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Abstract

In theories with extra dimensions, the standard QCD axion has excited states with

higher mass. These Kaluza-Klein (KK) axions would have a significantly shorter de-

cay time and, when produced by the Sun, would remain gravitationally trapped in

our Solar System, boosting their local decay rate. A low density detector would be

able to distinguish such decays from background, by identifying the separate loca-

tion of the capture of the two resulting photons. The NEWS-G collaboration uses

low-pressure Spherical Proportional Counters, gas-filled metallic spheres with a high

voltage electrode in their centre. This work aims to set exclusion limits on the solar

KK axion model based on data from NEWS-G detectors.
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Chapter 1

Introduction

The axion is a theoretical boson first postulated in 1977 to solve the strong CP

problem [1]. This elusive particle has evaded detection until the present day, but

various cosmological and astrophysical constraints have set limits to its mass between

∼ 1µeV and ∼ 1 eV [2], with preference towards the lower values. However, in quan-

tum gravity theories with additional compactified dimensions, the axion gains a tower

of excitations of much larger mass, up to ∼ 10 keV [3–5]. One of the consequences

of the existence of these “KK modes” of the axion is their accumulation in the Solar

System, due to their creation at lower speeds in the Sun. With the right number and

size of the additional dimensions, and the right value of the axion-photon coupling,

the solar KK axions could explain an old puzzle, the solar corona problem: the atmo-

sphere of the Sun is hotter than its surface, defying thermodynamics. Decays from

the accumulated solar KK axions could provide an external radiation for the Sun,

solving this apparent contradiction [6].

This thesis aims to set limits on the solar KK axion model by looking for axion

decays on Earth with a Spherical Proportional Counter (SPC) [7]. SPCs are a novel

kind of detector developed by the NEWS-G collaboration. They consist of a grounded
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metallic sphere holding some target gas, with a central electrode kept at a high voltage

that collects the ionization signal produced by any incident particle interacting with

the gas. Their strong advantage for testing the solar KK axion model is that axions

decay into two photons travelling in opposite directions, which interact in distinct

locations in SPCs due to low density of gas targets, compared to that of most other

rare event detectors (liquids, crystals). This produces two signals shortly after each

other, with the signal from the photon interacting closer to the electrode arriving

before the one farther away. By looking exclusively for coincident events in the SPC,

a very strong background discrimination can be achieved, allowing much stronger

sensitivities to be reached than might be expected.

In Chapter 1, the theory behind the solar KK axion model will be covered, to-

gether with its consequence of a density of heavy axions in the Solar Sytem and the

potential hints for such a model. Already existing constraints on axions and axion-

like particles will be revisited in the context of this model. Chapter 2 will present

the functioning principle, advantages and drawbacks of SPCs. The setup for two ex-

isting low-background detectors, SEDINE and SNOGLOBE, will also be described,

together with their radioactive backgrounds. Chapters 3, 4 and 5 heavily inform each

other, and represent the bulk of the work performed for this thesis. Chapter 3 will

get into the detail and performance of the algorithms and pulse processing tools that

were developed to treat the data from SPCs. In particular, the method to distinguish

between double-pulse events (characteristic of axion decays) from other events, and

extract information on both pulses, will be related to its physical implications for ax-

ion detection. Chapter 4 will cover the full suite of tools used to simulate the signal

from an SPC: energy deposition, electric field, electron drift, and pulse formation.
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Chapter 5 provides the calibrations that were available for SEDINE. The processing

tools described in Chapter 3 were applied simultaneously on this data and on the

simulations described in Chapter 4 to refine the simulation parameters until there

was agreement between the two. In Chapter 6, the search for double-pulse events

was tested on a different type of source than axions: 55Fe-induced argon fluorescence.

This generates two photons of 2.9 keV each, for a very close approximation of the

decay of a 5.8 keV axion. Finally, Chapter 7 gets into the physics data taken with

SEDINE, the optimization of selection cuts to reject background, and the derivation

of a constraints on the solar KK axion model based on this data. We close the chapter

with a discussion on the expected performance of the future SNOGLOBE detector,

based on possible running conditions and predicted radioactive background.



4

Chapter 2

Solar Kaluza-Klein Axions

In models with additional compactified dimensions, the axion gains a tower of ex-

citations, called Kaluza-Klein (KK) modes, regularly spaced in mass; depending on

the nature of these additional dimensions, the mass of the excitations could be much

higher than that of the axion, of the order of ∼ 1− 10keV, greatly boosting the rate

of their decay into two photons. Furthermore, given their high mass, a proportion

of heavy axions produced by the Sun would remain trapped in its gravity well, and

accumulate until reaching densities high enough to observe their decays.

This chapter will first cover the theory behind KK axions, then move onto phe-

nomena that hint at their existence, and finally existing constraints on their nature.

2.1 Solar KK axions

In this section, I will briefly cover the theoretical background behind the axion, and

an extension to its “standard” description into Kaluza-Klein theories, based on [8]; a

very concise description of the solar KK axion model can also be found in [9].
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2.1.1 The PQ axion

The Peccei-Quinn (or Quantum Chromo-Dynamics) axion was first proposed to solve

the Strong CP problem (see App. A for some extra detail). Before introducing its

behaviour in Kaluza-Klein theories, we will quickly go over some of the properties of

the “standard” axion. First, looking only at the coupling of axions to photons, the

part of interest of the effective Lagrangian is:

La ⊃
1

2
(∂µa)2 − 1

2
m2
PQa

2 +
gaγγ

4
aF F̃ (2.1)

where a is the PQ axion field, F and F̃ are the electromagnetic field-strength

tensor and its dual, and

gaγγ =
ξαem
π

1

νPQ
(2.2)

is the effective axion-photon coupling, where νPQ is the breaking scale of the

U(1)PQ symmetry (also noted fPQ in the literature), and ξ = O(1) a multiplicative

factor that depends on the specific axion model. The mass of the axion, mPQ, is also

related to the breaking scale:

mPQ ∼
m2
π

νPQ
(2.3)

wheremπ ' 135 MeV is the pion mass. Astrophysical and cosmological constraints

(see Sec. 2.3) set bounds for the axion at 10−5 eV . mPQ . 10−2 eV. These values
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can be used to compute the lifetime of the QCD axion:

τ(a→ γγ) =
64π

g2
aγγm

3
PQ

∼ 1048 days · (10−15 GeV−1

gaγγ
)2(

10−5 eV

mPQ

)3 (2.4)

where gaγγ = 10−15 GeV−1, corresponding to mPQ = 10−5 eV, were used as the

reference points, leading to a decay time much larger than the age of the universe

TU ∼ 5 · 1012 days. This remains the case even for larger axion masses; even at the

already excluded mass value of mPQ = 10−1 eV, the axion lifetime is still Taua→γγ ∼

1027 days. Axion decay would remain undetectable, short of some prodigious source

of the particle1.

2.1.2 Extension in Kaluza-Klein theories

The properties of the PQ axion change in higher-dimensional theories of low-scale

quantum gravity. The gauge hierarchy problem between the gravitational scale and

the Planck scale could be explained if n extra compact dimensions through which

gravity, but not the particles from the Standard Model, can propagate. In that case,

the Planck scale MP is just an effective coupling, related to the scale of (4 = n)

dimensional gravity by:

M2
P = 4πRnM2+n

F

where R is the compactification radius of the extra dimensions. Singlet fields, such

as the axion, could also propagate through some or all of those additional dimensions.

We can introduce one such axion field a(xµ, y), which feels the presence of δ ≤ n

1For comparison, if all Dark Matter was composed of axions, and even in the very favourable
case of mPQ = 10−1 eV, a detector of 1 km3 would take ∼ 2e5 years to see a single decay. Current
experiments looking for axions as DM use other channels to detect them.
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dimensions, denoted by y = (y1, y2, . . . yδ). This field is then compactified on a Z2

orbifold with action y→ −y, giving rise to the KK decomposition:

a(xµ, y) =
∞∑
n=0

an(xµ) cos(
xy

R
) (2.5)

where n = (n1, n2, . . . nδ) is a δ-dimensional vector that labels the individual KK

excitations, and
∑∞

n=0 =
∑∞

n1=0

∑∞
n2=0 . . .

∑∞
nδ=0. Under this decomposition, the

effective Lagrangian becomes:

Leff =
1

2

∞∑
n=0

(∂µan)2 − 1

2
m2
PQa

2
0 −

1

2

∞∑
n=0

n2

R2
a2
n +

ξαem
π

∞∑
n=0

rnan
νPQ

FF̃ (2.6)

where νPQ denotes the original higher-dimensional PQ-breaking scale, νPQ =

(MF

MP
)δ/µνPQ

2, r0 = 1, and rn 6=0 =
√

2. From this effective Lagrangian, we read the

effective coupling of the KK axions to photons:

ganγγ =
rnξαem
π

1

νPQ
∼ gaγγ (2.7)

Since the correction between the PQ-photon coupling and the KK excitation-

photon coupling is constant and of order unity, we will just take them to be equal

for the sake of simplicity. The mass of the excitations, however, are considerably

different:

man ∼
n

R
� mPQ (2.8)

2This correction could explain the largeness of the observed symmetry-breaking scale [3], mo-
tivating the study of the non-trivial phenomenology of KK axions in contexts other than the one
covered in this work [4, 5].
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with n = |n| =
√
n2

1 + . . . n2
δ > 0. A tower of excitations, all evenly spaced in

mass by a factor of 1/R, appear. More importantly, the masses of the excitations are

much larger than the mass of the basic axion: while mPQ . 0.01 eV, for δ = 2 and

MF ∼ 100 TeV, one obtains 1/R ∼ 1 eV3. An even higher value of 1/R ∼ 10 eV can

be found for δ = 3 and MF ∼ 1 TeV4.

Then, going back to the original question of axion decays into two photons, we

get the following correction to the half-life of the KK axions:

τan→γγ = (
mPQ

man

)3τa0→γγ (2.9)

A single KK-axion with man = 10 keV, and for a coupling to photons of gaγγ =

10−11 GeV−1 (corresponding to an axion mass of mPQ = 10−1 eV) has a lifetime of

τ ∼ 1012 days, 15 orders of magnitude smaller than a PQ axion, and just under the

age of the Universe. This opens the possibility of looking for the signature of axions

through their decay into two photons5.
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Figure 2.1: Effective coupling of axions to photons. Left: Decay into two photons
(conversely, coalescence of two photons into an axion). Right: Primakoff
conversion to a photon in the presence of a magnetic field.

2.1.3 Production in the Sun

One potential source for these massive KK axions, of the order of ∼ 10 keV, is the

Sun. Axions can be created through a number of processes. The first one, and

the source of most PQ axions, is the Primakoff effect, γ + Ze → Ze + a, where a

thermal photon converts into an axion in the magnetic field of nucleons and electrons

of the solar plasma. The second one is the coalescence of photons into an axion,

γ + γ → a, the reverse of an axion decay. The third one, which dominates in axion

models where they couple to electrons at tree level, are the so-called ABC reactions

3In fact, since these higher mass modes are independent of the mass of the PQ axion, this
model works for any axion-like particle that propagates in the extra dimensions with the same
effective coupling to two photons and a mass much smaller than the inverse compactification radius.
However, since this distinction does not bring any actionable difference for this work, compared to
just considering the base state of the KK excitations as the PQ axion, we will continue to refer to
it as such to stay consistent with the phrasing in [6]

4The compactification radius of the extra dimensions depends both on the number of extra
dimensions n and the fundamental quantum-gravity scale MF . Assuming it is common to all the
extra dimensions, the relationship follows R ∼ 1032/n−12( 1 TeV

MF
)1+2/n eV−1 [5], with corrections of

order unity depending on the type of compactification.
5To compare with the previous axionic Dark Matter footnote, if DM was dominated by man =

10 keV KK axions (but keeping the same base mass mPQ = 10−1 eV for the standard axion as
before), a detector with a more reasonable size of 103 m3 would see on the order of one event per
year. Locally higher densities of KK axions would boost this even further.
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(Atomic recombination and deexcitation, Bremsstrahlung, and Compton); to avoid

introducing new coupling parameters into the solar KK axion scenario, we restrict

ourselves to hadronic axion models where there is no tree-level coupling with electrons

(e.g. the KSVZ model for the PQ axion). Diagrams for the first two processes can

be found in Fig. 2.1.

Reference [6] used a standard model of the Sun to predict its production of KK

axions through both processes. For Primakoff axions, they integrated over the black-

body photon flux inside the Sun, all target species, and all scattering angles, con-

sidering solar photons as massless; due to target nuclei being essentially at rest, the

conversion of photons into axions through what is essentially a “scattering” interac-

tion suppressed slow-moving axions. For axions produced through coalescence, an

approximate Maxwell-Boltzmann photon occupation number was used; while the ab-

solute number of axions generated this way is smaller than through Primakoff, it

becomes more important for heavier KK axion mode creation. The axion luminosity

of the Sun was found to be:

La = A · L� · (
gaγγ

10−10 GeV−1 )2(
R

1 keV−1 )δ (2.10)

where L� = 3.85 · 1033 erg/s is the standard solar luminosity, and A is a mul-

tiplicative factor that depends on the axion formation process and the number of

dimensions δ; some values for R ∼ 1 eV−1 are shown on Tab. 2.1. The Rδ term comes

from the density of axion modes, since they are separated by an energy of 1/R in

δ dimensions. Of note, additional exotic energy losses in the Sun would result in

increased consumption of nuclear fuel in its core, with a corresponding increase in

core temperature; we will get back to that point in Sec. 2.3.2.
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Figure 2.2: First few revolutions of trapped solar KK axions. The coordinates are
given in solar radii, with the shadowed region in the center outlining the
solar disk [6].
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Primakoff Coalescence Sum
δ = 1 0.015 0.0033 0.018
δ = 2 0.12 0.067 0.19
δ = 3 0.99 1.06 2.05

Table 2.1: Coefficients for A in equation 2.10 [8].

A crucial consequence of this model is the accumulation of long-lived, massive

axions in the vicinity of the Sun over its lifetime, up until reaching equilibrium with

their decays. Indeed, some proportion of heavy KK axions created in the Sun will

leave its surface with speeds under the escape velocity (see Fig. 2.3), and remain

trapped in closed orbits around the Sun (see examples in Fig. 2.2).

The simulation in [6] found that the proportion of trapped KK axions for R =

1 eV−1 and δ = 2 was ftrap = 5 · 10−11 for Primakoff axions, and ftrap = 9 · 10−8

for coalescence axions; the large difference between the proportion of trapped axions

between both processes means that the resulting KK axion population is dominated

by axions produced through coalescence of two photons in the Sun. The orbits of

trapped KK axions were tracked in the simulations to determine the accumulation of

axions at different distances from the Sun. A dependency on distance from the Sun

of 1/r4 was obtained [10].

Assuming a steady-state Sun throughout its lifetime, R = 1 eV−1 and δ = 2,

the density of trapped solar KK axions on Earth today, and by extension their decay

rates, are shown on Fig. 2.4j. For an axion density on Earth of na = 1.0 ·1014m−3, and

an axion-photon coupling of gaγγ = 1.0 ·10−13 GeV−1 (see next section for justification

of these magnitudes), we expect a rate of axion decays of ∼ 0.2evt/m3/day, mostly

in the 5− 15 keV range.

Note that, due to the solar axion luminosity varying as g2
aγγ as shown in Eq. 2.10,
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Figure 2.3: Velocity distribution for KK axions produced in the Sun via photon coa-
lescence. a) All axions (normalised to unity); b) gravitationally trapped
(normalized to ftrap). Note the different x scales for both plots [6].
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(a) KK axion density (b) KK axion decay rate

Figure 2.4: KK axions on Earth for na = 1.0 · 1014m−3 and gaγγ = 1.0 · 10−13 GeV−1.
Left: KK axion density. Right: KK axion decay rate [9].

the density of axions is expected to vary in the same way. And since the lifetime

of axions also depends on g2
aγγ, this means that, everything else being equal, the

expected decay rate of trapped axions on Earth should vary as g4
aγγ.

It should be emphasized that the model used assumed that electric charges in

the Sun are isolated, and that initial state photons are massless. These are incorrect

because the effective photon mass is given by plasma energy, which is ∼ 300 eV in

the Sun. A non-zero photon mass likely has an effect on simulation results; especially

for trapped axions, since they are produced with low velocities. In fact, [6] explicitly

states that their results may only be qualitatively correct, and insist on the importance

of more precise simulations. Even for a given R and δ, the proportion of trapped KK

axions, their mass distribution, and radial density of axions could all be affected by

the simplifying assumptions made.
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Figure 2.5: Temperature and density of the Sun surface and atmosphere [11]. The
jump to ∼ 5 ·105 keV above 2000 km is in apparent defiance of the second
law of thermodynamics .

2.2 Evidence for solar KK axion

We can now briefly describe some of the astrophysical observations that could be

explained by an accumulation of KK axions trapped around the Sun, based on [6].

2.2.1 Solar Corona hint

Corona heating problem

Solar X-rays reveal an unexpectedly high temperature for the solar corona, as shown

in Fig. 2.5. It is not well understood how it can be in equilibrium with the solar surface

underneath, almost 300 times cooler; this would violate thermodynamics, since the
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Figure 2.6: Energy flows to/from the corona (left), and two representative heating
mechanisms [13].

source of energy of the Sun are the nuclear reactions in its centre, so the temperature

should decrease with distance from its core. For the high temperature of the corona to

be maintained, some other form of energy must be dissipated in the upper atmosphere.

Since the amount required to compensate for thermal, radiative and convective losses

in the Corona accounts for around 0.01% of the total solar output, the Sun makes

for a likely source of that energy6. But while there are multiple processes that can

transfer energy away from below the surface and into the atmosphere, the mechanism

by which it is then dissipated thermally in the Corona remains an open question.

The leading categories rely on the shuffling of magnetic field lines in the Photo-

sphere interacting with the Corona, and are usually split in two, as shown in Fig. 2.6:

those where the Photosphere driver has time scales shorter than the Alfven transit

time in the Corona (“AC”), and those for which they are longer (“DC”) [12–17].

� AC motions generate both magnetohydrodynamic (MHD) and acoustic waves.

Alfven waves in particular do not reflect or refract at the Transition Region

6More precisely, likely from the magneto-convective motions at and under the Photosphere[12].
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between the Corona and the Chromosphere, and their nominally weak damping

in the Corona could be boosted through resonant absorption or phase mixing.

� The DC mechanisms involve magnetic tensions building gradually between

highly localised magnetic current sheets, releasing their energy explosively through

magnetic reconnection between field lines in opposite directions, in what are

usually called micro or nanoflares. A sufficiently high rate of these events could

explain the coronal heating.

Ultimately, the Solar Corona heating problem involves physics at multiple levels

and scales. It is not enough to know the energy source and its conversion mechanism,

but also how the solar plasma responds to the additional heating, and how that affects

the emitted radiation from the Sun and hence the actual observables [12]. While the

different hypotheses put forward could all be part of the solution, or even be the

solution to the problem, due to the complexity of the system there is currently no

confirmation of any of their contributions. Current observational capabilities cannot

detect any heating mechanism at work, and computational resources cannot complete

simulations covering all scales of their effects7 [12, 14, 15].

KK axion solution

An alternative explanation appears by analogy with the behaviour of Earth’s atmo-

sphere, as shown in Fig. 2.7. While the Earth’s atmosphere is relatively transparent

to visible and near-IR radiation above 310 nm, allowing ∼ 99 % of the Sun’s energy

to penetrate below 15 km, the remaining 1% of UV, EUV and X-ray radiation control

7It is also unclear whether they can explain the narrow width of the Transition Region between
the Chromosphere and the Corona. I could not find an answer one way or another in the literature.
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Figure 2.7: Left: Altitude at which the Earth’s atmosphere attenuates incident radi-
ation from the Sun by a factor e, depending on wavelength. Right: Tem-
perature and density of Earth’s atmosphere [11]. The similarities between
the temperature of the solar and Earth atmosphere suggest the behaviour
of the Solar Corona could be explained by an external irradiation source
[6].

the overall thermal profile of the atmosphere above that height. In particular, all

primary atmospheric gases (N2, O2 and O) present in the upper atmosphere absorb

radiation at wavelengths shorter than 100 nm, providing a way for solar radiation to

dissipate in the thermosphere, heating it to more than 1000 K without impacting the

lower atmosphere [11].

Given the similar temperature and pressure profile for the Sun’s atmosphere, an

external irradiation source appears as a possible natural explanation for the Solar

Corona heating problem. The source of this irradiation could be the Sun itself,
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through the decay of the gravitationally trapped KK axions mentioned in the previous

section. Radiation in the ∼ keV range and below would be absorbed by the solar

corona and the transition region, explaining the abnormally high temperatures there.

Radiation with higher energies could in turn explain the slow increase in temperature

with altitude of the chromosphere.

The value of gaγγ is chosen so that the combined X-ray luminosity from decays

of trapped KK axions matches the experimentally reconstructed one of L2−8keV
x ∼

1023 erg/s. This procedure gives gaγγ = 9.2 · 20−14 GeV−1, and a density on Earth of

na = 4.0 · 1013m−3 KK axions. This in turn gives a cross section via Primakoff under

∼ 10−54 cm2, for which the mean free path is much larger than the total flight path

of the axion even for the age of the Universe, so the fact that it spends part of its

orbit in the Sun does not affect the final density of trapped axions.

While the total irradiation can be reproduced that way, the reconstructed solar

x-ray spectrum contains a strong component below ∼ 1 keV, which is not reproduced

by the spectrum of trapped KK axions, mainly between 5 and 15 keV. This could

potentially be explained by the processing of part of the ∼ 10 keV photons into

photons of lower energies in the outer parts of the Corona.

2.2.2 Other

[6] mentions other phenomena that could be explained by an accumulation of massive

axions, although not all are necessarily consistent with each other. We describe here

one more such hint for KK axions.

Another hint of solar KK axions comes from he ROSAT X-ray telescope. Aimed at

the Moon, it observed X-rays coming from its dark side (see Fig. 2.8), primarily under
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(a)

Figure 2.8: X-ray photon image of the Moon as measured by ROSAT. The sunlit
portion of the Moon is clearly visible, and conversely the shadowed region
is blocking the diffuse X-Ray Background Radiation [18].

2 keV. Their intensity was around 1% of those from the sunlit side of the Moon, and

30% compared to the X-Ray Background Radiation [18]. This is roughly 10 times

higher than expected from either interaction of the solar wind with the Moon, or

lunar X-ray fluorescence.

To produce this observation, trapped axions would have to decay at a rate of

∼ 200 evt/day/m3 under 2 keV, and∼ 2 evt/day/m3 above. This is apparently incom-

patible with the Solar Corona hint, since that predicts a rate of only∼ 0.08 evt/day/m3,

primarily in the 2−5 keV. With this number of decays on Earth, the total irradiation

of the Sun from trapped KK axions would be orders of magnitude above the apparent

one. Conversely, for the axion density that would match the solar irradiation, the

density of axions on Earth would not be large enough to explain the X-rays from

the dark side of the Moon above 2 keV, and even less for lower energies. Both could
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potentially be explained at once if the radial density of axions decreased slower than

1/r4 with distance from the Sun.

This additional, if incompatible, hint for trapped solar KK axions is only men-

tioned to remark on the existence of multiple such phenomena. Even if the region

of the parameter space suggested by the solar corona hint was ruled out, empirically

or theoretically, other regions might replace it. Reference [6] suggests multiple other

hints. In the rest of this work, only the axion density and axion-photon coupling

suggested by the Solar Corona problem will be considered.

2.3 Derived constraints

The search for the axion and axion-like particles (ALPs) is a very active field, with

many different approaches brought to bear at the problem, as can be seen in Fig. 2.9.

However, not all constraints on ALPs are directly applicable to the KK axion model

discussed in this work.

Since many of these methods are looking for a single mode of the axion at low

energies (< 1 eV), they are insensitive to the excited modes of the axion postulated by

this model. Any constraint on gaγγ they set would only be applicable if it constrains

all possible values for mPQ mode, since the accumulated density of solar KK axions

is composed only of KK modes, largely independent of its value.

A complete review of all ALP constraints as they apply to the solar KK axion

model is beyond the scope of this work. A qualitative “translation” to our model will

be offered for those most relevant to this study, based on the most recent Particle Data

Group (PDG) review [2]. A more in-depth review from someone with the required

expertise, especially for cosmological and astrophysical constraints, is sorely needed.
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Figure 2.9: Exclusion limits on gaγγ and ma for non-KK axion-like particles. Plot
and references can be found in [19]. Red exclusion limits are derived from
“experiments”, green from astronomical sources, and blue are cosmologi-
cal.

2.3.1 Cosmological constraints

Cosmological constraints are due to the consequences of axion production (either

through thermal or non-thermal processes) in the early Universe.

Relativistic axions produced thermally increase the amount of radiation in the

Universe, modifying the Cosmic Microwave Background’s (CMB) temperature an-

gular power spectrum. Once non-relativistic, they contribute to Hot Dark Matter

(along with massive neutrinos), suppressing low-scale structure formation and leav-

ing an imprint on CMB anisotropies. Combining measurements of CMB anisotropies,
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Halo Power Spectrum, and Hubble constant from various sources, an upper bound

is set for the PQ axion at mPQ . 0.5 eV [20]. It should be noted that the axion

contribution is degenerate with that from neutrinos to Hot Dark Matter, so the exact

value of the limit depends on the model used.

Conversely, axion production through non-thermal processes produces a lower

bound on mPQ instead: low-mass PQ axions (and hence with weak couplings to

photons) would bring about an over-abundance of axions as Cold Dark Matter. While

their exact relic density depends on whether the PQ symmetry was broken before or

after inflation, and is subject to large uncertainties 8, a minimum mass of ∼ 6µeV is

offered in the PDG review.

Both thermal and non-thermal production of PQ axions set limits on the possible

values of mPQ. However, since the KK axion model is relatively insensitive to mPQ,

they do not constrain it. The only way in which mPQ is directly involved in the model

is in the assumption that mPQ � 1/R; an upper bound of mPQ . 0.5 eV is reassuring

in that sense.

On the other hand, the cosmological bounds become more complex when consid-

ering general ALPs, instead of only the PQ axion. In particular, masses above 154 eV

for the ALP would generate a thermal relic in overabundance compared to Dark Mat-

ter, while ALPS with a decay time smaller than 1020 days would generate a photon

background incompatible with the Extragalactic Background Light (EBL), among

many others [21]. The KK axion model produces examples of both. It is entirely

unclear how the introduction of a tower of excitations evenly spaced in mass, rather

8For PQ symmetry breaking before inflation, the relic density is proportional to the arbitrary
misalignment angle in the Vacuum Realignment mechanism; for after inflation, the decay of cosmic
strings and domain walls introduces further populations of DM axions, themselves suffering from
significant uncertainties too.
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than a single particle with a discrete mass, changes the limits from these sources.

2.3.2 Astrophysical constraints

Low mass particles are produced in the hot plasma of stars, and can contribute to

their total energy loss. The solar KK axion model introduces new such particles,

boosting the energy loss of stars by the total axion luminosity. This would have to be

matched by additional consumption of nuclear fuel in the core of the star, increasing

its temperature and shortening its lifetime.

In the case of the Sun, any exotic energy losses are constrained by helioseismol-

ogy [22] and measurement of the core temperature through solar neutrino flux [23]:

Lexotic < 0.2L� at 2σ. Translated to the solar KK axion model, this sets an upper

bound of gaγγ < 10−13 GeV−1 for δ = n = 2, MF = 100 TeV, and R = 1 eV−1,

based on E. 2.10; the much stronger constraint than for the standard PQ axion

(gaγγ < 10−9 GeV−1) is due to the increased energy loss from all the additional KK

modes.

This constraint is in tension with the preferred axion-photon coupling of gaγγ ∼

9.2−14 GeV−1. For the most part, the tension cannot be relaxed by changing the size

of the additional dimensions nor their number. While that could decrease the total

KK axion luminosity, it would also decrease the density of trapped axions by the same

factor. So to solve the Solar Corona problem, a higher axion-photon coupling would be

necessary, hence restoring this tension. On the other hand, if the assumptions noted in

Sec. 2.1.3 are such that the proportion of trapped KK axions was underestimated, then

a lower axion-photon coupling would be enough to solve the Solar Corona problem,

weakening this tension. In the absence of a more precise model for solar KK axions
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that would allow to resolve this tension one way or the other, direct detection of these

particles remain the only way to conclude.

Constraints also exist based on stars other than the Sun. In particular, the life-

times of stars in the Horizontal Branch (HB) of Galactic Globular Cluster (and in

turn their ratio over stars in the Red Giant Branch (RGB)) would decrease due to

the additional energy losses from axions as ∼ L/(L + La), where L is their visible

luminosity, and La their axion luminosity. For ALPs, this provides the strongest limit

on axion-photon coupling for a wide range of masses, at gaγγ < 6.6 ·10−11 GeV−1 [24].

It seems reasonable that it would also provide stronger limits for the KK axion model

than those derived from the Sun. Unfortunately, their KK axion luminosity is not

trivial to compute, since it depends on their internal structure. This work has not

been performed, so there are currently no constraints based on HB star lifetimes,

beyond the overly conservative limit from PQ axion production alone.

2.3.3 Laboratory searches

Light-shining-through-wall experiments

Light-Shining-Through-Wall (also known as “beam dump”) experiments, use a laser

in a transverse magnetic field to induce photon-axion oscillations through a photon

barrier. A first dipole magnet induces conversion of photons into axions before reach-

ing the photon barrier, while a second one placed after the photon barrier induces

photon regeneration from the axion flux. By examining the photon flux after the

barrier, or lack thereof, limits on sub-eV ALPs can be set.

At time of writing, leading constraints come from OSQAR, with gaγγ . 3 ·

10−8 GeV−1 for ma < 0.3 · 10−3 eV [25]. This approach has the advantage to be
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independent from the chosen axion model, and in particular independent from our

knowledge of astrophysical sources of axions, since they are generated in the labora-

tory itself. Unfortunately, it does not set strong enough constraints to be of much

interest for solar KK axion searches.

Helioscopes

Helioscopes aim at detecting the flux of PQ axions created by the Sun. A dipole

magnet is aimed at the Sun, using a dipole magnet to convert axions to X-rays

by Primakoff effect. CAST has set the most stringent limits with this method, with

gaγγ < 0.66·10−10 GeV−1 for ma < 0.02 eV, and gaγγ . 2·10−10 GeV−1 for ma < 0.5 eV

[26].

Since the solar KK axion model does not have any effect on the flux of PQ axions

generated by the Sun, only adding onto it a flux of heavier modes, limits on gaγγ

based on it remain valid. Notably, since the flux of PQ axions does not depend on the

number of extra dimensions δ or their compactification radius R (unlike constraints

based on star energy losses), this limit on gaγγ remains constant for all KK axion

models. Since we are assuming mPQ � 1 eV, we will use the limit for ma < 0.02 eV.

Annual modulation (XMASS)

XMASS is a large-volume liquid xenon scintillation detector located 1000 m (2700 m

water equivalent) underground at the Kamioka Observatory in Japan. With a sensi-

tive volume of 0.288 m3 of liquid xenon, it accumulated data for over a year.
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XMASS is currently the only pre-existing experiment that explicitly targeted so-

lar KK axions. While it cannot distinguish axion decays from other electronic in-

teractions directly, they exploited the seasonal component of the rate of KK ax-

ion decays. Indeed, since the density of trapped axions na varies as 1/r4 with

distance from the Sun, their decay rate should experience an annual modulation

as the Earth moves between its perihelion (where na = 4.36 · 1013 m−3) and aphe-

lion (where na = 3.81 · 1013 m−3). The absence of modulation in the event rate in

the detector allowed them to set an upper bound on the axion-photon coupling of

gaγγ < 4.8 · 10−12 GeV−1 for an average density on Earth of na = 4.07 · 1013 m−3 [10].

A note on Haloscopes

One of the arguments in favour of the existence of the axion is that for some values of

the symmetry breaking scale νPQ, the axion is a candidate for the Dark Matter of the

universe. Haloscopes work on the assumption that the local density of Dark Matter,

ρDM ∼ 0.3 GeV/cm3, is entirely composed of axions. A microwave resonant cavity

inside a magnetic field is used to convert axion into photons through the Primakoff

effect9. The power generated by the resulting microwave photons is extremely low, of

the order of ∼ 10−23 W, requiring cryogenic systems and ultra low noise microwave

receivers to detect them. ADMX is the leading haloscope in terms of sensitivity,

setting limits of gaγγ < 4 · 10−16 GeV−1 for mPQ ∼ 3µeV [27], lower than any other

detector at time of writing.

However, these constraints are not relevant for the solar KK axion model, due to

its very restricted mass ranges: KK axions are essentially independent of the mass of

9The resonant frequency of the cavity has to be tuned to convert axions of a specific mass,
meaning haloscopes are only sensitive to relatively short mass ranges.
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their base state, to which existing haloscopes might not be sensitive. Furthermore,

even if mPQ ∼ 3µeV was indeed the case, it might still not be the case that it

composes the majority of Dark Matter. The axion relic density could be much lower,

in which the constraints from haloscopes would be artificially stronger than they

should be.

2.3.4 Compiled constraints

The applicable constraints described in the previous sections are compiled in Fig. 2.10,

in terms of axion-photon coupling strength gaγγ and KK axion density on Earth na.

The prediction from the solar KK axion model, and the Solar Corona hint, are also

shown; the preferred region is the intersection between both.

The strongest constraint is the one from the limit on exotic energy losses in the

Sun derived from the Sun core temperature from SNO [23], with strong tension on

the KK axion model as predicted by the Solar Corona hint. However, as noted in

Sec. 2.1.3, the assumptions on the solar production of KK axions mean that this model

remains only qualitative. In particular, if the fraction of trapped axions produced by

the Sun is larger than expected, this would allow a similar density of axions to be

generated with a smaller solar axion luminosity, weakening this tension.

Since the Solar Corona hint is based on the rate and energy of decays coming

from an accumulation of massive axions around the Sun (and, consequently, Earth),

adapted experiments should be looking for a signal coming from this same source.

For some constraints derived from other types of observations, a more precise model

is required to be certain of their translation into the gaγγ−na parameter space shown

in Fig. 2.10.
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Figure 2.10: Exclusion limits on gaγγ and na for the solar KK axion model. The
exclusion limit from CAST [10] is the only one completely independent
from any additional parameters in this model. The Solar Corona hint [6]
and the exclusion limit from XMASS [10] depend on the mass distribu-
tion of trapped KK axions close to the Sun and to Earth, respectively.
The constraint from the solar neutrino flux depends on the nature of the
extra dimensions, but not on the fraction or distribution of trapped KK
axions [6, 23]. The relationship between gaγγ and na described in the
solar KK axion model is the only one that depends on all these factors.
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Summary

In this section, we have introduced KK axions, excited modes of the standard axion

reaching masses of up to ∼ 10 keV. In this model, the Sun produces heavy axions with

speeds too low to escape its gravity well, which accumulate throughout the history

of the Solar System. The decay of trapped KK axions would provide an external

irradiation for the Sun. This would solve the Solar Corona problem (i.e. why the

solar atmosphere is hotter than the Sun’s surface) if the axion-photon coupling is

gaγγ = 9.2 · 20−14 GeV−1; for such a coupling, the predicted axion density on Earth is

of na = 4.0·1013m−3 KK axions, for a total decay rate on Earth of ∼ 0.08 evt/m3/day,

mainly in the 5− 15 keV range.

From the reviewed constraints on standard axions and axion-like particles, the

largest tension with this model comes from the constraint on exotic energy losses of

the Sun, at La < 0.1 ·L�. An update to the model would likely be able to weaken this

tension. Instead, it is useful to attempt to detect the accumulated axions themselves.

Their decay into two photons of same energy should provide a distinctive signal,

specifically in low-density detectors, as we will see in the next chapter.
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Chapter 3

NEWS-G detectors

In this chapter, we will be covering the technology behind NEWS-G detectors, Spher-

ical Proportional Counters (SPCs). We will start with a description of the working

principle of particle detection with SPCs, then move on to the theory of signal forma-

tion within the detector (which will be important when discussing pulse processing in

the next chapter), and finally the specifics of the most relevant SPCs in the context

of this thesis.

3.1 Introduction to Gaseous Detectors

In the context of particle physics, a gas detector is a volume of gas contained between

conductors, where usually the anode consists of one (or more) thin wire(s) kept at high

voltage, and the signal recorded depends on the charge reaching the anode. While

many types of gas detectors have been developed since the invention of Multi-Wire

Proportional Chambers by G. Charpak in 1968 (for which he was awarded the Nobel

prize in 1992), the principle remains fairly constant among all them.

First, an incident particle interacts with the gas in the detector, exciting some
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atoms. Depending on the particle and the gas, the excitation energy will dissipate as

radiation, heat, or will ionize the gas, releasing electrons. For any incident particle,

its quenching factor Q will be the ratio between the mean ionization energy for an

electronic recoil and that for the incident particle considered1. With this definition, an

incident electron will have a quenching factor close to one, while incident nucleons will

have a lower quenching factor, with the precise value depending on the exact incident

particle, its energy, and the type of gas. However, for a given type of interaction,

generally the ionization energy will be proportional to the total energy deposited, so

the former can be a good estimation of the latter.

Second, due to the electric field in the detector, the electrons released in the first

step (referred to as “primary electrons”) will drift towards the anode2. Depending

on the configuration of the gas detector, it might be possible to estimate the time

the primary electrons take to reach the electrode, which in turn can be a way to

determine the position of the event.

Finally, when the primary electrons reach the region close to the anode, the intense

field surrounding it will create an avalanche: the kinetic energy gained by an electron

between two collisions is larger than the ionization energy of the gas atoms, so, one

electron releases another, then they release two more, then four, etc., in such a way

that a single primary electron can release thousands or more of secondary charges.

Depending on the strength of the electric field, this charge multiplication process can

be kept in proportional mode, so that the collected charge remains proportional to

1For various reasons, different experiments choose different definitions for the numerical value of
the quenching factor, but the central concept remains the same.

2The primary ions will in turn drift towards the cathode, but they produce no discernible signal.
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the initial energy 3. Because of this multiplication process, we can observe events

that would be too faint to observe otherwise.

For an in-depth overview of the technology, [28] cannot be recommended enough.

A shorter and less recent (but still fairly comprehensive) set of lectures can also be

found online [29].

3.2 Spherical proportional counter

A new development in the world of gas detectors is the Spherical Proportional Counter

(SPC, initially proposed by I. Giomataris [7]), which will allow the exploration of lower

energy ranges probed by particle detectors. The following sections on the SPC are

based on the thesis by A. Dastgheibi Fard [30].

While the coming sections are meant to be generally applicable to all of our

detectors, sometimes numerical values are needed. The SEDINE SPC, on which the

results of this thesis were based, will be used as the reference point in those cases;

that specific detector is introduced properly in Sec. 3.3.

3.2.1 Description

The SPC is extremely simple in principle, as seen in Fig. 3.1. It consists of a grounded

large metallic sphere (from 0.3 m to 1.3 m in diameter) and a small ball or sensor (from

1 mm to 16 mm in diameter) kept at a high voltage (around 1000 − 2500 V) located

at the centre of the vessel, forming a proportional counter. The sensor is maintained

at the centre of the sphere by a grounded metallic rod, carrying inside a wire to feed

3This is not true of all gas detectors. For example, the Geiger-Muller tube is a gas detector where
the high electric field saturates the avalanche. Its objective is to measure the rate of background
radiation, rather than its energy.
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Figure 3.1: Working principle (left side), with electric field lines (right side) [31].
1: Ionization by incident particle. 2: Primary electrons drift to central
electrode. 3: Charge multiplication in the avalanche region. 4: Secondary
ions drift away from central electrode, inducing a current. This current
is then integrated by a charge counter, forming our final signal.
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Figure 3.2: Electric field lines for an SPC with a simple electrode.

the high voltage to the sensor. Setting aside the effect of the rod for the time being4,

the electric field varies as 1/r2; this allows electrons to drift to the central sensor

in the low field regions that constitute most of the volume, while still triggering an

avalanche within a few mm around the sensor. The charges created in the avalanche

region will generate an electric current as they drift, a process described in detail in

App. 3.2.3.

Unfortunately, the presence of the rod alters the electric field inside the detector,

as show on Fig. 3.2. To help solve this problem, some of the rods include a second

electrode close to the sensor. The shape and voltage of this second electrode, which

4The effect of the rod on the electric field inside the SPC will be covered in more detail in Sec. 5.4.
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(a) Early sensor with umbrella (b) Sensor with bakelite umbrella

Figure 3.3: Two different versions of SPC sensor with secondary umbrella electrode.

we call the “umbrella” (cf. Fig. 3.3), depend on the goal of the data-taking. With

the right setup, we can either get the electric field to keep its spherical symmetry

in most of the volume of the detector, or instead redirect all the primary electrons

to the SPC hemisphere farther away from the rod, lowering the dependency of the

avalanche gain on the direction the primary electrons come from5.

For the proper functioning of the detector, we also require:

� A pumping and gas handling system.

� A high voltage feed.

� Electronics (amplifiers, filters, etc.) to record the signal coming from the sensor.

� An acquisition and/or analysis system (digitizer, computer).

Aside from the electronics (cf. App. B for how they were calibrated), I will not

5The development of SPC sensors is a topic of active research and development within the collab-
oration. For an overview of the most recent work done on sensors, see [32–34]; for a more in-depth
look at the advantages of sensors with umbrella, see [35]. In this thesis, sensors will only be covered
from the point of view of electric field simulations; see Sec. 5.4 for simple and umbrella sensors, and
App. J for grid and achinos sensors.
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cover the details of these in this document. They are still essential components to

keep the detector working as intended.

3.2.2 Particle interaction within the SPC

For all possible incident particles, the different ways in which they can interact with

the SPC are the following:

� Charged particles, mainly electrons and alphas. They can either:

- create ion-electron pairs through interaction with the electronic cloud of an

atom.

- excite an atom, which releases a photon. While the photon will generally be

less energetic than the ionization energy of the atom, if there are a mixture of

gases in the detector, the photon might still lead to ionization if it interacts

with an atom with lower ionization energy. This is called the Penning effect,

and in our detectors will depend on the percentage of CH4 in the gas mixture.

- release Bremsstrahlung radiation through interaction with the electric field.

In particular, α or β radiation can produce a γ background by interacting with

the copper or lead that shields the detector.

- scatter against a particle in the target gas. In the case of heavier charged

particles, such as ions, the resulting ionization will be quenched.

� Photons. They can interact either through:

- Photoelectric effect. The photon is entirely absorbed by an atom. The exci-

tation energy is then dissipated either by emission of an electron or radiation.

For photons with less than 10 keV in Neon, this is the main interaction.
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- Compton effect. The photon interacts with a free (or quasi-free) electron with-

out being fully absorbed, transforming some of its energy into kinetic energy.

Becomes predominant in Neon for photons with more than 20 keV.

- Electron-Positron creation. The photon annihilates, producing the pair of

particles. This interaction requires at least ∼ 1MeV, and will remain pretty

rare for the energy levels we are interested in.

� Neutral Particles. In the case of neutrons, they can scatter against a particle

in the target gas through the Strong interaction, mediated by a pion exchange.

Recoils produced by more exotic neutral particles, such as WIMPs, would likely

involve either the Weak interaction, or entirely new forces. Since these events

leave their energy primarily in the nucleus, they are always quenched.

3.2.3 Pulse formation

During the avalanche, a large number of electron-ion pairs are created very close to

the central electrode of an SPC. As these move away from their starting point, the

charge they induce on the electrode changes (per the Shockley-Ramo theorem [36]),

which gets integrated by the preamp, and a pulse forms on the digitizer. The bulk of

that pulse is generated by the ions, as they drift through the large potential difference

between the central electrode and the shell of the detector.

For an ideal spherically symmetric detector (i.e., with no rod), with detector radius

r1, electrode radius r2, applied voltage V0, gas pressure P , and ion mobility in the

gas mu0, the current induced by the drifting ions on the electrode is (cf. App. C):

Iind(t) = −qionsαρ(r3
2 + 3αt)

−4
3 (3.1)
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Figure 3.4: Theoretical output voltage from the preamplifier for an avalanche that
creates 1000 electron-ion pairs at time 48µs, assuming SEDINE-like con-
ditions.

where α = µ0
V0
P
ρ, rho r2, and qions is the total charge from the secondary ions.

The ions drift for a total time of tmax =
r31−r32

3α
, which is usually in the range 1 −

50 s, increasing with detector size. This current is then convolved with the response

function of the preamp:

f(t) = Gpreampe
−t/τ (3.2)

where Gpreamp is the gain of the preamp (in V/C) and τ is its decaytime. The

combined pulse shape is shown in Fig. 3.4.
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The reason why understanding the signal formation is important is because, if we

know what a single ion looks like in our detector, we can extract the actual physical

parameters we are interested in from the pulses we record, as will be discussed in

chapter 4.

Furthermore, because we are usually interested in relatively low energy events, a

few extra statistical considerations have to be taken into account to understand the

signal formation inside the SPC. First, the number of primary electrons released is not

deterministic, but rather follows a Poisson distribution with mean np = EI/WI .EI is

the proportion of the recoil energy that appears as ionization energy in our detector,

EI = Q · ER. For a nuclear recoil, we typically have Q ∼ 0.2 − 0.7, depending

on the energy of the incoming particle. WI is the mean ionization energy of the

target gas, i.e., the average energy required to extract an electron from an atom.

Second, the avalanche isn’t deterministic either. The exact process of the avalanche

is complex, and complicated by the non-uniform electric field, but assuming that

photoelectric and charge accumulation effects are negligible, the gain distribution

can be parametrized by a Polya distribution [37], as plotted in Fig. 3.3,

P (ν) =
(1 + θ)1+θ

Γ(1 + θ)
(ν)θexp(−(1 + θ)ν) (3.3)

where ν = n
n

is the ratio between the number of secondary charges created and

the average avalanche gain, and θ is a form factor for the distribution. Calibrations

have led to values of the order of a few thousands for n (highly variable depending

on running conditions), and θ < 0.1 for our spherical detector [38].
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Figure 3.5: Gain distribution, i.e., number of secondary electrons created per primary
electron. This is a parametrization of the actual, unknown distribution.

3.2.4 Event discrimination

An important specificity of our detector comes from the analysis of the shape of our

pulses; more concretely, their risetime, which we define as the time between the point

where the pulse reaches 10% and 90% of its amplitude6. Through the analysis of the

risetime, we can determine the position of the event in our detector, and separate

pointlike events from tracks.

For pointlike events, all the electron-ion pairs are created in the same spot of the

detector. The electrons will drift towards the electrode, but as they do, they will

diffuse, and so they will not reach it at the same time. While we are not directly

6Generally, since we expect a roughly gaussian-like distribution in the arrival time of primary
electrons, a wider range (e.g. 5% to 95%) will tend to improve the discrimination power of the
risetime metric, while a narrower one (e.g. 25% to 75%) will improve its robustness against baseline
noise. 10% to 90% was chosen as a reasonable compromise between both effects.
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Figure 3.6: Risetime vs Amplitude of the signal for a 200 mbar Ar + CH4 (2%) +
3He (0.4%) gas mixture. The horizontal line at 27µs corresponds to sur-
face events. [30]

sensitive to the drift time itself (since we don’t know when exactly the event happens),

the larger the “spread” in arrival time, the wider the pulse will be, and the longer the

risetime we record. And since the longer the drift time, the more the electrons will be

subject to diffusion, we conclude that the risetime is related to the drift distance. As

such, we can use our measure of the risetime to discriminate events happening closer

to the electrode than to the outer surface of the detector.

For track events, the behaviour is different. Charged particles do not leave energy

in a single spot, but instead interact with the target mass all throughout their near-

instant trajectory through the detector. In effect, the risetime is no longer dominated

by the diffusion time at any single point, but instead by the difference in drift time

between the parts of the track that are respectively closer to and farther from the
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electrode. So track events will have a longer risetime than pointlike events.

Fig. 3.6 is useful to understand how different type of events relate to our measure

of the risetime. This data was taken with a 200 mbar Ar + CH4 (2%) + 3He (0.4%)

gas mixture. The two main backgrounds we see are α particles released from the

surface of our detector (amplitude of ∼ 2400 ADU7), and neutron capture by 3He

(amplitude of ∼ 450 ADU). The different cases are:

a) The α particle is emitted radially. The difference in drift time between the

start and end points of the track is longer, and we record a longer risetime.

b) The α particle is emitted obliquely. The difference in drift time between the

start and end points of the track is shorter than before, even though the itself track

is just as long.

c) The α particle is emitted nearly tangentially. The difference in drift time

between the start and end points is negligible, and the diffusion time dominates

again. The risetime is roughly the same than for surface pointlike events.

d) The α particle is emitted tangentially, and leaves the detector before deposit-

ing all its energy. The risetime remains the same as in the previous case, but the

amplitude is lower.

m) The neutron capture happens close to the electrode. The released electrons

don’t have much time to diffuse before reaching the electrode, and we record a very

short risetime.

n) The neutron capture happens far away from the electrode. The electrons have

more time to diffuse, and we record a longer risetime.

7Analog-to-Digital Unit, the unit of the acquisition system.
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3.2.5 Advantages and drawbacks

Now that we have properly described the functioning of the SPC, we note that the

advantages of this type of detector over others used for rare event searches are:

� Simplicity. The physics of the detector are easy to understand, so adapting

simulation and analysis to new conditions is practical.

� Sensitivity to low energy events, down to single electron (∼ 10 eV). This is

in part due to a very low electronic noise due to the low capacitance of the

detector, C < 1pF, which is mostly independent of its size.

� Surface and track-like event discrimination via risetime cutoff.

� Flexibility in the target. By changing the gas type and pressure, we can change

the sensitivity of the detector to different incident particles. For KK axion

searches, gas and pressure can be chosen to optimize photon capture and sepa-

rability.

The last point should be emphasized. Due to the target mass inside the detector

being a gas, the photons from the decay of a KK axion will interact in two separate

locations. This allows for excellent background rejection, by keeping only events with

two pulses. A detector with a liquid or solid target mass would absorb both photons

at the location of the decay, negating this advantage.

Its main disadvantages are the relatively small target mass of gas detectors, and

the lack of a second channel that would allow discrimination of electronic from nu-

clear recoils. The first disadvantage is not a problem for KK axion searches, since

the detection rate depends only on the volume, not the target mass; however, it is
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a problem for WIMP direct detection searches. The second disadvantage remains

valid: an additional readout channel could potentially help rejecting some forms of

background, such as neutron captures.

3.3 SEDINE

SEDINE is the long-running SPC installed at the Laboratoire Souterrain de Modane

(LSM) in France [39]. The data taken by this SPC detector was the basis for all my

analysis. I will now provide a quick overview of the more concrete practical aspects

of SEDINE, but more details can be found in [30, 35, 40, 41].

3.3.1 Setup

The sphere, rod and electrode are made of electropure copper (98% of the total

composition of the detector). The sphere has an inner radius of 30 cm. It is connected

to the outside of the shielding via an S-shaped copper tube which serves both to

connect the electrode to the high voltage source, and the inner volume to the gas

handling system. See Fig. 3.7.

The sphere is filled with a gas mixture, usually 98 − 99.3 % noble gas (Argon,

Neon or Helium) with a purity < 1 ppm, and 0.7−2 % of CH4 with a purity < 5 ppm.

The role of the CH4 is to serve as a quencher gas, i.e., a gas that can absorb radiation

and release its energy through other channels (like vibration or molecule breakdown),

slowing down the avalanche process so as to stay in the proportional regime. To

maximize exposure for rare event searches 8, the detector was kept at as high a

8The main goal of the NEWS-G collaboration being to detect low-mass WIMPS (see [42] for first
results), we need as much target mass as possible to increase the interaction rate, hence the high
pressures. This is of course irrelevant for solar KK axion searches, since we are looking for particle
decays, rather than interactions.
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Figure 3.7: SEDINE. The S-shaped tube connects the sphere with the outside of its
shielding [30].

pressure as possible, up to 3 + bar. In turn, to keep a signal amplification in the

order of a few thousands, the central electrode had a high voltage in the ∼ 2500 V

applied on it.

Another crucial part of the detector is its protection against natural radioactivity

(see Sec. 3.3.2 for details on its sources). Three layers of shielding protect SEDINE,

as shown in Fig. 3.8:

� The first, outer layer is composed of polyethylene (C2H4)n bricks, 30 cm wide.

It thermalizes the neutrons coming from the rock inside the LSM. Neutrons at

LSM come mostly from cosmic muons interacting with the walls of the lab, or

from spontaneous fission or (α, n) reaction by 238U and 232Th in the rock. The

polyethylene also blocks part of the ambient γ radiation.

� The second layer is composed of lead bricks, 10 cm wide. Its purpose is to stop

the ambient γ radiation coming from the Uranium, Thorium and Potassium in

the rock walls and the concrete covering them. Together with the polyethylene
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Figure 3.8: Shielding of SEDINE at LSM. The sphere is placed within the copper and
lead castle [30].

shield, it stops all γ rays, aside from those coming from 208Tl and 40K.

� The third, inner layer is composed of copper sheets, 5 cm wide. It was added to

stop the radiation coming from the lead shielding, namely γ rays from 210Pb,

and electrons generated via Bremsstrahlung by 210Bi.

Finally, the detector was installed in the previously mentioned Laboratoire Souter-

rain de Modane, in the border between France and Italy, under the Frejus mountain.

The large rock overhead protects against cosmic rays: high energy particles com-

ing from space that create a shower of secondary particles when they interact with

Earth’s atmosphere. At ground level, this mostly manifests as a high rate of so-called

“cosmic muons”. Their energy is too high to be stopped by regular shields, so the

only protection against them is to place our detector underground. Fig. 3.9 shows a

comparison of the muon rate at different underground laboratories.
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Figure 3.9: Muon flux in different laboratories, depending on their depth. LSM is at
Modane, SNOLAB is at Sudbury. [30]

3.3.2 Backgrounds

Sources

Background radiation is a limiting factor for all rare event detection experiments.

Because we are looking for a very small excess of events over our background, the

statistics of any background that we cannot discriminate against could hide our signal.

As such, it is of utmost importance to understand the origin of all backgrounds we

are subject to, the event rate they might result in, and the ways in which we can

limit them. We will give a very brief overview of the background sources we typically

have to contend with.
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Figure 3.10: Decay chains from 238U and 232Th. Energies listed are in MeV [43].

One of the main components of cosmic radiation is the flux of high energy particles

(up to 1020eV), mainly protons (87%) and alpha particles (12%), that flow through the

interstellar vacuum. These particles, called primary, interact with our atmosphere,

creating electromagnetic and hadronic jets. While the majority of the secondary

particles from these jets do not reach the Earth surface, muons (∼ 75%) do, for a
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flux of about 5.106µ/m2/day [44]. The most common way to shield any experiment

from these muons is to place it underground, where their flux is much lower, as seen

on Fig. 3.9.

Furthermore, cosmic radiation can activate radioactive isotopes in our copper,

defeating the purpose of using extremely pure copper for our detector. The main one

is 60Co, which can be activated from the copper in our detector while it is transported

from its production plant to the underground laboratory9. 60Co has a half life of

around five years, so once created, it will contaminate the whole lifetime of our

experiment. It decays into 60N in an excited state, which in turn emits two γ rays at

1.17 and 1.33 MeV. As such, it is very important to limit the time any part of our

detector spends above ground, but especially the sphere itself, because of its larger

mass.

A side effect from setting the experiment underground is the increased radioac-

tivity from the surrounding rock. The main background sources are 40K and 208Tl

present in the rock walls and the concrete covering them. Both emit high energy γ

rays, at 1.46 and 2.61 MeV respectively. This is however a much smaller problem

than cosmic radiation itself.

The other main source of background radiation are the Uranium and Thorium

decay chains. 238U and 232Th can be found in pretty much all materials in varying

concentrations, in particular in the copper of our detector (minimized by using only

extremely pure copper) or its shielding. All together, they emit α, β and γ radiation.

See Fig. 3.10 for the complete decay chains.

Furthermore, there is one particularity with 210Pb from the Uranium chain. 222Rn

9Cosmic-induced neutrons produce radioactive cobalt from copper through the following reaction:
63Cu + n→60 Co + α.
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is a gas, which means it can be present anywhere, and in particular, in the air. It

decays into 218Po, 214Pb, 214Bi (all with very short lifetimes), and finally into 210Pb,

which has a half life of 22 years. This means that 210Pb can attach itself to all surfaces,

and once there, stay indefinitely. 210Pb decays into 210Bi in an excited state, which

in turn emits X − rays and Auger electrons, producing low energy events . As such,

it is important to reach a very high vacuum before filling the detector with gas, and

regularly clean the inside to remove any remaining traces of 210Pb. Finally, the lead

shielding is itself radioactive, so, in the absence of low-radioactivity archaeological

lead, some extra shielding has to be placed in between it and the detector proper.

Expectations for SEDINE

The expected rate of background events was determined with a combination of cali-

brations and Geant4 simulations by A. Brossard, with results shown in Tab. 3.1.

The table shows all combined backgrounds, but only the rate of events recon-

structed as pointlike and in the bulk of the gas. However, for solar KK axion searches,

we are only interested in events that deposit energy in distinct locations within around

a microsecond. For our detector, this generally involves photons, although not always

exclusively. Photons of a few keV and higher can travel far enough from the decay site

to be clearly distinct from any other particles generated there; unlike electrons, they

do not leave a track of ionized atoms in their wake. Neutrons could potentially be

another source of such interactions, but their rate is much lower than that of gammas.

The production of energy depositions at two distinct locations comes from either

a single gamma doing two Compton interactions in the gas, or two or more different

particles interacting in the detector at different locations at once; in the latter case,



3.3. SEDINE 52

so
u

rc
e

co
n
ta

m
in

at
io

n
/

fl
u

x
U

n
it

E
ve

n
t

ra
te

[0
.5

;1
]

ke
V

(e
ve

n
ts

/k
eV

/k
g/

d
ay

)
E

ve
n
t

ra
te

[1
;5

]
ke

V
(e

ve
n
ts

/k
eV

/k
g/

d
ay

)
T

ot
al

ra
te

(m
H

z)

C
op

p
er

sp
h

er
e

2
1
0
P

b
26

m
B

q
/k

g
1.

03
2.

0
0.

13
2
1
0
B

i
26

m
B

q
/k

g
2.

6
2.

1
0.

11
2
3
8
U

<
16

µ
B

q
/k

g
0.

03
6

0.
04

2
0.

00
37

2
3
2
T

h
<

12
µ

B
q
/k

g
0.

05
3

0.
04

5
0.

00
38

4
0
K

<
11

0
µ

B
q
/k

g
0.

02
3

0.
01

9
0.

00
13

6
0
C

o
41

µ
B

q
/k

g
0.

06
7

0.
05

2
0.

00
51

5
7
C

o
23

µ
B

q
/k

g
0.

04
4

0.
04

6
0.

00
26

C
op

p
er

S
h

ie
ld

in
g

2
1
0
P

b
ch

ai
n

26
m

B
q
/k

g
0.

36
0.

33
0.

03
3

2
3
8
U

<
16

µ
B

q
/k

g
0.

11
0.

08
9

0.
00

96
2
3
2
T

h
<

12
µ

B
q
/k

g
0.

08
2

0.
07

6
0.

00
88

4
0
K

<
11

0
µ

B
q
/k

g
0.

03
8

0.
03

5
0.

00
39

6
0
C

o
25

µ
B

q
/k

g
0.

16
0.

12
0.

01
6

L
ea

d
S

h
ie

ld
in

g

2
1
0
P

b
37

.4
B

q
/k

g
6.

9
5.

9
0.

7
2
3
8
U

79
µ

B
q
/k

g
0.

03
4

0.
02

3
0.

00
28

2
3
2
T

h
9

µ
B

q
/k

g
0.

00
47

0.
00

35
0.

00
08

4
0
K

<
1.

46
m

B
q
/k

g
0.

00
59

0.
00

48
0.

00
06

G
am

m
a

ra
y

14
60

ke
V

0.
12

5
γ
/c

m
2
/s

0.
53

0.
47

0.
05

9
26

14
ke

V
0.

04
2

γ
/c

m
2
/s

1.
22

0.
97

0.
10

In
n

er
S

u
rf

ac
e

2
1
0
P

b
1.

8
m

B
q

3.
42

0.
77

0.
03

9
2
1
0
B

i
1.

8
m

B
q

0.
44

0.
11

0.
00

40
2
1
0
P

o
1.

8
m

B
q

0.
22

0.
01

4
0.

00
11

2
1
4
P

b
0.

2
m

B
q

0.
07

4
0.

00
3

0.
00

44
2
1
4
B

i+
2
1
4

P
o

0.
2

m
B

q
0.

05
0.

02
0.

00
08

T
ot

al
17

.5
13

.2
1.

2

T
ab

le
3.

1:
S
u
m

m
ar

y
of

th
e

m
ai

n
vo

lu
m

e
ev

en
ts

b
ac

k
gr

ou
n
d

of
S
E

D
IN

E
b
as

ed
on

G
ea

n
t4

si
m

u
la

ti
on

s
[3

5]
.



3.3. SEDINE 53

Figure 3.11: Decays of 210Pb and 210Bi [45].

usually at least one of the particles is a gamma. As such, for the search for KK axions

with SEDINE, the main backgrounds were:

� 210Pb on the inner surface of the detector. The excited state of 210Bi releases

both photons and electrons simultaneously in the energy range of interest for

this search (see Fig. 3.11.

� 210Bi in the bulk of the copper of the detector. Through Bremsstrahlung, the

high energy electron released in the decay generates multiple gammas of high

enough energy to perform Compton interactions, and may even enter the de-

tector internal volume.

� 210Bi in the lead shield. While they start farther away from the target gas than

decays in the bulk of the detector shell, the larger mass of lead shield and its

much worse radiopurity make up for the longer distance the Bremsstrahlung

radiation has to cross.
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More details on the nature of these backgrounds, and their effect on SEDINE data

and its analysis, can be found in Sec. 8.1.2. We expect a rate around 1− 10 evt/day

from these sources, after some unoptimized selection cuts.

Finally, it could be expected that random coincidences of two different events

could also be a background for this search, but a quick computation shows this to not

be the case. After some basic cuts, the physics data of SEDINE had a total event rate

of around 20 mHz. Taking a relatively wide coincidence window of 1 ms, this gives an

upper bound on the rate of random coincidences during the run of ∼ 0.035evt/day.

As such, this source of background can be safely ignored in this work.

3.4 NEWS-G at SNOLAB

The next step for the NEWS-G collaboration is the installation of a new detector

at SNOLAB, nicknamed the SNOGLOBE (pending an official name). SNOLAB is

one of the deepest low-background laboratories in the World (as seen on Fig. 3.9),

which will lead to a reduced muon flux over that at LSM. It will also be larger than

SEDINE, with a high purity copper (C10100) sphere 140 cm wide and 10 cm thick;

a new kind of sensor electrode, achinos [34], was developed to accommodate for the

larger size. An engineering drawing and picture of the real detector can be seen in

Fig. 3.12. The internal 500µm of the detector shell have been electroplated with

pure copper to eliminate background from the 210Pb contamination in the internal

surface of the detector. The sphere will be enclosed in a 25 cm thick lead sphere, to

protect against γ radiation; the internal 3 cm of this shield are made of archaeological

lead, with a much lower presence of 210Pb. Finally, 40 cm thick polyethylene walls

protect against neutrons coming from the cavern walls. The detector and most of the
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Figure 3.12: Left: Schematic view of SNOGLOBE with shielding. Right: Installation
of SNOGLOBE inside the lead shield at LSM.

components of its shield is already waiting inside SNOLAB at the time of writing,

awaiting relaxation of COVID-19 safety measures for installation, hopefully before the

end of 2020. Papers on both the details of the detector setup and the electroplating

procedure are currently in preparation.

Tab. 3.2 shows an early estimation of the nature and distribution of the back-

grounds expected from the new version of the experiment, based on Geant4 simula-

tions performed by A. Brossard. This table includes all energy depositions, not only

the ones expected to be reconstructed as pointlike. The higher radiopurity of the lead

shield explains the decrease in background from that source. Furthermore, due to the

electroplating procedure, we expect almost no background from 210Pb plated on the
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internal surface of the copper shell. As such, radioactive backgrounds at low energies

will be dominated by bremsstrahlung from the β decays of 210Bi, and 60Co from the

cosmogenic activation of the copper, both from the copper shell of the detector. The

latter should become sub-dominant after a few months to a year.

Before being shipped to SNOLAB, SNOGLOBE was temporarily installed in the

LSM, without the polyethylene shield. Its time there was used to familiarize for

Canadian collaborators to familiarize themselves with its setup before installation in

the harder-to-access SNOLAB, and for running various tests and calibrations. The

nature of the data taken with the new achinos sensor is still in the process of being

understood, so no result from that campaign was used for the work in this thesis.

Still, a discussion on the projected performance of this detector for the search of solar

KK axions can be found in Sec. 8.3.

Summary

Spherical Proportional Counters are gas detectors which use a central electrode at a

high voltage to collect the ionization signal left by particles interacting with the gas.

The use of a low density target mass means an axion decaying in the volume produces

two axions that are absorbed at distinct locations, unlike for rare event detectors that

use liquids or crystals. Given the increase in the electron drift time with its radial

position, axion decays appear as two pulses arriving shortly after each other. The

specificity of such a signal allows for rejection of all background events that leave

energy either at a single point or as a track inside the detector.

SEDINE is a low-background, 60 cm wide SPC, running at the underground lab

of LSM. The data taken with this detector was the one used to search for solar KK
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axions, as will be covered in upcoming chapters. The main sources of radioactive

background are the 210Pb contamination in the copper shell of the detector and in

the lead shield, producing around ∼ 5 evt/keV/kg/day and ∼ 6 evt/keV/kg/day

pointlike events in the 1 − 5 keV energy range, respectively. The upcoming detector

at SNOLAB, 140 cm wide, made with more radiopure materials and electroplated,

should only see∼ 1 evt/keV/kg/day and∼ 0.05 evt/keV/kg/day events in that range,

from those same sources.

In the next chapter on pulse processing, we will be using our knowledge of the de-

tector’s working principle to extract all relevant information from the events recorded

by an SPC.
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Chapter 4

Data processing and Analysis

The objective of automatic pulse processing is twofold:

� Have a standard, reproducible, quantifiable way to identify the characteristics

(energy, risetime...) of any event;

� Be able to process large amounts of data quickly.

The latter is important due to the size of the datasets we need to manipulate. The

former allows us to do the actual physics we are interested in, and potentially compare

the performance of different algorithms to each other, and to minimum benchmarks.

Simulations will be mentioned multiple times in this chapter. Systematic uncer-

tainties in our calibration data can make it difficult to characterize the behaviour of

the different algorithms, and hence predict their performance for situations in which

no calibration data is available. By accounting for those uncertainties in the simula-

tions, the performance of the different algorithms can be assessed with the necessary

precision. The process to create these simulations is described in detail in chapter 5.



4.1. AMPLITUDE AND RISETIME ESTIMATION 60

4.1 Amplitude and Risetime estimation

After recording an event, we need to be able to extract useful information from it.

The main parameter we are interested in is the energy of the event. While we do

not generally have direct access to that information, the signal coming out of the

preamplifier is directly proportional to the total charge created during the avalanche

by an energy deposition. Since the average charge produced is proportional to the

energy deposited, the “height”, or amplitude, of an event is a good estimator for its

energy. Knowing the energy distribution of our data will then allows us a comparison

with known radioactive backgrounds, or with any potential particle signal.

The second parameter is what we normally call the “risetime”, or the time it

takes for the pulse to go from the “baseline” to its “maximum”1. Its a measure of the

spread in arrival times of primary electrons, which in turn depends on the position

of the energy deposition: the farther away from the central electrode, the larger their

dispersion, and hence the longer the risetime. This is useful to distinguish events

coming from the bulk of the gas detector, from the surface of the outer shell, or

leaving energy depositions in multiple spots at once.

This section will cover three different algorithms for computing these estimators,

how to use those estimators to discriminate between different type of events, and

their relative performance.

1Those terms are not well defined. In practice, the risetime is the time between the pulse reaching
some low percentage (e.g. 10%) and some high percentage (e.g. 90%) of its maximum amplitude.
The wider the range, the stronger the discrimination power of the risetime, but the more sensitive
to noise it becomes, so the choice will depend on the type of processing performed on the pulse
beforehand.
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Figure 4.1: SAMBA processing on a pulse. In red, computed average baseline before
the beginning of the pulse. The green vertical line points the position of
the maximum of the pulse. The amplitude is the difference between the
value at that point and the baseline; here, 12860 ADU. The two dashed
black lines point the time at which the pulse reaches 10% and when it
reaches 90% of the amplitude. The risetime is the difference between the
two; here, 38µs

4.1.1 SAMBA

The first method used to compute the amplitude and risetime of our events is the

one implemented by our data acquisition software, SAMBA, originally designed for

EDELWEISS [46]. The amplitude is calculated as the difference between the max-

imum of the pulse, and the mean of the baseline before the beginning of the pulse.

The risetime is calculated as the difference between the time when the pulse reaches

10% and the time when it reaches 90% of the amplitude. An example is shown in

Fig. 4.1.

The advantage of this algorithm is its simplicity, allowing for simultaneous com-

putation while recording the data. This can be exploited to, for example, set extra
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constraints for the trigger, rejecting events with risetimes that are too short or too

long. Even more importantly, it gives instant feedback to anyone operating the de-

tector.

However, the main disadvantage of this method is that its amplitude estimation

is biased. When we use a preamplifier (cf. App. B) with a decaytime that is too

short with respect to the event length, then the signal produced will start decaying

noticeably before all the charge has been collected. This means that, for two given

events with the same energy, the one with the longer risetime will appear with a lower

amplitude than the one with the shorter risetime, as pictured in Fig 4.2. We see that

in the case with infinite decaytime, all signals have very similar amplitudes, but in

the case with a short decaytime, the difference in amplitude is of more than 20%.

The relative difference in amplitude between the scenario with an infinite decaytime

and the real scenario is called the ballistic deficit. Note that the ballistic deficit is not

a problem per se, but its value changing depending on the risetime is.

For this reason, alternate processing algorithms were developed to correct this

effect. The two methods described below solve this problem. Since they both involve

a deconvolution step, we will describe that first.

4.1.2 Deconvolution

Let us introduce a few definitions that will be useful in what will follow.

The transfer function R(t) of a system is the output of that system when the

input is a Dirac delta-function (henceforth, “dirac”). Since we can decompose any

function f(t) into a (continuous) “sum” of time-displaced diracs, then the output of

our system for any arbitrary input is just a (continuous) “sum” of shifted transfer
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Figure 4.2: Output of a theoretical preamplifier with infinite decaytime (dashed lines)
and another with a decaytime of 50µs (solid lines), for events with same
energy but different risetimes. For the real preamplifier, the amplitude of
the pulse becomes lower as the risetime increases.

functions, scaled by the amplitude of each dirac. This is called a convolution:

f ∗R(t) =

∫
f(τ)R(t− τ)dτ (4.1)

where f ∗ R, the convolution of f (input to the system) and R (system response

function), is the output of our system. Since we are working with discrete time
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(a) (b) (c)

Figure 4.3: Example of convolution, here with discrete time. For each of the peaks in
the first plot, we add a transfer function starting at that time, multiplied
by the height of the peak.

windows, this becomes

f ∗R(ti) =
i∑

j=0

f(tj)R(ti − tj) (4.2)

where f and R are defined from t0 to some tn, and ti = i∆t, where δt is our

sampling period (we will be using δt = 0.48µs as an example). You can see an

example of convolution in Fig. 4.3, with a function f composed of discrete diracs, a

transfer function R (based on the induced current from Sec. C.0.2, and the output

from the convolution of the two.

An important consequence of the definition is that convolution is linear, i.e., (f +

g)∗R = f ∗R+g ∗R. The amplitude of a pulse is thus proportional to the amplitude

of the original signal, and the combination of two signals can be separated without

worry.

While convolutions are easy enough to do numerically, and can sometimes be

done analytically, deconvolutions are trickier. As the name implies, a deconvolution

is the process of obtaining f , when you know R and f ∗R. While there is no general

analytical method to solve the problem, one way to solve it numerically is by using
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the convolution theorem, which states that convolution transforms into product in

Fourier space, i.e.,

f̃ ∗ g = f̃ · g̃ (4.3)

where f̃ denotes the Fourier transform of f , and f and g are two arbitrary func-

tions. This gives us an easy way to deconvolve a transfer function, just by doing a

division in Fourier space:

f̃ = f̃ ∗R/R̃ (4.4)

and then we just have to take the inverse Fourier transform of f̃ . Of course,

this is only the most basic approach on the question of deconvolution. The topic

of deconvolving transfer functions is a well-established and extremely active research

area, especially in image processing. An approachable review of techniques and pitfalls

can be found in chapter 5 of [47].

Coming back to the processing of our data, if our model for signal formation is

correct, we can deconvolve the resulting response function from our recorded pulses.

After integration, the resulting signal has an amplitude proportional to the total

charge, but is now unaffected by the ballistic deficit.

4.1.3 Modified decaytime deconvolution

Before work started on this thesis, G. Gerbier had already been providing a secondary

analysis of our data. As previously mentioned, the original motivation was to remove

the bias due to the ballistic deficit from our amplitude estimation. Fig. 4.2 shows

what the pulse would look like if we had a preamplifier with an infinite decaytime.
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(a) (b) (c)

Figure 4.4: MDec method applied to a high energy pulse (∼ 10 keV) from SEDINE’s
physics run. Left: Raw pulse. Middle: Deconvolved pulse. Rigth: Inte-
grated deconvolved pulse. We note that the integration of the deconvolved
pulse does not quite go back to a flat baseline, but instead makes a small
dip before slowly increasing again. Taking the height before the dip offers
a good estimator of the amplitude of the pulse.

This can be reproduced digitally by deconvolving the response of the preamplifier (a

decaying exponential), then integrating the resulting signal. The final pulse now has

an amplitude that is independent of the spread in arrival time of primary electrons.

However, the amplitude keeps rising for some time after the arrival of the last

electron, which means that the estimation of the amplitude is now dependent on the

time at which the height of the pulse is calculated (see Fig. 4.4c.). This downside was

solved by G. Gerbier by using a modified, longer decaytime for the deconvolution than

the real time constant of the preamplifier. Tuning this ad hoc decaytime stabilizes

the pulse and removes the long tail characteristic of the ion-induced current. This

allows for a consistent computation of the amplitude, much less sensitive to the exact

position at which it is calculated. The method will be referred to as the Modified

Decaytime method (MDec) from now on.

An example of the result is shown on Fig. 4.4. For context, this was performed on a

relatively high energy (∼ 10 keV) event from SEDINE’s physics run, where the decay-

time of the preamplifier was 47µs; the modified decaytime used in the deconvolution

was 83µs instead. The result is a much flatter baseline after the pulse, compared to



4.1. AMPLITUDE AND RISETIME ESTIMATION 67

what a “proper” deconvolution of the preamplifier response would produce.

The risetime, in turn, is computed as the time difference between the point at

which the pulse reaches 10% and the 75% (rather than the previous 10% and the 90%)

of the amplitude. This change is due to the “roundedness” this process generates

at the end of the pulse. The less sharp a feature is, the more sensitive its timing

information is to noise oscillations. The tapering off of the top of the pulse, compared

to the raw one, would decrease the resolution of our risetime estimation if we were

to still use the 90% point for its computation. Note that this change doesn’t come

without a drawback. The risetime of a pulse is only a stand-in for the actual dispersion

in arrival time of the primary electrons, and the quality of this estimator tends to

improve (in the absence of noise) with the number of primary electrons “englobed”

by the end points of the risetime.

While the MDec method is fundamentally an ad hoc modification for the purpose

of improving on the processing of the raw pulse, theoretical justification can be found

in the parametrization of the signal mentioned in Eq. C.13 in Sec. C.0.2, S(t) =

−qionsk(e−at − e−bt). In fact, it does produce very satisfactory results, especially

for amplitude resolution. The disadvantages of the method are the need to tune

τ over a potentially wide range whenever we change the operating conditions of our

experiment, a relatively poor risetime discrimination for short events, and the tapering

off and non-flat baseline at the end and after the pulse, respectively.

One last advantage of this method is that it does not require going through Fourier

space, avoiding problems such as edge effects. In discrete time with sampling period

∆t, the recursive form of the convolution a[i] of a signal b[i] with a decaying expo-

nential with time constant T follows the formula:
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a[i] = a[i− 1] e−1/Tsp + (N ∆t) b[i]

Where N is a normalization factor given by the height of the response to an

impulse of integral 1, and Tsp = T/∆t is the time constant of the decay, in units of

the sampling period. If we want the convolution to preserve the integral of the signal,

then N = (1 − e−1/Tsp)/∆t ∼ 1/T , for Tsp � 1. More importantly, this relation is

easy to invert, giving:

b[i] =
1

N ∆t
(a[i]− a[i− 1] e−1/Tsp)

Not only do we not need to go through Fourier space, but the existence of a linear

formula involving only two points of the final signal allows for very fast deconvolution.

This is even potentially useable at the digitizer level, even though it has not been

implemented there as of writing.2

4.1.4 Double Deconvolution method

The second deconvolution method was developed in the context of this thesis. Based

on the signal formation mechanism discussed in chapter 3, we can deconvolve the

full response function of the detector. Ideally, this would result in a current signal

consisting of short impulses, corresponding to the arrival of primary electrons to the

avalanche region, with the height of each impulse being proportional to the number

of secondary charges created by each primary electron. After integration, this gives

a series of step functions, whose total height is proportional to the total number of

2Note that, for Tsp � 1, this formula can be rewritten as b[i] = 1
N (a[i]−a[i−1]

∆t + a[i− 1]/T ). This

is reminiscent to the equivalent deconvolution formula in continuous time, b(t) = d
dta(t) + a(t)/T ,

which can be found through judicious use of the Laplace transform, as shown in [48].
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secondary charges produced in the avalanche region during the event.

In practice, differences between the ideal response function and the real one create

artificial current tails or negative current spikes (we refer to the latter as undershoots).

Furthermore, to moderate the amplification of noise due to the deconvolution process,

the data has to be smoothed. This widens the recovered current impulses produced

by primary electrons, and in general makes them impossible to distinguish from one

another. However, the amplitude of the total integral is not affected3.

This method was called the Double Deconvolution (DD) method due to its im-

plementation: we deconvolve the response function of the preamplifier, a decaying

exponential, with the numerical algorithm described in the previous subsection; then,

since there is no equivalent for the deconvolution of the ion-induced current formula,

we do that deconvolution by division in Fourier space.

Substantial work was done to integrate this method into the analysis suite devel-

oped for the collaboration, and several collaborators now use this algorithm and its

associated visualization tools.

Method validation

We apply this procedure to pulses recorded during SEDINE’s physics run previously

mentioned. The run was taken under the following conditions: applied voltage of

V0 = 2520 V, with a Neon and CH4 (0.7%) gas mixture at P = 3.1 bar, using the

Canberra preamplifier [49]. Together with the dimensions of the sphere (r2 = 30 cm)

and electrode (r1 = 0.315 cm), this means that the only parameter we haven’t fixed

to generate the response function of the detector is the ion mobility of Neon in our gas

3The smoothing algorithm used is a simple running average applied twice, but this would remain
true for any smoothing algorithm that can be described as a convolution with a transfer function
that is zero-valued outside a finite window.
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mixture. We can start with µ0 ∼ 6 cm2V−1s−1, the value for Neon ions in pure Neon

at normal temperature and pressure [50]. A first validation of the method comes from

deconvolving the transfer function of the preamplifier to so-called “electronic” events,

non-physical signals that are created in the electronics of the detector, rather than

in the detector itself, and as such have a different shape than “physical” events. As

seen in Fig. 4.5, the recovery of a peaked event4 from this process, that goes back to

a flat baseline nearly instantly and without undershoot, proves that:

� The deconvolution method is adapted to our problem.

� We have the correct transfer function for our preamplifier.

� This event is indeed purely electronic in nature, since we don’t observe the

characteristic shape of the ion induced current.

A second validation comes from looking at events formed by an energy deposi-

tion on our target mass. These are what we call “physical” events, and we select

them based on preliminary parameters extracted from the shape of the raw pulse (see

Sec. 4.1.6). We had to tune the value of the ion mobility manually to get optimal

results, from the expected µ0 ∼ 6 cm2V−1s−1, to µ′0 = 7.5 cm2V−1s−1. The value of

µ0 was selected so that the majority of the physical pulses would exhibit neither a

long tail (characteristic of the current induced by the drifting ions) nor an under-

shoot. While the optimal value was not exactly the same for all pulses, the range of

possibilities was within 5% of the previously given value5.

4The pulse would be even more peaked if we didn’t smooth it out, but then noise might obscure
the second peak.

5This value was originally found by visual inspection of a few dozen values, with noticeable
tails or undershoots appearing when changing the value of µ0 by more than ∼ 0.e cm2V−1s−1. An
automated way to find the “optimal” value is described in Sec. 6.6.
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(a) (b)

Figure 4.5: Example of electronic event. Left figure: raw pulse as recorded by our
detector. Right figure: same pulse, zoomed in, after deconvolution of the
transfer function of the preamplifier. Both are smoothed out to remove
some of the noise. Note the different time scales: the width of the left
pulse is ∼ 0.2 ms, while the right one is only ∼ 0.015 ms.

The disparity in values between events is not well understood. A possible expla-

nation is that this method is absorbing variations of the electric field into the ion

mobility: events happening close to the rod will experience a lower field, but since

we assume the field to be isotropic (for the sake of the response function used in the

deconvolution), this appears as a lower ion mobility instead. As for the difference

in the average value for the ion mobility with respect to the literature, this can be

a combination of the previous effect, together with the presence of CH4 in our gas

mixture, since ion mobility is very sensitive to gas composition. Still, it is fairly

remarkable that the optimal value of µ0 found this way is so close to the values in

the literature, despite using a highly variable electric field instead of a constant one,

and doing the measure via the shape of the induced current instead of the ion drift

time. The optimal value is also relatively constant from run to run. A more rigorous
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(a) (b)

(c) (d)

Figure 4.6: Same example of a high energy (∼ 10 keV) physical event as in Fig. 4.4.
Top left: raw pulse as recorded by our detector. Top right: same pulse,
zoomed in, after deconvolution of the transfer function of the preamplifier.
Bottom left: same pulse, after also deconvolving the current induced by
a drifting ion, with gaussian fit superimposed. Bottom right: integral of
the previous pulse. For pointlike events with a sufficiently high number
of primary electrons, we do expect them to reach the electrode forming a
gaussian distribution in arrival time.
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calibration of the ion mobility is described in Sec. 6.6.

As shown in Fig. 4.6, we can recover a signal that is very well localized in time

(∼ 20µs, compared to ∼ 500µs for the raw pulse), without affecting the flat baseline

before or after the pulse. This is fairly strong evidence not only that the method

works and that we can use it to extract the parameters of any given physical pulse,

but also that our understanding of the physics of the detector from which we derived

the ion induced current is sound. This works even for lower energies and longer events,

as shown in Fig. 4.7.

.

4.1.5 Performance

Let’s compare the performance of the three previously mentioned methods: SAMBA,

MDec, and DD estimators.

Ballistic deficit

As mentioned earlier, SAMBA estimators are affected by varying degrees of ballistic

deficit, biasing its amplitude estimator. This effect is easy to see when looking at

plots of the risetime vs energy distribution of events for a given run. For example,

we should see vertical lines for 210Po alphas at 5.3 MeV. However, as seen in Fig. 4.8,

these lines are instead slanted towards the left for the SAMBA estimators, because

of the ballistic deficit. We can correct for that effect with either of the previously

exposed methods. Then we obtain a 210Po line that is now mostly vertical, with a

slight slant towards the right instead. As we will cover in Sec. 6.5, we assume that

this residual dependency is likely due to electron attachment, although whether it is



4.1. AMPLITUDE AND RISETIME ESTIMATION 74

(a) (b)

(c) (d)

Figure 4.7: Example of a lower energy (∼ 600 eV) physical event. The noise that
survives the running average is similar to the shape of an avalanche, and
makes it hard to tell where the pulse starts or ends by looking at the
deconvolved pulse.



4.1. AMPLITUDE AND RISETIME ESTIMATION 75

(a) (b)

Figure 4.8: Risetime vs Energy for an alpha run in a small detector (15 cm wide).
Left: raw data. Right: processed data. We clearly see that the offline
analysis corrects the dependency of the amplitude on the risetime.

the only factor or not remains to be proven.

Note that the behaviour of high energy alphas is different from other type of

lower energy events. These all start from the surface of the sphere, then move into

the volume leaving a track of electron-ion pairs behind. The length of this track

is mainly determined by the energy of the alpha, with a higher energy leading to a

longer penetration depth. And in turn, the length of the track dominates our risetime

estimator, since the spread in arrival time of the electrons will be mainly determined

by the difference in drift time from the different points of the track. Furthermore, an

alpha track pointing towards the electrode, rather than being tangential, will be less

subject to attachment, since part of its track will start very close to the detector.

Estimator resolution

Both the MDec and DD methods correct the amplitude bias due to the ballistic

deficit, so we need to compare them on the basis of the precision of their estimators.
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Figure 4.9: Energy resolution, depending on the reconstructed energy for each
method. The “Ideal Energy” resolution is the normalized dispersion be-
tween the (normalized) amplitude computed by a method and the number
of secondary charges in the simulated event, divided by the latter. The
corresponding plots for the systematic uncertainties (Poisson from pri-
mary ionization, Polya from avalanche) are also shown for comparison.

The first, and arguably more important, is the amplitude estimator, since it gives a

measure of the energy of the event. We want a metric for the reconstruction power

of each estimator. This is a more nuanced question than it might at first appear,

as expanded on in App. H. We will just cover the results of that discussion in this

section, based on simulations of pointlike events distributed uniformly in energy and

position inside the detector. The result for the amplitude (or reconstructed energy)

resolution is shown on Fig. 4.9.
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We see that the MDec method has the best amplitude resolution across all ranges

of energy. However, given that in practice the effective resolution also includes the

effect due to systematic uncertainties (due to primary ionization and avalanche fluctu-

ations) of the detector, the marginal improvement of MDec over DD is not significant

In turn, SAMBA has similar performance to those two methods at very low energies

(< 200 eV), but compared to them, degrades significantly beyond that point. The

bias introduced by the ballistic deficit (which does not affect DD or MDec) limits its

resolution to 10 %.

The second estimator studied is the risetime. The main difference with the am-

plitude study is that the risetime of the pulse has a minimum strictly positive value

that depends on the processing used. This makes it insensitive to the physical pa-

rameter being estimated (the RMS of the arrival time of the primary electrons) under

a certain time. After normalizing the risetime to convert it into a proper estimator

of the electron arrival RMS, we can plot the relative resolution of the estimator, as

shown on Fig. 4.10.

While both MDec and DD offer the same performance for larger values of the

electron arrival RMS, the minimum dispersion discernible by MDec is quite a bit worse

than that for DD. This makes the DD method much more adapted for separating

events from each other, as required for the search of KK axion events. In a similar

vein, it will also produce better results when trying to discriminate events with a

single electron (which always have an arrival RMS of 0) from other events, since

multiple electrons have to arrive closer together before they can’t be distinguished;

this is useful in searches for very low energy events, since they always produce a single

electron.
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Figure 4.10: Electron arrival RMS resolution, depending on the normalized risetime
for each method. The point at which the resolution shoots up for each
method corresponds to the point where the risetime loses its discrimina-
tion power due to approaching its minimum value.

4.1.6 Event discrimination

We can use the raw data to make a first cut on our total database. The main

parameters we use for discrimination are 6

� Amplitude. The maximum of the pulse minus the value of the baseline. A basic

estimate of the energy of the event.

� Risetime. The time difference between 10% and 90% of the amplitude. A basic

6The cuts described in this section are only for illustrative purposes. We will have to wait until
Sec. 8.1.1 to go into the details of cut choice and its effect on our data.
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(a) (b) (c)

Figure 4.11: Risetime vs Width. (a) and (b) are taken from a physics run, with (b)
having a cut of 4 s since the last event. (c) shows the same plot for a
short neutron calibration run, justifying the lower cut on width (80µs)
and risetime (10µs).

estimate of the diffusion time of the event.

� Width. The Full-Width Half-Maximum (FWHM) of the pulse. Together with

the Risetime, allows for preliminary shape discrimination.

� Time since last event. We ignore events too close in time to the previous one

(a few seconds). We have noticed sporadic accumulations of fast, low-energy

events, whose origin is uncertain. This cut removes them.

Making plots of these parameters against each other makes distinct populations

appear. After examining these populations, we can determine which ones to keep, as

seen on Fig. 4.11 and 4.12. Cuts on risetime and width eliminate most of the signals

with “unphysical” shapes, that are absent from our calibration runs. Further cuts on

the risetime allow to discriminate tracks from surface events. We are then left with

the amplitude to select the range of energies we are interested in. Other parameters,

such as the value of the baseline before the event, are also stored, but are currently

not used for further discrimination.
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Figure 4.12: Risetime vs Amplitude. Events with a Risetime ∼ 40µs are surface
events. Below that are bulk events. Above, we have either tracks, mul-
tiple scatterings, or unphysical events. Below ∼ 12µs we have electronic
events.
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Figure 4.13: Left: Simulated pulse. Right: Electron signal before convolution by the
detector response. The two pulses can be difficult to distinguish when
looking at the final event.

4.2 Analysis of Multi-Pulse events

4.2.1 Description

Moving on to the analysis of axion-like data, we are now interested in events where two

pulses arrive in close succession. For that, we need to be able to separate pulses within

a given event window, and estimate the amplitude and risetime of each independently.

In Fig. 4.13, we see that multiple pulses arriving shortly after each other can be hard

to distinguish, when looking at the raw signal. The distinction is much easier with

the deconvolved pulse, although that comes with its own set of problems, notably the

amplification of the noise.

To try and separate the pulses from the deconvolved signal, two algorithms were

compared: a division of the window into sub-windows based on a threshold check,

and a peak finder algorithm coupled with a multi-gaussian fit.

Window subdivision algorithm

After deconvolving the detector response from the signal, we do a running average

over the result, twice. The running average is done over 20 bins (∼ 10µs), as in
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Figure 4.14: An example of a double event found by the MPA method. Left: Raw
pulse. Right: Deconvolved pulse after smoothing, with horizontal lines
showing the threshold level. The event dipping under the threshold in
the middle splits it into two different pulses

the DD method step to find the end of the pulse. After this, we divide the signal

window into smaller subwindows where the signal stays above a certain threshold.

An example of such a pulse can be seen on Fig. 4.14. Intuitively, we can tell that the

lower the threshold, the more “certain” we are that the different subwindows do split

the event into different pulses, rather than just sections of the same one. Similarly, a

stronger smoothing reduces the noise, but also spreads out pulses, making it harder

to split pulses apart.

Since noise fluctuations may produce signals that dip above and below the thresh-

old repeatedly, an extra step is performed. If any two subwindows are closer than

5 bins, both subwindows are merged together, including the section between them.

Then, if any subwindow is shorter than 5 bins, it is dropped. Finally, safety margins

of 50 bins are applied to each side of each subwindow, or half the distance to the

closest subwindow in either direction (whichever is larger).

After the signal is divided in subwindows, we do the same process for the pulse in

each one as in the regular DD method. The deconvolved signal, smoothed twice over

5 bins (∼ 2.5µs), is integrated. The amplitude of each pulse is then the difference
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between the signal at the beginning and the end of its subwindow, and its risetime is

the time difference between the point where it reaches 10% and 90% of its amplitude.

Since this algorithm was the one chose to produce results for the search of KK

axions, it was name the Multi-Pulse Analysis (MPA) method.

Peak finder

The first step of the peak finder method is the same as the window subdivision

method: I deconvolve the detector response from the raw pulse and do some running

average smoothing on the result. But then, instead of subdividing the result, I use

ROOT’s TSpectrum SearchHighRes() method to find any peaks in the resulting event

[51–53]. This method repeatedly deconvolves a gaussian of a given width from its

input, then looks for peak positions by scanning the first and second derivative of the

signal for sign changes and (negative) local minima, respectively.

While this does give the position of peaks and their height, it cannot find their

width, which has a large effect on the final width and amplitude of the event. To

remedy this, a fit of a function made of N gaussians is performed on the deconvolved

pulse, where N is the number of peaks found by SearchHighRes(), and each gaussian

is centred on the peak position; their width is set to some arbitrary value with the

right order of magnitude, generally one to a few microseconds. For low electron

count events, we would expect the fit result for σ to be the same for all peaks,

and correspond to the timing resolution of the double deconvolution method; the

theoretical electron signal should be shorter than a microsecond, so the observed

width is just the smoothing from the method. Any signal with a larger width is then

likely due to multiple electrons arriving too close to each other to be separated.
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Figure 4.15: Example of SearchHighRes finding peaks on a source spectrum[54]. The
black curve is the raw data distribution, the red one is the data after
TSpectrum treatment. The red markers denote the position and height
of the found pulses.

Figure 4.16: Multiple gaussian fit on real deconvolved pulses, based on the results
from TSpectrum::SearchHighRes(). In blue, the deconvolved pulse; in
red, the result from the fit. The method finds isolated peaks well, but
struggles with close peaks, or when their height difference is too large.
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The original motivation behind this approach was to obtain the number of primary

electrons in an event directly, rather than trying to “guess” it from the number of

secondary electrons from the event (which is essentially what we are measuring with

the other methods). This would have a multitude of applications (see App. E.0.2 for

what can already be done with statistical identification of primary electron counting),

not the least of which would be a dramatically more precise measure of the energy

of the event, since we wouldn’t be affected by the systematic uncertainty due to the

avalanche.

Unfortunately, after running the simplest test simulation with 2 electron bulk

events, the results were that the PF method could only find both electrons 62% of

the time. This goes up to 74% when looking only at events where both electrons

are separated by at least 6 bins (3µs), but we have no way to identify those events

during real data taking. For comparison, with the same data set, applying a cut on

the DD risetime above 4.5µs correctly identifies 65% of all double electron events,

and more than 78% when looking only at events where both electrons are separated

by at least 6 bins. Since being able to distinguish events with 1 electron from events

with multiple electrons is both the easiest and the most important task we could

give to an electron counting algorithm, the performance of this method is considered

insufficient.

Finally, the major drawback of this method is how slow it is, almost exclusively

due to the fitting. Even when forcing it to fit a single gaussian (instead of one per

peak found by SearchHighRes()) we are looking at a few milliseconds per event, and

roughly three times slower than the Double Deconvolution method for no observable

gain. However, if left to fit a function with one gaussian per peak found, an event
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with a dozen peaks can take upwards of a second to be processed. For comparison, a

simulated run with one million events takes 2.5h to be processed with the DD method,

6.5h to be processed with the PF method fixed at 1 peak maximum, and more than 10

days with the full PF method. While not a dealbreaker by itself, the lack of prospects

for the method just made it not worth it to try to optimize processing times into

something more usable.

4.2.2 Sanity cuts

Once an event is reconstructed as having multiple pulses, further cuts are applied

to guarantee that the event is physical, and consistent with what we expect from

axion-like events.

� Cut on the number of pulses found. There has to be at least two of them.

� Cut on the amplitude of the two largest pulses. They have to be above a

minimum value to prevent “triggering” on fake pulses.

� Cut on the minimum of the deconvolved pulse. If the deconvolved pulse goes

too low into the negatives, the pulse was over-deconvolved, likely splitting a

single pulse into two.

� Cut on the total amplitude of the two largest pulses. Their sum has to be within

the energy range of interest (e.g., 2 to 20 keV).

� Cut on the relative amplitude of both pulses. Ideally, they should both be the

same, within the uncertainties due to our systematics, since both photons have

the same energy. However the presence of attachment requires this cut to be a

bit more lax than that.
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� Cut on risetime and width of both pulses. Their values should be consistent

with those found for physical pulses.

� Cut on relative risetime of both pulses. The second pulse should be wider

than the first, since the electrons come from further away and experience more

diffusion.

� Cut on the time separation of both pulses. The pulses should come within

a time difference consistent with the maximum drift time of electrons in the

sphere.

An important consideration is that the cuts depend not only on our expectations

of what an axion event looks like, but also on our certainty about it. When reporting

limits, we need to also report what effect our uncertainties have on those limits. Ide-

ally, when optimizing a cut, we should consider both its rejection efficiency, but also

its sensitivity to calibration errors. For example, a stringent cut on the relative am-

plitude of both pulses would be much better at rejecting non-axion events. However,

if we underestimate the effect of electron attachment, then it would also reject more

axion-like events, lowering our sensitivity to axions. This could be translated into a

large systematic uncertainty on our final results, if our calibration of the attachment

is not very precise.

In practice, optimizing the cuts based on our calibration uncertainties would also

require good knowledge of our background. Absent that, the cuts that had the largest

effect on our expected sensitivity to axions were relaxed until their associated uncer-

tainty fell down to tolerable levels. This was the case mainly for the relative amplitude

of both pulses, and their maximum width and risetime.
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Figure 4.17: Left: MPA efficiency for KK axion events. Right: Total axion rate, and
axion rate observed in our detector after applying our efficiency.

4.2.3 Performance

Efficiency and False Positive rate

To be able to set constraints on the solar KK axion model, we must be able to

determine the expected rate of events on our detector. A necessary step of this

process is determining the efficiency of our detector. To test the different methods

and thresholds, a simulation with a uniform energy and position distribution of axion

decays was performed, to get the efficiency depending on the total energy of the event.

We can then multiply that by the energy distribution of the axion decay rate to get

the total expected rate in the detector. Both are shown in Fig. 4.17.

The best axion detection efficiency we can achieve is about 0.35 for a 12 keV axion,

although this depends on the processing parameters chosen (cf. App. I). Considering

that this includes both the loss of efficiency due to one of the photons escaping the

detector and the loss of efficiency due to the MPA method missing events where the

pulses are too close, this is a satisfying result (cf. Sec. 5.6.2 for the loss of efficiency due

to containment probability alone). But just as important as the maximum efficiency,



4.2. ANALYSIS OF MULTI-PULSE EVENTS 89

is where that is reached. Our detector and algorithm combined are most sensitive to

KK axions in the 10 to 14 keV range. This has to be contrasted with the expected

energy distribution of solar KK axions, which are at a maximum in the 7 to 11 keV

range. The fact that both don’t quite align properly means that our sensitivity to

axions will be lower than the optimistic 0.35 previously announced. Indeed, when

integrating over the whole range of energies after applying our efficiency, we see that

we only keep about 25 % of the total rate. While this could definitely be improved,

it is suitable to produce first results.

The second, and arguably even more important metric to be measured, is the false

positive rate of the MPA method. By this we mean the number of events created

by single energy depositions that are reconstructed as being composed of multiple

pulses. While the expected number of axion events in the detector for the physics

data available is less than one (barring background), the total number of events in

that data is more than a million. Even applying some preliminary cuts to the data

leave at least 10000 events that could potentially be falsely reconstructed as KK

axion events. As such, we need an extremely high rejection rate of single energy

deposition events, of the order of at least 10−4, or else we will be dominated by those

events that manage to pass the cuts. This can be achieved with proper processing

parameter choice (cf. App. I). The question of the rate of background events that

generate axion-like events, such as a photon doing two Compton interactions, is more

complex, and will be covered in Chap. 8.
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Separability

While the performance of the algorithm is very encouraging, especially considering

that the running conditions were not chosen for this kind of study, we should dive

in further into them to understand which double pulses are correctly resolved as

”double”. This will allow us to tune the setup of the detector (gas, pressure, voltage...)

to achieve higher efficiencies while keeping a low false positive rate.

The most direct way to recognize which events will be reconstructed as “double”

is to study the time separation we need. This is unfortunately not a fixed number.

Since the algorithm used relies on both pulses going back to baseline in between

them, the “spread” in electron arrival time for both pulses will affect the necessary

time difference between both. This is shown in Fig. 4.18. The time difference is

defined from the centre of one pulse to the other, and the width is defined as the time

between the first and last electron for each pulse.

As expected, the necessary condition to separate both pulses is that the average

width of both is smaller than the time difference between them7. The only time

when this is not true is for sufficiently short pulses, where the smoothing of the

algorithm dominates over their natural width. This will normally only happen for

energy depositions very close to the sensor, which are comparatively rare, so unlikely

to make much of a difference. Note that these conclusions are independent of the

running conditions of the detector. They just formalize the requirements to have a

double-pulse event be separable.

It is more fruitful to think in terms of the position of the photon interactions,

instead of the time difference between pulses. This, however, strongly depends on the

7This condition is equivalent to having the first pulse end before the second one begins.
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Figure 4.18: Capacity of the MPA to separate two pulses (z-axis, showing the propor-
tion of axion events that were properly reconstructed as double), based
on the average width of both and the time difference between them. At
smaller pulse widths, the effect of the smoothing from the method dom-
inates. Otherwise, the MPA separates both pulses as long as the time
difference is larger than their widths, as expected. The red line repre-
sents y = x (no smoothing ideal scenario), the green line y =

√
x2 + 202

(smoothing of 20 samples).

running conditions of the detector: the drift and diffusion time of electrons varies with

the gas, the pressure, the voltage, among others. We will just assume the conditions

in SEDINE’s physics run.

Fig. 4.19 shows that in this scenario, the interaction point of both photons have to

have a radial distance difference of at least 2 cm for them to be separable. While the

difference has to be longer than that for interactions happening within 15 cm of the
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Figure 4.19: Capacity of the MPA to separate two pulses (z-axis, showing the propor-
tion of axion events that were properly reconstructed as double), based
on the average distance to the centre of the detector of both photon
interactions, and the difference in distance between them. We require
both photons to interact inside the detector. Running conditions of the
detector are those from SEDINE’s physics run. From 15 cm and above,
both photons have to have a radial distance difference of at least 2 cm
to be resolved distinctly.

centre, the spherical symmetry of the setup means that volume represents at most 1/8

of the whole detector, so the generalization is appropriate. Note that this difference is

not the actual distance between photons, but the difference in radial positions. Since

the photons are unlikely to be aligned with the radius of the sphere, the real distance

between the photon interactions will often need to be longer than that before they

become separable.
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If we wanted to decrease this minimum distance, we would have to change the

running conditions to either decrease the diffusion time of electrons, or increase the

dependency of the drift time on the radius. The former would make for narrower

pulses, and the latter would spread both pulses further apart from each other. Un-

fortunately, both are strongly correlated, and change roughly at the same rate when

changing the voltage or the pressure of any given gas (cf. Sec. 5.3). So this distance

will mostly be determined by the choice of gas used.

Summary

In this chapter, we have explored algorithms to identify the type and energy of

recorded events, and if multiple pulses were recorded at once (and if so, what were

the characteristics of each). The main processing applied to the recorded pulses was

their deconvolution by the response function of the SPC, based on our understand-

ing of the detector. This procedure corrects for the effect of the ballistic deficit (i.e.

wider pulses having a smaller amplitude than narrower pulses of same energy), and

separating pulses as close as 20µs from each other. For SEDINE conditions, this

corresponds to energy depositions as close as 2 cm radially from each other, and an

axion event detection efficiency of up to 35% at 12 keV.

The performance of the described algorithms was tested against simulations, which

will be covered in the next chapter.
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Chapter 5

Simulations

Whenever trying to interpret results from an experiment, a crucial step is to compare

it with the results we were expecting before doing the experiment. In some situations,

this can be as straightforward as comparing two different experiments in different

conditions. For example, if we could take two datasets with the KK axion signal

respectively “switched off” and “switched on”, we would then just need to compare

the number of events in the region of interest for both to either set constraints or

prove their existence. Unfortunately, it’s impossible to “switch off” the KK axion

signal, so we need to turn to simulations to produce that dataset artificially.

In this chapter, I will mainly cover the different steps we take to simulate events.

The focus will be on the technical aspects of the simulation, but also on developing

an understanding of the response of our detector to varying conditions, trying to give

quantitative rules-of-thumb wherever possible. This chapter will primarily cover the

simulation of the drift of primary electrons, with the last part going over consider-

ations specific to KK axions. The signal formation process is covered in App. C.0.2

instead.

Most applications of the simulations are described elsewhere. For the comparison
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of simulations with data for calibration purposes, see Chap. 6. For the characteri-

zation of different pulse processing algorithms, see the relevant sections in Chap. 4.

Finally, for the application of the simulations to extract KK axion limits based on

our data, see Chap. 8.

5.1 Simple simulation

Since, as seen in Sec. 4, we understand how the pulse formation of our detector

works, we can use this understanding to simulate pulses to estimate the efficiency

of our analysis and cuts. The steps for our original, simple simulation, as seen on

Fig. 5.1, are:

1 Selection of energy E (electron-equivalent) and position r of a pointlike event in

the detector. At this level, we may use an uniform distribution of energy, and

positions either uniformly distributed in the volume or very close to the inner

surface of the shell. For pointlike deposition in the bulk, we take r = Rshell u
1/3
1 ,

and θ = acos(2u2 − 1), where u1, u2 are the results from two uniform distri-

butions between 0 and 1 (θ is not relevant in spherically symmetric situations,

but will be for the cylindrically symmetric ones).

2 Get the number of primary electrons from the energy. We take this from a

Poisson distribution with mean np = E/WI , where WI is the mean ionization

energy for the gas. If deemed necessary, apply an adhoc correction based on r,

to account for attachment.

3 Get the standard deviation σ of the drift time of the primary electrons from the

position r. Some preliminary Magboltz simulations, contrasted with the data,
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suggest that σ = σmax(r/rmax)
α, with α ∼ 2.75 (see Sec. 5.3).

4 Draw the arrival time of each primary electron from a Gaussian distribution

with standard deviation σ.

5 For each primary electron avalanche, draw a gain G from a Polya distribution1.

6 Convolve the resulting signal with the current induced by a drifting ion.

7 Convolve the resulting signal with the transfer function of our preamplifier.

8 To simulate the noise of our detector, add noise taken from the pre-trigger

region of a randomly selected event from a run with same physical conditions

as our simulation. To match the simulated pulse to the noise, we first need to

multiply the pulse by a constant, to match the equivalence between ADUs and

eVs given by our calibrations.

9 Store the energy, number of primary electrons, total number of secondary elec-

trons, diffusion time, RMS of our signal (pre-convolutions), and any other vari-

ables we may need for our posterior analysis.

11 Repeat N times to generate a simulated run.

This simple simulation has the advantage of being extremely fast, generating thou-

sands of events in a second. It was also the first code that could generate simulated

runs for testing purposes. It’s still usable for any tests that are mostly concerned

1The nature of the charge multiplication in the avalanche region might lead one to assume the gain
distribution should follow a decaying exponential distribution. However, experimental measurements
with Micromegas [55, 56] and Gas Electron Multipliers [57] show that at high ratios of electric field
to pressure, the gain from each primary electron is better described by a Polya distribution.
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Figure 5.1: The different steps of the simulation, after np and σ have been determined.

about the general shape of events, rather than their distribution. The main limi-

tation of this approach is that it does not take into account the real electron drift

diffusion inside the detector. For that, we need to go deeper into steps 3 and 4.

5.2 Electron drift simulation

For the full simulation, we require a proper way to model the transport of electrons

in the drift region, and their spread in arrival times, which will in turn affect the

risetime of the final pulse. To do this, we need information on the speed at which

electrons drift inside the gas, and how they diffuse as they drift. This information can

be obtained by using Magboltz [58] to generate electron drift velocity and diffusion

inside a given gas composition and for a given electric field (through Monte Carlo

simulations of electron collisions), and using COMSOL [59] to calculate the electric

field strength and direction at each point inside the detector (through finite-element

computations). More details on Magboltz and COMSOL will be given in the next
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sections.

Once we have this information, simulating the drift of an electron is relatively

straightforward. We assume a cylindrically symmetric detector. For an electron in a

given position (ρ, z), we obtain the electric field from COMSOL, Eρ, Ez. We can get

the field strength E =
√
E2
ρ + E2

z . From Magboltz, we then obtain the drift velocity

of the electron, v(E), and the longitudinal and transverse coefficients DL(E), DT(E).

Since the strength of the electric field depends on the position of the electron, these

values have to be updated after small “steps” of the electron, dr, usually taken to be

half a centimetre or less. Thus, before taking the diffusion of electrons into account,

the new position of the electron is:

ρ→ ρ+ dr
Erho
E

z → z + dr
Ez
E

Note that so far the process is deterministic. Since we are fixing the length of

the step to dr, this gives us a time for the step of dt = dr/v(E). This is important

to compute the diffusion of the electron, since it depends on the amount of time the

electron spends in the drift region. In particular, the variance in the position of the

electron in the longitudinal direction is DL(E) dt, and similarly for both transverse

directions. If we name drDL, drDT1 and drDT2 the difference in the final position of

the electron after one step due to diffusion in the longitudinal and both transverse

directions, we have:

drDL = N (0,
√

DL(E) dt)
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drDT1 = N (0,
√

DT(E) dt)

drDT2 = N (0,
√

DT(E) dt)

whereN (0, σ) is the result from a normal distribution centred at 0 with a standard

deviation of σ. As such, these values are random, not deterministic. Separating the

effect of each direction on the final position of the electron after one step, we get the

following corrections in cylindrical coordinates:

� The longitudinal direction

ρ→ ρ+ drDL
Eρ
E

z → z + drDL
Ez
E

� The transverse direction in the ρ− z plane

ρ→ ρ− drDT1
Ez
E

z → z + drDT1
Eρ
E

� The transverse direction orthogonal to the ρ− z plane

ρ→
√
ρ2 + dr2

DT2

z → z

Technically, the correction for the diffusion orthogonal to the ρ − z plane should

be applied last, but in practice it’s a negligible contribution to the final position of

the electron. The other two corrections can be applied in either order.
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This process is then repeated, recomputing the new values for the electric field,

the drift velocity and the diffusion coefficients after every step, until the electron

either reaches the sensor, or escapes the detector. The arrival time of all electrons

that reach the sensor is recorded, and a pulse is generated for each of them starting

at their arrival time (including the effect from the avalanche), then added together.

The final pulse is then shifted so that it starts at the centre of the event window.

Magboltz also has information on the probability of an electron being captured

during their drift. For a step of length dr, the odds of survival for the electron are:

p = e−ATT(E) dr

If we want to simulate attachment at the same time as drift times, the additional

step is to draw a random number between 0 and 1, and only keep the electron if it’s

smaller than p.

5.3 Magboltz

Magboltz is a numerical solver for the Boltzmann transport equations for electrons

in gas, under the influence of an electric and magnetic field[58]. We use it to find the

drift speed and diffusion of electrons in our detectors depending on the run conditions.

In our case, we are only interested in the effect from a pure electric field, which is the

reason why the speed of the electrons is purely in the direction of the field (longitudinal

direction), and both of the transverse diffusion coefficients are identical. In Fig. 5.2,

you can see the computed drift velocity, longitudinal diffusion coefficient, attachment

coefficient, and the Townsend coefficient for an electronic avalanche.
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(a) (b)

(c) (d)

Figure 5.2: Magboltz data for 3.1 bar of Neon with 0.7% of CH4, and an Oxygen
contamination of 16 ppb.

For the purpose of visualizing the behaviour of electrons inside the detector, draw-

ing these values as a function of the electric field is not useful. Instead, we can assume

the ideal electric field:

E(r) = V0
rsensor Rshell

rsensor +Rshell

/ r2

to show these same values in terms of the radius from the centre of the detector,
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as shown on Fig. 5.3. This clearly shows that the electron drift speed becomes slower

farther away from the sensor, while the attachment probability becomes larger. A

potentially misleading conclusion from looking at the longitudinal diffusion coefficient

is that, since it stays roughly constant throughout most of the drift region of the

detector, that would mean that the diffusion time depends roughly linearly on the

radius from which the electron started drifting. This is incorrect, however, since this

does not take into account the fact that the drift velocity is not constant in that same

region.

To provide a more accurate plot of the contribution to the total diffusion time, I

introduce a new parameter, the “temporal diffusion parameter”, defined as DIFF =

DL/v3, where I’ve assumed that either transverse diffusion will have little effect on

the final arrival time of the electron (as is the case for our data). This new term, with

units of time squared by distance, can be integrated over the length of the electron

path to obtain the variance in arrival times of multiple electrons drifting through the

same path.

A simple demonstration of the definition of this term can be done by assuming

steps in a single dimension, and that the effect of the electron diffusion is small

compared to the distance covered by the electron drift. After some time dt, the

electron will move a distance dx′ = v dt + N (0,
√
DLdt). But, if instead of looking

for the distance travelled after a time dt, we want to know the time it took to move a

distance dx = v dt, we then have dt′ = dt dx
dx′

= dt 1
1+N (0,

√
DLdt)/(v dt)

. Then, since the

diffusion effect is small compared to the step size, dt′ ' dt (1−N (0,
√
DLdt)/(v dt)) =

dt − N (0,
√
DLdt/v2) , where I have also used that N (0, A σ)) = AN (0, σ). After

simplification, we end up with:
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(a) (b)

(c) (d)

Figure 5.3: Same Magboltz data, adapted to the scenario of a 30 cm radius sphere
with a 3.15 mm sensor at 2520 V. The bottom-right plot shows the
Townsend coefficient in green, shooting up below 1 cm, to indicate the
point below which attachment can be ignored.

dt′ = dt−N (0,
√

(DL/v3) dx)

or, equivalently, DIFF = DL/v3. We can obtain the diffusion time from DIFF

with the following relationship:
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(a) (b)

Figure 5.4: Drift and diffusion time as a function of radius for an ideal electric field,
with the same running conditions. The modelled functions are in black.

σdiff =

√∫ revent

rsensor

DIFF(E(x)) dx

With both v(r) and DIFF(r) known in the ideal field scenario, it becomes easy to

plot the dependency between drift time or diffusion time and the radius, as shown

on Fig. 5.4. Some quick fits show that, for the case of a 30 cm radius sphere with

a sensor radius of 3.15 mm, an applied voltage of 2520 V, and 3.1 bar of Neon with

0.7% CH4, the drift time is very well modeled by drift(r) = 463 (r/30)2.5 above 7 cm,

while the diffusion time is modeled by σdiff (r) = 21.0 (r/30)2.75 above 13 cm

Finally, while the results shown so far allow us to quickly understand how the

behaviour of the electrons drift will change when we modify V , and hence the electric

field, we haven’t yet mentioned the effect of modifying the pressure. Fig. 5.5 shows the

drift speed and longitudinal diffusion for Neon with 2% CH4 for varying pressures.

Noting that the usual electric fields in the drift region of our detectors is in the

10−1 − 101 V/cm range, we clearly see an approximate dependency of 1/P for both



5.4. COMSOL 105

(a) (b)

Figure 5.5: Magboltz data for 1.0, 1.5, 2.00 bar of Neon with 2.0% of CH4.

the drift speed and the longitudinal diffusion. Furthermore, the drift speed can be

approximated by v(E) = αE0.91 for electric fields typical for the drift region, while

the longitudinal diffusion is close to constant. Putting all this together, we get, in

the case of Neon with traces of CH4:

v ∝ V 0.91/P

σdiff ∝ P/V 1.33

5.4 COMSOL

COMSOL Multiphysics [59] is a finite-element analysis tool and solver. We use it to

solve Maxwell’s equations within the detector to get its electric field configuration.

The input we provide to COMSOL is the geometry of the detector, the physical

properties of the materials involved (mainly conductors, insulators, and gas), and

the voltage applied on the boundaries of the detector. COMSOL then generates a
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meshing for the detector, and computes the electric field and potential for all the

edges of the meshing. The results are then interpolated and stored for late use2. This

allows our simulations to take the anisotropies of the field (mainly due to the rod)

into account.

For the purpose of the simulations described in this chapter, the detector configu-

rations studied were all kept cylindrically symmetric. I will be giving some examples

of configurations where that is not the case, but they were not used for generating

any simulated runs, and are only shown for illustrative purposes. The electron drift

code is written assuming a cylindrically symmetric geometry, but could be adapted

by an enterprising new grad student3 to accept 3D geometries.

The physics run I used to set limits on KK axions used a simple rod configuration,

and hence was the one whose behaviour interested me the most. The field config-

uration with a secondary “umbrella” electrode is also shown here for comparison.

For the work I performed to simulate more recent models of central electrodes, see

App. J; they also serve as a good demonstration of the limits of what we can do with

COMSOL at time of writing. More quantitative comparisons between simulations

and calibration data will be discussed on Chapter 6.

5.4.1 Simple rod

The simple scenario has a grounded metallic rod holding the high voltage electrode

in the centre, and shielding the wire carrying the high voltage to the electrode. A

picture of the setup in COMSOL and a close-up of an example of such a sensor can

2We save the interpolated data in a ROOT histogram, because looking up values in a histogram
is much faster than interpolating values from the mesh. Doing the latter would severely slow down
the simulation of the electrons drifting in the detector.

3Just not the one writing this document.
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(a) Central electrode (b) COMSOL geometry

Figure 5.6: SPC setup with a simple sensor.

be seen in Fig. 5.6.

The presence of the grounded rod disturbs the local electric field, and moves us

away from the ideal scenario of an electrode floating in the centre of the detector.

The field becomes more anisotropic closer to the rod in two ways: the field lines

curve around towards the rod, leading to longer drift paths for electrons towards

the electrode; and the lower field close to the rod means a smaller avalanche will be

produced for primary electrons reaching the electrode in that area.

These changes to the field configuration help explain the larger dispersions in dif-

fusion and drift times that we observe in our data, compared to what we would see for

the ideal geometry. We can do this quantitatively with our electron drift code, obtain-

ing a tail of long drift times corresponding to events happening close to the rod. And,

while we can also use this simulation to explain the presence of low amplitude events

in calibration data, even after correcting for attachment, this explanation remains

qualitative, since we do not currently have any avalanche simulations reliable enough
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Figure 5.7: Field lines for a detector with a simple rod and electrode configuration.
Field lines away from the rod stay fairly isotropic, but become increasingly
curved as we get closer to it.

to consistently match the data. Any corrections to the distribution in amplitudes for

an event of a given energy have to stay ad hoc for now, based on those calibrations;

one such correction was applied for the first WIMP results with NEWS-G [42].

5.4.2 Rod with umbrella

One of the first attempts at correcting the field for better isotropic behaviour was to

add a second electrode, called the “umbrella”. Multiple designs of umbrellas have been

developed and tested, always with the objective to improve the amplitude resolution

of the detector. While we do not have a reliable way to translate the strength of the

electric field into a value for the avalanche, we can still gain qualitative insights into

the homogeneity of the gain from COMSOL simulations.

Fig. 5.8 shows one such sensor with an umbrella. Usage of this sensor to take cal-

ibration data at Queen’s revealed that applying a negative voltage on the secondary

electrode improved the energy resolution of the detector. This was contrary to the

common wisdom of the collaboration, which would have expected the resolution to
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(a) Electrode with umbrella (b) COMSOL geometry

Figure 5.8: SPC setup with a sensor with umbrella.

improve if the umbrella matched the potential it would experience in an ideal geom-

etry, since it would help reduce the anisotropy of the field due to the rod. In fact,

if we show the electric field close to the electrode for both the simple rod configura-

tion and the rod with umbrella, we do see a slight degradation of the isotropy of the

field for the negatively charged umbrella, as shown on Fig. 5.9. This is even more

apparent when looking at the field lines in the drift region of the detector, which are

significantly modified by the presence of the umbrella.

While this may appear puzzling at first, COMSOL reveals a straightforward ex-

planation. The field lines for the simple rod drop off in density at an angle of 2.14 rad

above the vertical line. However, the presence of a negatively charged umbrella makes

field lines twist away from it, and they are pushed back to the other side of the central

electrode: as such, the field line density drops off at an angle of 1.36 rad. So, even

though the electric field close to the central electrode is less isotropic with the addi-

tion of a negatively charged umbrella, the field lines are concentrated in the section
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(a) Field close to sensor (simple rod) (b) Field close to sensor (umbrella rod)

(c) Field lines (simple rod) (d) Field lines (umbrella rod)

Figure 5.9: Comparison between COMSOL simulations of a detector with a simple
rod, and one with a rod equipped with a secondary electrode close to the
centre, called the “umbrella”.
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of the electrode with a homogeneous field, paradoxically leading to an improvement

of the energy resolution. This does come at the cost of an increase in “dead volume”,

where released primary electrons are not collected by the central electrode, but this

is almost always a reasonable trade-off.

5.4.3 Note on the effect of space charge

All the simulations done with COMSOL assume static conditions, and ignore the

space charge effect from ions slowly drifting through the detector. While this is

unlikely to be a problem during physics runs, when the event rate is low, we may

expect calibration runs to exhibit different behaviour. Recall the equation C.18 for

the static electric field under continuous ion formation rate of IA in an ideal geometry:

E(r) =
1

r2

√
(
Q

4πε0
)2 +

IA
6πε0µ

(r3 − r3
sensor) (5.1)

This gives us an idea of when space charge effects start dominating over the field

created by the central electrode. If we want the relative difference between the field

with and without space charge to be less than a certain factor α at the edge of the

detector (the point where space charge has maximum effect), we need

IA < ((1 + α)− 1) 6πε0 µV
2

0

r2
0

R3
shell − r3

sensor

where r0 = Rshell rsensor/(Rshell− rsensor). Taking α = 0.1, and making an approx-

imation for Rshell � rsensor, we get:

IA < 2.2 · 106 µV 2
0

r2
sensor

R3
shell
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where [IA] = #ions/s, [µ] = cm2/V/s, and [Rshell] = [rsensor] = cm. For illustra-

tive purposes, this corresponds to:

� For SEDINE, with a 30 cm radius shell and a 0.315 cm radius electrode with

an applied voltage of 2520 V, with 3 bar of Neon (µ0 = 7.5 cm2/V/s · bar), and

assuming an avalanche gain of 7000 secondary charges per primary charge, we

start seeing space charge effects at 66 Hz of 10 keV events.

� For SNOGLOBE, with a 67.5 cm radius shell and a 1.4 cm radius achinos with

an applied voltage of 1600 V, with 1 bar of Neon (µ0 = 7.5 cm2/V/s · bar), and

assuming an avalanche gain of 5000 secondary charges per primary charge, we

start seeing space charge effects at 5.7 Hz of 10 keV events.

� For a test detector, with a 15 cm radius shell and a 0.1 cm radius electrode with

an applied voltage of 1200 V, with 0.2 bar of Argon (µ0 = 1.5 cm2/V/s · bar),

and assuming an avalanche gain of 5000 secondary charges per primary charge,

we start seeing space charge effects at 51 Hz of 10 keV events.

Of course, the choice of 10 keV events is arbitrary, for the sake of getting numerical

values for the rate. The necessary rate will be correspondingly higher (resp. lower) if

the events are lower (resp. higher) in energy. It’s the total number of secondary ions

they indirectly create that matter, not their individual energies. Please note that the

values given in the previous list are upper bounds on the ion formation rate so that

the we can neglect the effect of the space charge everywhere in the detector, and so

we can trust COMSOL simulations. Due to the square root factor and the r3 term

in the electric field equation, we need a ∼ 50 times higher ion formation rate for the

space charge field to dominate in the outer half of the detector.
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(a) (b)

Figure 5.10: Comparison of drift and diffusion times with and without space charge,
for a test detector with a 15 cm radius shell and a 0.1 cm radius elec-
trode with an applied voltage of 1200 V, with 0.2 bar of Argon (µ0 =
1.5 cm2/V/s · bar), and an avalanche gain of 5000. The ion formation
rate is given by 500 Hz of 10 keV events.

With a high enough ion formation rate, the electric field in the drift region of

the detector will be dominated by the contribution from the space charge. In those

situations, the results from COMSOL simulations are not appropriate, unless we are

just interested in upper value constraints on the drift and diffusion time. Fig 5.10

shows the decrease in drift and diffusion times when applying a sizeable ion formation

rate. The analytical formula for the electric field with space charge can be used for

the electron drift simulation, but then any anisotropic effect from the presence of the

rod or the umbrella won’t be taken into consideration. As such, calibration runs with

high event rates remain difficult to compare to simulations.
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5.5 Integration of results from Geant4 simulations

For the simulations of the background rate for our detector, it was also important

to be able to use the results produced by A. Brossard with Geant4 [60–62] in the

pulse simulation code. Geant4 is a Monte Carlo based toolkit to simulate the passage

of particles through matter. Particles are propagated through the various levels of

shielding of the detector, then through the gas inside, and their interactions are

recorded with their position, energy deposited, mother particle, and so on. For more

information on the nature of these simulations as applied to NEWS-G detectors,

please see A. Brossard’s thesis [35].

The files where this information is recorded are then used as the basis for events

in our run simulation code. The position and energy deposition of all interactions

within a short time window (∼ 1 ms) are gathered, then the corresponding primary

electrons generated by those interactions are drifted, and their arrival times used to

generate a pulse. An example can be seen on Fig. 5.11.

5.6 Axion simulations

The only difference between axion simulations and the rest is the nature of the en-

ergy deposition in the detector, and their energy distribution. The latter is rather

straightforward, but the former requires further explanations as to the behaviour of

the created photons. Just as for the previous sections, the focus here will be on the

technical aspects of the simulation, but some time will also be spent on the conclusions

drawn for choosing optimal running conditions, expanded upon in Sec. 8.3.
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(a) (b)

Figure 5.11: Geant4 simulation of a 1 MeV electron inside the detector. Left: Vi-
sualization of its energy deposition inside the detector, with the star
marking the starting position; while the track of the electron was rel-
atively straight, the projection of its path into cylindrical coordinates
introduces an artificial “bend” in its trajectory. Right: Pulse generated
from this event.

5.6.1 Method

Since solar KK axion are decays, rather than interactions, we expect the events to

be uniformly distributed in the volume of the detector. An axion decay will generate

two photons in opposite directions, isotropically. The mass/energy spectrum of KK

axions is taken from [9] and normalized by the expected solar KK axion density on

Earth, as can be see on Fig. 5.12. For an axion event simulation, a random mass will

be taken from this distribution, and the created photons will be given half the mass

of the axion as their energy.

The position of the decay is chosen randomly the same way as for bulk pointlike

simulations:

r = Rshell u
1/3
1
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(a) (b)

Figure 5.12: Left: decay spectrum of solar KK axions on Earth, for an assumed axion
local density of 1.0·1014 m3 [9]. Right: number density of solar KK axions
depending on the distance from the Sun; the red fitted r−4 curve allows
extrapolation to the distance from Earth to the Sun, 215R�, for a local
density of 4.075 · 1013 m3 [10].

θ = acos(2u2 − 1)

where u1 and u2 are two independent random draws from a uniform distribution

between 0 and 1. This is then transformed into Cartesian coordinates:

x = r sin(θ)

y = 0

z = r cos(θ)
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where y = 0 can be chosen without loss of generality due to the cylindrical sym-

metry of the setup. The direction of one of the produced photons is generated by

drawing three times from a normal distribution to produce an isotropic result:

xph = n1/N

yph = n2/N

zph = n3/N

where N =
√
n2

1 + n2
2 + n2

3 is the normalization constant. The direction for the

second photon is just the opposite one. Then, knowing the mean absorption length

λ of the photon for a given energy (half the mass of the decaying axion for each),

we generate the actual absorption lengths l1 and l2 from an exponential distribution

with mean λ. This gives a final position for both interactions of:

x1 = r sin(θ) + l1 xph x2 = r sin(θ)− l2 xph (5.2)

y1 = +l1 yph y2 = −l2 yph (5.3)

z1 = r cos(θ) + l1 zph z2 = r cos(θ)− l2 zph (5.4)

which we convert back into cylindrical coordinates for use with the electron drift

simulation code, assuming either position is still within the bounds of the detector.

Note that while an axion could decay inside the detector but still have both photons

exit it before interacting, the fact that both photons travel in opposite directions

means it’s not possible for an axion to decay outside the detector yet have both

created photons interact within. As such, we only need to simulate axion decays
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inside the detector.

5.6.2 Photon absorption length

The photon absorption length is computed from the NIST X-ray absorption coefficient

database [63]. The absorption length of a photon of a given energy in a pure gas is

λ = 1/(µen/ρ)/ρ, where ρ is the mass density of the gas. For gas mixtures, the

effective µen/ρ is built from the NIST data with the relationship:

µen/ρ =
∑
i

(µen/ρ)i
PPi ρi
ρ

where (µen/ρ)i is the absorption coefficient of gas element i, PPi is the partial

pressure of gas element i, ρi is its density at standard temperature and pressure, and

ρ is the total density of the gas in the experimental conditions. The absorption length

of the photon will then depend on the energy of the photon, as do the absorption

coefficients shown on Fig. 5.13. The use of the lower absorption coefficients instead of

the attenuation coefficients leads to a conservative underestimation of the expected

number of double events in the detector4. For the run conditions of SEDINE, using

Neon with 0.7% CH4 at 3.1 bar, the absorption coefficients are dominated by the con-

tribution from the Neon. The absorption lengths for the range of energies considered

are shown on Fig. 5.13 too. The lack of data under 1 keV effectively limits our search

for axions to masses above 2 keV, but the impact on our exposure is negligible.

4To see this, consider three categories of events: one in which a photon is completely absorbed,
one in which a photon escapes the detector, and another in which the photon interacts without
leaving all its energy in the gas (or interacts multiple times before doing so). By taking only the
lower absorption coefficient, I am effectively setting all events in the latter category into the second
one, ignoring them completely. As such, the total number of expected axion events will be lower
than the real one, giving conservative results.
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(a) (b)

Figure 5.13: Left: X-ray mass attenuation coefficient µ/ρ and mass absorption coef-
ficient µen/ρ in Neon [63].For photons under 10 keV, the difference be-
tween µ/ρ and µen/ρ remains under 5 %; the difference jumps to ∼ 25 %
at 20 keV. Right: Absorption length of photons under SEDINE running
conditions; the radius of the detector is shown with the horizontal red
line.

For a given absorption length and detector radius, the chances of both photons

being captured is a purely geometric consideration that depends only on the ratio

λ/Rshell. While an analytical formula does not exist, a simulation with the ideal

geometry is pretty straightforward; the results are shown on Fig. 5.14. This gives a

containment probability of 0.5 at λ/Rshell = 0.39, and 0.1 at λ/Rshell = 1.55, quickly

decreasing as ∼ 1/λ2 past that point. Since the peak of the solar KK axion decay rate

is at ∼ 8 keV, we want the attenuation length of 4 keV photons to be shorter than

∼ 0.4Rshell. The attenuation length is inversely proportional to the gas pressure, so

this can be achieved easily by increasing the pressure.

However, increasing the pressure will in turn decrease the attenuation length at

low energies, making both photon interactions hard to separate. This effect is much

harder to relate to a single variable: the minimum radial distance between both
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(a) (b)

Figure 5.14: Left: In red, the probability of both photons being absorbed within the
detector for a given attenuation length; in green, 0.54 (1−e−1/x2), which
fits the containment probability increasingly well after λ/Rshell > 1.
Right: separability of both photons, making the simplifying assumption
that two photons are separable if their radial position differs by more
than a fixed δ; plots for various values of δ are shown.

interactions needed to separate them depends on the position of the interactions,

since the drift time is not proportional to the radial position. Moreover, the drift time

- radial position dependency changes in a non-trivial manner with gas pressure. As

such, any optimization of experimental setup has to be done through comparing full

simulations in varying conditions. Still, some qualitative conclusions can be made if

we make the simplifying assumption that two photons are separable if and only if their

radial position differs by more than a fixed distance δ. The results from simulations

for various values of δ are shown on Fig. 5.14. They suggest that a separability of

∼ 50 % is reached when λ > 1.5 δ. So, assuming for example that δ = 0.1Rshell, and

to keep the peak of the solar KK axion decay rate above this cut-off point, we want

the attenuation length of 4 keV photons to be larger than ∼ 0.15Rshell.

Looking back at Fig. 5.13, we see that in the running conditions of SEDINE, a
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4 keV photon had an attenuation length of 2 cm, or ∼ 0.07Rshell. This is a shorter

attenuation length than what would be optimal, unless we are overestimating δ. By

decreasing the pressure in the detector by a factor of up to 2, we would improve

the separability of axions with energies around the maximum of the distribution,

and hence increase our sensitivity. Still, for a physics run taken in a completely

different context (search for WIMPs), the conditions are more than sufficient to set

first constraints on solar KK axions. For a more quantitative optimization of the

running conditions for SNOGLOBE, full simulations have to be run and compared to

each other.

Summary

In this chapter, we have described the multiple steps involved in the creation of a

signal in our detector, together with the tools we have used to simulate them. They

can be categorized roughly into four big areas:

� Energy deposition within the detector (either GEANT4 or ad hoc code);

� Electric field configuration (COMSOL);

� Electron drift within that field (both Magboltz and ad hoc code);

� Pulse formation (ad hoc code).

Altogether, a run can be fully simulated in any configuration of (cylindrically

symmetric) SPC, and then treated in the same way as real data. But to use these

simulations to estimate the efficiency of our detector to axions, they must first be

calibrated, as will be shown in the next chapter.
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Chapter 6

Calibrating the simulations

In an ideal world, we would be able to understand everything about our detector just

from an engineering drawing, working our way up from first principles, and maybe

running some simulations. Unfortunately, that’s not the world we live in, so we need

to calibrate the detector to verify that our observations match our expectations. In

this section, I will describe

� the different unknown physical parameters that affect SPCs;

� what theory and/or simulations predict;

� which calibrations can verify those predictions;

� whether (and how) we can alter our models to match the calibrations, if relevant.

I will mainly cover calibrations that were used for the SEDINE physics run. Other

calibrations used within the collaboration that were unavailable for one reason or

another will only be touched upon for context. For more information on the available

calibration methods themselves, refer to Sec. E.0.2. The effect on axion search results

of uncertainties in SEDINE calibrations will be covered in Sec. K.
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6.1 Electron drift time

We don’t have direct access to any measure that would inform us on the speed of

electrons drifting in the SEDINE gas detector. Normally, this sort of measures are

done through knowledge of both the beginning (t0) and the end of the drift process

of an electron, with their associated position and time. For example, a TPC uses the

time difference between the scintillation and ionization signals to find the drift time,

and the diffusion in the ionization signal to determine the drift distance. With an

SPC, we only have the ionization signal, so we cannot use this technique. Instead,

we must find other ways to find the starting time and position of the drift.

6.1.1 Laser data

The first and most reliable method is to use a pulsed laser. By shining a λ =

213 nm pulsed laser on the inner surface of the detector’s shell, photoelectrons can

be extracted on demand. Better yet, they are at a known position (the inner surface

of the shell) and at a known time (laser sends a trigger signal before each pulse).

This provides one calibration point: the drift time of electrons from the surface to

the sensor. An example of one such calibration event is shown in Fig. 6.1.

Unfortunately, while this technique has been used multiple times to test the match

between calibrations and simulations in multiple detectors, SEDINE did not benefit

from a laser setup. As such, other techniques had to be developed to calibrate the

drift speed of electrons.
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Figure 6.1: Juxtaposed SPC (blue) and laser trigger (red) channels. The delay be-
tween the 50% point of the rise in the SPC channel signal with respect to
the beginning of the laser trigger signal gives the drift time of electrons
from the surface to the central electrode.

6.1.2 Track events

In the absence of a pulsed laser, obtaining a calibration point for the drift time is

still possible, if trickier. The measure relies on track events that start at the inner

surface of the detector and pass next to the central electrode. For such an energy

deposition, the electrons released closest to the sensor will induce a signal almost

instantly, providing a t0 of sorts for the drift time of the electrons released close to

the surface. In other words, the maximum time length of a track will be given by the

drift time of surface electrons, plus a term that depends on the spread in arrival times
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(a) Width vs Ampl (b) Width (different amplitude cuts)

Figure 6.2: Distribution of widths for high width events in the background run,
after cutting out alpha events. The amplitude cuts on the right plot
are, from top to bottom, > 150 kADUs, > 200 kADUs,> 250 kADUs,>
300 kADUs.We can see that the maximum width depends on energy, but
seems to be reached somewhere in the 200−250 kADUs range and above.

of those electrons. Since the “end” of a distribution is not usually a feature that is

easy to pinpoint, we can look instead at the point where the pulse width distribution

starts decaying in number. The distribution itself can be seen in Fig. 6.2.

We can see that the maximum width depends on the energy. While this is not

completely unexpected, since the time difference between the first and last electron

from a given energy deposition will tend to increase with the number of primary

electrons generated due to their diffusion, this dependency is higher than what would

be expected from this effect alone. The simple explanation is just that at lower

amplitudes, these events are not energetic enough to actually cover the whole range

of distances from the sensor. The widths seem to stabilize somewhere above the

200− 250 kADUs range and above. To be conservative about the uncertainty of this

measure, we will take the “maximum” width of an event in this configuration to be

between 398.0µs and 446.8µs, which are the results from fitting a gaussian on the
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(a) Width vs Ampl (b) Width (different amplitude cuts)

Figure 6.3: Distribution of widths for high width events in the simulated track
dataset. The amplitude cuts on the right plot are, from top to bottom,
> 150 kADUs, > 200 kADUs, > 250 kADUs, > 300 kADUs. We can see
that the width at the maximum of the distribution depends on energy,
but stabilizes somewhere in the 200− 250 kADUs range and above.

width distribution above 200 kADUs and 300 kADUs, respectively.

Due to the complexity of this measure, a straight interpretation of the width of

these events as the drift time is not appropriate. Instead, a simulation of tracks

produced by 1000 keV electrons generated in the bulk of the detector was done with

Geant4, then fed into the pulse generator simulations. The same processing as the

one described for the background run was performed on this simulated dataset, giving

the results shown on Fig. 6.3.

These show a much sharper drop-off in event count past a certain point around

450− 500µs, close to the expected surface drift time of 460µs. We also see a depen-

dency of the drop-off point based on the amplitude of the event. Fitting the different

width distributions based on amplitude cuts gives us a maximum in the width dis-

tributions between 395.7µs and 449.9µs, very close to the measure from the actual
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data.

However, since we are not doing a direct measurement of the drift time, but

rather of a derived value (the pulse width), and comparing the results from data and

simulations, the uncertainty of this process will be a combination of the uncertainty of

both measures. Since we don’t have a real measure either so much as a range of values,

we must make the assumption that any value in that range is equally likely, leading

to a higher uncertainty than if we were assuming the likelihood of each value to follow

a gaussian distribution with similar width ranges. This gives a data measurement of

422.4±24.4µs, and a simulation measurement of 422.8±27.1µs. While the averages

are remarkably similar, the correction factor due to the ranges in the measures still

has a variance of 5%, as shown in Fig. 6.4.

6.1.3 Muon veto

A potential method to get more calibration points for the drift time has been put

forward, but not tested at the time of writing. Detectors on the surface are constantly

crossed by cosmic muons. By placing a muon veto with a good enough position

discrimination (e.g. a Micromegas) above and below the detector, both the time

of crossing and the path of the muon through the detector can be determined. In

turn, the point of closest approach to the sensor can be computed. This means that

we have both a t0 and a position for the beginning of the drift. While this approach

would likely suffer from some similar precision issues than the track method discussed

above, the ability to have measurement points for potentially any position inside the

detector, rather than just the surface, would make it extremely useful.
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Figure 6.4: Distribution of correction factors between data and simulations when the
values of the measures for the maximum width of either is left to vary
uniformly along their whole range.

6.1.4 Limits of approach

The main issue with the calibrations we have access to is that we have a single

measurement point (the surface), while we are interested in knowing the drift time

from any point inside the detector. This makes us reliant on simulations to find the

values for all intermediate points. This could fail if either the electron drift data

(from Magboltz) or the electric field (from COMSOL) are wrong.

An illustration of the problem is shown on Fig. 6.5. Based on SEDINE simulations,

the drift time can be approximated by the function t = tmax(
r

rmax
)α, with tmax =

470µs, rmax = 30 cm, α = 2.5. Let us assume that, even if the simulations are wrong,
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Figure 6.5: t = tmax(
r

rmax
)α, for different values of α. For tmax = 470µs, rmax = 30 cm,

α = 2.5, this reproduces the drift time vs radius curve obtained through
Magboltz simulations.

the drift time has to follow this type of relationship. Then rmax is fixed by the detector

size, and tmax is given by the calibration of the surface drift time, but we do not have

a good way to constrain α. An attempt to characterize this effect in the context of

axion searches is described in App. K.2.

6.2 Electron drift diffusion

Many of the points presented for the electron drift speed are just as valid for the

calibration of their spread, and so will not be repeated. The main difference between

the two is the slightly increased complexity of the relationship between simulation

data and calibration data.
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Figure 6.6: Risetime of events in the 2−10 keV energy range for the SEDINE physics
data (blue), compared with simulations of electrons in same energy range
generated at the surface (green). Simulations normalized to have a similar
height as the data.

6.2.1 Surface events

Due to the presence of impurities on the shell of the detector, a larger proportion of

events are generated there than in the bulk. In the context of rare event searches,

we would use the estimation of pulse risetimes to reject this background; however,

they also offer a natural calibration of the spread in arrival time of primary electrons

coming from the surface. Alternatively, a laser can be used to shine on the inner

surface of the shell, reproducing this population while discriminating against non-

surface events, but the principle remains the same.
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The results from simulations give a surface diffusion time slightly higher than the

data: 53.0±1.1µs instead of 50.0±0.6µs, both numbers obtained by fitting a gaussian

over the peak. A corrective factor has to be applied to the longitudinal diffusion

generated by Magboltz, to obtain the correct diffusion times in the simulations. Since

the uncertainty from the fits is smaller than the correction between simulations and

data, we take the conservative approach of using the magnitude of the correction as

the uncertainty of our simulations (relative error of 6% on diffusion times).

Based on the relation between diffusion time and Magboltz parameters described

in Sec. 5.3:

σdiff ∝
√

DL

v3
(6.1)

where DL is the longitudinal diffusion, and v is the electron speed obtained from

Magboltz. Then, if we want to modify the diffusion times from the simulations by a

factor of ασ, while also modifying the electron speed by a factor of αv (to simultane-

ously match drift time calibrations), the longitudinal diffusion from Magboltz needs

to be modified by a factor of:

αDL = α2
σ α

3
v (6.2)

6.3 Avalanche statistics

The number of secondary charges produced in the avalanche region is directly linked

to the size of pulses we record with our detector. What we extract from an event is

its amplitude in ADUs (Analog-to-Digital Units), which is not a physical quantity.

We can, however, convert that into a number of charges:
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1[e−] = Gpreamp[V ] = GpreampGdig[ADU ]

where Gpreamp is the voltage outputted by the preamplifier when one elementary

particle goes through it, and Gdig is the number of ADUs recorded by the digitizer for

a 1 V signal. For more details about these values, please see the App. B. Assuming the

processing used to compute the amplitude of the event is taking care of the ballistic

deficit (cf. Sec. ??), this means we can get the number of secondary charges created:

Qsecondary = Aevent/(GpreampGdig)

where Aevent is the amplitude in ADUs of the event. In turn, for a given energy

deposition, the number of secondary charges created is:

Qsecondary = Eevent/W ∗Gav

where W is the mean ionization energy of the gas mixture, and Gav is the charge

gain due to the avalanche. I will ignore for the time being any effect from electron

attachment in the drift region (or rather, absorb it into Gpreamp). Putting both

relationships together, we get that

Eevent = Aevent
W

GpreampGdig Gav

(6.3)

Since we can calibrate our electronics to find Gpreamp and Gdig, and assuming

for now that W is known (more on that later in this section), this means that we

only have one unknown: Gav, the mean number of secondary ion-electron pairs one

primary electron creates in the avalanche region. We can then measure this value if
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we have a source producing events at a fixed, known energy.

Given that the avalanche process strongly depends on the electric field around the

sensor, the gas composition, and the pressure, Gav may change wildly from one run

(i.e., data taken in any given set of operating conditions) to the next. Emptying and

refilling the vessel, in particular, is known to change this value. This means that each

new run usually requires a new energy calibration. We now move on to some of those

calibrations.

6.3.1 Copper fluorescence

During our background run, no calibration source was introduced in the detector.

However, the fluorescence of the copper that constitutes the detector shell provided

a natural calibration source. We expect a monoenergetic source of fully absorbed

X-rays at 8.05 keV from copper atoms excited by higher energy γs. The results are

shown on Fig. 6.71. While the fact that it wasn’t a proper calibration source with

a high rate does mean that it is harder to separate from other backgrounds, after

appropriate cuts in energy and risetime, the peak rises clearly above the background.

Since the peak appears at 16820 ADU, this gives us a conversion factor between

ADU and eV of C = 2.077 ADU/eV. Note that this is for the normalizations done

with the Double Deconvolution method (cf. Sec. 4.1.4); other analysis methods will

likely give other conversion factors.

Using the gain of the Canberra preamplifier [49] used for this run, Gpreamp =

235 · 10−9 V/e−, the effective gain of the Calibox digitizer (cf. App. B), Gdig =

48120 ADU/V, and the mean ionization energy of Neon, 36 eV [29], this gives us a

1In other runs that did not use the shielding, exposing the detector to a source of γs above that
energy did in fact increase the rate of this population, confirming its nature as copper fluorescence.
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Figure 6.7: 8.05 keV peak from copper fluorescence during the SEDINE physics run.
The fit results give a peak at 16820 ADU, with an uncertainty of 2.9%.

mean avalanche gain of 6610 secondary ion-electron pairs per primary electron.

6.3.2 37Ar

Similarly to the copper fluorescence, 37Ar provides monoenergetic lines, one at 2.82 keV

and another at 270 eV. 37Ar was pumped into SEDINE right after the SEDINE

physics run, without otherwise changing the gas or voltage. Unfortunately, the gain

found with this calibration turned out to be only 2/3 of that found from the copper

fluorescence during the physics run. This suggests that the act of filling in the detec-

tor with the calibration source also introduced contaminating elements, producing a
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Figure 6.8: Amplitude of Ar37 events in a calibration run with the Queen’s S30 de-
tector. Both the 2.82 keV and 270 eV peaks are clearly apparent.

drop in gain.

While we could not use that run for gain calibration, this method has been used

to great success with other SPC detectors, with excellent resolution, as shown on

Fig. 6.8. Together with the 0 eV / 0 ADU point, the double monoenergetic lines allow

confirmation of the linearity of the energy response of the detector at low energies.

6.3.3 Laser calibration

While no laser was available for SEDINE, relevant data for the physics run could

still be gathered from the work done in other detectors; namely, information on the

behaviour of the avalanche process (and on the mean ionization energy, see next

section). Knowing the mean value of the avalanche only gives us half the information

about the process. The shape of the distribution of the number of secondary charges
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created also depends on parameter θ, from the Polya distribution:

P (ν) =
(1 + θ)1+θ

Γ(1 + θ)
(ν)θ exp(−(1 + θ)ν)

where ν = n
n

is the ratio between the number of created secondary charges and

n, the average of the distribution. The difficulty with finding a measure for θ is

that the dispersion in the number of secondary charges created is large. Two events

with a different but similar number of primary electrons may have end up with same

amplitude. And since the distribution of amplitudes for an event depends not only

on θ, but also on the number of primary electrons, it is almost impossible to get a

proper measure using standard radioactive measures.

One way around the issue is to generate events with a single primary electron. If

a process to generate these events is found, then the distribution of amplitudes from

those events will follow the relevant Polya distribution (ignoring any spread due to

electronic noise and so on). A fit can then be performed to find the values of both θ

and Gavalanche.

The way we did this measure in one of our Queen’s prototype sensors was to use a

laser, as described in [38]. By shining a λ = 213 nm pulsed laser on the inner surface

of the detector’s shell, photoelectrons could be extracted on demand. A variable

attenuator in front of the laser allows us to reduce the intensity of the laser until

mostly only 0 or 1 photoelectrons were created per pulse. A trigger signal coming

from the laser allows us to identify these events. While this setup still occasionally

creates events with more than one electron, the odds of that can be made very low.

Then, while events cannot be individually tagged as having 0, 1, 2 or more elec-

trons, the total distribution can be fitted with a formula whose free parameters are
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Gav the mean gain of the avalanche, θ the shape factor of the distribution, σ the RMS

of the baseline, and µ the average number of photoelectrons extracted per pulse that

reach the avalanche region, assuming they follow a Poisson distribution.

It is important to note that this fit is completely independent from the effects

of electron attachment, or the mean ionization energy of the gas mixture. Only the

number of primary electrons reaching the avalanche region matters. Furthermore,

the laser can be turned on and off as necessary, allowing calibrations to be performed

without changing anything about the operational setup. As such, this is an extremely

powerful calibration technique. Its only downside is that it requires an appropriate

laser and a detector with a fibre feedthrough, which is comparatively more com-

plicated and expensive than some of the calibrations with radioactive sources. In

particular, the SEDINE detector did not have access to laser calibrations.

6.4 Ionization energy

As referred to on the previous Sec. 6.3, a difference in the mean ionization energy

W can be “absorbed” by the avalanche gain Gav without changing any physical

observation. Most physical observations only depend on the ratio between the two.

Technically, changing the average number of primary electrons µ while keeping the

average number of secondary changes (µG) constant would lead to slightly better

relative resolution for the event with more primary electrons. In practice, the effect

is too small to be observed in most circumstances.

This limitation can be avoided if we have access to both a laser calibration and a

fixed energy source calibration. Indeed, as previously mentioned, the laser calibration

can be used to determine Gav independently of W . Once that is known, a known
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energy source can be used to get W by rearranging the formula 6.3:

W =
Aevent
Eevent

1

GpreampGdig Gav

again, assuming that there is no attachment for the data from the known energy

source, and that the ballistic deficit is properly accounted for.

More details on the procedure to find this value with NEWS-G detectors can be

found in [38], which showed a mean ionization energy of 27.6 eV in neon with 2%

CH4, as opposed to the literature value in pure neon of 36 eV [29].

6.5 Attachment

The last parameter related to the drift of electrons is the chance that one of them

will be captured by a particle inside the gas before reaching the avalanche region.

If all primary electrons were equally likely to be captured, then this would not be

much of an issue, since it would be almost equivalent to having a lower avalanche

gain. However, since attachment chance increases with time, electrons that drift

from farther away will be be more likely to be captured. This leads to a risetime

dependency of the amplitude, beyond what we would expect from the ballistic deficit

alone, degrading our energy resolution.

To measure the strength effect, we need a source of fixed energy that produces

events everywhere inside the detector.

6.5.1 37Ar

Adding some 37Ar to the detector provides a monoenergetic calibration at 2.8 keV to

study the dependence of amplitude with changing risetimes. Such a calibration was
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Figure 6.9: Amplitude vs Risetime for the Ar37 calibration run. A linear fit is per-
formed on the average amplitude in each slice of risetime. The value of
the slope is 3.3± 0.1 · 102.

performed for SEDINE right after the physics run, with results shown on Fig. 6.9. We

see that the events at low risetime have amplitudes up to three times as high as events

with high risetime. This effect can be reproduced qualitatively in the simulations by

introducing some oxygen into the gas mixture, with higher concentrations leading to

stronger dependence between amplitudes and risetimes.

A. Brossard ran multiple simulations at different concentrations of oxygen, then

fitted the relationship between amplitude and risetime for all, as shown on Fig. 6.10

[35]. The comparison with the result from the calibration run showed the best match

at an oxygen contamination of 16 ppb.

It should be stressed that this number is not be taken as a measure of the actual

oxygen contamination. Experience with other SPC detectors showed contamination
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Figure 6.10: Top: Simulated 37Ar runs with different oxygen contaminations. Bot-
tom: Fitted slopes from simulations [35]; the simulations were not cal-
ibrated for amplitude, so their units are arbitrary (au). The value of
the slope from the calibration run is 3.3± 0.1 · 102, corresponding to an
oxygen contamination of 16 ppb.
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values around the tens of part per million, primarily from oxygen trapping in tubing

and flanges. While it is in principle possible to achieve such a small oxygen contami-

nation level, given the precision of Magboltz at low pressures and fields, it is safer to

only take it as a simulation parameter that quantifies attachment.

Note that the value of the oxygen contamination is not used anywhere after gen-

erating the Magboltz files. When modifying the strength of the attachment (to study

the effect systematic uncertainties, see App. K), instead of generating new Magboltz

files, the attachment coefficients are all multiplied by a constant factor.

6.6 Ion mobility

The mobility of ions in the gas affects the response function of the detector. Using

the wrong value in our pulse processing may lead to the improper deconvolution from

the raw pulses, producing either undershoots or long upwards tails in the final pulse.

This leads to an increased uncertainty on our estimation of the amplitude of the pulse,

and considerably shorter or longer risetimes. An illustration of this phenomenon is

shown in Fig. 6.11.

While this is relatively easy to notice when looking at individual pulses, a good

calibration should be able to put some level of confidence on the ion mobility observed.

To do so, the task of finding the ion mobility that leads to the best deconvolution has

to be automated, then applied to all the events that pass some basic cuts.

6.6.1 Pointlike events

To determine if an event is properly deconvolved, the method I used was to check

for tails and undershoots for pointlike events. The best method appeared to be to
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(a) µ = 5.0 cm2/V/s

(b) µ = 7.5 cm2/V/s

(c) µ = 10.0 cm2/V/s

Figure 6.11: Pulse deconvolved by the response function of the detector, then inte-
grated, for different values of the ion mobility in the processing. Low
mobilities tend to “overdeconvolve” the pulse, producing a dip after it.
Conversely, high mobilities “underdeconvolve” the pulse, leading to an
increasing slope right after it.
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check for the maximum of the deconvolved integrated pulse, and to compare it to the

value of the new baseline after the pulse. Some simulations revealed that for events

deconvolved properly, the maximum should be within 3% of the value of the baseline

after the pulse, with the reference point being the value of the baseline before the

pulse. While this does not remove all overdeconvolved events, it did remove the vast

majority.

Conversely, to check if the event is underdeconvolved, the heavily smoothed de-

convolved (but not integrated) pulse was fitted with a gaussian. If the pulse has a

tail, the normalized χ2 would be increasingly higher with the size of the tail. An

attempt was made to see if events with undershoots could be rejected this way too,

but the fit turned out to not be sensitive to them, likely due to the heavy smoothing.

The method devised to produce an ion mobility calibration was to select all events

that passed some basic pointlike-shape cuts, then deconvolve each of them multiple

times with different ion mobilities. For each event, the ion mobility selected was the

one producing the lowest χ2, as long as the undershoot cut was passed and the χ2

was under a certain value (of the order of 2− 3). The resulting mobilities were then

put into a histogram for further analysis.

This procedure was carried out for two runs: the 37Ar calibration run, and the

background run. Out of 35900 and 26360 physical events, respectively, only 242 and

123 events were deconvolved well enough. The low statistics are likely due to the χ2

cut being equivalent to a combination of low noise, high amplitude, and small risetime

requirement for the pulses. The results are shown on Fig. 6.12.

The first thing to note is that the mobilities obtained for the two runs do not agree

with each other: 6.18± 0.99% cm2/V/s and 7.45± 1.95% cm2/V/s, respectively. The
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(a) Ar37 run (b) Background run

Figure 6.12: Distribution of computed ion mobilities for the two studied runs, with
results from the fit. The final ion mobilities computed with this method
are 6.18 cm2/V/s± 0.99% and 7.45 cm2/V/s± 1.95%, respectively.

difference cannot be explained away with just low statistics, since the fits are actually

rather precise. Two possible explanations come to mind for this discrepancy. The first

one is the change in gas when introducing 37Ar in the detector between both runs, as

mentioned earlier. While ideally the introduced 37Ar was in such low quantity as to

not affect the effective gas composition (neon with 0.7% methane) at 3.1 bar, any gas

filling procedure may introduce impurities into the gas mix. The effective mobility

of ions in a gas is highly dependent on the gas composition, partially due to the

change in the drift gas composition, but also due to the change in the ions that end

up drifting (e.g., Ar+ instead of CH+
4 or Ne+ ions). At higher pressures, the nature

of collisions between ions and surrounding particles also change [64]. All these effects

combine into turning even a relatively small modification to the gas composition into

an appreciable ion mobility difference.

The second explanation is due to the different rate of events between the cali-

bration run and the background run. An increase in rate leads to an increase in
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the number of secondary ions drifting through the detector volume, in turn changing

the internal electric field. The calibration run may have had a large enough space

charge due to ions to decrease the field close to the sensor compared to that of the

background run. Since the response function used in the deconvolution assumes an

ideal electric field, a decrease in the real field would translate into a decrease in the

ion mobility with this method.

At any rate, these unknowns mean that this measure of the ion mobility should be

taken as an ad hoc value to match the response function of our detector, rather than a

true measure of the ion mobility. Since that is what we use it for, the limited physical

interest of the values found is not a detriment. However, it is still encouraging that the

values are relatively close to that found on the literature for Ne+ ions in pure Neon,

∼ 4 cm2/V/s [50, 65]. The difference between the two is most likely explained by a

larger-than-expected field close to the electrode being “absorbed” into the computed

ion mobility2. If we were interested in a real measurement of the ion mobility, a setup

with parallel plates (and uniform electric field) would be much preferable.

Summary

We have covered all our calibrations that were available for SEDINE. Aside the elec-

tron drift and diffusion time in the bulk of the detector (for which no calibration

method was available), the simulation parameters obtained were (in parenthesis, the

calibration method used):

� surface electron drift time: 422.4µs ±5% (by studying maximum track length);

2A difference larger than an order of magnitude between the computed ion mobility and the one
found in the literature would be harder to justify that way, and would suggest a lack of understanding
of our detector.
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� surface electron diffusion time: risetime of 50.0µs ± 6% (by studying events

from surface contamination);

� energy (or avalanche gain): 2.077 ADU/eV ± 2.9% (from copper fluorescence);

� ionization energy: 27.6 − 36 eV, (with a pulsed laser and 37Ar in a test SPC),

although this uncertainty is effectively absorbed by the energy calibration;

� electron attachment: “effective” O2 Magboltz contamination of 16 ppb, with an

electron attachment uncertainty of ∼ 100% (by introducing 37Ar in SEDINE);

� ion mobility: 7.45 cm2/V/s ±1.95% (by studying SEDINE’s response function).

A different sort of calibration, which reproduces axion-like events, is studied in

the next chapter.
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Chapter 7

MPA applied to 55Fe-induced Argon fluorescence

To test the multi-pulse analysis methods in preparation for the search of KK axions,

a calibration was performed with 55Fe-induced Argon fluorescence. 55Fe decays into

55Mn by electron capture, leaving an electron vacancy in the K-shell, which is then

filled by an electron from a higher shell. The difference in energy is then released

by either an Auger electron of 5.2 keV, a K-α X-ray of 5.9 keV, or a K-β X-ray of

6.5 keV, with α’s being 8 times as likely as β’s [66, 67]. In turn, an Argon atom that

absorbs a photon will fluoresce, with a probability of 12 % (known as the fluorescence

yield1), emitting a photon of 2.9 keV, leaving behind a bit under 3.0 keV of energy,

to be dissipated through ionization.

At the right pressures, this will lead to two simultaneous energy depositions at

different positions of the detector, both of the same energy: the leftover ionization

energy from the original 55Fe photon, and the energy from the absorbed fluorescence

photon. With some divergence in the volume distribution of these events, this is

1Early measurements of the fluorescence yield of Argon pointed towards 8 − 9 % [68, 69], but
measurements of 12− 14 % started cropping up in the early sixties [70–72]. Later reviews converged
on a value of 12.0 %, combining experimental data of Argon and fits of the yield over different
elements [73–75].
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the same signal we would expect from 6 keV axions decaying within the detector,

providing an excellent calibration for multiple-pulse analysis of our signal of interest.

7.1 Setup

To optimize our double-pulse event frequency, a low gas pressure is preferred to

increase the absorption length of 3 keV photons, leading to better separation between

both energy depositions. This in turn means we require a larger detector, to limit

the number of photons escaping. The final setup used the 130 cm wide SPC at

Queen’s (S130 detector), with a 2 mm diameter electrode, with either 200 mbar or

110 mbar, and a high voltage of 1150 V or 900 V, respectively. The pressures were

selected based on Monte Carlo simulations of the detector to maximize the rate of

recognizable fluorescence events, and the voltages were tuned to obtain similar gains

in both setups.

The 37 MBq 55Fe source used was collimated with an aperture of 1 mm, approx-

imately 5 mm away from the source. The aperture was covered by two sheets of

aluminium foil to block β radiation, roughly 20µm thick each, and placed at the end

of a 4 cm-long window into the detector. Pictures can be seen on Fig. 7.1. A pulsed

laser with a frequency of 10 Hz was used concurrently, to calibrate for the drift and

diffusion time of primary electrons coming from the surface of the detector.

Unfortunately, using a large detector on the surface comes with an added difficulty,

in the form of cosmic radiation. We expect a muon flux at sea level of Φ(θ) '

70 m−2s−1sr−1cos2(θ) (depending on atmospheric conditions[76]), which corresponds

to an event rate of ' 390 Hz for a spherical detector of radius 60 cm, from muons

alone. This is a problem, since we expect an event rate from the 55Fe source in the
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Figure 7.1: Top left: S130 detector used for the calibration. Bottom left: 55Fe source
(without aluminium foil). Right: Close-up on the calibration source win-
dow, with and without the 55Fe source installed in it.
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Figure 7.2: Event example from S130 with 200 mbar. Left: Raw pulse. Right: Pro-
cessed. The laser-induced event is the smaller one at ∼ 4300µs. The
pulse at ∼ 1800µs is likely an 55Fe event. The other three are likely
muons.

order of tens of Hertz. The first way in which it is problematic is the large amount

of pileup in the data; for recorded event windows of 8 ms, we expect 3.2 events to

fall within in addition to the one that triggered, from muons alone. A representative

example is shown in Fig. 7.2. Care has to be taken to separate the true simultaneous

events we are interested in from random coincidences. The second way in which

this is a problem is that for such a large detector, with such an important rate of

high-amplitude events, the electric field far from the sensor is dominated by that

from secondary ions drifting away from the avalanche region. As such, we cannot

use COMSOL files to get the field strength everywhere in the detector, but have to

resort to the analytical approximation described in 5.4.3. Fortunately, the high rate

means that the continuous space current assumption should hold and give appropriate

results.

7.2 Accounting for the high rate

To simplify the corrections that had to be done, the runs studied used a laser-

dependent trigger, running at 10 Hz. Due to the relatively wide event window recorded,
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at 8 ms per trigger, and the very high event rate, enough 55Fe statistics could be ob-

tained from this approach, despite the effectively random nature of the trigger. The

advantage was that instead of having to compute how much dead time there was in

between triggers, all such time was effectively dead. The basic run length was thus

Ntriggers · 8 ms. For the run at 200 mbar, this meant a total of 650 s; ∼ 2810 s for the

considerably longer run at 110 mbar, after removing unstable stretches of time. Aside

from the duration, both runs provided similar results, so the following will only be

referring to the 200 mbar run, unless otherwise specified.

The Multi-Pulse Analysis was used on these recorded windows, splitting each

one into one or more separate pulses. Since we are looking for double-pulse events,

multiple pulses close to each other were joined into a single event. The laser events

provided a calibration for the maximum drift time of electrons in the detector, as

shown in Fig. 7.3. This maximum drift time is necessarily the maximum time sep-

aration between two pulses generated from simultaneous energy depositions in the

detector. Adding a safety margin based on the maximum diffusion time from laser

events, pulses are iteratively joined into a single event as long as they are within

260µs (260µs at 110 mbar) of each other.

This leaves another source of dead time, in the form of the width of the joined

pulses themselves, plus an extra “tail” of 260µs for each of them. While this would

normally be ignorable in setups with low event frequency, it was a sizeable contri-

bution in this scenario. It reduced the effective run time from ∼ 650 s to ∼ 505 s

(from∼ 2810 s to ∼ 2330 s at 110 mbar). After dead time corrections, we get a total

event rate of 372 Hz, discounting the contribution from laser events.

Once this has been accounted for, cuts are selected to remove unwanted events.
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Figure 7.3: Maximum drift time calibration with laser events, with gaussian fit. The
time of ionization is obtained with a fiber splitter that sends parts of the
laser signal to a photodetector. The difference between that time and the
average arrival time of the primary electrons gives the (maximum) drift
time, around 240µs at 200 mbar, 900 V for this detector.

The first round of basic cuts removes laser events, saturated events, events at the

edges of the window, and events that are over-deconvolved (usually a sign that they

are not signals induced by ions drifting). The resulting distribution is shown in

Fig. 7.4, and corresponds to a total rate of 325 Hz. The 55Fe is very well defined,

allowing for an energy calibration at 5.9 keV. To be able to get estimations of the

proportion of Argon fluorescence events, the contribution of 55Fe events has to be

separated from all other events, which we will assume to be mostly Muon events. To

do this, the distribution under 20 keV is fit with a linear function plus a Gaussian.

The ratio between the Gaussian and the linear part of the fit is used to split the total

distribution in two, into a 55Fe contribution and a Muon distribution, again shown in
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Figure 7.4: Black: Total energy distribution of all events after basic cuts. Red: Con-
tribution from 55Fe events. Green: Contribution from Muon events; they
drop down to 0 around 180 keV.

Fig. 7.4. The rate of 55Fe is found to be 29 Hz, leaving around 300 Hz of Muon events

that pass the basic cuts.

7.3 Space charge effect

Given the high rate of events, the space charge (or ion) current for a given run can be

taken as the total integrated charge recorded, divided by the effective length of the

run. The integrated charge from an event is obtained by dividing the amplitude of

the processed pulse by the amplification factor of the digitizer (in terms of ADC units

per Volt) and the gain of the preamplifier (in terms of Volt per integrated charge).

We obtain 85 pA. This value can be used in simulations to try to reproduce the drift

time. These show that, in the absence of space charge, the drift time of electrons
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Figure 7.5: Left: Electron drift simulation, total drift time depending on initial ra-
dial position. Simulations are run both with no space charge, and with
the space charge induced by an ion current of 19.7 pA. Right: Fitted
distribution of drift times in the data (blue/red, as seen in Fig. 7.3) and
normalized distribution of drift times in simulations with adjusted ion
current (green)

generated at the edge of the detector would take up to 2.5 ms to reach the central

electrode. With the measured ion current, the drift time drops all the way down to

360µs, much closer to the real one, yet still not quite the same. Some trial and error

finds that an ion current of 19.7 pA, slightly over twice the measured one, reproduces

a surface drift time of 240µs. The two extremes are represented on Fig. 7.5.

Multiple factors could explain this discrepancy:

� Pile up effects or erroneous calculations of the dead time could bias this rela-

tively simple measurement of the ion current.

� Total charge from high energy events is not properly reconstructed, because

they saturate. This likely leads to an underestimation of their contribution to

total space charge. Despite this, they still account for ∼ 10% of the total.

� We are folding the uncertainty over the ion mobility (of roughly ∼ 10%) into
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the ion current. For a given number of ions created, a smaller ion mobility

will lead to a proportionally larger amount of ions present in the volume of the

detector.

� Differences between the ideal field configuration assumed in the space charge

field formula, and the real detector configuration. These could come in many

forms, mainly affecting the path ions take, and so the time they spend inside

the detector.

All in all, a difference of a factor 2 between the measured ion current and the one

required to match drift times is in good qualitative agreement.

7.4 Expected results using a toy model

A simple simulation of 55Fe-induced Argon fluorescence events can be performed,

considering only the geometry of the detector, and the attenuation length of photons

of different energies (see Fig. 7.6). An Argon atom that fluoresces after absorbing a

5.9 keV photon from the 55Fe source can produce three different kinds of events:

� Escape peak event: the 2.93 keV fluorescence photon leaves the detector without

interacting. This leaves 2.9 − 3.0 keV energy in the detector. The longer the

attenuation length of 2.93 keV photons, the more frequent this is.

� Double pulse event: the 2.93 keV fluorescence photon is absorbed in the detector

after travelling some non-negligible distance. This will appear as two pulses of

∼ 2.9 keV amplitude arriving shortly after each other. The maximum time

separation between both is the drift time of electrons coming from the surface:
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Figure 7.6: Attenuation length of photons in 200 mbar of Argon (NIST datapoints
in green, log-log linear interpolations in black). In red, the radius of the
detector. The drop at 3.2 keV corresponds to the K-shell of Argon. One of
its consequences is that a 2.93 keV and a 5.9 keV photon have comparable
attenuation lengths, despite the factor 2 difference in energy.

this happens if the 55Fe photon was absorbed close to the surface, while the

fluorescence photon was absorbed close to the central electrode, or viceversa.

� Non-separable event: the 2.93 keV fluorescence photon is absorbed very close to

the point where it was generated. The pulses will then arrive to close to each

other to be separated, and will just look like a single pulse. The shorter the

attenuation length of 2.93 keV photons, the more frequent this is.

Notably, the rate of escape peak events depends only on the size of the detector

and the attenuation length of photons. For a given gas mixture and photon energy,

the attenuation length is given solely by the pressure of the gas. In turn, for double

pulse events, we also need to introduce a “separability distance”, i.e., the minimum
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Figure 7.7: Top left: Escape peak event probability depending on gas pressure. Top
right: double pulse event probability depending on gas pressure, for differ-
ent minimum separability distances. Bottom: relative rate of escape peak
events and double pulse events; the rate (in arbitrary units) of muons that
fall in the energy range of 55Fe events, based on the recorded data, is also
added.
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Figure 7.8: Ratio of contained Argon fluorescence events that can be separated with
the processing, at 200 mbar with 1150 V. The separability distance is
taken to be ∼ 8.5 cm.

distance between both interactions before they can be told apart. Taking all this into

account allows us to make a simple toy model to find the relative rate of all these

events. The results are shown on Fig. 7.7. We see that the rate of escape peak events

increases as pressure decreases, until we reach 40 mbar; at that point, the original

55Fe photons stop being absorbed by the detector, and the total event rate plummets.

The separability of both photon interactions for contained fluorescence events also

tends to improve with decreasing pressure, for a given minimum separability distance.

However, the separability distance itself will depend on the gas pressure and voltage,

so the relationship between pressure and separability is not as straightforward. To

find the separability distance for both run conditions, full simulations of double events

where performed and processed, taking into account the space charge effect as de-

scribed in the previous subsection. By plotting the ratio of events properly separated
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depending on the radial distance between them, we get the separability distance

for each run. This is shown in Fig. 7.8, giving a separability distance of ∼ 8.5 cm

(∼ 14.0 cm at 110 mbar). This is used together with the plot in Fig. 7.7 to find the

rate of double-pulse events we expect from 55Fe-induced Argon fluorescence.

Note that the previous results are given as a ratio of all Argon fluorescence events.

In reality, we do not have access to that number, but to the observed number of 55Fe

events instead (potentially missing escape-peak or double-pulse events). Including the

effect of the fluorescence yield, and taking the error as dominated by an uncertainty

in the pressure measurement of ±5 mbar (for the escape peak events) and in the

separability distance of ±0.5 cm (for double-pulse events), the expected ratios from

this toy model are:

� 3.11 − 3.25% proportion of escape peak events, 2.80 − 3.22% proportion of

double-pulse events, for 200 mbar and 1150 V;

� 3.97 − 4.38% proportion of escape peak events, 3.18 − 3.47% proportion of

double-pulse events, for 110 mbar and 900 V.

7.5 Escape peak

7.5.1 200 mbar data

Before looking at double events, we look at Argon fluorescence escape peaks, i.e.,

Argon fluorescence events where the fluorescence photon escapes the detector without

interacting. This leads to a 2.9 keV event in the detector. To boost the ratio of 55Fe

events over Muon background, we keep only events with a single pulse, within a

narrow range of risetimes between 27µs and 40µs.
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Figure 7.9: Top: Risetime vs Amplitude after basic cuts, keeping only single-pulse
events and removing laser events; 55Fe are at 1300 ADU, with escape
peaks around 600 ADU; the horizontal accumulation around 35µs across
amplitudes comes from Muon events. Bottom: Amplitude distribution for
events with risetime between 27µs and 40µs; the sum of a linear function
(shown separately in blue) and two gaussians is fitted to the distribution.
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The resulting distribution is fitted with the sum of a linear function and two

gaussians, as shown on Fig. 7.9. The ratio between the mean of both gaussians is

found to be 0.500± 0.015, in great agreement with expectations. The integral of the

gaussian corresponding to the escape peak is of 258 counts, with an error derived from

the fit results of ±77. The large error is to be expected, due to the low statistics of the

escape peak, and it being on top of a sizeable background; it comes primarily from the

uncertainty on the width of the peak. The integral of the gaussian corresponding to

the main 55Fe has much better statistics, with an integral of 7349 counts and an error

of 130. This leads to a measured proportion of escape peaks to other single-pulse 55Fe

events of 3.5± 1.0%.

Another issue is the tail above 1600 ADU, that is not consistent with a Gaussian.

It is unclear whether that tail comes from actual 55Fe events, or some other form of

background. This introduces a significant source of uncertainty in the measured ratio:

assuming all events in the tail come from 55Fe, and that the statistical uncertainty is

dominated by the number of escape peak events, the final ratio becomes 3.0± 0.9%.

Ultimately, both sources of uncertainty (statistical and “tail”) originate from the

difficulty to extract the distribution of 55Fe events from the large Muon background.

In either scenario, they are consistent with the 3.2 found with the toy model.

7.5.2 110 mbar data

The integral of the gaussian corresponding to the escape peak is of 2330 counts, with

an error derived from the fit results of ±417. Once again, the large error is to be

expected, this time primarily due to resting on top of a proportionally larger back-

ground, despite the statistics being larger than before; it still comes primarily from
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Figure 7.10: Amplitude distribution for events with risetime between 21µs and 35µs;
the sum of a linear function (shown separately in blue) and two gaussians
is fitted to the distribution.

the uncertainty on the width of the peak. The integral of the gaussian corresponding

to the main 55Fe has much better statistics, with an integral of 47163 counts and an

error of 1244. This leads to a measured proportion of escape peaks to other single-

pulse 55Fe events of 4.9 ± 0.9%. The tail effects mentioned for 200 mbar appear less

important, only shifting this result to 4.7 ± 0.9%. Both are relatively high, but still

consistent with the expected results of 3.97− 4.38% obtained with the toy model.

7.6 Double-pulse events

7.6.1 200 mbar data

Unlike for escape peak events, we now want to look at events where two pulses happen

closer to each other than the maximum drift time, and we also cut events where there
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Figure 7.11: Effect of number of pulses in the event distribution (200 mbar data).

are more than just two pulses within that same window. This turns out to still leave

a large number of events, so an extra condition is added that both pulses are “equal”,

defined as having their amplitudes within 30% of their average; the choice of this fairly

wide tolerance in amplitude difference will be justified in a moment. The results are

shown on Fig. 7.11.

We see a very clear population of events with two equal amplitude around 6 keV,

corresponding to the Argon fluorescence events that the processing can separate.

Perhaps surprisingly, we see a second population suddenly appear around 12 keV,

and a large diffuse population centred around 80 keV. These are random coincidences

of uncorrelated events. That is, two events of same energy happening shortly after

each other by pure chance, due to the high event rate in this run.

To prove this, the final distribution of events with two equal pulses is fitted with

a normalized sum of three distributions:
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� the total distribution of 55Fe events. These represent separable Argon fluores-

cence events (after normalization);

� the total distribution of Muon events. These represent False Positives (after

normalization), i.e., single-pulse events improperly reconstructed as being mul-

tiple;

� the distribution of random coincidences with equal energy. This is built by

taking two random events from the distribution of events with a single pulse,

and keeping the sum of their amplitudes as an entry if they are within 30%

of their average. This process is repeated N2 ∆t
T

times, where N is the total

number of single-pulse events, ∆t = 260µs is the maximum time separation we

keep, and T = 505 s is the effective length of the run.

The results of the fit are shown on Fig. 7.12.

The most remarkable part of the fit is how closely the distribution of random

coincident events matches both the peak at 12 keV, and the wide population of events

80 keV. This is despite having no parameter driving its shape, with the distribution

being built straight from the data, and adding just a normalization factor afterwards.

However, the normalization factor given by the fit is 1.70. That is, we find 70% more

events than what the N2 ∆t
T

formula predicts. This could be for three reasons. The

first is an underestimation of N : if events other than single-pulse ones that pass the

basic cuts could somehow combine into events that pass the final level of cuts (e.g., one

large pulse followed by two smaller ones too close to each other to be separated); this

seems unlikely, given that it would probably affect the final shape of the distribution.

The second is an overestimation of T , most likely due to missing sources of dead time;
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Figure 7.12: 3-parameter fit of equal-pulses event distribution. Top: whole range of
the fit. Bottom: Zoom in the region under 20 keV. Red points: Data
(200 mbar). Blue curve: Fit result with statistical uncertainty. Dotted
lines: Contribution from coincident events (orange), Argon fluorescence
(red), and False Positives (pink; here set to zero by fit). The overpopu-
lation in the 2− 4.5 keV range are improperly reconstructed events.
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this one is relatively likely, although the extra dead time would have to account for

∼ 40% of the effective run length. The last one is a mistake hidden somewhere in the

calculations, given the delicate nature of computing the rate in these conditions.

The False Positive (FP) rate for Muons given by the fit is ∼ 10−9. Given that

there are only ∼ 150000 Muon events in total, this just means the fit is setting the

FP rate to zero. However, given the statistical uncertainty, believing this number

would be overly optimistic. For a more reasonable upper limit on the FP rate, we

can consider the behaviour of both distributions around 20 keV, where the fit reaches

a local minimum. On the corresponding bin, the Muon distribution has 850 events,

while the final fit has a statistical uncertainty of 2.7 events. Since FP events have

no discernible effect at that point, that sets a very conservative upper limit for the

rate of FP at 0.3%. The real rate is likely much lower, but it cannot be constrained

further under such high rate conditions.

Finally, the last term in the fit is the ratio of equal-pulse events in the main 55Fe

peak. Before any corrections, the fitted proportion is 2.38±0.15%, if we take only the

fitted gaussian to determine the total number of events in the peak, or 1.87±0.12%, if

we take everything above the “fitted” Muon distribution as being 55Fe events, with the

truth being likely somewhere in between. For the sake of reporting a single number,

we get 2.13± 0.20%, by taking any value in between the two assumptions on the 55Fe

peak to be equally likely, and adding the fit errors in quadrature 2.

The observed overpopulation of events in the 2−4.5 keV range are not real equal-

pulse events, but events with a low maximum after deconvolution, leading to pulses

2If we multiply the results from a gaussian of mean m and standard deviation σ with that of a
uniform distribution of bounds A and B, we can approximate the result to a distribution with a

mean of mA+B
2 and standard deviation mA+B

2

√
( σm )2 + 1

3 (B−A
B+A )2.
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Figure 7.13: Deconvolved events from the 200 mbar run. Left: Argon fluorescence
event, with pulse threshold in red. Right: 3 keV event improperly re-
constructed as being an equal-pulses event, due to it “jumping” above
the threshold multiple times. At energies under 5 keV, the ratio of the
second kind of event increases considerably.

oscillating around the pulse threshold. The difference between the two kind of events

is demonstrated in Fig. 7.13, with the latter kind comprising the majority of events

in the mentioned energy range. This problem would normally be solved by increasing

the strength of the smoothing and reducing the value of the threshold. However, in

these conditions, the value of the baseline shifts too much due to the high rate of high

energy events, so this would not improve the results. Instead, we make the reasonable

assumption that the distribution between 5 and 8 keV is driven by Argon fluorescence

events, which means that the results from the fit are not biased by this population of

“fake” equal-pulses events. This appears justified by inspection of the events in that

range.

An extra correction needs to be accounted for, since the cuts to select for equal-

pulses events also included a cut to have exactly two pulses. This means that events in

which a third pulse happened concurrently with the main 2 of the Argon fluorescence

event were rejected. Given a measured average width of equal-pulse events of 684µs,

and a total event rate of 498 Hz, this gives the odds of some other pulse coinciding
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with any given fluorescence event of 28.9%. Correcting for this, we get a proportion

of equal-pulse events of 2.99± 0.28%.

This is to be contrasted with the expected results from the toy model of 2.80 −

3.22%. This number, however, does not take into account the effect of only keeping

events when the amplitudes of both pulses are close enough to each other. To estimate

the contribution of this cut, we use the results from the fit of the escape peak: for

each event in our toy model, we draw two pulses from a gaussian distribution with the

mean and width of that fit, and only keep the event if they are within the predefined

amplitude tolerance. Given the large uncertainty of the fit on the width of that

peak, an excessively restrictive tolerance would in turn lead to a large uncertainty on

the effect of this cut. For example, a tolerance of 15% leads to an efficiency of the

cut in the range of 67.8 − 91.9%, for values of the peak width within one standard

deviation of the mean. Taking 30% instead, the efficiency range is 94.4− 99.9%, for

a much narrower spread. To avoid compounding uncertainties, the larger tolerance

was chosen, even though it leads to less rejection of background. We finally get an

expected ratio of equal-pulse events in the main 55Fe peak of 2.64−3.22%. This result

is also consistent with the data, although the ranges of values remain relatively wide.

7.6.2 110 mbar data

The final fit results for the 110 mbar data are shown on Fig. 7.15, with comparison over

the complete distribution on Fig. 7.14. There are three main qualitative differences

observed with the 200 mbar data. The first is the much higher statistics, with around

∼ 10 times more events. The second is that the distribution of Muon events is shifted

down in energy by roughly a factor 2; this is expected, since the energy deposited
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Figure 7.14: Effect of number of pulses in the event distribution (110 mbar data).

by high-energy charged particles crossing a given length of material is proportional

to its density, and we roughly halved it. The third is that the population of “fake”

equal-pulses events is now clearly distinct from the Argon fluorescence peak; this is

due to a higher gain for this run, which has a charge multiplication factor of ∼ 700,

instead of ∼ 390 for the run at 200 mbar, so the events hovering around the pulse

threshold are lower in energy. As such, they can clearly be discriminated against.

For this dataset, we get a normalization factor for random coincident events of

1.41. While we still underestimate the rate of coincidences, the difference is less

pronounced. This might be either because of the longer run leading to a more accurate

estimation of the absolute event rate; or the time cuts that select for stable detector

operation improving our understanding of the effect of same-energy cuts.

The Muon FP rate is actually visible in the fit this time, at 0.26 ± 0.4%. We

note that the contribution of this FP rate to the fit is driven by the shape difference
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Figure 7.15: 3-parameter fit of equal-pulses event distribution. Top: whole range of
the fit. Bottom: Zoom in the region under 20 keV. Red points: Data
(110 mbar). Blue curve: Fit result with statistical uncertainty. Dotted
lines: Contribution from coincident events (orange), Argon fluorescence
events (red), and False Positives (pink). The overpopulation in the 1−
3.5 keV range are improperly reconstructed events.
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between the distribution of expected random coincidence events and the actual events

observed around 20 keV. This is the same region we previously used to set an upper

limit on the FP rate, which happens to match the actual value found by the fit with

this dataset. Due to the fact that no energy range is dominated by Muons falsely

reconstructed as equal-pulse events, it is hard to study the apparent increase in their

rate under these conditions. Possible culprits may be the higher gain or shorter drift

times involved, but how exactly remains unclear.

Finally, the proportion of equal-pulse events from the 55Fe peak found with the fit

is 1.96 ± 0.06%. For this run, the higher contribution of Muon events under 10 keV

made it harder to disentangle 55Fe events before equal-pulse events, as shown on

Fig. 7.16. As such, we only took the number of events from the fitted gaussian as the

reference, leading to an artificially lower reported error. Then, taking into account the

same correction as before due to the possibility of random coincidences, the measured

proportion becomes 2.74± 0.09%.

This is to be compared with the expectations from the toy model, after accounting

for the effect of the equal-pulse cut, of 3.09− 3.45%. The results are somewhat close,

but not quite as consistent as for the 200 mbart data, in part due to the considerably

smaller uncertainty on the measured rate. We observe fewer distinguishable fluores-

cence events than expected. While this could be due to an actual mismatch between

simulation and reality, the observed increase in Muon events (or other background)

in the region of interest, both before and after equal-pulse cuts, negatively affects the

confidence with which we take these numbers.
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Figure 7.16: 110 mbar data. Black: Total energy distribution of all events after basic
cuts. Red: Presumed contribution from 55Fe events. Green: Presumd
contribution from Muon events. From their distribution, it is clear that
the events naively attributed to 55Fe are overestimated

7.7 Performance conclusions

The final numerical results from both datasets are summarized in Table 7.1. As previ-

ously mentioned, the large rate of Muon events presents itself in these results as very

large uncertainties for the escape peak under both run conditions. Conversely, since

there was no practical way to account for this effect for the calculation of the ratio of

distinguishable fluorescence events at 110 mbar, the uncertainty reported in that case

is artificially low for the actual data. Nevertheless, a great agreement exists between

data and simulations for the 200 mbar data, within the reported uncertainties, even

if that agreement is weaker at the lower pressure.

This is further remarkable given the less than ideal conditions in which the data

were taken. Due to the large cross-section of the detector and its situation at the
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Escape peak Fluorescence
Data Sim Data Sim

200 mbar 3.2± 1.0% 3.11− 3.25% 2.99± 0.28% 2.64− 3.22%
110 mbar 4.8± 0.9% 3.97− 4.38% 2.74± 0.09% 3.09− 3.45%

Table 7.1: Comparison of the ratio between escape peaks or fluorescence events to
the total number of 55Fe events, between simulations and data.

surface, a flood of Muon events made the analysis considerably more complex. Three

additional problems had to be fixed: identifying and separating multiple events within

the same window, accounting for the effect of space charge in the simulations, and

extracting the distribution of 55Fe events from the background for rate normalization.

Repeating these same calibrations underground would remove all these difficulties,

and drastically improve the final uncertainties. Yet even in these circumstances, a

distribution of only ∼ 300 events was successfully extracted from a run with ∼ 3 · 105

events, thanks to a False Positive rate for Muons (i.e., track events) under 0.3%, and

likely much lower.

Summary

55Fe-induced argon fluorescence provides an appropriate source of axion-like events at

5.9 keV for 12% of 55Fe decays. A calibration was performed with a large 130 cm wide

SPC at Queen’s University. The size of the detector and the lack of cosmic radiation

protection brought about a rate of ∼ 400 Hz of cosmic muons, compared to only

30 Hz of 55Fe. The high muon rate caused 10% uncertainties on the determination

of the total 55Fe rate, induced a random coincidence rate of ∼ 40 Hz, and changed

the electric field inside the detector. Despite these difficulties, the data agreed with

the results from a toy model of the detector, with a 55Fe-induced argon fluorescence
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detection efficiency of 25% at 200 mbar, and a rate of random coincidences of equal

energy within a factor 2 of predictions. Additionally, 99.7% of muon tracks were

rejected based on shape alone.

To conclude, this experiment serves as a proof-of-concept for this approach for

solar KK axions detection:

� Efficient identification of double events (both fluorescence and random coinci-

dences);

� Strong rejection of non-double events;

� Agreement between simulations and data;

with the first two points proving the adequacy of the method to the problem, and

the last being a requirement for the extraction of results from real physics data, which

we will tackle in the next chapter.
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Chapter 8

Results

After discussing the working principle of the detector (cf. Ch. 3), the analysis tools

developed to process its data (cf. Ch. 4), the simulations to estimate the expected

signal (cf. Ch. 5), and calibrations to match them with data (cf. Ch. 6), we can fi-

nally move onto the dataset used to set constraints on solar KK axions. This chapter

covers a description of SEDINE’s physics run, the procedure used to build the afore-

mentioned limits (with related uncertainties), and conclude with the future of solar

KK axion searches in the NEWS-G collaboration with the upcoming SNOGLOBE

detector.

8.1 SEDINE data

The SEDINE detector was run for 42.7 days, filled with 3.1 bar of Neon and 0.7% of

CH4, with a central electrode at 2520 V. In that time, 1639360 events were recorded.

A preliminary analysis of pulse shapes, as shown in Fig. 8.1, allows discrimination of

non-physical events (like noise transients, events without ion signal, voltage supply

spikes, etc.).

By looking at the distribution of the time since the previous event (Fig 8.2), we
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Figure 8.1: Risetime vs Width of raw pulses, excluding only very low amplitude
events. Comparing this plot to results from calibrations, we choose to
cut to only keep the events with a risetime above 10µs and width above
75µs.

see that events are not purely independent from each other, with periods of time

where the rate is much higher. We are interested in pulses happening close in time to

each other, so we need to remove these periods of time where the rate is much higher,

since they could induce false positives. Removing all events that happened less than

2 s after the previous one just leads to a loss of effective run time from 42.7 to 38.0

days.

Together with a cut on the risetime and width of raw pulses, we reject events

such as the ones shown in Fig. 8.3. After processing the data according to the double
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Figure 8.2: Distribution of time since previous event. Above 2 s, the exponential
decrease with time is the behaviour expected from events happening ran-
domly with respect with each other. The fast increase under 2 s reveals
that there are periods with much higher event rates (or correlated events),
that we should remove from the analysis.

deconvolution method (cf. Sec. 4.1.4), we obtain the plot in Fig. 8.4. Some features

are visible, such as the accumulation of events at a risetime of ∼ 50µs, corresponding

to surface events, and a more subtle one around 5 − 8 keV, corresponding to copper

fluorescence events (see Ch. 6 for details on how these were used for calibrations).

8.1.1 Basic axion-like cuts

The cuts chosen to select axion-like events are different than the ones chosen to study

the general population of physical events. Basic cuts were chosen based on general
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Figure 8.3: Examples of events rejected by basic cuts. Top left: “electronic event”
(zoomed-in) with a sharp rise characteristic of absence of ion-current
structure. Top right: high-rate period after a large event. Bottom left:
“pulse-like” baseline noise. Bottom right: transient noise.

principles of what the expected signal should look like (two pulses of same energy

close in time to each other), while trying to limit any loss of sensitivity due to those

cuts. The cuts, along with their justification, are:

� RawRise > 10 µs & RawAmpl < 55000 ADU & DeltaT > 2 s

These basic cuts are based on the cuts for regular events. The cut on the width of

the raw pulse is dropped, since the pile-up from two pulses close to each other (what

we are looking for) distorts the computation of this parameter.

� (DecMinimum > -6 ‖ DecMinimum/DecMaximum > -0.4)

� NPulses > 1 & AmplP1 > 0.5 keV & AmplP2 > 0.5 keV
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Figure 8.4: Processed risetime vs amplitude of SEDINE physics data.

We then add the most basic cuts for selecting events with two pulses. The restric-

tion on the minimum amplitude of the found pulses, and the cut on negative values

of the deconvolved pulse are there to prevent artificial 2-pulse events generated by

undershoots or small noise oscillations around the pulse-finding threshold.

� AmplP1+AmplP2 > 2 keV & AmplP1+AmplP2 < 23 keV (or replace by energy

range)

We restrict the energy range to that where axion decays are expected. 2− 23keV

is the maximum range, likely suboptimal; the search for a better range is described

in the next section.

� RiseP1 < 70 µs & RiseP2 < 70 µs
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� WidthP1 < 150 µs & WidthP2 < 150 µs

The cuts on the maximum risetime and width remove tracks and other events

improperly reconstructed as multiple pulses. The value for the maximum is chosen

to be large enough that the vast majority of pointlike events will pass, even if our

diffusion time calibrations were too low for some reason.

� Risefirst < Risesecond

� |CentreP1 - CentreP2 | < 500 µs

Simultaneous event depositions will produce multiple pulse so that the one ob-

served earlier will be narrower (its primary electrons spent less time drifting, and so

diffused less with respect to each other). Similarly, the time difference between both

pulses is constrained by the maximum drift time in the detector. The maximum value

is once again taken on the larger side as a safety measure against miscalibrations.

� AmplP1 < 3 · AmplP2 + 5 keV

Finally, since a decaying axion produces two photons of same energy, the two

pulses should be of similar energy. However, due to the resolution of the detector,

and the presence of relatively strong attachment, this cut is kept very wide: we just

require the reconstructed energy of the largest pulse to be no larger than three times

the smallest pulse. An extra safety margin of 5 keV is added to avoid unwanted

behaviour due to noise at the lowest amplitudes.

The effect of applying all these cuts is shown on Fig. 8.5. After applying basic

cuts to remove unphysical events, the additional cuts with the strongest effect are:
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Figure 8.5: Distribution of amplitude of events for different cuts. Roughly, dark blue
are physical events with two pulses; green are events with two pointlike
pulses; light blue are events with two “simultaneous” pointlike pulses; red
are events with two such pulses that are relatively close in energy. For
comparison, we also show the results for a harsher cut on the allowed
difference between both pulses (black).

� The cut that selects events with two pulses from all “physical” events (not

pictured; goes from ∼ 21200 to 695 events);

� The cut that removes events with risetimes or widths that are too large (goes

from ∼ 695 events to 306);

� The cut that keeps only events where both pulses are close in energy (goes form

298 to 62 event, or even down to 16 for a harsher version).
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Some conclusions from the effectiveness of the cuts can be drawn. Of note, the

combination of the first two cuts just mentioned reduce the number of observed

events by 98.5%. This is the great advantage of the search for solar KK axions in a

gas detector: by looking only for events with multiple pulses, an extreme rejection

power is achieved over solid or liquid detectors, for which both photons from the axion

decay would be absorbed at the same location. By itself, the cut that removes events

with risetimes or widths that are too large removes events with undershoots, and the

high rate periods after a large event, that survived the basic cuts mentioned earlier.

It is interesting to note that the cut that selects for events in which the first pulse

is shorter than the second barely has an effect on the number of events. This suggests

that random coincidences of pointlike events are extremely rare, if there are any at

all; otherwise, we would expect the number of events in which the first pulse is larger

to be close to those in which it is not 1. The few events cut is likely to only be due

to the imperfect resolution of the risetime estimation, or events spread out by more

than the “maximum” drift time due to electric field anisotropies very close to the rod.

The other very efficient cut is the selection for pulses of similar amplitude. While

we do expect some backgrounds that generate simultaneous event depositions (like

210Pb on the inner surface of the shell), no background generates simultaneous pulses

of same energy. Unfortunately, due to resolution effects on our amplitude estimation,

and the presence of relatively high attachment, the reconstructed amplitude of two

events with same energy might be quite different. A lax cut that takes this into

account still reduces the event count by 79%. But if we had a clean was with minimum

1This is consistent with expectations: given the rate of physical events was around 20 mHz, the
number of random coincidences expected was ∼ 0.7, even before taking into account any cuts
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Figure 8.6: Distribution of amplitude of simulated axion events for different cuts.
Roughly, dark blue are physical events with two pulses; green are events
with two pointlike pulses; light blue are events with two “simultaneous”
pointlike pulses; red are events with two such pulses that are relatively
close in energy. For comparison, we also show the results for a harsher
cut on the allowed difference between both pulses (black).

or no attachment2, a harsher cut would have reduced it by 95% instead (under the

assumption that the events seen by SEDINE are mostly background where the two

pulses have “unrelated” energies).

The effect of these cuts on the data should be contrasted with their effect on our

expected axion signal. 2 · 106 decays were simulated, of which 1.96 · 106 left energy

inside the detector. Applying the same cuts as for the data leaves us with the results

2SNOGLOBE will have an oxygen getter, allowing higher levels of purity in the target gas than
SEDINE.
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shown in Fig. 8.6. Keeping only events with two separate pulses has the biggest

impact on our efficiency, keeping only 26.5% of all axion decay events (for reference,

only 76.5% of all axion decays even had both photons captured within the detector).

However, past that point, all other cuts have marginal effects on the total efficiency.

Applying all cuts, including the harsher version of the same-amplitude cut, would

only drop the efficiency by 8.5% of all double-pulse axion events, compared to up to

97.7% for observed events in our data. This justifies the use of these cuts, since they

reject a much larger proportion of background than of signal.

We can contrast data and expected signal in other ways too. After applying all

cuts, we end up with 62 candidate events across the whole energy range (which we

will be restricting in a moment). Their distribution in energy and time difference,

compared to the expected one (normalized) from solar KK axions, are shown on

Fig. 8.7. We see a definite difference between the two of them, with the data being

more uniform in energy than the simulations, and the time difference peaking around

∼ 170µs or higher, instead of ∼ 100µs. An “unfortunate” side effect of the low event

count is that the statistics do not really allow for a confirmation on the true source

of these events, or applying more elaborate background subtraction techniques.

For a final check on the data, we look at the comparison between the first and

second pulse for each of these events, shown on Fig. 8.8. Not much can be said from

the comparison of risetimes, due to the low statistics. The distribution of amplitudes

points against these events coming from two simultaneous events of same energy, since

then the first pulse would usually be the largest, due to attachment; we observe the

opposite. Then again, we were not expecting to be sensitive enough with SEDINE

to observe solar KK axion events, so this is as expected. The main use of analysing



8.1. SEDINE DATA 185

Figure 8.7: Comparison between observed events that pass all axion-like cuts (blue),
and normalized expectations from simulations of solar KK axions (red).
Top: Energy distribution. Bottom: Time difference between first and
second pulse.
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Figure 8.8: Comparison between the first and the second pulse for events that pass
all axion-like cuts. Top: Amplitudes. Bottom: Risetimes
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these events is to prepare for SNOGLOBE data and its respective backgrounds.

8.1.2 Optimized cuts

Axion-like backgrounds

As mentioned in the previous section, there is no reason to expect the basic axion-like

cuts to be the optimal ones for this analysis. In fact, it is reasonable to think that

by restricting the range of the search, we can improve the Signal-over-Noise Ratio

(SNR, here the number of expected axion events over background events), at the cost

of some detector sensitivity to axions3.

As such, to optimize our final results, we require knowledge of all background that

might potentially appear as solar KK axion events. The possible background sources

of SEDINE were mentioned in Sec. 3.3.2, and quantifying them was one of the main

objectives of A. Brossard’s thesis [35]. With the help of his Geant4 simulations, the

contributions from the different radioactive contaminations were computed, as shown

on Fig. 8.9 4. These simulations reveal that the primary background is the presence

of 210Pb deposited on the inner surface of the detector shell from the 222Rn chain.

The second most important contribution is the presence of 210Bi in the bulk of the

shell.

We should take a moment to understand how these radioactive contaminations

3How to produce an exclusion limit from number of observed events is explained in the next
section. For the rest of this section, it is enough to know that we want as high an efficiency and as
few background events as possible. We do not consider the possibility of discovery at this time: the
solar KK axion model predicts ∼ 0.1 events for SEDINE’s physics data, at least a couple orders of
magnitude below the necessary for a discovery claim.

4The visible statistical uncertainty for all but surface 210Pb is due to how rare these events are,
and how long it takes to simulate them. 105 (resp. 108) events were simulated for 210Pb on the
inner surface (resp. in the bulk of the shell) of the detector; 2258 events (resp. 118) passed all cuts.
105 (resp. 108) events were simulated for 210Bi on the inner surface (resp. in the bulk of the shell)
of the detector; 46 events (resp. 331) passed all cuts.
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Figure 8.9: Contribution of different radioactive contaminations to total axion-like
backgrounds, using basic axion-like cuts.

Figure 8.10: Decay chain of 210Pb, with 210Bi [45].
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Figure 8.11: Example of 210Pb event simulated by Geant4 that passes basic axion-
like cuts. 210Pb decays into an excited state of 210Bi, which de-excites
through emission of electrons and a photon. The electrons are either
absorbed in the surface or escape out of the detector, while the photon
is captured in the bulk of the detector, leading to two separate, simul-
taneous energy depositions.

produce axion-like events. Fig. 8.10 shows the decay chains of 210Pb. Other radioac-

tive backgrounds either emit alphas (which, being heavy and charged, cannot produce

separate energy depositions), or their base rate is too low to be relevant.
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For 210Pb, the de-excitation of the Bismuth daughter happens most often by a

combination of emission of electrons and photons. A photon in the ∼ 10 keV energy

range travels some distance in the gas before being captured, while the electrons

interact almost instantly. Since these events all involve relatively low energies, they

are dominated by the 210Pb contamination at the inner surface of the detector shell,

where the electrons are not stopped by the bulk of the copper. From the decays that

leave energy inside the detector, up to 2.3% (for surface decays) produce axion-like

signals. We end up with a rate of 3.5 evt/day from surface contamination, and an

extra 0.16 evt/day from 210Pb in the rest of the copper bulk.

For 210Bi decays, come in two varieties: either we see a Bremsstrahlung photon

(from the β particle crossing the copper bulk) interacting twice in the detector (more

likely for decays farther from the detector, cf. Fig. 8.12), or we see both the electron

crossing the detector (generally staying close to the surface) and a Bremsstrahlung

photon interacting once deep inside (more likely for decays closer to the inner surface

of the copper shell, cf. Fig. 8.13). In either case, since the released particles are

so high in energy, the location of the decay in the detector shell matters less than

for 210Pb, so the extra contribution from the bulk dominates: 0.46 evt/day from the

bulk, compared to 0.07 evt/day from the surface. We note also that the proportion

of axion-like signals from all decays that leave energy in the detector is lower than

for 210Pb, with only 0.07% of surface 210Bi decays producing an axion-like event, and

only 0.0003% of 210Bi from the copper bulk.

Another “background” to take into account, while not directly related to any

radioactive source, is the fluorescence of copper, at 8.1 keV. While 210Bi decays in

particular generate particles at high energies, and as such are not in theory more
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Figure 8.12: Example of 210Bi event simulated by Geant4 that passes basic axion-like
cuts. A Bremsstrahlung photon interacting twice in the detector.

likely to generate events at any specific energy, they may produce photons at a fixed

energy through fluorescence in the copper bulk. As such, we expect a higher rate

of axion-like background events around 16 keV than at other energies, though this is

likely drowned out by resolution effects, and the pairing of one fluorescence photon

with a random energy deposition.
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Figure 8.13: Example of 210Bi event simulated by Geant4 that passes basic axion-like
cuts. The high-energy electron from the decay of 210Bi interacts in the
gas for a short distance before escaping, while a Bremsstrahlung photon
interacts deeper in the detector.
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To improve our background rejection, we can consider each event to be character-

ized by 5 parameters:

� Its reconstructed energy;

� The asymmetry between the amplitude of the first and the second pulse, (A1−

A2)/(A1 + A2);

� The risetime of the first and the risetime of the second pulse;

� The time separation between both pulses.

Ideally, cuts would be selected taking into account all these parameters in once,

through methods like Boosted-Decision-Trees. In practice, even just optimizing for

some of these parameters one by one provides significantly improved results.

Improved risetime cut

Fig. 8.14 shows a clear difference in the distribution of events in the Risetime vs.

Risetime plot for axion events and background events. While the risetime of the first

pulse is pretty evenly distributed among all possible values for both axion events and

background events, the risetime of the second pulse is concentrated at the high values

for background events. The simulations agree with the data on this point: although

in the data we see both events in which the risetime of the second pulse is low and

in which it is high, there are clearly more of the second category.

This is in accord with the source of the background as we just described. The

dominant source of background is 210Pb on the inner surface of the copper shell, re-

leasing low energy electrons and a photon at the same time. The low energy electrons
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Figure 8.14: Risetime of first pulse vs. Risetime of second pulse, after basic axion-like
cuts. In both plots, the colour distribution is from axion simulations.
The black line shows the requirement that the risetime of the first pulse
be smaller than that of the second. Left: In red, distribution from
simulations of SEDINE background. Right: In red, distribution from
the SEDINE physics data. There is a larger proportion of background
events where the second pulse has a risetime consistent with surface
events.

always release their energy at the decay site, on the surface, generating a pulse at

high risetimes. Conversely, axions can decay anywhere in the detector, so both the

pulses they generate can have any possible risetime.

By looking at the distribution of risetimes of the second pulse for both axion and

background simulated events, as shown on Fig. 8.15, we can set a more stringent

cut on the risetime to improve our Signal-over-Noise Ratio. In this case, removing

all events with a risetime above 40µs should remove the vast majority of surface

background, while keeping most axion events.

Improved asymmetry cut

Fig. 8.16 shows that for axion events, the value of the asymmetry is concentrated

around ∼ 0.1. While both the pulses from an axion decay have the same energy, the
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Figure 8.15: Distribution of Risetime of the second pulse for axion events (blue) and
background events (red), based on simulations.

Figure 8.16: Asymmetry between pulse amplitudes vs. Reconstructed event energy,
after basic axion-like cuts. In both plots, the colour distribution is from
axion simulations. The black line shows the asymmetry cut from the
basic axion-like cuts. Left: In red, distribution from simulations of SE-
DINE background. Right: In red, distribution from the SEDINE physics
data.
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effect of electron attachment means that the photon absorbed closer to the central

electrode will have more of its charge going through the avalanche process than the

photon absorbed farther away. The asymmetry for background events is spread out

over all possible values, although with a clear dependency on total energy. This overall

trend is likely due to the combination of a fluorescence photon (of fixed energy) with

a surface electron (leaving a more “randomized” amount of energy in the detector).

In the data, the additional population with very high asymmetries is due to a small

population of events that were deconvolved improperly: an artificial oscillation behind

the pulse is formed in some cases, which is incorrectly reconstructed as a small pulse.

As shown in Chap. 6, our calibration data for attachment does not allow for a

precise measure of this phenomenon to be reproduced in our simulations. As such, the

basic cuts on the asymmetry were left deliberately lax. In the simulations, the odds of

one electron not being captured during a step of length dt were set to e(α(E)−β(E))∗dt,

where α is the Townsend coefficient and β is the attachment coefficient, both taken

from Magboltz and depending on the energy of the electron 5. To include our un-

certainty on the measure of the attachment, β was multiplied by a random number

chosen uniformly between 0 and 2, giving a very conservative sweep of the possible

values.

Due to the large uncertainties on attachment, a different method was used to select

the improved asymmetry cut than for the risetime cut. In Fig. 8.17, the distribution

of simulated axion events is shown for various values of the attachment, including the

most extreme values. The lower the attachment, the lower the asymmetry between

both pulses, and the higher the reconstructed event energy, and vice-versa for higher

5This was set to 1 if larger than 1, the Townsend coefficient only being there to offset the large
chance of attachment once inside the avalanche region.
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Figure 8.17: Asymmetry between pulse amplitudes vs. Reconstructed event energy
of simulated axion events, after basic axion-like cuts, for high (blue),
average (green) and low (red) values of the attachment. The solid black
line shows the asymmetry cut from the basic axion-like cuts, the dashed
line shows the improved asymmetry cut.

attachments. To minimize the effect on systematics (cf. App. K) due to attachment

uncertainties, the new asymmetry cut was selected as to include both extremes: a

maximum asymmetry of 0.50, and a minimum of −0.28.

Improved energy range

Using the improved risetime and asymmetry cuts leads to a reduction of over a factor

10 in background in the energy range in which we expect axion events, as shown

on Fig. 8.18. The reduction is especially due to rejection of surface 210Pb events,

leaving the remaining background evenly distributed between surface 210Pb, 210Bi in
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Figure 8.18: Contribution of different radioactive contaminations to total axion-like
backgrounds, using axion-like cuts with improved asymmetry and rise-
time cuts. The contributions have been smoothed out for better visual-
ization.

the copper bulk, and 210Bi in the lead shield. But improvements can still be obtained

by selecting a restricted energy range.

One approach to do so is by comparing the expected axion signal to the expected

background at different energies. By selecting only the energy ranges with a SNR

above a given threshold, integrating the expected number of axion and background

events separately, and comparing them to each other, we can draw a function with

a “limit-like” parameter depending on the SNR threshold (cf. Fig. 8.19). It is then

just a matter of selecting the value that optimizes the limit, and converting that back

into an energy range, to be used with the real data.
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Figure 8.19: Top: Event rate vs. energy for axion and background events (black).
Bottom: limit-like parameter when keeping all energies such that their
SNR is above a given threshold. The green curves are for the expected
value of electron attachment, the blue curves for its maximum allowed
value, and the green for its minimum.
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There is one additional difficulty due to the previously mentioned uncertainty on

electron attachment: the reconstructed energy of an event will tend to be lower with

higher electron attachment. This is clearly visible in the top figure in Fig. 8.19, in

which the axion events are reconstructed at different values for different attachment

coefficients. If we were to choose the SNR threshold that optimizes the case with

the expected attachment (SNRmin = 0.17), we would end up with an energy range

of 3 − 10 keV. This would lead to a drastic decrease in detector efficiency if the

low-attachment scenario.

Instead, we choose the SNR threshold so that it minimizes the expected exclusion

limit in the worst case scenario, which here ends up being the low-attachment case.

This results in a decrease in the threshold (SNRmin = 0.08), and an increase in

the energy range, to 3 − 12 keV. While this effectively means less background will

be rejected (due to the weaker energy constraint), it severely reduces the impact of

attachment uncertainties on the detector efficiency: the low-attachment case only

loses a relative 15.8% with a 3− 12 keV energy cut (compared to no energy cut), but

36.5% with a 3− 10 keV energy cut.

Final cuts

The improved asymmetry, risetime and energy cuts have a combined effect of reducing

the efficiency of the detector by 6.1% of the efficiency with the basic axion-like cuts, for

a total efficiency of 16.9% and axion event rate of 0.015 evt/day. On the other hand,

the expected rate for background events is reduced from 2.9 evt/day to 0.062 evt/day,
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Figure 8.20: Comparison of axion-like events in data (blue), and expectations from
simulations of radioactive background (black), after improved axion-like
cuts. Only 1 event in the data passes the improved cuts.

for a reduction of almost a factor 50 6. The comparison with the real data is shown in

Fig. 8.20: only 1 event passes the improved cuts, compared to the 62 with the basic

axion-like cuts. We see a qualitative agreement in the rate and energy distribution of

events in an extended energy range up to 44 keV, although the low statistics prevents

drawing conclusive results.

It is very important to note that, while we did look at the data in the previous

section, the optimized cuts are based entirely on simulations. Selecting the energy

6While the rate of background events is still four times higher than that of axion events even after
cuts, this does not have much of an effect on the results drawn from the SEDINE data, due to the
relatively low exposure of 4.3 day ·m3. However, it does severely limit the usefulness of increasing
the exposure with this detector in an attempt to obtain improved constraints on the KK axion.
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range (or risetime, asymmetry, etc.) for analysis based on the data itself would obvi-

ously grossly bias the final result (barring special cases like Yellin’s optimum interval

method [77]). This method of selecting the region of interest produces conservative

conclusions: even if all the improved cuts had turned out to be “wrong” due to an

extreme misunderstanding of our background, our final limit would not be “false”; it

just would not be as strict as it could have been by selecting a better range.

8.2 Exclusion limit

8.2.1 Theory

The number of expected events for a given axion-photon coupling coefficient gaγ is

Nexp = exposure ∗ rate ∗ efficiency (8.1)

The differential rate of solar KK axion decays is:

dR

dma

=
g2
aγγ

64π
n0m

3
af(ma)

where gaγγ is the coupling between axions and photons, n0 is the local density of

trapped solar KK axions on Earth, ma is the mass of the axion, and f(ma) is the

function describing their mass distribution.

The exposure of a given physics run is simply the volume of the detector V = 4π
3
r3
det

multiplied by the time length of the run T . The efficiency is the ratio of solar KK

axion events that are properly identified as such. Nominally, it depends on the mass

of the decaying axion, ε(ma), but since their mass distribution is fixed in this model,

we can integrate that dependency away:
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∫
m3
af(ma) ε(ma) dma = F ε

where we define F =
∫
m3
a f(ma) dma, and ε -the value that satisfies this equation-

as the total efficiency.

Putting all this together, we get:

Nexp =
4π

3
r3
det T ∗

g2
aγγ

64π
n0F ∗ ε (8.2)

This equation can be turned into an exclusion limit based on data. For a given

excluded number of events Nexcl from any given run, and denoting gZDL and nZDL as

the predicted values of gaγγ and n0 in [6], then the excluded coupling between axions

and photons, depending on the density of axions on Earth is:

gaγγexcl(n0) =

√
48Nexcl

r3
detT n0F ε

= gZDL

√
Nexcl

Nexp

nZDL
n0

(8.3)

Note that, given a fixed solar KK axion model, and given some excluded number

of events Nexcl, the only variable left to produce a limit on gaγγ is ε, the efficiency

of the detector. This value is obtained through simulations, and is the source of the

uncertainty in the final limit. This effect will be explored more in detail in the next

section.

Finally, to obtain the number of excluded events based on the number of ob-

served events, we need to use the properties of the Poisson distribution. Since axion

events are random in time, and independent from each other, the number of observed

events in a given time follows a Poisson distribution, with only parameter the average

number of events in that time (equal to the event frequency, times the duration of

the observation). For a given experiment, the lowest average number of events such



8.2. EXCLUSION LIMIT 204

that the observed number of events or higher is at most 10% likely (i.e., the upper

confidence level at 90%) follows the following formula:

Nexcl = F−1
χ2 (0.9, 2(Nobs + 1))/2 (8.4)

where F−1
χ2 (p,N) is the quantile function of the χ2 distribution with N degrees of

freedom [78].

One consequence of this formula is that, to be able to reject the existence of

solar KK axions as currently modelled at 90% confidence level, we need to run an

experiment with enough exposure to expect at least 2.3 7 signal events, assuming

no other background. Below that, even observing 0 events is still consistent with

existence. The converse, rejecting non-existence at 99.9% confidence level, depends

on the distribution of background events: the number of observed events has to be

at least three standard deviations above the expected from background alone.

8.2.2 KK Axion limit from SEDINE data

We now have enough information to generate the exclusion limit on solar KK axions

derived from our data. Referring to Fig. 8.20, we see that the number of candidate

events in SEDINE’s physics data after optimizing our region of interest was 1, leading

to an excluded average number of events at 90% of 3.89. This is compared to the

expected number of axion events for the run: at a total rate of 0.08371 m−3day−1, an

exposure of 4.303 m3day, and an efficiency of 16.34% (after accounting for systematics,

cf. App. K), the expected number of events is 0.0589. While the value is almost two

orders of magnitude too low for a discovery claim, exclusion limits can still be set based

7F−1
χ2 (0.9, 2)/2 ' 2.3.
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on the Eq. 8.3. At n0 = nZDL = 4.07 · 1013 m−3, and given gZDL = 9.2 · 10−14 GeV−1,

we get an exclusion limit of gaγγ = 7.76 · 10−13 GeV−18.

The effect of the different systematics on the detector efficiency is covered in detail

in App. K. The parameters considered were the uncertainties on the calibration of

the electron drift and diffusion time, electron attachment, photon attenuation length,

energy and mean ionization energy calibrations, and ion mobility in the gas. For

the chosen optimized cuts, the main contributions to the final uncertainty on the

exclusion limit were the diffusion time (due to the strengthened risetime cut to reject

surface events), at 12% of the total efficiency, and the drift time (due to being the

main factor affecting the separability of axion pulses), at & 9.5% of the total efficiency.

The electron attachment uncertainty could have had an effect of up to 35% on the

total efficiency if we had tried to optimize the cuts ignoring our poor calibration of

this phenomenon. Instead,the judicious choice of cuts in Sec. 8.1.2 reduced its effect

to only 5%. All other calibrations induced lesser uncertainties on the efficiency.

The final exclusion limit plot is shown in Fig. 8.21. Compared to the only other

existing exclusion limit at nZDL, set by the XMASS collaboration at gaγγ = 4.8 ·

10−12 GeV−1[10], NEWS-G sets a limit 6.2 times lower (or just 4.7 times lower if

taking the higher +2σ limit).

For a model independent plot representing the results of this search, see Fig. 8.22.

As an example of interpretation, a signal in the 9− 14 keV range, consisting of non-

relativistic particles decaying into two photons of same energy, is excluded at 90%

C.L. for rates higher than ∼ 2 evt/day/m3.

8For comparison, if we had taken the basic axion-like cuts, we would have had an efficiency
of 25.52%, but a total of 66 events in the region of interest, for an exclusion limit of gaγγ =
2.48 · 10−12 GeV−1. Despite a relative loss of efficiency of ∼ 33%, the additional cuts improved the
limit by almost one third.
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Figure 8.21: Exclusion limit for solar KK axions derived from this work (solid red
line), with ranges due to systematics (red shaded areas). For comparison,
we show the ideal exclusion limit in the absence of background (dashed
red line), the previous limits on solar KK axions from CAST (orange
line [26]), and from the XMASS collaboration (green line [10]). The
preferred parameter space for the solar KK axion model is shown as the
intersection between the solid black line (Solar KK axion model) and
the dashed black line (Solar Corona hint) [6].
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Figure 8.22: Detector efficiency and detected events in the SEDINE detector, for a
total exposure of 4.3 day ·m3. Energies are corrected for attachment.
The resolution of the energy reconstruction is ∼ 20% at these energies.

The main conclusions from this study are:

� The large advantage of a gaseous detector in the search for KK axions, in the

form of background rejection. Selecting only equal-energy multi-pulse events

allows rejection of up to 99.99% of all background in the 2 − 22 keV energy

range (if also rejecting events close to the detector shell). Liquid and solid

target detectors cannot make use of this effect.

� World-leading limits are set with a relatively small detector, and less than one

and a half months of data. Increasing exposure for improved results is still very

possible, both through detector size and run length.
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� The main issue with this dataset was radioactive background, mainly in the form

of 210Pb deposited in the inner surface, and 210Bi in the detector shell itself. A

more radio-pure detector is necessary to probe the preferred parameter space

of the solar KK axion model. Even with optimized cuts, the background rate

was 4 times the axion rate.

� The lack of proper calibrations for electron drift and diffusion times was the

main source of systematic error. Similarly, the large uncertainty on electron

attachment prevented the use of more stringent energy or asymmetry cuts,

which would improve background rejection even further.
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8.3 Projections for SNOGLOBE

On that note, we segue into the future of the collaboration with SNOGLOBE9. This

detector offers improved radiopurity, increased size, gas purification, and continuous

calibrations via laser. These should drastically enhance its sensitivity to solar KK

axions. This section will describe the expected performance of this new detector.

8.3.1 Optimal running conditions

The first step is to figure out the optimal running conditions, in terms of detector

sensitivity to axions. To limit the scope of the question down to a workable level,

the electrode used will be kept as the one tested while SNOGLOBE was at the

LSM, during the first leg of its journey to SNOLAB: an achinos with 11 arms, of

radius 1.4 cm, with 1 mm electrodes. While our simulation software for 3-dimensional

electrodes is not yet mature or tested enough to perform this study, the field can be

approximated with a 2-dimensional, cylindrically-symmetric electrode, as shown in

App. J.2.

Once that is fixed, the question remains about which gas to use, which pressure,

and which voltage. The gas choice is limited to noble gases, to allow regular function-

ing of the SPC. The photon attenuation properties of the relevant gases are shown

in Fig. 8.23, together with methane (our choice of quencher). Since we want photons

in the few keVs to have an attenuation length in the 10s of cm, the preferred gas is

Neon if going to higher pressures, and Argon otherwise. Helium is too transparent

to photons to be of use at those energies, and keeping a high-pressure vessel full of

methane underground is impractical.

9At time of writing, the detector is waiting at SNOLAB, locked away while we await the passing
of the COVID-19 pandemic.
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Figure 8.23: Attenuation and absorption coefficients for different gases at 1 bar. The
shaded area approximately covers the energies and distances involved
in solar KK axion searches with SNOGLOBE. Helium is too transpar-
ent, and methane must be diluted to be used in SNOLAB, so the only
available gases of interest are Neon and Argon.

This leaves the question of voltage and pressure. To find the optimal conditions,

simulations of 105 events were performed and processed, for both Neon and Argon,

with varying pressures and voltages. A “maximum” efficiency was computed for

each condition by finding the proportion of axion events in which both photons are

contained inside the gas volume, and the last primary electron from the first photon

arrives before the first primary electron from the second photon (i.e., no “pile-up”

between both pulses). The results are shown in Fig. 8.24. The optimal efficiency is

achieved with 1.0 bar of Neon, and 4000 V, at 29.1%. In practice, operating conditions
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Figure 8.24: Predicted solar KK axion “maximum” efficiency for different voltage
and pressure configurations. Top: Neon. Bottom: Argon. Electron drift
parameters stay roughly constant when E/P is constant, but photon
attenuation length is inversely proportional to P , hence the diagonal
feature in both plots.
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are limited by sparks forming spontaneously around the electrode at high voltages. If

the maximum voltage we can set is only 2000 V, then either Neon at 0.6 bar or Argon

at 0.15 bar both reach an efficiency of ∼ 22%. At even lower voltages, the performance

of Neon keeps going down, while that of Argon remains relatively constant if the

pressure is decreased at the same rate as the voltage.

Taking an efficiency of 22% as the reference, together with SNOGLOBE’s internal

radius of 67.5 cm, and a combined solar KK axion decay rate of 0.08371 m−3day−1, we

get an event rate of 0.0237 evt/day. It would take 100 days to have enough exposure

to exclude the solar KK axion model, assuming it is indeed wrong, and no background

at all. A discovery would require higher exposure still, depending on our expected

background.

8.3.2 Axion-like backgrounds

For SEDINE, the three main sources of axion-like backgrounds were 210Pb contam-

ination on the inner surface of the copper shell, 210Bi contamination in the bulk of

the copper shell, and 210Bi in the lead shield. In terms of improved radiopurity,

the largest improvement for SNOGLOBE is the 0.5 mm of copper electroplated on

the inner surface of the detector shell [79]. This effectively removes all axion-like

events from surface 210Pb. The lead used in the lead shield is also more pure, with a

210Pb contamination of 4.6 Bq/kg (compared to 37.4 Bq/kg for SEDINE). Since the

210Bi contamination in the bulk of the copper shell remains relatively unchanged at

28.5 Bq/kg (compared to 26 Bq/kg for SEDINE), we can assume that this will be the
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dominating background for SNOGLOBE10.

To get a qualitative estimate of the rate of axion-like background events to ac-

tual axion events, we use the field approximation for the SNOGLOBE detector with

600 mbar of Neon and an applied voltage of 2000 V, and simulate both axions and

210Pb/210Bi decays in the copper shell of the detector, taking into account the 0.5 mm

of electroplated copper. Due to the gas purification system used in SNOGLOBE, we

also assume no gas impurities, and so no attachment.

A Geant4 simulation with 3 · 109 decays for both 210Pb and 210Bi in the copper

shell was performed; for a total mass of 521.4 kg of copper (removing the electroplated

region) with a contamination of 28.5 Bq/kg of 210Pb, this corresponds to 2336 days

of exposure. From all the simulated events, 81982 left energy in the detector, and 36

passed axion-like cuts adapted to the new geometry and gas composition. Of those

36:

� 18 were events leaving less than 6 keV at the detector surface; the low number

of primary electrons and long diffusion times produce sharp peaks in the pulse,

which are wrongly reconstructed as different pulses. The few events due to

210Pb decays are all in this category.

� 12 were Bremsstrahlung photons from the decay of 210Bi interacting twice in

the detector. Their energies ranged from 9.6 to 33.8 keV.

� 6 were two photons interacting in the detector at the same time. Their energies

were contained in a narrow range, 14.8− 18.3 keV. Events with more than one

10For details on radioactive backgrounds, see the relevant sections in Chap. 3, or A. Brossard’s
thesis [35]. In particular, cosmogenic activation of 60Co in the copper shell might actually be the
dominating source of background, although its contribution should become subdominant after half
a year to one year of “cooling”.
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Figure 8.25: Axion (red) and radioactive background (black) rate after cuts for
SNOGLOBE with 600 mbar of neon and an applied voltage of 2000 V.

photon generally involve at least one copper fluorescence photon (8.05 keV),

hence the narrow range of energies for these events.

Their distribution, compared to the expected rate of axion events after cuts, is

shown in Fig. 8.25. Keeping only events in the 5 − 15 keV range, the axion event

rate is 16.5 · 10−3 evt/day. Note that this value is around 33% lower than the one we

obtained with the “maximum” efficiency, due to the use of actual processing-like cuts,

rather than idealized ones. On the other hand, even making the conservative estimate

that there is a uniform background of 3.2 ·10−7 evt/day/eV in the same energy range,

the total background rate is of 3.2 · 10−3 evt/day, roughly five times lower than the
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Figure 8.26: Projected limits for SNOGLOBE with 600 mbar of neon and an ap-
plied voltage of 2000 V. Both a plausible limit (dashed dark purple line)
with a 30 day run and the expected background-to-axion rate of 20%,
and an ideal limit (dashed light purple line) with a 180 day run and a
background-to-axion rate of < 1%, are shown.

axion rate. This is a considerable improvement over SEDINE, for which the expected

background rate after cuts was four times higher than the axion rate.

8.3.3 Projections

Based on the expected axion and background event rate, we can draw projections

for the SNOGLOBE detector. They are shown in Fig. 8.26. The weaker limit is
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set assuming the 20% background-to-axion ratio we obtained for SNOGLOBE, and

a moderate run length of 30 days. With a local density of KK axions of nZDL =

4.07 ·1013 m−3, the projected excluded axion-photon coupling strength is gaγγ < 2.09 ·

10−13 GeV−1, 3.7 times stronger than the limit set with SEDINE 11.

The stronger limit, that would be able to reject the solar KK axion model at 90%

C.L., requires a rather optimistic < 1% background-to-axion ratio, and 180 days of

exposure. Given that neither are particularly likely to be achievable for SNOGLOBE

in the near future, it is only presented as a benchmark. For comparison, taking the

actual expected background rate of 20%, the necessary exposure would be ∼ 370 days

(for an expected 1.2 background events and 6 axion events).

We can also consider the necessary exposure for a potential discovery. For a

discovery at 5σ, we would require a signal that is more than 5 standard deviations

away from what could be produced from background alone. For SNOGLOBE, given

the relatively small exposures and backgrounds, we can take the uncertainty on the

background to be dominated by its statistics. Given a Poissonian background, and an

expected number of background events of nbk, the standard deviation is σbk =
√
nbk.

As such, we want enough exposure so that na > nbk + 5σbk. Given that we expect

a background-to-axion ratio of 20%, this means we want enough exposure so that

na = 8.0 and nbk = 1.6. For an axion rate of 16.5 · 10−3 evt/day, this means an

exposure of 485 days.

Given the limited time available for SNOGLOBE at SNOLAB, and that the pri-

mary mission of the NEWS-G collaboration is the search for WIMPs, it is unlikely

11Remember that for a given local density of axions, their decay rates depend on g2
aγγ , so the

limit on the coupling strength only decreases with the square root of the exposure. This explains
why, despite SNOGLOBE having 11 times the volume of SEDINE, the constraint on gaγγ did not
decrease as much.
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that enough detector time will be made available to either reject or discover solar KK

axions. However, barring the practical exposure limits of this detector generation,

the background study demonstrates that this technology is fully capable of probing

the preferred parameter space of the model.

Summary

Based on simulations for our detector response to both axion events and other ra-

dioactive backgrounds, optimized cuts were chosen to keep the former while rejecting

the latter. Their application to 4.3 day ·m3 of physics data taken with the SEDINE

detector left only one candidate event. Compared to the expected 0.0589 detected ax-

ion decays, this allowed us to set a world-leading exclusion limit on solar KK axions:

gaγγ < 7.76 · 10−13 GeV−1 for a KK axion density on Earth of nZDL = 4.07 · 1013 m−3,

six times stronger than the previous limit set by XMASS. The limited radiopurity

of SEDINE, mainly 210Pb on the inner surface of the detector and 210Bi in the cop-

per bulk and lead shield, prevents setting much stronger constraints, even assuming

considerably longer exposures.

The upcoming SNOGLOBE detector benefits from significant improvements on

its radiopurity compared to SEDINE, leading to a background-to-axion rate of only

20%. This makes it fully capable of probing the parameter space preferred by the

Solar Corona problem, gZDL = 9.2 · 10−14 GeV−1. However, given limited available

time for axion searches, we may be limited to setting stronger constraints on the

axion-photon coupling. A 30 day run (exposure of 38.6 day ·m3) is projected to set

limits gaγγ < 2.09 · 10−13 GeV−1, 3.7 times stronger than with SEDINE.
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Chapter 9

Summary and Conclusions

This thesis documents the work done to set limits on the coupling between axion

and photons, based on the solar KK axion model developed in [6]. In the parameter

space in which KK axions solve the solar corona problem, the model predicts axions

decaying into two photons at a rate on Earth of ∼ 0.08 evt/m3/day, mainly in the

5 − 15 keV range. A review of the literature on the QCD axion was performed to

derive the experimental and observational constraints on the aforementioned model.

XMASS was the only pre-existing limit that targeted it explicitly, while tension with

constraints on exotic energy losses from the Sun urge for a more detailed treatment

of the model than the one available.

Pulse processing methods were developed and tested, based on our understand-

ing of the detector. In turn, software for simulating pulses was also developed. In

SEDINE-like conditions, the MPA pulse processing method achieved an axion event

detection efficiency of up to 35%, with a pointlike event rejection of ∼ 99.99%. In

the same conditions, the simulations showed that two energy depositions in the de-

tector can be resolved independently if their radial distance to the central electrode

differs by at least 2 cm. To test the pulse processing on real axion-like data, a run
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with 55Fe-induced argon fluorescence was taken with a 130 cm wide SPC at Queen’s

University. While the ∼ 400 Hz of muon tracks severely degraded the quality of the

results, we found an agreement between simulations and data. In particular, for the

data at 200 mbar, the rate of fluorescence events to total 55Fe events were predicted

to be 2.93± 0.29 %, and found to be 2.99± 0.28 %.

For the 42 day long neon data taken with the SEDINE detector, the main source

of radioactive background was found to be 210Pb deposited on the inner surface of

the shell (210Bi de-excites by simultaneous release of photons and electrons), followed

by 210Bi in the copper bulk and lead shield (double Compton interaction from a

Bremsstrahlung photon). Strengthening the cuts on surface events and pulse asym-

metry allowed reaching a background rejection of 99.99%, although the total efficiency

to axions was lowered to 16.34%. With a total exposure of 4.3 day ·m3, and only one

candidate event left in the region of interest, NEWS-G can set a world-leading ex-

clusion limit on solar KK axions: gaγγ < 7.76 · 10−13 GeV−1 for a KK axion density

on Earth of nZDL = 4.07 · 1013 m−3, six times stronger than the previous limit set by

XMASS.

Testing the preferred parameter space of the solar KK axion model is impractica-

ble for SEDINE due to its radioactive contamination. However, given the significant

improvements in the radiopurity of the upcoming 140 cm wide SPC detector at SNO-

LAB (mainly through electroplating of the inner shell and use of cleaner lead in the

shield), we predict a ratio of only 20% between background and axion decay rates

in the region of interest. This would allow either the discovery or rejection of the

model, given a run of ∼ 480 or ∼ 370 days, respectively, under appropriate operating

conditions. It might not be possible to achieve the necessary exposure during its time
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at SNOLAB, but even a 30 day run (exposure of 38.6 day ·m3) is projected to achieve

an exclusion limit of gaγγ < 2.09 ·10−13 GeV−1, 3.7 times stronger than with SEDINE.
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Appendix A

The QCD Axion

This section was based on [2], [80] and [81], in increasing order of theoretical detail.

This is only meant as a primer to introduce some of the vocabulary, concepts and

behaviour that are relevant for understanding the KK axion model.

A.1 Strong CP problem

The Standard Model QCD Lagrangian includes a CP violating term, the so-called

topological term:

LΘ = −Θ(αs/8π)Gµν aG̃a
µν (A.1)

where −π < Θ < π is the effective Θ parameter after diagonalizing quark masses,

Gνµ a is the color field strength tensor, and G̃a
νµ its dual.

The neutron electric dipole moment (nEDM) is an observable consequence of CP

violation induced by Θ. We get the following relationship between both:

dn ∼ 1.2 · 10−2θ eGeV−1
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note that for the topological term of the QCD Lagrangian to contribute to nEDM,

this relationship requires the absence of any massless quark.

Given experimental constraints on nEDM of dn < 1.5 · 10−12eGeV−1, we get

extremely small values of θ < 10−10, even though we were expecting θ = O(1). The

smallness of θ is the so-called Strong CP problem.

A.2 Peccei-Quin mechanism and Axion solution

To solve this issue, we introduce a new boson, the axion, with Lagrangian:

La =
1

2
(∂µa)2 +

a

fa

α2
s

8π
GG̃+

1

4
ag0

aγγ FF̃ +
∂µa

2fa
jµa,0 (A.2)

where fa is a parameter characterizing the energy scale of the axion, and axionic

pseudo-shift symmetry was used to absorb the θ QCD topological term. If the poten-

tial of the axion is such that it set the vacuum expectation value of the axion to zero

(i.e. < a >= 0), then the CP-violating term GG̃ disappears from the Lagrangian,

solving the Strong CP problem.

Applying a field-dependent axial transformation of the quark fields allows for the

elimination of the linear coupling to QCD, at the cost of generating other axion-

dependent terms. In particular, choosing the change of field variables on the up and

down quarks:

q =

u
d

→ eiγ5
a

2fa
Qa

u
d

 (A.3)
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produces the new form of the Lagrangian:

La =
1

2
(∂µa)2 +

1

4
agaγγ FF̃ +

∂µa

2fa
jµa − qLMaqR + h.c. (A.4)

where

gaγγ =
α

2πfa
[
E

N
− 6tr(QaQ

2)] (A.5)

jµa = jµa,0 − qγµγ5Qaq (A.6)

Ma = ei
a

2fa
QaMqe

a

2fa
Qa (A.7)

and

Mq =

u 0

0 d

 (A.8)

Q =

2/3 0

0 −1/3

 (A.9)

Taking the leading order in the chiral expansion of the Lagrangian, all the the

non-derivative terms for the axion are contained in the pion mass terms. Choosing

Qa proportional to the identity, and expanding for afa � 1, provides the following

axion-pion potential:

V (a, π0) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2(

a

2fa
)cos(

π0

fπ
− φa) (A.10)
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which is minimized at < a >= 0, solving the Strong CP problem. Furthermore,

expanding to quadratic order gives the formula for the axion mass:

m2
a =

mumd

(mu +md)2

m2
πf

2
π

f 2
a

(A.11)

ma ' 5.7(
109GeV

fa
) meV (A.12)

A.3 Model dependency

The previous section remained general, covering a wide range of models that could

solve the strong CP problem. The PQ symmetry needs to be precisely defined, giving

rise to model-dependent interactions.

In particular, the PQ current is conserved up to anomalies1:

∂µJPQµ =
g2
sN

16π2
GG̃+

e2E

16π2
FF̃ (A.13)

where N and E are the model-dependent QCD and electromagnetic anomaly co-

efficients, respectively. The Goldstone theorem applied to the axion gives an effective

Lagrangian containing the terms:

La ⊃
a

νa

g2
sN

16π2
GG̃+

a

νa

e2E

16π2
FF̃ +

∂µa

νa
JPQµ (A.14)

where νa is the order parameter for the symmetry breaking of the PQ symmetry,

and JPQµ depends on the ”global charges of the fields transforming under U(1)PQ”.

1An “Anomaly” is the breaking of a classical symmetry (or equivalently conservation law) in the
quantum theory introduced by renormalization.
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Normalizing this expression in terms of the decay constant fa = νa
2N

gives:

La ⊃
a

fa

g2
s

32π2
GG̃+

1

4
g0
aγγaF F̃ +

∂µa

2fa
fc0

fγµγ5f (A.15)

where f is the field for a given fermion. The model-dependent coupling of the

axion to photons and fermions are thus, respectively:

g0
aγγ =

α

2πfa

E

N
(A.16)

and

c0
f =

χHf
N

(A.17)

where χHf is the PQ charge of the Higgs between the left and right-handed fermion.

A.3.1 KSVZ vs DFSZ

The main differences between models are the number of anomalies, and the PQ

charges of the fields transforming under U(1)PQ. While a wide range of models

exist, the main two used as benchmarks are the Kim-Shifman-Vainshtein-Zakharov

(KSVZ) and the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)axions.

The KSVZ or Hadronic axion extends the Standard Model with new heavy quark

with a PQ charge, leaving all standard fermions untransformed under U(1)PQ. If the

new quarks have neutral electric charge, then E/N = 0, and so the axion does not

couple to electrons (nor any other standard fermions) at tree-level.

The DFSZ or Grand Unified Models includes at least two Higgs doublets Hu and

Hd, but unlike KSVZ, ordinary quarks and leptons do carry a PQ charge. In these
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models, E/N = 8/3 (DFSZ-I) or E/N = 2/3 (DFSZ-II), with the difference between

the sub-models being the type of coupling between the Higgs doublets and leptons.

A.4 Axion coupling to photons (and rest of SM?)

From previous sections, the coupling strength of axions to photons is:

gaγγ =
α

2πfa

E

N
− α

2πfa
(
2

3

4md +mu

mu +md

) (A.18)

where the first term is model dependent, and the second term arises from the can-

cellation of the axion-gluon coupling in the effective axion Lagrangian, independently

of the model. Numerically, we obtain:

gaγγ ' (0.203E/N − 0.39)
ma

GeV2

From the effective Lagrangian of the axion, its two photon decay-width (or decay

time) is:

Γa→γγ =
g2
aγγm

3
a

64π
(A.19)

with axions decaying faster than age of universe if ma & 20 eV
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Appendix B

Electronics calibrations

B.1 Electronic components

B.1.1 Proportional Charge Counter

Proportional Charge counters, also known as Charge Sensitive Preamplifiers (referred

to as “preamp” from now on), convert an ionization charge into a step voltage signal,

whose amplitude is proportional to the charge collected. A functional schematic of

one such preamp is shown on Fig. B.1.

The “integrator” part of the diagram is responsible for the response function of

the preamp, a decaying exponential with time constant τ = RC, where R and C are

the feedback resistance and capacitance of the preamp, respectively1. This response

function behaves like an integrator for signals that are short compared to its time

constant, while still returning to the baseline after some time, limiting pileup.

The combination of resistors and capacitances at the HV and Detector inputs

1The response of the preamp is not perfectly instant, with a risetime of the order of ∼ 10 ns
(increasing with the input capacitance). Given our usual sampling frequencies are no shorter than
480 ns, we can effectively consider it to be instant, but this may be different for faster digitizers.
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Figure B.1: Functional diagram of a proportional counter, as provided by the Can-
berra 2006 documentation [49].

serve a dual purpose. At the HV input, it behaves like a low-pass filter, eliminat-

ing electronic noise from the bias voltage. At the Detector input, the bias resistor

presents a high impedance to the detector signal, which instead goes through the

low-impedance capacitance (protecting the amplifier from the high voltage) into the

integrator.

For our purposes, a preamp is characterized by two parameters: its decaytime

τ (50µs for Canberra 2006 [49], 140µs for Cremat Z-110 [82]) and its amplification

gain Gpreamp (235 mV/Me− for Canberra 2006, 1.4 V/pC for Cremat Z-110, both

roughly equivalent). In practice, its effective gain will also be affected by their output

resistance (93 Ω for Canberra 2006, 50 Ω for Cremat Z-110).

B.1.2 Digitizer

The role of the digitizer is to convert the analog voltage signal coming from the

preamp into a digital (i.e. computer-readable) format. While multiple models exist,
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Figure B.2: Electronic diagram for the Calibox input. Top: Detail of the full diagram
for one +/− pair of inputs. Bottom: Simplified diagram for a single input
(although missing the 49.9 Ω input resistance connected to the ground).
Please note the left/right inversion between both diagrams.

I will focus on the Calibox, the in-house acquisition system developed primarily by

M. Gros. In fact, we will only be discussing the part that is relevant to the electronic

calibrations we want to perform: the input electronics.
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The Calibox records up to 4 sensors of 16 bits each (i.e., values between −32768

and 32767 ADU each). To lose a minimum of information to digitization, we want

1 ADU to correspond to as small a voltage difference as possible; however, to avoid

losing information to pulse saturation (values larger than 32767 ADU or smaller than

−32768 ADU), we want 1 ADU to represent as large a voltage difference as possible.

Due to these two conflicting constraints, the digitizer gain (GADU/V ) should be tuned

for the range of voltages we are interested in.

The requirement to have a flexible digitizer gain lead to a system of “jumpers”

in the input electronics, as shown in Fig. B.2. The effective gain of the digitizer is

theoretically proportional to the ratio between the feedback resistance of the input

amplifier (the LT66000-5) and the total input resistance. Using the simplified dia-

gram, the “Gain 1” setup has no jumpers installed, so the gain is proportional to

806
100+102+200

; conversely, the “Gain 4” setup has jumpers on both available resistances,

so the gain is proportional to 806
100

.

In reality, a number of factors change this calculation:

� The presence of an input resistance in the Calibox coupled directly to the ground

(not shown in the simplified diagram, but visible in the full one);

� The output resistance of the preamp connected to the digitizer changes the

total input resistance, so the digitizer gain depends on the preamp used (e.g.

CR-Z-100 has ROpreamp = 50 Ω, Canberra 2006 has ROpreamp = 93 Ω.

� The input amplifier used in the Calibox is not the same for all boxes, with some

having an LT6600-15 instead (with a feedback resistance of 536 Ω, instead of

806 Ω).
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Figure B.3: Electronic setup to calibrate Ke−/ADU .

� The input amplifier is a differential amplifier2 (with a low-pass filter), so the

behaviour of the + input depends on the setup of its coupled − input, and

viceversa; the same jumpers should be set on both inputs at once for regular

behaviour.

What these considerations mean in practice is that the gain of any electronic setup

using a Calibox cannot be easily predicted. Any new setup should be calibrated,

independently of any other previous calibrations.

B.2 Calibration setup

To find the average avalanche gain, or to estimate the “space charge current” in the

detector, we need to find the conversion factor between the digitizer unit and the

number of secondary charges integrated by the preamp, Ke−/ADU .

2The use of a differential amplifier could in theory be exploited to increase the dynamic range of
the Calibox by choosing the right vias voltage to apply on the coupled input, or even to decrease
electronic noise. To the best of my knowledge, this has not been done for any data I have interacted
with.
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This calibration requires both the preamp and the digitizer, and a waveform gen-

erator (WFG), as shown on Fig. B.3. The WFG is connected into the test input of

the preamp (leaving the regular input and voltage bias connectors unused), with the

output of the preamp connected to whichever digitizer is to be tested.

The WFG is used to generate a square wave with, for example, an amplitude

peak-to-peak of 500 mV (choosing the voltage so that the digitizer does not saturate)

and a frequency of 100 Hz (choosing the frequency so that there is no pulse pileup).

The reason for a square wave is that the voltage shift between “valleys” and “crests”

in the signal will be converted into charge pulses by the capacitance in the test input

of the preamp. The total charge of each such pulse is Q = CTestVTest, where CTest is

the test capacitance and VTest is the amplitude peak-to-peak of the square wave as it

enters the preamp. This value will likely be different from the amplitude peak-to-peak

of the WFG signal, due to the output resistance of the WFG and the input resistance

of the preamp behaving like a voltage divider.

The signal on the digitizer should be pulses with a decaying exponential, alter-

nating between positive and negative. The amplitude of one such pulse in digitizer

units provides the conversion factor through the following formula:

Ke−/ADU = VWFG

RIpreamp

RIpreamp +ROWFG

CTest/AADU (B.1)

where VWFG is the amplitude of the square wave created by the waveform gener-

ator, CTest is the test capacitance of the preamp, ROWFG
and RIpreamp are the output

resistance of the WFG and input resistance of the preamp, and AADU is the amplitude

of the pulse on the digitizer in ADU.

Notably, the conversion factor depends on both the preamp and the digitizer. The
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values found for a few setups were:

� Canberra + CALI 16 (Gain 1): 306 e−/ADU

� Canberra + CALI 16 (Gain 4): 98 e−/ADU

� CR-Z-110 + CALI 16 (Gain 1): 170 e−/ADU

� CR-Z-110 + CALI 16 (Gain 4): 54 e−/ADU

� “METALBOX” + CALI 16 (Gain 1): 194 e−/ADU

� “METALBOX” + CALI 16 (Gain 4): 60 e−/ADU

One important caveat is that the tolerance of the capacitance in the test input of

the preamps can be quite large. For the in-house “METALBOX” preamp, the test

capacitance is 1 pF ± 10%. For the Cremat Z-110, it is 1 pF ± 25%. The tolerance

of the test capacitance in the Canberra 2006 was not specified. Since the vendors

tune the gain of their preamps based on the used test capacitance, this leaves an

inescapable uncertainty on the true value of Ke−/ADU , up to 25% for the CR-Z-110!

B.2.1 Oscilloscope measurements

The oscilloscope measurements are not actually necessary for this calibration, but

they can be useful to verify its correctness. To minimize the effect of the oscilloscope

on the calibration setup, a high input resistance should be used for the oscilloscope

(typically, 1− 10 MΩ); some minor “ringing” might still be unavoidably introduced.

The oscilloscope measurement right after the WFG measures a square wave of ampli-

tude V ′WFG = VWFG
RIpreamp

RIpreamp+ROWFG

, due to the voltage division between the output
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resistance of the WFG and the input resistance of the preamp. If either of those

resistances are unknown, this value can just be used directly in Eq. B.1.

The oscilloscope measurement before the Calibox would theoretically measure a

decaying exponential of amplitude V ′preamp = Vpreamp
RICALI

RICALI+ROpreamp
. However, as

mentioned in the previous section, the input electronics of the Calibox are complex,

with no equivalent input resistance (however, there might be for other digitizers).

Instead, the Calibox can be unplugged, then the oscilloscope measures Vpreamp directly

(the amplitude of the decaying exponential). The gain of the preamp should satisfy:

Gpreamp = Vpreamp/(CTestV
′
WFG)

where Gpreamp is provided by the preamp supplier.

Keeping the Calibox plugged in, the second oscilloscope measurement can also

be used to verify the response function of the preamplifier. Setting the oscilloscope

trigger properly to filter the negative pulses, a few thousand pulses can be averaged

out together to get the response function with minimal noise. This pulse shape can

then be fit with a decaying exponential to verify the decay constant provided by the

vendor (e.g., the Canberra 2006 states it has a decaytime of 50µs, but the unit tested

had a decay time of only 47µs). In the case of old Cr-Z-110 chips, this test showed an

altered response function when under low resistance loads (cf. Fig. B.4). Exchanging

with the vendor revealed it to be an issue with the internal power supply, which was

solved in the new revised model.
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Figure B.4: Response function of the CR-Z-110 under low resistance load (50 Ω). Red:
old model (Rev2). Blue: new model (Rev2.1). The response of the new
model is a decaying exponential with a time constant τ = 141µs, while
the old model had a distinct undershoot behaviour.
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Appendix C

Theory of signal formation in an SPC

During the avalanche, a large number of electron-ion pairs are created very close to

the central electrode of an SPC. As these move away from their starting point, the

charge they induce on the electrode changes, which gets integrated by the preamp,

and a pulse forms on the digitizer. The bulk of that pulse is generated by the ions,

as they drift through the large potential difference between the central electrode and

the shell of the detector.

In the simple approximation of an ideal spherically symmetric detector, the electric

field and signal induced by the drifting ions can be worked out analytically, as was

shown in an unpublished note by J. Derre [83]. We will cover the demonstration in

this section. We will also go over two aspects that were not described in that note:

the signal induced by drifting electrons, and the effect of an ideal, continuous space

current due to the drifting ions on the electric field.

C.0.1 Ideal electric field

We will consider the ideal case scenario of a big metallic sphere of radius r1, kept

grounded, with a small electrode of radius r2 and kept at a voltage V0. While not the
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real scenario, due to the presence of the rod, we find that the results from such an

approach are close enough to the real output we get from our detector. We can use

Gauss law and the spherical symmetry of the system to determine:

E(r) =
V0

r2
ρ (C.1)

C = 4περ (C.2)

where E(r) is the magnitude of the electric field at a distance r from the centre of

the sphere, C is the capacitance of the detector, and 1/ρ = 1/r2 − 1/r1. While this

doesn’t hold exactly in the real detector due to the presence of the rod, the correction

of the field introduced by the umbrella makes it a good enough approximation for

most of our volume.

C.0.2 Signal induced by secondary ions

Now that we have the electric field, we will determine the current induced on the

electrode by the ions drifting away from it. Using the Shockley-Ramo theorem [36],

we know that the change of the charge induced on our electrode by a moving ion is

dQind = −qion
E(r)

V0

vionsdt (C.3)

We can figure out the velocity of the drifting ions via the ion mobility in the target

gas, µ. We take

µ =
µ0

P
(C.4)
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Figure C.1: Theoretical current induced on the electrode by an avalanche that creates
1000 electron-ion pairs at time 48µs.

where µ0 is the ion mobility in the gas at normal temperature and pressure, and

P is the pressure, and then, by definition,

µE(r) = vion (C.5)

Note that µ is also directly proportional to the absolute temperature, but we will

ignore this effect, as temperature remains mostly constant in our experiment; µ also

depends on the strength of the electric field in complicated ways depending on the

exact mixture, but we will ignore this effect for these derivations. Some values of µ0

are ∼ 2 cm2V−1s−1 for Argon and ∼ 6 cm2V−1s−1 for Neon.
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We can then use Eq. C.1 in Eq. C.5 to get

r2dr = αdt (C.6)

where

α = µ0
V0

P
ρ (C.7)

Assuming that our ions drift from the surface of the electrode starting at time

t = 0, we get the following integration:

∫ r

r2

u2du =

∫ t

0

αdu (C.8)

⇒ r = (r3
2 + 3αt)

1
3 (C.9)

The total ion drift time is then given by r = r1, so tmax =
r3

1 − r3
2

3α
. Note that for

our larger detectors, this gives tmax ∼ 10s! So by the time the next event happens,

we will still have ions drifting from the previous one.

Putting Eq. C.6 and C.1 back into Eq. C.3, we get

dQind = −qionsαρ
dt

r4
(C.10)

and, with Eq. C.9

dQind = −qionsαρ(r3
2 + 3αt)

−4
3 (C.11)

Note that, if we integrate this between t = 0 and t = tmax, we do get Qind = −qions,
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Figure C.2: Theoretical output voltage from the preamplifier for an avalanche that
creates 1000 electron-ion pairs at time 48µs.

as expected. The shape of the induced current is shown in Fig. C.1.

The reason why we are interested in the induced current, Iind = dQind
dt

, rather than

the induced charge itself, is because of the following step in our signal formation, the

“integration” of the signal by the charge preamplifier. The aim of the preamplifier,

aside from further amplifying the signal, is to integrate the instant charge (in other

words, a current) arriving on the electrode, and output a voltage that is proportional

to the total collected charge. But to avoid our baseline voltage at the electrode

shifting away from the one before the event, the preamplifier has to dissipate the

charge fast enough as to not interfere with the following event.



251

This can be achieved with a preamplifier whose current response function is a

decaying exponential

f(t) = e−t/τ (C.12)

where τ is the decay constant of the preamplifier. Note that there is no perfect

preamplifier, but getting one that is close enough to the ideal case simplifies the

following analysis. The main preamplifiers used both at LSM and with the Queen’s

prototypes are the Canberra 2006 [49] and Cremat CR-110 [82]. I will mostly discuss

cases using the former, with τ = 47µs.

So, going back to our signal, we do not actually see the current induced by the

ions drifting towards the outer sphere, but the convolution of that with the response

function of the preamplifier, giving the shape seen in Fig. C.2. Unfortunately, there

is no analytical way (to the best of my knowledge) to do this convolution, so any

further steps would have to be done numerically. For example, the resulting function

could be parametrized by:

S(t) = −qionsk(e−at − e−bt) (C.13)

with a, b depending on τ and V0, a < b. While we don’t use this parametrization

directly in our analysis, it helps to understand the behaviour of our signal.

C.0.3 Signal induced by other charges

While the previous section covers the signal induced by secondary ions, it is reasonable

to ask what signal is induced by secondary electrons, or even primary charges.

As the secondary electrons drift from the avalanche region to the central electrode,
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Figure C.3: Composition of an SPC signal, compared to an ideal pure-ion-current
signal, for an event with a single primary electron. SEDINE conditions
are assumed. The signal from secondary electrons is visible, but the shape
of the total induced pulse is effectively indistinguishable from the ideal
one. The signal from primary electrons is too small to be observable,
even for a relatively low value of the avalanche gain of 1000.

they move in the field generated by said electrode, and so generate a current per the

Shockley-Ramo theorem. Since they start so close to the electrode, they effectively

induce all their charge instantly (less than 25 ns in the SEDINE SPC, while we are

looking at effects in the tens of µs). On the other hand, precisely because they start

so close to the electrode, they don’t induce all of their charge, but just a small portion

of it. Ions, which move in the opposite direction, induce most of their charge, and so

will tend to dominate the signal.

The exact proportion of electron to ion signal depends on the position at which

they are created, which is in turn given by the avalanche process. Due to its ex-

ponential nature, the average secondary charge is created one mean-free path away
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Figure C.4: Composition of an SPC signal, compared to an ideal instant-charge sig-
nal, for an event with a single primary electron, and no avalanche. SE-
DINE conditions are assumed.

from the electrode. In SEDINE’s case, the mean-free path in the last few hundreds

of µm of the avalanche region is under 100µm1. Using the Shockley-Ramo theorem,

assuming all secondary charges are created 100µm away from the surface of the sen-

sor, we obtain that secondary electrons account for 3.1% of the total induced signal.

An illustration of the composition of the total signal is shown in Fig. C.3. We see

that we can safely approximate the SPC signal as being produced by secondary ions

generated at the surface of the central electrode.

Primary electrons can be similarly neglected. While they start farther away from

the sensor, and so they induce most of their charge, their signal is negligible because

they do not benefit from the multiplicative effect of the avalanche, which is generally

in the 1000− 10000 range. However, they can sometimes be observed for events that

1As derived from the Townsend coefficient obtained with Magboltz; see Sec. 5.3.
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do not undergo an avalanche, if in large enough numbers. In that scenario, the signal

they induce can be computed using the Shockley-Ramo theorem again, and the result

is shown in Fig. C.4. Some structure is observed, with the electron inducing a signal

before it reaches the electrode proper. This is not likely to be visible in practice:

either it will be drowned out by baseline noise, or by the signal from other primary

electrons arriving at slightly offset times. We can approximate it by primary electrons

depositing all their charge when they reach the central sensor.

Finally, primary ions, which do not benefit from the avalanche, and start far from

the electrode (inducing a small amount of charge spread out over a long period of

time), are completely ignorable.

C.0.4 Ion space charge

As the ions slowly drift away from the avalanche region, their charge affects the

electric field inside the detector, potentially changing the drift behaviour of charged

particles and the strength of the avalanche. While we are not capable of directly

identifying the space charge inside the detector, we can do some assumptions to find

an analytical expression of this effect on the electric field, and get some qualitative

conclusions.

We will assume again an ideal spherical detector, and a isotropic rate of ion

creation at the sensor of RA, corresponding to a charge flux of IA = RA qe in C/s.

The electric field will still be radial due to the symmetry. We will also assume that the

detector is in a steady state with the creation of ions from the avalanche happening

at the surface of the sensor. Then, using conservation of charge on any sphere centred
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on the sensor, we have:

IA = 4πr2 · ρ(r)v(r) (C.14)

as the ions drift away from the sensor at the same rate as they are created in the

avalanche region in the steady state. Then, using eq. C.5, we have:

IA = 4πr2 ρ(r)µE(r)

⇒ ρ(r) =
IA

4πr2 µE(r)
(C.15)

In turn, the differential form of Gauss’s law in spherical coordinates gives:

#»∇ · #»

E =
1

r2

d

dr
(r2E(r)) =

ρ(r)

ε0
(C.16)

which, together with eq. C.15, gives a differential equation on E(r):

d

dr
(r2E(r)) =

IA
4πε0 µE(r)

⇒ d(E2(r))

dr
+

4

r
E2(r) =

IA
2πε0 µr2

The solutions to this differential equation, when the right-hand term is null, are of

the form E2
0(r) = B/r4. They are strictly positive for r > 0, so eq. can be rewritten

as:

d

dr
(r4 · E2(r)) = r4 · IA

πε0 µr2
=

IA
2πε0µ

r2
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⇒ E2(r) =
1

r4
(B +

IA
6πε0µ

r3) (C.17)

Finally, to “solve” for B, let’s call Q the electric charge on the sensor. If we apply

Gauss’s law on the surface of the sensor, we need to satisfy:

Q

ε0
= 4πr2

in E(rin) = 4πr2
in (

1

r2
in

√
(B +

IA
6πε0µ

r3
in))

So we can rewrite eq. C.17 to get the final form:

E(r) =
1

r2

√
(
Q

4πε0
)2 +

IA
6πε0µ

(r3 − r3
in) (C.18)

To solve for Q, we use
∫ rout
rin

E(r) dr = V , where V is the voltage applied on the

sensor. Of note, if IA = 0, then

Q = Q0 = 4πε0 r0 V

and so

E(r) = V
r0

r2

where 1/r0 = 1/rin − 1/rout, and we recover the expression found in the previous

section.

Otherwise, Q . Q0, but unfortunately has no analytical formula. It has to be

solved for numerically so that the voltage difference between rin and rout matches

the applied voltage on the sensor. A numerical integrator and a numerical solver are

needed to find the value. An example is given in App. D.

Using eq. C.15 again, we can also find the analytical expression for the charge
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density some distance away from the centre of the sphere:

ρ(r) =
IA

4πµ
/

√
(
Q

4πε0
)2 +

IA
6πε0µ

(r3 − r3
in) (C.19)
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Appendix D

Compute sensor charge from ion formation rate

Run the following code in Python to get the charge on the sensor for a given SPC

setup and ion avalanche rate.

##First, we need to load the relevant modules and libraries:

import math

import scipy.integrate as integrate

from scipy.optimize import fsolve

##Define functions:

eps_0 = 8.854187e-12 #F/m = C/V/m

#Electric field at r

def E(r, Q, I_A, mu, r_in):

return math.sqrt( (Q/(4*math.pi*eps_0))**2 +

I_A/(6*math.pi*mu*eps_0)*(r**3-r_in**3) ) / (r**2)
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#Electric potential at r

def Delta_V(r, Q, I_A, mu, r_in):

return integrate.quad( E, r_in, r, args=(Q, I_A, mu, r_in) )[0]

#Difference between electric potential at r and applied voltage

def V_equation(Q, I_A, mu, r_in, r_out, V):

return Delta_V(r_out, Q, I_A, mu, r_in) - V

#Solve for Q to match potential difference with applied voltage

def Q_sensor(V, I_A, mu, r_in, r_out):

if (I_A==0):

rho = 1. / (1./r_in - 1./r_out)

Q_sol = [4*math.pi*eps_0*V*rho, 0]

else:

Q_sol = fsolve(V_equation, (1.0e-9), args=(I_A, mu, r_in, r_out, V))

return Q_sol[0]

##Run the solver for a given setup (change example values!)

V_test = 2520 #V (voltage at sensor)

r_in_test = 0.00315 #m (radius of sensor)

r_out_test = 0.30 #m (radius of sphere)

mu_ref = 7.5e-4 #m2/V/s * bar (ion mobility)

P = 3.1 #bar (pressure)
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freq = 1000. #s-1 (event rate)

ener = 400000. #eV (energy per event)

gain = 3000. #(secondary electrons per primary)

W_e = 36. #eV (mean ionization energy)

mu_test = mu_ref/P #m2/V/s

q_ev = 1.6e-19/W_e #C/eV

I_A_test = freq*ener*gain*q_ev #C/s (avalanche ion current)

Q_test = Q_sensor(V_test, I_A_test, mu_test, r_in_test, r_out_test)

print "Computed sensor charge:", Q_test, "C"
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Appendix E

SPC tests at Queen’s University

E.0.1 Description

While the SEDINE detector is the only low-background SPC that is operational at

time of writing, many more functioning SPC detectors exist. Queen’s University

possesses a range of them, which are used for a number of objectives:

� Sensor tests;

� Electronic tests;

� Gas handling system tests;

� Gas characterization;

� Other calibrations that cannot be performed with SEDINE.

They vary in size (ranging between 15 cm and 130 cm in diameter) and building

material, although made mostly with stainless steel. This thesis focuses only on

the results from SEDINE, and no further time will be spent discussing these other

detectors (with one exception in Chap. 7). However, it is still important to point
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out that the concepts discussed throughout this chapter have been tested in multiple

configurations. Pictures of some of these test detectors are shown in Fig. E.1.

E.0.2 Available calibration sources

I will be briefly describing the main calibration sources used with Queen’s SPCs, to

give some context on the state of the art at time of writing. Not all of these were

available for SEDINE, but some of the results extracted from the work performed at

Queen’s are still applicable; more detail on SEDINE calibrations will be provided in

Chap. 6. Other laboratories that collaborate with NEWS-G

However, it is important to note that the exact gas composition (especially the

presence of impurities), and the electrode sensor and voltage applied, have a large

effect on electron drift characteristics, and especially on electron attachment and

avalanche gain. In practice, this means that energy and drift and diffusion times must

be recalibrated after any change in running conditions, even refilling the detector with

the same nominal gas mixture and pressure.

37Ar

37Ar decays through electron capture into 37Cl. Depending on whether the electron

is absorbed from the K or L shell, the resulting atom will generally desexcite by

emitting a characteristic X-ray of 2.82keV or a 270 eV, respectively. Since argon

is a gas, it spreads throughout the detector, so these events are reconstructed as

uniformly distributed volume events. Due to the double monoenergetic lines, this

source is useful for energy calibrations, and to test the linearity of detector response,

together with the 0-energy point. It has the advantage that it can be put inside a
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Figure E.1: Some of the SPC detectors available at Queen’s University. Top
left: 30 cm-diameter SPC. Top right:15 cm-diameter SPC. Bottom left:
130 cm-diameter SPC at Queen’s, originally a radio-frequency cavity from
the Large Electron-Positron collider at CERN [84]. Bottom right: 30 cm-
diameter glass SPC, for outreach.
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detector without pumping, hence only minimally disturbing its running conditions,

assuming no impurities are introduced during the procedure. However, it can only

be removed by pumping the whole gas, restricting its use for calibrations of physics

runs to only after they are complete.

Due to the relatively short lifetime of 35 days of 37Ar, frequent calibrations require

a renewable source of the isotope. For calibrations with Queen’s test SPCs, we are

provided with 37Ar produced from neutron irradiation of calcium at the SLOWPOKE-

2 reactor at Royal Military College of Canada [85], located in the same city as Queen’s

University.

55Fe

55Fe also decays through electron capture, generating 5.9keV photons. Unlike argon,

iron is a solid, so it cannot be put inside the detector through the gas handling

system. Since the attenuation length of photons of this energy in copper or steel is

of the order of a few hundred micrometers, an external calibration with this source

requires a window in the detector shell (typically plastic or aluminium foil covering a

hole in the metal), in which case it can be freely put on or removed during any run.

The attenuation length of photons of this energy in the gases we use is of the order of

tens of centimetres, so it can be considered to generate uniformly distributed volume

events for small to mid-sized SPCs. As for 37Ar, 55Fe is useful for energy calibrations,

although it cannot be used to test the linearity of the detector response by itself.

In the absence of a window, the detector needs has to be opened to place the source

directly inside. This procedure is possible for easy-to-access test detectors that can

either be opened or have large enough gas feedthrough to fit the source through one,



265

but impractical enough for shielded ones (such as SEDINE) that it is rarely, if ever,

performed for them.

Copper fluorescence

Always present in copper detectors, but at a low rate, which can be enhanced by

irradiating it with a strong gamma source. The energy of the emitted photon is

8.05 keV. While the source of the fluorescence is at the surface of the detector, the

relatively high energy of these photons compared to the attenuation length of the gas

compositions we use means that they are reconstructed as volume events; we assume

them to be uniformly distributed in the detector, but this may depend on gas choice

and pressure, and detector size. It is useful for energy calibrations when other sources

are not available, or are otherwise impractical; it was the energy calibration used for

the SEDINE physics data.

Pulsed Laser

By generating a beam of photons with energies in the ∼ 10 eV range and hitting

the internal surface of the detector shell, photoelectrons are released. Due to pulsed

nature of the laser, an external trigger can be used to perfectly identify laser events

from other background. The laser and a variable attenuator can be tuned to modify

the average number of primary electrons extracted per pulse. This turned out to

be a very versatile calibration: with judicious fitting, we can obtain average gain of

avalanche, the theta of the Polya function, the Fano factor, and surface electron drift

and diffusion time. Finally, combined with an energy calibration (such as with 37Ar),

it also serves as a calibration of the mean ionization energy of the gas. A paper
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describing the full setup and analysis techniques to obtain this data in argon with a

30 cm Queen’s detector has already been published [38]. The same work is currently

being performed for other gas mixtures in the upcoming detector at SNOLAB.

The two main difficulties are that this type of calibration requires a leak-tight

laser feedthrough, which many of our detectors do not have, and that lasers suitable

for photoelectron extraction are expensive, and difficult to relocate from one lab to

another. In particular, SEDINE did not have such a feedthrough.

Neutron beams

Triangle University National Laboratory facility has a Tandem 10 MV accelerator,

that can produce pulsed beams of quasi-monoenergetic neutrons [86]. The test SPC

is put in the path of the neutron beam. Backing detectors are put behind the SPC,

offset from the path of the beam, and are used as an external trigger; pulse-shape

discrimination allows rejection of gamma background. The recoil energy of a neutron

depends on its scattering angle, so by altering the position of the backing detectors, we

can measure the electron-equivalent recoil energy for different nuclear recoil energies,

even though the neutron beam is mono-energetic. A schematic drawing of the setup

is shown in Fig. E.3. In parallel, the option to use the 1 − 8 MeV proton beam at

the Reactor Materials Testing Laboratory at Queen’s University [87], impinged onto

a nuclear target such as LiF, as an alternative neutron source, is being investigated

by J.F. Caron.

A campaign with Neon as the target gas has been performed, with results currently

being analysed; a paper by M. Vidal is in preparation. Neutron calibrations are used

for quenching factor measurements. This is crucial for WIMPs searches, since they
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Figure E.2: Left: Experimental setup of a laser calibration at Queen’s; the photode-
tector is used both as an external trigger and to monitor variations in the
beam pulse intensity. Right: Example of energy spectrum from one such
calibration with a relatively high number of primary electrons, together
with the fit results (red: total, orange/green/black: contribution from
different number of extracted primary electrons). Both of these diagrams
are taken from [38].
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Figure E.3: Top: In the foreground, Backing detectors at TUNL; in the background,
15 cm SPC used for quenching measurements. Bottom: Schematic draw-
ing of setup.
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produce nuclear recoils. However, since KK axions decay into photons, which produce

electronic recoils, this is not applicable for the work in this thesis (unless we were

dominated by neutron backgrounds, but we did not explore that possibility).
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Appendix F

Trigger algorithm

The trigger algorithm of our digitizer is the method that determines whether to save

a slice of time from the voltage stream coming out of our preamplifier as an ”event”,

or to just keep reading. The proper choice of this algorithm is important, because

while we want to retain any potentially physically relevant event, we do not want to

store noise (if for no other reason that we don’t want to produce TeraBytes of “data”

per day).

F.1 Trapezoidal filter

For almost all of the data we have taken, we have used the same algorithm: a trape-

zoidal filter combined with a threshold check. A trapezoidal filter is a generalized

derivative with two parameters: an averaging window length L, and a gap size G

[88]. The average over L samples is subtracted from the average, G samples earlier,

over L samples:

f [i] =
1

L

L−1∑
k=0

a[i+ L+G+ k]− 1

L

L−1∑
k=0

a[i+ k]
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where a[i] is the sampled values, and f [i] are the filtered values. This is equivalent

to taking the running average of the pulse with a smoothing window of L samples,

then taking the derivative over L+G samples of the resulting pulse. Note that the

resulting pulse is shorter by 2L + G samples at the end. We use a derivative-like

algorithm for our trigger algorithm because it is mostly unaffected by drifts in the

baseline voltage coming out of the preamplifier; a simple threshold check would either

trigger constantly or not at all if the baseline drifted too far up or too far down,

respectively. Another advantage is that the simplicity of the algorithm makes it

fast1, so the digitizer can keep up with the data taking while filtering it. For an

example of a trapezoidal filter applied to a low amplitude event, please see Fig. F.1.

Note how the amplitude of the filtered pulse is higher than that of the raw pulse,

for a comparable level of baseline noise to the baseline noise. A judicious choice of

the gap (closer to the expected risetime of our pulse) and averaging window (smaller

than the risetime, but close to the period of high-frequency noise) will tend to boost

the signal over noise ratio of the result.

There is also a time shift between the results obtained with this formula and what

one may expect from doing a running average, and then a derivative. This becomes

particularly noticeable when we use the result from a trapezoidal filter to determine

the beginning of the pulse for our advanced processing algorithms. If we want a

filtered pulse whose features start at the same sample as the raw pulse, the filtered

pulse must be shifted forward by 2L+G samples; if instead we want a filtered pulse

whose features are centred around the same samples as the raw pulse, the final pulse

must be shifted forward 3
2
L + G samples. Note that while the former is often more

1A recursive version of the formula can easily be found: f [i+ 1] = f [i] + ((a[i+ 2L+G]− a[i+
L+G])− (a[i+L]− a[i]))/L, requiring only four sums and a division for each new sample; this can
be programmed into an FPGA.
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Figure F.1: In blue, raw pulse (after removing average baseline, for comparison). In
red, pulse after trapezoidal filter, scaled up by a factor of 4 to match
the noise level of the raw pulse. The combination of a running average
and a derivative allows the reduction of high and low frequency noise
respectively, boosting the Signal-to-Noise Ratio.

useful for trigger time considerations, the latter has the more “intuitive” behaviour.

Obviously both are equivalent if the only use of the algorithm is to check whether the

filtered pulse does or not reach a certain threshold.
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F.2 Performance

F.2.1 Signal-to-Noise Ratio

Two different metrics will be presented for qualifying the performance of the algo-

rithm. The first, and more naive one, is based on the concept of Signal-to-Noise Ratio

(SNR). The “signal” is defined as the maximum of the event with respect to the base-

line. For the “noise”, we can use the Root Mean Square (RMS)2 of the baseline. This

is what the digitizer computes to give an estimate of how “noisy” any given run is:

the higher the RMS, the wider the baseline oscillations are, and hence the harder it

will be to distinguish a pulse in between those variations.

We can compare the SNR for different algorithms. For the sake of illustrating the

concept, I will be comparing the raw event, the running average of the event (both

after subtracting the baseline), and the event after applying a trapezoidal filter. We

would logically expect the processing with the highest ratio to be the optimal one.

This was tested on simulated events containing a single primary electron. The results

are shown on Fig. F.2. Unsurprisingly, the SNR is lowest for the raw, unprocessed

event. However, the average is fairly close for both the smoothed event and the trape-

zoidal filter, with the latter having more consistent values. This could be explained

by the fact that removing the baseline and doing a running average are essentially

the same two steps that the trapezoidal filter does, only less optimized for the search

of rising edges. This would suggest that both approaches should perform similarly

well as triggering algorithms.

2In Physics, the term RMS is often used to refer to the standard deviation of the samples, rather
than to its “real” definition: the square root of the mean of the squares of the samples.
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Figure F.2: Signal-to-Noise ratio for the raw pulse, smoothed pulse, and the trape-
zoidal filter of the pulse. The X axis is the gain of the primary electron,
with respect to the average gain. The running conditions and noise traces
were taken from the physics run.

F.2.2 Efficiency and False positives

The SNR turns out to be a misleading metric, as we will see now. Instead of looking

at SNR as a proxy for the capacity of algorithms to distinguish the signal among

random oscillations, we can look directly at the efficiency and false positive rate of

each algorithm when detecting signals among noise. The efficiency is the propor-

tion of electron signals that triggered; since this depends on the amplitude and time

distribution of those signals, we once more take single electron events to simplify com-

parisons. The false positive rate is the frequency of triggers produced by pure noise
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with no physical signal. This can be tested by running the algorithms on empty noise

traces taken with our detector, giving a result in Hertz (number of triggers divided

by total time length of all empty traces).

Notably, since all three algorithms end by comparing to a fixed threshold to de-

termine whether the signal triggered, we can modify the value of the threshold to

“sweep” the efficiency - false positive parameter space for each. The results are

shown on Fig. F.3. The false positive rate is computed as f = −ln(1− p)/∆t, where

p is the proportion of noise windows of length ∆t that triggered; this gives f ' p∆t

when p � 1, the horizontal black line in the plot shows the point above which this

approximation does not hold any more.

It is immediately clear that the relative performance of the different algorithms

revealed by this plot is different from the one suggested by the SNR. We see that the

raw pulse and the smoothed pulse have almost identical curves, with the trapezoidal

filter well below them. In fact, for any desired detection efficiency of single electron

events, the trapezoidal filter has one to two orders of magnitude less false positives

than the other two.

The disagreement between both metrics as to the performance of applying a

threshold to the smoothed pulse can only be explained if our estimation of the “noise”,

the RMS of the baseline, is not actually well-chosen for this context. More likely, the

main contributor to the lower performance of the raw and the smoothed pulses is

the need to compute a fixed baseline, despite the low frequency components of the

noise. The running average does improve the baseline RMS, and hence the SNR of

the method. However, they both suffer from depending on the value of the baseline

being computed properly, before it is subtracted for comparison with the threshold.
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Figure F.3: False positive rate depending on event detection efficiency, for thresholds
applied to the raw pulse, smoothed pulse, and the trapezoidal filter of
the pulse. Above the black horizontal line, the false positive rate was
extrapolated from the proportion of empty traces that triggered. The
small bump at low efficiencies for the trapezoidal filter is likely caused
by very low energy events sneaking into the noise traces used to compute
the false positive rate.

As such, both the raw and the smoothed pulse would still perform poorly in terms of

efficiency and false positives.

This study should be taken as a word of caution against using performance metrics

that are not well understood. While there might be a definition of the noise that

produces a useful SNR for the sake of comparing triggering algorithms, it is clear

that the baseline RMS is not it. Caution is recommended when trying to interpret
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changing values of the RMS 3. This conclusion can be generalized to other data

processing algorithms: we must be careful not to draw conclusions from variables

that we believe are good stand-ins for what we are really interested in, until we

confirm they actually are.

3Unlike we often do in our collaboration, where the baseline RMS pre-defined in our digitizer is
routinely used to compare noise levels between setups.
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Appendix G

Proper normalization of transforms of discrete

data

There are many subtleties when doing Fourier transforms, and when transferring

mathematical concepts from continuous time to the discrete time of computers. I

will try to cover the solutions I ended up going with when trying to solve normal-

ization problems that arose during pulse processing. An effort was made to make

analysis methods that are as independent as possible from the sampling frequency of

our digitizer, since it is not a relevant physical quantity for any of our searches; at

times, we had to change digitizer settings while keeping the running conditions of the

detector the same. Note that I will assume that all functions involved in this section

are sufficiently well-behaved for me to invert the order of integrals liberally.

G.1 Integrals and derivatives in discrete time

Without going into the details of the inner workings of our digitizers, the data we

have access to is the value of the voltage coming out of the preamplifier at discrete

times. From a coding perspective, this should be represented by a graph of (x,y)
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points where x is the time and y is the voltage. However, due to practical concerns

about the implemented methods for TGraph’s and TH1’s in ROOT (our framework

of choice for data analysis), we often represent our signal as histograms instead. The

height of each bin then represents the value of the voltage at each point in time, with

the point in time being either the time value of the first edge of the bin, or the centre

of the bin. Note that either definition of the time is equivalent, since we ever only

care about the relative position of features in a signal, not their absolute position.

We just need to stay consistent throughout.

The choice to represent signals as histograms1, instead of graphs, tends to obscure

the nature of differentiation and integration, leading to problems with normalization

down the line. Noting S(i) the value of the signal at bin i, we may be tempted

to note the derivative of the signal as s(i) = S(i + 1) − S(i). This leads to an

obvious problem: the values of the derivative depends on the sampling period. Indeed,

let’s assume we have a steadily increasing signal, S(t) = a t. Now, let’s consider

what happens for two different sampling periods, ∆t and ∆t′, then the digitized

signals will respectively be S(i) = a (i∆t) and S ′(i) = a (i∆t′). If we use the naive

definition for differentiation mentioned above, we get s(i) = S(i + 1) − S(i) = a∆t

and s′(i) = S ′(i + 1)− S ′(i) = a∆t′. Both are constant, but their values depend on

the sampling period of the digitizer, which is not a physical value that should affect

our measure! This is solved by defining the derivative as s(i) = (S(i+ 1)−S(i))/∆t.

Care has to be taken that the derivative has the proper units: assuming S was in

Volts and ∆t was in µs, s(i) is now in in V µs−1. While this may appear obvious in

hindsight, it is an easy issue to overlook when the sampling period stays constant for

1When using ROOT, it is common to use histograms to present all data, because it comes with
a better axis system.
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long periods of data taking. Normalizing derivatives properly allows analysis methods

to keep working as expected when changing sampling periods.

Note that while I defined s(i) = (S(i + 1) − S(i))/∆t, in our case where we

are often looking for the start of features in our signal, it makes more sense to use

s(i) = (S(i)−S(i−1))/∆t. Indeed, the previous definition will show a feature for the

derivative appear on bin i if the raw signal has a feature appear at bin i+1, inducing an

off-by-one error. I did not attempt to use any other kind of more advanced derivative

definition, since they tend to smooth out the signal, and I wanted the smoothing to

be done independently. If someone were to use some other definition, I would advise

to keep in mind this sort of off-by-one error that may appear between features in the

raw signal and the differentiated signal.

Lastly, once we have defined s(i) = (S(i) − S(i − 1))/∆t, then the formula for

integration has to perfectly reverse this process: S(i) =
∑k=i

k=0 s(k) ∆t. Since s(0) is

not defined (because S(−1) does not exist), to keep differentiation reversible we fix

s(0) = S(0)/∆t. This is a meaningless value, but the upsides of having a reversible

differentiation compensate for it; otherwise, you may set s(0) = 0 or s(0) = s(1),

depending on the context. Note again the change in units: we want ∆t to be in the

same time unit as s(i) (e.g. µs and V µs−1).

It was important to establish this before talking about the normalization of Fourier

transforms and convolutions/deconvolutions, since their respective definitions also

involve integrations.
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G.2 Fourier transforms

Fourier transforms are notorious for not having generally agreed-upon conventions.

The choice of normalization and windowing is often done depending on the specific

use, as long as it maintains F̄ (F (f)) = f . In our case, we have two uses for Fourier

transforms: deconvolutions, and comparing noise levels between different runs.

G.2.1 Convolutions and deconvolutions

Let’s start with convolutions. Remember that the definition of the convolution be-

tween f and g is f ∗ g(t) =
∫
f(τ)g(t − τ)dτ . We want the convolution theorem to

be true without adding further normalization constants:

f̃ ∗ g = f̃ · g̃

Let’s go back to the proof of the theorem. Expanding the left hand side, and

noting h = f ∗ g and k the Fourier normalization, constant, we get:

h̃ = k

∫ (∫
f(τ)g(t− τ)dτ

)
e−2πiνtdt = k

∫ (∫
g(t− τ)dτe−2πiνtdt

)
f(τ)dτ

Substituting T = t− τ , we get

h̃ = k

∫ (∫
g(T )dτe−2πiν(T+τdT

)
f(τ)dτ

= k

∫
f(τ)e−2πiντdτ

(∫
g(T )dτe−2πiνTdT

)
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=
1

k
f̃ · g̃

So, if we want f̃ ∗ g = f̃ · g̃ to be true without extra normalization terms, then

k = 1. So our definition of the direct and inverse Fourier transforms will be:

F (f)(ν) =

∫
f(t)e−2πiνtdt

F̄ (f̃)(t) =

∫
f̃(ν)e+2πiνtdν

Note that if we want to describe the Fourier transform in terms of the angular

frequency ω instead of the “real” frequency ν, with ω = 2πν, then the definitions

become:

F (f)(ω) =

∫
f(t)e−iωtdt

F̄ (f̃)(t) =
1

2π

∫
f̃(ω)e+iωtdω

where a normalization factor appears on the inverse Fourier transform, to com-

pensate for the fact that ω and t are not in inverse units any more (rad/s and s,

respectively). For that reason, I will avoid using angular frequencies in this docu-

ment where Fourier transforms may be involved.

Going on a bit of a tangent, the physical interpretation of the convolution will

depend on the dimension of the ’response’ function. For example, assuming that f

and g are such that f ∗ g exists, and that our ’response’ function g is normalized to

1, i.e.,
∫
g(t)dt = 1, then:
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∫
f ∗ g(t)dt =

∫ ∫
f(τ)g(t− τ)dτdt =

∫
f(τ)(

∫
g(t− τ)dt)dτ =

∫
f(τ)dτ

.

In other words, convolving f by a ’normalized’ function does not change the

numeric value of the integral of f . This has two noteworthy consequences. The first

one is that if the response function of our detector is short compared to the signal,

then the integral of the raw pulse will have the same amplitude as the integral of the

deconvolved pulse, aside from a proportionality term; this is, however, rarely the case.

The second one is a bit less obvious and has to do with the fact that a convolution

of f with g has dimensions of [f ][g] · s, which in general are not the same dimensions

as either f or g.

In our case, we have three signals that we convolve with each other: the instant

current from primary electrons, the induced current from a secondary ion, and the

response function of the preamplifier. If we want the convolution of all three together

to be in Volts, while staying consistent with the definition of the convolution, then

the proper dimension for each becomes:

� Primary charge instant current: charges/s

� Ion induced current: C/s

� Preamplifier response: V/C
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G.2.2 Noise analysis

Noise analysis is commonly done in frequency space. The preferred way to study the

noise is via a Power Spectral Density (PSD), defined as:

PSDn(ν) = |ñ(ν)|2/T0

where ñ(ν) is the Fourier transform of the noise n(t) in a window of duration T0.

Note that the unit of the PSD is AU2/Hz, where AU (arbitrary unit) is the unit of

n(t). This formula has the advantage that for stationary noise (i.e., noise that does

not change with time), the PSD does not depend on the size of the window. This is

due to Parseval’s theorem, which states that:

∫ +∞

−∞
x(t)2dt =

∫ +∞

−∞
x(ν)2dν

For a stationary noise with mean 0, V ar(x) = (
∫ t+T0
t

x(t)2dt)/T0 is the variance

of the noise computed on a window between t and t+ T0, which necessarily does not

depend on t. Furthermore, the only dependency on T0 is whether or not low frequency

components of the noise are contained in the window. If all components have periods

either much smaller or much larger than T0, then V ar(x) is mostly independent of

the window size. Parseval’s theorem then gives us the same property for the PSD.

The reason why we want to study the noise in a window-size independent way

is that we often have to compute the Fourier transform of the noise on windows of

different sizes. While this will necessarily have an effect on our estimation of the noise

at low frequencies, no matter the approach we choose, the PSD at high frequencies

remains more or less unaffected.
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It is important to note that this property of the PSD does not hold true for

transient signals. Unlike for stationary processes, for which the total energy increases

linearly with the time of integration, a transient has a finite energy contained in a

finite time support. As such, its Power Spectral Density will be inversely proportional

to the length of the window over which it is computed, as long as the window is larger

than the support. This means that we must be careful while doing any procedure that

requires comparing noise and transient in frequency space, since the ratio between

the two will roughly vary linearly with the window size.

G.2.3 Discrete Fourier Transform

We need to check that the concepts that work in continuous time can be translated

properly to discrete time, since that is the nature of our data. To do Fourier trans-

forms, I have access to the FFTW3 [89] library through the ROOT class TVirtualFFT.

FFTW3 uses a planner to choose between different strategies for the Cooley-Tukey

algorithm and other non-Cooley-Tukey algorithms to perform the Discrete Fourier

Transform (DFT) of an array X of n complex numbers [90]. While the interpreta-

tions of the DFT depend on the scenario, it is useful to understand it as periodically

extending the original signal beyond its original window (potentially leading to edge

effects), and then computing the finite number of coefficients in Fourier space neces-

sary to reproduce that periodic discrete signal. The algorithm itself is not relevant

for this section, only the final values computed, which are:

DFT(X)[k] =
n−1∑
j=0

X[j] e−
2πi
n
jk
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IDFT(Y )[j] =
1

n

n−1∑
k=0

Y [k] e+ 2πi
n
jk

where 0 ≤ k < n, though it is easy to see that DFT(X)[k] and IDFT(Y )[j] are

periodic with period n 2. A particularity of the FFTW3 library is that its computation

of the inverse Discrete Fourier Transform does not normalize its output, either by the

length of the series or otherwise, leaving that to the user. Other libraries may do that

automatically.

Of note, the definition of the DFT and IDFT do not include any information on

time. We can change the definition so that it includes that information. Assuming

we have a function f that we sample n times during a time window [0, T ], then

DFTf(k ν0) =
n−1∑
j=0

f(j t0) e−2πi jt0·kν0

where t0 = T/n is the sampling period, and ν0 = 1/T is the smallest non-zero

frequency we can access with a window of length T . This definition has a similar

problem than the naive derivative described above: if we halve the sampling period,

then the number of terms in the sum doubles. By taking the simple case of a constant

function, that would also double the values of the DFT of the sampled function. This

is not a desirable behaviour: I want the DFT to be as agnostic as possible from the

sampling frequency. This can easily be achieved by multiplying the DFT by the value

of the sampling period:

2Do not confuse the Discrete Fourier Transform with the similarly-named Discrete-Time Fourier
Transform. The latter is defined for all frequencies, instead of just a discrete, finite amount of them.
All FFT algorithms compute the DFT of an array. I assume the unambiguous ”Discrete-Time
Discrete-Frequency Fourier Transform” was too much of a mouthful to catch on.
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nDFTf(k ν0) = t0

n−1∑
j=0

f(j t0) e−2πi jt0·kν0

which now has same dimension as a continuous Fourier transform. In fact, this

formula tends towards the continuous Fourier transform of f defined between [0, T ]

as n ← ∞. This shouldn’t come as a surprise, since this modification is equivalent

to the one we did earlier to go from an integral in continuous time to one in discrete

time. The inverse DFT then becomes:

nIDFTf̃(j t0) =
1

N t0

n−1∑
j=0

f̃(k ν0) e+2πi jt0·kν0

which also has the same dimensions as a continuous inverse Fourier transform,

with the extra term 1
N t0

= ν0.

Thanks to this non-standard normalization of the DFT, we can now reuse all the

relationships for continuous Fourier transforms previously described in this section

without having to add extra proportionality factors:

nDFT(f ∗ g) = nDFT(f) · nDFT(g)

nDFT(f ∗−1 g) = nDFT(f)/nDFT(g)

n−1∑
j=0

[f(j t0)]2 t0 =
n−1∑
k=0

[nDFTf(k ν0)]2 ν0

Note that none of this are new results. They are just the DFT relations for

the convolution theorem and Parseval’s theorem, where my normalization convention

happens to absorb the extra terms. I believe that the straightforward conversion from

the continuous Fourier transform version of these relations minimizes the potential
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for errors in many situations.
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Appendix H

Parameter estimator performance

Choosing the right metric to compare algorithms can be a more subtle topic than it

might seem at first view. In this section, we go into more detail in the comparison

of the estimator resolutions for the algorithms described in Sec. 4.1: SAMBA, MDec,

and DD estimators.

H.1 Amplitude resolution

Both the MDec and DD methods correct the amplitude bias due to the ballistic

deficit, so we need to compare them on the basis of the precision of their estimators.

The first, and arguably more important, is the amplitude estimator, since it gives a

measure of the energy of the event. We want a metric for the reconstruction power

of each estimator.

The first thing to note is that, while generally what we are interested in is the

energy of our event, this is not what we have access to in our data. What we do

measure is the total charge created in the avalanche region. This is proportional to the

energy of the event on average, but this correlation is not exact event by event. This

is because the number of primary electrons created is randomly drawn from a Poisson
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distribution based on the energy of the event, and in turn the number of secondary

charges created is drawn from a Polya distribution based on the number of primary

electrons. As such, the if we tried to compare the resolution of the energy estimator

from the different methods, we would be folding in the systematic uncertainty from

those two physical processes, making for a poor comparison metric.

For this reason, the comparison between algorithms should be based on their

capacity to reconstruct the total secondary charges created during the event. Since

we do not have any calibration source capable of producing events with a known

number of primary electrons, let alone a known number of secondary charges, this

necessarily relegates the comparison to the application of the different methods to

simulations, where we can keep track of all this information.

The “naive” way of comparing the methods is to look at the relative dispersion

of the amplitude estimator for events with a fixed number of secondary charges. The

result for all three methods is shown in Fig. H.1. The X-axis for the relative resolution

of the methods is the number of secondary charges for each event, scaled to correspond

with the event energy most likely to produce that number of charges. This scaling was

performed so that the systematic uncertainty due to Poisson (primary ionization) and

Polya (avalanche) may be shown in the same plot. As can be seen, those uncertainties

are at least one order of magnitude higher than the resolution from the MDec and DD

methods for energies above 1.5 keV, and are only of the same order under 100 eV. This

puts the comparison of those two methods into perspective, since any improvement

in resolution will be washed out by the systematics.

However, both MDec and DD do provide a substantial gain over the SAMBA

estimator. The resolution of SAMBA is limited to a minimum of 8 %, due to the
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Figure H.1: Amplitude resolution of all three methods, depending on the secondary
charges of the event (in units of the energy most likely to produce that
number of secondary charges). For comparison, the relative resolution
of the number of primary electrons produced by any given energy, and
the relative resolution of the number of secondary charges produced by
any number of primary electrons (in units of the energy most likely to
produce that number of primary electrons).

bias introduced by the changing ballistic deficit. MDec and DD are not affected, so

the resolution keeps improving with increasing energies, down to under 1 % at 5 keV.

However, at low energies, the odds of having a single primary electron (or a low

number of electrons arriving at the same time) increases, so the SAMBA estimator

is not affected by the ballistic deficit anymore, and so the resolution of all methods

converge together.

The reason why the systematics from Poisson and Polya match is just a coincidence
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due to a chosen θ for Polya of 0. In that scenario, the Polya distribution is just an

exponential distribution, for which the standard deviation and the average are equal.

Then, the relative resolution of from Poisson where the average is n is

r =
σPoisson
µPoisson

=

√
n

n
= 1/

√
n

And, in turn, the relative resolution from adding n results from an exponential

distribution of average G is:

r =
σExpn

µExpn
' 1√

n

σExp
µExp

= 1/
√
n

Going back to the characterization of this metric as “naive”: the relative resolution

of an estimator for a fixed value of the quantity being estimated is not often well-

behaved. The obvious counterexample is that of an estimator that always predicts

the same value: this would have a perfect resolution of 0, but would obviously be

of no interest. This is because what we actually want from an estimator is a good

resolution on the real value of the quantity, for a given estimated one, instead of

looking at it the other way around, as previously described.

This comes with one added nuance: the results now depend on the energy dis-

tribution of our (simulated) data. This is conceptually similar to the concept of a

prior in bayesian analysis: the most likely value of the quantity estimated depends

on the a priori probability of each value, before the measurement. To be as agnostic

as possible on the energy distribution, we can assume a uniform one, but ideally we

would use the expected distribution from our data of interest. The results are shown

on Fig. H.2. They turn out to be essentially the same as in the “naive” approach,
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Figure H.2: Ideal secondary charge resolution, depending on the reconstructed en-
ergy from the amplitude for each method. The corresponding plots for
the systematic uncertainties produced by primary electron (Poisson) and
secondary charge (Polya) creation are shown again for comparison.

because of the linearity of our estimator with respect to the quantity estimated, and

our choice of a uniform energy distribution. The only differences are a marginally

worse resolution for SAMBA, and a marginally better resolution for all approaches

at the lowest energies. The latter should be taken with a grain of salt, since the

definition of relative resolution necessarily breaks down as the average of the value

studied approaches 0.

In conclusion, we see that the MDec method has the best amplitude resolution

across all ranges of energy, although the marginal improvement over DD disappears
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once we take into account the systematic uncertainties of the detector. Unless inter-

ested in figuring out the avalanche gain process and we have some way to know the

primary electron content of events (individually or statistically), the performance of

both methods is essentially equivalent. In turn, SAMBA has similar performance to

those two methods at very low energies (< 200 eV), where the ballistic deficit is not

an issue anymore due to the low electron count. But beyond that point, its biases

degrade its performance significantly.

H.2 Risetime resolution

The study of the risetime resolution is very similar to the previous one on the ampli-

tude, with two differences. The first is that we have a preferred distribution of our

events, which is a uniform distribution inside the detector. The second is that our es-

timators are no longer purely linear with respect to the quantity they are estimating.

More specifically, the risetime of the pulse has a minimum value that depends on the

processing used, so at low values it stops being sensitive to the real RMS of the arrival

time of the primary electrons. This can be seen most clearly for the MDec method,

as shown on Fig. H.3. This is primarily due to the response function of our detector

to a single electron, which has a non-zero width, even after processing. Another effect

contributing to this is any smoothing introduced during the processing, which also

widens the shape of the pulse produced by a single electron.

With the reasonable assumption that the spread in electron arrival time roughly

follow a gaussian distribution, the risetime from SAMBA and DD (time between 10 %

and 90 % of the total amplitude), and the one from MDec (time between 10 % and

75 %) can be converted into an estimator of the electron arrival RMS by dividing by
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Figure H.3: Normalized MDec risetime vs the electron arrival time RMS. Note how
the minimum risetime is 6µs, despite the RMS going all the way down
to 0.

2.560 and 1.955, respectively. This allows us to plot the relative resolution of the real

RMS, for a given estimated RMS. The results are shown on Fig. H.4.

The conclusions to be drawn from the plot are that while both MDec and DD offer

the same performance for larger values of the electron arrival RMS, the minimum

dispersion discernible by MDec is quite a bit larger than that for DD. This makes the

DD method much more adapted for separating events from each other, as required

for the search of KK axion events. In a similar vein, it will also produce better results

when trying to discriminate events with a single electron (which always have an arrival

RMS of 0) from other events, since multiple electrons have to arrive closer together
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Figure H.4: Electron arrival RMS resolution, depending on the normalized risetime
for each method. The point at which the resolution shoots up for each
method corresponds to the point where the risetime loses its discrimina-
tion power due to approaching its minimum value.

before they can’t be distinguished; this is useful in searches for very low energy events,

since they always produce a single electron. As for the SAMBA estimator, while it

technically has a moderately smaller minimum risetime than the MDec method, its

resolution is considerably worse for almost all values of the risetime.
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Appendix I

Parameter optimization for MPA

A relevant question for any algorithm is whether its internal parameters have been

chosen for optimal results. In the case of the Multi-Pulse Analysis described in

Sec. 4.2, we see in particular that the rate of false positives strongly depends on

the chosen processing parameters, potentially by orders of magnitude, as shown on

Fig. I.1.

To find the optimal parameters for MPA, different values for the smoothing

strength and threshold were used. The sensitivity to axions and the false positive

rate from pointlike events was computed for each smoothing/threshold couple. The

results are shown on Fig. I.2. The first conclusion is that the higher the threshold

chosen, the better the algorithm is capable of separating pulses, but the more false

positives are also created.

To chose the optimal parameters based on both metrics, a simplified form of an

exclusion limit was used. We assume 10000 pointlike events uniformly distributed in

the 2 to 20 keV range, and 0 observed KK axion events, in the conditions of the physics

run of the SEDINE detector. The expected rate of axion events (usually equivalent

to less than 1 for our running conditions) is divided by the 90 % excluded average
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Figure I.1: Proportion of false positives out of uniformly distributed pointlike events,
for different values of the processing parameters. Some mild smoothing
was applied, to increase the readibility of the plot.

Figure I.2: Left: Axion rate, depending on processing parameters. Right: Proportion
of pointlike events that produce a False Positive, depending on processing
parameters.
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Figure I.3: Optimization metric, depending on processing parameters. The optimal
parameters are taken to be a smoothing strength of 30 samples, and a
threshold of 1.3.

number of events based on the number of events seen (all false-positive pointlikes).

This parameter is then proportional to the inverse of the square of the exclusion limit

(cf. Sec. 8.2.1), so it makes for an adapted metric to optimize the processing. The

results are shown on Fig. I.3.

We can further compare the expected results from the default parameters, to the

optimal ones. In fact, Fig. ?? shows that not only the optimal parameters represent

a marginal increase in terms of sensitivity to axions (∼ +5%), but also a sizeable

decrease in the proportion of false positive events (∼ −45%). About the latter, note

that only 37 events were falsely reconstructed as double, out of 2·106 simulated events,
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Figure I.4: Left: Comparison of Axion rate, for default and optimized parameters.
Right: Comparison of False Positive proportion of pointlike events, for
default and optimized parameters.

so it should be taken with caution due to the relatively low statistics. Nevertheless,

putting both together, and assuming once again 10000 pointlike events, we expect

an improvement of ∼ 10% of our solar KK axion limit, compared to the default

parameter choice. This is only true if our dominant background is pointlike events

improperly reconstructed as being double; if instead it turns out to be some source of

physical events that reproduce double interactions, then the limit may only improve

by ∼ +2.5%.
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Appendix J

COMSOL simulations

The choice of central electrode for an SPC has far-ranging effects, from its stability in

time to the level of isotropy of the field it generates, but also in how it affects the drift

of primary electrons within the bulk of the detector, or the maximum voltage that

can be applied before continuous sparking develops. Multiple types of electrodes have

been developed to try to fix some of the issues with earlier versions, like the simple

ball electrode, or the ball and umbrella one. In this appendix, COMSOL simulations

are performed for two newer models of the central electrode: the grid sensor, and the

achinos.

J.1 Grid sensor

To try and solve the issue of the anisotropy of the gain and drift time inside the

detector, another prototype of sensor included a “grid” of wires around a central

electrode, as show in Fig. J.1. The rationale for this type of sensor is that, close to

the central electrode, any anisotropies due to the rod will be shielded by the grid;

conversely, in the drift region of the detector, the larger size of the grid compared to

the central electrode will soften the effect of the grounded rod on the field.
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(a) Grid sensor (b) COMSOL geometry

(c) Simplified 2D geometry

Figure J.1
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As is immediately visible from the picture of the sensor, this is not cylindrically

symmetric. While I did perform 3D simulations of the setup, simplified cylindri-

cally symmetric configurations lent themselves much better to studying the effects

of changing the applied electric potential on the grid. Specifically, the focus was on

studying the effect of the grid potential on the dead region of the detector. Intuitively,

we would expect a higher voltage on the grid to lead to an increase in the volume of

the detector with field lines ending on the grid, and hence experiencing no avalanche.

The experimental setup used had the central sensor at 1200 V. The grid was kept

at 70 V, since that is roughly the value of the potential that we would expect at the

radius of the grid in the ideal scenario. The isotropy of the field was also tested by

comparing the electric field as a function of radius for different angles. The results

are shown on Fig. J.2. From the plots, it is clear that changing the potential on the

grid has a large effect on the size of the dead region inside the detector, with less and

less volume being visible as the potential increases. The second conclusion is that

the electric field in the hemisphere away from the rod is pretty isotropic, no matter

the voltage chosen (a difference of 20% maximum in field strength at the edge of the

detector). On the other hand, the grid is not enough to shield the contribution from

the central sensor: the field strength increases by roughly a factor of 2 between a grid

potential of 30 V and 120 V, while the theoretical field produced by a sensor with the

radius of the grid and the same potential increases by a factor of 4 instead.

The conclusions drawn from this are that the grid sensor may be good for improv-

ing the amplitude resolution of the detector, but is unlikely to be useful to control the

behaviour of the field in the drift region. This is because the field changes slower than

the potential applied, and small changes in the potential applied have large effects on
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(a) 30V (b) 70V (c) 120V

(d) 30V (e) 70V (f) 120V

Figure J.2: Top: field lines in the detector. The field lines are red when ending on
the central electrode, dark blue when ending on the grid. Bottom: field
strength vs radius. The red function is the ideal field created by a sensor
with the radius of the grid and the same applied voltage. The blue lines
are (starting from the bottom-most) the simulated field strengths at 0,
22.5, 45 and 90 degrees below the horizontal; they differ by less than 20%,
at the edge of the detector.
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the strength of the avalanche, which we generally want to avoid. Furthermore, the

introduction of relatively large dead regions in the detector, even larger than those

shown in the plots (since this simulation only includes one of the three wires in the

real sensor), will lead to a decrease in the effective event rate. Short of experimental

data proving a vastly improved amplitude resolution for this kind of sensor, this does

not seem like an upgrade from the simpler ones.

J.2 Achinos

The Achinos (greek for ”sea urchin”) sensor was initially developed to solve a lim-

itation of the simpler ball sensors: the strength of the avalanche gain is coupled

to the strength of the field in the drift region. In practice, if we want to increase

the field in the drift region while keeping the maximum voltage constant (to avoid

sparking), we have to use a larger sensor, since the electric field varies roughly as

E(r) ∼ V rsensor/r
2. However, this will decrease the electric field close to the sensor,

since that roughly varies as E(rsensor) ∼ V/r2
sensor, so the avalanche may become too

weak to observe the events of interest.

The solution to the problem was to use a sensor geometry where the “size” of the

sensor “depend” on the distance from which we look at it. By using small electrodes

kept some distance away from the centre, an electron drifting towards the sensor will

“see” the larger radius at which the electrodes are kept while drifting. But, once it

reaches the sensor, it will produce an avalanche according to the smaller radius of

these electrodes. By choosing the right radii for the electrodes and their position with

respect to the centre of the detector, we can get a good enough amplification for the

avalanche, while keeping a drift time that is fast enough for the primary electrons not
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(a) Achinos sensor (b) COMSOL geometry

Figure J.3

to get captured before reaching the sensor, but not so fast that we lose discrimination

power against surface events.

I performed a 3D simulation of the detector with COMSOL to get qualitative

answers about any dead region in the detector. Another check was to see how many

field lines end up in any of the rod-side electrodes, compared to the bottom electrodes.

Somewhat unexpectedly, the hardest part of finding the answer to these questions was

to find a good way to represent 3D results as a 2D plot.

In Fig. J.4, some plots showing the field configuration are shown. For context,

experimentally we observed that applying the same voltage to all electrodes lead to

only the electrodes farther away from the rod recording any signal. If the voltage on

the electrodes closest to the rod was increased a moderate amount, signals could be

recorded everywhere. If that voltage was increased even further, then it was only the
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(a) (b)

(c) (d)

Figure J.4: Top: 2D projections of isopotentials and field lines. Bottom: 3D field
lines, blue for lines ending on the rod-side electrodes, red for lines ending
on the other ones. The plots on the left have 1000 V applied on all
electrodes, the ones on the right have 1080 V on rod-side electrodes and
1000 V on others. Despite the large observed difference in the avalanche
for either configuration, the field lines are barely affected
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electrodes closest to the rod that recorded a signal. A relative increase of 8% on the

voltage of the rod-side electrodes gave the most balanced results.

A possible explanation for this behaviour was that maybe most of the volume of

the detector had field lines that ended on either the top or the bottom electrodes. This

was quickly rejected with the COMSOL simulations: changing the relative voltage of

the electrodes had barely any effect on the field configuration in the drift region of

the detector. Furthermore, almost no area of the detector had field lines ending on a

“dead” region of the sensor. Whatever the explanation for the discrepancy between

the electrodes, it is unlikely to be due to the field configuration in the drift region.

An alternative explanation is that the relative proximity of the sensors has a large

effect on the strength of the avalanche, and so it takes a precise voltage setup to have

all electrodes experience a large enough avalanche while in the same configuration.

The field close to each electrode was also observed to check whether we do expect

the same behaviour for each one of the achinos electrodes than for a simple sensor with

a single electrode. The results can be seen on Fig. J.5. For the fieldlines coming from

the drift region that reach the electrode, the electric field away from the electrode

is remarkably close to the ideal field (just ∼ 10% smaller), up to ∼ 4 mm away.

This corresponds to a voltage drop of 85 − 90% from the maximum, which means

the ion induced current will match the ideal one for that same percentage of the

total amplitude, and only diverge for the final 10 − 15%. For the specific case of

SNOGLOBE, with 1 bar of Neon with 5% CH4, and an applied voltage of 1630 V (the

conditions tested at the time of writing this section), this means the first ∼ 100µs

of signal match the ideal scenario; the difference in shape for the tail after that

will lead to undershoots or overshoots after processing, depending on whether the
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(a) (b)

Figure J.5: Left: field lines close to the electrode furthest away from the rod. Right:
in red, ideal field for a single electrode inside the detector; in black, gray,
cyan, blue and green, the field strength away from the electrode, at +90,
+45, +0, -45 and -90 degrees respectively from the line away from the cen-
tre of the sensor. The +90 degree line points towards another electrode,
the -90 degree line points in between two sensors.

primary electrons reach the electrode straight on or obliquely, respectively. As such,

the approximation of the field close to the electrode being that of an isolated electrode

is good enough for processing data, or for producing qualitative simulations. But if

we are interested in simulating data where the pulse tails are important, the ideal ion

induced current won’t do.

One consequence of the electric field around the electrodes matching the ideal

one so closely is that it implies the total charge on each electrode is the same as the

charge in the ideal scenario. Far away from the sensor, the field should behave like
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the one from one central charge (the combined charge of all electrodes), due to the

approximate spherical symmetry of the detector and Gauss’s law. This is shown to

only be partially true with COMSOL, as shown in Fig. J.6. While the electric field

does roughly follow a 1/r2 behaviour, especially farther than 30 cm away from the

centre, we need to add a corrective factor of 0.17 to the ideal electric field to match

the actual values found with COMSOL. Remember that the charge of a spherical

conductor of radius r held at a potential V inside a hollow conductor of much larger

radius is Q ≈ 4πε V r. So the total charge from 11 electrodes of radius 0.5 mm should

be ∼ 0.4Qideal, where Qideal is the charge from a single electrode of radius that of

the Achinos, 14 mm, and the strength of the electric field in the drift region should

follow the same ratio. If we get 0.17 times the electric field instead, that means that

the total charge in the achinos sensor must be 0.17Qideal. But, since the field close

to each of the achinos electrodes follows the ideal field, this means that the support

of the achinos, which is kept grounded, must hold a charge of Qsupport = −0.23Qideal.

I do not know of a way to get an estimate of the charge on the support ana-

lytically, so other Achinos configurations would have to be run through COMSOL

to find it. The importance of this computation is that it has a large effect on the

drift field; indeed, in the configuration described above, the field is only ∼ 44% of

the field produced by a sensor with 11 floating electrodes, and ∼ 17% of the naive

approximation with a single electrode of radius that of the achinos. This is still a

sizeable improvement over a single electrode of radius 0.5 mm, which would only pro-

duce 3.6% of the naive approximation field. However, the accumulation of charge on

the support to compensate the field from the electrodes will limit how much the field

close to the electrodes (which governs the avalanche process) can be decoupled from
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(a) (b)

Figure J.6: Left: field lines in the drift region. Right: in red, ideal field for a single
electrode with radius that of the achinos sensor, and the same ideal field
multiplied by 0.17; in cyan, blue, gray and black, the field strength away
from the sensor, at 0, -22.5, -45 and -90 degrees respectively from the
equator (all pointing away from the rod).

the field in the drift region (which governs the drift and diffusion time, and indirectly

the attachment).
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Appendix K

Systematics of SEDINE axion searches

One concern with the calculation of exclusion limit is that it depends on two factors:

the observed number of axion-like events in the data, and the expected sensitivity

of the detector to KK axion events. Once the processing and cuts are fixed, inde-

pendently of how those cuts are determined, the first of those two factors is fixed

too. However, the expected sensitivity of the detector depends on the quality of our

simulations. Indeed, if our simulations are wrong, then so is our computed sensitivity.

To include this effect in the final exclusion limit, we need study the systematics

of the method. This means that, for every parameter that may be expected to have

an impact on the final result, we determine how well that parameter is known, as

already shown on the calibrations chapter of this thesis, Chap. ??. Then, by running

more simulations where the parameter is changed by a factor that is consistent with

its measurement uncertainty, we can establish its effect on the final exclusion limit.

This has to be run with all parameters left to vary independently, but for the sake

of understanding what we are most sensitive to, we will first show the results when

sweeping only one parameter at a time.
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K.1 Control simulation

For the sake of verifying that the following studies have enough statistics, we first

ran 200 simulations of 10k axion-like events each, where all parameters were fixed to

their expected values (i.e., no parameter was swept nor left to vary randomly). These

simulations were then processed, and the value of the total efficiency was extracted

from each. Small deviations from the mean will lead to half as large variations on

the final relative uncertainty on the exclusion limit, due to the square root term in

the formula for the limit. In the specific case of the control simulation, this gives a

measure of the statistical uncertainty of the approach, for this number of events per

simulation. It also provides a point of comparison for the effects of changing each

parameter separately. As per Fig. K.1, we see that the relative dispersion σ/µ of the

detector efficiency to KK axion events is 2%, well within reason. While the statistics

of this test could be increased to reduce this error, we will soon show that this is far

from the dominant source of uncertainty on the final exclusion limit.

K.2 Drift time

The drift time of electrons in the detector have a strong effect on the efficiency. Indeed,

the longer the drift times involved, the easier it is for the processing to separate

different locations in the detector, as shown on Sec. 5.6.2. We leave the maximum

drift time to vary with a standard deviation of 5%, based on our calibrations. The

resulting spread in efficiency is shown in Fig. K.2. Despite the previously stated

difficulties with calibrating drift times without the use of a laser, the relative spread

in efficiency is of only 9.5%.

On the other hand, another effect adds to that. As explained in Sec. 6.1.4, we only
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Figure K.1: Dispersion on the detector efficiency from 200 simulations of 10k events
each, with all parameters fixed, and assuming a local density of KK
axions of 4.07 · 1013 m−3. For reference, the red line is the mean for this
simulation. The relative dispersion of the efficiency is 2%.

have a calibration for the drift time of surface events, leaving intermediate drifts to

be determined solely through simulations. We can still make an estimate of the error

introduced by this issue, using a toy model for the drift time. The relationship between

drift time can be approximated by Tdrift = Tdriftmax(
r

rmax
)α, with Tdriftmax = 470µs

taken from calibrations, rmax = 30 cm the size of the detector, and α = 2.5 the value

obtained by fitting results from simulations. By letting α change, while keeping the

conditions for separability the same as in Sec. 5.6.2, we can get an estimate of the
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Figure K.2: Dispersion on the detector efficiency to KK axions, from 200 simulations
of 10k events each, where the drift time is left to vary according to our
calibrations, with all other parameters fixed. For reference, the red line
is the mean of the control simulations. The relative dispersion of the
efficiency is 9.5%.

uncertainty on the expected axion event rate due to this effect. The results are shown

in Fig. K.3.

The loss in separability when changing α in either direction can be explained by

two conflicting effects. In the one hand, separability improves the more a small change

in position induces a large change in drift time; the higher the α, the steeper the curve

is in the high radius region (where most of the volume of the detector is). On the
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Figure K.3: Top: Toy models for the drift time vs radius relationship, with fixed max-
imum drift; α = 2.5 corresponds to the fit of the results from simulations.
Bottom: Simulated distribution of separable events in the detector for
different values of α. The relative rates (in order of increasing α) are
76%, 89%, 100%, 98%, 83%.
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other hand, the steeper the curve, the smaller the region of the detector where the

curve is steep enough for events to be separable, since we are keeping the maximum

drift time constant. According to this toy model, the ideal separability is likely for α

somewhere between 2 and 4.

The values of α tested were chosen somewhat arbitrarily, between 1 and α2
fit. In

practice, values of α below 2, or much above it, are unlikely, due to the observed

distribution in the data of events at low and mid risetimes. An α below 2 would lead

to a decreasing number of events with lower risetime, while an alpha above it would

lead to the opposite effect. Yet what we see is a roughly uniform number of events at

all risetimes, with a marked increase at very low risetimes (likely to minimum risetime

effects from processing). While this only directly constrains diffusion times, they are

closely related to drift speeds. Together with the results from simulations, we can

constrain α between 1.5 and 4.0 with a reasonable amount of confidence.

Altogether, and to err on the side of caution, our lack of knowledge on the values

of the drift time in the bulk of the detector means its sensitivity to KK axions is

anywhere between 85% and 100% of the one computed without taking this effect into

account. Its impact on the final exclusion limit is shown in Sec. 8.2.2, but can already

be estimated to weaken the limit by 1/
√

1− 0.15/2 ' 1.04 (i.e., increase the limit by

. 4%.

K.3 Diffusion time

The diffusion time of electrons also has an effect on the efficiency of the detector, if

lesser than the drift time. Roughly, for two pulses to be separable, their difference in

arrival time must be larger than their respective spreads in arrival times. However,
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Figure K.4: Dispersion on the detector efficiency to KK axions, from 200 simulations
of 10k events each, where the diffusion time is left to vary according to
our calibrations, with all other parameters fixed. For reference, the red
line is the mean of the control simulations. The relative dispersion of the
efficiency is 12%.

since diffusion times are roughly one order of magnitude smaller than drift times,

the effect of uncertainties on the efficiency ought to be smaller. On the other hand,

due to the improved risetime cut digging into some of the axion event rate, while the

cut on time separation between pulses was left intentionally wide, a miscalibration of

the diffusion time will affect the proportion of bulk events rejected. The two effects

end up cancelling each other: the diffusion time calibration has a somewhat larger
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Figure K.5: Dispersion on the detector efficiency to KK axions, from 200 simulations
of 10k events each, where the photon attenuation range is left to vary
according to NIST data, with all other parameters fixed. For reference,
the red line is the mean of the control simulations. The relative dispersion
of the efficiency is 3%.

uncertainty, of 6% (compared to 5% for the drift time), and an equally larger effect

on the efficiency uncertainty, at 12% (compared to 9.5%). The distribution is shown

in Fig. K.4.
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K.4 X-ray attenuation range

The attenuation length of X-rays in gas was taken from the NIST database [63].

While the precision of their simulations reach ∼ 0.1%, we chose a more conservative

uncertainty of 10 %, according to the report in [91]. This is unfortunately one piece

of information we could not calibrate with our detectors.

We drew a normal distribution centred around the nominal attenuation length,

with a relative resolution 10 %, and a minimum of 10 % of the nominal value, to avoid

non-physical simulations. The results are shown in Fig. K.5. A relatively small effect

of 3% is observed, only twice the size of the statistical uncertainty. This is likely due

to the fact that the attenuation length of a photon depends strongly on its energy:

any small differences due to uncertainties are going to be dwarfed by the variations

due to energy changes.

K.5 Energy calibration

The energy (or, equivalently, mean avalanche gain) calibration is also one of our

systematics. An error in this calibration will in turn lead to a cut in amplitude

that won’t match the cut in energy that we believe we are doing. This effect would

be completely negligible for the default region of interest (2 − 22keV), since the

expected number of events at the edges is negligible. However, for our optimized

region of interest, this is not the case any more: a miscalibrated energy range will

shift which events pass our cuts, potentially diminishing the sensitivity of our detector

considerably. For the reported uncertainty of 5% on our energy calibration, we end

up with an efficiency uncertainty of 3% (cf. Fig. K.6).
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Figure K.6: Dispersion on the detector efficiency to KK axions, from 200 simulations
of 10k events each, where the mean avalanche gain is left to vary accord-
ing to our calibrations, with all other parameters fixed. For reference, the
red line is the mean of the control simulations. The relative dispersion
of the efficiency is 3%.

K.6 Mean ionization energy

Naively, we would expect the mean ionization energy of Neon with 0.7% CH4 to be

the same as that of pure Neon, 36 eV [29]. However, recent calibrations of one of our

Queen’s prototypes revealed the mean ionization energy of Neon with 2.0% CH4 to

be 27.6 ± 0.2 eV, significatively closer to that of pure methane (27.7 eV) than that

of pure Neon. Unfortunately, the dataset we used had no calibrations that we could

use to determine the actual ionization energy in that gas mixture. Instead, we left
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Figure K.7: Dispersion on the detector efficiency to KK axions, from 200 simula-
tions of 10k events each, where the mean ionization energy is left to vary
according to our calibrations, with all other parameters fixed. For ref-
erence, the red line is the mean of the control simulations. The relative
dispersion of the efficiency is 2%.

the value vary uniformly between the two extreme values (while keeping the energy

calibration constant!), which should give a conservative estimate of its uncertainty on

the exclusion limit. Fortunately, as shown on Fig. K.7, the effect is small enough to

be dominated by the statistical uncertainty of this study. This is likely due to the fact

that the lower energy values considered in this study, 1 keV, are still large compared

to the mean ionization value. The discreteness of the number of electrons produced
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is not a significant effect at this stage.

K.7 Attachment

As already mentioned in Sec. 8.1.2, the uncertainty on the electron attachment cal-

ibrations has a large effect on both the reconstructed energies of axion events, and

their asymmetries. Choosing cuts without taking this effect into account would lead

to very large systematics; for example, a naive energy range of 3−6.5keV, optimal for

basic axion-like cuts and the expected attachment, would induce a relative dispersion

on the efficiency due to attachment uncertainties of 35%.

Fortunately, the energy and asymmetry cuts selected in Sec. 8.1.2 already took

this uncertainty into account, opting to maximize the efficiency in the worst case sce-

nario, rather than the expected one. This decreased the systematics that attachment

uncertainties induce down to 5%, as shown on Fig. K.8.

K.8 Ion mobility

When processing the pulses, one of the main steps is to deconvolve the response of the

detector from the signal recorded. The main unknown in the process is the mobility

of ions in the gas, since all other parameters are either fixed experimentally or can be

measured. Indeed, while the literature suggests a mobility of Neon ions in pure Neon

at atmospheric pressure to be around 4 cm2/V/s bar, our calibration gives a value in

the 6− 8 cm2/V/s bar range, depending on running conditions. This difference could

be due to a combination of effects (increased methane concentration, anisotropies of

electric field absorbed by mobility parameter).

An error in the estimated mobility is not an issue for the computation of the
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Figure K.8: Dispersion on the detector efficiency to KK axions, from 200 simulations
of 10k events each, where the attachment parameter is left to vary accord-
ing to our calibrations, with all other parameters fixed. For reference, the
red line is the mean of the control simulations. The relative dispersion
of the efficiency is 5%.

amplitude of events, which is only weakly dependent on the shape of the response

of the detector (for small variations). However, it can have a larger effect on the

estimation of the width of events and the time until the return to baseline, since an

improper deconvolution will either leave events with long tails (pushing the end of

the event farther from the real end), or with undershoots (making the end of the

event be computed sooner than it should). Either of those will lead to simultaneous
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Figure K.9: Dispersion on the detector efficiency to KK axions, from 200 simulations
of 10k events each, where the ion mobility is left to vary according to
our calibrations, with all other parameters fixed. For reference, the red
line is the mean of the control simulations. The relative dispersion of the
efficiency is 2%.

events not being separated properly, or single events being wrongly reconstructed as

two different events, respectively.

Fortunately, the disagreement between the literature and the calibrations are ulti-

mately secondary to our actual use of the mobility: we use it as a simple pulse shape

parameter. Understood that way, we actually have a good measure of the mobility,

with a relative resolution of only 2%. The resulting variability in detector efficiency
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Figure K.10: Variation in efficiency when 2 · 106 events are simulated with an ion
mobility drawn from a gaussian with a relative resolution of 18.9%. The
y-axis is zoomed into the range of possible values to better appreciate
the effect.

is shown in Fig. K.9; the effect is dominated by the statistic uncertainty.

This interpretation of the mobility parameter comes with an added complication:

it is not a physical constant that depends only on the gas used, but instead varies

pulse-to-pulse, since it “absorbs” the small differences in shape from one pulse to

another. An upper bound on this effect is taken from our mobility calibration, by

assuming the spread in measurements comes solely from actual shape variation, ignor-

ing any contribution from the resolution on the calibration method. A new simulation

was performed in which the ion mobility was left to vary with the measured dispersion
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of 18.9%. The results are shown in Fig. K.10.

We observe that, for pulses in the lower tail end of mobility values, the processing

only detects 9% of axion events, compared to 19.5% at high mobilities (events with

low mobility are underdeconvolved, leaving a tail that makes it hard for the processing

to split two pulses close to each other). However, the average efficiency of the detector

is 16.34%, only marginally lower than the efficiency with a fixed mobility value, at

16.94%. This loss in efficiency results in an exclusion limit 1.8% higher, a negligible

contribution to the final result.

K.9 Combined systematics

To generate the combined systematics, 1000 simulations with 10k events each, where

the simulation parameters were left to vary freely according to the calibration un-

certainties. The result is shown on Fig. K.11, including the effect due to our lack of

knowledge on the drift time in the bulk of the detector (cf. Sec. K.2), whose main

consequence is lowering the mean efficiency by ∼ 7.5%. The combined effect of all

systematics leads to an uncertainty on the total efficiency of 21%.

Given that the exclusion limit depends as 1/
√
ε on the total efficiency, we expect

systematics to induce an uncertainty of order ∼ 10% on the limit. This can be

verified by computing the exclusion limit for the efficiency computed for each of these

simulations. The median exclusion limit is 7.76 · 10−13 GeV−1, the exclusion limit

larger than 84% of all limits (∼ +1σ) is 8.75 · 10−13 GeV−1, the exclusion limit larger

than 97.5% of all limits (∼ +2σ) is 10.1 · 10−13 GeV−1.
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Figure K.11: Dispersion on the detector efficiency to KK axions, from 1000 simula-
tions of 10k events each, where all simulation parameters are left to vary
according to our calibration uncertainties. The purple (resp. blue) does
(resp. does not) take into account the effect from our lack of knowledge
on the drift time in the bulk of the detector (cf. Sec. K.2). For refer-
ence, the red line is the mean of the control simulations. The relative
dispersion of the efficiency (including the drift model uncertainty) is
21%.
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