc. This is perhaps the easiest type of
data for a theorist to compare to. If they wish, they can use fixed-order perturbation theory to
obtain the total cross-section (including the parton distributions if it is a hadron collider) at
some order, and then directly compare this number with the data. The theory result will have
some uncertainty estimated by varying the renormalisation and factorisation scales. Likewise,
the experimental result will also have an uncertainty, which may be split further into estimated
systematic and statistical errors. The first of these is due to possible biases in the measurement,
whereas the second measures the limited power of a finite data set. If the theory and data
numbers agree within their respective uncertainties, then we would say that the theory matches
the data. If not, we can statistically quantify the level of disagreement. This corresponds to the
parton level comparison outlined above.

Even for total cross-sections, there are more sophisticated approaches. For example, we
may wish to resum contributions from certain kinematic regions, the results of which are typ-
ically available in dedicated public codes for given processes. It is routine, for example, to
include resummed contributions for various top quark and Higgs boson cross-sections. The
effect of including these resummed contributions may be to change the central value of our
theory prediction, or modify its uncertainty. However, it is still a single number which we can
compare with the measured result. An even more complicated approach would be to dress our
theoretical prediction with a parton shower algorithm, hadronisation etc. This simulates final
states with large numbers of particles, and we can then apply similar selection criteria to those
used in the experiment to our simulated events, in order to reproduce the steps they used in
performing their own measurement. This is particularly useful if the experiment presents a
measured cross-section that does not correspond to the total cross-section one would calculate
in QFT, but has some exclusion criteria already applied (e.g. requirements that the particles be
in certain regions of the detector only).

Other common measurements are differential cross-sections involving numbers of particles
or jets, or their kinematic properties (e.g. angles, transverse momenta etc). For low numbers of
particles, it may be possible to rely purely on fixed-order perturbation theory, provided there
are enough particles in the final state of the relevant amplitudes to coincide with all the particles
one wants for a given kinematic distribution. However, a much more realistic estimate will be
obtained by using parton-shower programs to simulate realistic events containing many parti-
cles, and then clustering the particles into jets using the same algorithms that the experiment
has used. In order to do this, a theorist would use one of the publicly available Monte Carlo
event generators mentioned above.
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Concrete examples of processes at the LHC for which the above remarks apply are per-
haps too numerous to list explicitly. Furthermore, modern-day Monte Carlo event generators
essentially allow the user to specify any desired process, and then to automatically generate
simulated events which can be analysed to produce kinematic distributions for comparison
with real data. A particularly convenient repository for experimental data in particle physics is
the HEPData database [225], which also provides links to the relevant publications.

Finally, it is worth commenting on what theory input is missing for forthcoming data anal-
yses and/or new collider experiments beyond the currently running LHC. Broadly speaking,
the answer is that we must learn to compute ever-higher orders in perturbation theory, and to
be able to match amplitudes calculated at these orders to state-of-the-art parton-shower algo-
rithms, where the latter can also be improved. Given the large amount of effort involved, it
is necessary to prioritise those processes that experiments are particularly focussed on. To
this end, wishlists such as those in reference [68] are highly useful, as they distil the opin-
ions of large numbers of experimentalists into a coherent request! Another area requiring
improvement is the determination of the parton distribution functions, as the uncertainty on
extracting these from data can limit the theoretical precision of a given collider prediction,
if the relevant cross-section is known to a very high perturbative order. It is currently not
definitively known what the next collider after the LHC will be. However, it is highly likely
to be a lepton-based machine (e.g. colliding electrons and positrons). Many high-precision
cross-sections are already known for such colliders, given that the calculations are actually
somewhat simpler than those needed for hadron machines, due to the lack of coloured parti-
cles in the initial state. But it is always useful to have higher orders in perturbation theory, as for
hadron colliders.

9. Conclusion

It is well-known that scattering amplitudes in perturbative QFT are relevant for collider exper-
iments. But the precise way in which they are used, including the huge number of steps that
are needed to meaningfully compare theory with data, are never dealt with in textbooks. It is
perfectly possible nowadays for formal theorists to live out an entire career without compar-
ing anything to data, despite a desire to do so. It is also very often true that the topics being
discussed on hep - th [e.g. Wilson lines, (next-to)-soft radiation] are the same topics being dis-
cussed on hep-ph, albeit in completely different notation, and for entirely different reasons.
Hence, there is significant scope for more formal theorists to contribute to the challenging
and rewarding world of collider physics, should they wish to do so. Recent years have seen
remarkable revolutions in how we think about scattering amplitudes in different theories, and
how those different theories are related. My hope—which is also the very ethos of the SAGEX
network—is that the coming years will see similar revolutions in how we apply new techniques
to extract the most we can from current and forthcoming collider experiments.
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