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Abstract: We derive the probability representation of even and odd cat states of two and three
qubits. These states are even and odd superpositions of spin-1/2 eigenstates corresponding to
two opposite directions along the z axis. The probability representation of even and odd cat states
of an oscillating spin-1/2 particle is also discussed. The exact formulas for entangled probability
distributions describing density matrices of all these states are obtained.
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1. Introduction

Recently, the probability representation of quantum states was suggested for systems
with both continuous and discrete variables [1-8]. In this representation, the system
states were expressed through regular nonnegative probability distributions defined in
the phase space. These probability distributions can be derived from the density operator,
and they contain all information on the quantum system. The probability representation
can be used to explain all quantum effects effectively by using the standard properties
of the conventional probability theory. The probability representation is related to other
quasiprobability representations of quantum states, such as the Glauber-Sudarshan P-
function [9,10], the Husimi Q-function [11,12], and the Wigner function [13] by integral
transforms [14]. For deriving probability representations, a general formalism based on
dequantizer and quantizer operators that describes all invertible maps associating operators
acting on a Hilbert space and functions of certain variables has also been developed [15].

A widely studied type of probability representation of continuous quantum systems
is the symplectic tomogram. For special sets of parameters, this tomogram coincides with
the optical homodyne tomogram [6] that can be measured in quantum optical experi-
ments [16]. Optical tomograms can be applied to reconstruct the density matrix and the
Wigner function [17-21]. Recently, probability representations called symplectic tomograms
have been determined for several important states of the harmonic oscillator, including
thermal states [22], coherent states, Fock states [8], and Schrodinger cat states [23], which
were originally introduced under the name even and odd coherent states. The time evolu-
tion of these tomograms, initially prepared in the potential of the usual harmonic oscillator,
has also been derived for free particle motion [6,8,22,23] or for inverted oscillators [24-26].

The probability representations of quantum systems with discrete variables have
also been developed and applied for qubit and qudit systems [2,3,27-30]. In Refs. [31,32],
probability distributions for one- and two-qubit states have been introduced where the
components of the distributions correspond to the probabilities of various spin projections
onto the opposite directions of the perpendicular x, y, and z axes for the particular qubits.
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For two-qubit entangled states, such probability distributions are entangled ones that can
be distinguished from distributions of separable states [31,32]. The physical relevance of
these types of discrete probability representations is that the components of the probability
distributions can be easily measured experimentally by repeated spin projection measure-
ments using a sufficiently large set of identically prepared states. Then, the elements
of the density matrix can be expressed by the components of these representations [31].
Consequently, the time evolution and any quantum effect can be treated by using these
measurable probabilities.

In this paper, we derive the previously discussed probability representation for even
and odd cat states of two and three qubits, that is, even and odd superpositions of spin-1/2
eigenstates corresponding to opposite directions along the z-axis for the particular qubits.
In the case of two qubits, they correspond to two of the Bell states [33-35], while for three
qubits, the even cat state is equal to the GHZ state [36,37]. These entangled states have
several applications in quantum information technology [38—42]. One of our aims is to de-
termine the components of the entangled conditional probability distributions of two-qubit
even and odd cat states and that of three-qubit even cat states and also the components of
the marginal conditional probability distributions. We also discuss the probability repre-
sentation of even and odd cat states of an oscillating spin-1/2 particle. Our motivation to
discuss these states is that the even and odd cat states of different oscillator systems, known
as Schrodinger cat states [43—45], can be produced in various experiments [46-54], and they
can have several applications in quantum information processing schemes e.g., in optical
quantum computation [55-58] and quantum communication [59,60]. The development
of schemes for the generation and application of the considered cat states of oscillating
spin-1/2 particles can be anticipated. We introduce an entangled conditional probability
distribution with both a continuous and a discrete variable concerning the oscillator and
the spin-1/2 states, respectively, and we derive all the factors required to determine the
entangled conditional probability distributions corresponding to the density matrices of
these states. We also define marginal conditional probability distributions characterizing
the state of either the spin or the oscillator, and we determine these distributions. We
evaluate the characteristics of all the derived probability distributions and clarify the way
the entanglement appears in their measurable components.

This paper is organized as follows.

In Section 2, we review the construction of probability representation of quantum
states both for continuous and discrete variables. In Section 3, we present our results on
the probability representation of even and odd cat states of two and three qubits and also
on that of even and odd cat states of an oscillating spin-1/2 particle. Finally, we summarize
our findings and draw conclusions in Section 4.

2. Probability Representations and the Formalism of Dequantizers and Quantizers
2.1. Continuous Dimensional Quantum Systems

The probability representation of quantum states can be derived by using the formal-
ism of dequantizer operators U(%) and quantizer operators D(%) [15]. The parameter %
labels the particular operators, and it can have either discrete or continuous components
X1,X2,...,%,. The operators U(%) and D(%) can be used to construct an invertible map of
operators A acting on the Hilbert space H onto functions f4 (%) via the formulas [15]

fa(x) = Tr(AU(x)), (1)
A )

|
—
=
5
S
=
&

The function f4 (%) is the symbol of the operator A. In the case of discrete variables x;, the
integral in this equation should be replaced by a corresponding sum:
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A = Yy oy @

Expressions (1) to (4) are valid whenever A is a density operator. Using the dequantizer
operator U (X, u,v) = 6 (X1 — ug — vp), the density operator p of a continuous-variable
quantum system can be mapped onto the function w(X | u,v) known as symplectic
tomogram by the expression [1]

w(X | p,v) =Te[p 6(X1 — pj —vp)], (5)

where § and p are the position and momentum operators, respectively. The function
w(X | u,v) is a nonnegative conditional probability distribution function of the random
position X. This distribution satisfies the normalization condition

/w(X | p,v)dX =1. (6)

The conditions are labeled by parameters y and v in the reference frame where the po-
sition X is measured; that is, the position X is determined as X = yq + vp in the phase
space. By applying the quantizer operator D(X, p,v) = exp[i(X1 — ug — vp)], the inverse
transformation can be obtained as

1 o X A
h=5- /w(X | wv)expli(X1—pg—vp)| dXdudv. 7)

For pure states p = |i) ({|, expression (5) can be converted into the formula [8]

o
[vw) eXP@Vlyz - lvy> dy

where ¢(y) = (y|¢) is the wave function of the state.
The symplectic tomogram can also be derived from the Wigner function W(g, p) of
the state by using the expression

2

w(X | v , ®)

1
)= 27|v|

w(X | pv) = iﬂ / W(q,p)o(X —uq—vp)dgdp. )

The Wigner function can be derived from the density operator as [8]

(e9)

1 .
W(q,p) = 5/ (g —u/2lplg+u/2)e?" du, (10)

—00

and it can be obtained from the symplectic tomogram as [8]
W(q,p) = % / w(X | p,v)e 1P dX dpdv . (11)

The symplectic tomogram w(X | y,v) and the Wigner function W(g, p) contain all
information on the density operator; that is, they can be used to completely characterize
the quantum state. As was stated before, symplectic tomograms are always nonnegative
functions; consequently, they are regular probability distributions. In contrast, in the case
of Wigner functions, the occurrence of negative values is quite common and indicates the
presence of quantum interference.
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2.2. Finite Dimensional Quantum Systems

For a finite d-dimensional quantum system, the minimal set of dequantizer operators
comprises d? elements. For example, in the case of qubits, that is, for d = 2, a possible
minimal set of dequantizer operators is

1/1 1 1/1 —i 1 0 0 0
u<1>:2(1 1), u<2>:2<i 11>, u(3>:<0 0>, u<4>:(0 1), (12)

and the corresponding quantizers are

» 14 1k
>, D<2>—(? Ol), D(3)—<_11_i 2 ) D(4)—(_?_i z ) (13)
2 2

These dequantizer and quantizer operators satisfy the orthogonality condition
Tr(D@H(f)) =i,  ij=1,...4 (14)
Applying Equation (3), one can obtain the probability representation of qubit states as
Tr(pu@) =p, =123 Tr (pu(4>) = py=1-ps. (15)

Then, the density operator of the qubit state can be obtained by applying Equation (4),

4
p=73 pDW (16)
i
which yields
L P3 (P1—1/2)—i(P2—1/2)>
f= ((m —1/2) +i(p2—1/2) 1-p3 ' 17)

Accordingly, the elements of the density operator are determined by measurable proba-
bilities. Taking into account the nonnegativity of the density operator g, the following
constraints can be found for the probabilities p;, p2, p3:

2 2 2
(Pl - ;) + (Pz - ;) + (Pa - ;) < % (18)

The physical meaning of this probability representation can be revealed by introducing
the conditional probability distribution w(X | j), where the parameter X can take values
only from the set {+1/2, —1/2} while parameter j can take values from the set {1,2,3}.
The particular components of this distribution correspond to the probabilities of the spin
projection X = +1/2 onto the perpendicular x (j = 1), y (j = 2), and z (j = 3) directions
as follows

w(+1/2|1) = py, w(+1/2|2) = py, w(+1/2|3) = p3, 19
w(—1/211)=1—py, w(—1/212)=1—py, w(—1/21]3)=1—ps.
This conditional probability distribution obviously satisfies the condition
YwX|j)=1 j=123. (20)
X

The dequantizer operators determining the distribution w(X | ) are the density operators
corresponding to the six normalized eigenvectors of the Pauli matrices 0y, &y, 0z, which
describe the spin projections X = +1/2 on the three axes [32]:
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. 1/1 1 . 1/1 -1
u(+1/2|1)=2(1 1), u(1/2|1):2<_1 1),
. 1 —i . 1 '
u<+1/z|z):2<} 1’), u(—1/2|2):2<_1i i) 1)
a(+1/2|3):((1) 8), H(—1/2|3):<8 ?)

Note that four of these dequantizers coincide with the dequantizers of the minimal set given
in Equation (12), namely, U(+1/2 | 1) = UM, G(+1/2]2) = U@, U(+1/2 | 3) = UO),
and U(—1/2]3) = U0W.

Applying the dequantizers in Equation (21), the conditional probabilities w (X | j) in
Equation (19) can be obtained as

. o . 1 .
w(X |j) =Te[pU(X | j)], X = ii’ j=1,23. (22)

These probabilities contain all information about the density operator of the qubit state.
For example, the matrix elements of the density matrix can be expressed by applying
Equations (17) and (19):

p11=w(+1/2]3),
o1 = (w(+1/2 1) —1/2) +i(w(+1/2 | 2) —1/2),
1o = (W(+1/2 1) —1/2) —i(w(+1/2 ] 2) —1/2),
P22 =w(—1/2]3).

(23)

o~ o~

The unitary transform of the spin state density operators, including the unitary time
evolution of the system, can be also treated in this probability representation [32].

3. Results

In this section we present our results on the probability representations for two- and
three-qubit cat states and also for cat states of an oscillating spin-1/2 particle.

3.1. Qubit Cat States

First, let us derive the probability representation of qubit even and odd cat states

0) =+ [1)

v = 7 (24)
in order to show how the method works. The corresponding density operator is
A 1
Peatn = [Wea) (Wearl = 5(10) (01 £ 10) (1] £ [1)(0] + [1)(1]) (25)

which can be expressed in the computational basis [0) = (), [1) = (9) as

1/1 +£1

+

pcat,l = E <i1 1 > (26)
+

The conditional probabilities w__, , (X | j) can be derived using Equations (21) and (22),
which leads to the values presented in Table 1.
The probabilities in Table 1 contain all information about qubit even and odd cat states.
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Table 1. The conditional probabilities w(X | j) obtained for qubit even and odd cat states.

X|j wja_lt,l(X | 7) Weat1 (X | )
+1/211 1 0
+1/212 0.5 0.5
+1/213 0.5 0.5
—-1/211 0 1
—-1/212 0.5 0.5
—-1/213 0.5 0.5

3.2. Two-Qubit Cat States

The even and odd cat states for two qubits can be defined as

00) &+ |11
o, = 2D ﬂ' ) 27)

Note that these two states correspond to two of the Bell states. The case of even cat states
for two qubits was also discussed in Ref. [32]. Note that these states are entangled states
that cannot be written in the form of the product of the states of two qubits. The density
operator corresponding to the two-qubit cat states can be written as

A 1
biis = | @2 ) (@] = 5 (1001001 £ (00) (11] + 11)(00] + 1111, (28)

Expressing the density matrix in the computational basis leads to

1 0 0 #1
110 0 0 O
+
pcat,Z = E 0 0 0 0 (29)
+1 0 0 1

Two-qubit states can be characterized by the conditional probability distribution
w(X,Y | j,k)with X,Y = +1/2and j, k = 1,2, 3 satisfying the normalization condition

;;w(x,y |j, k) =1 (30)

To obtain the components of this distribution, the dequantizer operators can be defined as
UX,Y|jk)=UX|j)eUu(y k), (31)

where X = +1/2,-1/2,Y = +1/2,-1/2,j = 1,2,3, k = 1,2,3. By applying these
dequantizers, the components of the conditional probability distribution w(X,Y | j, k) can
be obtained as

w(X,Y |jk)=Te[pU(X,Y | jk)]. (32)

Applying Equations (31) and (32) to the density operators pétlz of the even and odd cat
states for two qubits, one can obtain the conditional probability distributions w:rat,Z (X, Y|
jk) and w, ,(X,Y | j, k) presented in Tables Al and A2, respectively. It can be easily
verified that the components of the probability distributions in these tables satisfy the
normalization condition in Equation (30). The general formulae for obtaining the density
matrix of two-qubit states from the considered probability representation can be found
in Ref. [31]. We have also checked that the density operator in Equation (29) can be
reconstructed by using these formulae and the components of the derived probability
distribution displayed in Tables A1 and A2.
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Recall that the particular components of these distributions correspond to the probabil-
ities of the spin projection X = £1/2 for the first qubit and Y = £1/2 for the second qubit
onto the perpendicular x, y, and z directions. Hence, the zero conditional probabilities in
Tables A1 and A2 correspond to the spin-measurement outputs that cannot occur. In partic-
ular, measuring the spin in the z direction for both qubits the output cannot be opposite;
that is, the probabilities wétlz(—i—l/Z, —1/2|3,3) and wit’z(—l/Z, +1/2 3,3) are equal to
zero. These results can be easily understood as the two-qubit even and odd cat states are
defined in the computational bases of the two qubits determined by the eigenstates of the
spin measurements in the z direction, and both terms in these entangled states that are |00)
and |11) correspond to two-qubit states with identical spin. Measuring both spins in the x
direction (j = k = 1), the measurement results cannot be opposite (identical) for the two-
qubit even (odd) cat states, respectively. In contrast, measuring both spins in the y direction
(j = k = 2), the measurement results cannot be identical (opposite) for the two-qubit even
(odd) cat states, respectively. These latter findings cannot be easily deduced; they represent
the physical properties of the entanglement in the two-qubit even and odd cat state. To
elucidate this in more detail, we will compare the entangled probability distribution of the
pure even cat state with the probability distribution of the corresponding mixed states at
the end of the next section.

In the case of two qubits, the marginal conditional probability distributions @(X | j)
and @W(Y | k) concerning the states of the particular qubits can be calculated from the
two-qubit probability distribution as

D(X|j) = YwXY]jk), (33)
Y

w(Y k) = Y w(X,Y]|jk). (34)
X

These expressions are valid for any values of j and k. The components of the marginal
conditional probability distributions zbciat ,(X|j)and zbciat ,(Y | k) of two-qubit even and
odd cat states are displayed in Table 2.

Table 2. The components of the marginal conditional probability distributions ‘a?ciat 5(X | j)and

wét/z(Y | k) of two-qubit even and odd cat states shown in Equation (28).
; -+ . -
X | J orY | k wcat,Z(X | ]) wcat,Z(Y | k)
+1/2)1 0.5 0.5
+1/2|2 05 05
+1/2|3 0.5 0.5
-1/2]1 0.5 0.5
—1/2|2 0.5 0.5
-1/23 0.5 0.5
As shown in the table, the components of the marginal conditional probability distri-
bution zbétrz(X | j) are the same as wciat,z(y | k). Also, the components of the conditional

probability distributions are the same for even and odd cat states; that is, zb:;tlz = Wy, for
both particular qubits. The physical reason is that both probability distributions correspond
to the mixed state that can be obtained by taking the partial trace of the state (28) for any of
the qubits, that is,

N ~ . 0)(0] 4+ |1)(1
pF = Tnlpt,,) = Tfps, ) = 2O IDAL (35)

By comparing the results presented in Tables 1 and 2, one can deduce the difference between
the probability representation of the superposition state defined in Equation (24) and that
of the mixed state presented in Equation (35). Measuring the spin in any direction for
the mixed state, the probabilities of obtaining +1/2 or —1/2 are the same, that is, 0.5. In
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contrast, in Table 1, the probability of obtaining +1/2 is 1 for the qubit even cat state, and,
accordingly, it is O for the odd cat state, while the probabilities of obtaining —1/2 are 0 and
1 for the qubit even and odd cat states, respectively. This is due to the fact that the even cat
state is the eigenstate of the Pauli matrix oy corresponding to the spin projection onto the
x direction with the eigenvalue +1/2, while the odd cat state is the other eigenstate of o,
with the eigenvalue —1/2.

3.3. Three-Qubit Cat States

The concepts and procedure presented for one- and two-qubit states can be extended
to corresponding states of more than two qubits. For example, even and odd cat states for
three qubits can be defined as

000) £ [111
) = =1L ﬁ| i (36)

Note that the state "I’:;t 3> corresponds to the three-qubit Greenberger-Horne—Zeilinger

state (GHZ state). Also, the states of Equation (36) are entangled states that cannot be
written in the form of the product of the states of three qubits. The density operator
corresponding to these states are

. 1
s = “I’fat,3><‘1’$t,3‘ = (1000)(000]  [000) {111] = [111)(000] + [111){111]) ~ (37)

and the corresponding density matrix in the computational basis can be written as

0 +1

1

Pas = 7 (38)

[cNeNeNeoNoNel

S OO O O o oo
SO OO OO O oo
(o2 e R e B e B e B @ B @)

S OO O OO oo
S OO O O o oo
SO OO OO O oo
_ oo O O O oo

+1

Similarly to one- and two-qubit states, three-qubit states can be characterized by
the conditional probability distribution w(X,Y,Z | j, k1) with X,Y,Z = £1/2 and
j.k,1 =1,2,3 satisfying the normalization condition

Y Y Y wX Y, Z|jkl) =1 (39)
XY Z

To derive the components of this distribution, the following dequantizer operators can
be applied:

UX,Y,Z|jkl)=UX|j)oUlY|keU(Z|]), (40)
where X = +1/2,-1/2,Y = +1/2,-1/2,Z = +1/2,-1/2,j = 1,2,3, k = 1,2,3,
I =1,2,3. Applying these dequantizers, the components of the conditional probability
distribution w(X,Y, Z | j,k,1) can be defined as

w(X,Y,Z|jk1)=Te[pU(X,Y,Z|jk1)]. (41)

As an example, we calculate the conditional probability distribution w? ,(X,Y,Z | j, k1)

cat,3
for the even cat state ‘I’j;t’3> using Equations (40) and (41). Note that this involves 216 prob-
abilities; therefore, we present the results in six tables (Tables A3-A8) corresponding to

different pairs of the values of the parameters X and j. One can check that the components
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of the probability distribution wZ, 5(X,Y, Z | j,k,1) in these tables satisfy the normalization
condition in Equation (39).

In accordance with the two-qubit case, the zero conditional probabilities correspond
to the spin-measurement outputs that cannot occur. Similarly to the findings for the two-
qubit even and odd cat states, when measuring the spin in the z direction for all three
qubits (j = k = | = 3) or for any pairs of qubits (j =k =3 #1,j=1=3 # k, or
k =1 =3 #j), the measurement results should be identical; that is, only 100 conditional
probabilities corresponding to this criterion differ from zero, while 30 probabilities are
zero in Tables A3-A8. The physical reason for this observation is similar to the one in
the two-qubit case: both terms in the three-qubit entangled states, i.e., |000) and |111),
correspond to three-qubit states in the computational bases with identical spins in the
z-direction. The result of the measurement in this direction can be either +1/2 or —1/2 for
any of the spins; however, assuming one of the outputs the measurement of the other spins
can only lead to the same result according to the rules of quantum mechanics.

The other 16 zeros in the tables correspond to the following impossible measurement
outputs. First, when performing measurements in the x direction for all three qubits, the
measurement outputs cannot all be —1/2. Having a single —1/2 measurement result for
one of the qubits is also excluded. Second, performing measurements in the x direction for
one of the qubits and in the y direction for the other two qubits can yield two different results
depending on the outcome of the measurement in the x direction. If the outcome of the
measurement in the x direction is +1/2, then the outcomes of the other two measurements
can be either +1/2 or —1/2, but these outcomes are identical. If the outcome of the x-
measurement is —1/2, then the outcomes of the other two measurements are opposite.
These observations cannot be explained straightforwardly; they are special consequences
of the entanglement characterizing the three-qubit even cat state.

In the case of three qubits, the marginal conditional probability distributions @(X | f),
@(Y | k), and @(Z | I) concerning the particular qubits can be calculated from the three-
qubit probability distribution as follows:

o(X|j) = Y wXY,Z|jkl), (42)
Y,Z

oY k) = Y w(X,Y,Z]|jk]l), (43)
X,Z

w(Z|1) = Y wX,Y,Z|jk]l). (44)
XY

These expressions are valid for any values of j, k, and /. One can easily check that in the
case of even and odd cat states, the marginal conditional probability distributions &= a3 (X |
7), D Z.3(Y | k), and wcat 4(Z | 1) coincide with the marginal conditional probability
distributions shown in Table 2 for the case of two-qubit even and odd cat states; hence, they
correspond to the mixed state in Equation (35).

Note that in the case of three qubits, it is possible to define marginal conditional
probability distributions concerning any pairs of two qubits as

o(X, Y |jk) = Y wX,Y,Z|jk]l), (45)
Z

o(X,Z|j1) = Y wX)Y,Z|jk]l), (46)
Y

oY, Z k1) = Y wXY,Z]|jkl). (47)
X

These expressions are valid for any values of j, k, and [. As an example we show the com-
ponents of the marginal conditional probability distribution @7, 5(X, Y | j k) of three-qubit
even cat states in Table A9. Note that the marginal conditional probability distributions

Woes(X, Z | j,1) and @, 5(Y, Z | k,1) coincide with the marginal conditional probability
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distribution @, 5(X,Y | j, k). These probabilities correspond to the mixed state that can be
obtained by taking the partial trace of the state (37) for any of the qubits, that is,

A

b = Trilpk 5] = Talphs) = Trslo,s) = (48)

2

L 00 (00 + 1111

One can easily check that the components in Table A9 satisfy the normalization condition
in Equation (30). An unexpected property of this probability distribution is that, contrary
to the case of the single-mode mixed state (35), not all the elements take the same value of
0.25 as the marginal probabilities for j = k = 3 are 0.5 or 0. The zero values correspond to
the impossible events that the spin measurements in the z direction for the two qubits lead
to values with opposite signs; that is, obtaining +1/2 for the first qubit and —1/2 for the
second qubit (and vice versa) simultaneously is impossible. This is due to the absence of
the terms |01) (01| and |10) (10| in the mixed state of Equation (48).

Note that the two-qubit even cat state presented in Equation (27) is the superposition of
the two pure states |00) and |11), while the mixed state in Equation (48) is the superposition
of the two corresponding projectors |00) (00| and |11) (11|. By comparing their probability
distributions presented in Tables A1 and A9, one can deduce that the four zero-probabilities
appearing for the measurements along the x and y directions in Table Al but missing from
Table A9 distinguish the entangled state (27) from the mixed state (48).

3.4. Cat States of an Oscillating Spin-1/2 Particle

Finally, we consider even and odd cat states of an oscillating spin-1/2 particle. These
states are defined in the tensor product Hilbert space H = Hosc ® H1/2 and they read as

1
o) = 50 ©10) £ -a) © 1)) (49)
Obviously, these are entangled states; hence, they cannot be written as the product of a
spin-1/2 state and an oscillator state.

Using the dequantizer operator of continuous-variable quantum systems 6 (X1 — ug — vp)
and that of discrete-variable quantum systems U(Y | j), the density operator g of a state in
the Hilbert space H can be mapped onto the function w(X,Y | u,v,j) as

w(X,Y | wv,j)=Te[p6(XT—pg—vp)U(Y | j)]. (50)

Asw(X,Y | u,v,j) is a nonnegative conditional probability distribution function, it satisfies
the normalization condition:

/Zw(x,y | w,v,j)dX = 1. (51)
Y

To our knowledge, the probability representation of quantum states, which is a combination
of continuous and discrete probability distributions, has not been discussed in the literature.

The marginal conditional probability distributions @(Y | j) and @(X | u, v) determin-
ing the states of the spin and the oscillator, respectively, can be derived as

o(Yj) = [wXY|nvjdx, 52)

(X | ) = Y wXY]|pv,j). (53)
Y
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The density operators of the even and odd cat states of an oscillating spin-1/2 particle reads

ﬁ;t,l/z ‘I{étl/2><1{!;tl/2‘
= %(\IX)(“I@)|0><0|i|0<><—0¢|®|0><1|
E[—a) (af @ [1) (0] + [—a) (—a| @ [1)(1]). (54)

Using Equation (50), the conditional probability distribution wét 12(X,Y | u,v,j) of even
and odd cat states of an oscillating spin-1/2 particle can be written in the form

1 .
W1 (XY [ v, )) = ( Wiy o) (X | 1 v)wioy0) (Y | 1) £ W)y (o (X | 1, v)wioy ) (Y [ /)

(55)
W) gy (a (X | %V)w|1><o\(Y | ) + Wy (o) (X | v)wpy g (Y j))-

Note that the factors in the terms of this expression are not probability distributions in
themselves. The factors w|y) (1| (X | p, V) can be derived in the following way:

W)y (| (X | p,v) = Tr[|2a) (£a] 6(XT —pg —vp)]. (56)
Using the wavefunction of the coherent state,
1 2
Po(y) = =y exp<—+\[ocy laf® 0;) (57)

and Equation (8), the factors w|4) (1« (X | #,v) can be calculated as

W) (+a| = 271[v] 2/ exp (2 Re(a)2) /_ooexp<\@(ﬁ:uc)y 2) exp(zv - dy

v ) % (58)
x/ exp< V2(%a* )y—y) exp( ﬂly/ +Vy)dy
Applying this formula and using the integral expression
o0 1., . _ (2mi\? —iJ?
/ooexp<21ax +1]x)dx— (a> exp( oy ), (59)
we obtain
232X (uRe(a) + vIm(a)) — X>
wmw(X | ]/l,V) = Nexp (V ( 3 5 ( )) ’ (60)
I ue+v
[i23/2X (uIm(a) — vRe(a)) — X2
Wiy (—a) (X [ V) = Nexp Y. , (61)
[—i23/2X (3 Im(a) — vRe()) — X>
W_gy (X [ wv) = Nexp . , (62)
[ 232X (uRe(a) + vIm(a)) — X>
W|,“><,IX‘(X | ‘u,l/) = Nexp (y (2) 5 ( )) ’ (63)
L ]/l _'_1/
where
B 1 1 . —4yvlm(vc)Re(0c)+2v2(Re(¢x)2—Im(¢x)2)] (64)
T Vi A2 /mepaRe@)?) T GRa% |
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Next, we express the factors wjoyo|(Y | /), wioya)(Y | 1), wjryo (Y | 1), @iy (Y | ) in
Equation (55). These factors can be written as

wjoy0/ (Y | /) = Te([0) (O[T (Y | /), (65)
woy1 (Y | ) = Te(|0) (1|U(Y | /), (66)
winyo/(Y 1) = Te(|1)O[U(Y | /), (67)
Wiy (Y 17) = Te((D)A[AY 1)), (68)

where the dequantizer operators U(Y | j) are given in Equation (21). The results are given
in Table 3.

Table 3. The factors w‘0><0‘(Y | ]), w‘0><1‘(Y ‘ ]), w‘1><0‘(y ‘ ]), ZU|1><1|(Y | ]) appearing in the
conditional probability distribution w(X,Y | p,v,j) of even and odd cat states of an oscillating
spin-1/2 particle displayed in Equation (55). The rows of the table correspond to various pairs of the
parameters Y and j, while the values of the factors are presented in the columns.

Y|j woy (o) (Y | 7) woy 1) (Y | 7) wigy (o) (Y | 7) wigy 1 (Y | 7)
+1/2|1 0.5 0.5 0.5 0.5
+1/2]2 0.5 0.51 —0.51 0.5
+1/2| 3 1 0 0 0
-1/2|1 0.5 —0.5 —05 0.5
—1/2‘ 2 0.5 —0.51 0.51 0.5
~1/2|3 0 0 0 1

Recall that the factors presented in Table 3 are not probability distributions in them-
selves. As a consequence, negative or complex numbers occur in the table in the case of the
cross-factors w)gy 1 (Y | j) and wyyy o) (Y | j). The components of the conditional probability
distribution w(jfa £1/2
Equations (60)—(64).

Next, we determine the marginal conditional probability distributions wétat,l P (Y1)
defined in Equation (52). First, we calculate the integrals

(X,Y | u,v,j) can be calculated using the factors in Table 3 and in

[ @y (X |1 v)ax (©9)

by using Equations (60)-(63) and the integral expression (59). Next, by applying the factors
presented in Table 3, we obtain the components of the marginal conditional probability
distribution presented in Table 4.

Table 4. The components of the marginal conditional probability distribution wjat 1/2

and odd cat states of an oscillating spin-1/2 particle are shown in Equation (55).

(Y | ) of even

Y| @(Y | §)
+1/2[1 0.5[1:texp<—2|a|2>]
+1/2|2 0.5
+1/23 0.5
~1/2|1 0.5 [1 :Fexp(—2|a|2)]
~1/2]2 0.5
~1/2]3 0.5

Note that some components of the marginal conditional probability distribution
zb(j;tll ,2(Y | j) still contain the parameter a, but this dependence tends to zero as a« — 0.
In this limit, the coherent states |«) and |—a) become orthogonal to each other. Then, the
marginal conditional probability distribution zb(jfat,l (Y | j) corresponds to the mixed state
in Equation (35).
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Finally, we derive the marginal conditional probability distribution @, X )

using Equation (53). Using the factors presented in Equations (60)—(64) and in Table 3,
we obtain

- 1
©1/2(X | 1) = 5 (W (X | 1,0) + 0y 0y (X | 1,0))

1 1 —4pvIm(a) Re(a) + 2v?(Re(a)? — Im(a)?)
2/t 2ymwexp2Re(w)?)) o TR | (70)
232X (uRe(a) + vIm(a)) — X> —23/2X(uRe(a) + vIm(a)) — X?
2112 + exp 22 .

(exp

Note that these probability distributions are the same for even and odd cat states. These
probabilities correspond to the mixed state that can be obtained by taking the partial trace
of the state (49) for the state of the 1/2 spin; that is,

o= = TP ) (Fh|] = 5000l + ) (~a]). (71)

These mixed states are composed of two projectors on coherent states with the same
amplitudes but opposite signs with equal weights.

4. Conclusions

We have considered the probability representations of even and odd cat states of two
and three qubits. These states are even and odd superpositions of spin-1/2 eigenstates
corresponding to opposite directions along the z-axis for the particular qubits. They are
entangled states, and, in the case of two qubits, they correspond to two of the Bell states,
while for three qubits the even cat state is equal to the GHZ state. The components of the
derived probability distributions correspond to the probabilities of various spin projections
onto the opposite directions of the perpendicular x, y, and z axes for the particular qubit.
Accordingly, these components can be measured in experiments by repeated spin projection
measurements using a sufficiently large set of identically prepared states.

We have determined the values of the components of the entangled conditional prob-
ability distributions of two-qubit even and odd cat states and those of three-qubit even cat
states. We have also derived the components of the marginal conditional probability dis-
tributions concerning the states of the particular qubits for all these states. These marginal
probability distributions are the same for even and odd cat states, and they correspond to the
mixed state of a single qubit, which is composed as a sum of projectors on orthogonal spin
states with equal weights. We have also derived the components of the marginal conditional
probability distributions concerning any pairs of two qubits for the three-qubit even cat state.
These marginal probability distributions are the same for even and odd cat states, and they
correspond to the mixed state of two qubits, which is composed as a sum of projectors on
orthogonal spin states with equal weights for both qubits. We have analyzed the properties of
the entangled probability distributions of the considered cat states, and we have shown how
the entanglement appears in the components of the distributions. We have also discussed the
difference between the probability representation of two-qubit even cat state and that of the
two-qubit mixed states that can be obtained by taking the partial trace for any of the qubits
of the three-qubit even cat state. We have found that certain zero-valued components of the
distribution corresponding to the impossible spin-measurement outputs that appear in the
probability distribution of the entangled pure state but are not present in the distribution of
the mixed state can identify the entangled cat state.

Finally, we have considered the probability representation of even and odd cat states
of an oscillating spin-1/2 particle. We have introduced an entangled conditional probability
distribution with both a continuous and a discrete variable concerning the oscillator and
the spin-1/2 states, respectively. We have derived all the factors required to determine
the entangled conditional probability distributions describing the density matrices of
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even and odd cat states of an oscillating spin-1/2 particle. We have also defined the
marginal conditional probability distributions characterizing the state of either the spin
or the oscillator, and we have determined these distributions. The developed approach
to derive the probability representations of cat states of qubit systems can be generalized
for the case of qudit cat states (qutrits, ququarts); this provides the possibility to extend
the concept of entangled probability distributions that are not available in contemporary
probability theory.

Author Contributions: Conceptualization, M.M., P.A. and M.A.M.; methodology, validation, M.A.M.
and V.I.M.; investigation, writing—original draft preparation, M.M. and P.A_; writing—review and
editing, M.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research, Development and Innovation
Office, Hungary (“Frontline” Research Excellence Programme Grant No. KKP133827, and Grant Nos.
TKP2021-NVA-04 and TKP2021-EGA-17).

Data Availability Statement: Data underlying the results presented in this paper are not publicly
available at this time but may be obtained from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

In the Appendix , we present the conditional probability distributions determined
for even and odd cat states for two qubits and for even cat states for three qubits, and
the marginal conditional probability distribution is determined for the three-qubit even
cat state.

First, we present the components of the conditional probability distributions

wét’Z(X, Y | j, k) of the even and odd cat states for two qubits ’(Dciat,2>'

Table A1. Components of the conditional probability distribution w}, ,(X,Y | j, k) of the even cat

state for two qubits (@, 2>. The rows of the table correspond to various pairs of the parameters X
and j, while the columns of the table correspond to various pairs of the parameters Y and k.

~ — [ [3) — ~ [3)

~ = s s o s o

— — — — — —

X|j + + + | | |
+1/2 | 1 0.5 0.25 0.25 0 0.25 0.25
+1/2 | 2 0.25 0 0.25 0.25 0.5 0.25
+1/2|3 0.25 0.25 0.5 0.25 0.25 0
-1/2|1 0 0.25 0.25 0.5 0.25 0.25
—-1/2 | 2 0.25 0.5 0.25 0.25 0 0.25
—-1/2 | 3 0.25 0.25 0 0.25 0.25 0.5

Table A2. Components of the conditional probability distribution w_,»(X,Y | j, k) of the odd cat

state for two qubits ‘CD cat 2>. The rows of the table correspond to various pairs of the parameters X
and j, while the columns of the table correspond to various pairs of the parameters Y and k.

~ — [ [3) — ~ [3)

= o o o o o o

— — — — — —

X|j + + + | | |
+1 /2|1 0 0.25 0.25 0.5 0.25 0.25
+1 /2|2 0.25 0.5 0.25 0.25 0 0.25

+1/2|3 0.25 0.25 0.5 0.25 0.25 0
-1/211 0.5 0.25 0.25 0 0.25 0.25
-1/2|2 0.25 0 0.25 0.25 0.5 0.25

-1/2|3 0.25 0.25 0 0.25 0.25 0.5
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In Tables A3-A8, we show the components of the conditional probability distribution

w:;w(X, Y,Z | j, k1) of the even cat states for three qubits "Y:;tﬁ

Table A3. Components of the conditional probability distribution w

cat state for three qubits

pairs of the parameters Y and k, while the columns of the table correspond to various pairs of the

parameters Z and I.

+
cat,3

(X,Y,Z|j,k1) of the even

‘I’gt,3> for X = +1/2and j = 1. The rows of the table correspond to various

~ i [9\] [<p) Ll [9\] o

N « o o o o o

Y|k ¥ in in T 7 7
17201 025 0125 0.125 0 0125 0.125
+1/2]2 0.125 0125  0.125 025 0.125

+1/2]3 0125  0.125 025 0125  0.125 0
~1/201 0 0125  0.125 025 0125  0.125
~1/2]2 0.125 025 0125  0.125 0 0.125
~1/23 0125  0.125 0 0125  0.125 025

Table A4. Components of the conditional probability distribution wjatﬁ (X,Y,Z|j,k1) of the even

cat state for three qubits

pairs of the parameters Y and k, while the columns of the table correspond to various pairs of the

parameters Z and I.

T$t,3> for X = +1/2and j = 2. The rows of the table correspond to various

~ i [9\] [<p) Ll [s\] [$p)

N o o o o o o

Al Al i i i i

Y| k i + + | | |

+1/2]1 0.125 0 0.125 0.125 0.25 0.125
+1/2)2 0.125 0.125 0.25 0.125 0.125

+1/2|3 0.125 0.125 0.25 0.125 0.125 0
-1/2]1 0.125 0.25 0.125 0.125 0 0.125
-1/2|2 0.25 0.125 0.125 0 0.125 0.125
-1/2|3 0.125 0.125 0 0.125 0.125 0.25

Table A5. Components of the conditional probability distribution w
|‘I’+ ) for X = 4+1/2and j = 3. The rows of the table correspond to various

cat state for three qubits

pairs of the parameters Y and k, while the columns of the table correspond to various pairs of the

parameters Z and [.

cat.3

+

cat,3

(X,Y,Z|j,k1) of the even

~ Ll [V} [<p) i [9\] [<p)

N o o o o o o

Y|k T i ¥ T T T
+1/21 0.125 0.125 025 0.125 0.125 0
+1/22 0.125 0.125 025 0.125 0.125 0
+1/2)3 025 025 05 025 025 0
~1/2)1 0.125 0.125 025 0.125 0.125 0
~1/22 0.125 0.125 025 0.125 0.125 0
~1/2)3 0 0 0 0 0 0
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Table A6. Components of the conditional probability distribution wjats (X,Y,Z|j,k1) of the even

cat state for three qubits ‘I’;;t 3> for X = —1/2and j = 1. The rows of the table correspond to various

pairs of the parameters Y and k, while the columns of the table correspond to various pairs of the
parameters Z and I.

~ i [9\] [<p) Ll [9\] o)

N 5 a o o o o

Al - v v Al Ll

Y|k i i i | | |

+1/2]1 0 0.125 0.125 0.25 0.125 0.125
+1/2|2 0.125 0.25 0.125 0.125 0 0.125

+1/2|3 0.125 0.125 0.25 0.125 0.125 0
-1/2]1 0.25 0.125 0.125 0 0.125 0.125
-1 /2|2 0.125 0 0.125 0.125 0.25 0.125
-1/2|3 0.125 0.125 0 0.125 0.125 0.25

Table A7. Components of the conditional probability distribution wjats (X,Y,Z|j,k1) of the even

cat state for three qubits

‘I’;;t 3> for X = —1/2and j = 2. The rows of the table correspond to various
pairs of the parameters Y and k, while the columns of the table correspond to various pairs of the
parameters Z and I.

~ v [9\] [<p) Ll [s\] [$p)

N o o o o o o

Y|k i ¥ ¥ T 7 T
+1/21 0.125 025 0125 0125 0 0.125
+1/22 025 0125 0125 0 0125 0125

+1/2)3 0125 0125 025 0125 0125 0
~1/21 0.125 0 0125 0125 025 0.125
—1/22 0 0125 0125 025 0125 0125
~1/23 0125 0125 0 0125 0125 025

Table A8. Components of the conditional probability distribution wjats (X,Y,Z|j,k1) of the even

cat state for three qubits

‘I’;;t 3> for X = —1/2and j = 3. The rows of the table correspond to various
pairs of the parameters Y and k, while the columns of the table correspond to various pairs of the
parameters Z and I.

= = N ® — N )
N o a o a a a

Y |k ¥ - - T i i
+1/2|1 0.125 0.125 0 0.125 0.125 0.25
+1/2|2 0.125 0.125 0 0.125 0.125 0.25

+1/2|3 0 0 0 0 0 0
-1/211 0.125 0.125 0 0.125 0.125 0.25
-1/2)2 0.125 0.125 0 0.125 0.125 0.25
-1/2|3 0.25 0.25 0 0.25 0.25 0.5

Finally, we present the components of the marginal conditional probability distribution
Wiy 3(X, Y | j,k) of the three-qubit even cat state “I’;t,3>.
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Table A9. Components of the marginal conditional probability distribution zbé;ts (X,Y | j, k) of the

+

three-qubit even cat state )‘I’ > shown in Equation (36).

cat,3

= — S ) = QY ©

~ Q Q a Q S S

— — — — — —

X|j + i ¥ | | |
+1/2|1 0.25 0.25 0.25 0.25 0.25 0.25
+1/2|2 0.25 0.25 0.25 0.25 0.25 0.25

+1/2|3 0.25 0.25 0.5 0.25 0.25 0
-1/2]1 0.25 0.25 0.25 0.25 0.25 0.25
-1/2J2 0.25 0.25 0.25 0.25 0.25 0.25
-1/2|3 0.25 0.25 0 0.25 0.25 0.5
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