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ABSTRACT

The fundamental understanding of the behavior of many-body quantum systems
has long been a source of scientifc fascination. These systems have many parti-
cles and their interactions are quite intricate, so they are frequently referred to as
complex quantum systems. In recent years, there has been a revival in the interest
for basic dynamical phenomena, such as chaos and thermalization, in these phys-
ical systems. The reason is twofold: frst, unraveling new, exotic phases of matter
offers incredibly interesting possibilities allowing us to push the boundaries of
physics; second, simulating and controlling complex quantum systems has never
been easier than it is today, when a plethora of quantum technologies platforms
make it possible to test our physical theories and discover new physics otherwise
not easily accessible.

Generally speaking, complex quantum systems are expected to develop chaos.
Far from being a mathematical inconvenience, chaos acts as a powerful catalyst
for thermal behavior: letting the system relax for suffciently long times will lead
to equilibration, and the equilibrium values of physically relevant observables are
then described by thermal ensembles of statistical mechanics. The focus of this
thesis, however, is on the many effects that may cause a complex system to deviate
from thermalization, or even never actually reach it. The main suspects are three:
integrability, many-body localization, and certain forms of symmetry-breaking and
phase transitions. The problem of localization in systems of many particles has at-
tracted a lot of attention and many fundamental questions are still under debate;
even its very existence in the macroscopic world, the thermodynamic limit, is un-
der scrutiny. All in all, many-body localization has been described as an exotic
form of integrability. In comparison, phase transitions constitute a much older
topic. Phase transitions mean a sudden response of a system under variation of
some of its control parameters, in such a way that certain of its observable proper-
ties behave non-analytically in the thermodynamic limit. These abrupt variations
of the system’s behavior are in many cases due to symmetry-breaking. Thermaliza-
tion can also be hampered in symmetry-broken phases, where equilibrium states
do not satisfy a global Hamiltonian symmetry. Although these states do frequently
equilibrate, these equilibrium values cannot be well described by standard thermal
averages.
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We are determined to provide some answers to these questions in this thesis,
which is organized as follows:

Chapter 1 provides a general introduction to the several topics of this thesis. We
have intended to maintain a pedagogical but rigorous style, in the hopes that it
may successfully pass on the knowledge to younger (and older!) generations.

Chapter 2 opens up the results part of this thesis. Here we report on our analysis
of the many-body localization transition in nearest and next-to-nearest neighbors
spin chains. We address the existence of the many-body localized phase and pro-
pose a mechanism driving the transition. Our arguments are based on the random
matrix theory and the eigenstate thermalization hypothesis.

Chapter 3 deals with the description of equilibrium states in systems with Z2 

symmetry-breaking. The symmetry-breaking that we consider is caused by dif-
ferent forms of phase transitions, like ground-state and excited-state quantum
phase transitions. We propose a generalization of the canonical and microcanon-
ical thermal ensembles describing the asymptotic effective equilibrium values of
observables in these systems. This is accomplished by the identifcation of a set
of emergent conserved quantum operators in the symmetry-broken phases. We
apply this theoretical framework to the problem of dynamical phase transitions,
and consider equilibrium states in energy cat states, where the mean energy of a
non-equilibrium state is not a well-defned quantity. In all of these cases, the usual
arguments of the eigenstate thermalization hypothesis fail.

Chapter 4 presents our results on a deformed version of the quantum optical
Dicke model. The deformation term added to the usual Hamiltonian is responsi-
ble for the appearance of two asymmetric, disconnected wells. As a consequence,
the development of chaos becomes non-trivial, with the signatures of both classi-
cal and quantum chaos decoupling in these two wells. We start with a theoretical
study of chaos in this system, where we employ Lyapunov exponents, spectral
statistics, and Peres lattices. Then, we present an experimental realization of the
model on a biparametric electronic platform, obtaining excellent agreement be-
tween theoretical and experimental results.

Finally, in Chapter 5 we gather the main conclusions of this thesis.



RESUMEN

La comprensión a nivel fundamental del comportamiento de los sistemas cuánti-
cos de muchos cuerpos ha sido tradicionalmente una fuente de gran fascinación
científca. Estos sistemas tienen muchas partículas y sus interacciones son alta-
mente no triviales, de modo que frecuentemente se les llama sistemas cuánticos
complejos. Recientemente, ha habido un renacimiento en el interés por fenómenos
dinámicos básicos, como el caos y la termalización, en estos sistemas. La razón es
doble: por un lado, el descubrimiento de nuevas fases exóticas de la materia ofrece
posibilidades increíblemente interesantes que nos permiten ampliar los límites del
conocimiento en física; por otro lado, la simulación y el control de los sistemas
cuánticos complejos nunca ha sido tan fácil como lo es hoy en día, cuando tenemos
a nuestra disposición una inmensidad de plataformas basadas en tecnologías cuán-
ticas que hacen posible poner a prueba nuestras teorías físicas y también descubrir
nueva física difícilmente accesible sin estos instrumentos.

En general, los sistemas cuánticos complejos desarrollan caos. Lejos de ser una
inconveniencia matemática, el caos actúa como un fuerte catalizador del compor-
tamiento térmico: si dejamos que el sistema relaje durante tiempos sufcientemente
largos, alcanzará el equilibrio, y los valores de observables físicamente relevantes
en estados de equilibrio estarán entonces descritos por colectividades térmicas de
mecánica estadística. Sin embargo, está tesis está centrada en los variados efectos
que pueden hacer que un sistema complejo se desvíe de la termalización, o quizás
no la alcance nunca. Los principales sospechosos son tres: la integrabilidad, la
localización de muchos cuerpos, y ciertas formas de ruptura de simetría y transi-
ciones de fase. El problema de la localización en sistemas de muchas partículas
ha atraído mucha atención y muchos interrogantes fundamentales siguen estando
bajo debate; incluso su misma existencia en el mundo macroscópico, el límite ter-
modinámico, está siendo cuestionada. Con todo, la localización de muchos cuer-
pos se ha descrito como una forma exótica de integrabilidad. En comparación,
las transiciones de fase constituyen un tema mucho más antiguo. Una transición
de fase se manifesta a través de una respuesta de un sistema a variaciones de
sus parámetros de control, de forma que algunas de sus propiedades medibles se
comportan de forma no analítica en el límite termodinámico. Estas variaciones
abruptas en el comportamiento del sistema están debidas en muchos casos a una
ruptura de simetría. La termalización puede verse comprometida en fases con
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simetría rota, donde los estados de equilibrio no satisfacen una simetría global del
Hamiltoniano. Aunque estos estados frecuentemente equilibran, estos valores de
equilibrio no se describen por promedios térmicos estándar.

Nuestra intención es proporcionar algunas respuestas a estas preguntas en esta
tesis, que está organizada como sigue:

El Capítulo 1 proporciona una introducción general a los diversos temas de
esta tesis. Hemos procurado mantener un estilo pedagógico pero riguroso, con la
esperanza de que pueda transmitir el conocimiento a generaciones más jóvenes (¡y
también mayores!).

El Capítulo 2 abre la parte de resultados de esta tesis. Aquí presentamos nue-
stros análisis de la transición a la localización de muchos cuerpos en cadenas de
espín con interacciones a primeros y segundos vecinos. Abordamos la existencia
de la fase de localización de muchos cuerpos y proponemos un mecanismo re-
sponsable para ella. Nuestros argumentos están basados en la teoría de matrices
aleatorias y en la hipótesis de termalización de autoestados.

El Capítulo 3 trata de la descripción de estados de equilibrio en sistemas con
ruptura de simetría Z2. La ruptura de simetría que consideramos está causada
por distintas formas de transiciones de fase, como transiciones de fase de estado
fundamental y de estados excitados. Proponemos una generalización de las colec-
tividades canónica y microcanónica para describir los valores de equilibrio efec-
tivo en estos sistemas. A tal efecto, identifcamos un conjunto de constantes del
movimiento emergentes en fases con ruptura de simetría. Aplicamos este marco
teórico al problema de las transiciones de fase dinámicas, y consideramos los esta-
dos de equilibrio en estados energéticos de tipo gato, donde la energía promedio
de un estado fuera del equilibrio no es una cantidad bien defnida. En todos es-
tos casos, los argumentos usuales de la hipótesis de termalización de autoestados
resultan inválidos.

El Capítulo 4 presenta nuestros resultados sobre una versión deformada del
modelo de Dicke de óptica cuántica. El término de deformación añadido al Hamil-
toniano usual es responsable de la aparición de dos pozos simétricos y desconecta-
dos. Como consecuencia, el desarrollo del caos se vuelve no trivial, y las trazas del
caos clásico y cuántico se desacoplan en estos dos pozos. Empezamos con un estu-
dio teórico del caos en el sistema, en el que empleamos exponentes de Lyapunov,
estadística espectral y redes de Peres. Después, presentamos una realización ex-
perimental del modelo en una plataforma electrónica biparamétrica, obteniendo
excelente acuerdo entre resultados teóricos y experimentales.

Finalmente, en el Capítulo 5 reunimos las principales conclusiones de esta tesis.
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1 INTRODUCT ION

In this Chapter we present a comprehensive introduction to the main topics of this
thesis. In Sec. 1.1 we review the overarching theme of thermalization in closed
systems; the frst part of this section, Sec. 1.1.1, is devoted to thermalization in
classical systems, whereas the transition to the quantum world is carried out in
Sec. 1.1.2. Next, we delve into one of the main mechanisms for thermalization,
chaotic dynamics, in Sec. 1.2. We again begin with a brief introduction to chaos
in classical Hamiltonian systems in Sec. 1.2.1, while the meaning of chaos in the
quantum world and how to observe its traces is explained in Sec. 1.2.2. Some
formal connections between the eigenstate thermalization hypothesis (EHT) and
the random matrix theory (RMT) are reviewed in Sec. 1.2.3. Finally, in Sec. 1.3 we
tackle some of the most notable exceptions to thermal behavior in complex many-
body systems: integrability, in Sec. 1.3.1, many-body localization, in Sec. 1.3.2, and
symmetry-breaking and phase transitions of diverse nature, in Sec. 1.3.3.

1.1 thermalization in closed systems 

It is to be suspected that thermalization is justifed differently in the classical and
quantum worlds. Yet, it is reassuring that the general grounds on which this phe-
nomenon rests are paralleled in both frameworks. Loosely speaking, thermaliza-
tion relies on the hypothesis that the motion of the system is suffciently complex,
disorganized, chaotic. The detail-oriented reader will be glad to fnd a bit more
specifc explanations in subsequent parts of this thesis. For this reason, it is natu-
ral that integrability, associated with an extensive number of constants of motion
constraining the dynamics, making it predictable and easily solvable, is one of the
biggest enemies of thermalizing behavior, and perhaps the best well known. Ther-
malization is tightly tied to the loss of information about the initial state where
one chooses to prepare a physical system. A common working defnition for this
process in isolated quantum systems, which we adopt in this thesis, is the follow-
ing:
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Thermalization.– We say that a system thermalizes if, for suffciently long times,
the dynamical evolution relaxes to the microcanonical prediction and remains close
to it at most later times [1], [2].

In this defnition there is an implicit link between the microscopic and macro-
scopic properties of the system under consideration. In any physical system, the
dynamical evolution depends on the initial condition, as this is the confguration
from where the system departs. Yet, the microcanonical prediction refers to cer-
tain statistical, macroscopic features where the microscopic details no longer play
a relevant role. For this reason, it is sometimes said that thermalization helps us to
understand how the macroscopic reality emerges from microscopic laws. In par-
ticular, the thermalization process is at the heart of a solid foundation of statistical
mechanics.

Although the goal of this thesis is not to understand thermalization on the clas-
sical level, we posit that the macroscopic reality is a good place to start from, as is
often the case.

1.1.1 Thermalization in classical systems

In our journey, we frst visit the part of the material reality that we are most used
to: the macroscopic world, governed by the laws of classical mechanics [3], [4].
Most daily-life physical objects do not seem to change over time, unless they are
subjected to some kind of external force or interaction. Their macroscopic state
appears to be well defned and static. Why does a stone not depend on the partic-
ular confguration that its internal degrees of freedom, assumed to be point-like in
classical mechanics, as they evolve in time? It is because the system has reached
thermal equilibrium.

In classical mechanics the quantities that we can measure are mathematically
referred to as dynamical functions. To make contact with quantum mechanics in
later sections of this thesis, we will refer to these dynamical functions as observables,
O(q, p). These depend on certain continuous variables that are defned on a real
set called the phase space, M. For the sake of simplicity, we will concentrate on
canonical position and momentum. The state of the system of f degrees of freedom
is then completely specifed by indicating the full confguration of 2f variables
(q, p) ≡ (q1, . . . , qf , p1, . . . , pf ) ∈ M. The details of the system are encoded in its
Hamiltonian, H(q, p). One nice aspect of classical mechanics is that it allows us
to determine simultaneously position and momentum, and so one can think of
the system dynamics as a trajectory in phase space. Given an initial confguration,
(q(0), p(0)), the future state of the system, (q(t), p(t)), is completely set on stone,



as the time evolution is mathematically given by the Hamilton equations of motion,
which are of course deterministic:

dq ∂H(q, p) dp ∂H(q, p) 
= , = − , (1)

dt ∂p dt ∂q 

subjected to the conditions that q(t = 0) = q(0) and p(t = 0) = p(0). In phase
space, the time-evolving trajectory will reside on a constant-energy surface com-
patible with the system’s constraints,

SE ≡ {(q, p) ∈ M ⊆ R2f / H(q, p) = E}. (2)

Say, then, that we wish to compute the time average of our observable O(t) 
over the time interval [0, τ ]. Our hope is that we can eventually take the limit
τ → ∞, and we can associate this time-independent long-time average, O, with the
equilibrium state reached by the system after it has relaxed,

Z τ1 hOi ≡ lim dt O(t). (3)
τ→∞ τ 0 

In principle, the transient short-time dynamics of O(t) is immaterial to us, as we
are only interested in its infnite-time behavior. But why should we have to wait
for infnitely long times? The physical justifcation of (3) is that normally a macro-
scopic measurement implies a long microscopic time, and if the classical trajecto-
ries explore all available phase space in an erratic way (see below), then the value
provided by a measuring apparatus will essentially coincide with (3), which, of
course, is a mathematical idealization of this process. According to (3), we only
need to obtain the instantaneous values of the confguration variables, (q(t), p(t)),
given by (1), and then integrate the corresponding observable accordingly. Un-
fortunately, this is easier said than done. Classical mechanics can sometimes be
merciless, and there is no guarantee that such a potentially complicated system
of differential equations as (1) can be easily solved, let alone integrate (3). Think,
for example, of solid state systems typically representing the material reality with
reasonable accuracy. Do we realistically expect to solve a system of ∼ 1023 (the
Avogadro number) coupled differential equations?! This approach is simply too
naive, and unfortunately we must abandon, as it will not be useful except in the
case of very simple, schematic systems.

Is there a way to circumvent this brute-force method? The answer is: ‘yes, if the
system is ergodic’. Ergodicity is profound physical phenomenon closely connected
to, but not implying, chaoticity (see next section for more details). A rigorous
defnition for ergodicity requires certain mathematical apparatus that we have de-
cided to exclude from this thesis. Yet, broadly speaking [5], its meaning can be
summarized as follows:
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Ergodicity.– In an ergodic system, the trajectory of the system will get arbitrarily
close to every point on the constant energy surface, SE , as it evolves during a
suffciently long time.

Ergodicity is quite a strong condition for a physical system to exhibit. Albeit
quite simplistic, there are some paradigmatic models where full ergodicity has
been proved. Among these we fnd the so-called Sinai billiards [6]–[8], which
consist of gases composed of hard spheres constrained to a certain geometrical
volume with periodic boundary conditions, and also the Bunimovich stadium [9],
in which a single particle is allowed to move freely in a two-dimensional surface
resembling a stadium with hard walls that are circular on the sides but straight in
the middle.

In addition to this notion, Liouville’s theorem [3] (as formulated in the context
of dynamical systems) teaches us that the decisive factor for how much time the
system will spend within a certain region of phase space is the volume of such
subset of phase space; in other words, equal volumes in phase space are associated
to equal times spent by the system in that region of phase space. If we also assume
the system to be ergodic, this means that the system will cover uniformly each of
the subsets where it spends a certain amount of time. Therefore, the long-time
average of our observable O(t) can be computed exactly as in the microcanonical
ensemble of equilibrium statistical mechanics [5], hOiME, i.e.,

R 
df q df p O(q, p) 

hOi = SE ≡ hOiME, (4)V(SE ) 

where V(SE ) = 
R 

df q df p is the 2f -dimensional volume of the constant energySE 
surface (2). Experience shows that calculating the microcanonical average in (4)
tends to be easier than the long-time average in (3).

Equation (4) establishes a fundamentally striking consequence: if the system is
fully ergodic, the equilibrium long-time average, which is a dynamical entity coming di-
rectly from the equations of motion, coincides exactly with the predictions of the micro-
canonical ensemble, which is a thermodynamic object. When this happens, we say that
the system has thermalized, because its equilibrium value can be captured by a ther-
modynamic description. Equation (4) also helps us to comprehend why the micro-
scopic details of the initial confguration do not play a role once the system has
thermalized: many initial confgurations can potentially lead to the same thermal-
ized state. This is the core of the thermalization process of classical systems and,
as we will see later on, it nicely connects with that of quantum systems. The equiv-
alence of long-time averages and microcanonical averages is commonly termed
the ergodic hypothesis, a primitive form of which was invoked by Boltzmann al-
ready in 1898 in order to prove energy equipartition in his kinetic theory of gases



[10]. The ergodic hypothesis is generally believed to apply to most interacting
systems, but there are some important exceptions of integrable or near-integrable
interacting systems that do not thermalize. A famous example is the Fermi-Pasta-
Ulam-Tsingou (FPUT) experiment, in which the behavior of a string of anharmonic
oscillators was numerically investigated. The FPUT experiment was pioneering in
that it showed that complex interacting systems do not necessarily exhibit a ran-
dom or disorganized pattern, but that they can also exhibit quasi-periodic behavior
common to integrable systems, eluding thermalization. In passing we note that the
FPUT experiment has a well-deserved fame for highlighting the usefulness of us-
ing computer simulations as a tool to discover new physics, and it was the seed of
a whole new feld of research: nonlinear dynamics. The FPUT report was never
published in a scientifc journal [11].

One can intuitively grasp why in the case of integrable systems (which will
be discussed in more detail in subsequent sections) thermalization, as defned
above, does not take place in general. Due to their extensive number of constants
of motion, the classical trajectories do not fully cover the entire available phase
space defned by total energy conservation; instead, the integrals of motion impose
geometrical constraints for the confguration variables (q, p) so that the motion
does not take place in SE but, possibly, in a subset of it, and in such a way that
not all states entering the average (4) are equivalent in the probabilistic sense. By
contrast, chaotic dynamics, as we will discuss later, can be understood as a strong
catalyst for thermalization.

1.1.2 Thermalization in quantum systems

That unitary dynamics of closed quantum systems may also allow a system to
thermalize may come as a surprise, especially since there are no true equilibrium
states unless dissipation is induced, for example, by connecting the system to an
external bath.

In quantum mechanics, physically measurable quantities are represented by Her-
mitian operators, and the microscopic details of a given system are encoded in its
quantum Hamiltonian, Ĥ . The Hamiltonian is itself Hermitian, and therefore it can
be diagonalized (we are only concerned with fnite-dimensional Hilbert spaces). To
fx notation, focusing on fnite-dimensional Hamiltonians which will be the main
focus of this work, Hamiltonian eigenvalues (or eigenenergies, or energy levels)
will be generically denoted by En, where n ∈ N is their level number index, while
the corresponding eigenvectors (or eigenstates) are |Eni. They verify the eigen-
value equation Ĥ |Eni = En |Eni, ∀n ∈ N. In this thesis, we will always use the
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hat notation to remind ourselves that we are dealing with an operator, Ô, instead
of a function, O(x), or a scalar, O. Additionally, the states that a quantum system
may assume are represented by a wavefunction in a Hilbert space, |ψi ∈ H.

On a mathematical level, the building blocks of quantum dynamics are com-
pletely different than those of classical mechanics. For instance, the quantum
uncertainty principle means that there exist no state |ψi for which the position
and momentum are well defned simultaneously, as their respective deviations are
bound by the relation ΔpΔq ≥ h̄/2. This fundamental principle applies to any
pair of non-commuting quantum operators, which are often referred to as ‘incom-
patible operators’. For this reason, formally speaking, there is no exact quantum
analogue of the classical phase space, as there are no trajectories, at least in the clas-
sical sense. Suppose we prepare our quantum system in an initial state given by
|ψ(0)i. For the most part, we will not be concerned with time-dependent Hamil-
tonians in this thesis. For time-independent Hamiltonians, the state |ψ(0)i will
evolve in time according to the iconic Schrödinger equation,

i h̄ 
d |ψ(t)i = Ĥ |ψ(t)i , (5)
dt 

subjected to |ψ(t = 0)i = |ψ(0)i, whose solution affords the instantaneous state of
the quantum system and is of course given by

−iHtˆ /¯ 
X −iEnt/¯ |ψ(t)i = e h |ψ(0)i = cne h |Eni , t ∈ R, (6)
n 

where cn ≡ hEn|ψ(0)i ∈ C are the expansion coeffcients of the initial state |ψ(0)i 
in the Hamiltonian eigenbasis. Here, Ĥ |Eni = En |Eni. The complexity of the
time evolution (6) is largely dependent on the number of non-zero cn. From now
onward, we set h̄ = 1. The instantaneous expectation value of an arbitrary observ-
able Ô will be denoted as

hÔ(t)i ≡ hψ(t)| Ô |ψ(t)i . (7)

The simplest initial state that we can think of is possibly a single eigenstate of
Ĥ , |ψ(0)i = |Eni. Such states are uninteresting from a dynamical point of view
because they are stationary, namely the Schrödinger equation will only make them
acquire complex phases and, by virtue of the orthonormality of the Hamiltonian
eigenbasis, hEn|Emi = δnm, the expectation value of any observable is stuck in its
initial value, hÔ(t)i = hÔ(0)i. In order to study non-trivial dynamics, the initial
state |ψ(0)i can be, for example, an arbitrary pure state, whose decompositionP P 
in the eigenbasis of Ĥ is |ψ(0)i = cn |Eni, where |cn|2 = 1. Later on wen n 
will comment on another common way to generate out-of-equilibrium dynamics
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from initial states that are linear superpositions of a Hamiltonian eigenstates that
is widely used in experiments: the quantum quench. Inserting (6) into (7), the
most general expression for the expectation value of an observable Ô is

X ∗ hÔ(t)i = cncme −i(En−Em)tOmn 
n,m X X (8)∗ = |cn|2Onn + cncme −i(En−Em)tOmn, 
n n6=m 

where we have abbreviated the expectation value of Ô in the eigenstates of the
Hamiltonian as Omn ≡ hEm| Ô |Eni. The elements Onn are called diagonal expecta-
tion values, while the Omn are referred to as off-diagonal, for obvious reasons.

What is the long-time average of this instantaneous expectation value? Does it
coincide with the predictions of a thermal statistical ensemble, as we previously
noted for the case of classical dynamics? First of all, the fate of (8) depends on
whether the quantum Hamiltonian exhibits degeneracies, i.e., if there exist n 6= m 
such that En = Em. For the moment, let us assume that no such degeneracies
are found in the system’s spectrum. After that, we will consider the degenerate
scenario.

Non-degenerate spectrum.– After some relaxation time where the system may
exhibit non-generic behavior, the sum of off-diagonal terms in (8) eventually aver-
ages out to zero, and the long-time average of (8) is given by

Z τ X 
h ˆ 1 
Oi ≡ lim dt hÔ(t)i = |cn|2Onn. (9)

τ→∞ τ 0 n 

In 2008, Reimann showed rigorously [12] that, under experimentally realistic con-
ditions, (9) is a good equilibrium state because the excursions of the real-time dy-
namics hÔ(t)i from hÔi are exceedingly rare, and that for most times the difference
hÔ(t)i − hÔi is below the instrumental resolution limit of any observable that

may be experimentally monitored. The particularly simple expression (9) shows
that, in the absence of degeneracies, the long-time dynamics are primarily controlled
by the population coeffcients cn. Since the information about the initial state is
stored in these coeffcients, in general different initial states will attain different
equilibrium values. This constitutes a marked difference with respect to classical
thermalization, where the details of the initial state are completely erased by the
time evolution if the system thermalizes. It is important to emphasize that what
(9) is suggesting somehow is that thermalization should not happen in the quantum
world! This is terrible for a quantum-classical correspondence and it contradicts
all we know about classical mechanics emerging from quantum mechanics in the
limit h̄ → 0. Luckily, not all hope is lost: we will see that thermalization in quan-
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tum mechanics is best understood as a statistical phenomenon, manifesting in the
limit of large number of particles, N .

Statistical physics teaches us that, due to quantum energy levels being quantized,
the quantum mechanical counterpart of the classical microcanonical average (4) at
macroscopic energy E is

1 h ÔiME ≡ N 
X 

Onn, (10)
En∈[E−ΔE/2,E+ΔE/2] 

where the summation is performed over a large number states, N � 1, whose
associated eigenvalues are contained in the energy shell ΔE. In the case of, e.g.,
generic many-body quantum systems, the mean distance between neighboring
levels (the level spacing) typically decreases exponentially with N , and thus a small
energy window ΔE contains a huge number of states. In other class of systems
where this distance does not decrease so fast, we need to make sure that ΔE 
contains a reasonable number of states so that a statistical analysis is justifed.
The energy shell cannot be too wide in comparison to the macroscopic energy,
ΔE/E � 1. Sticking to our defnition of thermalization, we wish to make (9) and
(10) match. There are several ways to look at this conundrum, and while we will
certainly not explore all of them, let us mention that this question is the center of
much active scientifc (and sometimes philosophical, too) debate.

Random eigenstates

The simplest solution to this problem comes from assuming that the eigenstates
of the Hamiltonian, |Eni, are random vectors, i.e., its components, in a certain
computational basis, are random numbers taken from a certain probability distri-
bution. Whimsical though it may look, this way of thinking is reminiscent of (or,
rather, in agreement with) the ideas of random matrix theory [13], [14], which
is one the oldest and most powerful analytical tools that we have to understand
quantum chaotic behavior. The essence of quantum chaos will be discussed in the
next section of this thesis. For now, suffce it to say one of the defning features
of quantum chaotic systems is that the the statistics of their energy levels (with
some technical caveats) are in close agreement with some probability distributions
coming from assuming that the Hamiltonian is so complicated that it resembles an
Hermitian random matrix satisfying certain symmetry properties. Naturally, the
eigenvectors of such a random Hamiltonian are random vectors. In that case, the
diagonal terms Onn do not vary much as a function of n. In the limit where one
assumes that Onn equals a certain constant, it is obvious that (9) and (10) coincide.
This simplistic argument, which we will refne below, is really the essence of the



eigenstate thermalization hypothesis. It suggests that if a quantum system behaves
similarly to a random matrix, i.e., if it is chaotic, then thermalization should occur.
The usefulness the RMT to understand thermalization in isolated quantum sys-
tems has many precedents, but let us highlight the 1991 contribution by Deutsch
[15], where he assumed that in ergodic Hamiltonians the eigenstates are basically
featureless random vectors. This is an extension of Berry’s conjecture, which had
been formulated in 1977 and applied to semiclassical systems [16]. And indeed, in
[17], [18], Santos and Rigol provided clear evidence of the onset of thermalization
being accompanied by the development of quantum chaos in many-body bosonic
and fermionic lattice systems without a classical analogue.

While this discussion is certainly a bit hand-waving, it will help us connect with
the ETH.

Eigenstate thermalization hypothesis

In modern quantum mechanics, the ETH is the hypothesis that underlies our un-
derstanding of thermalization. Its current formulation was developed in the 1990s
and it is mostly due to Srednicki [19]–[21]. Essentially, the ETH is a statement
about how the expectation values of physical observables need to fuctuate about
the microcanonical average for the long-time average to coincide with the predic-
tions of statistical mechanics. Let us consider that the solutions of the eigenvalue
equation Ĥ |Eni = En |Eni have been previously separated by symmetry sector
(e.g., in lattice systems with periodic boundary conditions the momentum is con-
served). The fundamental statement of the ETH can be formulated as follows [2]:

For a large class of operators, the diagonal expectation values in the Hamiltonian
energy eigenbasis, Onn, fuctuate around the microcanonical average at energy En,
that is,

Onn = hÔiME,En + Δn, n ∈ {1, . . . , D}, (11)

where Δn is some random noise and D is the system’s Hilbert space dimension.
The terms Δn are called diagonal fuctuations, and they are assumed to vanish on
average, hΔni = 0, while their deviations with respect to this mean value decrease

−aDexponentially with system size, hΔ2 i ∝ hÔ2iMEe , where a > 0 is some constant.n 
In other words, the ETH relies on the natural assumption that if the fuctuations
of Onn around their microcanonical value decrease fast enough (exponentially)
with system size, then quantum thermalization is guaranteed. As we can see, this
hypothesis is really an extension of the random vector mechanism given above,
whereby the diagonal expectation values behave as a smooth, almost constant
function of energy. If (11) is satisfed, then it is clear that, on average, a single

11



diagonal term is enough to ascertain to what value the dynamics will equilibrate,
as hOnni = hÔiME. This is the reason why this hypothesis is called the ETH: it
assumes that every eigenstate is thermal itself. While this may sound erroneous
since isolated quantum systems, by defnition, are not coupled to an external bath
of any kind, the common way to interpret this self-thermalizing nature is that a
number of degrees of freedom of the system act as its own heat bath.

The fact that in the above statement there is an explicit mention of how the
fuctuations around the microcanonical average are suppressed as the system size
increases suggests that, according to (11), one should not expect thermalization in
a very small quantum system. Although this may look as a shortcoming, it is really
in good agreement with our expectations of why and when statistical mechanics
should work. Thermalization is then best understood as a statistical phenomenon.

The ETH can also appear quite vague in that it does not really specify to which
quantum observables it applies. Some of the criticism that the ETH has attracted is
partly due to this precise observation: indeed, if one is allowed to categorize any
Hermitian operator as a quantum measurable quantity, i.e., an observable, then
nothing prevents us from expecting certain strange observables to thermalize too.
Consider, for instance, an arbitrary function of the system Hamiltonian. The op-
erator Ô = g(Ĥ) is Hermitian, and its diagonal expectation values are given by
Onn = g(En) as [g(Ĥ), Ĥ ] = 0, irrespective of the functional form of g. Yet, if g 
is not suffciently well-behaved, it is perfectly possible that the ETH hypothesis is
violated. Of course, this example can be argued to be too artifcial, and if we are
let to go down this path, we may as well come up with a plethora of nonsensi-
cal Hermitian operators that do not thermalize. The main point that we wish to
highlight here is that we should only expect the ETH to apply, in the frst place, to
physically relevant observables. The ETH generally accepted to apply to few-body
observables in non-integrable systems, but even then the limits of where the ETH
applies and where it breaks down can be blurry. In the context of lattice models, it
has been argued by Garrison and Grover [22] that the ETH can hold for few-body
observables that connect up to N /2 particles, with N being the total number of
particles of the system.

Another point where the ETH statement can look sloppy, at least from a mathe-
matical viewpoint, is that it does not clearly indicate how many of the Onn must
verify (11) for the observable Ô to reach thermal equilibrium. Real quantum sys-
tems are normally not as perfect as we would wish them to be, and the existence
of certain Onn that do not deviate from hÔiME only by an exponentially small
amount, even if they are non-integrable, is certainly not out of the question. Think,
for example, of strongly correlated quantum systems with few-body interactions;
in these systems, the Hilbert space dimension grows exponentially with the num-



ber of particles. In this exponentially large set of eigenstates of the Hamiltonian,
we could still fnd, say, an exponentially small number of wave functions that do
not behave as dictated by the ETH. This situation has been termed weak ETH [23],
in contrast to the strong ETH, where all Onn are assumed to be very close to the
microcanonical average [1]. One should take note that, even in chaotic systems, the
eigenstates close to the edges of the spectrum are highly non-generic and localized;
it is hard to guarantee that these states will, too, be thermal in general.

But in the study of thermalization there are even more intricate questions, which
we do not intend to solve here. We normally associate this phenomenon with the
long-time behavior of certain, reasonable observables, while we do not pay much
attention to the wavefunction |ψi defning the initial state or how we have prepared
the system to test if it thermalizes or not. Initial states that lead to thermalization
are technically referred to as typical. Typicality has been an overall fruitful concept
in our efforts to understand thermalization [24]–[27]. Yet, it is clear that the notion
of typicality also depends somehow on the quantum system under consideration;
there is no doubt that the expansion coeffcients, cn = hEn|ψi, responsible for
the Hamiltonian population distribution, retain an important degree of control
of the dynamics, as (9) evidences. Paradoxically enough (as under the ETH the
thermalizing nature of a single eigenstate is enough to discover what the long-
time dynamics of an observable will be), quantum thermalization strongly relies
on the fact that the population distribution {|cn|2} generated by the initial state is
suffciently well behaved and narrow. We may ask ourselves this question: Can we
expect (9) to agree with (10) if quantum states are not even remotely statistically
equivalent? We venture to say that the answer is most certainly negative. Say,
for example, that the |cn|2 is a multimodal distribution, strongly peaked about
distinct energy values. In this case, it does not take much thought to realize that
the microcanonical average as defned in (10) should be unable to capture the long-
time dynamics. Some may argue that this scenario is so artifcial that it is hardly
relevant; however, very similar population distributions are realistically found in
cat states, the macroscopic superposition devised by Schrödinger himself [28] and
named after a grumpy but charismatic creature. How we may describe the long-
time dynamics of observables under these states [29] is a question that we intend
to answer later on in this thesis, see Chapter 3.4.

The previous discussion stimulates the following question: Does the ETH inex-
tricably imply thermalization? This is the elephant in the room, which we can
answer affrmatively only if the distribution of populated states {|cn|2} is well clus-
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tered around a single energy value, the mean energy of the state: hEi = 
P |cn|2En.n 

Indeed, it follows from the ETH ansatz (11) that the long-time average reads
X 

hÔi = |cn|2(hÔiME,En + Δn), (12)
n 

but since the diagonal fuctuations vanish exponentially as the system size in-
creases, this implies, up to negligible corrections, that

X 
hÔi ' |cn|2hÔiME,En as N → ∞. (13)

n 

Does this equal hÔiME,En , given that the microcanonical average is evaluated at
energy En? If only cn associated to En close to the mean energy value signifcantly
contribute to the sum above (and the microcanonical average does not change a lot
between neighboring eigenenergies, which should be the case unless the spectrum
exhibits some sort of non-analytic behavior), then to very high precision in (13) we
may approximate cn ' 0 unless n is such that En ' hEi, and thus hÔi ' hÔiME. An
analogous reasoning shows why (10) cannot describe the thermalization process
in cat states.

We can ask ourselves the converse question: Is thermalization a consequence of
the ETH? Unlike the previous question, the answer is no. The ETH is a theoret-
ical tool that certainly does a good job at bridging the gap between microscopic
reversibility and the experimental observation that most real physical systems ther-
malize, playing much the same role that the ergodic hypothesis in classical mechan-
ics. However, the equivalence between the ETH and the physical phenomenon that
we call thermalization is excessive. In fact, even some integrable systems can sat-
isfy the ETH in the weak sense, as shown by Müller et al for translation-invariant
fnite-range interacting quantum lattice systems [30]. Then there are examples of
systems that do thermalize for most initial conditions, satisfying the weak ETH
and not the strong ETH [31]. The ETH is thus a formal guiding principle that puts
us on the right track, that allows us to make sense of experimental observations.

A natural question we may ask is how long must one wait to observe a quantum
system thermalize. We have noted before that for suffciently long times, the sum
involving oscillating off-diagonal matrix elements in the instantaneous expectation
value given by (8) can be assumed to average to zero. Nevertheless, the question
still remains: How long is ‘suffciently long’? If our only means to observe ther-
malization in a quantum system is to wait for a period of time equivalent to the
age of the Universe, we may as well disregard the entire concept as it becomes
experimentally useless. And indeed, this would seem to be the case, for exam-
ple, in interacting many-body systems, whose mean level distance decreases is
exponentially small in system size. Before the oscillating terms e−i(Em−En)t can be



neglected, an exponentially large time needs to have elapsed, comparable to the
inverse of the mean level spacing: the Heisenberg time. This is at odds with our
daily experience where it is not rare to observe physical systems thermalize within
minutes! Formally speaking, all the ETH tells us is that thermalization is bound to
happen; it does not really make any estimate as to when it should happen. This is
not a shortcoming of the ETH, though: it serves its purpose, as it establishes condi-
tions under which a system thermalizes. But for us, human beings, life is limited
and time, precious. It so happens that the vast majority of physical systems, sta-
tistically speaking, are so complex and their interactions are so strong that they
come close to being chaotic. And according to the RMT, the off-diagonal matrix
elements of generic observables in fully chaotic systems are exponentially small in
system size. To keep it short, under RMT one has that the matrix elements of Ô
satisfy [1]

s 
O2 

Omn ≈ Oδmn + Rmn, (14)
D 

P1where O ≡ Ok, Ok are the eigenvalues of Ô, D is the Hilbert space dimen-D k 
sion and, importantly, Rmn is a Gaussian random variable with hRmni = 0 and
hR2 i = O(1). This implies that the off-diagonal terms (m 6= n) vanish approx-mn √ 
imately as fast as the decrease in mean level distance, Omn ∝ 1/ D = O(e−N ),
almost miraculously countering the oscillating terms e−i(Em−En)t! We can rest as-
sured: if the system is chaotic or near-chaotic, no such infnite-time periods are
effectively needed to reach equilibrium. Yet, it should be mentioned that although
the RMT ansatz (14) provides a good qualitative idea of what we should expect,
there many features of realistic physical systems that are not captured by the RMT
(see next section for more details). As to what happens to systems where corre-
lations are not so strong as to bring it close to chaoticity, without further mathe-
matical assumptions this is something we would need to examine on a one-by-one
basis.

What happens after the system has reached thermal equilibrium? Does it stay
there forever? Our defnition of thermalization does not preclude some infrequent
and not very drastic deviations from the thermal value. But do physical systems
satisfy this defnition, once they have thermalized for the frst time? Generally,
we can say that yes, they do. We have already mentioned the proof provided by
Reimann [12] of the long-time average being a good equilibrium state. The reader
may be familiar with the notion of quantum revivals [32], whereby the Schrödinger
equation can lead the time-evolving wavefunction |ψ(t)i arbitrarily close to its
initial value |ψ(0)i as was beautifully demonstrated in the classical limit of the
hydrogen atom [33]. Owing to Poincaré’s recurrence theorem [34], if a system is
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prepared in an ‘atypical’ value of an observable, such recurrences are guaranteed
to occur. However, Poincaré’s result is only relevant for fnite systems, or even, one
might say, for small systems: the recurrence time increases exponentially with the
number of degrees of freedom, so for moderate systems it is so long that it can be
disregarded.

Truthfully, the ETH is not only concerned with the diagonal expectation values
of observables, as (11) suggests. An off-diagonal ETH exists which is useful to
understand dynamic correlation functions. In this thesis we will not deal with
these additional features, but more details will be given below.

Our discussion of thermalization and the ETH has departed from considering
an initial state that generates non-trivial dynamical evolution. The key point is that
the population distribution {cn} cannot be the trivial distribution for this to occur.
Because of its importance to this thesis, we will introduce the concept of quantum
quench, which is an experimentally relevant method to take an initial state out of
equilibrium in systems whose dynamics is controlled by some control parameter.

Quantum quench.- Let us consider a quantum Hamiltonian depending on a
control parameter, Ĥ(λ). Suppose that we use the eigenstates of the Hamiltonian
at an initial value of the control parameter, λi, to build an initial state, |ψ(0)i = 
|E0(λi)i. A quantum quench is the procedure whereby the Hamiltonian control
parameter is instantaneously changed to a fnal value, λi → λf , so the initial state
evolves according to (6).

As a consequence of the quench, the initial state can potentially overlap with a
huge number of eigenstates of the fnal Hamiltonian, Ĥ(λf ). Depending on the
details of the initial state itself or the fnal Hamiltonian, the distribution of {cn} 
can be very complex, and thus so can be the time evolution (6). Observe that the
quenched state is not stationary under Ĥ(λf ), as Ĥ(λi) and Ĥ(λf ) have different
eigenstates. All of the results discussed in this section remain valid if the initial
state is quenched. Quenches will be extensively used in the results of this thesis.

Before ending this part, we will allow one fnal question: We know that chaotic
systems are good candidates to thermalize, but does the RMT, which we still have
not properly defned, imply the ETH? Is the ETH some sort of consequence or ex-
tension of the RMT? The ETH reduces to the RMT on a certain energy scale, called
the Thouless energy [35] (see below), but the ETH goes beyond the RMT because
it describes dynamical features outside the more restrictive range of applicability
of the RMT.

Degenerate spectrum.– Suppose our quantum system is such that its spectrum
exhibits degeneracies. For the sake of simplicity, let us consider the case where
the degeneracies are due to the presence of a Z2 symmetry, i.e., an operator Π̂
with only two eigenvalues and which is such that [Ĥ, Π̂] = 0. In a large class of
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interacting systems, this symmetry is called parity, and its spectrum is Spec(Π̂) = 
{−1, +1}. The eigenvalues of this symmetry are then used as quantum numbers
to assign to the eigenstates of the Hamiltonian, i.e.,

Π̂ |Enαi = α |Enαi , (15)

where α ∈ {−1, +1} and n ∈ N. The system’s Hilbert space can be then de-
composed into symmetry sectors, so that the full Hamiltonian is simply Ĥ = L 

Ĥα. Let us assume that all states of opposite parity are degenerate, i.e.,α=−,+ 
En+ = En− for all n. Of course, the existence of degeneracies in a quantum spec-
trum is not necessarily derived from a symmetry, but in this thesis this physical
situation will play a central role so we will work within this framework from the
start.

It is clear from (8) that, in the presence of degeneracies, the term containing the
off-diagonal terms does not need to average to zero in the infnite-time limit, as
the degenerate states contribute with resonances that are completely static, thus
surviving the long-time average. Even more: such terms carry observable matrix
elements of the form Omn, and there is no way to reconcile this, in general, with
the microcanonical average (10), which contains diagonal elements Onn alone. The
consequence for thermalization is fatal: the equivalence of long-time and micro-
canonical averages breaks down!

More explicitly, let us consider an initial state of the form
X X 

|ψ(0)i = cnα |Enαi , |cnα|2 = 1. (16)
n,α nα 

Analogously to (8), at time t the expectation value of an observable Ô is then
XX ∗ hÔ(t)i = cnαcmβe 

−i(Enα−Emβ )tOmβ;nα, (17)
n,m α,β 

where now Omβ;nα ≡ Emβ Ô |Enαi. What is the long-time average? In answering
this question, a little manipulation is convenient. This expression can be separated
into different parts: (i) frst, we have the diagonal terms, which are such that n = m 
and α = β; (ii) second, we have the combination n = m and α = −β, which are not
diagonal but which give rise to degenerate contributions; (iii) and third, we have
the case where n 6= m, where there cannot be degeneracies according to our setup.
Therefore,

X X ∗ hÔ(t)i = |cnα|2Onα;nα + cnαcn−αOn−α;nα 
nα nαXX (18)∗ + −i(Enα−Emβ )tOmβ;nα.cnαcmβe 

n6=m αβ 
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In the long-time limit, the third summation eventually averages to zero as this term
contains no degeneracies, but the frst two terms survive. Therefore:

X X ∗ hÔi = |cnα|2Onα;nα + cnαcn−αOn−α;nα. (19)
nα nα 

If the observable Ô is the Hamiltonian, this expression allows us to recover theP 
mean energy of the system, which is of course constant, hEi ≡ hĤi = [|cn+|2En++ nP |cn−|2En−]. Likewise, the parity of the state (16) is simply hΠ̂i = [|cn+|2 − n 
|cn−|2]. These expressions only contain diagonal terms and therefore it would ap-
pear that the measurable quantities are obtained simply considering each of the
parity sectors separately. However, (19) hides important information about the co-
herence between both parity sectors. This information is revealed in the long-time
average of a parity-breaking observable. Let us consider an operator M̂ such that

X 
M̂ |Enαi = mn |En−αi , mn ∈ C. (20)

n 

M̂ is a parity-breaking operator because its expectation value vanishes under states
of the same parity, hEnα| M̂ |Emαi = 0 for all n, m. In some systems, M̂ can repre-
sent the total magnetization along certain direction [36]. Equation (19) tells us that
its long-time average is

X ∗ hM̂i = cnαcn−αmn, (21)
nα 

which clearly depends on the coherence between opposite parity sectors.
We mentioned before that the long-time average (19) cannot match the predic-

tions of the standard microcanonical ensemble (10). But is there a way to make
this equilibrium state describable through an equilibrium ensemble other than the
microcanonical? It is clear that the answer must lie somewhere beyond traditional
statistical mechanics; for instance, the canonical ensemble could not do the job ei-
ther, as in the thermodynamic limit it coincides with the microcanonical ensemble,
which cannot describe this state. This question is central to this thesis, and we will
provide answers to it in the chapters dedicated to results.

1.2 chaos as a mechanism for thermalization 

1.2.1 Classical chaos

The notion of chaos has originated an immense deal of interest both within the
scientifc community and in popular culture. Within science, chaos meant a con-
ceptual revolution as it is at odds with the notion of the Universe as an ordered



entity which we can attempt to describe in a controlled way. Out of science, the
reader is sure to have come across a number of movies and novels where chaos
plays a role in one way or another; often this has to do with the idea that the effect
of apparently minor events gets amplifed as time goes by, the so-called ‘butterfy
effect’. In daily-life language, chaos is ‘a state of utter confusion’ [37]; even more: it
is ‘a state of total confusion with no order’, with some synonyms being ‘disarray’,
‘disorder’, ‘disorganization’ or, apparently, ‘anarchy’ [38]. These expressions retain
some of the essence of chaos, at least in principle, but they are also misleading as a
physical system need not be ‘disordered’ for it to be chaotic: the double pendulum
is a chaotic system, yet it is hard to argue that it is very complicated or convoluted.
It may be shocking to know that, despite its ubiquity and relevance, there is still
today not a defnition of chaos that every scientist can happily accept. Despite this,
its phenomenology is fairly well understood and its mathematical foundations are
incredibly sophisticated. While the development of chaos in discrete systems and
in dynamical systems in a broad sense is a fascinating topic, here we will focus on
Hamiltonian chaos and its manifestations.

In every history of chaotic dynamics, there is one person whose mention is never
missed: Edward Lorenz is commonly accepted as the discoverer of chaos. As of
September 2023, his famous 1963 paper amasses some 28000 citations [39]. The
way he was led to make his discovery is intimately related to one of its main
signatures: the sensibility of chaotic trajectories to a small modifcation of the
initial conditions. Lorenz was a mathematician working as a meteorologist at the
Massachusetts Institute of Technology. One day, as he trying to predict the weather
conditions with a digital computer, he observed that if he changed the working
precision of his machine from 3 digit arithmetic to 6 digit arithmetic (though he did
this inadvertently), then he would obtain completely different estimates for what
the forecast would be for that day. As he eloquently recalls in his popular book
[40], his hope was to replicate some previous results that he did not understand
very well:

‘I stopped the computer, typed in a line of numbers that I had printed out a while earlier,
and set it running again. [...] The numbers being printed out were nothing like the old
ones. [...] I found that the new values at frst repeated the old ones, but soon afterward
differed by one and then several units in the last decimal place, and then began to differ in
the next to the last place and then in the place before that. [...] The numbers that I had
typed in were not the exact original numbers, but were the rounded-off values that had
appeared in the original printout. The initial round-off errors were the culprits; they were
steadily amplifying until they dominated the solution.’

Lorenz was not the frst to come to the realization that some complex dynamical
systems may behave in a seemingly random and unpredictable way, even if they
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are they are subject to the laws of classical dynamics, which are deterministic.
Like many scientists of his time, Lorenz thought that a small change of initial
conditions should imply a change in the subsequent dynamical evolution, at most,
of the order of magnitude of the initial condition modifcation. To be fair, the fact
that some systems may exhibit erratic behavior upon slight modifcation of initial
conditions had already been pointed out by Poincaré in his 1908 essay1 Science et
méthode [41]:

‘[...] il peut arriver que de petites différences dans les conditions initiales en engendrent
de très grandes dans les phénomènes fnaux; une petite erreur sur les premières produirait
une erreur énorme sur les derniers. La prédiction devient impossible et nous avons le
phénomène fortuit.’

The fortuitous phenomenon Poincaré mentions is chaos, though he never called
it that. Poincaré was never interested in chaos, and simply dismissed it as a tedious
artifact that rendered the three-body problem too complicated to solve. Anyway,
we can rightfully say that Lorenz is responsible for the unexpected explosion of
scientifc interest in this phenomenon. Today, chaos is the subject of study of
innumerable texts, among which we mention [42]–[44] and, of course, the classic
[4]. One way we have come to understand chaos is as the science that deals with
what looks random but is not. Or, as Lorenz put it , ‘when the present determines the
future, but the approximate present does not approximately determine the future’.

In simple terms, a physical system is chaotic if it does not have suffciently many
constants of motion which simplify the dynamics. This is connected to the notion
of integrability, which we will discuss in detail in the next section.

Classical chaos is really deterministic chaos. Given a dynamical system and an
initial condition, its future confguration is completely determined by, e.g., the
Hamilton equations of motion, if the system under consideration is treated within
the Hamiltonian formalism. These constitute a system of coupled non-linear dif-
ferential equations, in which no element of randomness can be found. Even more:
the dynamics generated by these differential equations is reversible. Given a fnal
confguration, we are formally allowed to go back in time to the state where we
prepared the system. One may then be led to mistakenly think, as is sometimes
the case, that the reason why we cannot predict the future in a chaotic system is
that its equations of motion are very complicated, in contrast to integrable systems
whose solution is easy to fnd. But some integrable systems may also be described
by quite intractable differential equations, and we do not call them chaotic. It must
be emphasized that the practical unpredictability of chaotic dynamical systems has

1 In English: ‘[...] it may happen that small differences in the initial conditions generate very great ones in
the fnal phenomena; a small error in the former would produce an enormous error in the latter. Prediction
becomes impossible, and we have the fortuitous phenomenon.’



a fundamental origin: it is impossible to come up with an algorithm capable of ob-
taining an approximated solution with a time-independent precision (in integrable
systems this can be done). Yet, it would be unfair to say that the dynamical nature
is not related to the form of the differential equations by which it abides: in classi-
cal mechanics, they are non-linear, which allows for chaotic behavior. All chaotic
systems are described by non-linear differential equations, but not all non-linear
differential equations need to give rise to chaos.

Lyapunov exponents.- We have mentioned that one of the strongest signatures of
classical chaos can be characterized by an exponential divergence of infnitesimally
nearby trajectories. In integrable systems, however, such separation can be, at most,
algebraic. Mathematically, this is quantifed by the so-called Lyapunov exponents
[45], [46]. Consider an initial condition in phase space r(0) ≡ (q(0), p(0)) ∈ M to
which we apply a small perturbation, δr(0). In a chaotic system, the magnitude of
this amplitude grows exponentially with time,

kδr(t)k ∼ kδr(0)ke λLt . (22)

Here, λL ≥ 0 is the (largest) Lyapunov exponent, which characterizes the rate of
divergence of two initial trajectories r(0) and r(0) + δr(0). This number is defned
as the following double limit:

1 kδr(t)k 
λL = lim lim ln . (23)

t→∞ kδr(0)k→0 t kδr(0)k 

Chaotic trajectories have λL > 0. Osledec showed [47] that the limit in (23) exists
and equals a fnite number for almost all initial confgurations r(0) and almost
all initial perturbations δr(0). Rigorously speaking, in a system of f degrees of
freedom there exist exactly f Lyapunov exponents, and each of them is associated
to one of the directions along which the trajectory separation can be probed. The
dynamics is controlled by the largest Lyapunov exponent, and therefore this is the
quantity that is commonly computed.

Mathematically, the Lyapunov exponent is completely defned by (23). A dif-
ferent question is how to effciently compute this quantity. Most of the problem
comes from the fact that the evolution in time of the initial perturbation, δr(t), can
be quite diffcult to obtain in a consistent way. To circumvent this issue, certain
computationally effective algorithms have been devised. This goes on to show
the vital role that numerical calculations play in the feld of non-linear dynamics,
where an exact solution of the differential equations is very frequently out of reach.
In this thesis, we have used a common algorithm that we present below [45].

Broadly speaking, in our approach for a Hamiltonian system of f degrees of
freedom we need to solve a system of 2f + (2f )2 differential equations, which
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can be broken down into two systems of equations that we solve simultaneously.
The frst system consists of the 2f differential equations encoded in the Hamilton
equations of motion: f of them correspond to the canonical positions and the
remaining f equations solve the dynamics of the associated conjugated momenta.
This is the dynamical problem

d
r(t) = F (r(t)), (24)

dt 

subject to r(t = 0) = r(0). Here, F is the so-called dynamical function, whose
components are given precisely by the Hamilton equations. The remaining (2f )2 

differential equations come from the variational problem,

d
Φ(t) = DrF (r(t))Φ(t), (25)

dt 

subject to Φ(t = 0) = 14f2 , where 1n stands for the n-dimensional identity matrix,
and DrF (r(t)) is the Jacobian of the dynamical function F . The systems specifed
by (24) and (25) are coupled, as r(t) depends on Φ(t) through DrF (r(t)). It can
be shown that in the limit of small perturbations, kδr(0)k → 0, the problem can
be linearized for any value of time, and at time t the perturbation is related to its
initial value through Φ(t):

δr(t) = Φ(t)δr(0). (26)

Insertion of (26) into (23) then allows to easily compute the Lyapunov exponent. In
practice, it is common to consider an ensemble of different initial separations δr(0),
sometimes chosen at random according to some probability distribution, and then
compute an averaged Lyapunov exponent, λL. This is because even in strongly
chaotic systems there can be small stability islands [43] and thus one can still fnd
a small number of regular trajectories: a single trajectory can give the impression
that the system is not chaotic. Even though this algorithm is quite effective, it is
clear from its formulation that in general we will not be able to treat systems with
a very large number of degrees of freedom. We will use these ideas in Chapter 4 
of this thesis.

At this point it is important to emphasize that although a positive Lyapunov
exponent (23) is commonly accepted as a signature of classical chaos, in some sit-
uations it is insuffcient to guarantee that the system is chaotic. The reason is that
the Lyapunov exponent is best understood as a signature of dynamical instability,
which is a necessary but not suffcient condition for chaos. Think, for example, of
an inverted pendulum, where the mass is placed vertically at its highest position.
Under the Hamilton equations of motion, it is clear that such a state is station-
ary, as it will remain static eternally. However, we know from experience that it



is very unlikely that the system will remain in that position for a very long time.
Indeed, the system described is in equilibrium, but this equilibrium is unstable: a
very small perturbation is enough to destroy it. The Lyapunov exponent associ-
ated to this scenario is positive, because infnitesimally close but different initial
perturbations will generate trajectories that separate exponentially. Yet, the single
pendulum is not chaotic, but integrable. In the case of the pendulum, no initial
condition apart from the one specifed above can give rise to positive Lyapunov
exponents. Contrarily, the system exhibits a smooth dependence on most initial
conditions, so that if they are slightly modifed very similar trajectories should en-
sue. But this example is quite illustrative in that it shows that positive Lyapunov
exponents are not enough to guarantee chaotic dynamics, much in the same way
that a single zero Lyapunov exponent, technically, is not suffcient to speak of in-
tegrability either. In this sense, positive Lyapunov exponents have been found in
integrable classical systems whose phase space exhibits unstable fxed points [48],
a feature that is unrelated to chaos.

Chaos is related to the notions of ergodicity and mixing. As we mentioned in Sec.
1.1.1, ergodicity is the phenomenon whereby any ‘typical’ trajectory will eventually
cover all available phase space at a given constant energy. Ergodicity means that
a single initial condition is enough to describe the average behavior of the system,
and it is the reason why long-time averages can be computed as microcanonical
averages where all confgurations are assigned equal probability of occurrence.
Ergodicity is a technical term that in every-day life could be associated with the
idea of randomness or disorder. Ergodicity does not necessarily imply chaos. Now,
since we are so interested in pendulums, the one dimensional harmonic oscillator
is an counterexample for a system that is ergodic but not chaotic: its equations of
motion do not even fulfll the non-linearity condition necessary for chaos! Thus,
it seems that for a system to be chaotic some property other than ergodicity is
missing. This property is called mixing. Intuitively, it refects the behavior that
we expect in a glass of water when we add a droplet of ink. If we think of water
and ink as subsystems, after some time has elapsed (which can be very long) both
become completely ‘intertwined’. A mathematical description of mixing is beyond
the intended scope of this thesis, but the main idea can be summarized as follows.

Mixing.- A dynamical system is mixing if each subset of phase space gets uni-
formly dispersed under the system’s dynamics. In a mixing system, different
trajectories get arbitrarily close to one another infnitely many times.

This is equivalent to the statement that the self-correlation of a well-behaved
dynamical function decays to zero after suffciently long time. The mathematical
concept of mixing was established in 1932 by von Neumann [49] and then further
developed by Hopf [50], [51], but the frst to consider it as an independent phe-
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nomenon was thermodynamicist Gibbs, who already in 1902 stated that mixing is
like ‘the effect of stirring an incompressible system’, which brings it to ‘a state of uniform
mixture’ [52]. Mixing is a stronger condition than ergodicity; in particular, mixing
implies ergodicity. There are not many mathematically rigorous proofs of systems
that are mixing. Sinai showed that the paradigmatic hard-sphere gas is mixing as,
roughly speaking, a slight change in the direction of motion of any particle gets
magnifed as it collisions with the convex surface of another particle [53], [54]. Suf-
fce it to say that the proof of the simplest case, that of a single particle, occupies
around 70 pages.

In defning what chaos is in terms of its phenomenology, as we are attempting
to do, it is important to emphasize that ‘chaos’ is quite a generic term that is
commonly used to refer to a certain physical properties, such as the presence of
positive Lyapunov exponents. Rigorously, the notion of chaos can be broken down
into several classes of systems depending on their degree of ‘chaoticity’. Even
more, it should be noted that not all systems that are not integrable need to be
chaotic, or at least not completely chaotic. In this sense, technically, ‘chaos’ is much
of an umbrella term. The origin of this hierarchy of chaos lies in the KAM theorem,
which explains how integrable systems evolve to chaoticity as perturbation terms
are added to the system Hamiltonian. The KAM theorem will be briefy discussed
in the next section, but for now let us say that by ‘fully chaotic’ system what is
normally meant is a system whose Kolmogorov-Sinai entropy is positive (although
other alternatives are possible).

Entropy is a way to quantify information. Information we have, or information
we lose. Thus, for example, in statistical mechanics the Boltzmann equation con-
nects the entropy of a system and the number of microstates that are compatible
with the macrostate the system is in. If the number of microstates is large, so is
the entropy, but if there is a single microstate then the entropy vanishes as there
is no new information we can gain by performing a measurement of the state.
The Shannon entropy quantifes the uncertainty in, for example, a combination of
letters, words or a text. Very common words such as ‘the’ have a very low infor-
mation entropy because they do not help us determine what the text it is found
in can be. The Kolmogorov-Sinai entropy [55], [56], although formally much more
involved, is a measure of the quantity of information that is carried by a certain
trajectory in phase space. It can be thought of as an indicator of how much infor-
mation per unit time is lost as the system evolves in time. Physical systems whose
Kolmogorov-Sinai entropy is positive are called K-systems, while for integrable
systems this entropy is zero. The Kolmogorov-Sinai entropy also provides an es-
timate of the maximum timescale beyond which the motion of a system becomes
unpredictable; this time is inversely proportional to the Kolmogorov-Sinai entropy.



K-systems.- In a K-system, there are no stable orbits. Any two initial conditions
will give rise to exponentially diverging trajectories.

We can see that K-systems capture our intuitive idea of what a chaotic system
should be. Yet, it should be noted that the classifcation does not stop here, and
there other classes of systems that, in a certain sense, are even more chaotic. For
our purposes, the diverging nature of classical trajectories will be enough. All
K-systems are mixing, and all mixing systems are ergodic.

1.2.2 Quantum chaos

Quantum mechanics as a whole is the most general theory that we have to de-
scribe the physical reality. The quantum-classical correspondence principle tells
us that classical mechanics should emerge from quantum mechanics in the limit
h̄ → 0, essentially at suffciently large scales roughly comparable to the De Broglie
wavelength. Then, one is led to expect that the origin of classical chaos is to be
found somewhere deep within quantum mechanics. Nevertheless, it became clear
that the phenomenology of classical chaos cannot be mapped directly to quantum
mechanics, which makes it impossible to employ our classical understanding to
deduce what form chaos should take in the quantum world.

What even is quantum chaos?

One fundamental reason is that quantum dynamics is controlled by the Schrödinger
equation, which is linear, and therefore cannot give rise to chaos in the classical
sense. In fact, our classical understanding of chaos is tightly connected to the
notion of phase space where trajectories are embedded. Yet, in quantum theory
the position and momentum operators are non-commuting and thus there are no
quantum states where these operators are completely determined (i.e., with zero
uncertainty); this is the content of Heisenberg’s uncertainty principle. If one cannot
fx position and momentum, it is clear that the concept of classical trajectory does
not have a quantum counterpart. The fact that there are no trajectories in quantum
mechanics has several important consequences, but for our purposes, it is enough
to say that one of the main signatures of chaos, the exponential sensitivity of tra-
jectories to slight changes of initial conditions, cannot be properly defned in the
quantum world. One may then think that this issue may be solved if we replace
the classical trajectory with some object that is native to quantum mechanics and
that specifes the state of a system: the wavefunction. Unfortunately, this will not
help either because the time evolution operator, Û(t), is unitary, Û†Û = 1, which
means that it is preserves distances and norms. The fact that the distance between
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two arbitrary wavefunctions evolving under the same Hamiltonian is constant can
be illustrated with the following simple example. Consider to initial conditions
given by |ψ(0)i and |φ(0)i. Wavefunctions are really vectors in some Hilbert space,
so similarly to vectors in real space one may defne their distance through their
norm,

d(|ψi , |φi) = k|ψi − |φik, (27)

where k|ψik ≡ hψ|ψi. At time t, the previous initial wavevectors read |ψ(t)i = 
U(t) |ψ(0)i and |φ(t)i = U (t) |φ(0)i. Therefore, due to unitary dynamics, the dis-
tance at an arbitrary time t coincides with the initial distance:

d(|ψ(t)i , |φ(t)i) = |(hψ(0)| − hφ(0)|)Û†(t)Û(t)(|ψ(0)i − |φ(0)i)| 
(28)

= d(|ψ(0)i , |φ(0)i), 

so, of course, the idea of exponentially divergent trajectories, even in some quan-
tum sense, must be abandoned.

In order to make this discussion complete, two remarks are convenient. First, it
is worth mentioning that, technically, quantum mechanics can be defned within
a phase-space formalism through the Wigner-Weyl transformation [57], but even
within this framework trajectories cannot be properly defned as the uncertainty
principle still applies. Second, the fact that the distance of two wave functions
evolving under the same Hamiltonian is mathematically preserved does not really
make any indication as to what happens if such Hamiltonian is only slightly per-
turbed. This can explored by means of the fdelity, which measures how ‘close’
two quantum states are. It should be noted, however, that the fdelity is not a
distance in the space of density matrices, however. Let us consider a pure initial
state |ψ(0)i. We will let it evolve under an arbitrary Hamiltonian, Ĥ , and a slightly
perturbed Hamiltonian, Ĥδ = Ĥ + δV̂ , where V̂ is an Hermitian operator encod-
ing some perturbation of Ĥ and |δ| � 1. The time-evolved counterparts of |ψ(0)i 

−i ˆ −i ˆare |ψ(t)i = e Ht |ψ(0)i and |ψδ(t)i = e Hδt |ψ(0)i. Clearly, |ψ(t)i 6= |ψδ(t)i, but
what is about the fdelity or squared overlap

2
F (|ψ(t)i , |ψδ (t)i) = |hψ(t)|ψδ(t)i| . (29)

Does (29) behave differently depending on the properties of the Hamiltonian Ĥ?
Broadly speaking, Peres found [58], [59] that if Ĥ describes the dynamics of a
quantum system whose classical analogue is regular, then the overlap (29) remains
approximately constant and close to unity for short times, while if Ĥ corresponds
to a quantum system with chaotic classical analogue then (29) decays exponentially
at short times, i.e., states |ψ(t)i and |ψδ(t)i are less and less alike in an exponential



way. Note that the setting of this experiment is completely different as the classical
exponential sensitivity to initial conditions refer to two trajectories evolving under
the same Hamiltonian, so by no means does this invalidate the distance preserving
property illustrated by (28). However, it goes on to suggest that even if chaos is
to be redefned in the quantum world, there are indeed some dynamical traces
that seem to depend on whether the quantum system is related to a classically
integrable or chaotic system.

The question remains: What can we call ‘quantum chaos’? [60] This has been the
subject of endless debate and while we do not attempt to provide a defnite answer
as to whether we should be properly speaking of chaos in quantum physics, the
truth is that quantum chaos [61]–[64] is a very active research feld which has been
proved incredibly fruitful to understand the dynamics of complex (and sometimes
also simple) quantum models and it is also directly tied to paramount physical
phenomena such as thermalization or decoherence [1], [2], [17], [65]. There is no
doubt that it is an important phenomenon that we should not disregard. M. V.
Berry, one of the protagonists of the history of quantum chaos, took fault with
the use of ‘chaos’ as anything that could describe quantum dynamics as, strictly
speaking, a quantum system cannot show any chaoticity in the classical sense. In
his famous Bakerian lecture [66], which we gave as he was awarded the Royal
Society prize in physical sciences, he proposed to use the term ‘quantum chaology’
instead:

‘Quantum chaology is the study of semiclassical, but nonclassical, behaviour character-
istic of systems whose classical motion exhibits chaos.’

While this defnition is perfectly acceptable, it only refers to quantum systems
with a well-defned classical analogue. Some of the most important quantum mod-
els studied nowadays are strongly correlated systems that are genuinely quantum
in the sense that they do not approach classicality as a function of system size or
of any of its internal parameters. What is about these systems?

The way we understand quantum chaos is through the statistical properties of
the spectrum of a system although, as we will discuss below, alternative character-
izations relying, for example, on the structure of the Hamiltonian eigenstates are
also possible. The mathematical tool that allows to establish this correspondence
is the RMT, which have already briefy touched on in this thesis.

Chaos in the quantum spectrum: the random matrix theory

The main idea behind quantum chaos is that it is hopeless to attempt to understand
all the details of a complex many body system such as the atomic nucleus. These
systems appear to be have so complicated interactions that a statistical approach
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may be better suited to gain insight about their overall behavior. The following is
a extract of the speech given by Wigner at a conference on neutron physics held in
Gatlinburg, Tennessee, in 1956:

‘Perhaps I am now too courageous when I try to guess the distribution of the distances
between successive levels [of energies of heavy nuclei]. Theoretically, the situation is
quite simple if one attacks the problem in a simpleminded fashion. The question is simply
what are the distances of the characteristic values of a symmetric matrix with random
coeffcients.’

Together with Dyson, Mehta and others, Wigner is considered the inventor of
the RMT [67]–[72]. The RMT is a mathematical theory that studies the properties
of random matrices, i.e., matrices whose elements are drawn from a certain proba-
bility distribution. The mathematical aspects of the RMT are discussed in detail in
the monograph by Mehta [13] and in the review by Guhr et al [14]. Here, we will
summarize some main results.

In the theory of chaos in closed quantum systems, Gaussian ensembles have
traditionally played a predominant role (but not only, see [73] for an extension of
the RMT to the problem of quantum transport). According to Wigner’s idea, one
may replace the system’s Hamiltonian with a suitably chosen ensemble of random
matrices which, on average, describe the features of the real physical system. The
general philosophy should not be so unfamiliar to us: statistical mechanics works
in a very similar way, as the knowledge of the precise characteristics of a system
is renounced in favor of an overall understanding. However, the RMT takes this
one step further, as in statistical mechanics the form of the interactions is given by
the precise physical system of interest; in the RMT, however, the interactions are
also randomized! Yet, the individuality of the real system is encoded in the RMT
ensembles through some geometrical constraints that defne their symmetry classes.
In the context of the Gaussian RMT, there are three main symmetry classes:

(i) Gaussian orthogonal ensemble (GOE).– It applies to systems that have time rever-
sal invariance. It consists of matrices Ĥ = hij that are real and symmetric, whose
elements hij with i ≥ j are statistically independent. The probability distribution
P (Ĥ) is invariant under orthogonal transformations of Ĥ . The joint probability
density distribution of its matrix elements reads

� �N /2 � �N (N−1)/2 P −A h2 
P ({hij }) = A 2A

e i,j ij , (30)
π π 

where N is the matrix dimension and A is some constant.
(ii) Gaussian unitary ensemble (GUE).– This applies to systems without time rever-

sal invariance (which can be broken, e.g., in the presence of a magnetic feld). It
consists of, in general, complex and Hermitian matrices, whose elements hij are



such that Re(hij ) and Im(hij ) for i > j are statistically independent. The density
distribution P (Ĥ) is invariant under unitary transformations, and it reads

� �N /2 � �N (N−1)/2 P −AP ({hij }) = A 2A
e i,j Re(hij )

2+Im(hij )
2 
. (31)

π π 

(iii) Gaussian symplectic ensemble (GSE).– It applies to systems with time reversal
invariance but no rotational symmetry. It consists of Hermitian and selfdual ma-
trices, whose elements hij are statistically independent quaternions. The density
distribution P (Ĥ) is invariant under symplectic transformations, and it takes the
form

� �N /2 � �N (N−1)/2
A 2A −A 

P 
(h0)

2 
ij +(h1)

2 
ij +(h2)ij 

2 +(h3)
2 

i,j ijP ({hij }) = e , (32)
π π 

where (hn)ij (n = 0, 1, 2, 3) are the components of the quaternion hij .
Observe that the probability distributions (30), (31) and (32) depend on the ma-

trix elements only through Tr(Ĥ2), which leads to the central limit theorem being
satisfed. They are called Gaussian for this reason.

One crucial aspect of these RMT ensembles is that even though they are all
generated from statistically independent random numbers, hij , their associated
eigenvalues are strongly correlated. It can be shown [13] that the joint probability
density function of the eigenvalues {λ1, . . . , λN } is

NPN Y −A k=1 λ
2 
k |βP ({λi}) ∝ e |λn − λm , (33)
n>m 

where β is the so-called Dyson symmetry index; it equals β = 1, 2, 4 for GOE, GUE
and GSE. This formula is very clarifying from a phenomenological viewpoint: it
tells us that in a Gaussian random ensemble, the eigenvalues behave as charged
particles that repel one another. Two main paramount effects associated to quan-
tum chaos can be discussed already from this expression. First, no two eigenvalues
can assume the same value (there can be no degeneracies), as P (λi, λj ) → 0 when
λi → λj (unless β = 0, which, incidentally, is used to denote integrable models,
where level crossings are bound to happen; see next section). This defnes one of
the hallmark signatures of quantum chaotic spectra: level repulsion. In a quantum
chaotic system, there can be no two overlapping eigenvalues, so they can be said
to ‘repel’. The intensity of such repulsion increases with β. But the effect of the
term

P |λn − λm|β is not only responsible for level repulsion. It is also then>m 
reason why eigenvalues are strongly correlated, in the probabilistic sense: it is dueQ
to this term that (33) does not factorize at all: P ({λi}) 6= Pi(λi). In fact, in ai 
random matrix (and thus in a fully quantum chaotic system) there are long-range
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P −Acorrelations to all energy distances. Second, the exponential term e λ2 
=1 k 

N
k heav-

ily suppresses confgurations of {λi} with large values of |λi|; in other words, the
eigenvalues cannot lie too far from the origin. In practice, this almost ‘confnes’
eigenvalues, annihilating extreme events from the confguration. This metaphor is
at the heart of another important property of chaotic systems: the spectral rigidity.

In essence, the RMT is a useful tool because it is mathematically tractable, and it
allows us to obtain analytical results that we can then compare with experimental
or numerical data extracted from realistic physical models. But beyond that, the
ultimate reason why we care about the RMT at all is because the statistical features
of quantum systems whose classical analogue is chaotic appear to be almost per-
fectly captured by its results. This is the object of study of spectral statistics. We
will explain what we mean by this, but before that we need to take a small detour,
which we hope will not be too technical.

Save the fuctuation: the unfolding procedure

It is often said that quantum chaos is concerned with the universal fuctuations of
energy levels, and relates them to RMT. This may sound cryptic. What exactly is
meant by the fuctuations of eigenvalues?

In classical mechanics, the possible values that the energy can assume defne
a continuous object, as these values belong to the real line. Looking through the
prism of continuous probability theory, we may ask how many physical states exist
with energy equal or less than E. The answer, of course, is given by the cumulative
distribution function,

Z 
Nc(E) = df qdf p Θ[H(q, p) − E], (34)

where Θ(x) denotes the Heaviside distribution (or ‘step function’). The subindex
c reminds us that this applies to classical systems. Quantum spectra of bound
systems, however, are discrete, so their level counting function is defned as

Z E X 
N (E) = dE0 ρ(E0) = Θ(E − En), (35)

−∞ n 

where
X 

ρ(E) = δ(E − En) (36)
n 

is the density of states at energy E. The density of states contains complete in-
formation about the spectrum of a quantum system. It indicates the number of
states per energy unit that exist in the system at energy E. For the moment, let us



consider a quantum system with a classical analogue. The classical (34) is an an-
alytic function (with the exception of some particular systems where it may show
discontinuities, as in excited-state quantum phase transitions, see below), but the
quantum (35) is not differentiable, as it is a stair function. If the system is inte-
grable, use of the SWI quantization rules [74]–[76], which we will not discuss in
this thesis, shows that the slope of the quantum (35) is given by the classical (34).
This means the number of states with energy less than E fuctuates and, on average,
coincides with the corresponding classical counting. If the system is chaotic, the
SWI rules do not apply (which was pointed out by Einstein in an early but largely
ignored paper [77]) and we need to resort to a more general method developed
by Gutzwiller in the 1970s [78] (which also applies to integrable systems, anyway).
This is a semiclassical formalism, valid in the limit h̄ → 0, that makes use of Fey-
mann’s path integral to calculate a propagator from which one can defne a Green
function. Integration of the Green function yields the density of states. A complete
derivation of this result is quite mathematically heavy so we will content ourselves
with the fnal result, which is [63]

� �∞XX rSp(E)
ρ(E) = 2 Ap,r(E) cos + νp,r . (37)

h̄ 
p r=1 

Here, p is the number of ‘primitive’ periodic orbits (those that cannot be decom-
posed into repetitions of simpler orbits), r is the number of primitive periodic
orbits, Ap,r is a quantity related to the orbit stability (this quantity is related to
the Lyapunov exponent), Sr is the classical action, and νp,r is the Maslov index,
related to the number of turning points of the dynamics. The semiclassical nature
of this quantity is obvious as it makes use of classical periodic orbits. In practice,
the calculation of (37) is quite complicated even in relatively simple models, and
it can suffer from severe convergence issues. For our purposes, what is relevant
about (37) is that it is the full density of states of the system, and all periodic orbits
have been accounted for to arrive to this equation. Among these, there is one spe-
cial, trivial kind of periodic orbits: those with period zero (i.e., when the particle
remains immobile). The contribution of these orbits to (37) turns out to coincide
with the classical density of states if it is properly normalized [79],

Z 
1 

ρ(E) = df qdf p δ[H(q, p) − E], (38)
(2π h̄)f 

where 2π h̄ = h is the phase space elementary cell size [this guarantees thatR∞ dE ρ(E) = 1]. This is called the smooth part of the density of states. When−∞ 
zero period orbits are excluded from the full density (37), we arrive at the so-called
fuctuating part of the density of states, ρe(E).
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Summarizing, for any quantum system with a classical analogue, a semiclassical
calculation shows that the density of states can be separated into these two parts,

ρ(E) = ρ(E) + ρe(E). (39)

Naturally, the same applies to the cumulative distribution function,

N (E) = N (E) + Ne(E). (40)

The smooth part of the density of states contains system-dependent information
related to the details of a particular model, but the fuctuating part is universal, as
it merely depends on whether the classical analogue is chaotic or integrable. The
universal correlations that quantum chaos analyzes with statistical tools and com-
pares with the RMT are all contained in the fuctuating ρe(E). But what happens if
our quantum system is not compatible with a semiclassical analogue? Think, for
example, of one-dimensional 1/2-spin models with nearest-neighbor interactions.
These systems do not approach the semiclassical limit even as the number of spins
grows to infnity, because the spin size is fxed to 1/2. In that case, we must resign
ourselves and assume that the semiclassical separations (39) and (40) remain valid,
as is commonly accepted in the quantum chaos community, even if for lack of a
better way to proceed.

Before one can begin the statistical analysis of energy levels, the fuctuating part
of the density of states must be isolated from the smooth counterpart. This process
is called unfolding procedure. Consider a sequence of energy levels {E1 ≤ . . . ≤ EN } 
coming from diagonalizing the Hamiltonian of a real physical system. From them,
we can defne the unfolded energy level as

Z E 
�n = N(En) = dE0 ρ(E0). (41)

−∞ 

This is the central object of the statistical analysis. By defnition, �n ≥ 0. The un-
folding procedure is an important aspect of quantum chaos because almost every
spectral statistics depends on it being correctly performed (we will comment on
a recent and notable exception below). Yet, it is also highly non-universal. The
reason is that unless the form of the smooth density of states ρ(E) is known from
frst principles (which is almost never the case), there is not a unique way to do un-
folding. In that case, it is very common to ft a smooth function to the computed
density of states, for example a polynomial, and assume that this will play the
role of N (E). In addition to this, the unfolding procedure can carry some subtle,
undesired effects. Gómez et al [80] showed that certain forms of local unfolding
methods (not discussed in this thesis) can spoil the relationship of the spectral anal-
ysis and the degree of chaoticity of the system and, recently, Corps and Relaño [81]



demonstrated that the unfolding procedure inevitably introduces spurious correla-
tions in the unfolded eigenlevels, even if the original levels were uncorrelated (this
may negatively impact the spectral statistics of quantum integrable systems, see
below). This work belongs to the scientifc production of the author of this thesis,
although here we will not discuss it explicitly.

The quantum chaos conjecture

Wigner’s original idea made it possible to understand the statistical properties of
complex nuclei. At the time this was thought-provoking result, but the range of
applicability of the RMT remained unclear for a long time. Should the predic-
tive power of the RMT be restricted to very complex systems? This question was
answered in 1984 by Bohigas, Giannoni and Schmit, leading to the conjecture that
bears their name: the BGS conjecture (sometimes, even, ‘the quantum chaos conjec-
ture’). In their famous article [82], they studied the level statistics of a single parti-
cle placed in a Sinai billiard, which is a classically chaotic system. Approaching the
semiclassical limit (i.e., at high enough energy), they found that the level statistics
almost perfectly follow the predictions of the RMT. In particular, they studied the
level spacing distribution, P (s), where sn = �n+1 − �n is the unfolded level spacing
coming from a sequence of raw eigenvalues in ascending order, {E1 ≤ . . . . . . EN }.
By defnition, the random variable s has unit average, hsi = 1. Specifcally, they
found that in this system, P (s) follows the Wigner-Dyson distribution,

π −πs2/4P (s) = se , (42)
2 

in other words, the level spacing distribution expected in the RMT for the GOE
ensemble. The (nearest-neighbor) spacing distribution is one of the most com-
mon spectral statistics. It clearly evidences the phenomenon of level repulsion, as
P (s) ∼ s as s → 0 (in general, for the Gaussian ensembles this is P (s) ∼ sβ), as
well as the exponential decay at s � 1 that can be argued to be a manifestation of
chaotic spectral rigidity. The expression (42) is obtained from 2 × 2 GOE random
matrices and is not exact in the N → ∞ limit. However, it is remarkable that the
N → ∞ asymptotics are qualitatively and quantitatively close to the simple (42):
this is popularly known as Wigner’s miracle.

Guided by this result, Bohigas, Giannoni and Schmit formulated the following
conjecture [82]:

‘Spectra of time reversal-invariant systems whose classical analogs are K systems show
the same fuctuation properties as predicted by GOE (alternative stronger conjectures
that cannot be excluded would apply to less chaotic systems, provided that they are er-
godic).’
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The relevance of this short statement is hard to overemphasize. Effectively, it
means that one can establish a bidirectional association between quantum chaos
and the RMT, that one can say that a system is chaotic if it is describable by the
RMT. Also, that the complexity of a quantum system is not necessary for it to be
chaotic. Although the conjecture was formulated in the semiclassical limit, today
we have come to collectively understand that it is permissible to say that even a
quantum system without a classical analogue is chaotic if its level fuctuations are
as in the RMT. In this case, it is still unclear what chaos may mean beyond some
pragmatic compliance with the RMT. Recently, some advances in this question
have been reported [83].

The RMT has been successfully applied to many systems well beyond its in-
tended scope; some examples include supersymmetry [84], chiral symmetry [85],
fnancial markets [86], and atmospheric correlations [87]. The spectral statistics of
many quantum systems follow the Wigner-Dyson distribution. Some examples are
heavy nuclei (i.e., the foundational Nuclear Data Ensemble but also recent analy-
ses of 208Pb [88]–[91]), Sinai billiards [82], or the hydrogen atom in a magnetic feld
[92]. Quantum systems with an accessible semiclassical limit have played an impor-
tant role in the exploration of chaos, and in this category it is worth mentioning the
Dicke model [93], an atom-feld experimental system which has been in the center
of much modern research [94]–[97]. Recently, strongly interacting many-particle
models of condensed matter have become one of the best playgrounds to study
quantum chaos and ergodicity. Some of these models include one-dimensional
spin-1/2 or spin-polarized fermion lattices [17], [18], [98]–[102].

Is the BGS conjecture, then, universally valid, i.e., is it permissible to call it a
theorem? Counterxamples have been found, but they normally are non-generic
systems, such as arithmetic billiards [103] which have an exponentially large de-
generacy of lengths of periodic orbits (see also [104]). In any case, the BGS con-
jecture has actually been mathematically proved at the semiclassical level. Based
on previous works by Hannay et al [105]–[107], the universality of quantum chaos
was demonstrated by Müller, Heusler, Haake and others in 2004 [108]. This was
the germ of a series of papers [109]–[111], which constitute the foundations of a
full periodic-orbit theory for quantum chaotic correlations.

Despite the usefulness of the RMT, there are certainly aspects of real systems
that cannot be captured by its statistical description. For example, after a suit-
able scaling, the level density of the Gaussian random ensembles converge in the
N → ∞ limit to a semicircle distribution [13], which is quite unrealistic. From
a conceptual viewpoint, in the RMT there is the implicit assumption of all-to-all
couplings (the matrix is completely flled with random numbers), which is also
unphysical.



 

In addition to determining the statistical behavior of eigenlevels, the RMT also
provides predictions for the overall behavior of the corresponding eigenvectors.
Through the matrix elements of observables, they play an important role in ther-P 
malization. Consider an arbitrary eigenvector written in some basis, |Φi = ϕk |ki.k 
For the GOE, invariance under orthogonal transformations implies that the joint
probability distribution of the components ϕk [112] is

! X 
P ({ϕk}) ∝ δ ϕ2 − 1 . (43)n 

n 

As a consequence, the eigenvectors of GOE random matrices, as we mentioned in
Sec. 1.1.2, are basically random vectors with the only constraint that they must
satisfy the normalization condition hΦ|Φi = 1. This was argued to be a suffcient
condition for long-time averages to coincide with microcanonical phase space av-
erages. Of course, the orthogonality of eigenvectors means that they cannot be
completely independent, but the ensuing correlations are completely negligible for
random matrices of moderate dimension. The end result is that, as implied also
by the BGS conjecture, one can consider that the eigenvectors of strongly quantum
chaotic systems in a typical basis (not fne-tuned) are indeed featureless random
vectors [15], [16].

Related to the behavior of eigenvectors is the statistical theory for the matrix
elements of arbitrary observables under the RMT [1]. Consider an Hermitian op-P 
erator Ô written in its eigenbasis, Ô = Ok |ki hk|, where Ô |ki = Ok |ki, and ak 
random matrix with eigenvectors |Φni and |Φmi. What does the RMT predict for
the matrix elements Omn = hΦm| Ô |Φni? We can write

X X 
m nOmn = Oi hm|ki hk|ni ≡ Ok(ck ) ∗ ck , (44)

k k 

mwhere we have defned the expansion coeffcients c ≡ hk|mi. Taking into accountk 
that the eigenstates of random matrices are random vectors, we may perform an

m)∗ n 1ensemble average, which we denote by hh•ii: hh(c c ii = δmnδk`, where D isk ` D 
the matrix dimension. This yields

X1 hhOnnii = Ok ≡ O, hhOmnii = 0 (m 6= n), (45)
D 

k 

For the fuctuations around these values, using the properties of the Gaussian
ensembles one can show [13] that

� � 
1 2 − β |hhO2 ii| − |hhOmnii2| = + O2 (46)mn δmn ,
D D 
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with β the Dyson index. Equations (45) and (46) imply (14). One remark is con-
venient: In (45) and (46) we have considered an average over a large number of
random matrices, and therefore (14) is valid only to leading order in 1/D (the
eigenvectors of a random matrix are only orthogonal up to 1/D terms). However,
because the fuctuations of operators are tiny for large D, one can safely assume
that (14) is suffciently accurate for most random Hamiltonians. It is also important
to observe that in a strongly quantum chaotic system, (14) teaches us that the dis-
tribution of the fuctuations of the matrix elements Omn around their mean value
O is Gaussian (Omn − Oδmn is a Gaussian random variable). In the next section we
will briefy explain how this is related to the ETH ansatz.

1.2.3 Fitting the pieces: RMT ⊂ ETH

We have already mentioned that, in its attempt to describe the statistical behavior
of dynamical systems, the RMT can be too unrealistic. Aside from some unphysical
features such as its prediction for the average level density (Wigner’s semicircle),
there are other issues that become troublesome if one wants to use the RMT to
describe quantum thermalization. Realistic systems are clearly not random: (i)
the expectation values of observables actually depend on temperature (or energy
density), and (ii) not all observables approach relaxation at the same rate. In other
words, the RMT prediction for Omn given in (14) is lacking information that cannot
be disregarded in real systems. This information, however, is contained in the ETH.
In fact, one can say that the ETH is a generalization of the RMT; in other words,
the RMT implies the ETH, but the converse is not true. The overall features of
the ETH were provided in (11); however, the random term Δn therein hides some
relevant information and for this reason we shall specify the ETH ansatz further.
Equation (11) is a simplifed version for the diagonal ETH. The most general form
of the ETH, including off-diagonal matrix elements, reads [1]

Omn = hÔiME(E)δmn + e −S(E)/2fO(E, ω)Rmn, (47)

where E = (Em + En)/2 is the mean energy of the eigenstates |Eni and |Emi 
where the expectation value of Ô is taken, ω ≡ En − Em is the energy difference of
these eigenstates, S(E) is the thermodynamic entropy evaluated at E, and Rmn is
a random real or complex variable with hRmni = 0 and unit variance. The second
term in the right-hand side of (47) is the random term Δn in (11). The structure
of the eigenstates of realistic systems is encoded in the function fO, which is a
smooth function. The matrix elements Omn can be real or complex depending on
the symmetries of the Hamiltonian. For real matrix elements, it is necessary that



Rnm = Rmn and fO(E, −ω) = fO(E, ω), while for complex matrix elements we
have R∗ and f∗ 

nm = Rmn O(E, −ω) = fO(E, ω).
The ETH ansatz (47) bears much similarity with the RMT result (14), but (14) is

more simplistic. Indeed, observe that in (47) the diagonal terms Onn depend on
the mean energy of the eigenstates, that is, they are not constant as in the RMT
but a smooth function of energy. Also, in the off-diagonal elements the random
fuctuations Rmn are modulated by the function fO(E, ω), which depends on both
E and ω. Yet, all information of (14) is present in (47): the ETH simplifes to the
RMT within a very narrow energy window where fO(E, ω) is constant (and, of course,
one assumes that the microcanonical average does not vary in such small energy
interval). The scale of this energy window is the so-called Thouless energy [35]. In
single-particle systems, it equals [113]

h̄D 
ETh = , (48)

L2 

where D is the diffusion constant, and L is the length of the system. If ω < ETh,
then the Hamiltonian eigenstates behave as structureless random vectors, and the
ETH and RMT coincide. Similarly, the Thouless energy gives the scale beyond
which the universal description of the RMT breaks down. In practice, this irreme-
diably limits the range of applicability of the RMT. It is clear from (48) that this
characteristic scale vanishes in the thermodynamic limit as ETh ∝ 1/L2 , which
could be interpreted as the total failure of the RMT for large systems. However,
the mean level spacing decreases faster than algebraically in many models, which
means that even a small energy window may contain, e.g., an exponentially large
amount of states that can be described by the RMT.

In the case of interacting systems, such as disordered spin chains, the physical
meaning of the Thouless energy is still not completely understood. However, there
is some convincing evidence that it might be related to a complicated anomalous
diffusion process [114]. The Thouless energy scale plays an important role in
analyses of spectral statistics and relaxation towards equilibrium in many-body
localizing systems, which we will review in Sec. 1.3.2.

1.3 exceptions to thermal behavior 

1.3.1 Integrability

A very common notion of integrable models is that they are relatively easy to
deal with, as their motion is somehow more ordered and constrained than that of
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chaotic models. Indeed, unlike chaos, which favors the thermalization process and
can be seen as a catalyst for it, the integrability of a physical system can seriously
hinder thermalization. In order to intuitively grasp why this is so, it is convenient
to briefy recall the theoretical basis of integrability. Again, it will prove useful to
separate the classical and quantum points of view.

Classical integrability

There are several defnitions for integrability in the classical world, but here we
will stick to the arguably most fruitful and common one: integrability in the sense
of Liouville [3], [4].

Liouville classical integrability.– Consider a classical system described by a
Hamiltonian, H , of n degrees of freedom, and a set of n dynamical functions,
{fi}n defned as fi : M× R → R, where M denotes the classical phase space.i=1 
The system is said to be integrable by quadratures if the following conditions are
satisfed:

• There exist n constants of motion2 (or integrals of motion) in the form of
dynamical functions, i.e., {fi, H} = d fi(q(t), p(t)) = 0, ∀i ∈ {1, . . . , n}.dt 

• The constants of motion are mutually in involution, {fi, fj} = 0, ∀i, j ∈ 
{1, . . . , n}.

• The constants of motion are functionally independent.

Under these circumstances, the corresponding differential equations of motion can
be integrated explicitly. Through a canonical transformation, the canonical posi-
tion and momentum can be mapped onto action-angle variables, and the dynamics
becomes restricted to invariant tori, where the system exhibits periodic behavior.
This is the content of the Arnold-Liouville theorem, which can be stated as follows:

Arnold-Liouville theorem.– Consider a set of n dynamical functions, {fi}ni=1,
and an integrable system of n degrees of freedom with HamiltonianH = H(q, p; t) ≡ 
E. Consider also the n-dimensional surface of integrals of motion defned by

Mf ≡ {(q, p) ∈ M / fk(q, p) = Fk}, k ∈ {1, . . . , n}, (49)

where Fk is a constant that can be taken to be system energy, E. Then, we have:

• If Mf is a compact and connected set, then it is diffeomorphic to an n-
dimensional tori, T ≡ S1 × S1 × . . . × S1 , and in a neighborhood of T ⊂ M 

P 
i=1[ 

∂f ∂g − ∂f ∂g n
2 We consider the Poisson bracket {f , g} ≡ ], where f and g are dynamical∂qi ∂pi ∂pi ∂qi 

functions.



one may introduce action-angle variables, {Ii}ni=1, {φi}ni=1, φi ∈ [0, 2π), such
that the angles φi form a basis of coordinates for Mf , and the action variables
Ik = Ik(f1, . . . , fn) are integrals of motion of the system.

• The canonical equations of the motion are

İk = 0, φ̇k = ωk(I1, . . . , In), k ∈ {1, . . . , n}. (50)

Therefore, the system dynamics can be explicitly solved by quadratures, lead-
ing to

φk(t) = ωk(t) + φk(0), Ik(t) = Ik(0), (51)

which corresponds to n circular motions with constant angular velocity ωk,
where, in general, ωi 6= ωj if i 6= j.

From the Arnold-Liouville theorem it follows that the original Hamiltonian,
H = H({qi}ni=1, {pi}n ), can be expressed in terms of the action-angle variables,i=1 
H = H({Ii}in 

=1, {φi}n ). This basis of coordinates completely trivializes the inte-i=1 
gration of the differential equations of motion. Inverting the the canonical trans-
formation from canonical position and momentum to action-angle variables, one
discovers that in the original phase space the dynamics can be reduced to a set of
n independent 2π-periodic trajectories. It is for this reason that the motion of a
classically integrable system is said to be multiperiodic.

The previous theorem provides a solid mathematical defnition for classical in-
tegrability. However, it is fair to say that as far as realistic physical systems are
concerned, integrability is the exception rather than the norm. For example, in
systems with interactions there are usually not as many integrals of motion as
degrees of freedom. This applies particularly to many-body interacting systems,
which may possess an extensive number of degrees of freedom.

Suppose that we add an integrability-breaking perturbation to a physical sys-
tem that is integrable in the sense described in this section. How is classical
chaos developed? Is it akin to a phase transition, in the sense that chaos appears
in an abrupt way as the non-integrable perturbation is increased? Or is there a
smooth crossover between integrability and chaos? In systems with a fnite num-
ber of degrees of freedom, this question is answered by the celebrated Kolmogorov-
Arnold-Moser (KAM) theorem [115]–[117]. In terms of its mathematical apparatus,
a precise formulation of this theorem is beyond the scope of this work, but the in-
terested reader may consult the classic book by Arnold [4]. The KAM theorem
establishes the conditions under which the invariant tori of a deformed Hamilto-
nian, H(I) = H0(I) + λH1(I), where H0(I) is the original, integrable Hamiltonian,
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and H1(I) is a non-integrable perturbation with a perturbation strength λ, get
gradually deformed until they completely disappear. Phenomenologically, as the
perturbation strength increases the trajectories leave the previously defned invari-
ant tori, until they densely cover the entire available phase space. As a byproduct,
this theorem may be used to defne a hierarchy of chaos, which determines the
degree of chaoticity of the system under consideration.

Intuitively, it is clear why, classically, thermalization is hampered by integrability.
The constants of motion impose a set of conservation rules that are respected at
all times during the evolution, which means that a lot of information about the
initial state is preserved. In the simple case of a one-dimensional system whose
dynamics is governed by a time-independent Hamiltonian, energy is an integral
of motion and its conservation establishes a mathematical constraint between the
position and momentum of the particle. As a consequence, no trajectory can cover
the entire phase space and therefore the system is not chaotic.

Quantum integrability

Surprising as it may seem, the defnition of quantum integrability has long been
and continues to be the center of much debate in the scientifc community (see,
e.g., [118]–[123]). That many scientists cannot seem to agree on the very defning
features of a quantum integrable system already suggests that this is not a triv-
ial matter. Generally speaking, the marked differences between the classical and
quantum worlds make it so that our notion of classical integrability is not prop-
erly suited to defne quantum integrability. For the sake of completeness, and to
illustrate the essence of the problem, below we will briefy summarize some typ-
ical defnitions of quantum integrability. We also mention that one of the main
diffculties of defning quantum integrability in a consistent way with classical in-
tegrability is that the counting of degrees of freedom varies signifcantly in both
frameworks [123].

I1. Integrability à la classique.– The frst notion of quantum integrability we
will comment on comes from an attempt to translate directly the classical defnition
into quantum terms: A system is quantum integrable if we can fnd a maximal set
of quantum operators Ôk, k = 1, . . . , D, where D stands for the Hilbert space
dimension, which (i) commute with the quantum Hamiltonian, [Ĥ, Ôk] = 0; (ii)
are mutually commuting, [Ôi, Ôj ] = 0; and (iii) are independent.

This is one of the most common defnitions for what a quantum integrable sys-
tem is, probably because it refects our classical intuition. However, it is also one
defnition that we should abandon as, mathematically speaking, it is just not use-
ful. Indeed, we recall that the spectral theorem guarantees that any Hermitian



Hamiltonian with a fnite Hilbert space dimension is diagonalizable; from such
diagonalization, we may extract D Hamiltonian eigenstates, |Eni, that can then be
used to construct the projectors Ôn = |Eni hEn|. The set of {Ôn}n clearly satisfy all
hypotheses in this defnition of integrability; yet, it is hard to see how this could
be useful, as it would immediately imply that all quantum systems are integrable.
Admittedly, one may argue that this defnition should remain useful if we were to
explicitly exclude the eigenstate projectors as valid quantum operators. Even still,
condition (iii) is mathematically impossible to satisfy as von Neumann pointed out
in his work [124], where he proves that for any set of mutually commuting Hermi-
tian operators, {Ôi}in 

=1, there exists an Hermitian operator, Ô, such that each Ôi 

can be expressed as a function of Ô: Ôi = f (Ô).

I2. Integrability as solvability.– Secondly, a system is quantum integrable if it
can be solved exactly.

By this we usually mean that its complete set of eigenstates can be constructed
explicitly (and, therefore, so can the corresponding eigenvalues). This defnition
is implicitly based on exploiting certain methods to diagonalize a Hamiltonian,
such as the Bethe ansatz, in a way that we can obtain a closed expression for the
eigenstates of the system.

I3. Integrability as harmonic oscillators.– Thirdly, a quantum system can be
said to be integrable if it can be mapped to harmonic oscillators.

The problem with this defnition is that such a mapping can be very hard to
construct, which really defeats the purpose of it.

Lastly, we will emphasize the next two defnitions of quantum integrability. Like
the previous defnitions, they also have some downsides; however, they will be
particularly relevant in the context of this thesis. Instead of relying on certain
mathematical methods that exactly diagonalize the system or focusing on its com-
mutation properties, the next defnitions are closely connected to the theory of
quantum chaos regarding the statistical behavior of the Hamiltonian eigenlevels.

I4. Integrability in terms of level statistics.– A system is quantum integrable if
its eigenlevels follow Poisson statistics.

This commonplace defnition is backed up by the semiclassical theory developed
in [125], certainly a foundational work in the study of level statistics of quantum
systems whose classical analogue is regular. Let us consider that the spectrum of
the quantum system has been previously desymmetrized, i.e., assuming that there
is a unitary operator R̂ such that R̂ĤR̂† = Ĥ , we suppose that the whole spectrum
of Ĥ has been divided into sectors characterized by distinct eigenvalues of R̂. In
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that case, Berry and Tabor showed in 1977 [125] that for generic integrable systems,
the unfolded level spacing distribution follows the simple expression

−sP (s) = e , s ≥ 0, (52)

which is indicative of a Poissonian random process. In essence, this implies that
in integrable systems the eigenlevels are uncorrelated. In the above expression,
the level spacings are derived from unfolded eigenlevels. This phenomenology
is in stark contrast with the strong correlation of eigenlevels in quantum chaotic
systems. Clearly, according to this defnition, integrability is defned in terms of
statistical features of the quantum system, which does not rely on exact solutions
at all. This method for detecting integrability is practical, as one merely needs to
numerically diagonalize the system Hamiltonian and proceed with the standard
statistical analysis of level fuctuations. Again, formally speaking, it is really not
completely satisfactory, as there very well-known quantum systems, with a classi-
cal integrable counterpart, whose level statistics does not follow (52). For example,
the eigenlevels of the one-dimensional harmonic oscillator are equiespaced and
strongly correlated, as knowledge of a single energy level is enough to obtain the
entire spectrum. For this defnition to be consistent, one should at exclude from
its range of applicability at least systems with a single degree of freedom. Su-
perintegrable systems [126], [127], for which the number of integrals of motion is
greater than the number of degrees of freedom, can also violate the Berry-Tabor
result. Conversely, leaving these technical issues aside, can we really be sure that a
system is quantum integrable if its level statistics is Poissonian? Strictly speaking,
this must be answered in the negative: Relaño et al showed in [128] that for a class
of Richardson-Gaudin models, which are integrable in the sense of defnition I1,
it is possible to adjust its internal parameters so that the level statistics follow the
GOE predictions of quantum chaotic systems, contradicting I4. This violation of
the above-mentioned Poissonian behavior may be argued to be an exception, as the
Hamiltonian parameters were fne-tuned to precisely reproduce the predictions of
the RMT; in fact, a very small interaction term was shown to be enough to quickly
drive the system to the Poissonian regime. At this point it is also worth noting
that the so-called Berry-Tabor result (52) stems from a semiclassical consideration
that only takes into account physical systems with an infnite-dimensional Hilbert
space (for example, dynamical billiards or harmonic oscillators). Nevertheless, it
is striking that there is a whole body of literature strongly suggesting that the
Berry-Tabor result should remain also valid for fnite-dimensional quantum sys-
tems as well as for systems without a classical analogue [129], to the extent that
the Poissonian behavior is today widely accepted as one of the main signatures of
integrability in many-body quantum systems. In this thesis, we will associate a



Poissonian level spacing distribution with regularity and integrability, particularly
in Chapter 2, where we consider the spectral statistics of many-body localizing
disordered spin chains.

I5. Integrability and level crossings.– Consider a quantum system depending
on a control parameter, Ĥ(λ). The quantum Hamiltonian Ĥ is integrable if it
displays level crossings.

This is one aspect that strongly helps us tell integrable quantum systems from
chaotic quantum systems, which show level repulsion instead of level crossings.
From a phenomenological perspective, this is a relatively simple way to detect if
a system is integrable, by representing its energy-level fow diagram (the λ × E 
plane). The level crossings associated to integrability occur between states charac-
terized by the same quantum numbers afforded by a certain symmetry operator,
i.e., they occur within a fxed symmetry sector3 . Yet, it is sometimes hard to as-
certain that such real crossings take place, as this must be distinguished from very
small but non-zero energy gaps. This defnition also has the shortcoming that it
may be a bit too restrictive, as it only applies to quantum Hamiltonians with a
control parameter.

The ETH has been shown to be invalid, in general, for quantum integrable sys-
tems [1]. A quite popular alternative to describe the asymptotic equilibrium values
of observables in closed integrable systems was presented by Rigol et al in [130].
This is the so-called generalized Gibbs ensemble (GGE), which we briefy revisit
below. For a detailed review, we recommend the review [131].

Generalized Gibbs ensemble.– In general, quantum integrable systems have an
extensive number of conserved quantities, whose identifcation may not be trivial
at all. The failure of the ETH in integrable systems is commonly attributed to the
presence of these charges. Explicitly, when the population distribution {|cn|2} after
a quench is suffciently narrow (which is normally the case in realistic many-body
quantum systems), the long-time average of an observable Ô, in the absence of
degeneracies, can be approximated by the standard canonical ensemble, i.e.,

X 1 hÔi = |cn|2 hEn| Ô |Eni ' Tr{Oeˆ −βĤ}, (53)
Z 

n 

where Z is the partition function Z = Tr{e−βĤ}, and the inverse temperature
β depends on the initial condition; for example, β may be such that the energy,
hψ(0)| Ĥ |ψ(0)i, is correctly reproduced. As we have mentioned, the canonical en-
semble is generically incapable of describing the relaxation dynamics of integrable

3 Because the eigenlevels of different symmetry sectors are uncorrelated, level crossings between
states with different quantum numbers can also occur in quantum chaotic systems. These level
crossings, however, are not related to integrability.
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systems. The GGE is a generalization of the canonical ensemble that accommo-
dates the additional conservation rules imposed by the constants of motion present
in integrable systems. Its density matrix can be cast in the form

P − Ĉkρ̂GGE = 1 
e k βk , (54)

ZGGE

where Ĉk denotes certain conserved charges, βk ∈ R are the the corresponding
Lagrange multipliers, and ZGGE is its partition function. In this framework, the� � 
expectation value of an observable Ô is predicted to be hÔi = Tr Ôρ̂GGE , and the
kth Lagrange multiplier is implicitly defned through the condition

� � 
hψ(0)| Ĉk |ψ(0)i = Tr Ĉkρ̂GGE . (55)

For the GGE to properly describe equilibrium states, it is imperative, as suggested
from its defnition (54) itself, that the right constants of motion Ĉk are taken into
account. For example, in [130], [132] the GGE was shown to properly describe the
equilibrium dynamics after a quantum quench of an integrable system of hard-core
bosons. For the long-time averages of the studied observables to agree with the
GGE prediction, the conserved quantities responsible for the integrability of the
model were incorporated in (54). Say our quantum integrable system has a very
large number of constants of motion Ĉk. How many of them should we include in
the GGE description? On what basis should we discard the other constants of mo-
tion? Of course, if we were to use all projectors onto the Hamiltonian eigenstates
as constants, Ĉk = |Eki hEk|, then (54) exactly describes the equilibrium states of
the system. This tautological result is not really useful, as we would have to deal
with a huge number of constants as the system size of the model is increased. To
solve this problem, in the GGE description one normally only includes constants
Ĉk with a small variance in the (narrow) distribution of populated states after the
quench |cn|2 . The GGE has been successfully employed to describe the equilib-
rium dynamics of a variety of integrable systems, such as the transverse-feld Ising
(TFIM) model [133]–[136], spin-1/2 XXZ chains [137]–[139], or bosons with contact
interactions [140]–[142].

1.3.2 Localization

As previously mentioned, thermalization is associated to the loss of information
about a system’s initial state. The reason why some closed quantum systems can
thermalize under their unitary dynamics is that part of the degrees of freedom of
the whole system act as a reservoir. One of the most important exceptions to this
behavior is found in localized systems. Here, we are interested in the localization



phenomenon that occurs in certain lattice systems with random disorder. In many
of these models, one can take the amplitude of the disorder as a tunable parameter
controlling a transition between a thermalizing phase and a localized phase; this
makes them incredibly interesting systems on which to test fundamental predic-
tions of quantum thermodynamics. The tools of quantum chaos, namely the sta-
tistical analysis of the energy spectrum and its associated RMT predictions, play a
fundamental role in the determination of the dynamical nature in these systems:
broadly speaking, in the localized regime the system behaves as an insulator with
zero DC conductivity, and the fuctuations of energy levels are as in the Poisson
ensemble for integrable systems; however, in the thermal regime the system dis-
plays ergodic behavior with metallic properties, the level statistics corresponding,
e.g., to the GOE of quantum chaotic systems. This transition is traditionally called
a metal-insulator transition. Such transitions can be found in non-interacting and
single particle models as well as in strongly interacting systems. In what follows
we will frst review the basic notion of localization as put forward by Anderson,
and then we will move on to the more modern phenomenon of many-body local-
ization (MBL). Some results of this thesis are based on the latter.

Anderson localization

The original notion of localization was developed by Anderson and is sometimes
referred to as single-particle or simply Anderson localization. In his seminal 1958 
paper [143], he discovered that, under certain conditions, transport on ‘random
lattices’ can be completely suppressed:

‘In this simple model the essential randomness is introduced by requiring the energy
to vary randomly from site to site. It is shown that at low enough densities no diffu-
sion at all can take place [...].’

To illustrate the physics of Anderson localization, we may use the paradigmatic
single-particle tight-binding Hamiltonian with linear dimension L,

L L � �X X † † †Ĥ = εnĉ ĉn + t ĉ ĉm + ĉ ĉn , (56)n n m 
n=1 hnmi 

†where ĉn and ĉn are the one-particle creation and annihilation operators acting
on site n, hnmi indicates that the summation is restricted to nearest neighbors, t 
is the hopping amplitude. Randomness is introduced through the on-site energy
εn, which can be taken as independent random numbers drawn from a uniform
distribution, εn ∼ U [−W , W ]. The disorder strength is given by W and it can be
taken as a control parameter driving the metal-insulator transition. In three or
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more spatial dimensions, if W is small enough the eigenstates of (56) are extended
with a probability amplitude for the eigenfunctions |ψk(r)|2 ∼ L−d with d the
spatial dimension, and the dynamics is diffusive: the system is in the metallic
regime. Yet, in one or two dimensions for all W or in three or more dimensions if
W is large enough, all of the eigenstates become exponentially localized in the L → 

−|r−Rk|/ξ∞ limit, eigenfunctions following the asymptotic expression |ψk(r)|2 ∼ e ,
where ξ is the localization length and Rk is the localization position of state k. Some
important properties of Anderson localized systems is that they do not satisfy the
ETH, their eigenstates exhibit area-law entanglement, there is no entanglement
spreading, and they show no dephasing and no dissipation [144].

One point that is sometimes not suffciently emphasized is that the inclusion
of random disorder in the tight-binding model (56) means that it is possible to
consider ensemble averages (actually, disorder averages coming from distinct disor-
der realizations of εn) of physical quantities, which catapults it into RMT territory.
The level statistics of (56) have been thoroughly investigated in three-dimensional
systems (because the problem is trivial for one and two dimensions: backscatter-
ing destructive interference means that there is no phase transition and Poisson
level statistics is found irrespective of W in the limit L → ∞). According to ex-
tensive analytical and numerical evidence [145]–[153], the general picture is as
follows: in fnite-L systems, the level statistics crosses over from chaotic Wigner-
Dyson statistics for W < Wc to Poisson statistics for W > Wc, where Wc is the
critical disorder strength. In three-dimensional Anderson localized systems, there-
fore, one can properly speak of a metal-insulator phase transition which in the
thermodynamic limit L → ∞ takes place exactly at W = Wc. For the specifc
Hamiltonian (56), the critical disorder has been estimated to be 8 . Wc . 8.5 
[148], [149], although the precise value can vary slightly depending on the fnite-
size scaling assumptions. The theoretical value as obtained within the transfer
matrix method is Wc = 8.25 [154], [155]. Note, however, that the numerical calcula-
tions in [156] indicate that Wc increases with spatial dimension, and for d = 2 + �,
� � 1, diagrammatic techniques show that Wc ∝ � [157], [158]. The level statistics
converge faster to the GOE and Poisson ensemble as L increases, but it becomes
approximately L-independent near Wc, where a new universality class was found
[145], [159]. Specifcally, it was found that the level spacing distribution P (s) at
W = Wc could not be well described by neither of the known RMT ensembles;
P (s) evidenced level repulsion but its asymptotic decay at s � 1 was slower than
in (42) and closer to the Poissonian behavior (52). Besides, the level spacing dis-
tribution at Wc was numerically found to very approximately intersect the GOE
(42) and Poisson (52) results around s ≈ 2 for all L. The theoretical framework for
this new universal statistics was later provided by Bogomolny et al in the series



of papers [160]–[162], which was dubbed as semi-Poisson because its behavior is
intermediate between Wigner-Dyson and Poisson:

‘We propose a plasma model for spectral statistics displaying level repulsion with-
out long-range spectral rigidity, i.e. statistics intermediate between random matrix
and Poisson statistics similar to the ones found numerically at the critical point of the
Anderson metal-insulator transition in disordered systems and in certain dynamical
systems.’

Semi-Poisson statistics follow from a short-range plasma model where the parti-
cles play the role of the eigenlevels and they interact only with their corresponding
nearest neighbors [160], [162]–[165]. Technically speaking, in the plasma model
the eigenvalues have a joint probability distribution identical to that of a one-
dimensional Coulomb gas with N + 2 particles with equilibrium positions {xi}N +1 

i=0 
in an interval of length I . The interaction between particles is mediated by a repul-
sive logarithmic potential restricted to a fnite number of neighbors, 0 < j − i ≤ h.
Restricting the interaction to frst neighbors only, h = 1, this is V (x0, x1, . . . , xN +1) = P − log(xi − xi−1) subject to the boundary condition 0 = x0 < x1 < . . . < xN <i 
xN +1 = I . In the large-N limit, this affords the continuous family of level spacing
distributions

ηη η−1 −ηs s e 
P (s; η) = , s ≥ 0, η ∈ [1, +∞), (57)

Γ(η) 
R∞ −twhere Γ(η) = dt tη−1e . Observe that (57) reduces to the Poissonian result for0 

−sη = 1, P (s; η = 1) = e . Strictly speaking, the semi-Poisson distribution is found
for η = 2,

−2sP (s; η = 2) = 4se . (58)

However, the term is sometimes used to refer to the complete family (57). If η > 1,
η−1the level spacing distribution exhibits level repulsion as P (s) ∝ s → 0 when

−ηs s → 0; however, its asymptotic decrease, P (s) ∼ e when s � 1, is much
slower than in the case of quantum chaotic systems, which follow the Wigner

β −bβ s −bβ ssurmise, P (s) = aβs e 
2 ∼ e 

2 
[63]. It is worth clarifying that the Gaussian

RMT ensembles are not included in (57) for any value of η; indeed, in the RMT
ensembles the level spacings are correlated random variables, but within the short-
range plasma model they are statistically independent. For the curious reader,
GOE, Poisson and semi-Poisson statistics are indeed very close at s = 2; their
respective values are 0.136, 0.135 and 0.147.

An important aspect of Anderson localization is that it can be thought of as an
eigenstate transition due to the existence of a mobility edge [166]–[168]. This is very
relevant from the point of view of spectral statistics. As previously mentioned,
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for values W < Wc the system (56) is in a metallic phase characterized by Wigner-
Dyson statistics. However, this is only the case if the states closer to the center
of the spectrum are considered. At a fxed value of W < Wc, there is a certain
critical energy, Ec, such that states with energy |E| > Ec are, however, localized
(the spectrum is very approximately symmetric and centered about zero energy).
The transition to the localized phase occurs when the critical energy, viewed as a
function of disorder Ec = Ec(W ), vanishes, Ec(W ≥ Wc) = 0, which is an indi-
cation that all eigenstates are localized and no ergodic region can be found in the
spectrum. The term ‘mobility edge’ is derived from the observation that electrons
with exponentially localized wave functions do not contribute to transport [169].
We anticipate that a mobility edge is also present in the many-body analogue of
the Anderson transition.

From an oversimplifed perspective, it is not hard to understand why the ran-
dom Hamiltonian (56) exhibits the above-mentioned behavior. If the disorder
strength is excessive, W → ∞, then (56) essentially behaves as a random diag-
onal matrix of the Gaussian diagonal ensemble, commonly used to model inte-
grable systems, and Poisson statistics immediately emerge. From this insulating
regime, decreasing the intensity of disorder is very close in spirit as perturbing
the integrable system in a disorganized way, which then leads to Wigner-Dyson
statistics. Of course, the Hamiltonian (56) does not display so simple a behavior,
as in random matrices one expects that in the infnite-size limit a infnitesimally
small perturbation is enough to bring the system to the chaotic regime, while in
the metal-insulator transition there is a fnite critical disorder in the L → ∞ limit.

Aside from semi-Poisson universal statistics, on which we will focus later in this
thesis, the metal-insulator transition is characterized by the fact that at the critical
point W = Wc the eigenstates are multifractal [170], [171], in other words, they are
extended but nonergodic. It turns out that this phenomenology is also present in
the many-body localization transition, so we will briefy explain what is meant by
this. Consider a quantum state |Ψi written in a certain basis with components ψn:PN|Ψi = ψn |ni. The generalized participation entropy isn=1 

! 
NX 

|2qSq = 1 
ln |ψn . (59)

1 − q 
n=1 

Observe that Sq is a q−dependent quantity. For q = 1, it reduces to the ShannonP 
entropy, S1 = − |ψn|2 ln |ψn|2 , while for q = 2 it is, up to sign, the well-knownn ��PN 4participation ratio, S2 = − ln |ψn| . In a completely delocalized (or ergodic)n=1 √ 
state as in random matrices, the components ψn = 1/ N , ∀n, and in this case Sq = 

0ln N . In a completely localized state, ψn0 = 1 and ψn = 0 if n 6= n . Therefore, Sq = 0.√ 
More generally, for a state that is equally localized on a fnite set, i.e, ψn = 1/ M 



if there are only M components ψn 6= 0, then Sq = ln M is constant. There exists
an intermediate situation where eigenfunctions are extended, because they are not
localized, but nonergodic, because not all components have the same probability.
In this case, Sq = Dq ln N , where Dq ≤ 1 is called the fractal q−dimension, and
we say that the state is multifractal. It is clear that for an ergodic or uniformly
delocalized state, Dq = 1 for all q, while for a localized state it can only be Dq ∈ 
{0, 1}, also for all q. The defning aspect of multifractal states is that Dq < 1 does
not coincide for all q. Intuitively, one can envision a multifractal state as one with
relatively high probability of being found in certain regions of the Hilbert space
and then with small but nonzero probability of being found in other regions. For
q � 1 small components ψn are strongly suppressed in (59) while for |q| � 1 small
ψn are relatively amplifed.

There are many more interesting aspects about single-particle localization, but
because they will play no role in this thesis we will omit them. The interested
reader is referred to the review [144]. Anderson localization deserves a special
place in the history of condensed matter physics; much of current research in dis-
ordered systems can be traced back to it. And even today, Anderson localization
is studied in so-called random regular graphs, in which particles interact through
neighbors located on some structures that locally look like a tree but have large
loops, and there, too, a metal-insulator transition has been found [172]–[177]. The
many-body localization transition, one of the main topics of interest in modern
quantum dynamics, is the natural, almost innocent, extension of the ideas of An-
derson.

Many-body localization

The exception to the ETH that MBL represents has attracted a lot of scientifc atten-
tion inspired by fundamental questions as well as their technological applicability.
Despite being at its infancy, there is a vast body of literature on the subject, and
there interested reader can consult the reviews [178]–[181], which give a more
detailed account than can allow ourselves here.

In a nutshell, MBL is localization with interactions, so the models of interest
are now many-body systems on a static random potential, where the interplay
between disorder and interactions gives rise to intricate phenomena. The MBL is a
hard problem of quantum statistical mechanics to which a defnite answer has not
yet been provided. Some important limitations are associated to the small system
sizes that can be accessed numerically as well as the ensuing fnite-size effects,
which in interacting many-body systems can be exceedingly strong.
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The notion of MBL has many precursors, and the idea that even interacting
electrons in random potentials can exhibit a metal-insulator transition at non-zero
critical temperature had been present in the literature (see, e.g., [182]–[190]) before
the recent explosion of interest. After the demonstration by Anderson that single-
particle systems can show robust localization, that many-particle systems can host
similar a similar phenomenon acquired the status of conjecture for a very long
time. Some of the earliest steps in this direction include the work by Fleishman
and Anderson [182], whose main fnding was that in many-body systems localiza-
tion can survive at least to lowest order in perturbation theory. In 1997, Altshuler et
al [184] proved that MBL is a robust phenomenon to all orders in perturbation the-
ory in the case of zero-dimensional systems, but the interactions effects remained
unknown for higher dimensional models. Then, in 2006 Basko, Aleiner and Alt-
shuler [191] used high order perturbation theory to show that high dimensional
systems can have an insulating phase with zero DC conductivity even at fnite
temperature. Localization was often most naturally discussed in terms of electron
(fermionic) systems but, in the context of spectral statistics, Santos showed in 2004 
[188] that in a one-dimensional Heisenberg spin-1/2 chain, which is an integrable
system, inclusion of a small disordered magnetic feld (which plays the role of the
random on-site energy in fermionic models) can give rise to an ergodic, quantum
chaotic phase, and a localized, Poissonian phase for high enough disorder; further,
that a single random defect in any chain position except for the edges can result in
a similar effect. Recently, it was suggested that this may be quite generic and not
unique to the Heisenberg chain [192]. Today, MBL is very commonly discussed
in spin chains that are mathematically equivalent to spinless fermionic systems
through the Jordan-Wigner transformation [193]; one such prototypical model is
the XXZ Heisenberg with on-site random disorder [114], [194]–[203].

Perhaps one of the best well-known early numerical works on MBL is the 2007 
paper by Oganesyan and Huse [204]. This work can be considered to be seminal
in several aspects. First, the germ of very fundamental questions about the na-
ture and even the very existence of the MBL phase transition were already clearly
formulated:

‘[...] the localization transition may be studied numerically through exact diagonal-
ization of small systems. [...] As expected, the spectral statistics of fnite-size samples
cross over from those of orthogonal random matrices in the diffusive regime at weak
random potential to Poisson statistics in the localized regime at strong randomness.
However, these data show deviations from simple one-parameter fnite-size scaling: the ap-
parent mobility edge “drifts” as the system’s size is increased. Based on spectral
statistics alone, we have thus been unable to make a strong numerical case for the presence
of a many-body localized phase at nonzero T.’



It is surprising that this extract from [204] remains to this day a succinct sum-
mary of some of the most important open questions in the feld of MBL. Namely
that, due to strong quantum correlations that are not present in single-particle sys-
tems and a strong dependence on the lattice number of sites, there is doubt as
to whether the MBL phase is physically relevant. After a bit of rewording: Does
the many-body localized phase exist? (i.e., is it not an unphysical artifact of our
restricted numerical and analytical analyses?) And if it does exist, is the way in
which it is accessed from the low disorder ergodic region a proper phase transition?
In the thermodynamic limit when the number of particles N → ∞, does the many-
body localized phase appear abruptly at a critical disorder strength, Wc, as in An-
derson localization? Or, is it rather a smooth dynamical crossover from ergodicity
to localization, which then only strictly occurs in the W → ∞ limit? The latter, of
course, would lead to the conclusion that, unlike in single-particle systems, there
is no many-body localized phase at all in infnite-size systems. It is important to
emphasize that this riddle has precipitated into an intense scientifc debate that
has not yet been closed (see, e.g., [203], [205]–[208]). For example, Panda et al
posit [206] that this question is impossible to answer because the system sizes and
times that we can numerically and experimentally reach are insuffcient to make a
solid claim; we need new theoretical methods that go hand in hand with our com-
puter simulations. Concurrently, Abanin et al [208] concluded that the transition
indicators that are commonly used in numerical studies of the MBL are severely
impacted by fnite-size efects, which can limit the accuracy and credibility of their
predictions in macroscopically large systems.

Before we delve into more technical aspects, let us return to the work [204]. A
second reason for its fame is that it introduced a modern indicator of quantum
chaos that has turned into a broadly used tool to analyze ergodicity breaking tran-
sitions through spectral statistics. In order to obtain solid results for their analysis
of the level statistics across the MBL transition, the authors wished to eliminate the
ambiguities inherent to the unfolding procedure, which is necessary to compute
the level spacing distribution P (s), or other long-range spectral indicators. Indeed,
the spin-1/2 chains that so frequently serve as testbed for MBL do not have a
classical analogue, and the unfolded level (41) is to be computed through some
heuristic approximation of the smooth cumulative level density. It is clear that this
process can be somewhat ill-defned, as there is not a unique way to do unfolding.
For this reason, Oganesyan and Huse employed the dimensionless quantity that is
today widely known as the ratio of consecutive level spacings,

sn+1 En+1 − En 
rn ≡ = , (60)

sn En − En−1 
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where {En}N denote the eigenvalues of a given Hamiltonian in ascending order,n=1 
{E1 ≤ . . . ≤ EN }, and sn is the nearest-neighbor level spacing. If the level density
is suffciently well behaved (i.e., it does not show peaks or singularities, for exam-
ple), the ratio (60) does not require any unfolding. This is because in a very small
energy window the system-specifc contributions from the density of states cancel
out, and thus one can perfectly work with the raw eigenvalues En instead of the
unfolded �n. Although the ratio given in (60) is by far the most commonly used
quantity, some variants have been proposed too [209]–[212]. The RMT description
of (60) was derived from 3 × 3 random matrices by Atas et al [213], [214],

1 (r + r2)β 
P (r) = , (61)

Zβ (1 + r + r2)1+3β/2 

where Zβ is a trivial normalization constant and β = 1, 2, 4 is the Dyson index
(for GOE, GUE and GSE). The Poisson result describing integrable systems and,
in particular, the localized phase was given already in [204], P (r) = 1/(1 + r)2 .
Several formulas for P (r) that interpolate between integrability and chaos have
been presented [215]–[218]. One of such formulas was provided by the author of
this thesis [218].

The statistical behavior of the spectrum has been and continues to be one of the
main approaches to MBL. Due to its simplicity, the ratio (60) is very frequently
used in fnite-size scaling analyses. As in the Anderson model (56), the level statis-
tics in many many-body localizing systems depends on the region of the spectrum
considered as they have a many-body mobility edge. This was suggested already in
[204] and later further analyzed in, e.g., [200], [219]–[221], although the existence
of many-body mobility edges has also been challenged by, e.g., [222]. For this
reason, to keep the spectral analysis consistent usually a fraction of levels at the
center of the band is selected and then used to compute (60). Although the partic-
ular details vary depending on the model studied, the general picture is that for
small random disorder W the average level ratio (or, rather, its bounded variant
ren = min{rn, 1/rn} ∈ [0, 1]) is very close to the GOE result hreiGOE = 0.5307(1) [213],
and as W is increased the quantity hrei displays, in fnite systems, a smooth transi-
tion to the localized phase, described by hreiP = 2 ln 2 − 1 ≈ 0.3863 [204], [213]. This
crossover has been observed in many works, e.g. [201], [223], [224], and one could
argue that it is by now common knowledge in the feld. As the linear size of the
chain L is increased, the ergodic, chaotic region survives up to increasing values
of W . In the L → ∞ limit, is there a fnite Wc at which the transition takes place?
The results of the original [204] are inconclusive in this respect, as the authors dis-
cuss that their numerical analysis does not allow them to choose between these
two alternatives: either that the drift they observe in the crossing points of the hrei 



curves for different L as a function of W decelerates and converges to a fnite Wc 

as L → ∞, or that the drift continues indefnitely, which would imply Wc → ∞ as
L → ∞ and thus no phase transition whatsoever. In fact, in very early works [186],
[187] it was already argued that Wc ∼ L, which again would be very bad news for
the MBL phase. There are several ways to perform this fnite-size scaling analysis.
For example, one could consider that the critical disorder strength can be obtained
from the scaling behavior of the W value such that the average level ratio departs
from the GOE result, or one could say that such value should be determined by
the crossing point of all hre(W )i for different L. The latter is a common criterion,
used for example in [219] for the spin-1/2 Heisenberg chain; the authors managed
to make all of the ratios curves collapse into a single universal curve with scaling
function g[L1/ν (W − Wc)], obtaining a value Wc = 3.72(6) for this model. Aside
from the level ratios, other ergodicity breaking indicators as well as several scal-
ing methods have been used to tackle this problem, see [114], [201], [203], [212],
[219], [223], [225]–[229] for details. Very recent phenomenological renormalization
group fow techniques suggest that the MBL transition exhibits certain features of
the Berezinskii-Kosterlitz-Thouless class [207], [230]–[233]. The lower cost function
approach to determine the critical disorder strength through level statistics and en-
tanglement entropy in [203] provides an estimate Wc ∝ L; the authors mention
that this need not imply that the localized phase does not exist in the infnite-size
limit as their scaling behavior is compatible with a function Wc(L) that saturates
at large L such as Wc(L) = W∞ tanh(L/L0), which reduces to a linear-L depen-
dence when L � L0. Generally speaking, certain rigorous results supporting the
existence of the MBL transition in the L → ∞ limit [234], [235] have served as a
guide for consensus but, as we can see, there is an ongoing effort to determine,
e.g., its class of universality.

Besides these generic points, there are many other intriguing aspects about the
MBL transition. The ergodic, metallic region where the ETH is verifed, hosts long-
range deviations from RMT universal results; these can be evidenced through the
Thouless energy scale as in [114], [236], [237]. This will be in our focus in one
section of this thesis. Dynamically, this side of the transition is characterized by
sub-diffusive processes and multifractal scalings [181], [238]–[240]. The interme-
diate region between full ergodicity and localization has been a common theme
of many works. Some recent important discovery is that it may be infuenced
by so-called Griffths effects, in which anomalously different disorder regions can
control the dynamics [241]–[244]; nonetheless, some authors have also challenged
this view [245]. The fow of level statistics observed in this intermediate region has
also attracted a lot of attention and several phenomenological models have been
devised to describe it. Here we mention mean-feld plasma models with effective
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power-law interactions between energy levels [201], [246], the Rosenzweig-Porter
ensemble with multifractal eigenvectors [247], [248], the short-range plasma model
[161] previously discussed for the Anderson localization and also some generaliza-
tions [212], [223]. Finally, in the localized phase the ETH is violated. This violation
can be understood by the identifcation of a complete set of quasilocal integrals
of motion, which were rigorously constructed by Imbrie [234], [235] for the disor-
dered transverse-feld Ising spin chain (see also the related works [249]–[254] on
perturbative approaches that provide approximate constructions of these opera-
tors). These integrals of motion are the building blocks of the so-called emergent
integrability of the many-body localized phase.

Because MBL violates the ETH due to the conservation of some local quanti-
ties, one may be led to believe that it is essentially similar to standard integrable
systems. It is not. One fundamental reason is that the insulating, integrable-like
behavior of the localized phase is due to the presence of a set of quasilocal inte-
grals of motion that make this phase robust. This means that a weak integrability
perturbation is not suffcient to take a system out of the MBL phase. Of course,
this reminds us of the KAM theorem that explains the transition from integra-
bility to chaos in classical mechanics. According to the KAM theorem, a weak
integrability-breaking perturbation transforms the periodic orbits on the invariant
tori into quasiperiodic orbits. For the KAM theorem to hold, the characteristic
frequencies of the classical trajectories have to be incommensurable, because if this
is the case then there are no resonant processes. In MBL systems, disorder can
be seen as a natural mechanism for incommensurability, and therefore the fact
that the MBL phase is stable under small perturbations can be understood as a
quantum KAM theorem for many-body systems.

Before we end this discussion, let us mention that although the MBL was born
as purely theoretical phenomenon, it is no longer so. Demonstrating that a given
phase is thermal is usually very hard, as one needs to show that all physical local
observables relax to the microcanonical average. However, showing that the phase
is localized is much easier: a single physically relevant observable that fails to
show ergodic evolution and does not relax is enough. MBL has been explored in
platforms of ultracold atoms, like in the famous experiment [255], where the initial
state of the system consists of particles that mainly occupy even sites. The authors
observed that above a critical detuning strength, the imbalance saturates to a fnite
value, which is indicative of localization. Other experiments dealing with one-
dimensional systems include [256] and [257]; the second provides experimental
evidence of the logarithmic entanglement spreading theorized for the MBL phase
[180]. The experiment [258] indicated that the MBL phase may exist also in two-
dimensional systems subject to two-dimensional disorder. MBL is also explored



in ultracold ion platforms. Here we mention the experiment [259], where a dis-
ordered transverse-feld Ising model developed a stationary magnetization above
the critical disorder strength. MBL has also been observed with superconducting
circuits: the authors of [260] used a modern spectroscopic technique that allowed
them to measure the energy eigenlevels of the many-body system, and therefore
they could actually compute the corresponding level spacing ratio statistics, their
results agreeing with the theoretical expectation outlined in this section.

1.3.3 Symmetry-breaking and phase transitions

Phase transitions have captivated philosophers and physicists alike since ancient
times. Simply put, the question is how a substance (matter) can adopt different
forms (phases) depending on the value of certain parameters such as temperature
or pressure, even though the nature of the constituents (atoms, particles) them-
selves remains unchanged. One paradigmatic example is found in the different
phases of water, which can be summarized in a simple phase diagram. Refor-
mulated in more technical terms, the question is how the macroscopic state of a
system, usually composed of a huge number of particles, can be understood based
on its microscopic properties. One of the frst attempts to answer this fundamental
riddle is found in the work of Greek philosopher Democritus, who is sometimes
considered as the precursor of the atomic theory [261]. Democritus hypothesized
that matter is composed of individual, indestructible units, which he called atoms,
and depending on how these atomic units ‘combine’ and ‘move in space’ the re-
sulting macroscopic object is different. Clearly, this idea is very rudimentary for
the sophisticated understanding of nature of modern science. Of course, Democri-
tus was mistaken in that atoms cannot be split into smaller units and also in the
implicit idea that the macroscopic behavior of matter can be reduced to the sum
of many individual behaviors, but it is fair to say that a very basic intuition of
the notion of phase and how the same system can display different phases was al-
ready present in his theory. Anyway, as we know today, phase transitions are to be
understood in the framework of statistical mechanics. The reason is that a phase
transition is a form of emergent behavior exhibited by a physical system in the
thermodynamic limit, i.e., in the limit when the number of particles and volume
(or n-dimensional characteristic length) go to infnity, N , V → ∞, while keeping
the density constant, N/V < ∞. In this sense a phase transition is, roughly speak-
ing, a cooperative phenomenon that cannot take place in systems with a very small
number of constituents, much in the spirit of Anderson’s famous More is different
[262]. Phase transitions denote some forms of non-analytic behavior displayed
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by certain physical systems as a tunable control parameter is varied. In classical
phase transitions, these parameters are usually quantities that describe an overall,
statistical aspect of the system, such as temperature in the case of thermal phase
transitions (TPTs). The phase transition occurs at a special value of such a con-
trol parameter, which defne a so-called critical point. Despite the inherent large-N 
character of phase transitions, their precursors can already be observed in sys-
tems with a fnite but suffciently large number of components. By studying these
fnite-size precursors, we can infer the characteristics of the phase transition in the
thermodynamic limit through some scaling hypotheses. A crucial point is that this
parameter-induced criticality generates different phases characterized by distinct
thermodynamic and dynamical properties, usually encoded in the order parameter:
a quantity that vanishes on one side of the transition and acquires a fnite value on
the other side (with some exceptions: there are some modern phase transitions for
which an order parameter cannot be defned, or at least not in a trivial way; see
below). The information contained in the order parameter is often a manifestation
of spontaneous symmetry-breaking, which is responsible for many phase transitions.
The basic idea of symmetry-breaking is that although the system Hamiltonian is
invariant under a certain unitary transformation, equilibrium states do not obey
this symmetry. This is connected to important structural changes that play an
important role in the dynamical evolution of the system and, of course, in the
thermalization process.

Although phase transitions were historically formulated in the framework of
classical mechanics, the quantum paradigm has revealed that phase transitions can
come in many surprising forms and shapes. In contrast with thermal phase transi-
tions, which are controlled by thermal fuctuations, the quantum phase transition
(QPT) [36], [263] is a phenomenon inherent to quantum mechanics and therefore
mediated by quantum fuctuations; for this reason, it is sometimes called zero tem-
perature phase transition. The excited-state quantum phase transition (ESQPT)
[264], [265], discovered in the 2000s, extends the QPT to the high-lying excited
states of a quantum system, with a non-analyticity defned by a critical energy
rather than a critical value of the control parameter; essentially, it is a quantum
phase transition deeply rooted in the classical limit of the system. Although all of
these phase transitions imply dynamical consequences, they are really static, equi-
librium phenomena, caused by some structural change of the system Hamiltonian.
In very recent years some new forms of truly dynamical phase transitions (DPTs)
[266]–[268] have been defned in which the non-analytic behavior appears in the
time domain itself, displaying some critical times.

For a detailed analysis of broken ergodicity and its relations with symmetry-
breaking, we recommend [269]. Adopting a classical viewpoint, let us highlight



some points of particular relevance. Some physical systems just happen to exhibit a
phase space that is effectively divided into disconnected components, M = ∪kMk,
with two main properties. First, each Mk has a confnement property whereby if
an initial condition is prepared within Mk then the probability that it can be found
in Mk0=k at a given observational time is very small. The confnement can be due6 
to a number of structural reasons, such as energy barriers, or some dynamical
reasons. Second, each Mk is characterized by ergodicity in relation to itself: phase
and time averages coincide within Mk, but not in the entire M. Let M̂ denote
some order parameter. Typical statistical averages of M̂ over the entire phase
space M lead to hM̂i = 0, especially if the number of disconnected components
is moderately large. However, if we restrict our averages to a single Mk, we may
very well have hM̂ik 6= 0, which is the very defnition of symmetry breaking. The
phenomenology of QPTs, ESQPTs and DPTs is related to the emergence of such
disconnected components that render the standard canonical and microcanonical
ensembles incapable of describing the actual values of observables.

In the following we will review all of these phenomena. Although they will not
play a central role in this thesis, we shall begin this trip with the thermal phase
transitions.

Thermal phase transitions

Statistical mechanics meant a change of paradigm in the way we understand the
physical reality. This theory provides a bridge between the macroscopic world,
controlled by the collective interactions of many particles, and its microscopic de-
scription. It taught us that all thermodynamic quantities, which are global in the
sense that they refer to macroscopic features that are to be understood ‘on average’,
are derived from the partition function, which contains all information about the
accessible microstates of a system [270].

Let us consider an equilibrium classical mechanical system whose dynamics is
governed by a Hamiltonian H , and let us denote the set of all possible micro-
confgurations of the particles by {q, p} ∈ M. Assuming that the system is cou-
pled to an external bath at temperature T , all thermodynamic properties are fully
describable by the partition function

Z Z ∞1 
df qdf −βH(q,p) −βE Z(β) = pe = dE ρ(E)e , β ∈ R, (62)

(2π h̄)f M −∞ 

where β ≡ 1/(kBT ) is the so-called inverse temperature (which, annoyingly, is not
temperature but energy), and kB is Boltzmann’s constant.
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In the context of quantum mechanics, the partition function (62) contains sim-
ilar information. Assuming a canonical description for simplicity, it is formally
rewritten as

X 
Z(β) = gne −βEn , β ∈ R, (63)

n 

where En now denote the nth eigenvalue of the quantum Hamiltonian Ĥ and
gn ∈ N is its associated degeneracy factor, which plays a role similar to the level
density ρ(E) in the classical (62). The expectation value of an observable Ô in the� � 
system Ĥ at temperature β is identical to hÔi = Tr Ôρ̂C where

1 −βĤρ̂C = e (64)
Z(β) 

is the canonical density matrix (compare this quantity with the GGE (54), which is
a canonical ensemble with generalized conserved quantities).

Thermodynamic quantities are then computed directly from the partition func-
tion through elementary mathematical operations. For example, the Helmholtz
free energy reads

1 
F = − ln Z. (65)

β 

Viewed as a function of temperature, the physically measurable F (β) is a non-
analytic function at the critical point β = βc. Truthfully, such non-analyticity can
be traced back to the more fundamental partition function. To the mathematical-
oriented reader this may sound shocking. Take, for example, the quantum (64).
How can a sum of analytic functions such as the exponential be a non-analytical
function at any temperature? If this does not contradict the basic notions of mathe-
matical analysis is because, as previously mentioned, phase transitions only occur
in the thermodynamic limit, and the limit function of a sequence of analytical
functions is not necessarily analytical [271].

Let us briefy introduce a more elaborate way to understand phase transitions
that will be useful for subsequent parts of this thesis. Thermal phase transitions
can be seen to originate from the zeros of a complexifed partition function where
the inverse temperature gets extended to the complex plane, β ∈ R → βe ∈ C. If
Z(βe0) = 0 at a point β0 ∈ C whose imaginary part Im(βe0) vanishes in the thermo-
dynamic limit, then the original partition function Z(β) becomes non-analytic at
β = Re(βe0), signaling a thermal phase transition. This approach to phase transi-
tions in a complex space of physical parameters was developed by Yang and Lee in
1952 [272], [273] (see also [274]–[278]), and recently they have been experimentally
observed [279], [280]. The Yang-Lee zeros are at the heart of one kind of dynamical
phase transition that we will discuss below.



Ground-state quantum phase transitions

The next type of phase transition is controlled by quantum fuctuations. They occur
at zero temperature, which means that their main signatures are to be found in the
ground-state of the system. In this thesis, the terms quantum phase transition
and ground-state quantum phase transition will be used indistinctly, in order to
differentiate these phenomena from ESQPTs.

To illustrate the relation of QPTs and symmetry-breaking, let us consider a quan-
tum Hamiltonian depending on some control parameter, Ĥ(λ),

Ĥ(λ) = Ĥ0 + λĤ1, λ ∈ R, (66)

such that [Ĥ0, Ĥ1] 6= 0. In this setting, Ĥ0 and Ĥ1 may be characterized by dif-
ferent symmetries. Note, however, that more general Hamiltonians that (66) can
be used to exemplify QPTs and its main phenomenology does not only apply to
this particular form. QPTs emerge from the competition of the ground-states of
Ĥ0 and Ĥ1 as a function of λ. Indeed, observe that at λ = 0 the properties of
the full Hamiltonian Ĥ(λ) are simply those of Ĥ0. However, as the interaction
λ is increased, so is the infuence of Ĥ1. At the critical coupling λ = λc, where
the QPT takes place, the ground-state of (66), EGS(λ), behaves as a non-analytic
function of λ. For λ > λc, the Hamiltonian Ĥ1 wins over and features of Ĥ(λ) 
are in accordance with the symmetry properties of Ĥ1. If dEGS(λ)/dλ is discon-
tinuous at λc, then the QPT is said to be of the frst order; in general, if EGS(λ) is
continuous but dnEGS(λ)/dλn is discontinuous at λc, the transition is of the nth
order (for n = 2, the term ‘continuous’, which dates all the way back to Ehren-
fest’s classifcation [281], is also used ). Thus, we see that the order of the phase
transition is assigned depending on the number of derivatives that one needs to
perform to reach the discontinuity of the ground-state. Naturally, this means that
high-order QPTs are harder to identify, but many important QPTs are of the frst
or second order. In frst-order QPTs, at the critical point there is phase coexistence
between the phases characterized by λ < λc and λ > λc. A very important phe-
nomenon associated to QPTs is the closing of the lowest-energy gap, that is, the
ground-state and the frst excited state become degenerate at λ = λc, even though
they may be non-generate for any λ 6= λc. At the critical point some systems
may develop symmetry-breaking: assuming that the Hamiltonian commutes with
a unitary transformation R̂, R̂Ĥ(λ)R̂† = Ĥ(λ), for all λ, equilibrium states are not
invariant under the action of R̂, R̂ |ψ0i 6= |ψ0i, say, for λ > λc. Yet, we empha-
size that not all QPTs are associated to symmetry-breaking. For example, in the
Berezinskii-Kosterlitz-Thouless transition [282] observed in the two-dimensional
XY model there is no symmetry-breaking whatsoever. The paradigmatic example
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of a system with a symmetry-breaking QPT is found in the quantum Ising model
of quantum magnetism [36], whose Hamiltonian is

N N 

Ĥ = h σ̂i
z − λ σ̂i

xσ̂j
x , (67)

i=1 hiji 

where h > 0 is a dimensionless coupling and the constant λ ∈ R defnes the
type of magnetic interaction: if λ > 0, the interactions are ferromagnetic, if λ < 0 
they are antiferromagnetic, and if λ = 0 then (67) reduces to a trivial many-body
non-interacting system. Let us assume that λ > 0. The operators σ̂α are the well-i 

β γknown Pauli matrices, with commutation relations [σ̂j
α , σ̂j ] = 2iεαβγ σ̂j (α, β, γ ∈ 

{x, y, z}), where εαβγ is the Levi-Civita symbol. Clearly, the Hamiltonian (67) is
of the form (66), as [σ̂i

z , σ̂jx] 6= 0 if i = j. The model describes the interaction of
1/2-spins placed in a regular lattice of with linear dimension N (the lattice can also
be multidimensional, i.e, a hypercube). It is assumed that at each position of the
lattice there is exactly one spin. The interactions between spins of different sites
are restricted to nearest-neighbors only (hence the sum with hiji). Observe also
that (67) is invariant under a 180 degree rotation around the z-axis, which means

X 

that it commutes with the parity operator

X 

N 

Π̂ = σ̂i
z , [Ĥ, Π̂] = 0, (68)

Y 

i 1= 

for all h. Observe that Π̂ is a Z2 symmetry of the kind discussed in Sec. 1.1.2, and
thus its two eigenvalues, ±1, can be used to label the system eigenstates. Physically,
h can represent a uniform magnetic feld in the z-direction, and it can be taken as
a control parameter. The model (67) has a QPT at the critical feld strength hc = λ.
How does the ground-state energy, EGS(h), vary as a function of h?

When h = 0, (67) is diagonal in the eigenbasis of σ̂x and it reduces to the classicali 
Ising model. In this classical model, without quantum fuctuations, the existence
of a TPT at a critical temperature βc in two dimensional lattices was established
by Onsager in 1944 [283]; there is no TPT in one-dimensional chains, as Ising
himself proved in his doctoral thesis a century ago, in 1924 (unbelievably enough,
such thesis is unpublished and thus cannot be cited!) But here we are working
at zero temperature. According to our choice of parameter signs, the system is
ferromagnetic and the minimum energy corresponds the confguration where all
spins are pointing upward or downward in the x−direction,

YYN N 

|GS(h = 0)i = |↑ii , or |GS(h = 0)i = |↓ii , (69)
i=1 i=1 



where |↑ii and |↓ii are the eigenstates of σ̂x with eigenvalue 1 and −1, respectively.i 
This ground-state is degenerate because both confgurations have the same energy.
This is the ferromagnetic or ordered phase of the model, which is defned by a non-
zero value of the average magnetization along the x−direction,

NX1 
M̂ = σ̂i

x . (70)
N 

i=1 

In the ferromagnetic phase and in the thermodynamic limit, the ground-state has
hM̂i = ±1 (depending on which of the two ground-states are considered as well
as the parity of the number of particles). Before we move on, let us have a word
about the degeneracy of the ground-state in this phase. Strictly speaking, at fnite
N such degeneracy is only exact when no magnetic feld is applied, h = 0. Turning
on the magnetic feld, even if it is maintained below its critical value, 0 < h < 
hc, will inevitably break this degeneracy, so the ground-state will become unique.
Nevertheless, it can be rigorously shown that in the infnite-size limit N → ∞ this
ground-state degeneracy survives to any fnite order in perturbation theory in h < 
hc [36]. This is a consequence of the conservation of the parity (68): in the infnite-
size limit N → ∞, there is no tunneling between the majority of up and down spin
sectors for any small non-zero h. Despite this, if an infnitesimally small external
perturbation is applied to (67), the system will automatically choose one of the
two ground-states, and this is what is meant by symmetry-breaking in this context.
As mentioned, not all QPTs need to be accompanied by symmetry-breaking; it is
a system-dependent feature intimately related to its conserved quantities, such as
parity.

If h 6= 0 the Hamiltonian is infuenced by the terms σ̂i
z , whose effect is to fip

the Ising spins. As a consequence of this term, the Hamiltonian (67) is no longer
diagonal in the eigenbasis of σ̂i

x , but it is also not diagonal in the eigenbasis of σ̂z:i 
the magnetic feld along the perpendicular direction to the alignment of spins is
the source of quantum fuctuations. It is clear that in the limit h � 1 the magnetic
feld term dominates and, up to corrections of order 1/h, the ground-state is given
by

� �NY |↑ii + |↓ii|GS(h → ∞)i = √ , (71)
2

i=1 

In contrast to the case of h = 0, this ground-state is unique, and the corresponding
average magnetization vanishes: hM̂i = 0. For this reason, this is called the param-
agnetic or disordered phase. As we can see, the magnetization (70) acts as an order
parameter of the QPT.
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Let us mention that in some cases the Ising Hamiltonian (67) is rewritten so
that the spins are aligned along the z−direction rather than x−direction, i.e., σ̂zi is
replaced by σ̂xi and viceversa. Naturally, the results here reviewed do not change
qualitatively as such transformation is a trivial rotation. In passing we note that,
even though it is not the most commonly used model for this purpose, the Ising
chain (67) can display MBL if the magnetic feld is made site-dependent (not global)
and random, which goes on to show the versatility of the model [178]–[181].

There are some other aspects of QPTs that we will not treat in this thesis, such
as the universality of critical exponents in second-order phase transitions or the
theory of the renormalization group, because they will play no role in our results.
If the reader is interested in these related subjects, we invite them to take a look at
the review by Fisher [284] or the well-known book by Stanley [285].

One should suspect that the phases originated in a QPT of the type of the Ising
model should behave quite differently. This is already suggested by the behavior
of the average magnetization (70), but what about thermalization? In the Ising
model, we have seen that the ground-state of the ordered phase is symmetry-
broken, because in the thermodynamic limit two states of opposite parity attain
the minimal energy value allowed by the Hamiltonian. However, in the disordered
phase this degeneracy is lifted, i.e., the Z2 symmetry is restored. Yet, one may
argue that this effect should not be exceedingly problematic for thermalization: for
example, one normally prepares an initial state with the ground-state of an initial
Hamiltonian, and then takes it out of equilibrium through a quantum quench. The
quench takes the system out of equilibrium because it almost always populates a
very large number of states of the fnal Hamiltonian. But if only the ground-state
is degenerate then, statistically, thermalization may be controlled by the other non-
degenerate states which heavily outnumber the isolated ground-state. While we
make little to no objection to this argument, we pose the following question: what
if we were to extend the degeneracy to high-lying excited states of the system at a
fxed h within the symmetry-broken phase? Clearly, if an extensive energy region
is composed of degenerate eigenlevels, then there is no doubt that thermalization
can be severely impacted. This hypothetical structure of states may look fne-tuned
or unrealistic, but it is defnitely not wishful thinking: many systems which exhibit
ESQPTs, discussed in the next section, display this precise behavior.

Excited-state quantum phase transitions

Despite its incredible amount of literature and the many physical effects that have
been shown to connect to ESQPTs, its study is defnitely a very young discipline
which has only barely surpassed adolescence. Some precursors of the ESQPT con-



cept were studied already in the 1990s by Caru and Rusu [286], [287], who focused
on the consequences of a phase-space separatrix in systems with a single effective
degree of freedom, and then by subsequent studies in the content of many-body
quantum physics [288]–[290]. In the mid 2000s, new form of non-analytic behav-
ior was observed in the spectrum of certain nuclear collective models by Cejnar,
Heinze, Macek et al [291]–[293]. These singular quantal spectra were the germ of
the foundation of ESQPTs, later formalized by Caprio, Cejnar and Iachello in their
2008 seminal paper [264]. In the abstract of this work we fnd many keywords in
the feld of ESQPTs:

‘Phenomena analogous to ground-state quantum phase transitions have recently been
noted to occur among states throughout the excitation spectra of certain many-body
models. These excited state phase transitions are manifested as simultaneous singularities
in the eigenvalue spectrum (including the gap or level density), order parameters,
and wave function properties.’

Indeed, today the term ESQPT is normally used to refer to several kinds of
non-analytic behavior in the excited spectrum of certain infnite-size isolated quan-
tum systems. This is in contrast with the QPT that typically mainly affects the
ground-state of the model, showing non-smooth behavior as a function of a con-
trol parameter λ. In the ESQPTs, the non-analyticity appears at a given excitation
energy, yielding a critical energy Ec of the ESQPT. The defning signatures of the
ESQPT are discontinuities in the level density ρ(E) or in some of its derivatives,
df ρ(E)/dEf , where f denotes the number of ‘collective’ degrees of freedom of
the system. If the system has f degrees of freedom, then the singularity appears
in the (f − 1)th derivative of ρ(E), while lower order derivatives are perfectly
continuous [264], [294]. In particular, this means that f = 1 systems exhibit the
strongest signatures of ESQPTs, already in the level density itself. It also suggests
that searching for ESQPT-like behavior in systems with large f can be increasingly
diffcult. Normally, the level density as obtained from Gutzwiller’s trace formula
(38) is enough to observe the precursors of an ESQPT at a fnite system size, but
the behavior of the oscillatory component of the density of states has been ana-
lyzed also for f = 2 systems by Stránský et al [295]. In its current mathematical
framework, ESQPTs are rooted in instabilities of the classical Hamiltonian fow, i.e.,
they are a quantum manifestation of the unstable stationary points of the classical
equations of motion. Depending on the kind of stationary point, the singularity
appearing in the density of states can be, for example, logarithmic or an abrupt
discontinuity similar to a step function; a classifcation of the nature of ESQPTs for
arbitrary degrees of freedom was constructed by Stránský and Cejnar [296].

The above discussion helps to understand why the vast majority of systems
where ESQPTs have been observed are so-called collective or fully-connected systems
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for which the quantum degrees of freedom can be described through a collective
or global algebra that encompasses all the individual algebras associated with
each constituent. A paradigmatic example is the fully-connected transverse-feld
Ising model, where the nearest-neighbors interactions (see (67)) are discarded in
favor of collective interactions where each spin interacts with every other in the
chain. This effectively decouples the number of degrees of freedom, f , from the
number of particles of the system, N , in such a way that even in the infnite-
size limit N → ∞, f remains fxed. The collective description of these systems
has important consequences: it is often said that in these models the infnite-size
limit N → ∞ leads to the classical limit, h̄ → 0, and therefore the properties
of large quantum collective systems can be explored through some sort of mean-
feld limit affording a classical Hamiltonian. It should be noted, however, that
there are certain properties of quantum collective systems that cannot be captured
by classical limits (notably, effects related to entanglement or quantum coherence,
which have no classical analogue whatsoever, and also purely quantum fnite-size
effects); nevertheless, many important aspects, such as the level density or the
dynamics of observables, can certainly be explored classically, which turns the
classical limit into a powerful tool to describe the quantum system in the infnite-
size limit. Another consequence of the ‘collectivization’ of these quantum models
is that they do not obey standard thermodynamics in many ways. The reason is
that their Hilbert space dimension grows much slower than exponentially with
the number of particles, 2N , and the microcanonical and canonical ensembles do
not agree in the limit N → ∞. Even the equipartition theorem is violated as the
average energy per degree of freedom diverges when N → ∞. Thermodynamic
analyses in these collective systems have been reported in, e.g., [297]–[300].

Viewed as a function of a control parameter, one may defne a critical line Ec(λ) 
where the ESQPT occurs at each value of λ. In this regard, the effects of ESQPTs
also prominently appear in the so-called level-fow diagram, i.e., a two-dimensional
graph where all or many eigenvalues are represented as a function of λ, as illus-
trated by Cejnar and Stránský in [301]. This way to detect instabilities in the level
dynamics nicely connects with previous ideas of Peres and his test for chaotic
dynamics, in which diagonal expectation values of observables, Onn, are repre-
sented as a function of energy [302]: the Peres lattices. A common signature of
ESQPTs in the level dynamics of low-f systems is the clustering of eigenlevels
around a certain excitation energy well above the ground-state energy. The critical
line Ec(λ) quite frequently (but not always) demarcates the limits of two spectral
regions where the eigenlevels behave qualitatively differently: ‘below’ the ESQPT,
E < Ec(λ), and ‘above’ the ESQPT, E > Ec(λ) (although this distinction is arbi-
trary and for the sake of concreteness). As a consequence, in many systems the



ESQPT is also responsible for the generation of phases with well differentiated
dynamical features, which we will briefy discuss below. In many systems, the
level-fow diagram reveals that the critical energy can only be defned for values
of the control parameter larger than a specifc one, i.e., that ESQPTs are not found
throughout the entire plane λ × E. Very commonly, the critical line Ec(λ) con-
verges to the ground-state at at value of λ that exactly coincides with the QPT
critical coupling, Ec(λ = λc) = EGS(λc), and for λ > λc the curve Ec(λ) departs
from the ground-state, its functional form being system-dependent. In these cases,
the QPT is an open door to the ESQPT domain. In this sense, we like to say in
the community that, loosely speaking, an ESQPT is an extension of the QPT sin-
gularity to excited states. But strictly speaking this picture does not generically
hold: ESQPTs and QPTs are independent phenomena, stemming from fundamen-
tally different mechanisms, and ESQPTs can occur even if the Hamiltonian does
not undergo a QPT at all. Some explicit examples were studied by Relaño et al [29],
[303] and Stránský et al [304].

In the early days, ESQPTs had been mainly identifed in certain collective sys-
tems describing nuclear behavior (see, e.g., [291]–[293]). These models were all
integrable. Soon it was revealed that ESQPTs are not unique to integrable models
but they can perfectly well show up in non-integrable or even chaotic systems. The
connections between ESQPTs and chaotic dynamics were explicitly considered for
the frst time in 2011 by Pérez-Fernández et al [94] using the Dicke model, an atom-
feld collective system where the spin degrees of freedom are coupled to a classical
electromagnetic feld, and then further explored by Bastarrachea-Magnani et al in
the sequence of papers [95], [305]–[307] dealing with the same model. Previous
attempts to connect chaoticity with some form of phase transition, in particular
with the ground-state QPT, had been presented by Emary and Brandes [96], [308].
Despite the apparent relationship between the instability associated to chaos and
ESQPTs, it seems that they can occur independently and whether or not there
is a fundamental reason to believe that they should be linked is still unknown.
Broadly speaking, the sharp signatures of ESQPTs can become blurred precisely
due to chaos [309], [310].

ESQPTs can be understood as spectral phase transitions whose effects directly
manifest in the energy levels of a quantum system. However, the ensuing spectral
non-analytic behavior is directly transferred to the expectation value of observables
in the Hamiltonian energy basis: these, too, can develop ‘peaks’ in the infnite-size
limit (for f = 1 systems), which is another static signature of ESQPTs [265]. This
has been very frequently observed in a variety of different collective systems and
effectively constitutes an alternative method to search for low-f ESQPTs [94], [309],
[311]–[319].
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The above contains a discussion of the basic features of ESQPTs, but so far they
have been purely static, either concerning the energy values or the expectation
values of observables in the Hamiltonian eigenbasis. In recent years, so many
dynamical consequences of ESQPTs have been reported that we do not intend to
review them in detail. The anomalous quantum decoherence at the ESQPT was
studied by Relaño, Pérez-Fernández et al [320], [321] and then by Kloc et al [322],
with the conclusion that, depending on the out-of-equilibrium protocol, the ESQPT
can either stabilize or speed up its decay to equilibrium. General implications of
ESQPTs for system dynamics, localization and the structure of eigenstates close
to the transition have been presented by Santos, Pérez-Bernal et al in [317], [323].
Symmetry-breaking equilibrium states reside in some collective models where one
of the phases induced by the ESQPT is composed by degenerate pairs of eigen-
levels, originally observed by Puebla et al [313], [324]; recently, thorough investiga-
tions and formalization of the nature of such symmetry-breaking states and their
equilibration properties have been put forward in the series of papers by Corps et
al [29], [325]–[331], which constitute part of the results of this thesis. ESQPTs can
give rise to irreversibility without dissipation [332] and reversible quantum infor-
mation spreading [333]. They have been investigated in terms of their classical and
semi-classical phase space dynamics by Wang and Pérez-Bernal [334], [335] and by
Kloc et al [336].

We should emphasize that although ESQPTs play an important role in collective
systems with a small number of degrees of freedom, it is a relatively widespread
transition that has been found in many different models from quite diverse areas
of physics. These include molecular physics with, e.g., the vibron model describ-
ing the bending dynamics of certain atomic systems [337]–[345], quantum optical
physics with the Dicke, Tavis-Cummings and related algebraic atom-feld systems
[95], [297], [304]–[307], [312], [314], [315], [322], [324], [332], [346]–[351] and, in gen-
eral, condensed matter physics with, e.g., the fully connected transverse-feld Ising
model or the two-site Bose-Hubbard model [303], [321], [352]–[360]. Only recently,
Cejnar, Stránský et al have provided extensions of the ESQPT concept to resonant
states in the continuum [265], [361], almost concurrently with the observation of
ESQPT-like behavior in open systems weakly coupled to an environment whose
dynamics is described by a quantum Liouvillian by Rubio-García et al [362], with
a contribution of the author of this thesis. On the experimental side, common sig-
natures of ESQPTs have been observed in some of the above systems [337], [345],
[363]–[365], and the formation of a degenerate phase and associated dynamics on a
Kerr resonator has been reported in the experimental simulation by Chávez-Carlos
et al [366].



We will end this section with an example illustrating a simple but versatile col-
lective system where ESQPTs have been studied. But before that, let us give some
fnal considerations about ESQPTs. The frst issue we want to address is how
ESQPTs and QPTs can have very different phenomenology, even though they are
certainly intertwined in many systems. One important difference is that it is not
possible to speak of frst order or continuous ESQPTs, as we do with QPTs. This
is motivated by the level crossings and clustering that often demarcate the ESQPT
critical line and which can be observed in the level-fow diagram. In some sys-
tems such crossings are sharper than in others (normally as a consequence of the
number of degrees of freedom or the presence of quantum chaos), so perhaps this
could be used as a guide for classifcation. Unfortunately, this is an ill-defned
approach because the only guaranteed signature of ESQPTs is a non-analyticity in
the level density, which may occur even if no such crossings of levels appear in
the level-fow diagram. A second question is whether ESQPTs have an associated
order parameter. The answer is again negative, as order parameters are usually
connected to symmetry-breaking, but ESQPTs stem from certain classical instabil-
ities in the Hamiltonian fow, which is a fundamentally different origin. In fact,
there are many models where ESQPTs do not break any symmetry, such as in the
Tavis-Cummings model. Nevertheless, there are also systems where ESQPTs do
break a global Hamiltonian symmetry, and in those cases it is usually possible to
defne an order parameter (one example will be given below). Yet it is important
to note that order parameters are not in general applicable to ESQPTs.

In ending this section, let us momentarily go back to the nearest-neighbor trans-
verse-feld Ising model (67). This is a many-body system with fnite-range interac-
tions as the spin couplings in the interacting term are of the two-body type, but it
can be turned into a collective many-body system if we allow all-to-all couplings in
the spin interaction terms. The Hamiltonian is then

N NX Xh λ 
Ĥ = 

2 
σ̂i
z − 

4N
σ̂i
xσ̂j

x . (72)
i=1 i,j=1 

P 
Observe that the nearest-neighbors sum hiji has been removed from the secondP 
term, and it is now global instead: i,j . The normalization factor 1/N has been
added to this term in order to ensure that the Hamiltonian (72) is an extensive
operator of N , i.e., that the energy per particle E/N is an intensive quantity. The
remaining factors of 1/2 and 1/4 have been introduced for notational convenience
that will now become clear. The Hamiltonian (72) is already a fully-connected
system, but it is written in terms of the individual spin operators σ̂i

α . Introducing
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P1the so-called collective spin operators, Ĵα ≡ σ̂α (α = x, y, z) allows us to2 i i 
rewrite it in the more familiar form

λ 
Ĥ = hĴz − Ĵ2 . (73)xN 

This Hamiltonian is a particular case of the Lipkin-Meshkov-Glick (LMG) model
[367]–[369]. Although it was originally formulated in the fermionic language as a
schematic example of the nuclear shell model, it has been revealed as a powerful
testbed for a range of different physical phenomena outside of nuclear physics,
including quantum phase transitions (see, e.g., [320], [356], [370]–[373]), and it
has recently been experimentally realized with cold atoms [374]. Observe that the
Hamiltonian (73) conserves the total spin operator Ĵ2 ≡ Ĵ2 + Ĵ2 + Ĵ2 , [Ĥ, Ĵ2] = 0,x y z 
for any values of its parameters. This conservation rule allows us to separate
the Hamiltonian matrix in symmetry sectors according to the eigenvalues of Ĵ2 ,
h̄2j(j + 1), with j = 0, . . . , N /2. We normally focus on the maximally symmetric
sector, defned by the condition j = N /2, which contains the ground-state of the
full Hamiltonian; the dimension of this sector is D = 2j + 1 = N + 1. This is to be
compared with the total Hilbert space dimension, which is DT = 2N . Due to this
heavy Hilbert space dimension reduction, it is possible to exactly diagonalize very
large system sizes, sometimes effectively very close to infnite-size limit N → ∞ or
j → ∞ (these two quantities are indistinctly used in the literature as infnite-size
limit parameters). Similarly to its fnite-range counterpart (67), the LMG model is
invariant under a parity transformation, which in this case takes the form

ˆ iπ(j+Ĵz )Π = e . (74)

Clearly, it is a Z2 operator whose two eigenvalues ±1 are used as quantum num-
bers to assign to the eigenvalues of Ĥ according to Π̂ |En±i = ± |En±i. The LMG
model has a QPT at the critical coupling strength λc = h. For λ > λc, it also
exhibits an ESQPT at the critical energy Ec = −hj. In order to keep discussion
brief, the classical limit of the LMG model will be included for completeness in the
corresponding results section of this thesis, but for now let us simply mention that
it has a single classical degree of freedom and, thus, its level density ρ(E) shows a
singularity, in this case logarithmic, at E = Ec. We will make extensive use of the
LMG model in many parts of this thesis because the spectral phases generated by
the ESQPT are of the type that we are interested in. Specifcally, in the infnite-size
limit, for λ > λc and E < Ec the LMG model exhibits a full symmetry-broken
phase where the eigenvalues of opposite parity are degenerate, En+ = En−, while
for λ < λc or λ > λc and E > Ec the degeneracy is lifted and it shows a symmetry-
restored phase, En+ 6= En−. The origin of such degeneracies can be interpreted



through the geometry of the classical phase, which is of the double-well potential
kind.

Dynamical phase transitions

The previous forms of non-analytic behavior that a closed quantum system can
exhibit, as we have mentioned, are really equilibrium phase transitions caused by
some sudden structural changes of the Hamiltonian eigenstates and eigenvalues.
Of course, because these are crucial ingredients of the Schrödinger equation, which
control the dynamics, these static changes have dynamical consequences. In recent
years, two other kinds of phase transitions have received a great deal of attention.
These are called, in general, dynamical phase transitions, although the term is
quite broad. There are two especially relevant DPTs, sometimes referred to as DPT-
I and DPT-II, which we discuss in this thesis. DPTs-I and DPTs-II have in common
that they are both usually revealed by the non-equilibrium dynamics of a closed
quantum system. Although some physical models can display both DPTs, such as
the fully connected transverse-feld Ising model [326], [327], [375], [376] or the Rabi
model [377], a fundamental mechanism that offers some simultaneous explanation
for them is still lacking. Nevertheless, some connections between DPTs-I and DPTs-
II have been proposed [370], [372], [375], [376], [378]–[381].

(i) Type I dynamical phase transitions: order parameters.- Consider a Hamiltonian de-
pending on a control parameter, Ĥ(λ), and suppose that an initial state is prepared
at an initial λi. Frequently, this initial state is simply the ground-state of Ĥ(λi).
Then, we perform a quench, λi → λf , and measure the dynamical evolution of
a suitably chosen physical observable, hÔ(t)i, in the time-evolving wavefunction
at Ĥ(λf ). After a transient time of non-universal behavior, the system will enter
the so-called pre-thermalization regime [382], [383], when observables approach a
long-lived steady state. We may then measure the value of this steady state, and
repeat the same experiment, for example, with the only modifcation of the fnal
value of the quench parameter, λf . We will then have obtained a curve hÔi(λf ) of
the steady state of Ô as a function of λf . In a DPT-I, hÔi(λf ) becomes non-analytic,
in the infnite-size limit, at a certain critical point, λf ,c. Note, however, that other
non-equilibrium protocols are possible, e.g., one may change λi rather than λf . In
this sense, DPTs-I are characterized by a non-analytic point of a non-equilibrium
order parameter, and the critical point separates two dynamical phases [365], [374],
[384]–[392]. In many realizations of DPTs-I, these dynamical phases can be termed
ordered and disordered, similarly to the phases often generated by a QPT. Yet, we
emphasize that DPTs-I are fundamentally different from QPTs in that the critical
point for DPTs-I in general does not coincide with the QPT critical point [387]. In
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fact, for DPTs-I such critical point depends on the initial state that is taken out of
equilibrium itself, as different initial states give rise to different population proba-
bilities in the post-quench Hamiltonian, which leads to a different average energy.

A particular class of systems where DPTs-I have been abundantly studied is that
of models with short- or infnite-range interactions and that undergo a QPT; for
other kinds of models that can support DPTs-I, the reader is referred to the recent
review by Marino et al [266]. In our chosen class of systems, two ground-state
phases are generated as a consequence of the QPT: in one phase, a discrete Z2 

symmetry is broken, and in the other it is restored. A quench from the symmetry-
broken ground-state (the ordered phase) can induce two completely different dy-
namical patterns. If the fnal state ends up in the symmetry-breaking phase of the
fnal Hamiltonian, then the instantaneous order parameter displays oscillations
around a broken-symmetry effective state, i.e., the corresponding steady state is,
in general, different from zero (although it can also assume such value). However,
if the fnal state ends up in the symmetry-restored phase, the oscillations of the or-
der parameter occur around a symmetric state, which means that its steady value
is zero. Models of quantum magnetism are very often employed to study DPTs-I,
and in this case the order parameter is the total magnetization along the direction
where the spins are aligned.

In this thesis, we will also work with this class of models, and we will analyze
the role played by ESQPTS and the ensuing degenerate spectral phases in the dy-
namical evolution of the non-equilibrium order parameter. This nicely connects
with the notion of equilibration in models with an extensive number of degen-
eracies which, in our models, appear on one side of the ESQPT. For such highly
degenerate systems, the long-time average cannot be described through the mi-
crocanonical ensemble, and thus one cannot properly speak of ‘thermalization’.
However, the dynamics may still reach long-lived steady states that are similar, at
least in spirit, to thermalized states. Motivated by the phenomenology of DPTs-I,
we will develop a framework to describe such states through general symmetry
arguments.

Type II dynamical phase transitions: singularities in return probabilities.- The second
kind of DPT, termed DPT-II, is a different from of non-analytic behavior appear-
ing in closed systems that evolve under coherent, unitary dynamics [267], [268].
It is defned by singularities certain return probabilities, associated with an in-
stantaneous loss of memory about the initial preparation of the system. DPTs-II
have been observed in numerous systems, such as [268], [280], [371], [393]–[405].
A DPT-II is a purely dynamical effect that has no equilibrium counterpart [403],
[406], [407], and therefore it may be interpreted as a phase transition in time. Like
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DPTs-I, DPTs-II show a strong dependence on the initial conditions [371], [372],
[396].

The notion of DPT-II dates back to the 2013 seminal work by Heyl et al [393],
whose achievement was to formally extend the thermal phase transition, driven,
of course, by temperature, to the quantum dynamical regime:

‘A phase transition indicates a sudden change in the properties of a large system. For
temperature-driven phase transitions this is related to nonanalytic behavior of the free
energy density at the critical temperature [...] We show that a close analogue of this
behavior can occur in the real time evolution of quantum systems, namely nonanalytic
behavior at a critical time. We denote such behavior a dynamical phase transition
[...]’

Let us again consider an initial state that is taken out of equilibrium by a quench,
λi → λf . Then one may consider the overlap amplitude

G(t) = hΨ0(λi)| e −iĤ(λf )t |Ψ0(λi)i (75)

of a given initial state, |Ψt=0(λi)i, with itself after unitary evolution following a
quench, Ψt(λf ) = e−iĤ(λf )t |Ψ0(λi)i. DPT-II are defned by non-analytical times,
tc, of G(t) or, equivalently, of its corresponding return probability:

SP(t) = |G(t)|2 . (76)

The quantity in (76) is also called survival probability, as it measures the probability
that the time-evolved state ‘recalls’ its initial value at a given time t. It is worth
mentioning that the survival probability plays an important role in many areas of
non-equilibrium many-body quantum physics, including quantum chaos and its
relation to thermalization (see, e.g., the series of papers by Santos et al [408]–[412]),
although in this thesis we will not treat these other aspects. In fact, DPTs-II fre-
quently appear in the short-time dynamics, i.e., before the system has equilibrated.

The key idea of [393] is that if the return amplitude (75) is seen as a function
in the complex plane through the identifcation G(t) → G(z ≡ it), then it is
formally reminiscent of the partition function in equilibrium statistical mechan-

−βĤics, Zβ = Tr e , which is responsible for the free energy per particle, F /N = 
−(1/βN ) ln Zβ , becoming non-analytic at a critical temperature βc. Extending fur-
ther this analogy, Heyl et al proposed a dynamical quantum quantity that may play
the role of the equilibrium free energy. This is known as the rate function, and it
can be written

1 
reN (t) = − ln SP(t), (77)

N 
where N is the number of particles of the system. The rate function (77) is by
far the most common indicator of DPTs-II. In the infnite-size limit of many one-
dimensional systems, in a neighborhood of t = tc the rate function behaves as
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r(t) ≡ limN→∞ rN (t) ∼ |(t − tc)/tc| which, graphically speaking, is a ‘kink’. We
note that these kinks are local maxima of rN (t), which in turn correspond to min-
ima of the survival probability (76). This phenomenon was exemplifed in [393]
with the transverse-feld Ising model, as its exact solvability allowed the authors
to compute the exact values of the critical times. Most systems cannot be solved
exactly, and therefore exact diagonalization is used to numerically study the sin-
gularities in the rate function.

In the case of systems that have a symmetry-broken phase with degenerate eigen-
values, the study of DPTs-II is undertaken with a slightly different quantity, as
proposed by Heyl in [394] for the XXZ chain. For concreteness, let us assume that
a Z2 parity symmetry is broken in a certain phase of a system (such as one of the
phases induced by an ESQPT), although the argument can be trivially generalized
for a Zn symmetry. The initial state |Ψ0(λi)i can be chosen to be a general superpo-
sition of the two symmetry-broken lowest-energy eigenstates of Ĥ(λi), |E0,±(λi)i.
After a quench, DPTs-II manifest in the critical times of the parity-projected return
probability (PPRP),

2 −iĤ(λf )t |Ψ0(λi)iL(t) = hE0,+(λi)| e 
(78)

−i ˆ 2 
+ hE0,−(λi)| e H(λf )t |Ψ0(λi)i . 

Let us redefne
2 

L±(t) = hE0,±(λi)| e −iĤ(λf )t |Ψ0(λi)i (79)

so that L(t) = L+(t) + L−(t). Here, L±(t) are the return probabilities to the
positive-parity and negative-parity projections of the initial state. Analogously to
(77), the corresponding rate function is

1 
rN (t) = − ln L(t). (80)

N 

To understand the meaning of DPTs-II in symmetry-breaking models, it is conve-
nient to note that each of the terms in the PPRP, L±(t), follows a law [394], [413]

−N Ω±(t)L±(t) = e , (81)

where Ω±(t) is an intensive (N−independent) quantity. The argument put forward
by Heyl in [394] is that DPTs-II occur whenever the functions Ω±(t) intersect, i.e.,
that the critical times satisfy Ω+(tc) = Ω−(tc). One of the results of this thesis
is that in spectral phases with exact degeneracies, such crossings are impossible
[326], [327], so this mechanism does not explain the kinks observed in the rate



functions of certain collective models. As we will see, in this case the origin of the
kinks is to be found in the full survival probability (76) extended to the complex
plane, an idea that was already present in [393].
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Part II

RESULTS



2 BREAK ING ERGOD IC I TY V I A
D ISORDER

As discussed in 1.3.2, many-body localization constitutes a robust mechanism
for ergodicity breaking, leading to the loss of thermal behavior in disordered
many-body quantum systems. There is an on-going debate dealing with the exis-
tence and stability of the many-body localized phase in the infnite-size limit and
whether the numerical and experimental tools presently available are well suited
to investigate this phenomenon. Although in this preliminary Chapter we do not
aim to provide a defnite answer to this question, we propose a mechanism to
distinguish ergodic from non-ergodic phases in disordered many-body systems
with an ergodicity-breaking phase transition. This Chapter will help us connect
with the results from subsequent parts of this thesis, where our focus is on systems
where the dynamics in non-ergodic phases depends on a set of emergent constants
of motion rooted in various forms of symmetry-breaking.

This Chapter contains two sections. In Sec. 2.1 we review the J1 − J2 spin model,
a Hamiltonian displaying many-body localization and frequently employed in its
analysis. Then, in Sec. 2.2 we provide an integrated picture for the transition from
ergodicity to localization. The contents of this Chapter are based on [237].

2.1 preliminaries 

2.1.1 Hamiltonian model

For illustration purposes, in this Chapter we consider the J1 − J2 spin−1/2 chain.
This model is essentially a generalization of the Heisenberg chain prototypical in
studies of ergodicity-breaking in many-body quantum systems [114], [188], [194],
[196]–[201], [203], [410], [414]. Contrarily to the Heisenberg chain, the J1 − J2 

model is not Bethe integrable in the absence of disorder [193]. The Hamiltonian
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incorporates the coupling parameters J1 and J2 quantifying the intensity of next
to nearest-neighbors interactions, and it reads (in a system of units where h̄ = 1)

L LX X� � 
Ĥ = ω`Ŝ`

z + J1 Ŝ`
xŜ`

x 
+1 + ŜyŜy + λ1Ŝ`zŜz 

` `+1 `+1 
`=1 `=1 (82)

L 

+ J2 
X� 

ŜxŜ`
x 
+2 + ŜyŜy + λ2ŜzŜz � .` ` `+2 ` `+2 

`=1 

Sx,y,zwhere ˆ are the total spin operators at site ` ∈ {1, . . . , L}. Periodic bound-` 
ary conditions are employed in our numerical simulations. We set the coupling
constants to J1 = J2 = 1, corresponding to the anti-ferromagnetic version of the
system. We fx λ1 = λ2 = 0.55 (the authors of [203] also considered these param-
eter values). This system is disordered due to the presence of the uniformly and
independently randomly distributed ω` ∼ U(−ω, ω), where ω denotes the disor-
der strength. The Jordan-Wigner transformation [193] makes it possible to mapP 
the Hamiltonian (82) to a spinless fermionic chain. The operator Ŝz := i Ŝi

z is
a conserved quantity for all values of λ and ω, [Ĥ, Ŝz ] = 0, so for simplicity we
restrict ourselves to the symmetry sector Sz = 0, where Sz is the eigenvalue of
the operator Ŝz . The dimension of such subspace is d = (L

L 
/2), which grows as√ 

d ∼ 2L/ πL/2 when L → ∞; therefore, full exact diagonalization can normally
be performed up to chain lengths 16 . L . 18. For our spectral analyses, we only
work with the N = d/4 central energy states {|Eni}nN 

=1. This number ranges from
N = 63 for L = 10 to N = 3217 for L = 16.

2.1.2 Long-range spectral statistics: the power spectrum of the unfolded level
spacings

As mentioned in Sec. 1.2.2, the trademark feature of quantum chaotic system is the
presence of level correlations in the spectrum. Long-range spectral statistics refer
to the statistical analysis of eigenlevels separated by large energy index distances
(i.e., levels Ei, Ej ∈ {En}N with |i − j| . N ), as opposed to short level indexn=1 
distances, |i − j| � N , whose statistical features are analyzed through short-range
spectral statistics. Long-range spectral analysis allows us to obtain the so-called
Thouless energy scale, ETh: basically, beyond this energy scale the universal RMT
description breaks down [35], [145]. For level index distances larger than ETh,
long-range deviations from the chaotic RMT results can be found even in systems
where short-range measures such as the level spacing distribution, P (s), closely
resembles the Wigner-Dyson distribution (42). In the context of disordered many-
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body quantum systems, several long-range indicators of chaos have been used,
such as the level number variance [114] or the spectral form factor [212].

In our treatment of long-range spectral correlations, we will use the δn spec-
tral statistic [320], [415]–[419], which is defned as the difference between the nth
unfolded level and the corresponding energy value in a perfectly equiespaced spec-
trum with hεni = n:

δn = εn − n, n ∈ {1, . . . , N}. (83)

Here, �n is obtained through the unfolding procedure as specifed in (41). Because
δn can be understood as a discrete time series where the discrete time is repre-
sented by the level index n, one can consider its Fourier transform and then its
square modulus yields the power spectrum:

* 2+� �NX1 −2πikn hPk
δi = h|F(δn)|2i = √ δn exp , (84)

N N 
n=1 

with k ∈ {1, 2, . . . , kNy}, and where kNy = N /2 is the Nyquist frequency. The
angular brackets h·i denote average over random realizations (in our case, these
will be due to disorder). As shown by Relaño et al in [415], when k/N � 1 and
N � 1, the power spectrum in quantum integrable systems behaves as hP δi ' k 
1/k2 , while in chaotic systems hP δi ' 1/k. This power-law feature is universalk 
for chaotic and integrable systems, regardless of the symmetry class of the model
under consideration (GOE, GUE, GSE).

2.2 analysis in the J1 − J2 random model 

2.2.1 Looking at the tails: extreme events as a function of disorder

Diagonal fuctuations around the microcanonical average

If we compare the defnition of the δn statistic (83) and the diagonal expectation
values of observables according to the ETH in (11), we observe that they are for-
mally similar, with the exception that the Δn term in (11) is not dimensionless,
unlike δn. To conveniently compare these two quantities, we normalize Δn by its
standard deviation σΔn = hΔ2 i,n 

h ˆΔn Onn OiMEeΔn = = − , n ∈ {1, . . . , N}. (85)
σΔn σΔn σΔn 
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Here, we consider the diagonal fuctuations (85) across the MBL transition. The
observable Ô under study will be the one-dimensional momentum distribution,

LX 
2πi(m−n)q/L ˆ+ − n̂q = 1 

e s ŝ , q ∈ {0, . . . , L − 1}, (86)m nL 
m,n=1 

where Ŝ± = Ŝx ± iŜy are the usual ladder spin operators. The diagonal matrix
eelements Onn of this observable give us access to its fuctuations Δn. Also, to

compute the corresponding microcanonical average hÔiME we ft a polynomial of
degree 4 to the Onn. This ftting procedure eliminates the spurious effects caused
by averages over fnite energy windows [80].

To clarify the spectral region considered in our analyses, in Table 1 we summa-
rize the number of states N = d/4 in the center of the energy band and the number
of disorder realizations performed for each value of the system size L. Due to com-
putational limitations, we have not been able to increase L beyond 16 sites. Also,
we do not consider systems with L < 10 because these sizes are too small to be
representative of the system’s dynamics.

L Levels in the central region Realizations

10 63 5000 

12 231 1400 

14 858 375 

16 3217 100 

Table 1: Number of levels in the central region of the spectrum that is considered in the
calculations N = d/4 and number of realizations for each value of the number
of sites L in the J1 -J2 model (82). The corresponding eigenvalues {En}N andn=1 

eigenstates {|Eni}n have been obtained by exact diagonalization.

Given a random variable X , the kurtosis excess γ2(X) is defned as
*� +�4

X − µ
γ2(X) ≡ Kurt[X ] − 3 = − 3. (87)

σ 

Here, µ = hXi denotes the average value of X while σ2 = hX2i − hXi2 is its
variance. For a Gaussian distribution, γ2 = 0. The kurtosis excess is then revealed
as a useful tool to analyze whether the extreme events are more or less important
than in a Gaussian distribution. If γ2 > 0, the distribution P (X) has heavier tails
than a Gaussian while the opposite is true if γ2 < 0. Of course, we will focus on the



kurtosis excess of the random variable Δe n. We note that in Ref. [420] the kurtosis
excess of the diagonal elements Onn themselves was employed to study the onset
of thermal behavior.

In Fig. 1 we have represented the kurtosis excess as a function of the disorder
strength for L = 10, 12, 14, 16. For small ω, in the ergodic phase of the system, we
essentially fnd Gaussian behavior, γ2(Δe n) ≈ γ2(G) = 0; fnite-size effects mean
that for larger L this behavior is reproduced better. This suggests that in this
disorder region the ETH is fulflled and thermalization should occur. For larger
ω, we observe an increase in the probability of extreme events, but this is not
monotonic; rather, γ2(Δe n) exhibits a maximum at a certain value of the disorder
which depends on L, say ωc(L). After reaching this peak, γ2 decreases with ω.
For very large ω, γ2 < 0. In summary, it seems that ωc(L) is a singular point in
the transition from the ergodic to the MBL phase, characterized by a maximum
probability of extreme events for the diagonal fuctuations.
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Figure 1: Kurtosis excess, (87), as a function of the disorder strength ω for different values
of the number of sites, L ∈ {10, 12, 14, 16}. The kurtosis excess for a Gaussian
distribution G(0, 1) is represented by a black, dashed line. The inset shows the
kurtosis excess for L = 10, calculated from 105 disorder realizations (red squares)
and 103 realizations (yellow circles). All results correspond to averages over all
values of q.

These results illustrate how the ergodicity-breaking transition to the MBL phase
is initiated by an increase of the probability of extreme events of the fuctuations
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eΔn. This is connected with the abundance of non-thermalizing initial conditions in
this transient region [236]. Yet, according to Fig. 1, the MBL phase is not defned
by a large γ2, but by large σΔn but less heavy tails than a Gaussian, as we show
below.
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Figure 2: (a): Tails of the distribution of Δe n defned in (85) for L = 16 and different values
of disorder, ω ∈ {1, 4.5, 100}. (b)-(d): Probability distribution P (Δe n) for, from
top to bottom, ω ∈ {1, 4.5, 100}. The probability density function of a Gaussian
G(0, 1) has been represented by black, dashed lines.

The distribution of the diagonal fuctuations, P (Δe n), for L = 16 is represented
in Fig. 2. On the right-hand side we show P (Δe n) for three values of disorder. For
ω = 1, P (Δe n) resembles a Gaussian distribution very closely. For ω = 4.5, near
the singular point ωc(L = 16) (see below), this Gaussian behavior is not so good,
and the tails of P (Δe n) decay more slowly, which is in agreement with the positive
γ2(Δe n) in Fig. 1 for this value of ω. In the MBL transition, the breakdown of the
ETH has been previously associated with long tailed distributions of this type (see,
e.g., [229], [236], [243], [244]). For ω = 100, deep in the MBL phase, the previous



behavior has been completely destroyed, with the tails of the distribution decaying
faster than in a Gaussian. In the left column of Fig. 2 we zoom on the tails of these
three distributions, confrming the interpretation that we have presented.

Estimating the transition critical point
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Figure 3: (a) Kurtosis excess, γ2(Δe n), defned in (87), as a function of ω for several number
of chain sites, L ∈ {10, 12, 14, 16}. The dashed line shows the ft to Eq. 88.
(b) Critical value, ωc(L), as a function of the system size, L. The dotted line
displays the best linear ft, ωc(L) = ω0 + ω1L. (c) Maximum of the kurtosis
excess, γ2,max(L), as a function of L. The dotted line shows the best linear ft to
the points, γ2,max(L) = γ0 + γ1L.

We would like to start by emphasizing that a precise numerical estimation of
the critical point ωc(L) can be quite computationally expensive. The inset of Fig.
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1 we represent the kurtosis excess near its maximum for L = 10, computed with
103 (yellow) and 105 (red) realizations. While the red curve affords a reliable value
for ωc(L = 10), the fuctuations in the yellow curve make this task more compli-
cated. Because disorder realizations take increasingly longer times as L increases,
to estimate the position of the critical point for larger L we consider the ansatz

3/2
γ2(ω) = a |ω − ωc(L)| + γ2,max(L), (88)

and ft the curves for the kurtosis excess for different L. In Fig. 3(a) we observe
that the kurtosis excess is very well described by Eq. (88). Yet, we emphasize
that this ansatz is not related to actual critical exponents, as it depends explicitly
on L (in other words, its shape lacks universality). Fig. 3(b) indicates that the
precursor of the MBL critical point is quite well described by the linear scaling
ωc(L) = ω0 + ω1L, with ω0 = 1.3 and ω1 = 0.2. In passing we note that these
results are in good agreement with those in Refs. [203], [207], although the authors
of these works considered the critical point as obtained from the entanglement
entropy and spectral statistics. This linear behavior of ωc(L) at low L does not
immediately imply ωc(L) → ∞ as L → ∞; indeed, the linear behavior could be
only valid for such small values of L, with a more general expression of ωc(L) 
saturating its value in the large-L limit (Refs. [421], [422] present arguments in this
direction based on phenomenological renormalization group fows). Interestingly,
also the maximum value of the kurtosis excess seems to be quite well described by
a linear law of the form γ2,max(L) = γ0 + γ1L, with γ0 = −1.12 and γ1 = 0.16, as
shown in Fig. 3(c).

These results strongly suggest that if a critical point exits in the thermodynamic
limit, ωc(∞), this value of disorder must be such that γ2(Δe n) is maximized. As
we show below, the behavior of spectral statistics across the MBL transition is also
fully compatible with this hypothesis.

2.2.2 Spectral statistics across the transition

In this section we show that the probability of extreme events previously analyzed
can also be taken as an indicator of the disorder strength beyond which the chaotic,
ergodic phase is abandoned. Indeed, as we show below, the spectral statistics are
qualitatively different for values larger and smaller than ωc(L): for ω . ωc(L), the
system is quantum chaotic with a Thouless energy larger than the Heisenberg en-
ergy, the mean energy distance between levels, while for ω & ωc(L) the eigenlevels
behave as independently distributed random numbers but with some degree of
level repulsion.



As mentioned before, here we employ two chaos indicators: the nearest-neighbor
spacing distribution (NNSD), P (s) (short-range statistic), and the δn defned in (83)
(long-range statistic). We work on the unfolded energy scale for both of these statis-
tics; the smooth part of the cumulative density function is calculated by ftting a
polynomial of degree 10 to the actual Hamiltonian eigenvalues {En}Nn=1, which
allows us to obtain the unfolded levels {�n}nN 

=1.

Semi-Poisson behavior at the transition

Quantum chaotic systems are characterized by level correlations, while in quantum
integrable systems the eigenlevels have a behavior close to independent random
numbers. In the Anderson model, a prototypical system for single-particle localiza-
tion, the metallic and insulating phases exhibit Wigner-Dyson and Poisson statis-
tics, respectively [14]. Right at the critical point of the metal-insulator transition,
level statistics are universal and quite closely described by the the semi-Poisson
distribution (57). What can be said about many-body systems?

For the family of distributions in Eq. (57), the power spectrum of δn was com-
puted analytically by Corps and Relaño in [81],

� � 
N 1 2πk hPk

δi(η) := , ωk := , (89)
ηN + 1 4 sin2(ωk/2) N + 1 

where N is the number of uncorrelated level spacings in the spectrum (normalized
by the mean), k ∈ {1, 2, . . . , N + 1}. In (89), η ∈ [1, +∞) is a continuous parameter.
Poissonian statistics correspond to η = 1, and η = 2 gives rise to semi-Poisson
statistics. As η varies, the power spectrum is essentially unchanged with the ex-
ception of a vertical translation. For the single-particle Anderson model, η changes
from 2 to 1 as the dimensionality increases [156].

In this section, we show that, for ω & ωc(L), the level statistics of our Hamilto-
nian (82) are very well described, at least phenomenologically, by the semi-Poisson
model. To compute P (s), we consider the d/3 at the center of the energy band, and
then we remove the 2bd/48c levels closest to the edges before and after unfolding,
producing a fnal number of levels N = bd/4c, as in Table 1. Finally, we ft (57) to
our numerical histograms of P (s) to estimate the value of η. The corresponding
results are plotted in Fig. 4. Below ω = 4.7 in Fig. 4(a), the semi-Poisson model
does not provide such a good description of the numerical histograms. We note
that this disorder value is very close to the critical disorder calculated in Fig. 3,
ωc(16) = 4.52.

Fig. 4 clearly shows that the semi-Poisson model (57) provides a very good
description of level statistics for ω > ωc(16). It is interesting to note that for ω = 
5.0 we fnd almost completely semi-Poissonian level spacings, η ≈ 2.079. For
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ω = 4.7, the ft yields η ≈ 2.274, i.e., a level repulsion stronger than in GOE random
matrices. Yet, this could be a fnite-size effect or a consequence of the proximity to
the critical point ωc(L = 16). The general picture is that η decreases with ω into
the MBL phase; for ω = 12, level statistics are essentially Poissonian, η ≈ 1.058. We
expect the family of distributions (57) not to describe P (s) for ω < 4.7. The reason
is that in that case the system is headed towards the chaotic phase, with correlated
spacings, but (57) is derived assuming statistically independent spacings.
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{4.7, 5.0, 6.0, 7.0, 8.0, 12.0}. Solid, black lines represent the best nonlinear
ft of (57) to the histograms of P (s). System size is L = 16.

Long-range measures of level statistics corroborate this picture. In Fig. 5 we
present the power spectrum hP δi together with (89) for the values of η extractedk 
from P (s) for the same values of ω. The Poisson (η = 1) and GOE (see [416] for
mathematical expressions) results are also shown for reference. For ω & 5.0, the nu-
merical and semi-Poisson curves show almost perfect agreement. It is insightful to
observe that for ω = 4.7 the power spectrum intercepts the GOE curve for frequen-
cies k ≈ 103 , supporting our hypothesis that this value of disorder (or, rather, a
value of disorder close enough to this value) separates two regimes of qualitatively
different spectral statistics. As ω is increased, η decreases towards the Poisson
result, and the power spectrum undergoes a smooth crossover, approaching the



theoretical Poisson curve vertically. In all cases shown here, the frst frequencies of
the power spectrum show a strange behavior, but this is an expected consequence
of the unfolding procedure [80], [81].
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i, defned in (84), for different values of disorder, ω ∈kFigure 5: Power spectrum hP δ 

{4.7, 5.0, 6.0, 7.0, 8.0, 12.0} (color points). Solid, black lines represent (89) for the
values of η obtained from the nearest-neighbor spacing distribution in Fig. 4.
Top and bottom dashed lines are the Poisson [Eq. (89) with η = 1] and GOE (see
Ref. [416] for explicit formulae) results, respectively. System size is L = 16.

Ergodicity-breaking and Thouless energy

The power spectrum of the chaotic phase of the model is represented in Fig. 6 
for several values of disorder. For very small disorder, ω = 0.5 and ω = 1.0,
the numerics almost perfectly agrees with the GOE predictions. Yet, we observe
pronounced deviations towards the Poisson curve as ω is increased but still in
the chaotic phase. These deviations occur at low frequencies (i.e., large eigenlevel
index distances) and they are connected to the Thouless energy ETh. Strictly speak-
ing, though, the power spectrum only gives us access to the Thouless frequency,
kTh. This frequency makes it possible to defne a characteristic length of the prob-
lem, ` Th = N/kTh: two energy levels, En and Em exhibit RMT correlations if their
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level index distance is such that |n − m| < ` Th. In this sense, a completely chaotic
spectrum, say the spectrum of GOE random matrices, has the maximum value of
` Th (or the lowest value of kTh), because in that spectrum long-range RMT cor-
relations are shared between all eigenlevels. In other words, an increasing value
of kTh means that the spectrum loses long-range correlations and thus becomes
less chaotic. We can estimate the Thouless frequency kTh as the lowest possible
frequency such that hP δi fuctuates below the GOE curve, which gives us a goodk 
approximation kmin ≈ kTh. In Fig. 6, we have identifed the estimated value kmin 

with vertical arrows. It is clearly observed that kmin increases with the disorder
strength ω. Near the critical point ωc(L = 16) ≈ 4.7, kmin reaches its maximal
value.
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{0.5, 1.0, 2.0, 3.0, 4.0, 4.7} (color points). Top and bottom black lines are the Pois-
son [Eq. (89) with η = 1] and GOE (see Ref. [416] for explicit formulae) results,
respectively. The value of kmin for a fxed value of ω is represented by arrows in
all panels. System size is L = 16.



Integrating the transition

Let us summarize the transition landscape that we have presented in this Chapter.
In Fig. 7 we focus on the indicators of the MBL transition obtained from level
statistics. In particular, Fig. 7(a) shows kmin as a function of disorder. Because
the value of kmin for ω � ωc(L) is very small, kmin/N � 1, the resulting Thouless
energy is large. And since the power spectrum separates from the GOE curve as
ω increases in the ergodic phase, the value of kmin grows steadily with ω. When
the power spectrum completely departs from the GOE curve, kmin reaches the
Nyquist frequency, kmin = kNy = N/2, which has been represented with a gray
horizontal line as a guide for the eye. When this happens, quantum correlations
of RMT are destroyed to all energy distances (on the unfolded scale). We note
that kmin jumps quite abruptly to kNy at ω ≈ 4.7, which is consistent with our
numerical observation that the MBL critical point for L = 16 should be close to
this disorder value. This means that hP δi ceases to follow the RMT predictions atk 
a disorder strength compatible with ωc(L), the singular point computed from the
fuctuations in the diagonal matrix elements.

On the other side of the transition, for ω & ωc(L), the power spectrum very
approximately follows (89) as a consequence of the destruction of chaotic level
correlations. In Fig. 7(b), we display the variation of the η parameter with disorder
strength, revealing a smooth decreasing function of ω.

Thus, the fnite-L MBL transition as measured from spectral statistics seems to
display the following three stages:

(i) Full or moderate level correlations in the spectrum in a chaotic region, 0.5 . 
ω . ωc(L);

(ii) No level correlations but still level repulsion in a ‘semi-Poisson region’,
ωc(L) . ω < ∞;

(iii) No level correlations and no level repulsion in the Poisson limit, ω → ∞ (at
least for fnite systems).

Finally, we connect our analyses of spectral statistics with the extreme events
across the transition computed from the kurtosis excess of the diagonal fuctua-
tions of observables. This is presented in Fig. 8. Figure 8(a) depicts the kurtosis ex-
cess γ2(L)/γ2,max = γ2(L)/ (γ0 + γ1L), as a function of ω − ωc(L) = ω − ω0 − ω1L,
for several L. The curves appear to collapse around ω = ωc(L), which is indeed
indicative of a phase transition. Figure 8(b) offers a similar fnite-size scaling but
for spectral statistics. In particular, we have calculated the distance between the
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Figure 7: General landscape of long-range spectral statistics across the MBL transition.
(a): For small values of disorder, ω . ωc(L = 16), we represent the characteristic
frequency kmin as a function of ω and compare it to the Nyquist frequency kNy = 
N /2 (gray, dashed line). A small kmin corresponds to a large Thouless energy
and vice versa. (b): For large values of disorder, ω & ωc(L = 16), we plot η 
obtained from a single-parameter ft of the generalized semi-Poisson distribution
(57) to the numerically obtained NNSD (η = 1 corresponds to the full Poisson
limit). For convenience of the reader, colored points represent the values of kmin

and η for the same values of disorder and color code as in Figs. 4, 5, and 6.

numerics in P (s) and the intermediate statistics (57) with η fxed after ftting it to
the numerical P (s),

NbX 
2ΔSP = 1 |PH (si) − P (si; η)| . (90)

Nb i=1 

Here, PH (s) represents the numerical histograms, P (s; η) is (57), and Nb is the
total number of histogram bins. We plot ΔSP(L) versus, again1 , ω − ωc(L) = 
ω − ω0 − ω1L. Around ω = ωc(L), the curves abruptly approach a zero value.
Differently put, the transition indicators obtained from the ETH and RMT seem to
agree excellently.

1 We emphasize that ωc(L) here has been obtained from the kurtosis excess, not from spectral statis-
tics.
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16. The black, dashed line shows the singular point, ω = ωc(L). (b): Distance
between the numerical NNSD and the family of intermediate statistics (57), ΔSP,
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2.3 conclusions 

In this Chapter we have analyzed the ergodicity-breaking phase transition brought
about by disorder in many-body systems, the so-called many-body localization
transition. Through the study of the extreme events in the diagonal expectation
values with respect to the expectations of the microcanonical ensemble we defne
a critical value of the disorder, ωc(L), such that the probability of extreme events
reaches a maximum. This critical disorder value is also tightly connected with
non-smooth variations in the spectral statistics, indicating a clear change in the
dynamical regime of the system. Summarizing, the critical point ωc(L) separates
two different dynamical phases:
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A chaotic phase, corresponding to small disorder values, ω < ωc(L). On the
unfolded scale, eigenlevels separated by distances smaller than a certain character-
istic length, ` max, follow RMT results; however, for unfolded distances larger than
` max RMT-like correlations are lost [236]. For small ω values, the ETH is fulflled.
We observe an increase of the kurtosis excess γ2(Δe n) with ω, deviating from the
Gaussian expectation. This means that although generic initial conditions will ther-
malize to the microcanonical average for these disorder strengths, it is also a lot
more probable to fnd anomalous initial conditions that fail to do so. The increas-
ing values of the probability of extreme events are thus connected to the gradual
loss of chaos in the spectrum. For disorder values close to ω ≈ ωc(L), the Thouless
energy approaches the Heisenberg energy, which marks the depart of the system
from its ergodic phase.

A semi-Poisson phase, corresponding to ω > ωc(L). At this point the probability
of extreme events of Fig. 1 starts diminishing (for L = 16). In this disorder regime,
Eqs. (57) and (89) account for both short and long-range spectral statistics, suggest-
ing that the eigenlevels approximately behave as identically distributed random
numbers that still show level repulsion, in an intermediate situation between GOE
and Poisson. For L < ∞, the Poisson limit is only strictly reached when ω → ∞.

In summary, in the many-body localization we observe a disorder-driven change
from ergodicity to ergodicity-breaking. In a sense, this transition shares some fea-
tures with a phase transition (in particular, a spectral phase transition). The results
presented in this Chapter are correlated with the existence of certain operators
that behave as conserved quantities in the non-ergodic phase. Yet, it is hard to
extrapolate our analyses to the infnite-size limit, partly due to the system sizes ac-
cessible to numerical exact diagonalization. This pushes us to reverse the order of
this question: can we fnd constants of motion characterizing non-ergodic phases
due to symmetry-breaking? This will be in our focus in the next Chapter, where
we explore the description of equilibrium states in symmetry-breaking phases in
detail.



3 CONSTANTS OF MOT ION AND Z 2 

SYMMETRY-BREAK ING

The eigenstate thermalization hypothesis can be argued to play a central role in
the foundations of quantum statistical mechanics in closed quantum systems. This
is a robust theory expected to hold in a vast number of systems subjected only to
the condition that their behavior is ‘close enough’ to random matrices, which con-
stitute a prototypical theoretical framework for quantum ergodicity. However, as
advanced in Sec. 1.1, the standard thermal ensembles can tremendously fail to de-
scribe the long-time equilibration values of observables in quantum systems with
symmetry-breaking. Specifcally, symmetry-breaking can lead to broken ergodic-
ity. In [269] a two-level approach to statistical mechanics in symmetry-breaking
systems was proposed. The main idea is that standard statistical mechanics does
not work when the dynamics is constrained to disjoint portions of the phase space,
so thermal averages need to be computed separately over various components or
regions. Together with existing theoretical proofs on the nature of the MBL phase,
our analyses of Sec. 2 suggest that a traditional phase transition is not necessary
for an ergodicity-breaking transition to occur, and the non-ergodicity is related
to the conservation of a set of operators. In this Chapter we study ergodicity
breaking phase transitions in systems without disorder, our results being applica-
ble to both fnite-range interacting systems and their fully-connected counterparts.
Non-ergodicity, and thus the breakdown of the ETH in these systems, is due to
symmetry-breaking. We will focus on discrete Z2 symmetry-breaking, although
our results can be generalized to systems with Zn or even in some cases continu-
ous symmetries (see our work [423], published after this the writing of this thesis
was completed). We discuss the impact of our theory on the excited-state and dy-
namical phase transitions introduced in Sec. 1.3.3, which are currently the focus
of much research in quantum many-body dynamics, as well as their connection to
a form of spectral Schrödinger cat states.

This Chapter is organized as follows. The foundation of our theory of equilibra-
tion in quantum systems with Z2 symmetry-breaking phases is presented in Sec.
3.2, which is based on our original article [330], a generalization of our previous
work [325]. An extensive application of our theory to dynamical phase transitions
can be found in Sec. 3.3, which is based on our works [326], [327], [329]. Finally,
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the description of equilibration in the presence of so-called energy cat states is
presented in Sec. 3.4, and it is based on [29].

3.1 motivation: discrete symmetry-breaking in 
fully-connected models 

Our theory for the constants of motion constraining the dynamical evolution in
quantum systems with Z2 symmetry-breaking is developed in the general frame-
work of Sec. 3.2. For illustration purposes, in this section we resort to the case of
a fully-connected systems where ESQPTs are prominent.

As advanced in Sec. 1.3.3, ESQPTs and symmetry-breaking are fundamentally
unrelated phenomena. However, a large group of systems displaying ESQPTs are
also deeply impacted by symmetry-breaking. For this reason, this class of fully-
connected models constitute an extremely versatile platform to test our ideas. We
show that this type of ESQPT splits the spectrum into two different excited-state
quantum phases. These phases can be identifed by an operator which is a constant
of motion (in the sense that its dynamical evolution does not change over time) in
just one of them, while it is no longer constant in the other phase. A graphically
convenient way to understand the meaning of this constant of motion is through
the classical phase space of the quantum Hamiltonian; however, we note that the
model does not need to have a well-defned classical limit for this operator to be
constant. In essence, this operator signals to which part of phase space (or, more
generally, to which ‘disjoint component’ of the system, in the sense of [269]) a
given quantum state is attached to, and assigns it a conserved quantum number,
with important thermodynamic consequences.

For the moment, we will restrict ourselves to a system where the classical limit is
accessible. Consider a quantum system governed by a Hamiltonian Ĥ , and assume
that in the h̄ → 0 limit it can be described by the classical energy functional H(x),

f fwhere x ≡ ({qi}i=1, {pi} ) ∈ R2f accounts for all relevant canonical coordinates,i=1 
and f ∈ N is the number of classical degrees of freedom. As previously mentioned,
ESQPTs are caused by certain unstable fxed points, xc, of the Hamiltonian fow,
rH(xc) = 0, producing a critical energy Ec ≡ H(xc) where the non-analytic
behavior takes place [265]. Assume that there exists a dynamical function, f(x),
such that:

(i) f (x) is nullifed at the ESQPT unstable fxed point, f (xc) = 0, and
(ii) On one of the spectral phases induced by the ESQPT (e.g., for E < Ec), every

classical trajectory is such that f (t) ≡ f (x[t]) < 0 or f (t) > 0, ∀t, depending on



the initial condition, i.e., the sign of f (t) remains constant in time. However, on
the other spectral phase of the ESQPT (e.g., for E > Ec), the sign of f (t) is not
conserved anymore.

Then, there exists a quantum operator,

Ĉ ≡ sign [f̂(x̂)] (91)

which is a constant of motion only in the frst of these two phases, E < Ec.
In the defnition (91), the sign of an operator f̂ is defned

sign (f̂) ≡ F sign (D) F −1 = F diag [sign ({di})]F −1 , (92)

where D is a diagonal matrix whose elements {di}i are the eigenvalues of f̂ , and
F is a matrix whose columns are the eigenvectors of f̂ . Integral representations
of the sign operator have been studied, e.g., in [424], [425]. Therefore, it is clear
that the operator Ĉ has only two eigenvalues, ±1, and thus it represents a Z2 

symmetry in the phase where it is constant. It should be emphasized, however,
that the existence of this constant of motion, in principle, is unrelated to the exact
discrete symmetry of the model under consideration, and thus it is not necessarily
a consequence of spontaneous symmetry-breaking as observed in certain physical
models. In other words, such an operator can also be a constant in systems without
spontaneous symmetry-breaking.

Fully-connected systems constitute one class of models where the above condi-
tions, and thus the existence of Ĉ as a conserved quantity, are satisfed. These
models are also usually very convenient because the ESQPT signatures are promi-
nent already for quite small system sizes. Examples are the Lipkin-Meshkov-Glick
model, the Rabi and Dicke models, spinor Bose-Einstein condensates and Bose
mixtures in a double-well potential, the coupled top, and the two-fuid Lipkin
model [264], [297], [305], [312]–[314], [320], [321], [324], [334]–[336], [352], [357],
[426], [427], to name a few. In all these systems, an ESQPT occurs at E = Ec below
which the classical phase space is split into disconnected wells. The operator Ĉ
identifes to which classical well a quantum state belongs. P 

To be more specifc, let us write the quantum Hamiltonian Ĥ = EnP̂n,n� � 
where P̂n is the projector onto the eigenspace with energy En. Then, Ĉ, P̂n = 0,� � 
∀n /En < Ec, and Ĉ, P̂n 6= 0, ∀n /En > Ec. In other words, hCiˆ is conserved by
any time evolution, |ψ(t)i, such that1 hψ(t)| Ĥ |ψ(t)i = hEi < Ec, however, this con-
servation rule no longer holds if E > Ec. For this reason, there exists at least one
phase where equilibrium [428] and non-equilibrium [429] thermodynamics cannot

1 Of course, here we are implicitly assuming that the distribution of populated eigenstates is suff-
ciently narrow so that the part of the wavefunction populating E > Ec can be neglected.
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be properly described without this operator. However, the phase where Ĉ is no
longer constant can be described with the standard tools of statistical mechanics.

Later in this thesis we will discuss many examples of systems where this con-
stant of motion can be defned, as well as its relation to symmetry-breaking. To
keep it short, here we simply propose to take a look at the classical phase space
of the LMG model (73) introduced in Sec. 1.3.3. The mathematical details of this
classical limit are gathered in Sec. 3.3.1. As our goal in this section is to illustrate
the meaning of Ĉ, we will leave the technical details to the corresponding section.
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Figure 9: Classical phase space of the LMG model (141) with h = 1 and several values of λ.
Different classical orbits at different energies are represented by lines of different
colors. Magenta-red lines show higher energies, while purple-blue lines show
lower energies.

In Figure 9 we represent the classical orbits of the energy functional H(Q, P ) 
obtained from the quantum Hamiltonian Ĥ in (73). For λ > λc = h, an ESQPT
takes place at Ec = −hj. This is the case of panel (d) of this fgure [the rest of
the panels will be discussed elsewhere, see Sec. 3.3.1]. We can clearly observe that
for E < Ec, the phase space is disconnected and classical orbits are trapped either
at Q > 0 or Q < 0. However, for E > Ec, the phase space becomes topologically
compact, and every trajectory has access to the geometrical regions with Q > 0 
and Q < 0. In addition to this, at the ESQPT critical point (where orbits ‘intersect’),
we exactly have Q = 0. Thus, one may indeed defne a function f(Q) verifying the
properties (i) and (ii) specifed above. From this discussion, it is clear that f should
be such that f (Q) ∝ Q, its precise form being to some extent arbitrary. In terms of
physically meaningful quantities, it can be shown [see (143) in Sec. 3.3.1] that theP1 σxcollective magnetization along the x−axis, Ĵx = ˆ , has a classical counterpart2 i i 
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p
given by jx = Q 4 − Q2 − P 2/2 with Q2 + P 2 ≤ 4. Therefore, classical function
C = sign(jx) is trivially a conserved quantity for E < Ec. We posit that the
quantum operator Ĉ = sign(Ĵx) is also a quantum conserved quantity in the same
spectral phase. The mathematical foundation of this observation is presented in
the following section.

3.2 general framework 

We have already discussed in Sec. 1.1.2 that, strictly speaking, the unitary time
evolution of quantum mechanics is incompatible with equilibrium states. Shifting
our focus away from this rigid understanding of equilibration, it has been shown
that the time-evolved wave function of an isolated quantum system, for suffciently
long times, almost always ends up fuctuating around an effective equilibrium
state,

Z τ 
ρ̂eq = lim 

1 |Ψ(t)i hΨ(t)| dt, (93)
τ→∞ τ 0 

which provides the same results in experimentally realistic situations, see [12], [25],
[430]–[434]. In other words, even though the time evolution does not lead an ini-
tial wave function to an equilibrium state itself, its dynamical expectation value for
almost any observable can be effectively described by a certain ρ̂eq. In this section,
our goal is to provide a characterization of such equilibrium states when spon-
taneous symmetry-breaking (SSB) occurs. We should emphasize that our results
generally apply to systems with Z2 symmetry-breaking phases or states, and for
this reason they can and will be employed later in this thesis dealing with certain
dynamical aspects of many-body quantum systems.

Consider a time-evolving wave function

XX −iEn,kt|Ψ(t)i = cn,ke En,k , (94)
n k=± 

where k labels the symmetry sectors of some discrete Z2 symmetry. Let us consider
the typical scenario in this thesis of systems with a spectral phase transition: for
E < Ec, we have a symmetry-breaking phase with pairwise level degeneracies,
En,+ = En,−, while for E > Ec we have a symmetric phase such that En,+ 6= En,−.

Within the symmetric phase, where the spectrum does not show level degen-
eracies, the time-averaged density matrix in (93) is diagonal in the Hamiltonian
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eigenbasis. This is because the off-diagonal contributions have been destroyed by
the infnite-time average,

X 
ρ̂eq(E > Ec) = |cn,k|2 En,k En,k . (95)

n,k 

This is simply the standard result of the diagonal ensemble, typical of non-degenerate
systems where the ETH is trivially valid [1], [21].

Yet, as advanced in the Introduction, in the symmetry-breaking phase, say E < 
Ec, level degeneracies imply that off-diagonal terms also survive the infnite-time
average. Explicitly,

X 
ρ̂eq(E < Ec) = |cn,k|2 En,k En,k 

X n,k X (96)
∗ ∗ + cn,+cn,− |En,−i hEn,+| + cn,+cn,− |En,+i hEn,−| . 

n n 

Therefore, in a symmetry-breaking phase we need to take into account these off-
diagonal terms if we hope to describe equilibrium values of observables. Note
that in the above equation some complex-valued elements are present: therefore,
in general, equilibrium values are not described by real operations only.

In this section, we derive a set of constants of motion in symmetry-broken
phases, necessary to build statistical ensembles describing the equilibrium pro-
cess of many-body quantum systems. For illustration purposes, we consider the
paradigmatic one-dimensional transverse-feld Ising model,

X X 
ĤTFIM = − Vij σ̂

xσ̂j
x + h σ̂i

z . (97)i 
i<j i 

Here, Vij models the reach and geometry of the interaction. In our numerical
experiments, we consider long range ferromagnetic interactions, Vij = J |i − j|−α > 
0, J > 0, displaying a symmetry-breaking phase for h < hc = J and T < Tc when
α < 2 [435] characterized by ferromagnetic order. Here, the power-law exponent
α ∈ [0, ∞) controls the range of interactions: for α = 0, the system becomes
fully-connected, and it is formally analogous to the LMG model in (73); the limit
α → ∞ leads the system to the nearest-neighbor TFIM. J is a coupling constant.
The Hamiltonian (97) is invariant under the Z2 parity transformation

NY 
Π̂ = σ̂i

z , (98)
i=1 

whose two eigenvalues, +1 and −1, allow us to classify the system eigenstates in
symmetry sectors.



The TFIM (97) is also invariant under the inversion operator Î, which essen-
tially implements a refection along the center of the spin chain. Considering the
computational site basis, whose elements can be taken as the tensor product ofNNthe orientation of the ith spin (i = 1, 2, . . . , N ) along the z-axis, |φi = |φii ,i=1 z 
φi ∈ {↑, ↓}, we have that

I |ˆ φ1 φ2 . . . φN i = |φN . . . φ2 φ1i (99)z z 

In our numerical results, we will only work with states in the positive inversion
sector, i.e., those verifying I |ˆ φi = |φi.

In order to reduce the computational burden and reach larger system sizes, in
our numerical calculations we consider periodic boundary conditions (PBCs). As
a result, the translation operator,

T̂ |φ1 φ2 · · · , φN i = |φN φ1 · · · , φN−1i , (100)z z 

is also a symmetry of (97). We again only work with states in the positive trans-
lation sector such that T̂ |φi = |φi, i.e., the zero-momentum basis. Although the
operators Î and T̂ are not commuting, every eigenvector of T̂ with eigenvalue 1 is
also an eigenvector of Î with eigenvalue 1. Because the parity (98) commutes with
both Î and T̂ , we are able to work with the two parity sectors simultaneously.

A consequence of the use of PBCs is that the potential Vij in (97) can be writtenPJ D−α 1 1 D−α = , where Dij = and N (α) = is theVij N (α) ij min{|i−j|,N−|i−j|} N−1 i6=j ij 
so-called Kac factor [436]; it is necessary to enforce Hamiltonian intensiveness
when α < 1, however it can be omitted if α ≥ 1.

Thus, we pose the following question: if a fnite system is isolated from any
environment, how does it become magnetized upon entering the SB phase?

3.2.1 Assumptions

Our theory applies to quantum systems satisfying the hypotheses presented below.
We frst establish what structural properties we ask of the quantum system.

H1.– There exists a unitary Z2 symmetry, Π̂, verifying Π̂ĤΠ̂† = Ĥ . The operator
Π̂ has only two eigenvalues, Spec(Π̂) = {+1, −1}. Usually, this operator is called
parity.

In the case of the TFIM (97), Ĥ is invariant under a 180 degrees rotation aroundQ
the z-axis, and therefore it commutes with the operator Π̂ = j σ̂j

z .

(i) (ii) 
H2.– Below a certain critical temperature, T < Tc, there exist two symmetry-

breaking equilibrium states, ρ̂eq and ρ̂eq , with orthogonal supports and fulflling
(i) (ii)Π̂ρ̂eq Π̂† = ρ̂eq . However, for T > Tc equilibrium states are symmetric, so they are

invariant under Π̂: Π̂ρ̂eqΠ̂† = ρ̂eq.
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This last hypothesis is expected to hold only in the TL. In fnite-N systems,
(i) (ii)however, ρ̂eq and ρ̂eq are actually prethermal states in which the system stays for

a very long time before eventually reaching a fnal symmetric thermal state (see
below for a discussion of the typical timescales when this happens). As shown in
Sec. 3.2.6, these states can be stabilized even away from the TL.

It is important to note that a consequence of these hypotheses is that below the
critical energy defned through the critical temperature, Ec = E(Tc), in the infnite-
size limit the spectrum is composed of pairs of degenerate states that belong to
different parity sectors, i.e., En,+ = En,− for all n such that En < Ec. In fnite-
size systems such degeneracy is only approximately realized, but the energy gap
|En,+ − En,−| closes exponentially with system size, meaning that even for relatively
small systems these pairs of levels are essentially already degenerate.

The physical consequences of (H2) are usually identifed by an order parameter,
M̂ . On M̂ , we impose the following conditions:

M1.– The eigenvectors of M̂ , M̂ |mni = mn |mni, are rotated by Π̂ as Π̂ |mni = 
|−mni.

M2.– Let P̂mn be the projector onto the mn eigenspace. If mn < 0, the expectation
(i) (i)value of P̂mn in the equilibrium state ρ̂eq vanishes: hP̂mn i(i) = Tr[ρ̂eq P̂mn ] = 0.

Together with (H2), this implies that if mn > 0, then hP̂mn i(ii) = 0.

These two properties imply that Tr[ρ̂eqM̂ ] = 0 for any symmetric equilibrium
state.

(M1) and (M2), together with (H2), describe the typical behavior in SB phase
transitions: if the system is cooled to T < Tc, SSB makes it choose between an
equilibrium state in which only positive values of M̂ can be observed, and another
equilibrium state in which M̂ can have only negative values. Phenomenologically
speaking, this leads to a kind of dynamical barrier splitting the phase space into
two disjoint or disconnected regions (even if there is no actual classical phase
space), preventing the system from going from one part to the other [437]–[439].
For (97), the order parameter is given by the total ferromagnetic magnetization,P 
M̂x = i σ̂i

x (sometimes we will use subscripts x, y, z to emphasize what kind of
magnetization we are referring to, although the order parameter will generically

(i) (ii)be M̂ = M̂x). Thus, for ρ̂eq we have hM̂xi > 0, and likewise for ρ̂eq we must have
hM̂xi < 0.

3.2.2 First result

The previous mathematical hypotheses allow us to formulate the following:
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Theorem 1.– (H1) and (H2), together with (M1) and (M2), hold if and only if

i Ĉ ≡ sign (M̂) and K ≡ ˆ (101)ˆ [Ĉ, Π]
2 

are constants of the motion below the critical energy, and the set {Ĉ, K̂, Π̂} verify the SU(2)
commutation algebra.

Below we provide a proof for this theorem.

(i) (ii) 
Proof 1.– We start by showing that there exist two equilibrium states with or-

thogonal supports, ρeq and ρeq , in a given subspace spanned by a number of
Hamiltonian eigenstates if and only if Ĉ = sign(M̂) is a constant of motion, pro-
vided that M̂ fulflls (M2). We note that in this part of the proof the existence of
the discrete symmetry Π̂ is not necessary.

(i) (ii)Forward implication.- Because ρ̂eq and ρ̂eq are equilibrium states, they commute
(i) (ii)with the Hamiltonian of the system, [Ĥ, ρ̂eq ] = [Ĥ, ρ̂eq ] = 0. Furthermore, as these

two equilibrium states have orthogonal supports, there exists a common diagonal
(i) (ii)basis for Ĥ , ρeq and ρeq . Therefore, the complete Hilbert space can be broken

into at least two subspaces: the frst subspace, Hi, is spanned by the Hamiltoniann E Eo 
(i) (i) (i)eigenstates that generate the support of ρ̂eq , say Bi = E , . . . , E ; the1 N 

second subspace, Hii, is spanned by the Hamiltonian eigenstates that generate then E Eo 
(ii) (ii) (ii) (i)support of ρ̂eq , Bii = E , . . . , E . Due to the orthogonality of ρ̂eq and1 M E 

(ii) (i)
ρ̂eq , these two Hilbert spaces are disjoint, so Ek ∈/ Bii and viceversa. This
does not exclude the possibility that there may exist a third Hilbert subspace, Hiii,L(k)where neither of the ρ̂eq is supported, soE that H = Hk. Hypothesisk=i,ii,iii 

(H2) establishes that the eigenstates En 
(k) , k ∈ {i, ii}, have energies below the

critical energy Ec, and that the third subspace, Hiii, is spanned by eigenstates
with energies above the critical energy, where every equilibrium state is symmetric.
Note, however, that Theorem 1 could be formulated without this requirement, but
the second main result, Theorem 2, would not hold without it.

In order to analyze the dynamics below the critical energy, we consider an arbi-
trary initial state spanned by Bi ∪Bii, say

N E M EX X
(i) (i) (ii) (ii)|Ψ(0)i = cn (0) En + cn (0) En , (102)

n=1 n=1 

2 2PN (i) PM (ii)with cn (0) + cn (0) = 1. Then, the time-evolving wave function,n=1 n=1 

|Ψ(t)i = e−iHtˆ |Ψ(0)i ( h̄ = 1), reads

N E M EX (i) X (ii)(i) −iE (i) (ii) −iEn t (ii)|Ψ(t)i = cn (0) e n t En + cn (0) e En . (103)
n=1 n=1 
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According to (M2), below the critical energy the Hamiltonian eigenstates spanning
Hi and Hii can be expanded in the eigenbasis of the order parameter, M̂ |Mni = 
mn |Mni, with a suitable sign of the eigenvalues Mn. Therefore, eigenvectors be-
longing to Bi can be written as linear combinations of eigenstates of M̂ with posi-
tive eigenvalues,

E X
(i) (n)

En = αm |Mmi , (104)
m,Mm>0 

and eigenvectors belonging to Bii can be written as linear combinations of eigen-
states of M̂ with negative eigenvalues,

E X
(ii) (n)

En = βm |Mmi . (105)
m,Mm<0 

E 
(k) (n) (n)Normalization of En imposes

P |αm |2 = 
P |βm |2 = 1. Then, the frst termm m 

in Eq. (103) is the projection of |Ψ(t)i over the subspace spanned by the eigenstates
of M̂ with positive eigenvalues, and, as Ĉ = sign(M̂), it is also the projection of
|Ψ(t)i over the subspace spanned by the eigenstates of Ĉ with eigenvalue c = 1.
The same reasoning shows that the second term in Eq. (103) is the projection of
|Ψ(t)i over the subspace spanned by the eigenstates of Ĉ with eigenvalue c = −1.
Therefore, the probability of obtaining c = 1 in a measurement of Ĉ is

N NX 2 X 2(i) (i)
p(c = 1) = cn (t) = p cn (0) (106)

i=1 i=1 

which remains constant throughout the whole time evolution. The exact same
reasoning shows that p(c = −1) also remains constant, and therefore Ĉ is a constant
of motion below the critical energy.

Backward implication.- This implication is straightforward. If there exists a con-
stant of motion, Ĉ, with two eigenvalues, c = ±1, then there exist two orthogonal
equilibrium states, the frst one spanned by the eigenstates of Ĉ with c = 1, and
the second one spanned by the eigenstates of Ĉ with c = −1.

Now, we consider the case in which both hypothesis (H1) and (H2) hold.

Forward implication.- (H1) establishes the existence of a parity operator, Π̂, com-
muting with the system Hamiltonian, [Ĥ, Π̂] = 0. Since K̂ is a function of Ĉ and
Π̂, both of which are constant in the SB phase (Π̂ is constant also outside of the SB
phase), then it is clear that the quantity K̂ is constant in the SB phase. The point is� 
to show that Ĉ, K̂, Π̂ fulfll the SU(2) commutation rules.
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To prove this, let us consider the parity transformation of an eigenstate belong-
ing to Hi (the same argument can be applied to an eigenstate belonging to Hii).L 
As H = Hk, we can writek=i,ii,iii 

E E E EX X X
(i) (n) (i) (n) (ii) (n) (iii)Π̂ En = α E + β E + γ E . (107)j j k k l l 

j k l 

As (H2) applies to any equilibrium state within Bi, we have that
ED 

(i) (i)Π̂ En En Π̂† ∈ Bii, ∀n, (108)

(n) (n)so αj = γl = 0, ∀j, l, n, and therefore

E EX
(i) (n) (ii)Π̂ En = β E , (109)k k 

k 

ED 
(n) (i) (i) (i)with β ∈ C. Then, the equilibrium state ρ̂eq = En En transforms ask 

ED ED X X
(i) (n) (ii) (ii) (n) (n) (ii) (ii)Π̂ρ̂eq Π̂† = |βk |2 Ek Ek + β (βl ) ∗ E El . (110)k k 

k k 6=l 

(ii)Due to (H2), the previous equation equals ρ̂eq , i.e., an equilibrium state, which is
(ii)diagonal in the Hamiltonian eigenbasis as [Ĥ, ρ̂eq ] = 0. But this is only possible if

there is just one coeffcient β(n) different from zero in Eq. (109), that is, ifk 

E E 
(i) (ii)Π̂ En = βn En . (111)

h i 
(ii) |2And, because Tr ρ̂eq = 1, we further conclude that |βn = 1. Because we can

multiply any vector by an arbitrary phase without changing the expectation value
of any operator, we may choose, without loss of generality, βn = 1, ∀n.

(i) (ii)As a consequence of this result, En = En , ∀n in the SB phase (if this wereE 
not the case, Π̂ would not be a constant of motion). Then, as En 

(i) can be always

written as a linear combination of eigenstates of M̂ with positive eigenvalues andE 
the opposite holds for En 

(ii) , we obtain

E E 
(i) (i)Ĉ En = En , (112)
E E 

(ii) (ii)Ĉ En = − En , (113)

∀n. Hence, all the eigenspaces giving rise to the SB phase share the same prop-
erties for Ĉ and Π̂, and therefore we can calculate the properties of K̂ in a single
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E 
eigenspace without loss of generality. The action of this operator on En 

(i) and
E 

(ii)
En is.

E E E 
(i) i (i) i (i)K̂ En = ĈΠ̂ En − Π̂Ĉ En

2 E 2 E E (114)
i (ii) i (i) (ii)

= Ĉ En − Π̂ En = −i En ;
2 2 

E E E 
(ii) i (ii) i (ii)K̂ En = ĈΠ̂ En − Π̂Ĉ En

2 E 2 E E (115)
i (i) i (ii) (i)

= Ĉ En + Π̂ En = i En ;
2 2 

n E Eo 
(i) (ii)Thus, in the eigenbasis En , En , we get

! ! ! 
1 0 0 i 0 1 Ĉ = , K̂ = , Π̂ = . (116)
0 −1 −i 0 1 0 
� 

Therefore Ĉ, K̂, Π̂ satisfy the SU(2) commutation rules. If we demote Ĉ ≡ X̂1,
ˆ ˆ Π ≡ X̂3, then X̂i, Xj = iεijkσ̂k, where εijk is the Levi-Civita symbol.K ≡ X2, and ˆ � ˆ � 

� 
Backward implication.- This is again trivial. If Ĉ, K̂, Π̂ are constants of motion

and satisfy the SU(2) commutation rules in a given eigenspace, then there exist twoE 
orthogonal equilibrium states (one spanned by En 

(i) and the other one spanned
E 

by En 
(ii) ) which are transformed by Π̂ according to (H2). And this is immediately

generalized for a larger SB phase composed by several eigenspaces. � 
An important remark is in order. In this proof, we have not considered the pos-

sibility that the order parameter M̂ may have a zero eigenvalue. The reason is that
(H2) together with (M1) and (M2) imply that the projection of all the eigenstates in
Bi and Bii over the subspace spanned by the eigenstates of M̂ with zero eigenvalue
must be equal to zero. Indeed, were this not the case, observe that (M1) establishes

(i)that Π̂ |mn = 0i = |mn = 0i, so the support of Π̂ρ̂eq Π̂† could not be orthogonal to
(i)the support of ρ̂eq .

In practical terms, if the order parameter M̂ has at least a zero eigenvalue, we
can redefne Ĉ = sign∗ (M̂), with the modifed signum function given by

⎧ 
⎪1 if x > 0,⎨ 

sign∗ (x) = −1 if x < 0, (117)
⎪⎩0 if x = 0. 

This modifcation has no impact on the Theorems proved in this section, so we will
write Ĉ irrespective of whether M̂ possesses a zero eigenvalue or not.
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A direct consequence of Theorem 1, which we will not prove explicitly as it
follows trivially from Proof 1, is the following:

(i)Corollary 1.– hCiˆ = 1 if and only if the state equilibrates at ρ̂eq (and similarly
(ii)for hCiˆ = −1 and ρ̂eq ).

Theorem 1 provides a solid link between Ĉ and the two different equilibrium
states characterizing a SB phase. Yet, the consequences of Theorem 1 go far beyond
this seemingly strictly mathematical result, as demonstrated by the second main
result of this section.

3.2.3 Second result

Let us consider the following hypothesis:
1 −βĤH3.– Let ρ̂ = e denote a canonical density matrix. Then, the quantumZ 

fuctuations, σE , around the average energy, hEiρ = Tr[ρ̂Ĥ ], vanish in the thermo-� � 
dynamic limit, σE → 0 as N → ∞ (as typically fulflled in realistic systems).hEi ρ 

In conjunction with our previous result, this hypothesis allows us to prove the
second main result of this section:

Theorem 2.– If a physical system satisfes (H1)-(H3), then the density matrix

1 −β ˆ ˆ ˆ ˆH−λc K−λπρ̂NATS = e C−λk Π , (118)
Z 

where Z ensures that Tr[ρ̂NATS] = 1, β = (kT )−1 , and k is the Boltzmann constant, is
an equilibrium state for T < Tc.

This theorem can be proved as follows:
Proof 2.– Within each subspace of the symmetry-breaking phase, HSB = Hi ⊕n E Eo 

(i) (ii) (i) (ii)Hii, spanned by the eigenvectors En , En with En = En = En, the

operators Ĉ, K̂ and Π̂ take the matrix forms given in Eq. (116). Therefore, in
the Hamiltonian subspace with support in the above basis, the combination R̂ = 
βĤ + βcĈ + βkK̂ + βπΠ̂ is a block diagonal matrix of 2 × 2 matrices. For an n-
dimensional SB phase, this is

! 
βEn + βc βπ + iβk

R̂SB = diag{R̂n}n, R̂n = . (119)
βπ − iβk βEn − βc 

In the symmetry-restored or disordered phase, HD = Hiii, above the critical tem-
perature, the precise form of R̂D is unknown. In the total Hilbert space H,

! 
R̂SB 0 

R̂ = ˆ , (120)
0 RD 
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where R̂SB is a matrix of order dim(HSB ) and R̂D is a matrix of order dim(HD).
The exponential matrix of R̂ must necessarily have the same structure. Therefore,
we can build the following matrix

! 
R̂ ˆe 1 TSB 0 

D̂ = ≡ , (121)
Z Z 0 T̂D 

ˆwhere Z = Tr[eR] is a normalization constant. As R̂ is Hermitian, D̂ is a positive-
defnite matrix with Tr[D̂] = 1, due to the normalization constant Z. Therefore, it
is a density matrix, and all its eigenvalues are dn > 0.

Let us assume now that the canonical and microcanonical ensemble are equiv-
alent, so that σE /E → 0 in the TL, as stated in hypothesis (H3). This means that
if β > βc (T < Tc), the probability of populating a state beyond Ec becomes zero
in the TL, and therefore, Tr T̂D → 0 in the TL. Furthermore since D̂ is defnite
positive, all eigenvalues of T̂D must remain positive for any fnite system size, be-
coming zero in the TL. And, because D̂ = D̂† , this further implies that T̂D → 0,
and that Tr T̂SB → 1 in the TL. Finally, as T̂SB is a block diagonal matrix com-
posed of 2 × 2 matrices, and for E < Ec the eigenvalues of opposite parity become
degenerate in the TL, this means that [Ĥ, D̂] → 0 in the TL. � 

As a technical note, for the last part of the proof to hold, the symmetry-breaking
subspace HSB needs to be spanned by all the eigenstates below the critical energy.
Otherwise, there is the possibility that some eigenstates that belong to the symmet-
ric subspace may be populated at particular values of T < Tc, and thus it is not
possible to guarantee that T̂D → 0 in the TL. For this reason, this requirement has
been included in (H2).

The density matrix in (118) is formally a non-Abelian thermal state (NATS) [440],
composed by a set of non-commuting charges [428], [441]–[443]. Yet, these charges
are substantially different from those typically employed in the construction of
a GGE [130]–[132] or a NATS; in particular, because they are not locally additive
quantities. Despite this, they are necessary to describe the behavior of usual locally
additive quantities, as we illustrate below. In (118), β stands for the temperature,
and λc, λk and λπ denote the values of hCiˆ , hKiˆ and hΠ̂i. On the one hand, Ĉ
measures the probability of observing positive and negative values of the order pa-
rameter, and therefore its value can be determined through the measurement of M̂ .
On the other hand, Π̂ and K̂ do not have a tangible classical interpretation; rather,
these operators are linked to quantum coherence between the two eigenspaces of
Ĉ. In the case of the TFIM, the parity Π̂ is related to an interference pattern in the
transverse feld, Ĵz: if hΠ̂i = 1, the population of the eigenstates of Ĵz with odd
eigenvalues is zero, while the opposite happens if hΠ̂i = −1. Lastly, the operator K̂



is also linked to quantum interference effects on the magnetization along different
directions, though we have not been able to fnd a simple interpretation for it.

From Theorem 2 it follows that a quantum system displays discrete Z2 SSB if and
only if it can equilibrate at any of the possibilities given by (118). Further, it allows us
to formulate a complete classifcation of symmetry-breaking equilibrium states in
the ordered phase:

ES1.– Regular symmetry-breaking states. Given the properties of the order pa-
rameter and the operators Ĉ, K̂ and Π̂, the usual symmetry-breaking states, giv-

(i) (ii)ing rise to ρ̂eq and ρ̂eq in hypothesis (H2), are characterized by hCiˆ = ±1, and
hKiˆ = hΠ̂i = 0. Therefore, they are recovered if λk = λπ = 0 and λc → ±∞.

ES2.– Mixture of standard symmetry-breaking states. If λk = λπ = 0 but |λc| < ∞,
Eq. (118) allows for a statistical mixture of the two types of regular symmetry-

(i) (ii)breaking equilibrium states from ES1. The relative weights of ρ̂eq and ρ̂eq in the
mixture are determined by the value of the λc multiplier. In this case there is no
quantum coherence between these branches.

ES3.– Superpositions of regular symmetry-breaking states. Finally, if λk 6= 0 and/or
λπ 6= 0, then the equilibrium state in (118) is a superposition of states with hCiˆ = 1 
and hCiˆ = −1. Because K̂ and Π̂ are conserved in the ordered phase, so is the
quantum coherence between the states building up this superposition. In particu-
lar, if hĈ + K̂+ Π̂i = 1, then the NATS (118) consist in a mixture of states with the
same relative phase between the hCiˆ = 1 and the hCiˆ = −1 sectors.

For T > Tc, neither Ĉ nor K̂ are conserved operators. Therefore, equilibrium
states are described by (118) only if λc = λk = 0. Another possibility is that a
symmetry-breaking term is added to the Hamiltonian. As a consequence, Π̂ is
not conserved, and the only relevant constant of motion is Ĉ. This last case is
considered in detail in Sec. 3.2.6 below.

From the discussion above it follows that in order to determine the equilibrium
state that the system will reach, the initial values of the operators Π̂, Ĉ and K̂
are necessary (see below for an explicit numerical example). To be specifc, if
the system is prepared in an initial state |Ψ(0)i in the symmetry-broken phase
(E < Ec), the fnal equilibrium state, described by the density matrix ρ̂eq, fulflls
the relations

Tr[ρ̂eqĤ ] = hΨ(0)| Ĥ |Ψ(0)i , (122a)

Tr[ρ̂eqĈ] = hΨ(0)| C |ˆ Ψ(0)i , (122b)

Tr[ρ̂eqK̂] = hΨ(0)| K |ˆ Ψ(0)i , (122c)

Tr[ρ̂eqΠ̂] = hΨ(0)| Π̂ |Ψ(0)i , (122d)
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refecting the fact that the probabilities of observing any of the possible values of
these four observables are conserved throughout the entire time evolution. There-
fore, the inverse temperature, β, and the multipliers λc, λk, and λπ depend only
on the initial confguration of the system. The NATS (118) can thus be interpreted
as the equilibrium state maximizing the entropy S(ρ̂) = −Tr[ρ̂ log ρ̂] conditioned
by the restrictions in (122): this equilibrium state only contains the information
encapsulated in this set of equations (this idea was originally devised by Jaynes
[444]). We emphasize that the multipliers {λc, λk, λπ} are therefore not obtained
through any kind of ftting method.

To fx ideas, the main highlights of our theory can be summarized in the follow-
ing three points:

(A) Within a single two-dimensional subspace of degenerate states it possible to
defne three operators that act as constants of motion. Within a single subspace,
they take the SU(2) structure presented in (116). Importantly, these operators are
the same for all eigenspaces of degenerate states. This makes it possible to fnd
macroscopic superpositions without any kind of fne tuning.

(B) In every Z2 symmetry-breaking phase, these SU(2) operators can be con-
structed from (i) the order parameter, M̂ , and (ii) the global Z2 symmetry of the
Hamiltonian. Therefore,

(C) The NATS equilibrium state (118) is a universal equilibrium ensemble.
The existence of coherent superpositions of branches of the order parameter (hM̂i > 

0 and hM̂i < 0) is an important physical byproduct of our results.
What about fnite-size systems, where (H2) is not exactly fulflled? As men-

tioned before, this form of emergent symmetry-breaking, of which the eigenlevel
degeneracy is a consequence, is only strictly realized in the N → ∞ limit. What
are the typical times of constancy of ρ̂NATS, i.e., up to what times can we consider it
to be an stationary state? This form of Z2 symmetry-breaking entails exponential
closure of the gap of quasi-degenerate levels of opposite parity. This is not the case
for systems with continuous symmetry-breaking, where the gap typically closes as

−νN a power-law instead [423], [445]. Let us assume that |En,+ − En,−| ∝ e , where
ν ≡ ν(E/N ) is a coeffcient that depends on the energy per particle of the pair of
eigenlevels involved. We can assume that ν does not vary signifcantly in a small
window around the macroscopic energy E/N . Now, let us evaluate the expecta-
tion value of the Ĉ operator in the eigenspace {|En,+i , |En,−i}. Consider the state√ 
|ϕi = (|En,+i + |En,−i)/ 2. Then,

hϕ(t)| C |ˆ ϕ(t)i = cos(ΔEt), (123)

where ΔE = En,+ − En,− [note that the diagonal elements of Ĉ vanish in states of
the same parity]. The period of this oscillatory term is clearly τ = 2π/ΔE, which



νN is exponentially large in N , τ ∝ e . To be more specifc, let us calculate the
time such that hĈ(t)i deviates only slightly from its initial value, hĈ(t)i < hĈ(t = 
0)i − ε = 1 − ε, where ε > 0 can be infnitesimally small. Upon Taylor expansion

tof (123), we get 1 − ΔE2 2 
< 1 − ε, i.e.,2 

√ 
t > |Δ 

2 
E

ε 
| ∝

√ 
εeνN , (124)

which is, too, exponentially large in N . As a consequence, the time of constancy of
the NATS state (118) is so long even in fnite-size systems that we can safely assume
that for most experimentally (and also numerically!) accessible times the state is
stationary. A numerical evaluation of this prethermalization time scaling with N 
is presented later on, in Fig. 12(d) of Sec. 3.2.6. We do not intend to anticipate the
results of that section, but let us briefy mention that for the TFIM (97) with only
N = 28 particles, the prethermalization time for ε = 10−3 is t ≈ 1017 s, which is
already basically the age of the Universe! In passing that we have performed this
analysis in a single energy subspace for simplicity; yet, since the exponent ν(E/N) 
varies smoothly with the macroscopic energy, any state suffciently narrow in en-
ergy, such as the NATS (118), can be characterized by approximately the same ν.
Therefore, these results essentially remain unchanged if one considers more than
a single energy subspace.

Let us end this discussion with a technical note. In order to prove Theorem
2, which establishes that the NATS density matrix (118) is an equilibrium state
for T < Tc, we have made use of hypothesis (H3). Therefore, for the NATS to
be an equilibrium state in the infnite-size limit, it is imperative that the energy
fuctuations vanish as N → ∞. This requirement can be fulflled only in systems
whose level density increases fast enough with energy. For this reason, in the
case of fully-connected systems, we expect (118) not to behave as an equilibrium
state even for very large system sizes. Another serious drawback to using (118) to
describe the equilibrium values of observables in fully-connected systems is that in
these models the microcanonical and canonical descriptions do not coincide (see,
e.g., [297]–[300] for explicit illustrations in systems with ESQPTs). Since in this
thesis we are interested in closed quantum systems, a microcanonical version of
(118), particularly useful in the context of collective systems, will be developed
later on, in Sec. 3.3.2.

A note on equilibration

We fnd it interesting to provide a simple example illustrating the extent to which
the operators in (101) of Theorem 1 play a role in the determination of the possible
equilibrium states of a system. For this numerical illustration we prefer to make
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use of the LMG model, defned in (73), because it allows us to perform a large
system-size calculation. We recall that this model can be seen as a special case of
the TFIM in (97) when α → 0 (infnite-range interactions), which we will consider
in the next parts of this section. For the LMG model (73), the total collective
magnetization along the x-axis plays the role of the order parameter, M̂ = Ĵx = P1 σxˆ2 i i .

We have prepared three different initial states as superpositions of the nearly
exactly degenerate fnite-N LMG model with λ = 1 and certain hi. These initial
states are taken out of equilibrium through a quantum quench hi → hf . The three
procedures are as follows:

Procedure 1.– At hi = 0, we prepare the initial state

|Ψ1(0)i = √ 1 
[|E0+(h = 0)i + |E0−(h = 0)i], (125)

2 

and perform a quench hi = 0 → hf = 0.4.
Procedure 2.– At hi = 0.8, we prepare the initial state

|Ψ1(0)i = √ 1 
[|E0+(h = 0.8)i + |E0−(h = 0.8)i], (126)

2 

and perform a quench hi = 0.8 → hf = 0.4.
Procedure 3.– At hi = 0, we prepare the initial state

p
|Ψ1(0)i = √ 

p |E0+(h = 0)i + 1 − p |E0−(h = 0)i , (127)

with p = 0.902, and perform a quench hi = 0 → hf = 0.4.
We have measured the average energy of these initial states in the corresponding

fnal Hamiltonian, the expectation value of hCiˆ , and the initial and the equilibrium
expectation values of the order parameter. These results are summarized in Table
2. The system size is N = 3200, and j = N /2.

First of all, we can clearly observe that for all procedures the quench essentially
populates fnal Hamiltonian eigenstates with the same energy, hEi/j = −0.5. Since
in all cases hf = 0.4 and in the LMG model the symmetry-breaking phase is
located for energy values E/j < −h when h < λ [see discussion around (73)], it
is clear that all of these states end up in the Z2 symmetry-breaking phase, below
the ESQPT. In fact, all of them are also prepared in an initial symmetry-breaking
phase, for the same arguments. Therefore, we can expect the results of our theory
of conserved charges to be applicable to all of these non-equilibrium processes.
The expectation value of the Ĉ operator, calculated as Ĉ = sign(Ĵx) (see Sec. 3.1),
is equal to 1 for procedures 1 and 2 and 0.6 for procedure 3. This value remains
constant in the initial and fnal Hamiltonian. We have computed the value of the



Procedure hEi/j h Ĉi h M̂ (0)i h M̂ieq

1 −0.5 1 1600 1258.92 

2 −0.5 1 959 1258.92 

3 −0.5 0.6 959 754.56 

Table 2: Expectation values of several quantities for procedures 1-3, with initial states de-
fned in Eqs. (125,127,126). Average energy of the initial state in the fnal Hamil-
tonian, hEi/j, value of Ĉ, value of M̂ in the initial state and its equilibrium value
in the fnal Hamiltonian.

order parameter in the initial states, hM̂(0)i, as well as its equilibrium value in the
fnal Hamiltonian, computed according to Eq. (96).

These results allow us to conclude that the initial value of the order parameter
does not determine the fnal equilibrium value of the initial state after a quench.
In other words, that the equilibrium state is not a function of hM̂(0)i. Indeed, even
though procedures 2 and 3 have the same initial hM̂(0)i, the value of the magne-
tization in their equilibrium states is different. Thus, M̂ alone is insuffcient to
predict what the fnal equilibrium value will be. However, initial states character-
ized by the same value of Ĉ do evolve towards the same equilibrium state, even if
their initial magnetization values are different! This is exemplifed by the results
of procedures 1 and 2. In summary, the value of Ĉ is necessary to determine the
fnal equilibrium value.

3.2.4 Numerical realization of equilibrium states

According to our general theory and, in particular, the results of the NATS in
Sec. 3.2.3, in a Z2 symmetry-breaking phase it is possible to fnd three kinds of
qualitatively different equilibrium states, dubbed ES1, ES2 and ES3. In this section,
we again make use to the fully-connected LMG model (73) to numerically build
these states and consider fnite-size scaling analyses. As before, we work with the
maximally symmetric sector, with j = N /2.

In order to construct the corresponding equilibrium states, here we propose
three quantum protocols taking an initial wave function to the symmetry-broken
phase of the model (i.e., below the ESQPT critical energy, E < Ec). In all of
these processes, λ = 1 and h is varied as indicated below. To identify the class
of symmetry-breaking equilibrium state resulting from each process, we monitor
the behavior of the distribution of the collective magnetization along the x- and
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z−axes. The former is related to the information contained in Ĉ, while the latter is
useful to measure the quantum correlations between magnetization branches, thus
allowing us to determine whether we are dealing with a quantum superposition
with coherence (ES3) or just a mixture of regular symmetry-breaking states (ES2).
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Figure 10: Signatures of the symmetry-breaking equilibrium states ES1, ES2 and ES3. Re-
sults for ES1 are shown in the left column, those for ES2 are shown in the
middle column, and those for ES3 in the right column. For all three protocols
(see main text), we compute the distribution of the eigenvalues of the collec-
tive magnetization along the x-axis, M̂x = Ĵx, and z-axis, M̂z = Ĵz . The time
evolution takes place in the LMG model (73) with j = N /2. System size is
j = 6400 except in panels where the fnite-size scaling behavior is considered.
In (a),(b),(c), triangles correspond to the expectation value of Ĉ, while circles
correspond to Π̂.

Protocol 1.– We start with a fully polarized initial state in the x-direction, |Ψ(0)i = 
|↓↓ · · · ↓i , with an initial transverse magnetic feld h = 0.4 that is linearly de-x 
creased as h = 0.4 − 0.3t/τ , with t ∈ [0, τ ] and τ = 40 ms (to make contact with
experiments, our timescales coincide with those in [446]).



In this protocol, the time-evolving state is always in the symmetry-breaking
phase (E < Ec). Because our chosen initial condition has hCiˆ = −1, the fnal
equilibrium state belongs to class ES1. This is clearly shown in the left column ofP 
Fig. 10. The distribution P (Mx) of the eigenvalues of the operator M̂x = σ̂i

x ,i 
with j = 6400, shown in Fig. 10(d), is clearly peaked close to its minimal value,
Mx ≈ −j, indicating a high degree of polarization in the x-direction (note also thatP 
the probability P (Mx > 0) = 0). The distribution of the eigenvalues of m̂z = σ̂z 

i i 
is depicted in Fig. 10(g),(j). Although in this case it does not offer any signifcant
information as only one of the magnetization branches is populated, we will see
below that in general it does contain the signatures of the quantum coherence
between magnetization branches. Finally, a fnite-size scaling of the value of Ĉ
(triangles) and Π̂ (circles) is shown in Fig. 10(a). It is worth noting that these
values remain constant for all values of the number of particles N considered,
suggesting that the ES1 states are robust and that the situation should not change
in the TL.

Protocol 2.– We start with the same initial condition as in Protocol 1, with the
same initial value of the transverse feld, h = 0.4. Then, we linearly increase its
value as h = 0.4 + 0.8t/τ , with t ∈ [0, τ ] and τ = 40 ms. We let the system relax at
the Hamiltonian with h = 1.2 during τ = 500 ms. Lastly, we linearly decrease the
transverse feld until it reaches a value h = 0.1 through the ramp h = 1.2 − 1.1t/τ ,
with t ∈ [0, τ ] and τ = 40 ms.

In this protocol, the system spends a signifcant amount of time normal phase of
the LMG model and ends up in the symmetry-breaking phase. For this reason, the
initial value of Ĉ is expected to be erased by dephasing (see [29], [332] and Sec. 3.3.2 
below for a detailed explanation of this mechanism). Thus, the fnal equilibrium
state is expected to belong to class ES2, with hCiˆ , hKiˆ and hΠ̂i roughly equal to
zero as we are dealing with a regular mixture of symmetry-breaking equilibrium
states. This picture is corroborated by the results shown in the middle column of
Fig. 10. The distribution of M̂x in Fig. 10(e) illustrates a clear bimodal distribution
peaked at its edges, Mx ≈ −j and +j. This state exhibits no quantum coherence
between magnetization branches as depicted in Fig. 10(h),(k) for the M̂z operator
[this result is similar to that in Fig. 10(g),(j)]. For this reason, this is not an ES3 
state, but ES2. Finally, the scaling of the value of Ĉ and Π̂ in Fig. 10(b) show a
clear constant behavior with N .

Protocol 3.– We start with a fully polarized initial state in the z-direction, |Ψ(0)i = 
|↑↑ · · · ↑i , with h = 1.2, and then linearly decrease the transverse feld, h = z 
1.2 − 1.1t/τ , with t ∈ [0, τ ] and τ = 40 ms.

In this last protocol, the initial state lays within the normal phase, has hΠ̂i = 1 
and coincides very approximately with the ground-state of the LMG Hamiltonian
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with h = 1.1. Then, the time-dependent protocol makes it enter the symmetry-
breaking phase of the LMG model. The state then undergoes a number of non-
adiabatic transitions as a consequence of the crossing of the QPT at h = 1. Finally,
as Π̂ is an exact constant of motion for all values of h, the system ends in the
symmetry-breaking phase with some energy excess, hΠ̂i = 1 and hCiˆ = hKiˆ = 0.
The result is an ES3 symmetry-breaking equilibrium state. The corresponding
numerical results are shown in the right column of Fig. 10. The distribution of M̂x,
in Fig. 10(f), is similar to that in Fig. 10(e) of Protocol 2, but the distribution of
M̂z, in Fig. 10(i),(l), is completely different: in this case, it evidences the existence
of quantum coherence between the magnetization branches: there are ‘gaps’ in
the distribution P (Mz) for certain Mz, ensuing from the interference pattern. In
particular, we fnd that P (Mz ) = 0 for odd values of Mz. Finally, the scaling of Ĉ
in Fig. 10(c) shows constant behavior for all N considered. This suggests that it is
possible to construct equilibrium macroscopic superpositions, as the scaling to the
TL seems completely stable.

3.2.5 Implementation in cold atom platforms

Here we propose an experimental protocol to prepare equilibrium states falling
into the category ES3, i.e., equilibrium states with coherent superpositions of dif-
ferent branches of the order parameter. The special feature of this protocol, and
its difference with those presented in Sec. 3.2.4, is that it will allow us to select
the relative between the Ĉ sectors. Our proposal is based on quantum technologies
state-of-the-art techniques. The choice of the model Hamiltonian (97) is based pre-
cisely on its experimental versatility and accessibility. The protocol consists of the
following steps:

S1.- Start from a fully polarized state in the x-direction, |↑↑ · · · ↑↑i or |↓↓ · · · ↓↓i x x 
with h = 0.

S2.- Activate an adiabatic ramp to slowly increase the transverse feld from h = 0 
to h = h1 = 1.2 kHz > hc.

S3.- Let the system relax at h1 during a controlled time, τR.

S4.- Activate a second adiabatic ramp to slowly decrease the transverse feld
from h = h1 to h = h2 = 0.5 kHz < hc.

S5.- Quench the system from h = h2 to h = h3 = 0.1 kHz < h2.

The initial state is a symmetry-breaking ground-state of (97) with h = 0 and
hΠ̂i = 0; thus, the unitary time evolution only introduces an irrelevant global
phase until h = hc, provided that step S2 is basically adiabatic, i.e., it is performed
slowly enough. Then, as parity remains conserved when crossing hc, both the



ground-state (hΠ̂i = 1), |E0,+i, and the frst excited state (hΠ̂i = −1), |E0,−i, be-
come equally populated. Hence, as S4 induces basically the same changes that S2 
in the time-evolved wave function, the system is in a superposition of the lowest-
energy eigenstates of Ĥ(h2),

p
iφ|Ψi = √ 

p |E0,+i + e 1 − p |E0,−i , (128)

with p = 1/2 and an uncontrolled phase φ = φq just before S5, if S3 is not per-
formed. In the TL, (148) is stationary when h < hc, because E0,+ = E0,−.

As a consequence of step S3, an extra controlled phase, φR, is introduced in the
state after S4. In terms of the gap ΔE0 = |E0,+ − E0,−|, at Ĥ(h1), this phase
reads φR = ΔE0 τR, so a complete 2π-period in the fnal phase φ = φq + φR can be
explored by considering 0 ≤ τR < 2π/ΔE0. Finally, the effect of S5 is to heat upp
the system.pIf the fnal temperature is T < Tc, then hCiˆ Ψ = 2 p(1 − p) cos φ, and
hKiˆ Ψ = 2 p(1 − p) sin φ remain constant and only depend on the controllable
phase. Therefore, by tuning τR appropriately, this protocol allows us to prepare
initial states with controlled values of hCiˆ and hKiˆ . As for the parity operator,
hΠ̂iΨ = 2p − 1, and thus hΠ̂i = 0.

Our proposed protocol has one main drawback, though: the state evolving in
time crosses a QPT critical point twice. The uncontrolled excitations that this pro-
cess may induce have been studied, e.g., in [447]–[449]; among other things, these
excitations can destabilize the dynamics. In order to assess their importance for
our protocol in practical terms, we recall that the QPT of the TFIM is in the uni-
versality class of its fully-connected counterpart when α < 5/3 [450]. Compared
to the fnite-range TFIM (97), the fully-connected model has the advantage that it
allows for exact diagonalization of very large spin chains, which is convenient to
estimate the relevance of the QPT-induced excitations.

In Fig. 11(a) we represent hCiˆ and hKiˆ for two values of the driving time after
the step S4, following an adiabatic ramp given by h(t) = t/τq. These observables
are represented as a function of the relaxation time, τR, that the state spends in
the intermediate Hamiltonian, Ĥ(h1). If the driving is slow enough, τq = 40.96 
ms (following the timescales of the experimental realization in [446]), periodic
oscillations are found in both observables; here, the theoretical behavior for a 2π-
period in the relative phase φ is represented by solid curves. However, if the
driving is fast, τq = 0.9 ms, the oscillatory pattern is lost. We note that in order
to recover the 2π-periodic behavior in larger systems we need longer times [451];
a similar protocol, crossing the QPT once through an exponential ramp, has been
reported in [446], [452]–[454].

Having considered these preliminary results, now let us imagine that we have
successfully performed this preparation procedure with the long-range (fnite-
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Ĉ (circles) and K̂ (squares) after step S4, as a function of theFigure 11: (a) Values of
relaxation time tR, for τq = 40.96 ms (flled) and τq = 0.9 ms (empty). The
perfectly periodic result expected for an adiabatic protocol is represented with
solid lines in all cases. System size is N = 20. (b) Distribution of the scaled
magnetization, mx = Mx/N , corresponding to a quench h2 = 0.5 kHz → 
h3 = 0.1 kHz in the TFIM (97) with α = 1.1, J = 2 kHz, and N = 19. The initial
state (148) has p = 1/2 and φ = π/3. (c) Distribution of my = My/N (flled,
green) for the same quench, and distribution resulting from an initial state with
φ = 0 (red steps). (d) Instantaneous evolution of m̂x (blue) and the probability
P (my, t) of measuring my at time t; my = −2/N , −1/N , 1/N , 2/N (red, green,
yellow, purple). NATS predictions (118) are shown with solid horizontal lines.

range interacting) TFIM (97). After step S4, we obtain state of the form (148)
with p = 1/2 and φ = π/3. We recall that φ here is a tunable phase, and its
value φ = π/3 has been chosen for this numerical example. Our next step is to
numerically study the consequences of S5. We work with power-law interactions,

−αVij ∝ J |i − j| , with α = 1.1 and J = 2 kHz, and do the fnal quench: h = 0.5 
kHz → h = 0.1 kHz. We note that because α > d, where d is the spatial dimen-
sion of the chain, we avoid spurious effects typical of systems with long-range
interactions [455].



The resulting time-averaged probability of measuring a value mx ∈ [−1, 1] ofP 
the scaled magnetization, m̂x = (1/N ) σ̂i

x , is shown in Fig. 11(b). We clearlyi 
observe an asymmetric P (mx) distribution: it is not invariant under a 180 degree
rotation around the z-axis, which is indicative of SB. These results are comple-
mented with the time evolution hm̂x(t)i, and the predictions of (118), Tr [m̂xρ̂NATS],
with β = 0.78219, λc = −3.39076, λk = −5.87297 and λπ = 0, shown in Fig. 11(d).
These results clearly evidence the fuctuations of hm̂x(t)i around the effective equi-
librium state ρ̂NATS, and confrm that the SSB, identifed by the condition hm̂xi 6= 0,
is stable. It is worth noting that although this is a SB state, it is not a regular one
where there is only non-zero probability of observing either positive or negative

ˆvalues of Mx.

The main conclusion of these results is that that we can induce SSB by follow-
ing our proposed driving protocol, and they clearly show that in order to predict
the expectation value of the order parameter the information of the operator Ĉ
is required. Yet, so far we have not analyzed the role played by the K̂ operator.
A related question is whether the resulting equilibrium state is a superpositionP 
of the two SB branches. To answer this, we consider m̂y = (1/N) σ̂i

y, whosei 
time-averaged probability distribution, P (my), is represented in Fig. 11(c). The
large P (my = −1/N , 2/N ) and small P (my = −2/N , 1/N ) values evidence an
interference pattern whose shape critically depends on hKiˆ . The results for case
with hKiˆ = 0 is also shown in this fgure. In this case, the probability distribution

(i) (ii)is indicative of system equilibrated at either ρeq , ρeq or a statistical mixture of
both. Additionally, the time evolving probabilities of measuring the eigenvalues
my = −2/N , −1/N , 1/N , 2/N are shown in Fig.11(d). We observe that this inter-
ference pattern is stable as the probabilities do not signifcantly change over time.
Thus, the experimental techniques presented in [446] can be used to discriminate
between hKi = 0 and hKi 6= 0; in the last case, an equilibrium state with a coherent
superposition of the two SB branches emerges. Finally, the effective equilibrium� � 
values of these probabilities are very well described by the NATS, Tr P̂my ρ̂NATS .
The small discrepancies between numerical long-time averages and ensemble com-
puted values are due to the system size considered, which is N = 19 only.

3.2.6 Symmetry-breaking perturbation and stabilization

So far, we have considered the exact Hamiltonian (97). However, real systems are
usually affected by small perturbations; these perturbations can be of an intrinsic
nature or due to imperfections in the structure of the model. Such perturbations
are often considered to be the main mechanism of SSB. Thus, here we study the
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effect of a symmetry-breaking perturbation, �, added to the clean Hamiltonian.
Our perturbed Hamiltonian is

X� 
Ĥ� = ĤTFIM + σ̂i

x , (129)
2 

i 

where, typically, |�| � 1.
One may ask what the equilibrium value of the order parameter is when the

perturbation is added, in the infnite-size limit. In the absence of conserved quan-
tities aside from energy, the canonical ensemble ρ̂C = e−βĤ� /Z, see (64), should
be enough to predict such value, Tr[ρ̂C M̂ ]. In the standard theory of SSB, the term
proportional to � breaks the symmetry and therefore the order parameter acquires
a non-zero value, hM̂i 6= 0. In order to illustrate the usual understanding of SSB,
we propose the following toy model. We assume that:

• The system has a Gaussian density of states, %(E). This is typically fulflled
by realistic many-body quantum systems.

• The energy E is an extensive quantity. As a consequence, the total spectral
width scales with the number of particles, |Emax − Emin| ∝ N .

• The total number of states of the system is proportional to 2N .

A simple realization of these assumptions is to consider that the density of states
takes the form

2N − E
2 

%(E) = √ e 2N2 , (130)
2πN2 

which is a Gaussian distribution with mean µ = 0 and standard deviation σ = N .P −βEn 
R∞ −βE The corresponding partition function is then Z = e = dE %(E)e .n −∞ 

Due to the �-induced symmetry-breaking, this level density can be split into
two terms. This is because the whole spectrum {En} can be separated into two
subsets: frst, we have the eigenlevels {E+}, corresponding to eigenstates suchn 
that the order parameter hM̂i > 0; second, the eigenlevels {E−} are associated ton 
hM̂i < 0. Note that this separation is unrelated to the parity operator, which is not
a symmetry of the Hamiltonian as soon as � 6= 0. Thus,

%(E) = %+(E) + %−(E), (131)

with

2N−1 − (E−�N )2 

%+(E) = √ e 2N2 (132)
2πN2 



and

2N−1 − (E+�N )2 

%−(E) = √ e 2N 2 . (133)
2πN2 

Observe that the mean value of %+(E) is µ+ = �N , while for %−(E) this is µ− = 
−�N . The partition function can be computed exactly and reads

βN (−2�+βN )(1 + e 2β�N ).Z ≡ Z(β, �, N ) = 2N−1 e 2
1 

(134)

What is the value of the Ĉ operator under the canonical ensemble, ρ̂C ? We have

hCiˆ = Tr[Ĉρ̂C ] Z ∞ 
−βE = 1 

dE [%+(E) − %−(E)]e (135)
Z(β, �, N) −∞ 

= −Tanh(β�N). 

The result is a function of three parameters, h ˆ Ci(β, �, N ). Here, N > 0 and weCi ≡ h ˆ
will assume β > 0. However, � ∈ R can take any sign. Thus, within the framework
of the standard canonical ensemble, the following conclusions ensue:

• The sign of the value of Ĉ entirely depends on the sign of �. In particular,
hCiˆ ∝ −sign(�). Therefore, if the sign of the perturbation changes with time,
the polarization of the equilibrium state should change accordingly.

• The value of Ĉ depends on the number of particles N and the temperature
β. For a larger value of β (smaller value of T ), a smaller value of N is
necessary to have hCiˆ ≈ ±1, i.e., to obtain a fully polarized state along the
x-axis. For this reason, according to the canonical ensemble, the ground-state
(β = ∞, T = 0) becomes fully polarized even for a relatively small number
of particles. However, higher energy eigenstates, corresponding to smaller β,
should require a larger N .

• If � > 0, then limN→∞hCiˆ (β, �, N ) = −1, and therefore the double limit

lim lim hCiˆ (β, �, N) = −1. (136)
�→0+ N→∞ 

If � < 0, we have instead

lim lim hCiˆ (β, �, N ) = 1. (137)
�→0− N→∞ 

However, the double limit

lim limhCiˆ (β, �, N ) = 0, (138)
N→∞ �→0 

and therefore these limits do not commute.
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• According to the previous point, when � 6= 0 the only possible equilibrium
states in the N → ∞ limit in the standard theory of SSB are those with
hCiˆ = ±1 (depending on the sign of the perturbation �), i.e., fully polarized
states along the direction of the magnetization. These are states of the type
ES1. No other states are allowed.

Do these predictions, coming from the standard canonical ensemble, really de-
scribe the equilibrium states of the perturbed TFIM (129)? As we will show below,
the canonical ensemble in general gives wrong predictions for the equilibrium val-
ues in systems to which our theory of symmetry-breaking equilibrium states ap-
plies. The reason is that ρ̂C does not take into account the information contained
in the Ĉ operator. Because Ĉ is conserved in the time evolution, this information
about the initial state is preserved. In particular, according to our theory:

• If the perturbation, �, fuctuates and changes its sign, the value of Ĉ remains
constant, and therefore the system is not taken out of equilibrium. In other
words, the fnal equilibrium state is controlled by the initial value of Ĉ.

• In the standard theory, large values ofN are required to obtain fully-polarized
states as β decreases (i.e., at increasingly higher T ). However, in our descrip-
tion of SSB the TL is reached even for small values of N , regardless of the
value of β. This is because when � 6= 0, the eigenlevel degeneracies in the
ordered phase are destroyed; since the gap of levels of opposite parity when
� = 0 closes exponentially with N , even a small value of � is suffcient to
break the degeneracies at an exponential rate with N . Then, the Ĉ operator
selects the population of states in the NATS (118) (according to the multiplier
λc).

• In our framework for SSB the non-commutation of the limits limN→∞ and
lim�→0 play no role.

• Contrary to the results of the canonical ensemble, the NATS (118) (with λπ = 
λk = 0 when � 6= 0) allows for the existence of ES2 equilibrium states.

As mentioned before, we should note that Π̂ is not a conserved quantity if � 6= 0.
However, as shown in Theorem 1, the invariance of the Hamiltonian under Π̂ is
actually not necessary to defne a critical temperature below which Ĉ = sign(M̂) 
(maybe with a different defnition for the order parameter M̂ ) is still conserved
by the time evolution. Also, if |�| � 1, we can expect the order parameter M̂ to
very approximately coincide with the order parameter of the unperturbed � = 0 
case. We then suspect that when � 6= 0 the system may support equilibrium states



described by (118) with λc 6= 0 and λπ = λk = 0 for T < Tc that does not change
much with respect to its � = 0 value.
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Figure 12: (a) Same as in Fig. 11(d) but in the symmetry-broken Hamiltonian (129) with
� = 10−4 . The NATS predictions (118), with λk = λc = 0 and β = 0.7822, λc = 
−0.55005, are plotted as horizontal lines with the same color code as before.
(b) Distribution of the scaled magnetization mx for � = 10−4 after the quench
h2 = 0.5 kHz (� = 0) → h3 = 0.1 kHz (� = 10−4). (c) Distribution of my. (d)
(Top) Scaling of the time of constancy, t∗, of Ĉ with N at � = 0 (points). Red line
depicts the best ft t∗ ∼ 10νN with ν ≈ 1.0015. t∗ is obtained as the frst value
of t such that |Ĉ(t∗) − Ĉ(t = 0)| > 10−3 . (Bottom) Scaling of the constancy time
t∗ of K̂ in (129) with � = 10−4 (squares) and � = −10−3 (triangles). All results
correspond to a quench from an initial state (148) with p = 1/2, φ = π/3 at
� = 0, evolving under (129).

In order to test our theory in a setting easily accessible to experiments, we con-
sider again step S4 of our protocol and we perform a fnal quench from h = 0.5 
kHz and � = 0 to h = 0.1 kHz and different values of �.

Let us momentarily focus on the time evolution over very long times. Figure
12(a) illustrates how the value of hm̂x(t)i 6= 0 remains constant for huge times.
Its associated time-averaged probability distribution, basically indistinguishable
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from that of the case � = 0, is shown in Fig. 12(b). A remark is convenient: the
expectation value of m̂x in the ground-state of the perturbed system is hm̂xi < 0 
(because � > 0); however, we observe that the SSB is stabilized with hm̂xi > 0.
The explanation for this apparent inconsistency is that because Ĉ is conserved
the probabilities of positive and negative magnetization are constant, even if the
sign of � changes with time (see below for an explicit demonstration of this fact).
This result is impossible under the standard theory of SSB illustrated above with
our proposed toy model. The canonical ensemble would yield hm̂xi < 0 for the
time-evolving SSB state, which is clearly incorrect. The upper panel of Fig. 12(d)
presents a fnite-size scaling of the survival time of the SSB state for the case � = 0.
The plot reveals an exponential growth of this time with N , which is a consequence
of the exponential closure of energy gaps between eigenstates with different parity
values within the SB phase T < Tc. Interestingly, in the perturbed case, � 6= 0, the
SSB actually survives for arbitrarily long times, regardless of |�| 6= 0 and N .

In Fig. 12(a) we also represent the time evolution of the probability of measur-
ing the eigenvalues my = −2/N , −1/N , 1/N , 2/N for � = 10−4 . The results of the
� = 0 and � = 10−4 show qualitative differences. Namely, in the perturbed case
we fnd a pre-thermal state at long times, which survives up to t ∼ 103 ms. The
behavior of these probabilities is compatible with a superposition of different SB
branches. Yet, the evolution at even longer times reveals that this pattern is not
robust: the associated time-averaged probability distribution of m̂y is shown in Fig.
12(c). The Gaussian shape of this distribution is compatible with the system being

(i) (ii)equilibrated at ρ̂eq , ρ̂eq or a statistical mixture of both. Finally, the lower panel
of Fig. 12(d) depicts a fnite-size scaling of the survival time of the interference
pattern. We estimate the survival time, the time during which K̂ remains approx-
imately constant, with two values of the perturbation, � = 10−4 and � = −10−3 .
The behavior of the survival time with N suggests that the superposition of differ-
ent SB branches is destroyed by infnitesimal perturbations in the thermodynamic
limit. In other words, equilibrium states of the type ES3 are not possible when
� 6= 0. Despite this, our results show that the SSB itself is however stabilized by
such perturbations.

To end this section, we will explicitly illustrate one of the failures of the standard
theory of SSB mentioned above. According to, e.g., the canonical ensemble, the
sign of the Ĉ operator (and thus the sign of the order parameter itself) should
depend on the sign of the perturbation �. Thus, if the system is exposed to random
variations of the perturbation, the value of these operators should change abruptly
according to the sign of �. We show here that real physical systems do not exhibit
this behavior, meaning that the standard SSB theory fails to describe the dynamics
in this scenario.



Let us prepare an initial state |Ψ(0)i in the clean TFIM (97) with hi = 0.5 kHz,
J = 2 kHz, α = 1.1. The initial state is taken to be of the form (148) with p = 1/2 
and φ = π/3, with |E0,±i being the opposite-parity lowest-energy eigenstates of the
TFIM with these parameter values. We then perform a quench to h = 0.1, leaving
the remaining parameters unchanged. In this Hamiltonian, we compute the time
evolution |Ψ(t)i up to t = 500 ms. After this step, we perform twenty consecutive
quantum quenches to the perturbed TFIM (129) with the same parameters as in
the last Hamiltonian but with values of the perturbation � drawn from a Gaussian
distribution of zero mean and deviation 10−2 , � ∼ G(0, 10−2). This is to say that in
each of these consecutive quenches, the fnal wave function is taken as the initial
wave function in the next Hamiltonian, and each of these Hamiltonians where the
dynamics takes place has a random value of the perturbation, which can obviously
also change sign. In each of these quenches, we let the wave function evolve during
t = 1000 ms.
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Figure 13: (a) Time expectation value of the order parameter (magnetization along the
x-axis), hM̂x(t)i and (b) of its sign operator, hĈ(t)i, for the random quench pro-
cedure explained in the main text. System size of the TFIM (97) and deformed
TFIM (129) is N = 19.

We have measured the value of the order parameter M̂x and the Ĉ operator in
the protocol described above. The results are presented in Fig. 13. It is clearly
observed that although the sign of the perturbation � changes randomly in certain
Hamiltonians of the consecutive quenches, the sign of the order parameter M̂x 

does not change, and the same is true for the Ĉ operator, which remains constant.
These results are in complete contradiction with the expectations from the standard
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theory of SSB. Rather, the formalism devised in this section of this thesis is neces-
sary to properly describe the values of observables both in Z2 symmetry-broken
phases and in Hamiltonians where SSB takes place. These results also provide
solid support to our hypothesis that the Ĉ operator should still be constant despite
the presence of the perturbation �.

3.3 application to dynamical phase transitions 

In this section we explicitly discuss a connection of the two kinds of DPTs and
ESQPTs [265] in collective quantum systems. To illustrate this connection, we fo-
cus on the fully-connected transverse-feld Ising model. Both kinds of DPTs are
explained by the behavior of the operator Ĉ, which is a constant of motion only in
one of the two phases separated by the critical energy of the ESQPT. According to
our theory, below this critical energy, in the symmetry-broken phase, Ĉ commutes
with the energy projectors in the TL, the dynamical order parameter character-
istic of DPTs-I can be different from zero, and the main mechanism leading to
non-analytical points in the return probability is precluded. Contrarily, above the
ESQPT critical energy, the symmetry-restored phase, the dynamical order parame-
ter always vanishes, and the main mechanism for non-analytic points in the return
probability is allowed. The classical interpretation of this theory is discussed as
well as some of its consequences, including the suppression of classical behavior
for critical quenches leading to ESQPT spectral region, the information erasure
ensuing from adiabatically crossing the critical line, and the distinction between
‘anomalous’ and ‘normal’ DPT-II dynamical phases (see also [371], [456]).

For concreteness, the numerical results in this section are performed with the
fully-connected transverse-feld Ising model (the LMG model) [290], [320], [354]–
[357], [367], [457], [458], but it should be noted that our results are valid for a broad
class of collective quantum systems, encompassing the Rabi and Dicke quantum
optical models [94], [305], [309], [312], [314], [322], [347]–[350], [459], the coupled
top [335], spinor Bose-Einstein condensates [427], or the two-site Bose-Hubbard
Hamiltonian [352].

The general arguments of our physical theory have been laid out in the previous
section. To make this Chapter self-contained, here we present a brief summary of
the typical structure of fully-connected systems exhibiting an ESQPT to which our
results apply. Let us consider a Hamiltonian Ĥ(λ), depending on some control
parameter, λ, with the following properties:
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(i) It is invariant under a Z2 symmetry, Π̂, the parity operator, such that [Ĥ(λ), Π̂] = 
0, ∀λ, allowing to classify the eigenstates of Ĥ(λ), En,k , according to Π̂ En,k = 
k En,k with k = ±1 and n = 0, 1, 2, .... A typical example of this transformation
is the inversion of the transverse magnetic feld in the LMG model, Ĵx → −Ĵx.

(ii) A QPT [36] occurs at a critical value of the control parameter, λc. This critical
point separates two dynamically different ground-state phases. In one phase, say
λ > λc, the ground-state is two-fold degenerate in the TL (there are pairs of eigen-
values of opposite parity which coincide, En,+ = En,−), leading to a symmetry-
broken ground-state. Examples include the ferromagnetic ordered phase in the
fully connected transverse-feld Ising model, or the superradiant phase of the
Dicke and Rabi models. In the other phase, say λ < λc, the ground-state is unique,
and it has a well-defned value of the parity symmetry. For example, one may
think of the disordered paramagnetic phase in the fully-connected transverse-feld
Ising model, or the normal phase in the Dicke and Rabi models.

(iii) In the ordered phase, λ > λc, certain properties of the ground-state get
transferred up to an excited critical energy, e.g. Egs < E < Ec, where an ESQPT
occurs. Quite commonly, the spectral phase E < Ec harbors pairs of eigenlevels of
opposite parity that become exactly degenerate in the TL [265], [325]; for this rea-
son, broken-symmetry equilibrium or steady states can be found here [313], [332].
However, for E > Ec the symmetry is restored, the previous level degeneracies
get broken, and broken-symmetry equilibrium states can no longer be found. The
limits between these two phases are demarcated by a singularity in the density of
states at E = Ec, the defning feature of the ESQPT.

According to our theory, in the symmetry-breaking phase, λ > λc and E < Ec,
it is possible to defne an operator, Ĉ, that becomes a constant of motion in the TL.
Furthermore, this operator does not commute with the parity symmetry, [Ĉ, Π̂] 6= 
0. As previously discussed, a mathematical consequence of this structure is the
existence of a third constant of motion in this phase, K̂ = i [Ĉ, Π̂].2 

In Fig. 14 we provide a schematic representation of the phase diagram of sys-
tems with the above structural properties. Two distinct dynamical phases emerge,
(I) and (II). Regarding DPTs-I, starting from an initial broken-symmetry state in
(II) and quenching it to (I), there exist dynamical order parameters which always
vanish, m = 0; this is a consequence of the operators Ĉ and K̂ not being constant
in this phase. However, a quench leading the initial state from (II) to (II) also will
produce dynamical order parameters that may be non-zero, m 6= 0 as a conse-
quence of the conservation of Ĉ and K̂ (for specifc initial states it may also be that
m = 0, but this is not the general case in this phase). Regarding DPTs-II, the same
quench protocol will reveal a regular phase in (I) and an anomalous phase in (II).
These two phases are separated by the ESQPT critical energy, Ec. The maximum

125



energy of the system, Emax, can be fnite (LMG model) or infnite (Dicke and Rabi
models).

λc

E

λ

Π̂

Π̂, Ĉ, K̂ En,+ = En,−

En,+ 6= En,−
Regular m = 0

Anomalous
∃m 6= 0

(I)

(II)

Emax

Egs

Ec

Figure 14: Schematic representation of the phase diagram of the class of systems with
structural properties as in the LMG model. Energy is represented as a function
of some control parameter, λ. The ground-state Egs is represented gby a black
solid line. A QPT takes place at λ = λc (yellow circle). When λ > λc, the critical
energy Ec (thick red line) marks the ESQPT. Two dynamically distinct phases
are denoted I and II. In each of them, certain operators are constant in the
infnite-size limit. In (I) levels belonging to different parity sectors are different,
En,+ 6= En,−, while in (I) we fnd pairwise degeneracies, En,+ = En,−, with
the parity symmetry being broken. Phase (I) is characterized by a zero order
parameter m = 0, while in (II) this order parameter can take a non-zero value,
m 6= 0. A quantum quench starting from a symmetry-breaking state in (II) to
(I) causes regular cusps in the return probability, while quenching the system
to (II) will reveal an anomalous phase (see main text and discussions).

3.3.1 Classical limit of the fully-connected transverse feld Ising model

The basic properties of the LMG model have been specifed already around Eq.
(73). As noted, this Hamiltonian represents a collective system, an all-to-all system
where each individual spin feels the interaction with every other spin in the chain
and with the same intensity. In this class of models, the number of degrees of free-
dom remains fnite when the collective spin length increases boundlessly, and thus
the infnite-size limit, j → ∞, coincides with the classical limit, h̄ → 0 [265]. The
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SU(2) Bloch coherent state allows us to obtain a mean-feld classical Hamiltonian.
Consider

� �j
1 |ωi = e ωĴ+ |j, −ji , (139)

1 + |ω|2 

where |j, −ji is the state with spin j and hĴzi = −j, and

Q + iP 
ω = p ∈ C (140)

4 − P 2 − Q2 

with Q and P real variables. We then obtain the intensive energy functional

hω| Ĥ |ωi h λ 
H(Q, P ; λ) ≡ = −h + (Q2 + P 2) − Q2(4 − P 2 − Q2). (141)

j 2 8 

Here, (Q, P ) are canonical variables belonging to a 2-dimensional ball of radius
2, which leads to a classical phase space of the form M = {(Q, P ) ∈ R2 : 0 ≤ 
Q2 + P 2 ≤ 4}. It is clear that the classical model (141) has a single degree of
freedom, f = 1. In order to make our comparisons with the quantum Hamiltonian
more convenient, we defne the intensive energy scale associated with the classical
Hamiltonian � ≡ E/j, where E denotes the actual eigenvalues of the quantum
Hamiltonian (73).

The Bloch coherent states make it possible to obtain a classical representation of
any dynamical function. The classical limit of the collective magnetization is

hω| Ĵz |ωi Q2 + P 2 
jz = = − 1, (142)

j 2 

while for the parity-breaking spin operator jx we have

hω| Ĵx |ωi Qp 
jx = = 4 − P 2 − Q2 . (143)

j 2 

The structure and phase transitions of the classical model can be analyzed through
the fxed points of (141) [265], rH = 0,

(Q∗,P ∗) 
� � 

∂H λ dQ 
= P h + Q2 = , (144)

∂P 4 dt 

� � 
∂H λ � � dP 

= −Q (λ − h) + −P 2 − 2Q2 = − . (145)
∂Q 4 dt 

By equating Eqs. (144,145) to zero, we can calculate different real solutions de-
pending on the value of λ ≥ 0. All critical points are of the type (Q, P ) = (Q, 0).
If λ < h, the only critical point has Q = 0, corresponding to � = −h. This is the
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ground-state energy when λ < h. However, if λ ≥ h, there exist two additionalp
critical points, Q = ± 2(λ − h)/λ. A second order QPT occurs at the critical
value of the control parameter λc = h. By virtue of the Hamiltonian symmetry
H(Q, 0) = H(−Q, 0), these two critical points give rise to the same energy value,
� = −(h2 + λ2)/2λ, which is the ground-state energy if λ ≥ h. The previous criti-
cal point with Q = 0 corresponds to an unstable fxed point if λ ≥ h, defning an
ESQPT at �c = −h, ∀λ > λc. In our numerical calculations, h = 1 will be kept fxed,
and λ will be taken as the only controllable parameter.

Portraits of the classical phase space have been represented in Fig. 9, where each
line corresponds to a classical orbit with fxed energy, i.e., the set of points (Q, P ) 
such that H(Q, P ) = �. For λ = 0 the LMG model reduces to Ĥ = −hĴz, which
is essentially an harmonic oscillator with classical dynamics governed by H = 
−h + h(Q2 + P 2)/2, composed of concentric circumferences. Here, the ground-
state is unique. A value λ 6= 0 but λ < λc disrupts the perfect harmonic behavior,
but the ground-state remains unique as shown in Fig. 9(b-c). However, the classical
phase space changes drastically when λ > λc, see Fig. 9(d) for λ = 3. We highlight
three main aspects: (i) the ground-state becomes two-fold degenerate, leading to
a double-well potential with minima at a given Q and also at its mirrored image,
−Q; (ii) (0, 0) becomes an unstable fxed point, corresponding to energy �c = −1 
(for h = 1); and (iii) for � < �c trajectories are trapped within either the right or left
classical wells, depending on the initial condition, but if � > �c the whole phase
space becomes available.

The ‘singular’ behavior occurring at energy �c = −1 is due to an ESQPT. To
see why, let us calculate the classical level density [264], [294] which, according to
Gutzwiller’s trace formula [61], can be approximated as ( h̄ = 1)

Z 
1 

%(�) = dQdP δ[� − H(Q, P )]. (146)
2π M 

This level density is shown in Fig. 15 for the same values of λ as in Fig. 9. When
λ = 0 the spectrum is equiespaced and, thus, %(�) is a uniform distribution. A
value λ 6= 0 creates a ramp-shaped distribution with a peak at its border, � = 
−1. But the ESQPT signatures are best exemplifed by the case λ > λc, where a
logarithmic singularity is clearly visible, e.g. for λ = 3.

As explained in Sec. 3.1, where the model we are interested in was used to illus-
trate the geometrical meaning of our general theory in Sec. 3.2, in the symmetry-
broken phase λ > λc and E < Ec, the operator

Ĉ = sign (Ĵx). (147)

is an emergent conserved quantum quantity in the infnite-size limit. According
to our general theory, (147) defnes a discrete Z2 symmetry with two eigenvalues,
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Figure 15: Representation of the level density of the LMG model with h = 1 and for dif-
ferent values of λ. The numerical density of states obtained from the quantum
Hamiltonian, Eq. (73), with j = 10000, are presented with color histograms,
and the classical approximation to the level density, Eq. (146), is shown with
black lines in all cases.

Spec (Ĉ) = {±1} [325]. But this operator is a partial symmetry as it does not com-
mute with the whole Hamiltonian, only with the projectors onto the Hamiltonian
eigenspaces with associated energies below the ESQPT critical line. As shown
in [325], if |En,±i denote the Hamiltonian eigenstates with energy below Ec the√ 
eigenvectors of Ĉ are (|En,+i ± |En,−i)/ 2, and hEn,±| C |ˆ En, i = ±1. We note
that the sign in ±1 here is not related to parity; rather, it is an arbitrary global
phase pertaining to each of the eigenstates |En,±i. Thus, it can be simply fxed to
+1 without loss of generality [325]. The operator (147) can be used to establish a
quantum-classical correspondence; specifcally, given an arbitrary state |ϕ(t)i, the
expectation value hĈ(t)i = hϕ(t)| C |ˆ ϕ(t)i ∈ [−1, 1] indicates whether |ϕ(t)i is at-
tached to the left (-1) or right (+1) classical energy well, or if it is a superposition
(between -1 and +1).

3.3.2 Dynamical order parameters: dynamical phase transition of type I

As explained in Sec. 1.3.3, DPTs-I are mainly signaled by non-analytic points in
the non-equilibrium order parameter after a quantum quench protocol [365], [374],
[384]–[391]. Our goal in this section is to show how in a large class of collec-
tive quantum systems these phase transitions stem from a symmetry restoration
brought about by the ESQPT. One of our main results is the proposal of an exten-
sion of the standard microcanonical ensemble [1] to describe the long-time aver-
age of order parameters in symmetry-broken phases, where the order parameter
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acquires a fnite value. To this end, we will make use of the three noncommuting
charges of Sec. 3.2.

Taking an initial state out of equilibrium: quantum quenches

In order to emphasize in what Hamiltonian (initial or fnal) the time evolution
takes place, let us slightly change the notation: instead of |Ψ(t)i, which can be
ambiguous, |Ψt(λ)i will refer to the time evolution occurring in the Hamiltonian
with control parameter λ and at time t. Similar notation will refer to the eigenstates
of the Hamiltonian, so |En(λ)i refers to the nth eigenstate of the Hamiltonian Ĥ(λ).

To generate non-equilibrium dynamics, we start from a superposition of the
symmetry-broken ground-state at an initial value of the control parameter λi > λc,

√ iφ
√ 

|Ψ0(λi)i = α |E0,+(λi)i + e 1 − α |E0,−(λi)i , (148)

where α ∈ [0, 1], φ ∈ [0, 2π). It should be emphasized that this choice of initial
state is experimentally relevant as it has been considered in recent realizations
[374], [388], [395] with α = 1/2 and φ = 0. To make contact with experiments,
in this section we also adopt the scale where h ∼ MHz, so t ∼ µs. We perform
a quench λi → λf , and let the state evolve in time under the fnal Hamiltonian
( h̄ = 1),

Ψt(λf ) = e −iĤ(λf )t |Ψ0(λi)i XX −iEn,k(λf )t (149)= En,k(λf ) Ψ0(λi) e En,k(λf ) . 
n k=± 

After the quench, the distribution of populated states, also called the local density
of states (LDOS), can be written

XX 
P (E) = |cn,k|2δ(E − En,k), (150)

n k=± 

where the coeffcients cn,k ≡ En,k(λf ) Ψ0(λi) . Figure 16 shows this distribution
for several values of the collective spin-length, j (the system size parameter, as we
are working with the sector j = N /2 of the LMG model), starting from different
values of λi > λc, α = 1/2 and φ = 0, and all fnishing at λf = 1.75. The average
energy of the quenched state,

P P 
k=± |cn,k|2�n,k(λf ), strongly depends on λi, son 

it can be driven from one side of the ESQPT, E < Ec, to the other, E > Ec. A
technical detail is that, for visualization purposes, this distribution of populated
states is scaled by the mean level spacing, hsi, sn = �n+1 − �n, because the rescaled
energy spectrum {�n} gets denser j increases. It is clear that as j increases the
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width of the distribution decreases, becoming more peaked precisely around the
infnite-j average given by the classical limit (dashed vertical lines). In (a) and (c),
the distributions are non-negligible essentially on only one side of the ESQPT: in (a)
P (�) shows signifcant population for � < �c = −1, while in (c) the opposite is true.
However, in (b) the average energy very approximately coincides with �c = −1.
In the last case, we observe a clear dip of the distribution exactly at the critical
energy, as previously noticed, e.g., in [317], [460]. The dynamical implications of
this feature will be discussed later.
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Figure 16: Probability of populated states (LDOS), defned in (150), after a quench λi → 
λf = 1.75 from the initial state Eq. (148) with α = 1/2 and φ = 0 in the LMG
model (73). The values of the initial control parameter and the average energy
of the quenched state in the fnal Hamiltonian are (a) λi = 2.5, �(λf ) = −1.135 
(b) λi = 7 , �(λf ) = −1, and (c) λi = 27.5, �(λf ) = −0.89567. The system size
j ranges from 200 to 6400 as indicated in (a). The black dashed lines represent
the classical value of the fnal average energy of the quenched state.

Post-quench relaxation dynamics

Here we analyze the relaxation dynamics for each of the quenches considered
in Fig. 16. Figure 17 represents the quantum dynamics of the parity-breaking
operator Ĵx. Its expectation value at a given time t is

hĴx(t)i = Ψt(λf ) Ĵx Ψt(λf ) . (151)
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In the broad class of systems sharing physical properties with the LMG model, this
operator is commonly used as an order parameter [266] [i.e., m(t) = hĴx(t)i in Fig.
14]. The dynamical evolution of its classical counterpart, Eq. (143), is determined
by the Hamilton equations Eqs. (144,145). Because we are dealing with a fully-
connected model, quantum and classical dynamics coincide in the limit j → ∞.
In Fig. 17(a-c) an oscillatory pattern can be observed. For small j, quantum and
classical dynamics only agree for relatively short times, and for longer times we
observe damping combined with dephasing deviating from the perfect j → ∞ 
classical oscillation. The time when the different quantum results deviate from
the classical evolution increases with j, but it shows some peculiarities depending
on the region of the spectrum where the initial state ends after the quench. For
example, in Fig. 17(a) the quenched state only signifcantly populates states below
the ESQPT and hCiˆ = +1 is conserved; as a consequence, the quenched state is
trapped within the right classical well. Indeed, in this case hĴx(t)i remains positive
for all t. Likewise, classically, jx(t) ∝ Q(t), which is positive in the right energy
well [cf. Fig. 9(d)]. A completely different case is represented in Fig. 17(c), where
the quench only populates fnal Hamiltonian eigenstates with energy above Ec.
Here, hCiˆ is not conserved and therefore both classical energy wells are accessible.
Therefore, the time evolution of the order parameter features both positive and
negative values. The situation considered in Fig. 17(b) is intermediate: the average
quench energy coincides with the ESQPT critical energy, but both sides of the
spectrum are populated. Classically, jx(t) exhibits a decay at short times, and for
t & 10 it plateaus at zero, which is the corresponding value of the classical ESQPT
critical point, jx ∝ Q = 0. We note that a classical trajectory exactly traversing
the critical line of the phase space [e.g., the black line in Fig. 9(d), which seems to
cross itself] has access to the other side; however, leaving the fxed point requires
a infnite time. In any case, at the ESQPT critical energy the quantum dynamics
shows drastic deviations from the expected classical evolution.

In Fig. 17(d-f) we have plotted the same dynamical evolution as before but for
longer timescales. Generally, after the dynamics has completely deviated from the
classical predictions, it enters a new regime characterized by oscillations around
a steady-state value, and then a series of dynamical revivals echo its short-time
behavior [461]. For very long times, the dynamics eventually becomes very noisy
with no clear pattern, as shown in Fig. 17(d,f). In these two cases, the time of
frst revival and the time interval between two consecutive revivals increase as j 
increases. Yet, in Fig. 17(e), corresponding to the critical quench, the dynamics
simply fuctuates around some steady value with no revivals at all.

From this discussion, two particularly relevant timescales can be defned: the
time when the quantum dynamics deviates from its large-j classical result, tSC, and
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Figure 17: Numerical analysis of DPTs-I in the LMG model (73). We represent the time-
expectation value of Ĵx after a quench λi → λf = 1.75. We perform quenches
with initial states of the form in (148) with α = 1/2 and φ = 0. Because
hCiˆ = 1, the wave function is always initially localized in the right energy well.
The initial values of the control parameter and the fnal average energies of the
quenched states are (a,d) λi = 2.5, �(λf ) = −1.135 (b,e) λi = 7, �(λf ) = −1,
and (c,f) λi = 27.5, �(λf ) = −0.89567. The color code is indicated in (b) and
followed in all panels. In (a,b,c), the classical dynamical evolution following
the Hamilton equations is shown with black lines.

the time when the frst revival occurs, tR, which we briefy analyze here. We may
estimate tSC by computing the difference between quantum and classical results,
looking for the frst value of time such that this quantum-classical discrepancy is
greater than a given arbitrary but suitably chosen bound. For tSC this bound is 0.1.
Similarly, to estimate tR, we compute the frst time when the absolute value of the
time evolution exceeds an arbitrary bound, only after the classical expectation has
been completely lost. This bound is 0.85 for Fig. 17(d) and 0.15 for Fig. 17(e). In
Fig. 18 we represent the behavior with system size, j, of these two timescales. For

133



dynamics taking place at a defnite side of the ESQPT, i.e. E > Ec and E < Ec,√ 
tSC grows algebraically as tSC ∼ j [266], [381]; however, for the quench ending
at the ESQPT criticality, this time is a lot smaller, and it only scales logarithmically
with j as tSC ∼ log10 j. Assuming a macroscopic system with N = 1024 atoms,
this logarithmic law leads to t ≈ log10 10

24 = 24 µs, which is negligible compared√ 
to t ≈ 1024 = 1012 µs for quenches above or below Ec. In fact, one may argue
that a DPT takes place for these macroscopic system sizes: below or above the
ESQPT, the dynamics consists of persistent oscillations, while at the ESQPT the
dynamics simply fuctuates around a certain stationary value as in Fig. 17(b,e)
after a extremely short time has elapsed. Finally, for quenches ending above or
below Ec the time where the frst revival takes place follows the linear scaling
tR ∼ j, while for quenches ending right at the ESQPT no revivals occur.
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Figure 18: Scaling of the classical time tsc and the revival time tR as a function of system
size j, extracted from the time evolution of Ĵx in Fig. 17. (a-c) correspond to
Fig. 17(a-c), respectively, while (d-e) correspond to Fig. 17(d) and Fig. 17(f),
respectively.

Describing equilibration dynamics: the generalized microcanonical ensemble

We have already discussed in Sec. 3.2.1 that the NATS (118) is an equilibrium state,
in the infnite-size limit, in the symmetry-breaking phase (T < Tc). In the case
of collective systems with a similar structure to the LMG, this symmetry-breaking
phase is found for λ > λc and E < Ec. The ESQPT demarcates the limits of



   

the symmetry-breaking and symmetry-restored phases. Because in collective sys-
tems the microcanonical and canonical descriptions do not coincide [265], in order
to properly describe these symmetry-breaking equilibrium states we need to con-
struct a microcanonical version from the NATS . According to our general theory
of Sec. 3.2, for E < Ec the operators { ˆ Ĉ, K} are conserved in the infnite-sizeΠ, ˆ

limit, while for E > Ec only Π̂ (which is not an emergent constant of motion but
an exact one) is conserved. It would therefore seem that two separate equilibrium
ensembles are necessary to describe our generic system, with an ill-defned tran-
sient region between E < Ec and E > Ec (the ESQPT at E = Ec). Luckily, this
issue can be circumvented by employing the following variation of the operators
Ĉ and K̂,

eC = IE<Ec Ĉ IE<Ec , (152)

Ke = IE<Ec K̂ IE<Ec , (153)
P 

where IE<Ec ≡ θnP̂n, P̂n is the projector to the eigenspace with energy En,n 
and θn = 1 if En < Ec and θn = 0 if En > Ec. Observe that hCei and hKe i are
the exact same as hCiˆ and hKiˆ for E < Ec, but are equal to zero for E > Ec.

e eAs a consequence, C and K do commute with the full Hamiltonian in the TL.
Furthermore, these two operators, together with Π̂ and with the identity, close a
SU(2) algebra in every subspace of degenerate energy levels. In a single eigenspace
of the eigenbasis common to Ĥ and Π̂, {|En,+i , |En,−i}, they can be written [note
the difference with (116), where the eigenbasis of M̂ was used instead of that of
Π̂]

! ! ! 
0 1 0 −i 1 0 Ĉ = , K̂ = , Π̂ = . (154)
1 0 i 0 0 −1 

eThe set of noncommuting [428], [440], [462] charges {Π̂, C, Ke} can be used to build
any 2 × 2 Hermitian matrix accounting for all quantum coherences between parity
sectors in a single energy eigenspace. The NATS (118) can then be adapted to the

ˆ e emicrocanonical description as ρ̂GME = ρ̂MEe
−λπ Π−λcC−λkK , which for convenience

can be simplifed further to
� � 

ρ̂GME(E, p, c, k) = ρ̂ME(E) I + p Π̂ + cCe+ kKe , (155)

where
X 

ρ̂ME(E) = 1 
(|En,+i hEn,+| + |En,−i hEn,−|) (156)

2(N+ + N−) n 

denotes the standard microcanonical ensemble [1], defned by the condition that all
parity doublets, |En,+i and |En,−i, within a small energy window around the aver-
age energy value, hEi = Tr[ρ̂Ĥ ], are equally populated (irrespective of whether
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these parity doublets are degenerate). This ensemble is properly normalized,
Trρ̂GME(E) = 1. N± denotes the number of parity doublets above (N+)/below
(N−) Ec populated (e.g., by a quantum quench). We dub the density matrix
ρ̂GME(E, p, c, k) as generalized microcanonical ensemble (GME). Unlike the standard
microcanonical ensemble, in addition to the average energy it also depends on the
parameters p, c, k ∈ R which, similarly to the multipliers in the NATS (118), are
determined solely by the initial condition: Tr[ρ̂GMEΠ̂] = hΠ̂i, Tr[ρ̂GMECe] = hCei,
and Tr[ρ̂GMEKe ] = hKe i. Explicitly, in the large-N limit these values read

hΠ̂i = p, (157)

N−hCei = c , (158)
N+ + N− 

and

N−hKe i = k , (159)
N+ + N− 

whence one may calculate the parameters p, c, k.
The main features of this statistical ensemble are:
(A) It reproduces the quantum coherence between parity sectors if and only

if E < Ec as (155) has off-diagonal elements in the parity eigenbasis if c 6= 0 
and/or k 6= 0. For this reason, the equilibrium value of the order parameter (or� � 
of any other parity-breaking observable), Tr ρ̂GME(E, p, c, k)Ĵx , can be non-zero
only if E < Ec. Note, however, that not very initial condition leads to a symmetry-
breaking equilibrium state even if E < Ec; these can occur if an only if c 6= 0 
and/or k 6= 0. In other words, the ensemble reproduces the physically observed
fact that in the symmetry-broken phase the order parameter of DPTs-I can acquire
a fnite value, m 6= 0 [cf. Fig. 14].

(B) For E > Ec, (155) becomes diagonal in the Hamiltonian eigenbasis. Hence,� � 
if E > Ec, Tr ρ̂GME(E, p, c, k)Ĵx = 0 invariably, for any initial condition. This is to
say that the GME also reproduces the observation that order parameters of DPTs-I
are always m = 0 in a symmetry-restored phase [cf. Fig. 14].

In other words, according to (155), it is the ESQPT non-analyticity that causes
DPTs-I. If an initial state prepared in the symmetry-broken phase is quenched
onto the symmetry-restored phase, then the information pertaining to quantum
coherence between parity sectors is completely destroyed.

Now, let us numerically test the applicability of (155). Similarly to the standard
microcanonical ensemble [1], also in the GME we will assume that all states within
a certain energy window ΔE centered at the average energy, [hEi− ΔE, hEi + ΔE],



 

 

�� � �� �

are equally populated. Here, hEi = 
P P 

k=± |cn,k|2En,k(λf ) is the average energyn 
of the quenched state in the fnal Hamiltonian. The microcanonical energy window
ΔE is composed of the 2N + 1 levels of positive parity around the target energy
hEi and the 2N + 1 levels of negative parity. Our energy window is chosen as
ΔE = 2σ where σ2 = 

P P 
k=± |cn,k|2(En,k(λf ) − hEi)2 . Essentially, we computen 

the number of parity doublets (regardless of whether or not the corresponding
energies En,± are degenerate) below and above Ec in the corresponding energy
window, N− and N+, and through Eqs. (157, 158, 159), we calculate the parameters
p, c, k.

Consider a state with eigenvalue En,k ≤ Ec within the microcanonical window.
Then, in the subspace {|En,+i , |En,−i} the GME takes the matrix form

! 
1 1 + p c − ik 

ρ̂n(En,k ≤ Ec) = . (160)
2 c + ik 1 − p 

Because Tr [ρ̂2 (En,k ≤ Ec)] = (1 + p2 + c2 + k2)/2, not all conceivable states maken 
physical sense, only those such that p2 + c2 + k2 ≤ 1 do.

On the other hand, for a state En,k > Ec falling within the GME energy window,
we have

! 
1 1 + p 0 

ρ̂n(En,k > Ec) = . (161)
2 0 1 − p 

Observe that Eq. (161) is a diagonal matrix in the parity eigenbasis {|En,+i , |En,−i}.
Finally, for states lying outside the GME energy window, say En,k 6∈ [hEi − 

ΔE, hEi + ΔE], the associated block is simply the null matrix, ρ̂n = 0 × I2.
If, instead of just one eigenspace, we consider the entire Hamiltonian-parity

eigenbasis, {|E1,+i , |E1,+i , . . . , EN ,+ , EN ,− }, the full GME is represented by a
block-diagonal matrix where the blocks (160) and (161) are located in the diagonal:
ρ̂GME = diag ({ρ̂n}n)/Z, where the normalization constant is Z = N+ + N−. If
the energy of the quenched state overlaps the ESQPT, the GME is built from the
contribution of states both above and below E = Ec.

After the GME has been built, we are ready to compare the long-time average of
physically relevant observables, Ô, with its equilibrium predictions,

hÔiGME = Tr [ρ̂GMEÔ]. (162)

We have computed the infnite-time average of observables in states taken out
of equilibrium by a quantum quench. After the quench, we let the wave function
relax during 103 µs in the fnal Hamiltonian. For convenience, in our protocols the
equilibrium state is always of the type Eq. (148) with α = 1/2 and φ = 0. To access
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different spectral regions of the fnal Hamiltonian, we vary the initial λi, and the
fnal control parameter is always λf = 1.75. If the interested reader would like to
see a case with φ 6= 0, this can be found in our paper [327].
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Figure 19: Equilibrium values (long-time averages) of representative observables after a
quantum quench λi → λf = 1.75 as a function of the average energy in the fnal
Hamiltonian, �(λf ), for the LMG model (73). System size fxed to j = 6400. The
initial state is always of the form (148) with α = 1/2 and φ = 0. Black points
represent the exact averages while the GME prediction, (162), is shown with
blue lines.

The long-time averages are shown with black circles in Fig. 19 for Ĵz, Ĵx, Ĉ and
K̂ as a function of the fnal energy within the range −1.1 . �(λf ) . −0.9, crossing
the ESQPT at �c = −1. Precursors of non-analytic behavior the ESQPT at �c can
be seen in all observables. This non-analytic point is transferred directly from
the level density to the expectation values of observables in systems with a single
classical degree of freedom [265], although in systems with higher f they may not
appear so clearly. So, for example, in Fig. 19(a) there is quite a marked minimum
in the long-time average of Ĵz. The behavior of the order parameter is shown in
Fig. 19(b): Ĵx acquires a fnite value in the symmetry-breaking phase, and then
it goes to zero after crossing the ESQPT. As j increases, these precursors become
more sharp towards actual non-analytic behavior [cf. Fig. 20]. It is therefore clear
why Ĵx can be taken as the order parameter of DPTs-I, m = hĴxi, occurring at
the ESQPT in the infnite-size limit. Finally, the behavior of the operators Ĉ and
K̂ is shown in Fig. 19(c,d). Due to the choice of initial state with α = 1/2 and
φ = 0, the equilibrium values of these operators for E < Ec are hCiˆ = 1 and



hKiˆ = 0. These values remain constant if the quench is such that E . Ec. For
E > Ec, these operators are no longer constant, but their infnite-time averages
vanish completely, which explains why there is also no variation in these long-
time averages when E > Ec. Close to E = Ec, the precursors of a phase transition
between these two values can be seen in the fgure. If reader is interested in a
case where hKiˆ 6= 0 in the symmetry-breaking phase E < Ec, we refer them to our
paper [327]. The equilibrium predictions of the GME are shown with a solid line.
Anyhow, the long-time averages and the GME agree excellently.
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after a quench λi → λf = 1.75 represented as a func-Figure 20: Long-time average of Ĵx 

tion of the average fnal energy of the quenched state, �(λf ), for different system
sizes. In all cases, the initial state is of the form (148) with α = 1/2 and φ = 0.
The exact numerical averages are represented with points of different shapes
depending on system size, while color lines show the GME prediction in (155).
The fnite-size scaling of Δ� = �c(j) − �c(∞), with a bound γ = 1/20, is shown√ 
in the inset, which reveals a power-law behavior |Δ�| ∼ 1/ j.

To end this section, we shall specially treat the order parameter of the DPT-I,
hĴxi. In Fig. 20 we present our fnite-size scaling analysis of its equilibration
value across the transition. This fgure clearly depicts how the smooth precursors
of the transition acquire an abrupt character as j increases. Let us mention that
although the agreement with the GME is generally good for all j, it does improve
as j increases because the GME depends on operators that become strictly constant
only in the TL. All fnite-j curves intersect around � ≈ �c = −1, suggesting DPT-
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I criticality in the TL. The fnite-j precursor of the critical energy characterizing
the DPT-I, �c(j), can be computed by calculating the last value of �(λf ) such that
hĴxi > γ, where γ is some arbitrary bound2 . Here, we choose γ = 1/20. In the
inset of Fig. 20 the difference between this precursor and the ESQPT critical energy
in the TL, �c(∞) = −1, |Δ�| = |�c(j) − �c(∞)|, is represented as a function of j. We
fnd a neat power-law behavior |Δ�| ∼ 1/

√ 
j; precisely, this is |Δ�| ∼ 10ajb with

a = −0.195664 and b = −0.500194. These results provide solid support for the
DPT-I occurring exactly at E = Ec in the TL.

Information erasure upon crossing an ESQPT

Contrary to the previous section, where an initial state was quenched to a fnal,
fxed λf , here we are interested in the dynamics of an initial state undergoing
an actual time-dependent slow process after a quench, where λf = λf (t) varies
smoothly. The process consists of the following steps:

(i) Our initial state is of the type in Eq. (148) with an initial control parameter
λi > λc.

(ii) We suddenly quench the state, λi → λf .

(iii) After the quench, the dynamics is governed by the time-dependent Schrödinger
d|Ψ(λ(t))iequation, i = Ĥ(λ(t)) |Ψ(λ(t))i, with λ(t = 0) = λf , where λ(t) is adt 

slowly-varying function3 .
jUsing the Ĵz eigenbasis {|mi}m=−j , the instantaneous wave function can be for-Pjmally written as |Ψt(λ(t))i = m=−j ϕm(t) |mi. In this basis, we can numerically

solve the following system of 2j + 1 coupled differential equations:

� � 
d λ(t)
i ϕm(t) = ϕm(t) hm − (j(j + 1) − m 2)
dt 2N � �q q
λ(t)− ϕm+2(t) j(j + 1) − m(m + 1) j(j + 1) − (m + 2)(m + 1) (163)
4N � �q q
λ(t)− ϕm−2(t) j(j + 1) − m(m − 1) j(j + 1) − (m − 2)(m − 1) ,
4N 

for all m = −j, ..., j, and where N = 2j is the number of spin-1/2 particles. The
jsolution of this system of equations at time t is then {ϕm(t)}m=−j . Our goal is

to simulate a two-stage forward-backward process between λ(t = 0) = λ0 and

2 The point is that it does not matter what γ is as long as it is suffciently small.
3 The goal of step (ii) is to excite the initial state so that the subsequent slow evolution of step (iii)

drives it through the ESQPT. If step (ii) is skipped, then at most one may be able to drive the initial
wave function through the QPT, which is not our focus.



λ(t = τ ) = λ1, with τ denoting the time duration of each stage of the protocol. For
the control parameter λ(t), we choose the linear function

λ(t) = 

⎧
⎨ 
⎩ 
λ0 + Δλ t 0 ≤ t ≤ ττ , (164)
2λ1 − λ0 − Δλτ

t , τ ≤ t ≤ 2τ 

where Δλ = λ1 − λ0. In the case of a perfectly adiabatic process, the rapidity is
τ → ∞; however, fnite values of τ that are suffciently high can already get close
enough to adiabaticity. We fx τ = 500 µs, which we fnd suitable for our purposes.

Our initial states, all of the form Eq. (148), have λi = 3 and α = 3/4, while we
allow φ to take different values. These initial parity-broken states can be fully lo-
calized within one of the classical wells or in a quantum superposition of them de-
pending on φ. The quench is λ0 ≡ λf = 1.75, and the time-dependent Schrödinger
equation is solved from λ0 to λ1 = 0.5, and then from λ1 back to λ0.

In Fig. 21 we represent the average energy of the wave function along the
forward-backward process. The protocol drives the state across the ESQPT twice;
frst during the forward stage, and then during the backward stage (horizontal
dashed line at �c = −1). Because τ is suffciently high, the evolution is close to
adiabatic and for this reason the energy is a symmetric function of time. Another
consequence of this is that the average energy of the initial and fnal states coin-
cide: hΨ(0)| Ĥ(λ(0)) |Ψ(0)i = hΨ(2τ )| Ĥ(λ(2τ )) |Ψ(2τ )i, meaning that basically no
excitations occur. The predictions of the GME at each time instant are represented
with a blue line, showing excellent agreement with the real time evolution (black).

We have monitored the evolution of relevant observables as the wave function
follows this protocol, which are shown in Fig. 22(a-d) for different initial con-
ditions (the only change is in φ). For hĴz(t)i we only consider one initial state
with φ = 0, because the time evolution of this observable does not show any de-
pendence on φ. The time evolution of Ĵz would apparently be compatible with a
reversible process: oscillations aside, its mean values at the beginning and at the
end of the protocol are basically the same. However, panels (b-d), which depict
the dynamics of Ĵx, Ĉ, and K̂, show this is not the case. All of these observables
either become zero (Ĵx) or fuctuate around zero (Ĉ, K̂) after some time, and this
coincides with the times when the wave function is crossing the ESQPT [see Fig.
21]. This is a manifestation of the DPT-I. The forward protocol ends at t = τ ,
and then the backward protocol drives the system until t = 2τ . Remarkably, al-
though the initial and fnal average energies are the same [cf. Fig. 21], the initial
and fnal values of Ĵx, Ĉ, and K̂ are nothing alike. This is telling us that the pro-
cess is really irreversible: we have lost information contained in the initial state
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Figure 21: Average energy of the initial state evolving in time according to the Schrödinger
equation, (163). For visual clarity, the forward and backward processes are sep-
arated by a dashed vertical line. The GME expectation for the average energy,
(155), is marked by the blue line. The ESQPT critical energy is represented with
a horizontal red dotted-dashed line. The driving parameter λ(t) follows (164)
with τ = 500. System size is j = 1000.

upon crossing the ESQPT criticality. In order to interpret this result, let us recall
that crossing the ESQPT means reaching the symmetry-restored phase of the LMGR t1model, and in that case the equilibrium density matrix ρ̂eq = limt→∞ dt0 ρ̂(t0),t 0 
with ρ̂(t) = |Ψ(t)i hΨ(t)|, becomes diagonal and the off-diagonal coherence is de-
stroyed. Because the driving time τ is larger than the classical time tSC, in essence
related to the typical time where diffusion of the wave packet occurs, the real ρ̂(t) 
remains very close to the effective ρ̂eq. The information of the initial state cannot
be recovered simply by crossing the ESQPT again in the backward process. We
should note that because [Π̂, Ĥ(λ)] = 0, ∀λ, the expectation values of operators
such as Π̂ are not affected by this mechanism; however, it does affect hCiˆ , hKiˆ and,
in general, all physical magnitudes whose equilibrium values depend on Ĉ and K̂,
such as Ĵx [325]. To quantify this further, in Table 3 we have gathered the values
of the GME parameters p, c, k at the beginning and the end of the entire protocol.
Even though p, which comes from Π̂, remains constant, the parameters c ∝ hCiˆ and
k ∝ hKiˆ change completely, confrming the irreversible nature of the protocol. In
this table we also report the value of the von Neumann entropy S = − Tr[ρ̂n log ρ̂n] 
of each of the 2 × 2 blocks of the GME. As we can see, the entropy grows from the
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Figure 22: Time expectation value of relevant observables after a quantum quench λi = 
3 → λf = 1.75, with an initial state of the type in (148) with α = 3/4 and
different values of φ (color lines). System size is j = 1000. The wave func-
tion evolves according to the time-dependent Schrödinger equation (163) with
a driving parameter λ(t) defned in (164). The duration of the forward and
backward processes is τ = 500 each. For clarity, the forward and backward
protocols are separated by a vertical dashed line at τ = 500 in all panels. The
time where the time-evolving wave function crosses the ESQPT are marked by
dotted-dashed lines (two in each panel). In (e-h) the parameters of the initial
state are α = 3/4 and φ = π/5, with the GME prediction (155) being shown
with a black solid line.

initial time to the fnal time of the protocol. This is a clear manifestation of the loss
of information.

Summarizing, the DPT-I is connected with a mechanism whereby some of the
information contained in the initial condition is destroyed. A detailed discussion
on the origin of this mechanism in a similar model can be found in Ref. [332].
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Time p c k S 

t = 0 0.5 0.7006 0.5090 2.3 × 10−4 

t = 2τ 0.5 −0.0576 −0.0458 0.5594 

Table 3: Values of p, c, k and the von Neumann entropy S at the beginning (t = 0) and end
(t = 2τ ) of the adiabatic process in Fig. 22(e-h).

Before we end this section, we would like to briefy comment on the suitability
of the GME to describe this kind of time-dependent protocols. Along this protocol
we take the expectation value of the time-evolving wave function, but this state
is never really allowed to relax during long times. For this reason, in our results
we can clearly observe the effects of short-time dynamics, which is highly non-
universal. Although an effective equilibrium state may not be actually reached for
these short times, we have seen that the GME still does a good job at estimating
the average value around which the wave function fuctuates. Obviously, the exact
form of these fuctuations cannot be described by an equilibrium ensemble such
as the GME. In Fig. 22(e-h) we pick an initial state with α = 3/4 and φ = π/5, and
represent analogous results to those in Fig. 22(a-d). On top of the numerical results,
the GME expectation is represented with a black line. As we have discussed, the
average values of the dynamics are still excellently described by the GME.

3.3.3 Cusps in return probabilities: dynamical phase transitions of the type II

This section is devoted to the analysis of DPTs-II in collective systems exhibiting
an ESQPT. We provide analytical results, valid in the TL, showing that the main
mechanism for DPTs-II previously proposed in [394] is only allowed when the
energy of the quenched state is above the critical energy of the ESQPT, E > Ec 

(symmetric phase), while it is forbidden if E < Ec (symmetry-broken phase). Our
analytical calculations are accompanied by numerical results on the LMG model.

Analytical restrictions for DPTs-II

As advanced in Sec. 1.3.3, to analyze DPTs-II one usually considers as an initial
state |Ψ0(λi)i a general superposition of the degenerate ground-state in the degen-
erate phase (where the Z2 symmetry may be broken), in our case E < Ec. Then,
a quench λi > λc → λf is performed, and the state is allowed to evolve in time
under the new Hamiltonian, Ψt(λf ) . In the case of broken-symmetry models,
DPTs-II are defned through the non-analytic times in the PPRP [394] given in (78).
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We recall that the corresponding rate function is given by (80). According to [394],
[413], each of the terms in the PPRP, L±(t), follows the law in (81). Therefore, we
can write

ih1 −N (Ω−(t)−Ω+(t)) rN (t) = Ω+(t) − (165)ln 1 + e 
N 

Let us consider the second term on the right-hand side of this equation. (i)
−N (Ω−(t)−Ω+(t))]if Ω−(t) > Ω+(t), then limN→∞ − 1 ln[1 + e = 0, while (ii) ifN 

−N (Ω−(t)−Ω+(t))]Ω+(t) > Ω−(t), then limN→∞ − 1 ln[1 + e = Ω−(t) − Ω+(t). InN 
other words, in the TL one has

r(t) ≡ lim rN (t) = 
N→∞ 

⎧
⎨ 
⎩ 

Ω+(t), Ω−(t) > Ω+(t) 
(166)

Ω−(t), Ω−(t) < Ω+(t). 

The value of time, t∗, such that the functions Ω±(t) intersect defne a singular point
through the condition Ω+(t∗) = Ω−(t∗). We expect rN (t) to remain an analytic
function analytic at t = t∗ in fnite-N systems, only fully realizing a non-analyticity
in the large-N limit. From Eq. (166) it is obvious that the nth derivative of r(t) is
dn r(t)/dtn = dnΩmin(t)/dtn where Ωmin(t) ≡ min{Ω+(t), Ω−(t)}. This way, one
may be temped to defne the order of a DPT-II through the value of n for which
dn r(t)/dtn becomes discontinuous.

In this section we provide analytical restrictions regarding the kind of spectral
phases where the above mechanism can be said to be responsible for DPTs-II. Let
us consider an initial state of the form Eq. (148) at λi, and quench it to λf . Because
Π̂ is an exact symmetry of the Hamiltonian, we can expand the initial eigenvectors
of Ĥ(λi) as a combination of the fnal eigenvectors of Ĥ(λf ) of the same parity. Thus,
for example, the broken-symmetry ground-state at λi can be rewritten as

X 
|E0,±(λi)i = cn,± En,±(λf ) . (167)

n 

The same strategy can be used to rewrite the quenched state as a combination of
eigenstates of the fnal Hamiltonian:

√ X −iEn,+(λf )t En,+(λf )Ψt(λf ) = α cn,+e 
n (168)X√

iφ cn,−e −iEn,−(λf )t En,−(λf ) .1 − α+ e 
n 
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By virtue of parity conservation, the different terms of the PPRP are

2L+(t) = E0,+(λi) Ψt(λf ) 
2X√ −iEn,+(λf )t = α cn,+e E0,+(λi) En,+(λf ) (169)

n 
2X 

= α −iEn,+(λf )t|cn,+|2 e , 
n 

and

X 2 

L−(t) = (1 − α) −iEn,−(λf )t|cn,−|2 e . (170)
n 

For convenience, let us defne
X 

f±(t) ≡ −iEn,±(λf )t|cn,±|2 e . (171)
n 

In that case, the PPRP components are

L+(t) = α|f+(t)|2 , L−(t) = (1 − α)|f−(t)|2 . (172)

The main result of this section is the following. Its consequences will be discussed
later on.

Result.– If E < Ec (in a symmetry-breaking phase), then f+(t) = f−(t), ∀t.
Let us prove this result. First, in the symmetry-breaking phase pairs of levels of

opposite parity are exactly degenerate in the N → ∞ limit, En,+(λf ) = En,−(λf ) 
for all n such that En,± < Ec [325]. Therefore, oscillatory parts in f±(t) are the
same. Thus, we only need to focus on the cn,±.

Because Π̂ is an exact conserved quantity, En,+(λf ) E0,−(λi) = 0 for all n, as
these eigenstates belong to different parity sectors. Therefore,

cn,+ = En,+(λf ) E0,+(λi) . (173)

For E < Ec (in the N → ∞ limit), we know that Ĉ becomes a conserved quantity.
Yet it cannot be diagonalized in the same basis as parity as Ĉ inverts the parity of
any Fock state [325],

C |ˆ E0,±(λi)i = |E0, (λi)i . (174)

Also, because Ĉ is a unitary operator, Ĉ†Ĉ = 1. Then,

|cn,+| = En,+(λf ) E0,+(λi) 

= En,−(λf ) Ĉ†C |ˆ E0,−(λi)i (175)

= En,−(λf ) E0,−(λi) = |cn,−| . 
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It follows that f+(t) = f−(t) in the TL, if the population coeffcients are only
non-zero in the spectral phase defned by E < Ec.

Two physically relevant consequences follow from this formal result.
Consequence 1.– The constancy of Ĉ if E < Ec implies Ω+(t) and Ω−(t) can-

not intersect. Therefore the mechanism for DPTs-II proposed in [394] is forbidden for
quenches below the critical energy, E < Ec. It is only allowed if the quench leads the
state to the symmetry-restored phase, E > Ec.

The proof follows trivially. Indeed, let us assume that f+(t) = f−(t) for all t;
then, if α ∈ (0, 1), Eq. (172) implies

L+(t) α 
= , ∀t. (176)L−(t) 1 − α 

Then, depending on α, we have:

• If α = 1/2, then L+(t) = L−(t) for all t, which implies that Ω+(t) = Ω−(t) 
for all t.

• If 0 < α < 1/2, Eq. (176) implies L+(t) < L−(t) for all t, and from Eq. (81)
this implies that Ω+(t) > Ω−(t) for all t.

• If 1/2 < α < 1, then Ω−(t) > Ω+(t).

• In the limit cases where α = 1 or α = 0, we have that either L+(t) = |f(t)|2 ≥ 
0 = L−(t) or L−(t) = |f (t)|2 ≥ 0 = L+(t).

This list exhausts all possibilities, and in none of them a crossing can take place
in the functions Ω±(t). In summary, in a symmetry-breaking phase E < Ec the
physically observed cusps in the rate function of the PPRP is necessarily due to a
different mechanism than that proposed in [394].

Up to this point, our focus has been on DPTs-II appearing on the PPRP of Ref.
[394]. What is about the standard survival probability, SP(t)? We recall that it
is given by (76).This quantity is also a measure of the degree of ‘memory’ that
the time-evolved state Ψt(λf ) keeps about its initial self, |Ψ0(λi)i, but here there
are no projections onto individual parity subspaces. In principle, SP(t) [Eq. (76)]
should be different from L(t) [Eq. (78)], because L(t) does not keep track of the
quantum interference between eigenstates of opposite parity. Is this true? When is
it true?

We again start with an initial state Eq. (148) with λi > λc, and do a quench,
λi → λf . The survival probability Eq. (76) is then

X −iEn,+(λf )tSP(t) = α cn,+e E0,+(λi) En,+(λf ) 
n 

(177)X 2 −iEn,−(λf )t+ (1 − α) cn,−e E0,−(λi) En,−(λf ) . 
n 
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Using Eq. (167) and the defnition of f±(t) in Eq. (171), this is

2SP(t) = |αf+(t) + (1 − α)f−(t)| . (178)

From this expression, two kinds of behaviors emerge:
(i) If E < Ec (symmetry-breaking phase), then, f+(t) = f−(t) ≡ f (t) for all t,

implying

SP(t) = |f (t)|2 = L+(t) + L−(t) = L(t). (179)

So it turns out that Eq. (78) and Eq. (76) coincide exactly if E < Ec and in the TL.
(ii) If E > Ec (symmetry-restored phase), then, in general, f−(t) 6= f+(t). This

implies that

SP(t) = α2|f+(t)|2 + (1 − α)2|f−(t)|2 

+ α(1 − α) [f+(t)f−∗ (t) + f ∗ (t)f−(t)] (180)+ 

6= α|f+(t)|2 + (1 − α)|f−(t)|2 = L(t). 

So in the general case, Eq. (78) and Eq. (76) are different functions in this case. But
there are some exceptions: if α = 0 or α = 1, then obviously SP(t) = L(t), as in
this case the initial state Eq. (148) has either positive or negative parity, and thus
no parity sector interference is possible to begin with.

Thus we have arrived at the second main consequence of the analytical results
in this section:

Consequence 2.– If E < Ec, the PPRP, L(t) [Eq. (78)], and the survival probabil-
ity, SP(t) [Eq. (76)], coincide in the TL. If E > Ec, these quantities are, in general,
different.

Numerical analysis of the rate functions

Having presented our analytical results concerning DPTs-II, here we numerically
study the rate function of the PPRP, L(t) [Eq. (78)], that of the survival probability,
SP(t) [Eq. (76)]. We consider an initial state such as Eq. (148) with α = 1/2 and
φ = 0, at an initial Hamiltonian defned by λi > λc. This state is taken out of
equilibrium through a quantum quench λi → λf where λf = 1.6. Therefore, the
average energy of the quenched state simply depends on λi. In order to observe
better the non-analytic nature of the rate function rN (t), we also calculate its frst
derivative, drN (t)/dt. We numerically work with 500 signifcant fgures; this is be-
cause rN (t) drops below the standard precision limit for a relatively small number
of particles. In Fig. 23(a-c) we report our results for rN (t), while Fig. 23(d-f) shows
the frst time derivative of this quantity. The system size parameter, j = N /2, is



indicated in all panels. Similarly to the PPRP, whose rate function is given by
Eq. (80), the rate function of the survival probability is (77) and our numerical
results are in Fig. 24. In both fgures, the rows are arranged according to the fnal
energy of the quenched state: � = −1.07 < �c (frst row), �c = −1 (second row),
and � = −0.92 > �c (third row). This corresponds to different spectral phases of
the model: symmetry-breaking phase (frst row), right at the ESQPT (second row),
and symmetry-restored phase (third row).

Firstly, let us focus on Fig. 23(a-b) and Fig. 24(a-b), for � < �c. The rate function
of the PPRP and the survival probability essentially coincide, in agreement with
our analytical arguments. Basically, this is due to the conservation of Ĉ in the TL in
this spectral region. The small differences between these rate functions for small
system sizes are to be expected: the conservation of the Ĉ operator is only fully
realized in the TL [325]. The functions rN (t) and reN (t) show a set of maxima, but
these maxima seem to be of different nature. Indeed, the frst maximum, occurring
at t ≈ 3, seems to be quite smooth with no apparent non-analytic behavior. Despite
this, the remaining maxima appear to feature kinks which become sharper with
j. Although these kinks seem to suggest non-analytic points in the TL, we have
analytically shown that DPTs-II cannot happen in the symmetry-breaking phase.
Accordingly, the corresponding time derivatives, in Figs. 23(d) and 24(d), do not
exhibit any clear fnite-size scaling to the TL (black arrows emphasize these appar-
ent kinks and their derivatives in the fgures). It should be noted that this DPT-II
phase has been dubbed ‘anomalous’ (see [371] for the origin of this term) because
all kinks in rN (t) and reN (t) only occur after the frst minimum of these functions.
The results in [371] seem to suggest that number of smooth local maxima before
the kinks appear depends on the average energy of the quenched state; dynamics
away from the critical energy of the ESQPT appears to produce a greater number
of smooth maxima.

Secondly, let us consider the opposite spectral region, the symmetry-restored
phase with � > �c. The rate functions in Figs. 23(c) and 24(c) are completely dif-
ferent. According to our analytical results, the PPRP and the survival probability
are different mathematical functions in this region. In the case of the kinks of
rN (t), the time derivatives in Fig. 23(f) reveal a clear fnite-size scaling to the TL,
which would suggest the presence of a DPT-II in the infnite-size limit: the frst
time derivative of rN (t), limN→∞ drN /dt, seems to be discontinuous at a given
critical time, t = t∗, in the TL. Yet, the time derivatives of the kinks of reN (t) in Fig.
24(c,f) are very similar to those of the case � < �c [Fig. 24(a,d)]: dreN (t)/dt does not
show a clean scaling pattern when j increases. This DPT-II phase has been dubbed
‘regular’ in [371] and its defning feature is that the kinks appear before the frst
minimum in rN (t) or reN (t).
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Finally, we have also considered the special case where the quench leads the
initial state right to the ESQPT criticality, � = �c. Figures 23(b) and 24(b) illustrate
how rN (t) and reN (t) are also different functions here. We emphasize the most
striking difference between rN (t) and reN (t): drN /dt seems to show a discontinuity
when j → ∞ around t∗ ≈ 3.75 [Fig. 23(e)], yet in dreN (t)/dt [Fig. 24(e)] no such
discontinuity seems to exist at all.

To end this section, we analyze whether the critical times of DPTs-II and the
zeros of the order parameter of DPTs-I are connected. It has been proposed in
[371], [396] that, at least for the frst-neighbors transverse-feld Ising model, they
are related; to be more specifc, a zero of the order parameter seems to be correlated
with a critical time in the rate functions. Figure 25(a) shows rN (t) and reN (t) for
λi = 7.437 and j = 1600, while Fig. 25(b) depicts the time evolution of the order
parameter, hĴx(t)i, and hĈ(t)i for the same quench. The quench leads the initial
state to the symmetry-restored phase, � > �c, starting from the symmetry-breaking
phase, � < �c. The times when rN (t) shows precursors of non-analytic behavior
are quite close to the times when the order parameter is nullifed, hĴx(t)i = 0 and
also hĈ(t)i = 0. However, the correspondence is not exact. For this reason, it may
seem that we are unable to guarantee if this correlation is rooted in a common
DPT-I and DPT-II mechanism. It is interesting to observe that the non-analytical
points in rN (t) take place when the functions rN (t) and reN (t) separate and also
at times when they coincide again. Considering f±(t) [Eq. (171)], this suggests
that the frst non-analytical point in rN (t) occurs when f+(t) and f−(t) separate;
the second non-analyticity occurs when f+(t) and f−(t) coincide again; and this
creates a pattern that repeats itself over time. However, the kinks observed in reN (t) 
do not appear to be connected to the times when hĴx(t)i and hĈ(t)i vanish.

3.3.4 Watching the seeds of DPTs-II: the complex-time survival amplitude

Complexifying the survival amplitude

In the general setting adopted in this Chapter, the survival amplitude of the initial
state in the evolving state reads, according to (75),

X 
|2 −itEn(λf )G(t) = Ψ0(λi) Ψt(λf ) = |cn e . (181)

n 
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Figure 23: (a-c) Rate function rN (t) of the PPRP L(t), defned in (80), for quenches λi → 
λf = 1.6 and (a) λi = 2.535, (b) λi = 4 and (c) λi = 7.437. (d-f) Time derivatives
0r (t) associated with the rate function rN (t) in (a-c), respectively. The fnalN 

average energy after the quench is (a,d) � = −1.07 < �c, (b,e) � = �c = −1 and
(c,f) � = −0.92 > �c. Different values of system size are indicated. Insets show
magnifcations. The initial state (148) has α = 1/2 and φ = 0.
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Figure 24: Results analogous to those in Fig. 23 but for the survival probability rate func-
tion, re(t), as defned in (77).

This quantity is completely determined by the fnal Hamiltonian eigenvalues En(λf ) 
and the corresponding population probabilities |cn|2 . The survival probability of the
initial state after time t is then trivially SP(t) = |G(t)|2 , as defned in (76). As ad-
vanced in the Introduction, the zeros of the survival amplitude can be seen as a
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Figure 25: Comparing the DPT-I and DPT-II indicators after a quench λi = 7.347 → λf = 
1.6 from an initial state of the form (148) with α = 1/2 and α = 0. The average
fnal energy is � = −0.92 > �c. System size is j = 1600. (a) rN (t) and reN (t);
(b) dynamics of Ĵx (orange) and Ĉ (green). The times of zero value of the order
parameter, hĴx(t)i = 0, are signaled with dashed vertical lines.

form of critical effect due to their similarity to zeros of the partition function (63),
which constitute a well established description of the TPTs. By defnition, Z(β) 
in any fnite system cannot vanish if β is a real number, but it can take values
arbitrarily close to zero. Therefore, these values can imply singular behavior in
certain thermodynamic observables. TPTs can be understood through true zeros
of a complexifed partition function

X 
Z(z) = gne −zEn , (182)

n 

where the inverse temperature is extended to the complex plane: z = Re(z) + 
i Im(z) ∈ C. If Z(z0) = 0 at a point z0 ∈ C whose imaginary part Im(z0) drops to
zero as the system size increases, the real partition function Z(β) in the infnite-
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size limit generates a TPT exactly at β = Re(z0), as analyzed for the frst time in
Ref. [272], [273] and then further studied in Refs. [274]–[278]. The key point is that
this approach makes it possible to trace the fnite-size precursors of the critical
behavior.

The survival amplitude (181) is mathematically similar to the partition func-
tion (182) at z = −it. Erasing the dependence of energies on λf , we defne

X X −zEn −βEn −itEnZ(z) = |cn|2 e = |cn|2 e e , (183)
n n 

where z = β + it ∈ C. The physical interpretation of this quantity is twofold. First,
it can be understood as a partition function of a fctitious system with gn ∝ |cn|2 

in complexifed inverse temperature. Zeros of Z(z) near the β axis would imply
precursors of a TPT in that system. Secondly, we may interpret (183) in terms
of G(t), Eq. (181), in a complexifed time. Zeros of this function near the t axis
(imaginary axis of z) generate precursors of critical behavior in the time domain.
In particular, if Z(z0) = 0 at a point z0 ∈ C whose real part Re(z0) drops to zero
with increasing system size, the real survival amplitude A(t) in the infnite-size
limit generates a DPT at time t = Im(z0) ≡ t0.

The quantity (183) with any value of β is proportional to the survival amplitude
of a system with modifed population coeffcients. Defning normalized popula-
tion probabilities pen(β) ≡ |cn|2e−βEn /

P |ck|2e−βEk , the survival amplitude of thek 
corresponding state is given by

X Z(β + it)−itEnG(β, t) = pen(β)e = . (184)Z(β + i0)
n 

The original survival amplitude (181) is then recovered for β = 0, while if β 6= 0 
this formula yields survival amplitudes of quantum states with enhanced popula-
tions of low-energy (β > 0) or high-energy (β < 0) parts of the spectrum. Therefore,
a zero of Z(z) at any z0 = β0 + it0 represents an actual time singularity at t = t0 

of a system with occupation probabilities pen(β0).
We note that zeros of Z(z) are determined by two independent conditions on the

vanishing real and imaginary parts, and therefore they form in general infnitely
many isolated points in the complex plane. Because the function (183) is differen-
tiable in both real variables β and t, regular Taylor expansion in a vicinity of points
Z(z0) = 0 is allowed. A direct way to locate these points makes use of the nodal
lines of Z(z), that is, the contour lines obtained by imposing separately the condi-
tions Re Z(z) = 0 and Im Z(z) = 0. Zeros of Z(z) then appear at intersections of
these lines.

Numerical results on the LMG model, (73), will be shown below.



Exceptional points in the complex plane

, defned in (183), in the plane β × t (topFigure 26: Contour maps of log10 |Z(β + it)|2 

row). The t-axis (β = 0 line) is represented by red, vertical lines. A contour
map within a smaller (β, t) window is shown in the top, right panel. The bottom
row shows the nodal lines of this last plot, with red (blue) lines corresponding
to the real (imaginary) part of (183). We perform a quantum quench λi = 7 → 
λf = 1.5 departing from an initial state of the form (148) with α = 1/2 and
φ = 0. System size is j = 30, and the magnetic feld is h = 1.

First, let us focus on the quenches that do not cross the ESQPT critical line.
In Fig. 26 we consider a backward quench λi = 7 → λf = 1.5 for an initial state
(148) consisting of equally weighted symmetry-broken eigenstates α = 1/2 and
φ = 0. The probability associated to the resulting complexifed partition function,
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|Z(β + it)|2, is represented in the β × t plane (upper left); we represent the contours
for several fxed values of such probability. A pattern of zeros of Z(z) is clearly
observed. The complexifcation of the time variable means that only zeros close to
β = 0 have a sensible impact on the survival probability, the defning feature of
DPTs-II. Despite this, the curvature of the contours close to β = 0 suggest that the
survival probability may still be affected even if no zero falls exactly on the β = 0 
line. These pictures provide useful information on the general behavior of the
survival probability which can be harder to identify through the associated rate
function. In the bottom panel of Fig. 26 we represent the nodal lines of Eq. (183).
Red and blue curves are for the real and imaginary part of Z(β + it), respectively.
As previously explained, the zeros observed in the upper right panel neatly corre-
spond to crossing points of such nodal lines, where the real and imaginary parts of
Z(β + it) vanish simultaneously.

Figure 27 shows the zeros of the complex Z(β + it) after a relatively short back-
ward quench with both λi, λf > λc. We fnd a very good correspondence between
the times when the rate function exhibits a kink and the times where a zero is close
to the β = 0 line in the complex-time partition function, namely, around t ≈ 8 and
t ≈ 14. The frst maximum of the rate function, around t ≈ 2, does not correspond
to a DPT-II because there is no zero around β = 0 at t ≈ 2 in Z(β + it); therefore,
this maximum is due to a different mechanism (see below).

It is interesting to observe that the zeros of Z(β + it) appear to form ordered
structures similar to lines. As the system size increases, the structures seem to
approach a continuum. To corroborate this impression, we perform a fnite-size
scaling of the number of zeros of Z(β + it) within a fxed region of the β × t plane,
and to count such number of zeros, N0 = N0(j), we proceed as follows. The
key point is to make use of the residue theorem of complex analysis, according to
which the integral of a complex function f (z) around a closed path γ is equal to the
sum of the residues of f (z) at its poles. Because the complexifed partition function
is an analytic function, in a neighborhood of its zeros z0 it can be expanded as

Z(z) ≈ a1(z − z0) + a2(z − z0)2 + O((z − z0)3), (185)

while its derivative reads

dZ(z) ≈ a1 + 2a2(z − z0) + O((z − z0)2), (186)
dz 

with certain ak ∈ C. Let us introduce the function

d 
f (z) = ln Z(z). (187)

dz 



, defned in (183) (left column), and asso-Figure 27: Contour maps of log10 |Z(β + it)|2 

ciated rate functions of the survival probability, SP(t) = |Z(it)|2 (right col-
umn). We have performed a quench λi = 2.6 → λf = 1.6, departing from
an initial state (148) with α = 1/2 and φ = 0. The average fnal energy is
h�f i = −1.07 < �c. The t-axis (β = 0) is marked by vertical dashed lines (left
column). System size is j = 50, 100, 200 (for upper, middle and lower rows).
We have decided to zoom in the contour plots as system size increases in order
to facilitate the observation of zeros.
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The zeros of Z(z) correspond to poles of f (z). Indeed, if a1 6= 0, then, close to a
zero of Z(z),

0a−1 0 0f (z) ≈ + a0 + a1(z − z0) + O((z − z0)2), (188)
z − z0 

0 0 0for some a ∈ C, in general a 6= ak. Importantly, a = 1, so the residue of f (z)k k −1 
at the pole is Resz=z0 f (z) = 1. If the root at z = z0 happens to be of a higher order,
i.e., if a1 = a2 = · · · = ak−1 = 0, ak 6= 0, then the frst k terms in (186) vanish and
the pole in f (z) has Resz=z0 f (z) = k. This is a consequence of the multiplicity of
such root. Thus, the number N0 of roots of Z(z) for a fxed system size j can be
computed as

I 
f (z)dz = 2πiN0. (189)

γ 

We have calculated N0 for several system sizes j in a small rectangular region
of the complex plane containing the β = 0 line, similar to the region depicted in
the top, rightmost panel of Fig. 27. The result is shown in Fig. 28, which reveals
a strongly linear behavior N0 ∼ j. This suggests that in the infnite-size limit, the
density of zeros in the chains crossing the t axis becomes infnite and the survival
probability is nullifed in this part of the complex β × t parameter space.

Figure 28: Scaling of the number of zeros of Z(β + it), see (183), within a rectangular
region in the β × t plane with β ∈ (−0.5, 0.5), t ∈ (6, 12). Through a least-
squares ft, we obtain a linear law N0(j) ∼ j1.06335 . We have performed a
quench λi = 2.6 → λf = 1.6, with an initial state (148) with α = 1/2 and φ = 0 
(similarly to Fig. 27).




 �� �

Figure 29: Contour maps of log10 |Z(β + it)|2, defned in (183), in the β × t plane (top row).
Vertical red dashed lines signal the t-axis (β = 0). We have performed a quench
λi = 10 → λf = 1.6 from an initial state (148) with φ = 0, and α = 0.1 (top,
left), α = 0.9 (top, right). The average fnal energy is h�f i = −0.89 > �c, and
system size is j = 50. The bottom panel depicts the rate functions of SP(t) for
the same quench processes (the orange line is for α = 0.1, while the purple line
is for α = 0.9). In this panel, j = 100.

Varying the initial condition

DPTs-II do not depend on the relative phase φ in a symmetry-broken initial state
of the form (148). Indeed, the complexifed survival amplitude can be split into
positive and negative parity contributions,

X X −zEn,−(λf )Z(z) = α |cn,+|2 e −zEn,+(λf ) + (1 − α) |cn,−|2 e (190)
n n 

where cn,± ≡ En,±(λf ) E0,±(λi) . Therefore, the survival probability SP(t) = 
|Z(it)|2 does not depend on φ either. However, the location of such initial state
in classical phase space does show a dependence on the phase φ because hCiˆ = 
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2
p
α(1 − α) cos φ. In any case, the behavior of the non-analytical times in the rate

functions does in general depend on α. We have two different cases depending on
the average energy of the state undergoing a quench.

If the quench only populates the eigenstates of the fnal Hamiltonian in the
symmetry-broken phase, E < Ec, according to the results in Sec. 3.3.3, the popula-
tions of positive and negative states coincide up to a phase |cn,+| = |cn,−| ≡ |cn| in
the infnite-size limit. Thus, it follows from Eq. (190) that Z(z) is also independent
of α as these contributions cancel out in the infnite-size limit. Hence we obtain
Z(z) = 

P |cn|2e−zEn as in Eq. (183). For fnite-size systems, this equality onlyn 
holds approximately; however, the exponentially close energy doublets and the
constancy of Ĉ as j increases [325] guarantee that fnite-size effects are negligible
even far away from the j → ∞ limit.

If, however, the quench only populates eigenstates of the fnal Hamiltonian in
a symmetric phase, E > Ec, Z(z) depends on α even in the large-j limit. Since
the negative-parity eigenlevels are systematically larger than the positive-parity
ones, En,− > En,+, the positive and negative parity contributions to Eq. (190) are
not equivalent; this implies that Z(z) is not symmetric under the transformation
α → 1 − α. This can be observed in Fig. 29, where we represent |Z(z)|2 for a
quench departing from two initial states with α = 0.1 or α = 0.9. The zeros occur
at different coordinates in the complex plane, as expected. However, the zeros
at the β = 0 line occur at roughly equivalent times, as illustrated in the bottom
panel of Fig. 29. It is clear that the rate functions for α = 0.1 and α = 0.9 are not
mathematically the same, but they are still infuenced by the exceptional points of
Z(β + it) at similar times.

Impact of the average energy of the quenched state

Information of the quench protocol is directly encoded in the complex-time sur-
vival amplitude (183). For arbitrary quenches λi → λf the fnal Hamiltonian pop-
ulation is non-universal and strongly depends on the fne details of the quench
parameters. For the LMG model, the parity symmetry means that the full LDOS,
P (E), can be separated into positive and negative contributions:

P (E) = P+(E) + P−(E) (191)
X X 

= |cn,+|2δ(E − En,+) + |cn,−|2δ(E − En,−), 
n n 

where cn,± ≡ En,±(λf ) Ψ0(λi) , with P±(E) denoting the population of posi-
tive/negative fnal eigenstates. The critical times and the shape of the survival
probability itself depend on to which part of the energy spectrum the initial state



is led by the quench [322], [326]. In fact, phase diagrams of DPTs have been
constructed precisely based on those changes. Thus, analyzing the effect of the
alteration of the fnal average energy on the complex-time survival amplitude is
important.

In Fig. 30 we focus on three quenches λi → λf = 1.6 with the only modifcation
that the initial states Eq. (148) are built with different λi, but with a fxed value
of α = 0.5. As expected, the LDOS is clearly different for λi = 2.3, 4, 20: the
average energy increases for larger quench amplitudes. For λi = 2.3 as Δλ = 
|λi − λf | is small, the after-quench average energy is h�f i = −1.08 < �c, so the state
populates the ground-state of the fnal Hamiltonian most signifcantly. For λi = 4,
h�f i = −1 = �c, eigenstates are populated on both sides of the ESQPT at �c; as a
consequence, P+(E) and P−(E) are almost equal only for eigenstates with energy
below �c. Finally, for λi = 20, h�f i = −0.85 and the quench mainly populates
eigenstates above the ESQPT. The after-quench energy distribution has an impact
on the location of the zeros of Z(β + it), and in particular it affects which chain
of zeros intersects the β = 0 line and at what times. The overall pattern of zeros
shifts towards higher β as the average energy increases, as shown in the contour
plots of |Z(β + it)|2 . The times when the survival probability rate function shows
sharp peaks and whether or not these peaks occur in a quasiperiodic fashion is
thus tightly connected with the LDOS.

Exceptional points in the neighborhood of an ESQPT

As mentioned in the Introduction, many dynamical consequences of ESQPT have
been thoroughly studied [317], [322], [326], [335], [336], [460]. In particular, criti-
cal quenches where the fnal state has the highest population right at the ESQPT
spectral region can produce a variety of stabilizing or destabilizing effects. One
common consequence is that the survival probability ceases to show the charac-
teristic succession of revivals up to saturation to a stable infnite-time value [320],
[322], [336], [347].

In Fig. 31 we represent the contour plots of |Z(β + it)|2 together with the corre-
sponding rate function for the same quench presented in previous Fig. 30 (middle
column), although the system size parameter j has been increased in this case. In
other words, this is a so-called critical quench. The rate function is clearly destabi-
lized, with an overall pattern that is qualitatively different from that obtained for
quenches that do not overlap the ESQPT criticality (see Fig. 27). An extensive num-
ber of zeros cluster together around the β = 0 line in a disorganized way, in stark
contrast with the behavior of Fig. 27, where the zeros close to the β = 0 line occur
in a quasiperiodic way. Interestingly, the zeros appearing away from the β = 0 line
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, defned in (183), in the β × t plane (top).Figure 30: Contour maps of log10 |Z(β + it)|2 

The t-axis (β = 0) is marked by dashed, vertical line (red). The bottom panels
depict the LDOS for the panels on top; here, circles correspond to the popula-
tion coeffcients of positive-parity states in the fnal Hamiltonian, |cn,+|2 , while
blue squares denote the same for negative-parity states, |cn,−|2 . We have per-
formed three quenches λi → λf = 1.6, departing from an initial state (148) with
parameters α = 1/2 and φ = 0. The values of λi are λi = 2.3 in the left column
(under the ESQPT), λi = 4 in the middle column (onto the ESQPT), and λi = 20 
in the right column (above the ESQPT). System size is j = 50.

do not form this erratic pattern. In other words, quenches away from the ESQPT
produce the rate function behavior expected in fully connected models [326], [327],
[371], [372], [377].

According to our results in Sec. 3.3.2 (see [326], [327] for details), there exists
a mathematical restriction on the non-analytical points of the PPRP, L(t), origi-
nally proposed in [394] for systems with symmetry-broken phases. In particular,
we showed that (i) no crossings of the Ω±(t) functions occur in the symmetry-
broken phase and, therefore, this mechanism [394] does not properly explain the
appearance of kinks in its rate function in this spectral region and that (ii) in the
symmetry-broken phase, both kinds of return probabilities are exactly the same in
the infnite-size limit, L(t) = SP(t), while in the symmetry-restored phase these
functions differ, L(t) 6= SP(t). In the symmetry-broken phase, the non-analytical
kinks in L(t) can be traced back to the zeros of SP(t).

Here, we further investigate DPTs-II in connection with ESQPTs. Our main
fnding is that the regular or anomalous nature of DPTs-II is not linked to presence



Figure 31: Contour map of log10 |Z(β + it)|2, defned in (183), in the β × t plane (top), with
system size j = 200. The t-axis (β = 0) is marked by a red, vertical line. The
associated survival probability rate function (bottom). We have performed a
quantum quench onto the ESQPT critical point, λi = 4 → λf = 1.6 with h = 1,
departing from an initial state (148) with α = 1/2 and φ = 0.

of the ESQPT if the initial state is prepared in a symmetric phase (note that these
results are not in contradiction with those of 3.3.3, where the initial state was
chosen in the symmetry-broken phase). In Fig. 32 we display the complex-time
survival amplitude and the rate function of the survival probability for a quench
in the magnetic feld, hi = 0.8 → hf = 0, with λ = 1 fxed. The spectrum of the
fnal Hamiltonian is completely degenerate in parity doublets because the ESQPT
at �c = −h coincides with the upper boundary of the spectrum �max = h at hf = 0.
In Fig. 32, three lines of zeros of Z(β + it) cross the β = 0 line around t ≈ 1, 6, 16,
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, defned in (183), in the β × t plane (top);Figure 32: Contour maps of log10 |Z(β + it)|2 

with the system size being j = 50. The t-axis (β = 0) is marked by a red vertical
line. The resulting survival probability rate function (bottom), for j = 400. We
have performed a quantum quench hi = 0.8 → hf = 0 with λ = 1 departing
from an initial state of the form (148) with α = 1/2 and φ = 0.

with the corresponding non-analytic points showing up in the rate function. The
frst non-analyticity at t ≈ 1 occurs even before the second revival of SP(t), which
means that this is a regular DPT. We emphasize that no ESQPT has been crossed
in this non-equilibrium protocol. The rate function in the interval 1 . t . 6 is
very much fat, which can be understood from the weakly varying contour lines
of Z(z) in this time interval. Note also that the frst two non-analytic points in the
rate function are of a different nature as those previously analyzed in this section:
there are no ‘peaks’ but ‘breaks’ instead. Shapes likes this have been observed
before, e.g., in [372].



3.4 thermodynamics of energy cat states induced 
by esqpt criticalities 

Proposed by E. Schrödinger [28], the existence of so-called cat states is one of
the most intriguing aspects of the quantum world. Cat states are commonly un-
derstood as macroscopic quantum superpositions of classical states, nonexistent
under classical mechanics. The main shortcoming of these states is that they can
be hard to control and are very sensitive to quantum decoherence [463], which
can be caused from anything from the dissipation in thermal fuctuations to the
measuring procedure itself. For these reasons, cat states are not usually observed
in the wild [464], [465]. Yet, quantum optical techniques [466] or superconducting
cavities [467] have made it possible to engineer them in the laboratory.

Theoretically, the generation of robust cat states has been explored in many ways
[468], [469]. This includes, for example, preparing a normal ground-state, and
then changing the control parameter of the Hamiltonian in such a way that the
initial state ends up in such a superposition of the lowest energy manifold of the
new Hamiltonian [470]–[473]. Interestingly, the origin of these two qualitatively
different ground-states is very often rooted in a quantum phase transition [36],
which causes a non-analytic change of the ground-state properties of the system.
Thus, in a bosonic Josephson junction the ground-state changes from separable
Fock states to cat states at a quantum critical point [352], [474]. The technique
proposed to generate cat states in [471] is also based on the effects of such a phase
transition.

Our goal here is to show that the non-equilibrium dynamics ensuing from a
quantum quench can be used to create macroscopic quantum superpositions. The
special feature of our technique is that these cat states occur both in the spatial
and the spectral domain (the state is excited and not restricted to the ground-state
manifold only). As we shall see, the main ingredient is the presence of a number
of ESQPTs through which we drive our initial state. Our numerical simulations
are performed with a modifed version of the quantum optical Rabi model. Its
ESQPTs can be successfully identifed by the constant of motion that we have
previously presented in Sec. 3.2. At the end of this section, we focus on the
thermodynamics of these energy cat states and propose an equilibrium ensemble
capable of describing the equilibration dynamics in these situations.
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3.4.1 Deformed Rabi Hamiltonian

The Rabi model [475], [476] is a paradigmatic fully-connected system in studies of
phase transitions. Physically, it describes the interaction between a single bosonic
feld with frequency ω and a two-level atom with constant level splitting ω0. Here
we consider a modifcation of this model, which reads

r √ † ω0 †Ĥα = ωâ† â+ ω0Ĵz + ωω0g(â + â)Ĵx + α(â + â), (192)
2 

where â and â† are the bosonic annihilation and creation operators, g is the atom-
feld coupling parameter, and Ĵ is the angular momentum for a j = 1/2 particle.
For α = 0, (192) reduces to the standard Rabi model. The term proportional to α 
is a symmetry-breaking deformation which implies important qualitative modif-
cations in the critical behavior of the system. Also, for α = 0 the Rabi Hamiltonian

iπ(j+Ĵz )is invariant under the parity transformation Π̂ = e , while it is clear that for
α 6= 0 this conservation is destroyed, [Ĥα6=0, Π̂] 6= 0. This is therefore an example
of a system without Z2 symmetries to which our general theory of equilibrium
states still applies. Indeed, it was shown in Sec. 3.2 that the existence of a Z2 

symmetry is not necessary for the Ĉ operator to behave as a constant of motion
under certain circumstances. As we will show, Ĉ is still required to properly de-
scribe the equilibrium values of observables in spatially separated components (in
the sense of [269]) of the model. Other symmetry-breaking deformations include� � 
a term proportional to Ĵx [477], [478] or to a† + a Ĵz [304]. In our analyses, we fx
α = 1/2. It has been shown [314], [348] that in the Rabi model the limit ω0/ω → ∞ 
is formally equivalent to the thermodynamic limit: the reason is that this limit
is equivalent to an infnite effective number of photons. Because the system is a
fully-connected model, this limit also coincides with the classical limit. In our nu-
merical simulations we fx ω = 1, so the thermodynamic limit is reached by simply
increasing ω0. The photonic part of the Hilbert space dimension is unbounded, so
we truncate the number of photons to a fnite value nph. The effective total Hilbert
space dimension reads D = 2(nph + 1), where the value of nph has been optimized
in order to reach convergence for suffciently large ω0/ω.

Classical limit

The classical limit of Eq. (192) is obtained by substituting the photonic operators by√ 
the position and momentum operators of the harmonic oscillator, p̂ = i(â† − â)/ 2 √ 
and q̂ = (â† + â)/ 2, and then diagonalizing the resulting Hamiltonian matrix



��

[314]. Considering the intensive energy scale � ≡ E/(ω0j) = 2E/ω0 (with E 
denoting the actual extensive eigenvalues of the model), we obtain

s 
2ω � � 2ωg2q 2αq 2 2Hα(p, q) = p + q − 1 + + √ , (193)

ω0 ω0 ω0 

where (p, q) ∈ R2 . The classical phase space is unbounded, M = R2 , and there is
f = 1 effective classical degree of freedom. Many physically relevant properties
of the quantum model such as the photonic and atomic population of the ground-
state converge to the classically expected results as ω0/ω → ∞.

Non-analytic features of the classical phase space and level density
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Figure 33: Energies associated to the critical points of the Rabi classical Hamiltonian (193)
as a function of the control parameter g/g∗ for (a) the standard Rabi model,
α = 0 and (b) the deformed Rabi model with α = 1/2. The ground-state
energy is represented in yellow, while ESQPTs critical energies are represented
with orange and red lines.

The ground-state energy, �GS, and the ESQPTs energies �c1,c2 of the system can be
obtained as the energies � = Hα(p∗, q∗) corresponding to particular critical points
of Eq. (193) satisfying rHα (p∗,q∗) = 0. For the standard Rabi model, α = 0, the
critical coupling strength g∗(α = 0) = 1 marks a ground-state QPT where these
values change abruptly. The ground-state energy can be calculated analytically:
for g ≤ g∗(α = 0), it is �GS = −1, whereas for g ≥ g∗(α = 0), we have �GS = −(1 + 

2g4)/2g . Besides, for g ≥ g∗(α = 0) a second critical point, associated with an
ESQPT, appears at energy �c = −1 [314]. These results are illustrated in Fig. 33(a).
The structure of the model changes qualitatively when the deformation strength
is switched on, α 6= 0. For α 6= 0, critical points can be calculated analytically but
they cannot be expressed in terms of elementary functions. Figure 33(b) shows the
critical energies for our case of interest, α = 1/2. Two regimes are separated by the
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critical coupling g∗(α = 1/2) ≈ 1.7872. For g < g∗(α = 1/2), we observe a single
line corresponding to �GS. However, at g = g∗(α = 1/2) this scenario changes and
for g ≥ g∗(α = 1/2) we fnd two more critical energies, different from �GS. These
energies grow apart with g.
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Figure 34: Portraits of the classical phase space of the deformed Rabi Hamiltonian, (193),
for α = 1/2, ω = 1, ω0 = 300, for different fxed values of the control parameter
g. For g < g∗(α = 1/2) ≈ 1.7872 the phase space is compact at all energies,
while for g > g∗ the two previously disconnected classical wells merge at a
given critical energy.

These critical points can be understood via the structure of the classical phase
space. In Fig. 34 we show several classical orbits of Eq. (193) with α = 1/2, with
different lines corresponding to different constant energies.

In Fig. 34(a), we observe that for g = g∗/2 < g∗ the classical potential allows
for a single, global minimum, corresponding to the ground-state energy. The de-
formation brought about by α 6= 0 is apparent: the the contour curves do not
conform a circumference, as they do for α = 0 (not shown). Similar phase space
portraits are found for g < g∗. However, at g = g∗ the general picture changes: in
Fig. 34(b) there appears a critical energy with non-smooth behavior, evidenced by
a sort of cusp. As we will corroborate though the calculation of the level density
(see below), this energy is associated with an ESQPT. The case g > g∗ is analyzed
in Fig. 34(c)-(d). These plots show a completely different phase space portrait,
two minima (instead of one) and a maximum. We also note that such minima are
asymmetric, although the maximum is still close to q = 0. The frst minimum is
the ground-state energy, �GS, while the second minimum, at �c1, and the single
maximum, at �c2, are critical points associated to ESQPTs of different kinds. For



our subsequent analysis, it is important to observe that for �c1 ≤ � ≤ �c2 the clas-
sical phase space is topologically disconnected, while above �c2 it is compact. The
transition from a single-well to a double-well classical potential is marked by the
critical coupling g∗.
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Figure 35: Classical level density %(�), computed from (194), of the deformed Rabi Hamil-
tonian (193), with α = 1/2 and for different values of the control parameter
g. The values of energy at which a fnite jump takes place are denoted as �c1 

and signaled by dotted orange lines, while the logarithmic singularities, �c2,
are represented by dashed red lines. For the values of g considered, these
critical energies are: (b) �c1 = −0.8620; (c) �c1 = −2.0426, �c2 = −0.9584; (d)
�c1 = −4.1596, �c2 = −0.9784.

In order to certify the different types of ESQPTs present in the system, we com-
pute the classical level density. Due to the peculiar infnite-size limit of the Rabi
model, we use the following normalization:

Z Z 
ω 1 

%(�) ≡ dp dq δ[� − Hα(p, q)]. (194)
ω0 2π h̄ 

Aside from the ground-state critical points, the second local minimum produces
jumps in %(�), while the local maxima is connected with a logarithmic singularity
in %(�) at the ESQPTs critical energies. Figure 35 displays %(�) for the same param-
eters as in Fig. 34. We fnd a smooth level density in Fig. 35(a), as for g < g∗ there
are no ESQPTs. In Fig. 35(b) we focus on the critical coupling g = g∗, with a sin-
gle, logarithmic singularity in %(�). As exemplifed in Fig. 35(c)-(d), the difference
|�c1 − �c2| increases with g > g∗. Indeed, the frst critical energy, �c1, corresponds
to the second local minima appearing in Fig. 34(c)-(d), and it produces a fnite
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jump in %(�). By contrast, the second critical energy, �c2, corresponds to the local
maxima in Fig. 34(c)-(d), yielding a logarithmic divergence in %(�).

ESQPTs without QPTs
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Figure 36: Common signatures of ground-state quantum phase transitions. (a)-(b): The
ground-state energy �GS and its second derivative with respect to the coupling
parameter g. (c)-(d): Population of photos in the ground-state, hN̂iGS, and its
frst derivative with respect to g. Results for the standard Rabi model (α = 0)
are represented with red lines, while those for the deformed Rabi model (α = 
1/2) are shown with blue lines.

Although our system supports several types of ESQPTs, they are not connected
with any QPT in the ground-state. To prove this, we take a closer look at the
physical quantities that do become non-analytic in the case α = 0 and compare
them with the case α = 1/2.

In Fig. 36(a)-(b) we represent the second derivative of the ground-state en-
ergy, d2�GS/dg2; clearly, it becomes discontinuous for g = g∗(α = 0). Indeed,
d2 2 2 4�GS/dg = 0 for g < g∗(α = 0) while d2�GS/dg = 2 + 3(−1 − g4)/g for
g > g∗(α = 0). However, in the deformed Hamiltonian α = 1/2 this non-analiticity
is completely smoothed out, as observed in Fig. 36(b).

The normal-superradiant transition is perhaps one of the most well-known fea-
tures of the Rabi model (α = 0). This transition is simply a manifestation of its
second-order QPT. When α = 0, for g < g∗(α = 0) = 1, we fnd a so-called normal
phase transition, characterized by a vanishing number of photons in the ground-
state, hN̂iGS ≡ 0. However, for g > g∗(α = 0) there is a non-zero population



hN̂iGS > 0. In other words, hN̂iGS can be taken as an order parameter of the tran-
sition, although it is not linked to the Z2 symmetry of the model. In Fig. 36(c)-(d)
we represent these quantities for α = 0 and α = 1/2. For α = 0, we clearly observe
that hN̂iGS is non-analytic, especially in its derivative in Fig. 36(d), where a fnite
jump in dhN̂iGS/dg is observed. However, when α = 1/2, hN̂iGS > 0 for all values
of g, i.e., implying that the normal-superradiant phase transition is destroyed. As
a result, dhN̂iGS/dg is smooth for α = 1/2 for all g.

In closing this section, we believe it its worth mentioning that although the QPT
in the α = 0 case is linked to symmetry-breaking, ESQPTs are not related to this
mechanism. Therefore, a system may exhibit ESQPTs in the total absence of an
underlying QPT.

3.4.2 Quantum manifestations of classically asymmetric energy wells

Identifying wells through diagonal elements of observables
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Figure 37: Diagonal expectation values of physical observables, in the Hamiltonian energy
eigenbasis of the deformed Rabi model, (192), with system parameters ω = 1 
ω0 = 100, α = 1/2 and g/g∗ = 2. (a) Ĵx and (b) â† + â, as a function of
the energy of the corresponding eigenstate. The ESQPTs critical energies �c1 ≈ 
−4.1596 and �c2 ≈ −0.9785 are represented by orange and magenta vertical
lines. Green triangles represent the diagonal expectation values corresponding
to eigenstates in the spectral region where the operator Ĉ does behave as a
constant of motion, while eigenstates for which h�| C |ˆ �i ≤ −0.95 and h�| C |ˆ �i ≥ 
0.95 are represented with red and blue points, respectively. The cutoff photon
number is 2000.

The asymmetric double well structure of the deformed model has important
physical consequences. In order to illustrate them, we start by analyzing the di-
agonal expectation values of physically relevant observables in the Hamiltonian
eigenbasis, hÔni ≡ h�n| Ô |�ni. We fx g/g∗ = 2 and ω0 = 100, and we consider the
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operators Ĵx and â† + â. Our results are in Fig. 37. This fgure reveals a double-
branch structure appearing for energies �c1 ≤ � ≤ �c2. The main conclusion of these
results is that there should be a direct connection between the topology of classical
phase space and the properties of quantum eigenstates: indeed, contour plots in
Fig. 34(d) show that for �c1 ≤ � ≤ �c2, classical trajectories are trapped either on
the left (q < qc) or the right (q > qc) part of the phase space, while for � ≤ �c1 all
trajectories belong to the left part. This is mimicked in the quantum case, since
the operator â† + â is essentially equivalent to q̂. Also, these results suggest that
the ETH is invalid in this system, as it requires the diagonal matrix elements to
behave as a smooth function of energy. However, in our case, Fig. 37 shows abrupt
variations in the diagonal matrix elements when �c1 ≤ � ≤ �c2. Therefore, neither
the microcanonical, nor the standard Gibbs ensemble are expected to hold for this
system. This discussion suggests that hypothesis (H2) of our theory in Sec. 3.2.1 
applies to this model, even though there is no Π̂ symmetry and hypothesis (H1)
plays no role here. Thus, a certain operator Ĉ acts as a constant of motion in an
appropriate spectral region of the model. Motivated by our previous analyses, in
particular by properties of the classical trajectories, it is natural to conclude that
the operator

Ĉ ≡ sign(q̂− qcI) (195)

is an emergent constant of motion only in the region �c2 in the infnite-size limit.
Here, qc denotes the classical position corresponding to the critical energy �c2 and
I is the identity matrix. Because Ĉ is a Z2 discrete operator, Spec (Ĉ) = ±1, we
have that h�n| C |ˆ �ni = −1 if the eigenstate |�ni is attached to the left part of the
classical phase space (q < qc), and h�n| C |ˆ �ni = 1 if it is attached to the right part
(q > qc). In Fig. 37, red points are chosen for eigenstates such that h�n| C |ˆ �ni = −1,
while for blue points h�n| C |ˆ �ni = 1. For � ≥ �c2, Ĉ is not constant, these eigenstates
being represented by green triangles. We conclude that below �c2, it is possible to
classify the eigenstates in two types: they either fulfll h�n| C |ˆ �ni − 1 or h�n| C |ˆ �ni = 1.
This classifcation according to the quantum number provided by the Ĉ operator
has important effects in the dynamics, as we will show below. Also, since in this
model the parity symmetry is broken, there exists no K̂ operator, even though Ĉ is
still constant for a given range of energies in the infnite-size limit.

Follow the eigenlevel

The level-fow diagram of the quantum model Eq. (192) is represented in Fig. 38.
This diagram allows to visualize the structure of quantum levels as a function of
the control parameter, g, in a convenient way. We observe that the structure of the



−8

−6

−4

−2

0

1 1.5 2

(a)

1 1.25 1.5
−2

−1.5

−1

−0.5

(a)

ǫ

g/g∗

−8

−6

−4

−2

0

1 1.5 2

(b)

ǫ

g/g∗
1 1.25 1.5

−2

−1.5

−1

−0.5

(b)

Figure 38: (a) Level-fow diagram (g × E plane) of the deformed Rabi Hamiltonian (192)
with parameters ω = 1, ω0 = 20, and α = 1/2. The lowest energy line rep-
resents the ground-state, while upper lines represent the excited states. Black
lines show energy levels in the spectral region where the operator Ĉ does not
behave as a constant of motion; eigenlevels for which h�| C |ˆ �i ≤ −0.95 and
h�| C |ˆ �i ≥ 0.95 are represented with red and blue lines, respectively. The yel-
low thick line represents the energy of the sequentially quenched state of Sec.
3.4.3, i.e., �g = hΨ(g)| Ĥ(g) |Ψ(g)i. The special special cases of (g/g∗, �g ) whose
energy distribution is shown in Fig. 43 are represented with green points. (b)
Zoom of the fow diagram. The cutoff number of photons is 570.

level fow closely resembles the classical picture in Fig. 33(b). The signatures of the
logarithmic divergence of the level density near �c2 ≈ −1 is apparent: eigenlevels
tend to collapse onto a single line around this energy value. Figure 38(b) shows
a magnifcation of the level-fow diagram. Level crossings seemingly take place
for �c1 ≤ � ≤ �c2. However, for � ≤ �c1 no level crossings occur. In these plots,
the eigenlevels have been characterized through the operator Ĉ. Eigenlevels whose
eigenstates belong to the left classical well, hCiˆ = −1, have been plotted in red,
while states in the right classical well, hCiˆ = +1, are plotted in blue. Finally, black
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lines are used to represent the eigenlevels of states such that Ĉ is not constant,
namely for g < g∗ at all energies and for g > g∗ only at energies � > �c2. In any
case, the level diagram clearly shows that blue and red eigenlevels appear to cross
for �c1 ≤ � ≤ �c2.
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Figure 39: Magnifcation of the level-fow diagram of the deformed Rabi Hamiltonian (192)
for 1.995 ≤ g ≤ 2.01 and parameters ω = 1, ω0 = 300, and α = 1/2. Empty cir-
cles represent the numerically computed energy levels of the quantum model,
while color lines depict the classical (infnite-size limit) energy levels calculated
from the quantization (196); levels with hCiˆ = −1 are shown with yellow lines,
while if hCiˆ = +1 magenta lines are used. In the inset we focus on a single level
crossing. The cutoff photon number is 5000.

As the Neumann-Wigner theorem [479] states that exact (real) level crossings are
allowed only if there exists an exact quantum number labeling the corresponding
eigenstates unambiguously, we expect the crossings visible in Fig. 38 to be avoided
crossings. This is because according to our theory of conserved charges, presented
in Sec. 3.2, Ĉ becomes an exact constant of motion only in the infnite-size limit,
while the level-fow diagram has obviously been computed for a fnite ω0 = 20,
very far away from ω0/ω → ∞. To obtain a defnite answer to this question, we go
back to the classical limit. It was shown in [315], [349] that the Einstein-Brillouin-



Keller (EBK) action quantization rules [77], [480], [481] can be used to determine
the eigenlevels of Eq. (192) in the thermodynamic limit. This requires solving the
integral equation

I 
p(�, q)dq = 2π(n + an), (196)

Γ± 

where p(�, q) follows from inversion of Eq. (193) for a fxed value of �. This is
a closed loop integral over Γ± which covers the left (−) and the right (+) part
of the phase space separately. The quantities an are related to the Maslov index
of the corresponding trajectory; they are equal to 1/4 for each turning point, i.e.,
an = 1/2. Finally, it should be noted that in the Rabi model the vacuum energy of
the harmonic oscillator, E = ω/2, is removed. Therefore, the eigenlevels computed
from (196) need to be shifted for them to coincide with the actual eigenlevels of
the Rabi model.

Figure 39 provides a comparison of the theoretical prediction afforded by Eq.
(196) for ω0 = 300 and 1.995 ≤ g/g∗ ≤ 2.010, with the eigenvalues coming from
diagonalization of the quantum model Eq. (192). The classical, theoretical curves
go through several exact crossings, and the quantum, numerical eigenlevels cannot
be easily distinguished from the corresponding theoretical predictions. The single
level crossing presented in the inset, with 1.9990 ≤ g/g∗ ≤ 1.9996, confrms that the
discrepancies between the EBK and the exact energy levels are basically negligible.

We expect this result to have important consequences in the dynamical proper-
ties of the system. Indeed, according to Fig. 38, the rapidity at which the value
of every energy level changes with g, �n(g), depends on h�n| C |ˆ �ni; to be more
precise, the ‘speed’ |d�n,−/dg| > |d�n,+/dg|, where the subindex − identifes the
energy levels with h�n| C |ˆ �ni = −1, and the subindex +, the energy levels with
h�n| C |ˆ �ni = +1. This pushes us to formulate the following conjecture:

In an adiabatic evolution where the initial wave function is a superposition of
states with hCiˆ = ±1, the energy of states with hCiˆ = −1 will show a faster variation
with the control parameter g and, as a consequence, crossing the spectral region
�c1 ≤ � ≤ �c2 adiabatically can lead to a superposition of different macroscopic
energies. This effect should be relevant even in fnite-size systems, where level
crossings are not exact but avoided.

Below we provide evidence in favor of this intuition, including a fnite-size scal-
ing analysis.

Non-adiabatic transitions in fnite-size systems

Let us frst investigate the variation of the diagonal expectation values of Ĉ as
the control parameter g is gradually changed. We focus on the control parameter
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window g/g∗(α) ∈ [1.6, 1.7]. For each value of ω0, which basically controls how
close we are to the infnite-size limit, we determine the eigenlevel �p closest to
� = −0.8 at g/g∗(α) = 1.6; this eigenlevel is denoted as �p. Then, we monitor the
diagonal expectation values of Ĉ in |�pi and |�p−1i as g varies, h�p(g)| C |ˆ �p(g)i ≡ 
hCiˆ p,g. We expect that as g is varied the eigenlevels �p and �p−1 will at some point
cross the ESQPT at �c2, as implied by the curvature of the level-fow diagram in
Fig. 38. We note that since we start at g/g∗ = 1.6, the eigenlevels �p and �p−1 are
initially above �c2, i.e., in the spectral region where Ĉ is not constant. As the ESQPT
at �c2 is crossed, Ĉ acts as an approximate constant of motion and the diagonal
expectation values of Ĉ in these eigenstates can only be +1 or −1. This picture
is confrmed by the results shown in Fig. 40(a)-(b) for ω0 = 55 (a) and ω0 = 603 
(b). For suffciently large g, hCiˆ p,g shows abrupt changes between −1 and +1 at
specifc values of g; the same is observed for hCiˆ p−1,g. The reason is that at these
values of g the system exhibits fnite-size precursors of level crossings, entailing a
swap of the conserved quantities. On the other hand, for suffciently small values
of g the expectation values considered are not ±1, which is to be expected since
for those g the operator Ĉ is not a constant of motion in the high-lying part of the
spectrum where �p and �p−1 belong. Finally, these fgures also reveal a transient
region between these the two scenarios explained above. This transient region
is a fnite-size effect and should disappear in the infnite-size limit, where the
ESQPT singularity is fully realized. In order to confrm this, we defne the g-width
ΔgT ≡ g0.05 − g0.95, where g0.05 stands for the last value of the coupling g such that
1 − hCiˆ 2 

p,g ≥ 0.05, and g0.95 represents the frst value of g such that 1 − hCiˆ 2 ≤ 0.95.p,g 
Figure 40(c) displays ΔgT as a function of ω0. We obtain a clear power-law behavior
ΔgT ∼ 1/ωz with z ≈ 1, which suggests that ΔgT → 0 as ω0 → ∞. In other words,0 
as the limit ω0 → ∞ is approached, there is an abrupt change between a parameter
region with change from a region in which hCiˆ 2 − hĈ2i = 1 − hĈ2i ∼ 1 to a region
where hCiˆ 2 − hĈ2i = 1 − hĈ2i ∼ 0. These plots also show that the number of level
crossings is an increasing function of ω0.

Let us now assume that we perform a time-dependent protocol, g(t), crossing
the ESQPT at energy �c2, from an initial state prepared from an eigenstate of the
Hamiltonian at a given g. The time-dependent wave function can be written asP |Ψ(t)i = cn(t) |�n(t)i, where |�n(t)i are the instantaneous eigenstates for Eq.n 
(192) with g(t). Here, the time-dependent population coeffcients cn(t) evolve ac-
cording to the differential equation ( h̄ = 1)

X h�m(t)|H |˙ �n(t)i 
ċm(t) + [i�m(t) + h�m(t)| �ṁ(t)i] cm(t) = cn(t), (197)

�m(t) − �n(t) 
n6=m 
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Figure 40: (a-b) Diagonal expectation values (in the Hamiltonian energy basis) of Ĉ in the
eigenstate |�p(g)i (blue) such that �p(g/g∗ = 1.6) ≈ −0.8 and in the eigenstate
with lower energy closest to the previous level, |�p−1(g)i (magenta), as a func-
tion of g. For (a), ω0 = 55, and for (b), ω0 = 603. (c) Finite-size scaling of the
size of the parameter space region, ΔgT, displaying transient behavior (see text
for discussions), revealing the power-law ΔgT ∼ 1/ωz with z ≈ 1. The cutoff0 

photon number is nph ∈ [812, 8977], which has been optimized according to the
value of ω0.

where •̇ indicates a time derivative. The left-hand side of Eq. (197) accounts
for the phase acquired by any coeffcient cn(t) as a result of the time evolution,
whereas the right-hand side depends on non-adiabatic transitions between the
instantaneous eigenstates. In order to estimate the relevance of such transitions in
fnite-size systems, we consider the quantity

Ĥn,n+1 hEn+1(g)| Ĥint |En(g)i ≡ . (198)int En(g) − En+1(g) 
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with

√ †Ĥint = ωω0(â + â)Ĵx. (199)

This quantity encapsulates the contribution of neighboring energy states to non-
adiabatic transitions following a time-dependent protocol g(t). Figure 41(a-b) de-
picts our results for ω0 = 55 and 603, and g/g∗ = 1.65 fxed. Moreover, in Fig. 41(c-
d) we represent the product of the diagonal expectation values Cnn = hEn| C |ˆ Eni in
adjacent eigenstates. For �GS ≤ � ≤ �c1 these expectation values are non-vanishing,
meaning that transitions between states En and En+1 are allowed. The reason is
that the states En and En+1 are characterized by the same value of Ĉ, and therefore
transitions between them are allowed. However, for �c1 ≤ � ≤ �c2, the spectral
region between both ESQPTs, the transition amplitudes vanish, which is indicative
of transitions being forbidden here. The reason is that between the two ESQPTs
adjacent eigenstates effectively belong to different symmetry subspaces, character-
ized by the Ĉ operator. This is clearly observed in Fig. 41(c-d), which show that
for adjacent eigenstates Cnn × Cn+1 n+1 = −1. For � ≥ �c2, Ĉ no longer acts as a
constant of motion and therefore the classifcation of eigenstates in symmetry sec-
tors no longer holds. As a consequence, for � ≥ �c2 transitions between adjacent
eigenstates are again possible.

We end this section with a more stringent analysis of the behavior of level cross-
ings in fnite-ω0 systems. Now, our focus will be on a single level crossing. Assum-
ing that a Landau-Zener transition [482] consecutively mixes states with different
quantum numbers, around a typical crossing the probability of non-adiabatic tran-
sitions roughly equals PND ∼ e−2πΓ where Γ = (ΔE)2/4(dΔE/dt) and ΔE is the
gap of the two levels involved in the crossing. This estimation provides a relation
between the rate of variation of the coupling parameter in a protocol, dg/dt, and
a defnite value of the probability PND, namely

� �−1dg π(ΔE)2 dΔE 
= − . (200)

dt 2 ln PND dg 

In case of an diabatic evolution with an abrupt change of hCiˆ at each crossing,
PND � 1. For our model, the gap of eigenlevels near a crossing scales as ΔE(g) ∼ 
ω0g [cf. Fig. 39] and thus for a fxed value of PND, Eq. (200) implies dg/dt ∼ 
(ΔE)2/ω0. For this reason, in order to estimate the protocol rapidity |dg/dt| nec-
essary to keep PND below a certain threshold we need to perform an analysis of
how the gap ΔE at an avoided crossing varies with ω0.

To perform these calculations, standard precision algorithms (double precision
arithmetic) may be insuffcient because the distance of the levels at the avoided
crossing can be below their precision limit; as a consequence, higher precision
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ˆFigure 41: (a-b) Expectation values of Hint, defned in (198), in consecutive Hamiltonian
eigenstates as a function of energy (mean energy of states En and En+1) for (a)
ω0 = 55 and ω0 = 603. (c-d) Product of the diagonal values of Ĉ in consecutive
eigenstates, Cnn and Cn+1 n+1, as a function of the (mean) energy for (c) ω0 = 55 
and (d) ω0 = 603. System parameters are ω = 1, α = 1/2, and g/g∗ = 1.65. The
frst ESQPT critical energy, �c1 = −2.5886, is marked with black dashed lines,
while the second ESQPT, �c2 = −0.9668, is marked with full black lines. The
photon number cutoff nph ∈ [752, 8135] has been optimized according to the
value of ω0.

computations are used, which are considerably time-consuming. We consider two
pairs of energy levels close to a given energy at some initial value of the control
parameter, gi ≈ 1.9g∗, �n(gi) and �n+1(gi), before the avoided crossing occurs, up
to some fnal value, gf ≈ 2.0g∗, after the crossing has taken place (the precise
values depend on ω0). Then, we divide the total span in g into 20 equal parts, and
calculate the distance of the two eigenlevels, |�n(gk) − �n+1(gk)|, at each of these
points. We keep only the smallest of these distances in absolute value, ΔE, and
the corresponding value of g, gm. Then, we consider a narrower g-span between
gm−1 and gm+1, and divide it again into 20 equal parts, to repeat the exact same
procedure. This is looped for several iterations, and in each iteration we zoom in
on the region where the avoided crossing is expected to occur. For an avoided
crossing, the distance between eigenlevels ΔE must saturate to a fnite value, as
the two levels do not exactly overlap. The results for ΔE, as a function of the
resolution Δg = gk+1 − gk−1, are shown in Fig. 42(a,c) for different values of ω0; in
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Figure 42: (a,c) Estimation of the minimum separation of eigenlevels around an avoided
crossing, ΔE, as a function of the control parameter width, Δg for the deformed
Rabi model (192) with α = 1/2. Different symbols are used to represent the
case of different value of ω0 [see legend in (c)]. In (a), the studied crossings take
place at � ≈ −4, whereas in (c) they occur for � ≈ −2. (b,d) Finite-size scaling,
as a function of the thermodynamic limit parameter ω0, of the saturation of the
minimum distance at an avoided crossing for the same crossings in (a,c). We
fnd exponential decays of the form ΔE×(ω0) ∼ 10−δω0 with δ ≈ 1.19 in (b), and
δ ≈ 0.34 in (d).

(a), the pair of levels studied are close to � = −4 for all ω0, while in (c) they are
close to � = −2. The extremely small values where the saturation of ΔE occurs in
(a) are remarkable; for ω0 = 10, the distance of the pair of levels at the crossing
is ΔE ∼ 10−13 , which further decreases as ω0 is increased, and to resolve this
avoided crossing one needs to consider the evolution of the levels within a width of
Δg ∼ 10−14 , which is already a very small variation of the coupling parameter. We
emphasize that for ω0 = 15, which is relatively far away from the thermodynamic
limit, the saturation distance is already below the standard numerical precision
limit, ΔE ∼ 10−17 . In (c), ΔE shows the same qualitative behavior as in (a), but
the gap between levels is larger. The value at which ΔE saturates will be now
denoted ΔE×; this value estimates the gap of the pair of levels at the avoided
crossing. This is represented in Fig. 42(b,d) as a function of ω0, directly obtained



from panels (a,c), respectively. In both cases, this level gap exhibits an exponential
decay of the form ΔE× ∼ 10−δω0 , δ > 0, indicating that the avoided crossings are
transformed exponentially into real crossings as ω0 increases, ΔEx → 0. The value of δ 
depends on the energy around which the avoided crossing takes place; δ decreases
as the logarithmic ESQPT around � ≈ −1 is approached, as the ESQPT is only fully
realized in the limit ω0 → ∞.

This analysis allows us to estimate the rate of variation of g such that the time
evolution is effectively adiabatic and the two wave functions near a level crossing
do not swap. From Eq. (200), we have dg/dt ∼ (ΔE)2/ω0 ∼ 10−2δω0 /ω0, which
is exponentially small in ω0. We emphasize that these values are below standard
numerical precision already for quite small values of ω0. Therefore, for numerically
and experimentally relevant processes, PND ∼ 1 at each avoided crossing, meaning
that the conservation of hCiˆ is essentially perfect, even though this operator is
strictly constant only in the ω0 → ∞ limit.

Summarizing, even in fnite-size systems, non-adiabatic transitions between lev-
els with different values of hCiˆ are very much suppressed. In the next section, we
will take advantage of this effect to engineer an energy cat state through unitary
time evolution of an initial wave function.

3.4.3 Engineering cat states in the spectral domain

Our protocol has the following steps. We prepare an initial state as the ground-
state of the Hamiltonian Eq. (192), i.e., |Ψ(gini)i = |�GS(gini)i with gini = 2.5g∗. This
initial state is then quenched, gini → gfn = 1.05g∗(α), leading the wave function
to a spectral region above �c2. Immediately after this initial quench, the state will
be well located around the corresponding value of hq̂i. A slow driving g(t) is
then simulated by sequentially quenching gi → gi+1, i = 1, 2, ..., such that g1 ≡ gfn,
according to gi+1 = gi + Δg with a step Δg = 2 × 10−5 suffciently small to suppress
non-adiabatic transitions. After each quench, the non-equilibrium state is allowed
to relax during a time τ = 106 (arbitrary units). According to the time-independent
Schrödinger equation, this state reads

X −iEn(g)τ |En|Ψ(g)i = cn(g)e (g)i , (201)
n 

where all energies and eigenstates are now those corresponding to a Hamiltonian
with a given g, Ĥ(g) |E(g)i = E(g) |E(g)i, and cn(gi) ≡ hEn(gi)|Ψ(gi−1)i. This
process of small quenches comes close to a real time-dependent protocol where
g(t) varies continuously, and it is also less computationally demanding.
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At each value of g, the LDOS reads
X X 

P (�(g)) ≡ | h�n(g)|Ψ(g)i |2δ(� − �n) = |cn(g)|2δ(� − �n). (202)
n n 

Clearly, since the initial state is the ground-state of the initial Hamiltonian, P (�(g = 
gini)) = δ(� − �GS(gini)) with �GS(gini) = −13.4128 (not shown). Quenching this
initial state to gfn has the effect of widening this peak distribution. For visual
convenience, in Fig. 38 we have represented the trajectory followed by the wave
function with a full yellow line. As expected, the average energy of the wave
function decreases with g.
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Figure 43: Distribution of populated states (LDOS) [see (202)] of the Rabi Hamiltonian
at several values of the coupling parameter g. System parameters are ω = 1,
ω0 = 100, and α = 1/2. The value of g/g∗ changes in each panel as (a) 1.05,
(b) 1.34, (c) 1.54, (d) 1.94, (e) 2.14, and (f) 2.25. The ESQPTs critical energies �c1 

and �c2 are represented with dotted orange and dashed magenta vertical lines
in each case, respectively. The cutoff in the number of photons is nph = 1900.

In Fig. 43 we show six cases of the full distribution. These cases correspond
to the green points in Fig. 38. The ESQPTs critical energies �c1 (orange) and �c2 

(magenta) have been represented with dashed vertical lines. A green distribution



indicates that the populated eigenstates do not have Ĉ assigned quantum number
as this operator is not a constant of motion for those values of energy; red and blue
distributions indicate that the corresponding eigenstates have hCiˆ ≤ −0.95 and
hCiˆ ≥ 0.95, respectively. Figure 43(a) shows P (�) after the frst quench gini → gfn.
The LDOS is close to a Gaussian distribution with mean h�i ≈ 0. The form of the
distribution is a consequence of the initial state at gini being the ground-state of
the system, which closely resembles a coherent state. The LDOS has signifcantly
widened in Fig. 43(b) as a consequence of non-adiabatic transitions, and it has
almost completely crossed the logarithmic ESQPT at �c2. For � ≤ �c2 the classical
phase space already features disconnected trajectories to which Ĉ assigns quantum
numbers of opposite sign. This is the reason why two different modes start to
show up in the distribution P (�) (in red vs. blue). In Fig. 43(c) the wave function
has completely crossed the logarithmic ESQPT at �c2. Importantly, the part of
P (�) associated to hCiˆ = −1 has a lower average energy than the part with hCiˆ = 
+1. As previously explained, this is expected from the level-fow diagram Fig.
38: eigenstates with different Ĉ quantum numbers have different level curvatures,
which gives rise to essentially independent dynamical evolutions. The separation
between the two modes in the LDOS then increases with g. Thus, Fig. 38(d) shows
a now completely clear bimodal structure in the LDOS. This panel also shows how
the mode of P (�) with hCiˆ = −1 has crossed the frst critical line at �c1, while the
part of P (�) with hCiˆ = +1 gets trapped before this barrier. The reason for this
is that when the quantum package approaches the ESQPT at �c1, only the mode
of the LDOS with hCiˆ = −1 will be able to pass through, and the mode with
hCiˆ = +1 will be inevitably restrained above this critical energy: indeed, states
with hCiˆ = +1 are simply not allowed below �c1 [cf. Fig. 38]. Consequently, as
time goes by the two modes of a new bimodal distribution P (�) = P (�+) + P (�−) 
will be increasingly further apart in energy. This picture is confrmed in Fig. 43(d)-
(f), which illustrate the inevitable emergence of energy cat states.

Before we end this section, we interpret the formation of energy cat states in
terms of the classical limit of the model. We solve the eigensystem q̂ |qni = qn |qni √ 
of the bosonic quadrature q̂ = (â† + â)/ 2. The eigenvalues of q̂, qn, are related
to the position of the wave function in the classical two-dimensional phase space.
Following the quench protocol explained above, we compute the time-averaged
probability that the quenched wave function |Ψ(g)i be found at qn, i.e.,

X 
P (qn) = P (�m)| hqn|�mi |2 . (203)

m 

Figure 44 shows the probability P (qn) for several values of g. Figure 44(a) clearly
shows that the wave function can explore both regions of the classical phase space.
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Figure 44: Probability of measuring the quenched state |Ψ(g)i at the generalized position
qn, defned in (203). The parameters of the deformed Rabi model (192) are
ω = 1, ω0 = 100, and α = 1/2. Following our previous result in Fig. 43, the
value of the control parameter g/g∗ is: (a) 1.05, (b) 1.34, (c) 1.54, (d) 1.94, (e)
2.14, and (f) 2.25. The cutoff in the number of photons is nph = 1900.

This is due to the wave function average energy being above the second ESQPT at
�c2, where the classical phase space is connected [cf. Fig. 34]. In Fig. 44(b) we ob-
serve that the wave function is only now starting to separate into two disconnected
packets, with a small dip in probability near qn = 0. Finally, Fig. 44(c-f) illustrates
how the separation of the modes increases with g. We note that the deformed
Hamiltonian, with α 6= 0, features an asymmetric double-well structure and, as a
consequence, the probabilities P (qn) are different at each side of the classical phase
space: P (qn) is wider for qn < qc2. Summarizing, the energy cat states induced by
the parity-breaking ESQPT also imply the formation of spatial cat states, leading to
a coherent superposition of two macroscopically distinct states.



3.4.4 Equilibrium dynamics in energy cat states

Having established the formation of energy cat states in the deformed Rabi model,
we pose the following question: is it possible to describe the long-time effective
equilibrium values under these circumstances?

As explained in Sec. 1.1.2, quantum thermalization refers to the process by
which the expectation value of a physical observable attains a stable equilibrium
value around which it simply oscillates for suffciently long times [1]; this equilib-
rium value coincides with its long-time average. However, an equilibrated state
is only called thermal if it can be described by a thermal ensemble of statistical
mechanics. It follows from (9) that, in the absence of degeneracies, the long-time
average of an observable Ô can be written

X 
hÔi = P (En) hEn| Ô |Eni (204)

n 

with P (En) ≡ |cn|2 being the LDOS, and cn = hEn|Ψ(0)i. From this expression
it is clear that hÔi strongly depends on the diagonal expectation values Onn = 
hEn| Ô |Eni such that the population distribution P (En) attains high values, whereas
the full average is less sensitive to expectation values for eigenstates with small
P (En).

In order to analyze the equilibration dynamics under energy cat states, we moni-
tor the expectation value of physically relevant observables as the quench protocol
described in the previous section is carried out. In each iteration of the protocol,
the initial state is the fnal state of the previous iteration, and this is used to calcu-
late the LDOS at each step of the protocol. Equations (204) and (10) allow us to
compute the long-time averages and corresponding microcanonical values. In Fig.
45 we represent the exact long-time averages and the predictions of the standard
microcanonical ensemble and compare them with a generalization of the micro-
canonical ensemble that we develop below. Figure 45(a) depicts Ĉ as a function of
g/g∗(α = 1/2). This fgure clearly shows how hCiˆ gets stuck at hCiˆ ∼ −0.2 below
�c2 (black points), which is a consequence of the conservation of Ĉ. The standard
microcanonical average is shown with empty triangles. This thermal average fails
to describe the real long-time averages due to the pathological form of the LDOS
under cat states. For g/g∗ & 2.1, the microcanonical average reaches its minimum
possible value, hCiˆ = −1. This is because all eigenstates within a small window
around the global average energy hEi have h�n| C |ˆ �ni = −1. As a consequence,
in order to properly describe the real long-time average of the Ĉ operator, simply
weighting the population of each state in a small energy window around the av-
erage energy will not be enough for energy cat states. This method will always
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yield hCiˆ = −1, which is certainly not the real value attained by this operator. This
remark is important because this weighting method has been used to build a gen-
eralized microcanonical ensemble in [483], and the generalized Gibbs ensemble is
also rooted in this4 .

As previously mentioned, this anomalous behavior is a consequence of the bi-
modal structure of the LDOS in an energy cat state. Let us consider that the LDOS
can be split into two parts, P (En) = P (En,+) + P (En,−), where En,± denotes theP 
states with hCiˆ = ±1, respectively. Therefore, P(En,±) ≡ P (En,±)/ P (En,±) aren 
the corresponding probability distributions. Unlike P (En), each P(En,±) is a uni-
modal distribution, so it is well centered about its average value and they are closer
to a Gaussian distribution, as visible in Fig. 43(d)-(f). Thus, one may compute theP 
mean energy of the states with defnite a charge hCiˆ = ±, hE±i = En,±P(En,±).n 
In essence, this is equivalent to two simultaneous microcanonical averages, where
each average is performed around the mean energy of states with a defnite Ĉ
quantum charge, hEn,+i and hEn,−i. Therefore, we propose the following variation
of the microcanonical ensemble:

Xp+hÔiME2 = hEn,+| Ô |En,+i + 
N+ 

En,+∈[E+−ΔE+,E++ΔE+] 
p− X (205)

+ hEn,−| Ô |En,−i ,
N− 

En,−∈[E−−ΔE−,E−+ΔE−] 

with

1 ± hCiˆ
p± ≡ . (206)

2 
Here, p± denote the probability that a wave function be fully localized within the
left (−1) or right (+1) classical energy well. For a general superposition, we have
0 ≤ p± ≤ 1 and p+ + p− = 1. The rest of Eq. (205) has the same interpretation as in
the standard microcanonical ensemble Eq. (10), with the exception that now two
averages are performed instead of just one, within two different energy windows
that can potentially contain a different number of states. It is worth noting that Eq.
(205) is built taking into consideration the separation in energy subspaces allowed
by Ĉ, so the ensemble is undefned in spectral regions where Ĉ is not a constant of
motion. Also, by defnition hCiˆ ME2 = p+ − p− = hCiˆ .

Let us reconsider the results in Fig. 45. In addition to hCiˆ , in Fig. 45(b) we
show our results for hâ†âi and Fig. 45(c) shows those of hâ† + âi. In these fgures,

4 At least under the conditions where microcanonical and canonical ensemble become equivalent,
the generalized Gibbs ensemble gives rise to a distribution which is only signifcantly populated
within a small energy window around the expected value for the energy, with an irregular shape
determined by the expected values of other constants of motion.
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〈Ĉ
〉

−1
−0.8
−0.6
−0.4
−0.2

0
0.2

〈â
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Figure 45: Analysis of equilibrium values of physical observables in the energy cat states.
Exact long-time averages (204) are represented with black points; the predic-
tions of the standard microcanonical ensemble (10) are represented with empty
triangles, and those of the modifed microcanonical ensemble (205) are shown
with empty circles. The parameters of the deformed Rabi model (192) are ω = 1,
ω0 = 100, and α = 1/2. For the standard microcanonical ensemble, we have
considered a window consisting of 30 states on both sides of the average energy
(a total of N = 61 states), whereas for the modifed microcanonical ensemble
each of the energy windows has 15 levels on each side of the average energy
(N+ = N− = 31). In (205), p+ = 0.3984 and p− = 0.6016. The cutoff in the
number of photons is nph = 1900.

empty yellow circles represent the predictions of the generalized microcanonical
ensemble in Eq. (205), is represented by empty yellow circles. It has only been
computed for g such that Ĉ acts a constant of motion. Although for small values
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of g close to gfn = 1.05g∗(α = 1/2) the exact long-time averages and the standard
microcanonical values agree very well, further increasing g brings about signif-
cant discrepancies and already for g/g∗(α = 1/2) & 1.3 they do not agree at all.
However, the predictions of the generalized microcanonical ensemble, Eq. (205),
provide a perfect description for all three observables and for the values of g where
Ĉ is constant.

We conclude that in order to properly describe the long-time effective values
of physical observables in energy cat states our generalized version of the micro-
canonical ensemble, Eq. (205), has to be used instead of the standard Eq. (10). A
byproduct of our results is that energy cat states are characterized by two dif-
ferent internal energies, leading to different temperatures. For an generic iso-
lated quantum system, the microcanonical temperature [270] can be defned as
1/T = ∂S(E)/∂E, where S(E) is the system’s entropy (we have set kB = 1). In
the case of our energy cat states, characterized by average energies E+ and E−, the
entropy can be written as a bivariate function, S(E+, E−) = ln [%+(E+) + %−(E−)],
where %±(E±) denotes the part of the level density pertaining to states with op-
posite quantum charges, hCiˆ = ±1. Therefore, we can defne two different mi-
crocanonical temperatures, 1/T± = ∂S(E+, E−)/∂E±, each one evaluated at the
corresponding value of the average energy of the bimodal distribution of the cat
state.

3.5 conclusions 

In this Chapter we have presented a theory for constants of motion in systems
with Z2 symmetry-breaking phase transitions. These constants of motion are re-
vealed as operators whose time evolution becomes frozen at its initial value in the
infnite-size limit of the system. They are, therefore, emergent constants of motion
that restrict the dynamical behavior of the system in a signifcant way. Our gen-
eral framework relies on the concept of symmetry-breaking and symmetric phases,
where equilibrium states of different nature can be found depending on whether
they break or remain invariant under some global symmetry of the system. In
particular, in symmetry-broken phases it is possible to build a constant of motion,
Ĉ, directly from the order parameter of the phase transition. A second emergent
constant of motion, K̂, then immediately emerges from Ĉ and some global sym-
metry of the system, Π̂, closing a SU(2) algebra in the symmetry-broken phase.
Our theory applies to a wide range of quantum many-body systems exhibiting Z2 

symmetry-breaking phase transitions; in this Chapter, we have presented numer-



ical illustrations in power-law interacting spin chains and also in fully-connected
systems such as the LMG model. The advantage of the latter is that in our col-
lective models it is possible to really approach the infnite-size limit due to the
conservation of total angular momentum, which reduces the Hilbert space dimen-
sion from exponential to linear. Additionally, these models undergo an ESQPT
which splits the spectrum into symmetry-breaking and symmetric phases, which
makes them extremely useful for our purposes. We should note that our results
on the deformed Rabi model exemplify how our general theory in Sec. 3.2 still
applies to systems where no Z2 symmetry is present as long as the model displays
disconnected components where the dynamics is restricted. These components
can take the form of quantum wells, and these can be equivalent or asymmetric.

After presenting the theory itself, we have analyzed how it can be employed
to understand several physical mechanisms. Currently, dynamical phase transi-
tions I and II are the focus of much theoretical and experimental research. Our
study of DPTs has been carried out in the LMG model, which can be understood
as the fully-connected version of the transverse-feld Ising model, a prototypical
system to study DPTs. We have shown that in the symmetry-broken phase, where
the DPT-I order parameter is non-zero, the effective long-time equilibrium states
can be described by a generalization of the ETH that incorporates the information
contained in the set of constants of motion {Ĉ, K̂, Π̂}. However, in the symmet-
ric phase, where the DPT-I order parameter vanishes, the only relevant constant
of motion is the global symmetry Π̂, and the standard ETH arguments are valid
again. We expect our results to be generically valid for any phase transition giving
rise to spectral phases with the mathematical properties presented in our theory.
Regarding DPTs-II, characterized by non-analytical values of some return ampli-
tudes at so-called critical times, we have provided both analytical and numerical
results. We have proved that the previously accepted mechanism for the appear-
ance of critical times can only take place in the symmetric phase, while it is for-
bidden in the symmetry-broken phase. The presence of degenerate eigenlevels of
opposite parity plays an important part in the mathematical proof, as well as the
constancy of the Ĉ operator. We have also shown that in the symmetry-broken
phase the parity-projected return probability and the usual survival probability
exactly coincide in the infnite-size limit, whereas they are different functions in
the symmetric phase. Our numerical results corroborate this picture. Importantly,
the fnal average energy of state initially prepared in the symmetry-broken phase
and then taken out of equilibrium through a quantum quench plays an important
role in the phase diagram of DPTs-II. If the fnal energy is such that the state ends
up in the symmetry-broken phase, one will observe an anomalous DPT-II phase,
whereas if the state ends up in the symmetric spectral phase one will fnd the
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so-called regular DPT-II phase. In the case of Z2 fully-connected models sharing
structural properties with the LMG model, the change of phase type is triggered
by the ESQPT non-analiticity. In this Chapter we have also defned a complexifed
survival amplitude and we have analyzed its versatility in unveiling the presence
of non-analytical times in the survival probability. In the future, it will be inter-
esting to establish a robust connection between the DPTs and the thermal phase
transitions present in many systems that also exhibit ESQPTs. We have already
taken important steps in this direction [484].

In the last section of this Chapter we have studied the equilibration process in
the presence of cat states. Our model Hamiltonian is a deformed version of the
famous Rabi model, a quantum optical system modeling the interaction between
light and a single two-level atom. The system exhibits two ESQPTs of different
nature, stemming from the modifcation of the classical phase space induced by
the addition of a deformation term in the Hamiltonian, which breaks the parity
symmetry that the usual Rabi model usually has. The frst ESQPT is of the jump
type, and above its defning critical energy one may fnd two disconnected classical
wells, whereas below this critical energy there is a single classical well. The second
ESQPT, of the logarithmic type, marks the critical energy above which these two
wells merge into a single one. We have proposed a protocol to create an energy cat
state –a Schrödinger cat state involving a quantum superposition of both different
positions and energies– by slowly crossing these two different ESQPTs. In practice,
this is accomplished by sequentially quenching a state in such a way that a periodic
driving in the control parameter is simulated. We have studied the time evolution
of typical observables in these energy cat states. The fact that the local density
of states resembles a bimodal distribution means that the ETH is invalid. We
have shown that the effective long-time equilibrium states of observables can be
described by a generalization of the microcanonical ensemble once the information
of the Ĉ operator is properly accommodated. In short, this last part of the Chapter
exemplifes an application of Ĉ to a system with no parity Z2 symmetry.



4 CHAOS IN A DEFORMED D ICKE
MODEL

In the previous parts of this thesis we have provided abundant evidence on the
effect that symmetry-breaking can have on quantum dynamics, namely the loss
of quantum ergodicity as a consequence of the appearance of a set of quantum
conserved quantities. If thermalization is impacted by this phenomenon, it is nat-
ural to suspect that its main triggering mechanism, chaos, will also exhibit some
peculiar behavior. Most of the systems considered in Sec. 3 are fully-connected
systems with a single classical effective degree of freedom and, therefore, they do
not support chaotic dynamics in any way. For this reason, in this Chapter we will
focus on a system with two degrees of freedom. Its key feature is that for cer-
tain values of the control parameters its dynamics is constrained to disconnected
regions, which means not all confgurations can be simultaneously accessed from
any given point of the phase space. Can such a system be chaotic? If this question
is to be answered affrmatively, what is the effect of disconnected wells on its on-
set? Although the results of this thesis are mostly theoretical, in this Chapter we
also directly connect with experimental results confrming our predictions.

This Chapter contains three sections. In Sec. 4.1 we provide an overview of the
deformed version of the Dicke model that we employ in subsequent sections. Sec.
4.2 is devoted to our theoretical analysis of chaos in the deformed Dicke model,
and it is based on our article [328]. Finally, Sec. 4.3 focuses on an experimental real-
ization of the model as well as a verifcation of the main physical points discussed
in our theoretical study, this section being based on our article [485].

4.1 preliminaries 

4.1.1 Deformed Dicke model

We consider a deformation of the Dicke Hamiltonian, formally analogous to the
deformation of the Rabi Hamiltonian analyzed in Sec. 3.4, where we include a
direct coupling to an external bosonic reservoir,

r 
ˆ † ̂ 2λ

Ĵx 
Nω0 ††H = ωâ a + ω0Ĵz + √ (â + â) + α(â + â), (207)

N 2 
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where we have set h̄ = 1. As in the standard Dicke model, the parameter ω is the
frequency of the bosonic feld, while ω0 represents a constant splitting of the atom
eigenlevels (energy difference). For our analyses, we fx ω = ω0 = 1 throughout.
Here, â† and â are the usual bosonic creation and annihilation operators, and Ĵ = 
(Ĵx, Ĵy, Ĵx) are collective pseudo-spin operators acting on the N two-level atoms.
The Hamiltonian (207) conserves the total spin operator, [Ĥ, Ĵ2] = 0. Therefore, the
Hamiltonian can be split into symmetry sectors according to the eigenvalues of Ĵ2 ,
denoted j(j + 1). The dynamics of each of these symmetry sectors is independent
from the others. We consider the maximally symmetric sector, defned by j = 
N/2, which is more relevant for experimental realizations [486] as the ground-
state of the system is contained in this sector. In order to compare quantum and
classical results, we defne the rescaled energy � ≡ E/(ω0j), which is intensive and
thus does not depend on system size. Finally, the constant α is the deformation
strength. The standard Dicke Hamiltonian is recovered for α = 0. A value α 6= 0 
gives rise to important qualitative changes in the structure of the model. One of
the most relevant changes is that the Dicke Hamiltonian with α = 0 is invariant
under a Z2 parity transformation; in particular, it commutes with the operator
Π̂ ≡ exp [iπ(j + Ĵz + â†â)]. However, if α 6= 0 commutation relation is broken,
[Ĥ, Π̂] 6= 0. When α = 0, the Dicke model undergoes a second-order QPT at the
critical coupling λc(α = 0) ≡ √ 

ωω0/2, and for λ > λc(α = 0) its level density
exhibits a logarithmic singularity at �c = −1 in its frst derivative [94], [305]. If
α 6= 0, the model becomes less mathematically tractable, and most of these special
values cannot be written in terms of elementary functions (see [81]).

As mentioned in the Introduction, the Dicke model has played an important
role in the feld of quantum statistical mechanics and in particular in analyses of
chaos and thermalization (see, e.g., [95], [300], [305], [309]). Indeed, the model is
in general non-integrable for all values of α. However, certain adiabatic constants
of motion have been identifed in the low-lying region of the spectrum close the
ground-state; in this spectral region, the system does approximately behave as an
integrable model [349]. More details on these features will be given later on.

In order to diagonalize the Hamiltonian (207) numerically, we employ the Dicke-
Fock basis {|m, ni} where |m, ni = |mi ⊗ |ni is the tensor product of the atomic
and bosonic constituents. The atomic quantum number m can only vary in the
range m = −j, −j + 1, . . . , j − 1, j, while the quantum number associated to the
photonic part of the Hilbert space n = 0, 1, 2, ... can take any non-negative value
and is thus unbounded. For this reason, we note that the total Hilbert space is
infnite-dimensional for any value of the infnite-size limit parameter j (or N ). As
in the Rabi model of Sec. 3.4, computing numerical results necessarily means that
some sort of cut-off must be implemented in the photonic part of the Hilbert space.



By truncating the number of photons n = 0, 1, . . . , nph < ∞, the dimension of the
truncated Hilbert space reads D = (2j + 1)(nph + 1). In this Chapter, all of our
numerical simulations have been carried out with N = 60 atoms and nph = 720.
Our numerical results are properly converged up to energies � ≈ 1.83 (higher
energy states are not reliable due to the truncation of the Hilbert space). In any
case, we will only consider energies � ≤ 1. Convergence of results is imposed by
requiring that the relative difference between eigenvalues calculated with nph and
b1.1nphc photons be smaller than 10−3; states for which this difference is larger
than 10−3 are discarded.

4.1.2 The classical deformed Dicke Hamiltonian

In the infnite-size limit N → ∞ (j → ∞), many properties of the quantum Hamil-
tonian (207) converge to the behavior expected from its classical limit. This mean-
feld solution can be computed by taking the expectation value of the quantum
model Ĥ in Glauber-Bloch coherent states, defned through the tensor product
|GBi ≡ |q, pi ⊗ |Q, P i. On the one hand, the bosonic part is described by the
Glauber coherent state |q, pi, which can be written

(r )� � 
j j2 †|q, pi = exp − (q + p 2) exp (q + ip)â |0i , (208)
4 2 

where |0i is the radiation vacuum. On the other hand, the atomic part is described
by the Bloch coherent state |Q, P i, which reads

( )� �j
Q2 + P 2 Q + iP |Q, P i = 1 − exp p Ĵ+ |j, −ji , (209)

4 4 − P 2 − Q2 

with |j, −ji representing the state with all atoms in the ground-state. A mathe-
matical expression for the classical Hamiltonian can be completely worked out by
making use of the standard techniques of Glauber-Bloch states [487]. We arrive at
the following intensive energy functional:

hGB| Ĥ |GBi ω 1 
H ≡ = (q 2 + p 2) + (Q2 + P 2)

ω0j 2ω0 2 r r (210)
2λqQ 1 2 

+ 1 − (Q2 + P 2) − 1 + αq. 
ω0 4 ω0 

Here, the variables x ≡ (q, p, Q, P ) ∈ M are classical canonical coordinates. While
the photonic variables (q, p) are unbounded, q, p ∈ R, the atomic part of the classi-
cal space is restricted to a 2-dimensional ball of radius 2, S2 ≡ {(Q, P ) ∈ R2 : 0 ≤ 
Q2 + P 2 ≤ 4}. In other words, the total phase space is M = R2 × S2 ⊂ R4 . Because
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the model is fully-connected, the effective Planck constant h̄eff = 1/j vanishes in
the infnite-size limit [488].
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Figure 46: Analysis of the classical phase space of the Dicke Hamiltonian. We represent
the projection on the (q, Q) plane of the constant energy surfaces of the classical
limit derived in (210). System parameters are ω0 = ω = 1 and λ = 3/2, and
we consider two values of the deformation α and several values of the reduced
energy: for (a), α = 0, � = −4, −3, −2, −1, 0, 1, and for (b), α = 1/4 and
� = −4.99, −3.99, −2.99, −1.99, −0.99, 0.01 (from red to blue).

The above classical energy functional (210) allows us to obtain several special
energy values in the infnite-size limit, such as the ground-state or ESQPTs. As
already demonstrated in this thesis, the classical coordinates associated to these
energies can be computed as critical points x ∗ of the Hamiltonian fow, rHx=x ∗ = 
0, with associated energy values �∗ = H(x ∗). In the case of the traditional Dicke
model, α = 0, analytical expressions for these extremal points can be explicitly
obtained. In the interacting phase, λ > λc(α = 0), these critical points are of the

∗form x = (q ∗, 0, Q∗, 0) with
r r ! 

4λ2 ω2 ωω0∗ 0(q , Q ∗ ) = (0, 0), − − , 2 − ,
ω2 4λ2 2λ2 

r ! (211)r 
4λ2 ω2 ωω0− 0 , − 2 − . 
ω2 4λ2 2λ2 

We would like to draw the reader’s attention to the fact that when α = 0 the
classical Hamiltonian remains invariant under the transformation q → −q and
Q → −Q. Therefore, for each critical point (q, p, Q, P ), (−q, p, −Q, P ) is also a



critical point, and both have the same energy. Thus, the second and third critical
points in (211) are associated to the same energy, the ground-state energy, which
is degenerate in the infnite-size limit. The frst critical point is of a completely
different nature; it is associated with a logarithmic ESQPT taking place at �c = −1.
In Fig. 46(a) we represent the phase space for α = 0. Since the full phase space
is four-dimensional, we have chosen to plot the surface projections on the (q, Q) 
plane. Different energies correspond to different line colors. This fgure clearly
shows the presence of two symmetric global minima for α = 0. For � ≤ �c these
classical wells are disconnected, while the ESQPT at � = �c (purple line) marks the
transition to a connected phase space.

It is clear from (210) that the symmetry H(q, p, Q, P ) → H(−q, p, −Q, P ) is bro-
ken as soon as α 6= 0, and as a consequence the previous structure is distorted.
As we mentioned before, in this case we cannot provide simple mathematical ex-
pressions for the Hamiltonian critical points but need to evaluate them numer-
ically. In our theoretical analysis of chaos, we will set α = 1/4 for defnite-
ness, but in our experimental realization α will vary. Together with the choice
ω0 = ω = 1 (in resonance), there are two ESQPTs which appear for atom-feldp √ 

1couplings λ > λc(α = 1/4) = 13 + 5 17 ≈ 0.725. For the special case8 
∗λ = 3/2 > λc(α = 1/4), we fnd the critical points x = (−3.339, 0, 1.342, 0),GS 

∗ ∗ x = (2.623, 0, −1.322, 0), and x = (0.045, 0, −0.133, 0). These are associated to1 2 
∗the ground-state energy, �GS = H(x ) = −5.673 and the ESQPTs critical energiesGS 

∗ ∗�c1 = H(x ) = −3.565 and �c2 = H(x ) = −0.992. Figure 46(b) for the case α = 1/41 2 
helps us to physically interpret these critical points. Due to the non-vanishing de-
formation strength α 6= 0, the ground-state is no longer degenerate; instead, we
fnd two asymmetric, non-equivalent minima at different energies, similar to the
behavior of the deformed Rabi model in Sec. 3.4. The second minimum corre-

∗sponds to x1, defning a critical energy �c1 > �GS . This is the energy beyond which
∗the second classical well appears. Finally, the critical point x associated with �c22 

merges the two classical wells in the (q, Q) plane, giving rise to a logarithmic ES-
QPT (because the system has f = 2 classical degrees of freedom, the singularity is
to be found in the frst derivative of the level density).
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4.2 theoretical analysis of chaos and conserved 
quantities 

4.2.1 The traces of classical chaos

Intersecting the trajectory: Poincaré sections

The onset of chaotic dynamics in classical physics is very frequently analyzed with
two main tools which we employ below. The Poincaré sections [489] are one such
tool. Their advantage is that they provide a pictorial and convenient representation
of the development of chaos. To compute these sections, we proceed as follows.
We frst need to choose an initial condition x(t = 0) = (q(0), p(0), Q(0), P (0)) with
a fxed energy, � = H(x(t = 0)). This initial condition is then allowed to evolve in
time according to the Hamilton equations,

dq ∂H ω 
= = p, (212)

dt ∂p ω0 

r r 
dp ∂H ω 2λQ 1 2 

= − = − q − 1 − (Q2 + P 2) − α, (213)
dt ∂q ω0 ω0 4 ω0 

dQ ∂H λqQP 
= = P − q , (214)

dt ∂P 2ω0 1 − 1 (Q2 + P 2)4 

q 
2λq 1 − 1 (Q2 + P 2)dP ∂H λqQ2

4 
= − = −Q + q − , (215)

dt ∂Q ω02ω0 1 − 1 (Q2 + P 2)4 

with a set of initial conditions q(t = 0) = q0, p(t = 0) = p0, Q(t = 0) = Q0, and
P (t = 0) = P0. By solving this system of differential equations we can obtain the
classical trajectory at any time, x(t). Its energy, H(x(t)), is conserved throughout
the entire time evolution, H(x(t)) = H(x(0)) for all t. We then need to consider
the intersection of the trajectory with a given hyperplane at each time t. We have
decided to compute the intersections with P = 0. When x(t) is such that P (t) = 0,
we collect the value of the rest of coordinates at that time. Finally, we plot them in
the (q, p) plane.

Regular (integrable) and chaotic dynamics produce completely different phase
space portraits. For regular trajectories, intersections with the chosen hyperplane
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Figure 47: Analysis of classical chaos with Poincaré sections, computed through the clas-
sical analogue (210) in the (p, q) plane by intersecting the trajectories with the
P = 0 hyperplane. The energy of the classical trajectories is different in each
of the panels: (a) � = −5, (b) � = −4, (c) � = −3, (d) � = −2.5, (e) � = −2, (f)
� = −1, (g) � = −0.8, and (h) � = 1. In all panels, each trajectory is associated
to a single point color.

usually give rise to one-dimensional, ordered structures with the form of ovals
(these are called toroidal structures). However, chaotic trajectories can explore
all available phase space in a seemingly disordered way. As explained by the
Kolmogorov-Arnold-Moser theorem [4], in the transition from regularity to chaos
the regular parts of phase space get distorted.

Figure 47 shows our results for the Poincaré sections. In each panel the energy of
the initial condition is different. In Figure 47(a)-(b) we represent the Poincaré sec-
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tions for low energy trajectories. We observe that these trajectories are organized
in ordered toroidal structures, refecting the fact that close to the ground-state the
system is approximately integrable. We also note that in these panels we observe
a single structure located on the left hand-side of the phase space. This is because
the energy of these trajectories is below �c1, and thus the second classical well does
not exist yet. In 47(c) the energy is greater than the ESQPT critical energy �c1, and
thus the right well is already present in the phase portrait. We highlight that the
left well already shows some signatures of chaos; in comparison, the right well is
completely regular at this value of energy. A clearer example has been represented
in Fig. 47(d); in this case, the left well is almost completely chaotic even though the
right well is still basically regular. Figure 47(e)-(h), exemplify how further increas-
ing the energy leads to more chaos, and in particular we observe how regularity
is also lost in the right well as energy increases. Finally, when the energy is high
enough, the regular behavior is completely destroyed and we observe an irregular
mesh of points throughout all available phase space, as shown in 47(g)-(h).

Exponentially diverging: characteristic Lyapunov exponents

Poincaré sections are useful to gain a general qualitative understanding of the de-
gree of chaos in the system, but they do not really provide a quantitative estimate
of this chaoticity. To this end, we now compute the characteristic Lyapunov expo-
nents associated with the classical trajectories at fxed energies. As discussed in
Sec. 1.2.1, classical chaos is commonly characterized by an exponential divergence
of infnitesimally nearby trajectories. By contrast, in the case of regular trajectories
such a separation can be algebraic at most.

An effcient algorithm to compute the Lyapunov exponents was presented in
Sec. 1.2.1 (see also [45], [306] for details). This method basically involves solving
a system of ordinary differential equations. The system comprises to main parts:
the so-called dynamical problem (24) and the variational problem (25). In our case,
the deformed Dicke model has f = 2 classical degrees of freedom, so we need
to solve a system of twenty coupled differential equations. The technical details
of our calculations are as follows. For each energy and each of the two wells, we
randomly choose 100 different initial conditions x(0) ∈ M; we then time-evolve
them, which affords x(t). The computing time span is at most t = 2500, but we
only consider the trajectories until a time cutoff tmax ≤ 2500 obtained as the last
time value such that the numerical error is |� − H(x(tmax))| ≤ 10−5 . We would like
to emphasize that numerically evaluating a system of twenty ordinary differential
equations up to these time values can be computationally expensive. For each
trajectory, we select 5000 different perturbations δx(0) randomly, all of them with
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Figure 48: Analysis of classical chaos via mean Lyapunov exponents, λn, averaged over
5000 randomly chosen perturbations for different values of energy. The energy
of the trajectories considered in each of the panels is (a) � = −3, (b) � = −2.5,
(c) � = −2, (d) � = −1 and (e) � = 0. The Lyapunov exponents associated to
initial conditions belonging to the left energy well are represented in blue (left),
while for initial conditions in the right well the Lyapunov exponents are shown
in red (right).

size kδx(0)k = 10−6 , and then compute the Lyapunov exponent λn,k associated
to the nth trajectory and the kth perturbation. Next, the perturbation-averagedP5000Lyapunov exponent for each trajectory is computed as λn = (1/5000) λn,k.k=1 
We gather our results in Fig. 48. In all panels, the frst 100 blue points correspond
to trajectories departing from initial conditions in the left energy well, while the
following 100 red points are associated to trajectories in the right well. We observe
a clear transition from regularity to chaos, and the qualitative agreement with the
Poincaré sections of Fig. 47 is very good. Figure 48(a) illustrates how in the right
energy all of our sampled initial conditions have vanishing Lyapunov exponents,
meaning that at � = −3 the right well is indeed regular. However, in the left
energy well there is a non-negligible number of initial conditions giving rise to
positive Lyapunov exponents; these trajectories diverge exponentially following a
very small perturbation. But in the left well there are also some vanishing Lya-
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punov exponents, i.e., some trajectories are still regular. This tells us that at this
value of energy the left classical well exhibits a mixed phase space, where regular
and chaotic trajectories coexist. Increasing the energy to � = −2.5 produces the
results in Fig. 48(b). In this case, all sampled trajectories in the right well are still
regular, but there are more chaotic trajectories in the left well than in the previous
panel, as this well becomes increasingly chaotic. Figure 48(c) focuses on � = −2.
The main qualitative difference with the previous panels is that the right well al-
ready supports a number of chaotic trajectories, with many trajectories remaining
regular. Fig. 48(d) shows the case of � = −1: here, most trajectories are chaotic in
both the left and right wells, so the rare stability islands that can survive even in
chaotic systems are highly suppressed. It should be noted that the mean Lyapunov
exponent is signifcantly higher in the left well than in the right well. This indicates
that upon a slight perturbation of a chaotic initial condition, the separation occurs
faster in the left well than in the right well. Finally, 48(e) shows the case of � = 0.
Since in this case � > �c2, both classical wells have merged into a single one, and
chaos becomes very similar irrespective of the region of the phase space where the
initial condition was chosen.

The ratio of the number of trajectories with positive Lyapunov exponents to
the total number of trajectories gives an estimate of the volume of the classical
phase space where stability islands have been destroyed and chaos dominates the
dynamics. This quantity is represented in Table 4 for the Lyapunov exponents in
Fig. 48, for the same energy values and for both classical wells. These results are
very good agreement with the general scenario discussed above.

Energy Left well Right well

� = −3 0.22 0 

� = −2.5 0.57 0 

� = −2 0.8 0.4 

� = −1 0.97 0.96 

� = 0 1 1 

Table 4: Ratio of the number of chaotic trajectories to the total number of trajectories cal-
culated from the Lyapunov exponents of Fig. 48, considering the same energy
values and both classical energy wells. A Lyapunov exponent is considered to be
numerically positive if it is greater than 10−2 .



These results constitute strong support for the fact that switching on the per-
turbation parameter α has an important impact on the development of chaos, at
least in the classical limit. This is in contrast with the behavior of the standard
Dicke model (α = 0) [94], [95], for which chaos merely depends on the energy of
the trajectory but not on the region of phase space where the initial condition is
prepared. Summarizing, the development of chaos completely decouples in the
deformed Dicke model.

4.2.2 Signatures of quantum chaos

Let us now examine the quantum version of the model, given by Eq. (207). Our
previous results indicate that the onset of classical chaos cannot be described with
the energy of the trajectories as the only parameter. It seems that chaos is not
blind to the asymmetry brought about by the deformation strength α. Therefore, a
natural question is: does chaos depend on additional conserved quantities, besides
energy, also in the quantum world?

Ratio of consecutive level spacings

As explained in 1.2.2, a traditional way to identify quantum chaos is through the
statistical analysis of the Hamiltonian eigenlevels. The spectral statistics of quan-
tum chaotic systems follow the universal results of the RMT. In this case, the de-
formed Dicke model (207) has time reversal invariance, and thus the GOE theoret-
ical results should describe its chaotic behavior. We have already shown in 4.2.1 
that, classically, there is an important distinction in the development of chaos in
the left and right wells. It is therefore natural to inspect the level statistics of the
quantum model corresponding to each of the two energy wells.

In order to achieve this, we classify the quantum eigenstates in relation to the
properties of the asymmetric classical energy wells. The structure of the classical
phase space of this model is quite similar to that of the deformed Rabi model,
previously discussed in Sec. 3.4, and therefore we refer the reader to that section
for details. Although the deformed Dicke model is not invariant under the parity
Z2 transformation, it is still possible to employ the constant of motion presented
in Sec. 3.2 [see Theorem 1 and (101)], as its existence does not depend on the parity
operator. However, in this case the additional K̂ operator does not exist. According
to the classical phase space depicted in Fig. 46, for � ≤ �c2 the function sign (q − qc2),

∗where qc2 = q is the classical coordinate corresponding to the second ESQPT2 
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critical energy �c2 (i.e., the q for which the curves appear to cross) is conserved.
Therefore, the operator

Ĉ ≡ sign (q̂− qc2I) (216)

acts as a discrete Z2 constant of motion for energies � ≤ �c2, in the infnite-size limit.
For �c1 ≤ � ≤ �c2, the operator Ĉ assigns quantum numbers to the Hamiltonian
eigenstates. If a quantum eigenstate belongs to the left well, then hEn| C |ˆ Eni = −1,
and hEn| C |ˆ Eni = +1 if it belongs to the right well. Observe the similarity of (216)
for this model and (195) for the deformed Rabi model.

In Fig. 49 we present the distribution of consecutive level spacings, P (re), in
the energy range �c1 ≤ � ≤ −2 for several cases. For details on the origin of this
distribution, see (60) in Sec. 1.3.2. In Fig. 49(a) we represent P (re) computed
from the entire set of (ordered) eigenlevels in the specifed energy range, without
classifying them according to the value of Ĉ in the corresponding eigenstates. In
other words, we mix states belonging to the left and right classical wells. The nu-
merical histograms are approximately described by the Poisson theoretical curve,
although signifcant deviations are also obvious. The emergence of Poissonian be-
havior is not surprising: eigenlevels belonging to different symmetry sectors of Ĉ
are uncorrelated, and therefore in mixing these states level correlations, the main
characteristic of quantum chaotic spectra, is destroyed. Let us now consider P (re) 
built from states with a defnite value of Ĉ. The results of the previous section, in
particular those in Fig. 48, suggest that if the quantum-classical correspondence is
not violated, in the energy range �c1 ≤ � ≤ −2 we should have more chaos in the
left well than in the right well. In Fig. 49(b) we focus on states classically placed
in the left well, while Fig. 49(c) shows P (re) for states in the right well. Although
fnite-size effects and the impossibility to perform ensemble averages to improve
the statistical signifcance of these histograms mean that we cannot make strong,
defnite statements, we can clearly observe that these distributions are completely
different than that in Fig. 49(a). In fact, P (re) in Fig. 49(b) is relatively similar to
the GOE result, while in Fig. 49(c) it seems to deviate more.

Obtaining clearer ratio distributions would mean numerically diagonalizing larger
system sizes, which unfortunately we cannot do due to limitations of our machines.
But this does not mean that all hope is lost. Below, we will use the so-called Peres
lattices, which focus on individual eigenstates rather than on the statistical descrip-
tion of eigenlevels, to provide a clearer response to our questions.

Peres lattices

This method to detect quantum chaos was presented by Peres in the 1980s [58],
basically around the same time when the BGS conjecture of quantum chaos was
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Figure 49: Distribution of the ratio of consecutive level spacings, ren = min{rn, 1/rn}, with
rn in Eq. (60), for the eigenlevels of the deformed Dicke model (207) in the
energy range �c1 ≤ � ≤ −2. (a) P (re) constructed from all energy levels in this
range, mixing states with hCiˆ = +1 and hCiˆ = −1. (b) P (re) of states with
hCiˆ = −1 (left classical well). (c) P (re) of states with hCiˆ = +1 (right classical
well). Model parameters are N = 60, α = 1/4, λ = 3/2, nph = 720. The
corresponding GOE (chaos) and Poisson (regularity) theoretical curves are also
plotted for reference.

established. Peres’ approach can be succinctly summarized as follows [490]. The
method deals with generic, few-body observables, say Ô, whose diagonal expec-
tation values in the eigenbasis of a given Hamiltonian, Onn = hEn| Ô |Eni, are
computed. Viewed as a function of the eigenenergies, the values Onn(En) produce
two types of very different structures. In the case of regular dynamics, we obtain
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an ordered set of points in the (En, Onn) plane (hence the name ‘lattice’); how-
ever, chaotic dynamics is associated with a disordered set of points. Between these
two limiting behaviors, integrability breaking terms can give rise to perturbations
of the regular lattices, full chaos only appearing when the whole regular struc-
ture has been destroyed. Therefore, Peres lattices provide an alternative method
to unveil quantum chaos and integrability, and they complement the traditional
level statistics analysis. Yet, Peres lattices are less frequently used in the study of
quantum chaos than spectral statistics. One of the reasons may be that there are
no universal, theoretical descriptions of what a Peres lattice should look like if a
system is chaotic, unlike the universal RMT results for spectral statistics. Peres
lattices are similar in spirit to Poincaré sections, although we should emphasize
that they are in no way formal analogues of Poincaré sections. Finally, we should
stress that Peres lattices are also very insightful in the analysis of thermalization
and the ETH. Indeed, according to, e.g., (47), for the ETH to hold the diagonal
expectation values of few-body observables in the Hamiltonian eigenbasis need to
behave a smooth function of energy. Non-smooth structures in the plane (En, Onn) 
can hint at a failure of the system to thermalize, at least for certain observables.

In Fig. 50 we represent the Peres lattices for some observables of our choice.
First, in 50(a) we show the diagonal expectation values of the Ĉ operator defned
in Eq. (216). For energies between the frst and second ESQPT critical energies, �c1 

and �c2 (marked by vertical dashed lines), only two values are possible: +1 and −1.
And for � ≤ �c1, the only possible value is −1. This is because for � ≤ �c1 the right
classical well does not yet exist, and therefore eigenstates can only belong to the
left well. Throughout this fgure, blue points represent eigenstates with hCiˆ = −1,
while red points represent the expectation values for eigenstates with hCiˆ = +1.
This clearly shows that our general theory of constants of motion, presented in Sec.
3.2, is indeed valid even though there is no Z2 symmetry in this model. Above a
certain energy, the expectation values of Ĉ can be different from ±1, and they are
arranged in a seemingly disorganized pattern. Although the energy that marks
the appearance of chaos seems to be connected with the ESQPT at energy �c2, it
is really unrelated: we should note that chaos appears well below �c2 even in the
Poincaré sections presented in Fig. 47.

Regarding quantum thermalization and the ETH, Fig. 50(a) already tells us that
the standard microcanonical ensemble will be incapable of describing the long-
time averages of observables, as the diagonal expectation values of the Ĉ operator
do not behave as a smooth function of energy, with clear jumps between adjacent
eigenstates. In other words, the conservation law established by Ĉ has a vital
impact the dynamics of non-equilibrium states.
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Figure 50: Analysis of quantum chaos via Peres lattices, calculated for representative ob-
servables in the Hamiltonian eigenstates of (207). Our chosen observables are:
(a) the constant of motion operator (216); (b) the number of photons operator
â†â; and (c) the atomic collective spin observable Ĵz . The expectation values
in Hamiltonian eigenstates such that hEn| C |ˆ Eni = −1 (which belong to the
left classical well) are represented as blue points, while if hEn| C |ˆ Eni = +1 
(right classical well) such expectation values are represented with red points.
The expectation value in eigenstates such that Ĉ is not a constant of motion
are plotted with purple points. The ESQPT critical energies �c1 = −3.565 and
�c2 = −0.992 are depicted with two dashed vertical lines. The number of atoms
is N = 2j = 60 and the photonic cutoff number is nph = 720.

To end this section, let us analyze the results presented in Fig. 50(b),(c). In
Fig. 50(b) we focus on the number of photons, hâ†âi. For suffciently low energies
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we observe a completely regular lattice of blue points. We can even establish a
qualitative correspondence between the results of the Peres lattices and those of
the Poincaré sections: if we focus on energy � = −5, i.e., just slightly above the
ground-state energy, we observe a regular behavior that is also apparent in Fig.
47(a), where the classical trajectories are also regular. The same reasoning applies
to energy � = −4, see Fig. 47(b) for comparisons with Poincaré sections. The case
of � = −3 is more interesting: here the right energy well is already accessible, and
the red diagonal expectation values are arranged in an organized fashion, which
reminds us of the behavior of the right well close to its own minimum energy.
Despite this, we can observe some deviations from perfect regularity in the eigen-
states associated to the left well, and this is in agreement with the results in Fig.
47(c), where we observe that chaos has already started to appear, although some
remnants of regularity manage to survive. At energy � = −2.5, the red expecta-
tion values are still basically regular, but in the blue ones the perturbation is now
strong. It is interesting to compare this picture with Fig. 47(d), whose left well
now shows a very small regular portion, surrounded by a chaotic sea; meanwhile,
the right well continues to show strong signatures of regularity. For � = −2, the
blue expectation values are even more perturbed, and some integrability breaking
is also visible in the red points too. Classically, this scenario is also present, as Fig.
47(e) indicates. Increasing the energy beyond � = −2 we observe a gradual evolu-
tion of chaos until the regular portions are completely destroyed. This description
of the onset of chaos is not unique to the photonic number; for example, the atomic
inversion, Ĵz, shows analogous results, which can be found in Fig. 50(c).

These results confrm that we can establish a meaningful quantum-classical cor-
respondence in the onset of chaos: in order to ascertain the degree of chaos in the
system, the trajectories or eigenstates energies is not suffcient, and we need the
information provided by the Ĉ operator.

Onset of chaos: when integrability breaks down

One of the features in the Peres lattices of Fig. 50(b),(c) is the appearance of a
set of ordered points at low energies, within an energy interval from the ground-
state up to some intermediate spectral region. In this section we focus on this
band structure, as it will allow us to present a more quantitative description of the
development of chaos than that gained from the analysis of the Peres lattices.

As we have mentioned before, the Dicke model is in general a non-integrable
model. Despite this, its low-energy region can be considered as approximately
integrable, as shown in [315], [349]. This quasi-integrability stems from the con-
servation of an additional operator, Ĵz0 , which makes it possible to divide the



full spectrum into a set of 2j + 1 independent bands according to its eigenval-
ues. Assuming that the motion of the atoms in the Dicke model is much faster
than that of the bosons, one may employ the Born-Oppenheimer approximation
[491] and solve for the bosonic coordinates. In order to accomplish this, one re-
places the boson creation and annihilation operators by the classical approxima-√ √ 
tion â = (1/ 2)(q̂ + ip̂), q̂ = (â† + â)/ 2. According to [349], this yields a set of
2j + 1 effective classical Hamiltonians with the form

s 
ω λ2 ωq2 p

2 0Em0 = (p + q 2) + ω0 1 + 
λ2 m + Nω0αq, (217)

2 ω0jc 

0with m = −j, −j + 1, . . . , j − 1, j being the eigenvalues of the operator

λ2 ω 1Ĵz + 
q 

λ2 (â+ â†)Ĵxω0 2jcĴz0 ≡ q , (218)
1 + λ2 ω 1 (â+ â†)2 

λ2 ω0 2jc 

an adiabatic invariant that acts as a constant of motion up to moderate energies
[349]. In this equation, λc = λc(α = 0) = √ 

ωω0/2. Equation (217) tells us that
at suffciently low energies the Dicke model, which has two classical effective de-
grees of freedom, can be approximately described as a set of 2j + 1 independent
integrable models with a single degree of freedom. The classical energy surfaces
are then given by Em0 in Eq. (217). The ground-state of the model is to be found

0in the m = −j surface. Therefore, at these low energies the quantum eigenlevels
depend on two different numbers, encapsulated in Em0 ,n: the band where a level

0is found is indicated by m , and the position of that level relative to the minimum
energy of the band where it is located is indicated by n. Therefore, one may use
the diagonal expectation values hEn| Ĵz0 |Eni ∈ {−j, −j + 1, . . . , j − 1, j} to classify
the system’s eigenstates in bands.

It would seem that the adiabatic invariant Ĵz0 (218) and the operator Ĉ (216)
may have some sort of connection; however, they do not. Their physical origins
are completely unrelated: while Ĵz0 labels the band to which a given low-energy
eigenstate belongs, the operator Ĉ indicates in which classical energy well that
eigenstate is trapped. These details are independent: for example, two states with
different values of Ĉ can still be found in the same band of Ĵz0 . Besides this, there
is a certain spectral region where these two operators act as constants of motion
simultaneously: Ĉ is constant for energies below �c2, i.e., as long as the classical
wells are disconnected, while Ĵz0 is valid up to some energy value that depends
on the particular values of the parameters of the model (see [349] for details).
At intermediate energies below the second ESQPT and at low energies near the
ground-state, both operators act simultaneously as constants of motion, providing
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two independent quantum numbers, hĴz0 i and hCiˆ , labeling the system states. Since
†both operators can be diagonalized in the eigenbasis of â + â , they are commuting

observables, [Ĵz0 , Ĉ] = 0.
In [315], [349] the adiabatic invariant Ĵz0 was proposed as a tool to detect the

onset of quantum chaos. In particular, quantum chaos should emerge when Ĵz0 

ceases to be a constant of motion. As a quantitative measure of quantum chaos,
we consider the dispersion of Ĵz0 in the Dicke Hamiltonian eigenstates,

(ΔĴz0 )2 = hEn| Ĵ2 
0 |Eni − (hEn| Ĵz0 |Eni)2 ≥ 0. (219)z 

The operator Ĵz0 is a good conserved quantity when this dispersion is zero. A
non-zero value of (ΔĴz0 )2 is indicative of the spectrum bands being destroyed and
of chaos entering the system.

In Fig. 51 we represent the dispersion (219) as a function of energy. This disper-
sion vanishes near the minimum energy of each of the two classical wells, so for
those energies Ĵz0 is essentially constant and the corresponding eigenstates can be
split into independent bands. For the eigenstates with hCiˆ = −1 (left classical well),
a vanishing dispersion is maintained roughly up to � ≈ −3.5. After this point, the
dispersion continues to grow with energy. Qualitatively similar results are found
for the eigenstates with hCiˆ = +1 (right classical well), except that in this case we
fnd a vanishing dispersion up to higher energies, � ≈ −2.5.

These results confrm that the onset of chaos takes place at markedly different
energies. In this sense, for � ≤ �c2, the system effectively behaves as two indepen-
dent models whose analyses need to be carried out independently.

4.3 experimental realization of the deformed dicke 
model 

4.3.1 Experimental platform

Let us now move on to our experimental realization of the deformed Dicke model.
This part of the thesis contains both experimental and theoretical results. The
experimental results were performed by our collaborators at the Universidad Na-
cional Autónoma de México, while the author of this thesis was in charge of the
theoretical calculations as well as the theoretical parametrization of the experiment.
State-of-the-art techniques in quatum technologies, such as superconducting cir-
cuits [492] and cold atom platforms [493], [494] have been used to explore the stan-
dard Dicke model. In addition, atom-cavity systems [495], [496] have also made
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Ĵ
z
‘
)2

E/(ω0j)

0

5

10

15

20

25

30

35

40

−6 −5 −4 −3 −2 −1

Figure 51: Analysis of the onset of quantum chaos through the adiabatic invariant in (218).
We plot the dispersion (219) of the adiabatic invariant Ĵz0 in the deformed Dicke
Hamiltonian eigenbasis. We follow the color code in previous Fig. 50. We
observe that for Hamiltonian eigenstates whose eigenvalues are close to the
minimum energy of each of the two classical wells, (ΔĴz0 )

2 = 0, which is a
signature of the Hamiltonian behaving a set of independent integrable systems.
The condition for the onset of chaos is (ΔĴz0 )

2 6= 0, which takes place at differ-
ent energies depending on the particular well. The number of atoms is N = 60 
and the photonic cutoff is nph = 720.

it possible to analyze several extensions of the model without deformation. Sur-
prisingly, experimental realizations of the classical dynamics of the model do not
particularly abound. The development of platforms that can properly implement
these dynamical features remains a promising venue of research as they would
make it possible to easily verify the main predictions of the model as well as pro-
vide new insights into its properties. A experimental realization of the classical
non-deformed Dicke model was presented in [497]. The experimental platform
consists of two non-linearly coupled synthetic LC circuits, and it relies on electri-
cal networks of resistors, capacitors, operational amplifers and analog multipliers
[498]. The key point of these electronic platforms is that their voltage transfer-
functions can be controlled through linear and non-linear operations and, as a
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consequence, it is possible to experimentally solve a set of differential equations.
Thus, the temporal evolution of the voltages of the electronic device is controlled
precisely by the same equations as the original system that one wants to simulate
[499], [500].

Through the prism of these electronic platforms, the classical functional of en-
ergy in (210) can be seen as a set of two non-linearly coupled harmonic oscilla-
tors subject to some external stimulus in the feld section. For this reason, it can
be mapped to electrical variables of LC oscillators, where L and C denote the
inductance and capacitance. This transformation gives rise to a system of two
non-autonomous LC oscillators connected through a non-linear coupling, essen-
tially mapping the classical canonical variables (q, p, Q, P ) to normalized electrical
variables (IL1 , VC1 , IL2 , VC2 ), where IL stands for the induction current while the
capacitor voltage is represented by VC . The classical Hamiltonian (210) can be
rewritten as

ω 1 λĨL1 ĨL2 
q 

H = (Ĩ2 + Ṽ 2 ) + (Ĩ2 + Ṽ 2 ) + 4 − Ṽ 2 + Ĩ2 
L1 C1 L2 C2 C2 L22ω0 2 ω0 r (220)
2 − 1 + αĨL1 ,ω0 

with ω2 = 1/L1C1 and ω2 = 1/L2C2 being the natural frequencies of the oscillator-0 
1 and oscillator-2, respectively. The non-linear interaction between the LC oscilla-
tors is controlled by the coupling strength λ, while in this setting the deformation
strength α is accounts for the intensity of the external stimulus. In the results of
this section, we fx ω = 1 and ω0 = 1 while the values of λ and α are allowed to
vary in order to access the different physical regimes of the model.

The classical equations of motion of the non-deformed (α = 0) and deformed
(α 6= 0) Dicke models are very similar; basically, the only difference is found in the√ 
equation for dp/dt, which contains an additional term − 2/ω0α. Although this
term is exogenous to the circuit, it can be experimentally controlled by including
a direct voltage signal in the integrator for the differential equation describing the
voltage of the capacitor in ṼC1 . Technically, this voltage is supplied by a digital-
analog converted (DAC) with an MCP4921 series. Experimentally, our platforms√ 
allows values of α such that 2α ∈ (−2.5, 2.5) and λ ∈ (−2.5, 2.5). In summary,
we are able to experimentally control the free parameters λ and α via software.
A schematic representation of the electronics for the deformed Dicke model is
shown in Fig. 52(a). The parts of the circuit corresponding to the standard Dicke
model (α = 0) have been represented with black lines, while the circuitry of the
exogenous deforming term α 6= 0 is shown with blue lines. For more details on
the experimental setup, we refer the interested reader to [485].
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Figure 52: (a) Electric circuit describing the voltage differential equation in the capacitor-
1. Here, Uj and Mj denote general-purpose operational amplifers and analog
multipliers. The resistor and capacitor values are R =10 KΩ, R1 =1 KΩ, and
C =10 µF . Voffset is a direct voltage of 2.5 volts and VDAC is the α-dependent
voltage signal. (b) Time evolution of Q in the ground-state for λ = 1 and several
values of α: (f.1) α = −0.39, (f.2) α = −0.225, (f.3) α = −0.06, (f.4) α = 0.155,
(f.5) α = 0.32, and (f.6) α = 0.485.

4.3.2 Exploring the ground-state features

The ground-state of the system is a particular case of equilibrium points of the clas-
sical Hamiltonian (210) with the minimum possible energy. For the non-deformed
model, α = 0, the closed-form expressions for this energy are E0(λ) = −ω0j for
λ ≤ λc, in the normal phase, and E0(λ)/j = −ω0/2(λ2/λ2 + λ2/λ2) for λ > λc,c c 
in the superradiant phase. The transition between these ground-state phases is
demarcated by the critical coupling λc = √ 

ωω0/2. However, similarly to the de-
formed Rabi model of Sec. 3.4, when α 6= 0 there is no normal-superradiant phase
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transition in the ground-state and, as we have seen in the theoretical analysis of
Sec. 4.2, two asymmetric wells may emerge for appropriate values of λ and α.

In order to proceed with our experimental analysis of the ground-state in the
deformed Dicke model, we fx one of the two free parameters and allow the re-
maining parameter to vary. In Fig. 53(a)-(d) report our results on the ground-state
coordinates q and Q for the following values of the the control parameters: (a)
α = 0.25, (b) λ = 0.1 < λc, (c) λ = 0.5 = λc(α = 0), and (d) λ = 1 > λc. The
theoretical predictions for the q and Q coordinates are represented by blue and red
solid lines, respectively, respectively, while points of the same color are associated
to the experimental measurements. Because the ground-state is a stationary point
of the dynamics, our bi-parametric electronic platform exhibits constant voltage
signal along time as visible in Fig. 52(b). We note that inevitable electronic noise
means that the voltage signal associated to ground-state points cannot be perfectly
fat, but it is still very close to constancy. The presence of electronic noise can
also be observed in the rest of the panels. For this reason, in Fig. 53(a)-(d) the
errorbars represent the standard deviations of the time series for each of the (q, Q) 
coordinates, while the points represent their respective average values.

We have also studied the variation with λ and α of the atomic inversion and
mean photon number in the ground-state, for the same cases considered in Fig.
53(a)-(d). The classical counterpart of these observables can be computed through
Glauber-Bloch coherent states, |GBi. For the atomic inversion, we obtain

hGB| Ĵz |GBi P 2 + Q2 
jz = = − 1, (221)

j 2 

while the classical counterpart of the mean photon number reads

2hGB| n̂ |GBi p2 + qhni = = . (222)
j 2 

These classical quantities are represented as a function of λ and α in Fig. 53(e)-(l).
In Fig. 53(e)-(f), we fx α = 0.25; in (g)-(h), λ = 0.1; in (i)-(j), λ = 0.5; and in (k)-(l),
λ = 1.

When α is fxed, the q and Q coordinates vary smoothly with λ; this is clearly
visible in 53(a). A similarly smooth evolution for the atomic inversion and the
mean photon number can be observed in Fig. 53(e) and Fig. 53(f), respectively.
The observed increase of Q with λ is due to the fact that as λ grows from λ = 0,
when there are no interactions and the ground-state is located right at the center
of the phase space (Q = 0), the system will enter a double-well region at some
value of α, and because in this case α > 0, the ground-state will be shifted to the
right part of the phase space (Q > 0). If λ is decreased from λ = 0, analogous
results are obtained, although in this case the ground-state shifts to Q < 0. If we
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Figure 53: Experimental vs. theoretical analysis of the ground-state properties. (a-d)
Ground-state q and Q of the classical version of the deformed Dicke model with
ω = ω0 = 1, as a function of λ and α. In each case, the free parameter values
are: (a) α = 0.25, (b) λ = 0.1 < λc, (c) λ = λc = 0.5 and (d) λ = 1 > λc. Pan-
els (e)-(g)-(i)-(k) show the atomic inversion, hjzi /j, and (f)-(h)-(j)-(l) the mean
photon number hni as a function of λ and α. (e)-(f) correspond to the case
α = 0.25, (g)-(h) to λ = 0.1, (i)-(j) to λ = 0.5, and (k)-(l) to λ = 1. Solid lines
denote theoretical predictions obtained via numerical simulations and points
represent experimental measurements. Error bars correspond to the standard
deviation of the experimental results.

fx λ = 0.1 < λc and allow α to vary, the behavior of the ground-state is montonic
as Fig. 53(b) clearly illustrates; the associated atomic inversion and mean photon
number are in Fig. 53(g)-(h). The interpretation for this case is that the condition
λ < λc only allows for one classical well, but it is shifted to the left (Q < 0) or right
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(Q > 0) depending on the sign of α. The ground-state is found at the center of
phase space (Q = 0) only if there is no deformation, α = 0. In Fig. 53(c) we focus
on λ = 0.5 = λc and allow α to vary. At α = 0, the q and Q coordinates undergo
a second-order quantum phase transition; this is the well-known QPT of the non-
deformed Dicke model. The atomic inversion and mean photon number also show
clear signatures of the QPT in Fig. 53(i) and Fig. 53(j), with jz approaching −1 
and hni vanishing as α → 0. For α 6= 0, the deformation forces the classical
phase space to become asymmetric, which explains the evolution of the coordinates
towards negative or positive values, depending on |α|. Finally, if λ = 1 > λc, the
signatures of a frst-order QPT are clearly visible in 53(d), where the canonical q, Q 
variables exhibit a fnite discontinuity at α = 0. Note, however, that there is no
such discontinuity in jz and hni, as shown in Fig. 53(k) and Fig. 53(l).

In all cases, the numerically computed predictions agree very well with the
experimental values. The canonical variables q, Q can be successfully used to mark
the different phase transitions of the model.

4.3.3 Measuring chaos and phase transitions

Our next step is to characterize the different dynamical regimes of the deformed
Dicke model. To this end, in Fig. 54 we present a two-dimensional phase diagram
of the model, where the different phases are driven by the values of the λ and α 
parameters. This diagram describes the phases of the system in the infnite-size
limit, N → ∞, and thus it is relevant for fnite-size scaling considerations. The
diagram is mainly divided into two zones, the limits of which are demarcated by
orange solid lines. We note that these lines originate at the quantum critical point
λc(α = 0). In the gray-shaded portions of the diagram the classical trajectories
are confned in a single energy well, while in the orange-shaded regions a double-
well structure emerges. Since the phase space is four-dimensional, projections
of the classical trajectories in the (q, p) and (Q, P ) planes give rise to spatially
separated lobes. For each value of λ, the transition from the single to the double-
well structure takes place at a critical value of the deformation strength, αc = 
αc(λ). These critical values have been numerically evaluated since a closed-form
expression for the critical curve αc(λ) is out of reach, and they are represented
by the orange line. In accordance with our theoretical analysis presented in Sec.
4.1.2, for α = 0 and λ ≥ λc the Hamiltonian supports two symmetric global energy
minima (in other words, the ground-state is degenerate), while for α 6= 0 the
parity symmetry is broken and, as a consequence, two asymmetric energy wells
may emerge depending on the values of λ. For α > 0, the global ground-state



has Q > 0, while if α < 0, it has Q < 0. The second classical well then appears
on the opposite side of phase space and at a higher energy value. The model also
supports a logarithmic ESQPT merging the previously disconnected classical wells,
but it can only occur in the region of parameter space defned by the conditions
α ≤ αc(λ) and λ ≥ λc (i.e., in the orange-shaded region of the diagram).

Figure 54: Schematic representation of the phase diagram of the deformed Dicke model,
taking λ and α as control parameters. There is a second-order QPT at α = 0,

√ 
λc = ωω0/2. When λ > λc, we identify a critical value αc such that if α > αc 

the classical system can only support a single energy well, while if α < αc the
system may exhibit up to two classical wells; in this case, the wells become
connected at a certain ESQPT critical energy. Orange lines show the numeri-
cally obtained function αc(λ). The green horizontal line represents a frst-order
QPT taking place at α = 0 when λ > λc(α = 0). For illustration purposes, the
single- and double-well scenarios are exemplifed by two classical space por-
traits, obtained as the projection on the (Q, P ) plane of the four-dimensional
contour surfaces of the classical Hamiltonian (210) for fxed energy values (see
colorbars).
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In Fig. 55 we present our results dealing with the development of chaos and
compare numerical and experimental results. We focus on different energies and
deformation strengths, (a) � = −1.9993 and α = 0.5, (b) � = −2.0007 and α = 0.5,
(c) � = −1.4997 and α = 0.7, (d) � = −1.4984 and α = 0.7, (e) � = −0.9998 
and α = 1.1, (f) � = −0.6830 and α = 1.41, (g) � = −0.6657 and α = 1.43, (h)
� = −2.0001 and α = 1.5 and, (i) � = −12.0001 and α = 1.5. In all cases, the atom-
feld coupling is fxed at λ = 1.5. The theoretical predictions of the trajectories in
the (q, p) and (Q, P ) planes and the overall time evolution (q(t), p(t), Q(t), P (t)) 
are shown on the left-hand side of Fig. 55, whereas the corresponding electrical
coordinates (IL1 , VC1 , IL2 , VC2 ) and their projections in the planes (IL1 , VC1 ) and
(IL2 , VC2 ) are located on the right-hand side of the fgure. For λ = 1.5, the criti-
cal value of the deformation strength is αc ≈ 1.43019. Figure 55(a)-(e) focuses on
deformation strengths α ≤ αc, when the system exhibits two disconnected energy
wells. In order to explore the dynamics of each well, we choose two different initial
conditions. The trajectory in the right well, in Fig. 55(a), is periodic and thus it
is indicative of regular dynamics, even though the trajectory in the left well, and
at the same energy, densely covers all the available phase space, meaning that this
well is chaotic. Also, note that the phase space volume in the left well is consider-
ably larger than that of the right well, which is a consequence of the asymmetry
created by the deformation strength α. These results are in good qualitative agree-
ment with our previous theoretical analysis in Sec. 4.2, with our main conclusion
being that the parity-breaking perturbation forces the chaotic domain to develop
separately within each of the wells. Similarly to the previous case, when � ≈ −1.5 
and α = 0.7 we observe two disconnected wells; the left well exhibits chaos and
the right well displays regular dynamics, see Figs. 55(c)-(d). Fig. 55(e) depicts a
regular trajectory with a toroidal structure evolving in the right well, with � ≈ −1 
and α = 1.1.

We have examined the behavior of the system close to the critical value of the
deformation strength: Fig. 55(f) shows the case of α = 1.41, while Fig. 55(g) deals
with α = 1.43. When α = 1.41 < αc, the system still supports two disconnected
wells, but the potential barrier between them is small due to the proximity to the
critical point. For this reason, we have prepared an initial condition in the right
well to ascertain if the experimental electronic noise is enough to force the trajec-
tory to move towards the left well. Our results indicate that stochastic fuctuations
are not strong enough to induce this well shift, as Fig. 55(f) shows. As depicted in
Fig. 55(g), for α = 1.43 ≈ αc, the trajectory ends in the left well exhibiting regular
behavior.

Finally, we have considered two values of the deformation strength α > αc,
where the system exhibits only one classical well. For α = 1.5 and at suffciently



1 2 3
-1

-0.5

0

0.5

1

-1.6 -1.4 -1.2 -1
-0.6

-0.4

-0.2

0

0.2

0.4

0
-2

-1

0

1

2

3

50

q
,p

,Q
,P

q
,p

,Q
,P

q
,p

,Q
,P

q

p P

p P

Time [s]

Q

-0.5

q Q

500
-2

-1

0

1

2

3

1 2 3
-1

0

0.5

1

-1.6 -1.4 -1.2 -1
-0.6

-0.4

-0.2

0

0.2

0.4

500

-6

-4

-2

0

2

4

-6 -4 -2 0
-4

-2

0

2

4

0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

-6

-4

-2

500

0

2

4

-6 -4 -2 0
-4

-2

0

2

4

0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

50

50

50

50

500
-8

-6

-4

-2

0

2

4

-8 -6 -4 -2 0
-4

-2

0

2

4

0 1 2
-2

-1

0

1

2

0
-8

-6

-4

-2

0

2

4

50 -8 -6 -4 -2 0
-4

-2

0

2

4

0 1 2
-2

-1

0

1

2

500
-2

-1

0

1

2

3

500
-2

-1

0

1

2

3

1 1.5 2 2.5

-0.5

0

0.5

1 1.5 2 2.5

-0.5

0

0.5

-1.6 -1.4 -1.2 -1 -0.8
-0.6

-0.4

-0.2

0

0.2

0.4

-1.6 -1.4 -1.2 -1 -0.8
-0.6

-0.4

-0.2

0

0.2

0.4

0
-2

-1

0

1

2

500
-2

-1

0

1

2

1 1.5 2

-0.5

0

0.5

-1.4 -1.2 -1
-0.4

-0.2

0

0.2

0.4

1 1.5 2

-0.5

0

0.5

-1.4 -1.2 -1
-0.4

-0.2

0

0.2

0.4

0
-1.5

-1

-0.5

0

0.5

1

0
-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5
-0.5

0

0.5

50 -1.5 -1 -0.5
-0.2

-0.1

0

0.1

0.2

0 0.5 1 1.5
-0.5

0

0.5

-1.5 -1 -0.5
-0.2

-0.1

0

0.1

0.2

0
-1.5

-1

-0.5

0

0.5

1

0
-1.5

-1

-0.5

0

0.5

1

0.4 0.6 0.8 1
-0.3

-0.2

-0.1

0

0.1

0.2

50-1.3 -1.2 -1.1 -1
-0.3

-0.2

-0.1

0

0.1

0.2

Q

0.4 0.6 0.8 1
-0.3

-0.2

-0.1

0

0.1

0.2

-1.3 -1.2 -1.1 -1
-0.3

-0.2

-0.1

0

0.1

0.2

-10

0

-5

0

5

0
-10

-5

0

5

-10 -5 0
-5

0

5

0 1 2
-2

-1

0

1

2

-10 -5 0
-5

0

5

0 1 2
-2

-1

0

1

2

50

500
-6

-4

-2

0

2

0
-6

-4

-2

0

2

-6 -5 -4
-1

-0.5

0

0.5

1

q

1 1.2 1.4 1.6
-0.6

-0.4

-0.2

0

0.2

0.4

-6 -5 -4
-1

-0.5

0

0.5

1

1 1.2 1.4 1.6
-0.6

-0.4

-0.2

0

0.2

0.4

50

Time [s]

p

p

p

p

p

p

p

P

P

P

P

P

P

P

q

q

q

q

q

q

Q

Q

Q

Q

Q

Q

q
,p

,Q
,P

q
,p

,Q
,P

q
,p

,Q
,P

q
,p

,Q
,P

q
,p

,Q
,P

q
,p

,Q
,P

I   L1 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I
  
,V

  
,I

  
,V

 
L

1
 

L
2
 

C
1
 

C
2
 

I   L1 

I   L1 

I   L1 

I   L1 

I   L1 

I   L1 

I   L1 

I   L1 I   L2 

I   L2 

I   L2 

I   L2 

I   L2 

I   L2 

I   L2 

I   L2 

I   L2 

V
  C 1

 
V

  C 1
 

V
  C 1

 
V

  C 1
 

V
  C 1

 
V

  C 1
 

V
  C 1

 
V

  C 1
 

V
  C 1

 

V
  C 2

 
V

  C 2
 

V
  C 2

 
V

  C 2
 

V
  C 2

 
V

  C 2
 

V
  C 2

 
V

  C 1
 

V
  C 2

 

Theory Experiment

a

b

c

d

e

f

g

h

i

Figure 55: Comparison of theoretical and experimental measurements of chaos. We rep-
resent the temporal evolution of the coordinates (q, p, Q, P ) and the projections
of the trajectories in the planes (q, p) and (Q, P ) for numerical simulations and
experimental measurements. The energy of the trajectories and the parameters
are: (a) � = −1.9993 and α = 0.5, (b) � = −2.0007 and α = 0.5, (c) � = −1.4997 
and α = 0.7, (d) � = −1.4984 and α = 0.7, (e) � = −0.9998 and α = 1.1, (f)
� = −0.6830 and α = 1.41, (g) � = −0.6657 and α = 1.43, (h) � = −2.0001 
and α = 1.5 and, (i) � = −12.0001 and α = 1.5. In each case, the initial
conditions (q, p, Q, P ) are set to: (a) (1.32, 0, −1.5, 0), (b) (−6.736, 0, 1.5, 0), (c)
(2.374, 0, −1, 0), (d) (−0.29, 0, 1, 0), (e) (1.797, 0, −1.4, 0), (f) (0.694, 0, −1.1, 0),
(g) (0.608, 0, −1.019, 0), (h) (−1, 0, −0.201, 0) and (i) (−5.638, 0, 1.1, 0). We set
λ = 1.5, ω = 1 s−1 and ω0 = 1 s−1 in all cases.
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high energy, � ≈ −2, Fig. 55(h) clearly shows that the dynamics is chaotic. How-
ever, close to the ground-state, � ≈ −12.0001, regularity is found as in Fig. 55(i).
As explained in Sec. 4.2.2, the deformed Dicke model can be described by a set of
adiabatic invariants near the ground-state energy, and for this reason the dynamics
is very approximately integrable [315], [349].

4.4 conclusions 

In this Chapter we have presented an analysis of the onset of chaos and the phase
transitions of a deformed version of the Dicke model.

The most relevant features of the classical limit of the model have been presented
in the frst part of this Chapter. Because the deformed Dicke model is a fully
connected system, the classical limit provides a powerful framework to analyze
the behavior of the infnite-size limit of the corresponding quantum system which
can only be approached numerically otherwise. The system exhibits two ESQPTs,
rooted in different non-analytical changes of the phase space volume. For the
system parameters in our focus, only one classical well can be found below a
certain critical energy, and between this frst critical energy and a second critical
energy there appears a new classical well which, however, is disconnected form
the ground-state energy well. Above the second critical energy, these wells become
connected. The frst critical energy is associated with a jump discontinuity in the
level density, while the second one manifests through a logarithmic singularity in
the infnite-size limit.

In the second part of this Chapter we have presented a theoretical study of
classical and quantum chaos in the model. Our main result is that chaos can
develop independently, and at different rates, in both wells as long as these remain
disconnected; above the second critical energy, we observe that the degree of chaos
becomes homogeneous in both wells. This quantum-classical correspondence is
very well exemplifed by Poincaré sections and classical Lyapunov exponents, as
well as Peres lattices for the quantum case. In our analyses of the quantum model,
the use of the Ĉ operator plays a fundamental role in establishing a separation of
the system’s eigenvalues according to what classical well they are attached to.

Finally, the third part of this Chapter deals with an experimental realization
of the deformed Dicke model and a study of its phase transitions and chaos. The
model is simulated experimentally through a bi-parametric electronic platform. By
appropriately tuning the electrical current and the capacitor voltage one is able to
reproduce the Hamilton equations governing the classical dynamics of the system.



Depending on the values of its two control parameters, the system exhibits frst-
and second-order phase transitions in its ground-state manifold, which we be mon-
itored through the electronic variables having a direct correspondence with the
canonical coordinates in phase space. The agreement of numerical and experimen-
tal results is very good in all cases. We also compare numerical and experimental
results for the development of chaos, validating our previous theoretical studies.
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Part III

CONCLUS IONS AND B IBL IOGRAPHY



5 GENERAL CONCLUS IONS

conclusions 

The research activity summarized in this thesis has a common goal: to push the
frontiers of our understanding of many-body quantum systems, whose natural
complexity makes the questions of chaos and thermalization very relevant. In par-
ticular, we have payed closed attention to the interconnections between these two
physical phenomena in systems where some sort of exception to thermal behavior
is present. Chaos is generally understood as the main catalyst for thermalization
both in the classical and quantum regimes, and it is usually expected in suffciently
complicated systems. Contrarily, integrability, many-body localization and some
forms of symmetry-breaking phase transitions can seriously hamper the system’s
ability to reach thermal equilibrium. It is important to emphasize that all of these
can occur even in complex quantum systems. Although the study of quantum
chaos emerged in the context of nuclear physics, modern research has found a
powerful testbed in models native to condensed matter physics, some of which
can be realized experimentally through recent quantum technology platforms.

The main achievements of this thesis can be summarized as follows:

Presenting a coherent landscape for the many-body localization transition. 
This has been the goal of Chapter 2, partially based on [237]. Disorder plays an im-
portant role in many felds of condensed matter physics and can enable a plethora
of technological applications. In the context of complex spin chains, mathemati-
cally equivalent to spinless fermion systems, disorder drives the transition from a
metallic thermal regime, where the dynamics is chaotic, to an insulating localized
phase, characterized by a special form of emergent integrability. We have analyzed
the transition by exploiting the tools of random matrix theory and the eigenstate
thermalization hypothesis. To be more specifc, in our integrated scenario the
transition to many-body localization roughly starts at the disorder strength, ωc(L),
such that the probability of extreme events reaches a maximum value, as evidenced
by the kurtosis excess of the diagonal fuctuations with respect to the microcanon-
ical value. For disorder strengths ω < ωc(L), the system is in the chaotic regime,
where it exhibits a ω−depedent Thouless energy scale. As ω increases below ωc(L),
chaotic long-range level correlations are increasingly reduced, and at ω = ωc(L) 
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the Thouless energy is minimal. As a consequence, the model departs from the
chaotic phase. For ω > ωc(L), the transition to the fully Poissonian regime can
be surprisingly well described by a family of semi-Poisson statistics, whose main
feature is that level spacings behave as independent random variables even though
some degree of level repulsion still persists. Our results are compatible with many-
body localization being a robust phase in the thermodynamic limit.

Describing equilibrium states in symmetry-broken phases. This is the overar-
ching theme of Chapter 3, based on our publications [29], [325]–[327], [330]. Phase
transitions are ubiquitous in many-body systems, and they are often caused by
symmetry-breaking. In this Chapter we have made use of both fully-connected
and fnite-range interacting systems. In the context of fully-connected systems
with an excited-state quantum phase transition, such as the Lipkin-Meshkov-Glick
model, the critical line splits the spectrum into two phases with markedly dif-
ferent thermodynamic properties. In the infnite-size limit, it is separated into
a symmetry-breaking phase, with parity doublets, and a symmetric phase, with
no degeneracies. Although the ESQPT non-analiticity is not clearly observable
in systems with many degrees of freedom, some of these dynamical properties
can still be found in suffciently long-range spin chains. As a consequence of
symmetry-breaking, the standard arguments of the eigenstate thermalization hy-
pothesis become invalid, and effective long-time equilibrium values cannot be de-
scribed through the microcanonical ensemble. In this chapter, we have developed
a theoretical framework precisely to describe these equilibrium states in systems
with Z2 symmetry-breaking. Our arguments are general and apply to a wide
range of physical systems. The main point of the theory consists in the identif-
cation of a set of emerging conserved quantities in Z2 symmetry-breaking phases,
these operators being directly connected with the order parameter of the underly-
ing phase transition. We provide extensions of the standard canonical and micro-
canonical ensembles describing the long-time average of relevant observables in
symmetry-broken phases. Further, we illustrate the relevance of our framework in
the understading of dynamical phase transitions of the two types (DPT-I and DPT-
II). In the case of collective systems, DPTs-I are rooted in non-smooth variations
of the geometry of the associated classical space, and the order parameter takes
a non-zero value when our defned operators act as constants of motion. As for
DPTs-II, we address one of the foundational explanations for the non-analytical
times in the parity-projected return probabilities and invalidate it, showing that
the believed mechanism for this phenomenon is not possible in symmetry-broken
phases. For initial states in symmetric phases that are later taken out of equilib-
rium, we show that the standard classifcation of regular and anomalous cusps can
be related to the spectral phase where the state ends up after the quench: whether



the fnal state is in a symmetry-breaking or symmetric phase deeply impacts its
short-time behavior so characteristic of DPTs-II. In this Chapter we also defne and
analyze a complex-time survival probability. The zeroes (exceptional points) of
this magnitude across the β = 0 line give rise to DPTs-II. Our complex-time exten-
sion allows us to watch the origin and gradual development of dynamical critical
structures. Finally, we provide a generalization of the microcanonical ensemble
that is suitable to describe equilibrium states under energy cat states where the
local density of states is a highly bimodal distribution.

Exploring chaos in systems with asymmetic wells theoretically and experi-
mentally. This is the topic of our last Chapter 4, based on original publications
[328] and [485]. In this Chapter we study a deformed version of the quantum
optical Dicke model. The deformation is responsible for the appearance of an ad-
ditional jump excited-state quantum phase transition. For the range of energies for
which two asymmetric energy wells exist, we study the development of chaos both
at the classical and quantum level. Classically, we employ Poincaré sections and
the largest Lyapunov exponents while for the quantum case we make use of Peres
lattices representing the diagonal values of convenient observables. Our main con-
clusion is that the deformation added to the Hamiltonian is capable of completely
decoupling the onset of chaos in the two wells, which develops in an independent
way and at different energies. The second part of this Chapter contains an experi-
mental realization of the deformed Dicke model through a biparametric electronic
platform mimicking the classical Hamilton equations of motion, which govern the
dynamics of the model in the infnite-size limit. Several phase transitions are ex-
plored as well as the onset of chaos, yielding excellent agreement of theoretical
and experimental results.

225



conclusiones 

La actividad científca resumida en esta tesis tiene un objetivo común: ampliar las
fronteras de nuestro entendimiento de los sistemas cuánticos de muchos cuerpos,
cuya inherente complejidad hace que el caos y la termalización adquieran gran rel-
evancia. En particular, nos hemos centrado en las interrelaciones entre estos dos
fenómenos físicos en sistemas en los que está presente alguna forma de excepción
al comportamiento térmico. Normalmente se entiende que el caos es el principal
catalizador de la termalización tanto en el mundo clásico como en el cuántico, y
se espera encontrarlo en sistemas que sea lo sufcientemente complicados. Por
el contrario, la integrabilidad, la localización de muchos cuerpos y algunos tipos
de transiciones de fase que rompen simetrías pueden difcultar seriamente que
el sistema alcance el equilibrio térmico. Es importante enfatizar que todos estos
fenómenos pueden ocurrir incluso en complejos sistemas cuánticos. Aunque el
estudio del caos cuántico nace en el seno de la física nuclear, la investigación mod-
erna en este ámbito ha encontrado en modelos propios de la materia condensada
un testbed formidable. Además, algunos de estos sistemas pueden ser realizados
experimentalmente a través de las recientes plataformas de tecnologías cuánticas.

Los principales logros de esta tesis se pueden resumir como sigue:

Presentar un paisaje coherente para la transición de localización de muchos 
cuerpos. Este ha sido el objetivo del Capítulo 2, basado parcialmente en [237]. El
desorden tiene un papel fundamental en muchas áreas de la física de la materia
condensada y puede habilitar una gran grantidad de aplicaciones tecnológicas. En
el contexto de complejas cadenas de espín, que son matemáticamente equivalentes
a sistemas de fermiones sin espín, el desorden es el responsable de la transición de
un régimen metálico y térmico, donde la dinámica es caótica, a una fase aislante
y localizada, caracterizada por una forma especial de integrabilidad emergente.
Hemos analizado la transición haciendo uso de herramientas de teoría de matri-
ces aleatorias y de la hipótesis de termalización de autoestados. Para ser más
específcos, en nuestro escenario integrado la transición a la localización de mu-
chos cuerpos empieza, aproximadamente, en el valor del desorden, ωc(L), tal que
la probabilidad de eventos extremos alcanza un valor máximo, como evidencia
el exceso de kurtosis de las fuctuaciones diagonales con respecto a su valor mi-
crocanónico. Para valores del desorden ω < ωc(L), el sistema está en el régimen
cáotico, donde muestra una energía de Thouless que depende de ω. A medida que
ω aumenta por debajo de ωc(L), las correlaciones de largo alcance entre los niveles
de energía, características del caos cuántico, se reducen cada vez más, hasta que
para ω = ωc(L) la energía de Thouless es mínima. Como consecuencia, el modelo



abandona la fase caótica. Para ω > ωc(L), la transición al régimen totalmente Pois-
soniano se puede describir sorprendentemente bien por una familia de estadística
de semi-Poisson. Su principal característica es que los espaciamientos de niveles de
energía se comportan como variables aleatorias independientes aunque presentan
cierto grado de repulsión. Nuestros resultados son compatibles con la existencia
de una fase de localización de muchos cuerpos robusta en el límite termodinámico.

Describir los estados de equilibrio en fases con ruptura de simetría. Este es
el tema general del Capítulo 3, basado en nuestras publicaciones [29], [325]–[327],
[330]. Las transiciones de fase son ubicuas en los sistemas de muchos cuerpos, y
frecuentemente están causadas por alguna ruptura de simetría. En este Capítulo
nos hemos servido tanto de sistemas colectivos como de sistemas con interacción
de largo alcance. En el contexto de los sistemas colectivos con una transición
de fase de estados excitados, como el módelo de Lipkin-Meshkov-Glick, la línea
crítica divide el espectro en dos fases con propiedades termodinámicas comple-
tamente diferentes. En el límite de tamaño infnito, resulta dividido en una fase
de ruptura de simetría, con dobletes de paridad, y una fase simétrica, sin degen-
eraciones. Aunque la ESQPT no se observa claramente en sistemas con muchos
grados de libertad, algunas de estas propiedades dinámicas se pueden encontrar
en sistemas no colectivos con alcance de interacción sufcientemente largo. Como
consecuencia de la ruptura de simetría, los argumentos estándar de la hipótesis
de termalización de autoestados resultan inválidos, y los valores de equilibrio
efectivo a largo tiempo no se pueden describir a través de la colectividad micro-
canónica. En este Capítulo, hemos desarrollado un marco teórico precisamente
para describir estos estados de equilibrio en sistemas con ruptura de simetría Z2.
Nuestros argumentos son generales y aplican a una gran variedad de sistemas físi-
cos. El punto principal de la teoría consiste en la identifcación de un conjunto
de cantidades conservadas en fases con ruptura de simetría Z2. Estos operadores
están directamente conectados con el parámetro de orden de la transición de fase.
Proporcionamos extensiones de las colectividades canónica y microcanónica para
describir el promedio a largo tiempo de observables relevantes en las fases con
ruptura de simetría. Además, ilustramos la utilidad de nuestra teoría para enten-
der las transiciones de fase dinámicas de ambos tipos (DPT-I y DPT-II). En el caso
de sistemas colectivos, mostramos que las DPT-I se deben a variaciones bruscas
en la geometría del espacio de fases clásico asociado, y el parámetro de orden
toma un valor distinto de cero cuando los operadores que defnimos actúan como
constantes del movimiento. Con respecto a las DPT-II, abordamos una de las expli-
caciones fundacionales sobre el origen de puntos no analíticos en la probabilidad
de supervivencia proyectada en paridad e invalidamos esta explicación, mostrando
que el mecanismo propuesto anteriormente en la literatura para este fenómeno no
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puede tener lugar en fases con ruptura de simetría. Para estados iniciales en fases
simétricas que son sacados del equilibrio, mostramos que la clasifcación estándar
en puntos no analíticos regulares y anómalos puede relacionarse con la fase espec-
tral en la que termina un estado como consecuencia de un quench: el hecho de que
el estado fnal esté en una fase con ruptura de simetría o una fase simétrica tiene
un gran impacto en su evolución a corto plazo, que es la principal característica de
las DPT-II. En este Capítulo también defnimos y analizamos una función de prob-
abilidad de supervivencia con tiempo complejo. Los ceros (puntos excepcionales)
de esta magnitud a lo largo de la línea β = 0 dan lugar a DPTs-II. Nuestra exten-
sión al plano complejo nos permite observar el origen y el desarrollo gradual de
las diversas estructuras dinámicas. Finalmente, proponemos una generalización
de la colectividad microcanónica para describir estados de equilibrio en estados
energéticos de tipo gato, donde la densidad local de estados es una distribución
fuertemente bimodal.

Explorar el caos en sistemas con pozos asimétricos teórica y experimental-
mente. Este es el tema de nuestro último Capítulo 4, basado en nuestras publica-
ciones originales [328] y [485]. En este Capítulo estudiamos una versión deformada
del modelo de Dicke, importante en óptica cuántica. La deformación es la respon-
sable de que aparezca una nueva transición de fase de estados excitados de tipo
salto. En el rango de energías para el que existen dos pozos de energía asimétri-
cos, estudiamos el desarrollo del caos tanto a nivel clásico como cuántico. Clásica-
mente, empleamos el las secciones de Poincaré y el mayor exponente de Lyapunov
mientras que para el caso cuántico utilizamos redes de Peres, que representan los
valores diagonales de observables convenientes. Nuestra principal conclusión es
que la deformación añadida al sistema completamente desacopla la aparición del
caos en los dos pozos, de manera que se desarrolla de forma independiente y a
energías distintas. La segunda parte de este Capítulo contiene una realización ex-
perimental del modelo deformado de Dicke a través de una plataforma electrónica
biparamétrica, la cuál es capaz de simular las ecuaciones clásicas del movimiento
de Hamilton; estas gobiernan la dinámica del sistema en el límite de tamaño in-
fnito. Hemos explorado distintas transiciones de fase y el desarrollo del caos,
obteniendo un acuerdo excelente entre valores teóricos y experimentales.
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