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Abstract The foundation and applications of the Barcelona
Catania Paris Madrid (BCPM) energy density functional are
briefly reviewed. BCPM uses a paradigm more rooted on
density functional theory and fits most of its parameters to
sophisticated microscopic nuclear matter calculations. Finite
nuclei are accounted for by introducing a direct finite range
surface term, spin orbit potential, Coulomb interaction and
pairing. Applications of this functional to the calculation of
finite nuclei properties are presented as well as applications
to the description of neutron star physics. The large number
of applications discussed are possible because of the local
character of the functional that simplifies enormously calcu-
lations in finite nuclei.

1 Foreword

Most of the work presented in this sort review was done in
collaboration with the late Prof. Peter Schuck. He played a
central role both in the inception of the functional and the
subsequent application to finite nuclei. He was also central
in the incorporation of new ideas and developments into the
functional. Some of them are mentioned in the review. We
are writing this review as our tribute to his very successful
scientific career. We also want to express here our recognition
for his open minded and friendly attitude he always showed
to all of us.

4 e-mail: luis.robledo@uam.es (corresponding author)

Published online: 12 July 2023

2 Introduction

There has been an extraordinary progress in the microscopic
theory of nuclei [1-9], but the theoretical methods developed
along the years are computationally quite demanding. Energy
Density Functionals (EDF) have been devised to overcome
the complexity of the full many-body treatment of nuclear
systems. The method has been introduced not only to treat
heavy nuclei, still out of reach of the microscopic theory,
but also to simplify the numerical effort for an extensive
study of large sets of nuclei throughout the mass chart. The
price to be payed is the introduction of a set of phenomeno-
logical parameters, which however can have a well defined
physical meaning and elucidate the physics underlying the
general trend of the nuclear properties along the mass table.
The method is quite flexible, and it allows the treatment of
several different physical problems, hardly accessible to the
microscopic theory.

The Landau theory of Fermi liquid can be considered one
of the first method based on an EDF. In this case one assumes
the existence of an energy functional which depends only on
the quasi-particle occupation numbers, from which one can
define both the single particle energies and the effective inter-
action between quasi-particles through functional deriva-
tives. As it is well known, the effective interaction is then
fixed by phenomenological parameters. Originally the theory
was devised to describe phenomena near the Fermi surface,
but within specific models it can be extended throughout the
Fermi sphere and it can be then used to calculate the total
energy [10].

For finite nuclei the introduction of a phenomenological
effective force to calculate the nuclear binding has a long his-
tory. By construction these effective forces have to be used
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at the mean field level, i.e. Hartree-Fock or Hartree-Fock-
Bogolyubov. Along the years a large number of effective
forces has been devised. The majority of them are defined
from a density dependent and zero range force, usually indi-
cated as Skyrme forces. A survey of the Skyrme forces can
be found in Refs. [11,12]. However there is another set of
forces that introduces also finite range terms or are com-
pletely finite range, in particular the celebrated Gogny forces
[13-16]. These forces are highly performing and have been
widely used in nuclear structure not only in relation to the
nuclear binding energy, but also in a variety of other applica-
tions, like the nuclear pairing, fission and also nuclear scat-
tering. Less explored are other alternatives like the one of
Ref. [17] using Yukawa form factors to take into account the
physics of one pion exchange.

The use of effective forces poses in general some ques-
tions, that can be summarized as follows.

— Isitpossible to derive the effective forces from the under-
line many-body theory which include the correlations ?

— Is it possible to connect the effective force to the bare
nucleon-nucleon interaction ?

— To what extent an effective force can be used in a many-
body framework ?

The first question can be considered essentially of no use,
since a positive answer would be possible only after solv-
ing the full nuclear many-body problem, which can be too
demanding and in any case it is what we want to avoid. A
first principle answers to the other two questions relies on
the Hohenberg and Kohn theorem [18], which states that the
ground state energy of a system is a unique functional only
of the density profile. This gives in principle the founda-
tion for the use of a functional for determining the energy of
the ground state. Unfortunately in general this first principle
functional is not known. It is expected to be a complicated
function of the densities at different positions. In condensed
matter it was proposed by Kohn and Sham [19] to approxi-
mate the unknown functional by a more phenomenological
one. This functional is the sum of the Hartree energy, cal-
culated from the Coulomb electron—electron interaction, and
a completely phenomenological term, which contains a set
of parameters to be fitted on a set of systems. The latter is
usually referred as “exchange and correlation” term and it
is kept as universal as possible. The method was extensively
used both in solid state and molecular physics with remark-
able success.

The extension of the method to the realm of Nuclear
Physics is not straightforward, since the Hartree energy or
Hartree-Fock (HF) energy is not a good starting point because
of the strong repulsive character of the nucleon-nucleon inter-
action. The HF approximation with the bare nucleon-nucleon
interaction is unreliable and the explicit inclusion of correla-
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tions is essential. A second major difference with respect to
the condensate matter situation is the presence in nuclei of a
sharp surface, which needs a special and separate treatment.

As it is apparent from the liquid drop model, in the sim-
ple expression for the binding energy of nuclei it is possi-
ble to separate, at least approximately, a bulk contribution
and a surface contribution. In addition, it is known that the
central part of nuclei is approximately of constant density.
This suggests, in the possible nuclear functional, to relate the
bulk part to the binding energy to the nuclear matter bind-
ing energy, and to separate the contribution of the surface.
The former contains all the short range correlations, while
the latter should take into account of the long range corre-
lations, as well as of the modification of the interaction at
the surface. The Barcelona-Catania-Paris-Madrid (BCPM)
functional was devised following this scheme. In this review
paper we summarise the theory and applications of the func-
tional, and the future prospects.

The paper is organized as follows. In Sect.3 the gene-
sis of the BCPM functional is described as well as its main
nuclear matter properties In Sect.4 results of the applica-
tion of BCPM to finite nuclei are presented and compared
to those of other approaches as well as experimental data.
In this section we also introduce a variant of BCPM with an
effective mass different from the bare one that is referred to
as BCPM*. In Sect. 5 BCPM is used to explore the physics of
neutron starts including many of its different regions like the
outer and inner crust or the liquid core. We end this review
with a summary and some conclusions extracted from the
results obtained with the functional.

3 The BCPM functional

We first illustrate briefly the Kohn and Sham (KS) [19] func-
tional as it was originally formulated in condensed matter, in
order to stress the difference and similarities with the nuclear
case. Let us consider the simple case of a scalar interaction v
between particles, the Coulomb interaction among electrons
in the atomic case. The KS functional has the following form

Elp] = Tilp] + / dr v (P (®) + Enlp] + Exclp] (1)

where E g is the Hartree mean field term
1
En = 5 / dr / dx'v(r, 1) p ) p(r) @)

and vey, 1S a possible external potential (the central Coulomb
potential in the atomic case). Notice that the density appear-
ing in the Hartree term is just the electron density. The term
Ec[p] is the so-called exchange and correlation term, which
contains all the correlations beyond the Hartree approxima-
tion. According to HK theorem this term must exist in prin-
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ciple, but it is of course unknown. In most of the applications
the following approximations are considered

1. A local density approximation, i.e. one assumes that the
exchange and correlation term is a function that depends
only on the local density.

2. The function that defines the exchange and correlation
term can be taken from accurate calculations in homoge-
neous matter at the local density p(r). In the atomic case
one can use the Monte-Carlo calculations for an electron
gas, which can be considered exact.

3. One assumes that the density can be written as a sum over
the contributions from a set of A orbitals ¢;, being A the
total number of particles

A
p(r) =Y lgi(r)? 3)

Assumption 2 connects in general the functional with the
homogeneous matter binding energy (the electron liquid in
this case). Assumptions 1 and 2 are essentially equivalent
to take for the interaction part of the functional the binding
of the homogeneous system in local approximation, except
for the long range Hartree term, which depend on the whole
density profile.

Minimization of the functional with respect to the orbitals
¢; produces Hartree-like equations

hZ
<_2_ v? o+ vetp (r)> $i(r) = €¢(r) (4)
m
where
S Exc
Veff (I) = Vext(T) + / v(r, r/)p(r’)dr’ + J (5)
Sp(r)

is an effective local potential.

The single particle wave functions ¢;(r) can be taken
orthonormal, but it is important to notice that they cannot be
interpreted as the Hartree or Hartree-Fock orbitals. In par-
ticular the single particle density matrix cannot be written
as

A
p(r, ) =) ¢i(r)*¢i(r) (6)

since otherwise this would imply that the ground state wave
function is just a Slater determinant of the orbitals ¢; (r),
while the functional must include the correlations beyond
the Hartree or Hartree-Fock mean field. They are just a con-
venient method to express the density.

Improvement with respect to the local density approxima-
tion can be introduced by including gradient terms, that can
be eventually extracted from calculations on slightly inho-
mogeneous infinite matter.

If we now consider the energy density functional for
nuclei, we have to stress some relevant modifications. First
of all for the treatment of the surface term the method of
including gradient corrections is not viable in the nuclear
case, since nuclei have a sharp surface, with a width that can
be of the order of the inter-nucleon average distance. Other
differences with respect to the atomic case must be intro-
duced. First of all in nuclei there is no central potential, they
are self-bound. This can pose problems in the formulation
of the HK theorem, which however was generalized to self-
bound systems in Refs. [20-23]. Another modification that is
necessary comes from the complex structure of the nucleon-
nucleon interaction and its short range hard core. It is not pos-
sible in a reliable way to separate the nuclear Hartree term,
and therefore it is joined together with the exchange and cor-
relation term to form the energy density at the local density
p(r), which again is taken from the an accurate many-body
theory of nuclear matter. The Coulomb interaction is treated
separately, as specified below. Finally, as already noticed, the
sharpness of the nuclear surface suggests the introduction of
a phenomenological surface term. The nuclear Kohn-Sham
functional can then be written

E=Ty+ ER/ulk + E]S\l/lrf + Ecoul + Eso. (N

where Tj is the uncorrelated kinetic energy, £ Ib\,“lk is the bulk
term of the interaction energy coming from the nuclear matter
Equation of State (EOS)

ERI — /d3re(pp(r),pn(l‘)) ®

with €(p(r)) the nuclear matter energy density at the local
proton and neutron densities p,(r) and p,(r), respectively.
The term Eg,. is the spin orbit contribution in functional
form, E.oy the Coulomb interaction energy and EIS\}"f the
phenomenological surface term. In Refs. [24-30] we devel-
oped a functional (BCPM) along these lines. A similar strat-
egy was followed in Refs. [31,32].

We discuss in some detail each contribution to the func-
tional.

3.1 Kinetic energy

Following the KS method, an auxiliary set of A orthonormal
wave functions ¢; (r), where A is the mass number, is intro-
duced to express formally the density as if it were obtained
from a Slater determinant as a sum of the product of single
particle wave functions

p(r) =" 167,

with the ¢’s determined from the minimization of the ground
state energy, under the constraint of a given number of pro-
ton Z and neutron N. As already stressed they cannot be
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interpreted as the Hartree or Hartree-Fock orbitals. However
the uncorrelated kinetic energy can be expressed in the usual
manner as

h2
f= 53 [drvemp ©)

where the sum runs over proton and neutron orbitals. Notice
that here we are using the bare nucleon mass m, as in Ref.
[31]. The introduction of an effective mass will be discussed
later in Sect. 4.5.

3.2 The Coulomb and bulk contributions.

The Coulomb interaction energy among protons Ec is a long
range correlation and cannot be treated in the local density
approximation and therefore it has to be treated separately.
‘We consider this contribution at lowest order, i.e. the direct
term E g plus the exchange contribution E¢' in the Slater
approximation

1
EY = 3 /drdr’,o,,(r)|r — |7l p, (), (10)
and
3(3\"° 4/3
£ = <;> [avopr (an

with Ec = Ef + E&".

The nuclear bulk interaction energy is taken from the
nuclear matter EOS. In nuclei the matter is globally and
locally asymmetric, and therefore one has to consider the
EOS for asymmetric nuclear matter. As it is known, the
dependence on the asymmetry parameter 8 can be taken to
a good approximation as quadratic, so that one can write

EN™lpp. onl = / dr[P(p)(1 = %) + Pa(p)?]p (12)

where Ps(p) and P, (p) are the EOS for symmetric matter
and pure neutron matter, respectively, and

B(r) = (pa(r) — pp(r))/(on(r) + pp(r)) (13)

is the local asymmetry. The EOS has to be taken from micro-
scopic calculations, which are not known to an accuracy com-
parable with the one of the electron liquid for the condensed
matter case. However it has to fulfill some phenomenologi-
cal constraints, to be discussed in the sequel. From the many-
body theory of nuclear matter the EOS is necessarily obtained
numerically, i.e. values of the energy per particle at a discrete
set of densities. In order to transfer these numerical results to
the functional it is necessary to introduce an analytic expres-
sion that interpolate at best these numerical data for both
symmetric and pure neutron matter EOS. The specific form
of these functions is not relevant and suggested only by their
convenience. The simplest and easy to handle form is the
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Fig. 1 Equation of state for symmetric nuclear matter (lower curve)
and pure neutron matter (upper curve). The numerical results are indi-
cated by open square, the polynomial fits by the full lines. The open
circles represent the EOS of Ref. [33]. Figure taken from Ref. [26].
Reprinted with permission of the publisher

polynomial one, and we found [26] that it is necessary to
consider polynomial to fifth order, so that Ps(p) and P,(p)
read

5

n 5 n
)3 P )3 P
PS = n|l — Pn == bn ) 14
(p) ¢ <p0> (p) =1 <:00n > (1

n=1

where pg and pg, are some appropriate reference densities.
The numerical results of the microscopic calculations and
the corresponding fitting polynomials are displayed in Fig. 1.
For comparison the results of the variational calculations of
Ref. [33] are also plotted. The many-body calculation of the
nuclear EOS has a long history. The one shown in the figure
was obtained within the Brueckner—Hartree—Fock approach,
with the inclusion of three-body forces, as reported and dis-
cussed in e.g. [34-36]. The need for three-body forces is
demanded by the finding that no microscopic many-body
calculations with only two-body forces is able to reproduce
an acceptable saturation point of symmetric nuclear matter,
as extracted from the phenomenology on the binding energy
and density profiles of nuclei [37]. Unfortunately three-body
forces are poorly known and this introduces some uncertainty
in the final results of the microscopic calculations. The way
out of this problem is to fine tuning the saturation point of
the fitted EOS in search of the best one in reproducing the
nuclear binding along the mass table. We fixed the saturation
density at pg = 0.16 fm~ and tuned the saturation energy in
the fitting procedure. We found that the results for the fitting
of the total binding of nuclei is extremely sensitive to the cho-
sen saturation energy of the EOS. This is not surprising, since
a change of only 0.1 MeV in the saturation energy implies
mainly a change of the order of 20 MeV in a nucleus as
208pp, Unfortunately no microscopic theory can be so accu-
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Table 1 Parameters (in MeV) of the polynomial fits, Ps(p) =
>pan(p/po)" and Py(p) = Y, bu(p/pon)" for symmetric and neu-
tron matter, respectively. The reference densities are pg = 0.16 fm—3
and pg, = 0.155 fm—3. Two sets of parameters for symmetric mat-
ter are given, they correspond to EOS with a minimum at the given
values of E/A. The parameters are given with six digits, enough to
obtain binding energies with an accuracy of a couple of eV. The value
h2c2/2M = 20.75 MeV has been used

n by, an(E/A = 16) ap(E/A =15.98)
1 —34.972615 —73.292026 —73.382673

2 22.182307 49.964905 50.297798

3 —7.151756 —18.037601 —18.366734

4 1.790874 3.486176 3.608359

5 —0.169591 —0.243552 —0.258847

rate to fix the saturation energy with such a small uncertainty.
We followed this optimization procedure in Ref. [26] and the
optimal value turns out to be E/A = —15.98 MeV. The energy
per particle E/A at saturation cannot be considered a mere
free parameter, because it is tightly constrained within a small
range of values, and therefore should not be considered on the
same footing as the other fitting parameters of the functional.

For completeness we report in Table 1 the values of coef-
ficients of the different powers of the adopted polynomials

For the symmetric matter case two sets of coefficients
are given for two slightly different values of the energy per
particle at saturation chosen in the fit procedure.

Besides the saturation point other physical quantities
related to nuclear matter are constrained by phenomenol-
ogy, and it is therefore relevant to compare the predictions of
the adopted EOS with these constraints. Let us first remind
the definitions of the different physical parameters usually
considered in the literature.

The pressure P and density-dependent incompressibility
K in asymmetric nuclear matter are defined in terms of the
energy density in asymmetric nuclear matter H(p, 8) as [38]

20(H/p) M

P - H, 15
o o (15)

and
*H 32 (H 18

K =0pd Tt 92000 18, (16)
dp? ap? o

For symmetric matter (8 = 0) at saturation density the K (p)

just defined reduces to the well known incompressibility
2

modulus Ky = 9,02% | p=po Where pg is the saturation

density. We will also consider the coefficient K’, connected

to the so-called skewness coefficient Q [39] by

38> (H/p)

K' =—-0Q=-27
0 P Py

(17)

lp=no

Table2 Infinite nuclear matter properties of BCPM. All the parameters,
except po (in fm—3) and the dimensionless effective mass m /m*, are
given in MeV

B/A  po  m/m* J L Ko K Kenm

—1598 0.16 1.00 31.90 5296 2124 879.6 —96.75

The isovector part of the nuclear interaction is characterized
by the symmetry energy

192 (H

E (p)=——<—> - (18)
sym ) 8;32 0 b

At saturation density one defines the symmetry energy coef-

ficient as J = Ejyn(po) and two coefficients more, L and

Kgym, directly related to the first and second derivatives of
Eq. (18) with respect to the density at saturation, respectively

29 Egym

9 Egym
p—— 552

ap

L=3 s Ksym = 90 (19)

‘ﬂ:po ‘ﬂ:po

The values of the incompressibility modulus K¢ and the
coefficient K’ defined in symmetric nuclear matter as well
as the coefficients J, L and Ky, are displayed in Table 2.
The range of values of the incompressibility modulus K is
constrained by the experimental excitation energies of the
isoscalar giant monopole resonance in finite nuclei since
the pioneering works of Bohigas and collaborators [40] and
Blaizot [41]. Unfortunately, different estimates of K¢ using
different mean-field models predict slightly different values
for this coefficient. The value Ky = 230 &30 MeV has been
proposed [42] as a compromise among the different available
estimates. The value of the symmetry energy coefficient J,
that dictates the isospin dependence of the nuclear interac-
tion, is constrained by experimental data on heavy-ion colli-
sions, pigmy dipole resonances and analog states. The range
30 < J < 35 MeV has been proposed for this coefficient
[43]. The density dependence of the symmetry energy is rel-
evant for many phenomena not only in terrestrial nuclei but
also in neutron stars. Since the celebrated correlation estab-
lished by Brown [44] between the slope of the symmetry
energy and the neutron skin in 2%Pb, a considerable effort
has been devoted to constrain the L parameter from available
data. Antiprotonic atoms, nuclear masses, heavy-ion colli-
sions, giant and pigmy dipole resonances, proton -nucleus
scattering as well as theoretical calculations using a micro-
scopic interactions have been used to extract the L coefficient
(see Ref. [45] and references therein). From a compilation
of the existing data the range of values L = 55 £ 25 MeV
has been proposed [45,46]. However more recent data anal-
ysis on parity violating electron scattering [47] suggests the
much higher value of L = 106 &+ 37 MeV, which creates a
tension with the majority of the other previous estimate. Our

@ Springer
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many-body calculations do not support such a high value of
L.

The other two coefficients that characterize asymmetric
nuclear matter around saturation, namely K’ and Ksym are
more uncertain. An estimate K’ = 700 4 500 MeV has been
proposed in Ref. [11]. The curvature of the symmetry energy,
Kgym, can be inferred from some non-relativistic [48] and
relativistic [49] calculations in nuclear matter. From these
results a range —200 < Ky, < 150 MeV can be inferred.
As can be seen from a direct inspection of Table 2, the nuclear
matter properties of our BCPM energy density functional lie
within the accepted ranges of values of the different nuclear
matter quantities. Notice that the different symmetry param-
eters are interconnected, as explicitly shown in Ref. [50].

3.3 The surface term.

For the surface term we prefer a finite range contribution

Z//pq(r)vq ¢ @ —1')py (x)drdr’
_5prq(r)/?q’(l‘)dl’/vq,q/(r/)dr’,
9.9

(20)

Esurt [ops pn] =

and for the form factors v, 4, we took a simple Gaussian form

Vg g (1) = Vg g /"8 1)
The indexes g, ¢’ stand for neutron and proton. The sub-
traction in Eq. (20) is done to avoid contamination with the
bulk EOS. The strengths and range r of the surface term are
treated as fitting parameters. The number of parameters can
be further reduced by imposing that expansion of the EOS in
the bulk up to second order in the density is reproduced by the
Gaussian term, which avoids the necessity of the subtraction
term in Eq. (20). In this case the Gaussian form factors are
taken with different ranges depending on the isospin channel
roz and roy This introduces an additional parameter however
the strengths V7 and Vyy are now no longer considered as free
parameters. They have been determined in such a way that
the bulk limit of the surface term in Eq. (20), that is

1
3 Zyz,zf/d3rpz(r)pzf((r),

t,t

reproduces the p? term of the bulk part of the energy den-
sity in Eq. (12). Therefore, no subtraction as in Eq. (20) is
required. This procedure imposes the following relationships
between the surface term strengths and the coefficients a; and
by of the polynomial fits of symmetric and neutron matter,
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VL = #IJS’ILW (22)
Vu = 4631;2;32[;:). (23)

Here roz, and roy are the ranges of the Gaussian in the surface
term, as deﬁned above. The numerical factor by, defined as
b1 = b1 , has also been introduced to take into account
the dlfferent reference densities for symmetric and neutron
matter.

3.4 The spin-orbit term and the pairing part.

The spin-orbit in nuclei is quite strong and it is essential for
the correct sequence and structure of the major shells. One
can split the spin-orbit part into an uncorrelated part E; .
plus a remainder not treated explicitly here. The form of
the uncorrelated spin-orbit part is taken exactly as in typ-
ical Skyrme [51-53] or Gogny forces [13,54]. The spin-
orbit strength does not need to be adjusted because the final
result is nearly independent of it. The spin-orbit strength is
fixed by the requirement to reproduce the magic numbers
and therefore depends on the major shells energy separa-
tion. The latter is roughly speaking inversely proportional
to the effective mass. The same dependence with the effec-
tive mass should hold for the spin-orbit strength. Therefore,
we will take the value Wy g = 90.5 MeV which is consis-
tent with BCPM’s effective mass of one and the spin-orbit
strength Wy s = 130 MeV of the Gogny force (m™* = 0.7m).
Explicitly the spin-orbit term is a zero-range interaction
Vso. = iWo(o; + o) x [K' x 8(r; —r;)k], whose con-
tribution to the energy reads

W,
Eo = —70 f [o(®)VIT) + pn (£) VI, (r)
+0p(X)V],(0)]dr, (24)

where the spin density for each kind of nucleon is obtained
using the auxiliary set of orbitals as

J,0) = (=) Y ¢ (r,0,9IVi(r,0',q) x 55471,

i,o,0

(25)

In the calculations of open-shell nuclei we also take into
account pairing correlations. For this we simply take the den-
sity dependent delta force defined in Ref. [55] for m = m*
with the same parameters and in particular with the same
cutoff. In the original formulation of Ref. [24] we have per-
formed calculations of open-shell nuclei taking into account
pairing correlations at Hartree-Fock plus BCS level. As far
as this amounts to a cutoff of ~ 10 MeV into the continuum
for finite nuclei, we have to deal with single-particle energy
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levels lying in the continuum. We have simulated it by tak-
ing in the pairing window all the quasi-bound levels, i.e. the
levels retained by the centrifugal (neutrons) and centrifugal
plus Coulomb (protons) barriers. This treatment of the con-
tinuum works properly, at least for nuclei not far from the
stability valley as it has been extensively shown in [56]. In
this way we obtain two-neutron (S,) and two-proton (S2,)
energy separations for magic proton and neutron numbers in
quite good agreement with the experiment. In the implemen-
tation of pairing for finite nuclei (see below) we always use
the HFB method and a constant pairing window of 10 MeV
above zero.

4 BCPM for finite nuclei

One of the main goals of BCPM [26] is to define a reli-
able nuclear EDF to explore low energy nuclear structure in
finite nuclei. By construction, BCPM reproduces extremely
well state-of-the-art nuclear matter calculations with realistic
nuclear forces and for this reason it could be even considered
as an ab initio inspired EDF. In coincidence with the Skyrme
family of functionals/interactions, one of the main advan-
tages of BCPM is the lack of exchange terms in the mean
field. This fact is responsible for a substantial speed up of
calculations in finite nuclei as compared to other forces like
the finite range Gogny force. This speed up has proven to be
essential for some of the large scale applications of BCPM
in finite nuclei.

As the definition of the BCPM functional in terms of
nuclear matter did not include polarized matter, time odd den-
sities are not included and therefore BCPM can only be used
for even-even nuclei and zero spin. This represents a severe
limitation of the functional, but recent results [57] concern-
ing the good performance of the equal filling approximation
[58] as compared with full blocking [59] results suggests a
pathway to extend BCPM to the realm of odd-A nuclei. At
present one of the authors (LMR) is working on an extension
of BCPM for odd-A nuclei using the Equal filling approx-
imation (EFA). The results of this work will be reported in
the future.

The 2-3 free parameters of BCPM were adjusted to repro-
duce experimental binding energies of the 579 even-even
nuclei available at the time of the fitting (AME2003). The
binding energies were computed in the framework of the
Hartree-Fock-Bogoliubov method supplemented with some
relevant beyond mean field correlation energies (see below).

For simplicity, the HFB calculations have been restricted
to axially symmetric solutions. The quasiparticle operators
of the Bogoliubov canonical transformation

</f*>=<[é; zVJ;)(CCT)=W+<§>- 26)

have been expanded in a harmonic oscillator basis {cl.+, i =
1...., N}. The size of the basis (the number of shells) varies
according to the proton number of the nuclei considered. For
nuclei with Z < 50 we take a basis with eleven harmonic
oscillator shells, for 50 < Z < 82 we consider 13 shells and
for Z >82 a 15 shell basis is used. These bases are used in a
set of constrained calculations providing the potential energy
as a function of the quadrupole moment for each nucleus.
The minima of the potential energy are used as starting wave
functions for an unrestricted minimization of the HFB energy.
The wave function corresponding to the minimum energy
solution for each nucleus, is used to generate a wave function
in a larger basis (two extra shells) that is used to compute
the corresponding HFB energy. This energy is used as input
for an extrapolation algorithm to estimate the energy in an
infinite basis [60] by means of the formula E(co0) = 2E(N +
2) — E(N) where N is the initial number of shells.

For the solution of the non-linear HFB equation, an
approximate second order gradient method is used [61]. It
provides a rapid and consistent procedure to reach the energy
minimum. The information about the energy curvature taken
into account in the method reduces the number of iterations
substantially as compared to other approaches. As it is cus-
tomary in this kind of calculations, the Coulomb exchange
contribution is computed in the Slater approximation [62]
and the Coulomb anti-pairing effect is not explicitly consid-
ered (see [63] for a discussion of this issue). The two body
kinetic energy correction, which is typically considered as a
way to correct for the lack of translational invariance of the
whole procedure, has been taken into account with the pocket
formula of Refs. [64,65] as in previous versions of the BCP
functional. The beyond mean field correlation energy coming
from symmetry restoration of rotational invariance (the rota-
tional energy correction) plays a relevant role in deformed
nuclei [66]. It rapidly changes with the deformation proper-
ties of the nucleus considered: it ranges from zero or very
small values for magic or semi-magic nuclei, to values as
large as 6 or 7 MeV for strongly deformed mid-shell heavy
nuclei [67]. The rotational energy correction shows an almost
linear dependence with quadrupole deformation and there-
fore its inclusion is relevant to describe masses all over the
Nuclide Chart. The correct way to compute this quantity is
by evaluating the angular momentum projected energy asso-
ciated with each intrinsic state. This is a tremendous task
that can fortunately be alleviated by considering an approx-
imation to the projected energy that is obtained in the spirit
of the Topological Gaussian Overlap Approximation. This
fully microscopic formula, which is similar to the rotational
energy correction, can be easily evaluated at the mean field
level and does not involve any phenomenological parameter
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(see Ref. [67] for details). Finally, as already mentioned in
previous sections, the pairing part is the density dependent
zero range force of Ref. [55] that was devised to mimic the
behavior of Gogny D1 pairing gap in nuclear matter. We have
taken care of our effective mass equal to one by renormaliz-
ing the pairing force strength accordingly.

In the fit we have searched for the values of the parameters
that minimize the rms deviation for the binding energies

N

o*(E) = % E(Bm(n = Bexp()’

where the sum runs over the set of 579 even-even nuclei with
known experimental binding energies, as given in the 2003
evaluation of Audi and Wapstra [68]. The 193 extrapolated
binding energies included in Audi and Wapstra’s work are
excluded from our analysis, although we will use them to
explore the quality of our fit.

The three initial free parameters (i.e, the two ranges and
spin-orbit) were at first considered in the fit but soon it
became clear that the £/A value given by the polynomial
fit should also be taken into account as a free parameter in
the way we discussed above. Out of the four, it turns out that
o (E) value has a very smooth dependency on Wr s and its
minimum value was always obtained for spin orbit strength
values around 90 MeV fm?>. As explained before, this value is
consistent with the value of 130 MeV fm > used in Gogny D1S
and DIM parameterizations because of the different effec-
tive masses in BCPM (m* = m) and Gogny D1S and DIM
(m* = 0.7m) that lead to a compression of the BCPM sin-
gle particle spectrum requiring a reduced spin-orbit strength
parameter as compared to Gogny (i.e. 0.7 x 130 = 90).
Another relevant observation is that the binding energy differ-
ence AB = By — Bexp shows a linear dependence with mass
number A (which is sometimes masked by large fluctuations
atlow A) with a slope that is intimately related to the value of
E /A for the bulk. It is almost zero for E/A & 15.97 and is
clearly different from zero and positive for E/A = 16.03. It
turns out that the value £/A = 15.98 yields the lowest o (E)
value. The final relevant observation is that o (E) depends
sensitively on the values of 7o, and roy and an accuracy of
one part in 5 x 103 is required to obtain reasonable values for
that quantity. Systematic explorations with a reduced set of
spherical nuclei shows that there are two sets of roy, and roy
values that lead to reasonable values of o (E), namely ror,
equal roy with values around 0.660 fm and roy, taking values
around 0.490 fm and royy around 1.050 fm. In the latter case,
the value of roy is more critical than the rg; value and it
has to be kept at the value ropy = 1.046 fm leaving only one
free parameter to play, namely roz. Although the values of
o (E) (considering the 579 nuclei) obtained by minimizing
with respect to roz and roy in the neighborhood of the two
possibilities rop, = roy ~ 0.660 fm and ro; ~ 0.490 fm
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Fig. 2 The binding energy difference AB = By, — Bgxp (in MeV) is
plotted with our optimal set of parameters (BCPM) for the 579 nuclei
of Audi’s AME 2003 as a function of neutron number N. Points cor-
responding to the same isotope are connected by straight lines. Figure
taken from [26]. Reprinted with permission from the publisher

and roy = 1.046 fm are similar, the first choice produces a
A B plot that looks smoother than the second and therefore
we will from now on restrict ourselves to the first choice. We
have considered ro;, = roy values in the interval between
0.650 fm and 0.670 fm in steps of 0.002 fm except for the
interval bracketing the minimum where a step of 0.001 fm
has been considered.

After all these considerations, one finds that the set of
values E/A = 15.98 MeV, W,s = 90.5 MeV fm >, and
rou = ror = 0.659 fm is the best choice. It leads to and
outstanding o (E) = 1.58 MeV for the set of 579 nuclei
considered in the fit and defines the BCPM functional.

With the choice roy = ror, = 0.659 one is fixing the sur-
face term of the functional. A quantity that is often used to
characterize the surface term is the surface energy that is esti-
mated here by using the self-consistent Extended Thomas-
Fermi approach including 12 corrections (ETF-hZ) [69]. The
obtained value for BCPM is 17.68 MeV which is in conso-
nance with other interactions.

In Fig. 2 we present the difference between the experi-
mental and theoretical values for the binding energy A B for
the 579 nuclei of the AME2003 as a function of neutron num-
ber. The agreement with experimental data is much better for
heavy nuclei than for light ones. A more quantitative assess-
ment is obtained by looking at o (E) for different sets of
nuclei: taking into account nuclei with A > 40 (536 nuclei)
the o (E) for the energy gets reduced to 1.51 MeV and for the
remaining 43 nuclei with A < 40itincreasesupto2.31 MeV.
When only nuclei with A > 80 (452) are considered a o (E)
value of drops down to 1.34 MeV. For heavy nuclei the fluc-
tuations of AB around zero are of small amplitude whereas
for light nuclei they are as large as 5.5 MeV. We also observe
strong deviations around magic neutron numbers N = 82
and N = 126.
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In the determination of the parameters of a functional it
is not only important to find the values of the parameters
minimizing the cost function o (E) but also its variance. We
find that BCPM is extremely sensitive to the surface term
parameters roy = ror: a variation of 0.5 % in their value
increases the o (E) value from 1.58 to 2.16 MeV (40 %).
This increment comes mostly from the A > 40 nuclei as
the large fluctuations of A B around zero remain roughly the
same for A < 40 and also due to the A%/3 dependence of the
surface energy with mass number. This strong dependence
on binding energies with some parameters of the functional
is not new to BCPM, it also happens, for instance, with the
Gogny functionals and most the Skyrme parametrizations
due to the large strength of the 73 parameter in front of the
density dependent term. On the other hand, variation of a 5%
in the spin-orbit strength leads to a 6% change in o (E). We
have also tested the sensitivity of the results to the degree of
the polynomial used in the fit to nuclear matter. A large value
of the degree might lead to unwanted oscillations whereas
a small value might lead to a too simplistic functional form
unable to grasp the essence of the nuclear matter calculations.
The value used n = 5 provides the minimum value of o (E)
and increasing or decreasing the order of the polynomial by
one unit increases o (£) by 50 to 100 keV.

A more detailed look at the nuclei where A B gets larger
indicates that at the vicinity or at magic and/or double magic
is where one observes the largest deviations for heavy nuclei.
In particular the isotopes 2°*Pb (Z = 82) and 13°Cd (Z = 48)
are the ones with the largest AB. One can also look at the
contributions to o (E) depending upon the deformation of the
nuclei. Of the 579 nuclei considered in the evaluation of o (E)
there are 365 with a ground state deformation parameter S,
greater, in absolute value, than 0.1 (a value that corresponds
to a moderately deformed system). The o (E) value for those
deformed systems gets reduced to 1.08 MeV whereas the
complementary one corresponding to near spherical systems
(214 nuclei) grows up to a value of 2.19 MeV. This result is
in the line of recent claims that well deformed systems are
described better by mean field models than the spherical ones
[70]. The result is also consistent with the previous finding
concerning the maximum values of A B for previous finding
concerning the maximum values of AB for magic or semi-
magic nuclei as those nuclei tend to have a nearly spherical
ground state shape.

To finish this part we would like to compare our results
with those obtained with the different parametrizations of the
Gogny force, namely D1S [13], DIN [14] and DIM [15]. The
results for o (E) and the three parametrizations are given in
Table 3. For the three parametrizations the values obtained
with the raw HFB energies as well as those including the
rotational energy correction (computed according to our pro-
cedure) are given. We also include in the table the results with
and without rotational correction by performing an additional

Table 3 The o (E) values (MeV) for the three parametrizations of the
Gogny force D1S [13], DIM [15] and DIN [14] and for different kinds
of theoretical calculations. For the row marked as HFB the theoretical
binding energy corresponds to the raw mean field energy, in the one
denoted HFB+Er o7 the rotational energy correction is also included.
The last two rows correspond to the same theoretical set up as before but
this time a global shift has been applied to the binding energy differences
as to minimize the o (E) value. The values of the shift parameter (in
MeV) for each situation are given in parenthesis

o(E) DIS DIM DIN
HFB 3.48 5.08 4.88
HFB+Egor 2.15 2.96 2.84
HFB + Shift 2.53(2.4) 2.02 (4.7) 2.02 (4.5)
HEB+Eg o 7+Shift 2.14 (0.2) 1.47 (2.6) 1.45 (2.4)

shift down in the binding energy independent of A thatis used
to simulate the effect of the quadrupole zero point energy cor-
rection included in the fitting of D1M. We observe that the
pure HFB results are rather bad in the three cases. However,
the inclusion of the rotational energy improves dramatically
o (E). The addition of the constant shift additionally lowers
the cost function up to 1.47 MeV for D1M and 1.45 for DIN.
The optimal energy shift is 2.6 MeV in the D1M case, con-
sistent with the typical values for the quadrupole zero point
energy. To reach the o (E) value of 0.795 MeV for DIM
one would need to compute accurately the above mentioned
quadrupole zero point energy. In any case, we observe that
BCPM performs very well as compared with D1M when the
same beyond mean field correlations are included.

When the AME2012 [71] is used to compute the o (E)
value, it increases up to 1.61 MeV for 620 even-even nuclei
in the experimental compilation. Clearly, the performance
of BCPM for binding energies is not degraded when more
nuclei are considered.

Nuclear binding energies play an important role in the
description of atomic nuclei but there are other relevant
observables characterizing the atomic nucleus and therefore
any functional expected to become ‘“universal” has to per-
form well also in the description of those quantities. We now
discuss a couple of the most relevant ones.

4.1 Nuclear radii

The nuclear charge radius is a relevant observable connected
to many other physical quantities. Experimentally, it can be
accurately measured using electron scattering or other com-
plementary techniques. Theoretically, already at the mean
field level it is possible to obtain reasonable values for charge
radii if the proton radius is taken into account. The charge
radii for all even-even nuclei considered has been com-
puted and compared to the experimental data published in
Angeli’s compilation [72] except for some Sr and Zr iso-
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Fig. 3 Differences Ar = ry — rexp between the computed radii and
the experimental data taken from [72-74]. In panel a the results for the
BCPM functional and in panel b the results for the Gogny D1S force.
A proton’s radius value of 0.875 fm has been considered [75]. Figure
taken from [26]. Reprinted with permission from the publisher

topes where laser spectroscopy results have been considered
instead [73,74]. The theoretical predictions (computed with
a proton’s radius of 0.875 fm [75]) are confronted to the mea-
sured values of 313 even-even nuclei in panel a) of Fig. 3.
A rms value of 0.027 fm is obtained, which is a quite rea-
sonable number taking into account that the charge radius
has not been considered in the fitting protocol. For compar-
ison, the same quantity for the same nuclei computed with
the Gogny D1S force (see panel b of Fig. 3) is 0.037 fm and
0.028 fm with the more recent parametrization D1M [15]. We
notice that the largest contributions to the BCPM rms value
come from the heaviest nuclei considered, where a strong
deviation between theory and experiment is observed. Sys-
tematic deviations are also observed in nuclei around N =
40, N = 60 and N = 80, which are regions of the Nuclide
chart characterized by the phenomenon of shape coexistence.
As for the binding energies, the deviations strongly fluctu-
ate in light nuclei with N < 40. The same pattern is also
observed for the Gogny D1S results, suggesting that the ori-
gin for the discrepancies is more likely connected with a poor
description of the ground state than with deficiencies of the
interactions. A comparison of the two plots reveals that a
better figure for og could be achieved in BCPM if an overall
displacement would be performed, i.e. the theoretical values
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systematically underestimate the experimental values. It may
be that size fluctuations (RPA correlations) bring the radii to
their correct value as suggested in [76]. This is a task for the
future.

4.2 Quadrupole and octupole deformations

In mid-shell nuclei, quadrupole deformation of the ground
state is another relevant characteristic that can be linked to
low energy nuclear properties like 2 excitation energies or
B(E?2) transition probabilities along rotational bands. The
connection of the intrinsic deformation parameter 8, with
experimental B(E?2) transition probability values is some-
how uncertain as it relies on the strong deformation limit of
angular momentum projected theories to obtain the rotational
formula [77]. For this reason we have preferred to compare
BCPM'’s predictions with the ones of a well reputed, per-
forming and predictive effective interaction. We have cho-
sen the Gogny force, D1S [13], (results for the most recent
published parametrization of the Gogny force, DIM [15],
are very similar). In the upper panel of Fig.4 a histogram
is plotted depicting the number of nuclei with ground state
quadrupole deformation parameters B, between B, (n) and
Ba(n) + 8B>. The discrete By(n) values are given by the
sequence Br(n) = 8fon withn = ..., -2, —1,0,1,2,...
The value §8; = 0.0125 has been chosen in such a way
that each bin represents roughly 5% of the typical value of
0.25 for the quadrupole deformation parameter. On the lower
panel we plot a histogram with the difference B>(D1S) —
B>(BCPM). We observe how most of the 818 nuclei con-
sidered have a difference in the 8, parameter of less than
0.0125 in absolute value. A more detailed analysis of the
results reveals that most of the discrepancies take place in
the region Z ~ N =~ 40 which is widely recognized as
a region of prolate-oblate shape coexistence and triaxiality.
In those situations prolate and oblate (or triaxial) minima
coexist with energy differences of just a few hundred keV.
At the mean field level, the position of the absolute mini-
mum is determining the ground state deformation. However,
going beyond mean field by considering fluctuations on the
quadrupole degree of freedom leads to collective wave func-
tions exploring both coexisting minima and therefore those
fluctuations have the potential to modify the theoretical pre-
dictions for radii.

Octupole deformation is associated to the multipole opera-
tor of order three and contrary to the quadrupole deformation
case it breaks the parity symmetry. The presence of octupole
deformation is not as common as the presence of quadrupole
deformation in the ground state of atomic nuclei as octupole
deformation requires the existence of very specific combina-
tions of orbitals around the Fermi surface. Known regions
showing octupole deformation are the region around the
224Ra (Z = 88, N = 136) and the region around 144Ba (7 =
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Fig. 4 The number of nuclei with a given quadrupole deformation
parameter §; in their ground state (in bins 0.0125 units wide) are plotted
versus B in panel a. In panel b the number of nuclei with a difference
in the ground state deformation parameter 8, obtained with BCPM and
Gogny D18 are given. The width of the B, bins is the same as in panel a.
Figure taken from [26]. Reprinted with permission from the publisher

56 and N = 88) both linked to the so called “octupole magic
numbers”. We have tested the octupole properties of BCPM
by relaxing the parity symmetry in our self-consistent HFB
calculations. In this way, the system can end up in an octupole
deformed configuration in its quest for the minimum energy.
The results show energy gains of the order of a few hun-
dred keV and up to 1 MeV in nuclei in the aforementioned
regions and both the energy gains and values of the 83 defor-
mation parameters are compatible with those obtained with
the Gogny interaction [78]. Overall, the octupole correlation
energies are about a few hundred keV smaller than the corre-
sponding ones obtained with Gogny D1S [13] and DIM [15]
ones. Typical examples are the case of >**Ra with octupole
correlations energies of 0.63 MeV and 1.31 MeV for BCPM
and Gogny D18, respectively; or the one of '**Ba where the
corresponding values are 0.15 MeV and 0.68 MeV for BCPM
and Gogny D18 respectively. For D1S there are five nuclei
with mean field octupole correlation energies larger than 1
MeV and another nine with energies between 1.0 and 0.5
MeV. For BCPM the numbers are two with energies above
1 MeV (by just a few keV) and nine in the interval 1.0 to
0.5 MeV. The situation is similar to the case of BCP1 stud-

ied in Ref. [28] with the only difference that in BCP1 the
mean field octupole correlation energy was comparable to
the one of Gogny D1S. However, as a consequence of the
larger collective masses, the excitation energies predicted by
BCP1 were substantially lower than the ones of Gogny D1S
and the experiment. It remains to be tested what would be the
spectroscopic predictions of BCPM concerning negative par-
ity excited states but the lower mean field correlation energies
go in the right direction.

4.3 Fission properties

Another testing ground for quadrupole and octupole proper-
ties of atomic nuclei is the shape evolution from the ground
state to spontaneous fission. For this reason we have per-
formed fission barrier calculations for a few selected exam-
ples and the results obtained for fission barrier heights and
widths as well as mass asymmetry near scission (connected
with fragment’s mass asymmetry) are quite close to the
results obtained with D1S, a functional that was specifically
tailored to describe fission properties [ 13]. A detailed account
of these calculations will be presented below and here we will
focus on describing the results for a couple of examples: one
is the paradigmatic case of 2**Pu whose fission properties
have been computed with almost any proposed interaction.
The other is the super-heavy 202Sg where experimental data
on spontaneous fission exist. In both cases, the results will be
compared with the benchmark calculations carried out with
the Gogny EDF. For an early account of fission barrier prop-
erties with previous versions of the BCP functional (BCP1
and BCP2) the reader is referred to Ref. [79].

We have followed the standard procedure that consists in
the evaluation of the HFB energy as a function of the mass
quadrupole moment O,y with the other multipole moments
free to adopt any value in order to minimize the energy.
Along this path to fission, we compute the collective iner-
tias B(Q»0) required to evaluate the spontaneous fission half
life in the WKB approximation (see [79] for details). The
relevant quantities are shown in Figs.5 and 6 for the nuclei
240py and 62Sg, respectively. In the lower panels, the HFB
energy is depicted as a function of Q¢ for both BCPM and
Gogny D1S cases. In the two considered nuclei the shape of
the energy landscape looks rather similar regardless of the
interaction considered. The maxima and minima are located
roughly at the same positions and it is only the height of the
barriers which changes with the interaction. Overall, Gogny
D1S produces barriers higher than BCPM in agreement with
the larger surface energy coefficient of D1S. The relevance of
this characteristics of BCPM depends upon the reduction of
the height of the first fission barrier when triaxial shapes are
included in the calculation. In the case of the Gogny forces,
the reduction can be as large as two or three MeV but we do
not have a hint for BCPM yet. Work is in progress to explore
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Fig. 5 Fission properties of 2*°Pu obtained with the Gogny D18 inter-
action (red) and the BCPM functional (thick black). In panel a the HFB
energy is depicted as a function of the mass quadrupole moment, from
the spherical up to a very elongated configuration corresponding to Q2
=150 b. In the other three panels, quantities relevant for the fission half
life are given: in panel b the particle-particle correlation energies for
protons (dashed lines) and neutrons (full lines); in panel ¢ the octupole
and hexadecapole moments; and finally in panel d the collective mass
for quadrupole motion. Figure taken from [26]. Reprinted with permis-
sion from the publisher

the characteristics of BCPM regarding triaxial shapes. In
panel c) of Figs. 5 and 6, the octupole and hexadecapole
moments are depicted as a function of Q¢ for both inter-
actions. The results for Gogny D1S and BCPM lie one on
top of each other and can not be distinguished in the plot.
We observe that in 2*°Pu octupole deformation develops in
its way to fission pointing to a dominant mass asymmetric
fission mode. On the other hand, 262Sg remains reflection
symmetric along the whole fission path and therefore sym-
metric fission is expected to be the dominant mode in this
nucleus. In panel b) of both figures the particle-particle pair-
ing energies are given both for protons (dashed) and neu-
trons (full) for the two interactions. Again, the agreement
in the evolution of these quantities with Qg for the two
interactions considered is very good but BCPM produces
smaller pp pairing energies suggesting weaker pairing cor-
relations. The collective inertias are quantities very sensitive
to the amount of pairing correlations as they strongly depend
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Fig. 6 Fission properties of the super-heavy nucleus 202Sg. See Fig. 5
for the figure caption.Figure taken from [26]. Reprinted with permission
from the publisher

on the excitation energies of the low lying two quasiparti-
cle excitations. In panel d) of Figs. 5 and 6 it is observed
that the collective inertias of BCPM are between 2-3 times
larger than the ones of Gogny D1S. The impact of the larger
inertias (see [79] for a thorough discussion of this issue) on
the spontaneous fission half lives is to make them longer.
This effect is the opposite of having lower barrier heights in
BCPM as compared to D1S. Therefore, the final values of
the half lives will depend on the specific values of the quan-
tities entering the “collective action”. If the spontaneous fis-
sion half lives are computed in the WKB approximation we
obtain for the 2*°Pu case the values 7, 2(sf) = 6.2 x 1018
for D1S and 715 (sf) = 1.2 x 10%8s for BCPM, to be com-
pared to the experimental value of 3.5 x 10'8s. For the >6>Sg
case we obtain the values #1,2(sf) = 2.96s for DIS and
t1/2(sf) = 4.2s for BCPM, to be compared to the experimen-
tal value of 6.9ms. From the above results we conclude that
BCPM tends to yield larger values of ¢1 5 (sf) than Gogny D1S
and those values can be several orders of magnitude larger
than in the Gogny D1S case. This is a direct consequence
of the larger collective inertia and therefore a direct conse-
quence of the reduced pairing correlations in BCPM. This
results could lead us to the conclusion that BCPM should
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include stronger pairing correlations if the spontaneous half
lives of fission are to be improved. However, we have to be
aware of the impact on small changes in the parameters enter-
ing the WKB formula. For instance, the ground state energy
usually incorporates some sort of zero point energy correc-
tion (denoted € in the literature) that strongly influences the
WKB values of 715 (sf). Its value has to be connected to the
quantum effects associated to quadrupole motion but its exact
meaning is still uncertain. As an example of the sensitivity of
11,2 (sT) to this parameter, let us mention that if we use a value
of g = 2.5 MeV instead of the value ¢g = 1.5 MeV used
originally we will obtain half lives which are 6 to 12 orders of
magnitude smaller. In systematic fission calculations [80] the
value of ¢ is fine tuned for each isotopic chain considered
and therefore absolute values for some choice of €( as given
here should not be considered too seriously for a comparison
with experiment. Finally, the agreement between BCPM and
Gogny DIS in the values of Q3 along the fission path indi-
cates that both interactions will produce, at least in a static
framework, the same fission fragment mass distributions.

There are three parameters that characterize in a quan-
titative way the fission process of 2*°Pu, one is the height
of the first fission barrier E 4, the second is the excitation
energy of the fission isomer with respect to the ground state
E7 and finally we have the height of the second barrier Ep.
The accepted experimental values for those parameters are
Eq = 6.05 MeV, E;; = 2.8 MeV and Eg = 5.15 MeV
whereas the BCPM HFB predictions are E4 = 8.15 MeV,
E;; = 3.09 MeV and Eg = 7.10 MeV. We notice a rather
good agreement specially taking into account that no fission
data has been considered in the fit. The BCPM value of E 4
is somewhat too high but this can be attributed to not hav-
ing considered triaxiality in the calculation, an effect that
can lower the energy by a couple of MeV. If the rotational
energy correction is considered, the theoretical predictions
get reduced to 7.04, 1.69 and 5.31 MeV respectively. These
values are much closer to the experimental value than the
HFB ones. The only value that seems to fall too low is E;;
but the trend is consistent with recent estimations that reduce
the experimental value to 2.25 MeV in 240py [81].

This type of fission calculation was used [82] to consider
an extended set of nuclei with experimental data on #y 2 (sf).
We found a strong dependence on the pairing strength param-
eters as well as on the value of a parameter introduced to
model the ground state energy (Ep). In spite of these glitches
of the theory, the agreement with experimental data is reason-
able as can be confirmed by looking at Fig. 7. In this figure we
also analyze the sensitivity of #f to the strength of the pairing
interaction by considering different multiplicative factor 7.

In a subsequent publication [83] we considered the evalu-
ation of the spontaneous fission half life using the least action
scheme instead of the least energy one discussed above.
Several collective coordinates in addition to the quadrupole
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Fig. 7 Experimental # half lives (bullets) are compared to different
theoretical results (open symbols) for several isotopic chains where
experimental data exists. The t,f are plotted as a function of the fissibility
parameter Z2/A. See text for details. Figure taken from [82]. Reprinted
with permission from the publisher

moment were considered for the search of the least action
path. It turns out that the relevant collective coordinate is the
one modulating the amount of pairing correlations in the sys-
tem. In our case, we used a constraint on the particle number
fluctuation (AN?). For the several Uranium isotopes con-
sidered in the paper, the consideration of the least action
framework with pairing degrees of freedom leads to a sub-
stantial reduction of 71,2 (sf) of roughly 20 orders of mag-
nitude. The new predictions are in rather close agreement
with experimental data and the discrepancies never exceed
the five orders of magnitude (to be compared with the fifteen
orders of magnitude difference obtained with the least energy
framework). These results seem to indicate that the combi-
nation of BCPM and the least action framework with pairing
degrees of freedom represents a rather accurate method to
estimate theoretically spontaneous fission half-lives.

4.4 Systematic fission barrier calculations in neutron rich
superheavy nuclei for astrophysical applications

As already mentioned, one of the advantages of BCPM over
other functionals like Gogny is its local character that is
responsible for the excellent computational performance of
BCPM in finite nuclei. In addition, BCPM performs very well
in reproducing binding energies, which is a key ingredient
to estimate reaction rates as those required in nucleosynthe-
sis. These are the main reasons why BCPM has been used
to obtain nuclear data required in astrophysical applications
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[84,85]. In Ref. [84] BCPM was used to obtain fission bar-
rier properties of around 3700 neutron rich heavy and super-
heavy nuclei as required for r-process nucleosynthesis incor-
porating the fission-recycling mechanism. Odd nuclei have
been included in the analysis using the perturbative nucleon
addition method (PNAM). Neutron separation energies in the
set of around 3700 nuclei of interest are reproduced with a
rms deviation of 0.30 MeV for even-even nuclei and 0.36
MeV including odd and odd-odd nuclei. The systematic of
fission barrier heights and spontaneous fission half-lives has
been thoroughly discussed in the paper. In addition, the «-
decay half-lives have been obtained with the Viola-Seaborg
[86] formula using the parameterization of Ref. [87]. The
Viola-Seaborg formula makes use of the Q, value of the
reaction and this quantity is reproduced with a rms deviation
of only 0.68 MeV. The calculations of «-decay half-lives
allows to determine which regions of the nuclear chart are
dominated by fission or «-decay. In [85] the impact of fission
on the production and destruction of trans-lead nuclei dur-
ing the r-process nucleosynthesis occurring in neutron-star
mergers is discussed. Abundance patterns and rates of nuclear
energy production are obtained for different ejecta conditions
using, among others, a sets of stellar reaction rates obtained
with BCPM. Fission plays a fundamental role to determine
free neutron abundance after r-process freeze-out. A signifi-
cant impact on the abundances of heavy nuclei that undergo «
decay or spontaneous fission is observed, affecting the energy
production by the ejecta at timescales relevant for kilonova
emission.

4.5 A BCPM functional with realistic effective mass

One of the most appealing properties of BCPM is its local
character. As a consequence, the effective mass of the func-
tional is just the bare mass. This is good in some cases (single
particle levels around the Fermi level are not stretched) but
the systematic of the energy of giant quadrupole resonances
isnot well reproduced by BCPM. To remedy this drawback of
the model, we introduced a realistic effective mass by using
a subtraction procedure where the quantum kinetic energy
with the bare mass is replaced by the same quantity but this
time with an effective mass plus a term that ensures that at the
nuclear matter level one recovers the standard BCPM. The
new functional thus obtained is referred to as BCPM* [30].
The effective masses for both protons are neutrons are fitted
by polynomials of the density to results in nuclear matter
obtained with realistic forces and the Brueckner procedure.
The introduction of the effective mass in BCPM* does not
spoil the o (E) value obtained with BCPM for AME2012
[71]. The o (E) slightly increased from the 1.61 MeV for
BCPM to 1.65MeV for BCPM*. On the other hand, the mean
square deviation for radii gets substantially reduced from the
0.027 fm value of BCPM to 0.024 fm. Finally, in the fitting
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Table 4 Values of the free parameters of BCPM [26] and BCPM* as
determined by minimizing the rms of the binding energy difference of
even-even nuclei using the AME 2012 compilation [71]. The o value
is given along with the corresponding value of the rms deviation of
the radii. The results are obtained with basis 1 (see text) and only a
weak dependence of the ropy = ro;, = ro parameter is observed when
increasing basis size (see text for details)

Wis rou roL E/A OF OR

(MeV fms) (fm) (fm) MeV) (MeV) (fm)
BCPM 90.5 0.659 0.659 15.98 1.61 0.027
BCPM* 112 0.7520 0.7520 15.98 1.65 0.024

Table 5 First (E4) and second (Ep) fission barrier heights and the
excitation energy of the fission isomer (E;) are given in MeV for five
typical actinide nuclei. Results obtained with BCPM* and BCPM are
given along with the experimental data from [88]

BCPM* BCPM Exp
Ea Ep E;r Ea Ep E; Ea Ep E;

B4y 5 58 1.8 56 56 2 4.8
20py 62 55 17 73 58 21 6 515 28
py 61 62 17 78 64 25 570 485 -

2Ccm 63 43 11 74 45 15 665 50 19
XCm 65 47 11 8 55 21 6

to finite nuclei binding energies the values of the parameters
change. Their value and a comparison with BCPM is given
in Table 4.

As a consequence of the introduction of the effective mass,
the computational cost in finite nuclei increases with respect
to BCPM. This increase is not substantial and it allows the
use of BCPM* in many different scenarios like astrophysi-
cal applications or fission (see previous subsection). Regard-
ing fission, it has to be mentioned that in the few examples
explored, the fission barrier heights provided by BCPM* are
smaller than the ones for BCPM, improving the agreement
with the empirical values. A comparison of the results for fis-
sion barrier heights and excitation energy of fission isomers
obtained with BCPM and BCPM* is summarized in Table 5.
In the same table the known experimental data is also given,

Regarding the giant resonance energies, the predictions
for the centroid energy of the Giant Monopole Resonance do
not change significantly as compared to the ones of BCPM.
However, the energies of the Giant Quadrupole resonances
obtained with BCPM* are increased by typically 1 MeV as
compared to the BCPM predictions in better agreement with
experimental data. The excitation energies of the monopole
and quadrupole oscillations along the whole periodic table
are displayed in Fig. 8. Both monopole and quadrupole ener-
gies follow a C A~!/3 law with coefficients Cj; = 86 and
Co = 67 MeV, respectively. These values are roughly in
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Fig. 8 Excitation energies of the monopole and quadrupole giant reso-
nances as a function of mass number A obtained with the scaling approx-
imation. The estimation 58A~!/3 for the quadrupole and 86A~!/3 for
the monopole [59] are drawn to guide the eye. The dotted curve 67A~1/3
corresponds to the best fit of the quadrupole excitation energy. Figure
taken from [30]. Reprinted with permission of the publisher

agreement with the empirical values given in [59] of 86 and
58 MeV for the monopole and quadrupole resonances.

5 Application of BCPM to Neutron Stars

One of the more important applications of the BCPM energy
density functional is the derivation of the EoS for describing
neutron stars (NS) with the same theoretical model from the
surface to the center. The details about the different pieces
of this EoS can be found in Ref. [89] and in a short ver-
sion in [30]. Beneath a thin atmosphere, the NS interior con-
sists of three main regions, the outer crust, the inner crust
and the core, each one featuring a different physics [90,91],
which cover a nuclear density range between 10* g/cm? and
several times the symmetric nuclear matter saturation den-
sity (2.7x 10" g/cm?). There are few EoS devised and used
to describe the whole NS within an unified framework. Let
us mention among them the semi-phenomenological EoS of
Lattimer and Swesty [92,93], the EoS of Shen et al. [94-96]
computed with the Relativistic Mean Field formalism, the
model of Douchin and Haensel [97] based on the Skyrme
force SLy4 and the EoS derived by the Brussels group [98—
102] using the BSk21 Skyrme force.

The core of a NS described with the BCPM energy density
functional is assumed to be formed by a uniform mixture of
neutrons, protons, electrons and muons in charge and beta
equilibrium. In this region the contribution of their nuclear
part to the EoS is obtained by means of the many-body calcu-
lation described in Sect.3.2. In this region muons and elec-
trons are treated as free relativistic Fermi gases. The physics
of the crust is somehow different as far as we shall deal
with finite-size nuclear clusters, which form a solid lattice

to reduce the Coulomb repulsion, embedded by free neutron
and electron gases in the inner crust and by only a free elec-
tron gas in the outer crust. We model the crust in the Wigner—
Seitz (WS) approximation, which assumes that the space can
be divided in non-interacting shell containing each one a sin-
gle representative nuclear cluster permeated by the free neu-
tron and electron (inner crust) and only electron (outer crust)
gases.

5.1 The outer crust

The outer crust of a NS consists of a solid body-centered
cubic lattice of fully ionized atomic nuclei permeated by a
free electron gas in order to ensure charge and beta equilib-
rium. This region of the NS covers a density range between
10* g/cm?, where atoms are completely ionized, and 4x 101!
g/cm3, where neutrons start to drip from the nuclei. As a func-
tion of the density the nuclei in the Coulomb lattices change
from “Fe at the beginning of the outer crust to neutron-rich
nuclei at the bottom of the outer crust because is energeti-
cally more favorable for nuclei to reduce the proton number
through electron captures with the energy excess carried out
by neutrinos.

The formalism for describing the outer crust of NS was
proposed first by Baym, Pethick, and Sutherland (BPS) [103]
and applied later on in Refs. [104,105] in different studies
of NS. It is assumed that the matter inside the star is cold
and remains in the ground-state in complete thermodynamic
equilibrium. The energy of the outer crust at given average
baryon density n, consists of the nuclear plus free electrons
and lattice contributions

E(Aﬂzﬂnb)ZM(A72)+E€Z€C+EIGZ" (27)

where M (A, Z) is the rest mass of a nucleus with mass and
atomic numbers A and Z, respectively. The term E,. is the
kinetic energy of the free electrons, which are considered
as a degenerated relativistic Fermi gas. The lattice contribu-
tion collects the different Coulomb effects, namely the repul-
sion among the nuclei of the lattice, their attraction with the
electrons and the repulsion among the electrons. The lattice
energy can be written as the Coulomb energy in the nuclear
mass formula with a factor that takes into account the previ-
ously mentioned effects (see [105] for more details).

The basic assumption in the calculation of the composition
of the nuclei occupying the sites in the Coulomb lattice is that
the thermal, hydrostatic and chemical equilibrium is reached
at each layer of the crust. Only the free electrons and the
lattice terms contribute to the pressure, Following [103], the
composition of the nuclei in the lattice is obtained from the
minimization of the Gibbs free energy per particle, which at
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the BCPM energy density functional. n, (fm ")

5.1.1 Composition and EoS of the outer crust

In Fig. 9 we plot the composition of the outer crust predicted
by the microscopic BCPM model and by the macroscopic-
microscopic finite-range droplet model FRDM [106]. At very
low densities up to 7, ~ 1076 fm~®, the main contribution
comes from Fe and Ni isotopes with neutron number N =
30, 34 and 36. At higher densities and up to np ~ 5 x 107>
fm=3, Kr, Se, Ge, Zn and Ni isotopes with neutron number
N =50 appear. Above this density, where the experimental
are unknown, the HFB calculation with the BCPM model
predicts Mo, Zr, Sr, Kr and Se nuclei with neutron number N
= 82 nuclear masses. The BCPM model reaches the neutron
drip at a density and pressure of n;, = 2.62 x 10™# fm~3 and
P = 4.84 x 10~* MeV/fm?, respectively, with the composi-
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Fig. 9 Neutron (N) and proton (Z) numbers of the predicted nuclei in
the outer crust of a neutron star using the experimental nuclear masses
[71] when available and the BCPM energy density functional or the
FRDM mass formula [106] for the unmeasured masses. Figure was
taken from Ref. [89], reprinted with permission
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Fig. 10 The pressure in the outer crust against the baryon density using
the experimental nuclear masses [71] when available and the BCPM
energy density functional or the FRDM mass formula [106] for the
unmeasured masses. Also shown is the pressure from models BSk21,
BPS, Lattimer—Swesty (LS—Ska), and Shen et al. (Shen-TM1) (see text
for details). The dashed vertical line indicates the approximate end of
the experimentally constrained region. Figure was taken from Ref. [89],
reprinted with permission

tion given by the nucleus !'°Se. Our results are in very good
agreement with the predictions of the FRDM, except in the
width of the layer of 78Ni before the N = 82 jump and in the
nucleus at the bottom of the inner crust, which is predicted to
be "8Kr by the FRDM (see [89] for an enlarged discussion).

In Fig. 10 we display the EoS of the outer crust predicted
by our calculation using experimental and theoretical BCPM
masses. and from the experimental masses plus the FRDM.
We can see small jumps in the density for particular values
of the pressure, which are associated with the change from
an equilibrium nucleus to another in the composition [103].
During this change the pressure and the chemical potential
remain constant, implying a finite variation of the baryon
density [91,103,104,107]. After the region constrained by
the experimental masses (marked by the dashed vertical line
in Fig. 10), the pressures predicted by BCPM (black solid
line) and other theoretical models such as FRDM [106], BPS,
the Ska version of Lattimer-Swesty [92,93], the RMF Shen-
TMI1 EoS [96] and the Skyrme force BSK21 of the Brussels
group [99] tabulated in [101]. We see that our BCPM EoS
agrees well with the BPS, FRDM and BSk21 predictions,
showing some discrepancies with the LS-Ska model near the
bottom of the outer crust. Notice that the Shen-TM1 EoS
for the outer crust behaves quite differently from the another
models predicting a soft EoS. A possible reason for that ins
the use a very schematic semiclassical proton and neutron
densities in the Shen-TM1 calculation (see again [89] for
additional discussions). We will not give here the explicit
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values of the BCPM EoS of the outer crust computed with the
experimental masses and HFB calculations, which is reported
in Table 4 of [89].

5.2 The inner crust

At an average density about 4x 10!, the neutron star sce-
nario changes respect to the one of the outer crust due to
the presence of a free neutron gas in addition to the free
electron gas permeating the Coulomb lattice. When the aver-
age baryon density grows, the fraction of free neutrons also
increases. At the bottom layers of the inner crust, the equi-
librium shapes may change from spherical to cylindrical or
planar geometries in order to minimize the Coulomb repul-
sion. These shapes are generically known as “nuclear pasta”.
When the average density is about one-half of the saturation
density in nuclear matter, the Coulomb lattice disappear and
a new phase transition to a liquid phase of uniform nucleons
and leptons takes place due to the energy balance.

Full HF or HFB calculations in the inner crust are very dif-
ficult owing to the neutron gas and eventually to the existence
of non-spherical geometries corresponding to pasta shapes.
Since the pioneering paper of Negele an Vautherin [108],
there exist different model calculations at quantal level, as
for instance [109-112], however, large scale calculations are
usually performed using semiclassical techniques such as
the Compressible Liquid Drop Model (CLDM) introduced
by Baym, Bethe and Pethick [113] and used extensively in
[92,97] or the Thomas-Fermi (TF) approximation with dif-
ferent degrees of sophistication (see [89] for an enlarged dis-
cussion and references). In this calculation we have obtained
the EoS of the inner crust using the simple TF approach basi-
cally by two reasons. On the one hand, the EoS in this region
is largely dominated by the neutron gas where it is expected
that gradient corrections play a minor role. On the other hand,
the TF approach is free of shell effects, which simplifies the
study of non-spherical pasta phases.

5.2.1 Self-consistent Thomas—Fermi description of the
inner crust of a neutron star

The total energy of an ensemble of A—Z neutrons, Z protons,
and Z electrons in a spherical Wigner—Seitz (WS) cell of
volume V,. = 47 R? /3 can be expressed as

E=E(A,Z,R) = /

[5 (nn,np) +muny +myn,
Ve

+Eei (ne) + Ecoul (npa ne) + Eex (np» ne) ]drv (29)

where € (ny,np) is the nuclear energy density without
including the nucleon rest masses. In our approach it reads

3 (372 2/3 3 (372 2/3
€ (nn.np) = g%nzﬂ(l‘) + 5—( Zm) nf,/3(r)
" p
+V (na(r), np(r)), (30)

where the two first terms are the TF neutron and proton
kinetic energy densities and V (n ns 1 ,,) is the interacting part
provided by the BCPM nuclear energy density functional (cf.
Sect. 3), which contains bulk and surface contributions. The
term & (n.) in Eq. (29) is the relativistic kinetic energy den-
sity due to the motion of the electrons, including their rest
mass. The term Eeoul (np, ne) in Eq. (29) is the Coulomb
energy density from the direct part of the proton-proton,
electron—electron, and proton-electron interactions. Assum-
ing that the electrons are uniformly distributed, this term can
be written as

1
Ecoul (l’lp, }’le) = E (np(r) — ne) (Vp(l') — Ve(r)) s 3D
with
eznp(r/) / ezne /
Vo) = | ——=dr’, V.(r) = / dr’.  (32)
r — 1’| r — 1’|

The exchange part of the proton-proton and electron—electron
interactions are treated in the Slater approximation:

303\ 5/ a3 4/3
Eox (nprne) = —> (—) (o). 63
4 \m

‘We consider the matter within a WS cell of radius R, and
perform a fully variational calculation of the total energy
E(A, Z, R.) of Eq. (29) imposing charge neutrality and an
average baryon density n, = A/V.. Our treatment dif-
fers from some previous calculations of TF type carried out
with non-relativistic nuclear models [99,114-116], which
use parameterized trial neutron and proton densities in the
minimization.

Taking functional derivatives of Eq. (29) with respect to
the particle densities and including the conditions of charge
neutrality and constant average baryon density with suitable
Lagrange multipliers, the variational equations for the neu-
tron (n,,), proton (1 ,) and electron (7. ) can be easily obtained
(see [89,117] for the explicit expression of such equations).

We solve these variational equations self-consistently for a
given average baryon density 7, in a WS cell of specified size
R, following the method described in [118], which allows to
determine the composition (A, Z) in f-equilibrium that min-
imizes the energy given by Eq. (29). Next, we determine the
optimal size of the WS cell by repeating the calculation for
different values of R., in order to find the absolute minimum
of the energy per baryon for that n,. This can be a delicate
numerical task because the minimum of the energy is usually
rather flat as a function of the cell radius R, (or, equivalently,
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Fig. 11 Left: Energy per baryon of different shapes relative to uni-
form npe matter as a function of baryon density in the inner crust.
Right: Energy per baryon of different shapes relative to uniform npe

as a function of the baryon number A) and the energy differ-
ences may be between a few keV and a few eV.

The same formalism developed for spherical nuclei can
also be applied to obtain spherical bubbles (hollow spheres).
The method of solving the variational equations in the inner
crust is not restricted to spherical symmetry and it can be
extended to WS cells with planar (slabs) or cylindrical (rods)
symmetries. The TF with these non-spherical geometries are
simplified if one considers slabs and rods of infinite extension
in the perpendicular direction to the size R.. Although the
number of particles and total energy of these cells are infin-
ity, the number of particles and the energy per unit surface
(slabs) or per unit length (rods) are finite and the same is true
for the energy per baryon or per unit of volume. With this
choice of the geometries the energy per unit surface or per
unit length are easily determined from Eq. (29). Taking the
volume element dV = Sdx (slabs) or dV = 2m Lrdr (rods)
reduces the calculation of the total energy to a 1-dimensional
integral over the finite size of the WS cell (from —R. to R,
for slabs and from 0 to R, for rods. With these geometries the
calculation of the Coulomb potentials and of the nuclear sur-
face contribution (see Sect. 3.3) are largely simplified. The
explicit expressions for the Coulomb and surface energies
for slabs and rods can be found in Ref. [89]. As it happens
for spherical bubbles, the equations corresponding to cylin-
drical rods can be applied to obtain cylindrical tubes (hollow
rods). Optimal density profiles of neutrons and protons for
droplets, rod, slab, spherical bubbles and cylindrical bubbles
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matter as a function of baryon density in the high-density region of the
inner crust. Figure was taken from Ref. [89], reprinted with permission

(tubes) at different baryon densities are displayed in Figs. 8
and 9 of [89].

5.2.2 Analysis of the self-consistent solutions

In left panel of Fig. 11 we display the difference between
the energy per baryon computed in the crust with different
geometries (spherical droplets, cylindrical rods, slabs, cylin-
drical tubes and spherical bubbles) and the energy per baryon
in neutron-proton-electron (npe) matter in a average density
domain between 0.005 fm~3 and 0.08 fm—>. The spheri-
cal droplet configuration is the energetically most favorable
shape up to and average density n, ~ 0.067 fm~3, where
a first shape transition to rods takes place. This is the most
favorable configuration till an average density n;, ~ 0.076
fm~3 where a second transition to a planar slab shape occurs.
When the average density increases further, the energy per
baryon of droplets and rods becomes progressively closer to
that of slabs. To see more clearly this scenario of compet-
ing shapes, we zoom in the right panel of panel of Fig. 11
the energy difference between 0.07 fm~3 and 0.0825 fm—3,
which is the crust-core transition density predicted by the
BCPM model. Above adensity 1, =0.082 fm 3 there is a new
shape transition to cylindrical tubes which in turn changes
to spherical bubbles as the most favorable phase at almost
0.0825 fm~3. It shall be point out that the energy differences
ataverage densities close to the crust-core transition are actu-
ally very small, as it can be seen in Fig. 12, where the energy
per baryon respect to the neutron rest mass as a function of
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Fig. 12 The minimum energy per baryon relative to the neutron mass
for different shapes as a function of the cell size R, at an average baryon
density n, = 0.077 fm~3. The value of the absolute minimum for each
shape is shown in MeV in brackets. Figure was taken from Ref. [89],
reprinted with permission
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Fig. 13 Mass number A (left vertical scale) and atomic number Z
(right vertical scale) corresponding to spherical nuclei with respect to
the baryon density. Figure was taken from Ref. [89], reprinted with
permission

the size of the WS is shown for different shapes. One can
see that the different curves are very flat around their minima
and that the differences among the energies corresponding to
different shapes are extremely small, of the order of hundreds
of keV. This Figures show clearly that the calculation of the
most favorable shape near the crust-core transition density is
a very delicate task from the numerical point of view.

In Fig. 13 we display as a function of the average density
the composition of the droplets, which is the shape energet-
ically preferred except for densities close to the crust core
transition where the energy differences are very small. We
see that when neutrons start to drip in the inner crust the mass
number increases quickly from A ~ 110to A ~ 1100 atnj =
0.025 fm~3. For higher densities, the mass number shows a
smooth decreasing trend till A ~ 800 at the transition point.
The atomic number remains roughly constant in the inner

tron gas, and PS5 = —711 (%)meznj/ 3 is a corrective term
from the electron Coulomb exchange. Notice, however, that
the pressure obtained in a WS cell in the inner crust differs
from the value in homogeneous npe matter in 8-equilibrium
at the same average density n, owing to the lattice effects,
which influence the electron and neutron gases. The lattice
effects take into account the presence of nuclear structures in
the crust and are automatically included in the self-consistent
TF calculation. The pressure exerted by free neutrons and
electrons in the outer and inner crust is an essential ingre-
dient in the Tolman-Oppenheimer-Volkoff equations [90],
which determine the mass-radius relation in neutron stars.
The crustal pressure has also significant implications for
astrophysical phenomena such as pulsar glitches [119].

The pressure predicted by the BCPM functional in the
inner crust is shown in Fig. 14 in comparison with the values
provided by other models, namely, NV of Negele-Vautherin
[108], Moskow calculation [111], BBP [103,113], LS-Ska
[92,93], DH-SLy4 [97], Shen-TM1 [94-96] and BSk21 [99-
102] The calculations of LS [92,93] and Shen et al. [94-96]
are the two EoS tables in more widespread use for astrophys-
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Fig. 14 Pressure as a function of the average baryon density in the
inner crust for the BCPM functional and other Loss. The figure starts at
np =3 x 10~* fm~3 where Fig. 10 ended. Figure was taken from Ref.
[89], reprinted with permission
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ical simulations. The initial baryon density in Fig. 14 corre-
sponds to the last density shown in Fig. 10 when neutrons
start to drip. In the inner crust, the pressure computed with
the BCPM functional is comparable, in general, to the results
of the NV, BBP, DH-SLy4, and BSk21 calculations. Particu-
lar agreement is observed in the inner crust regime between
the BCPM and BSk21 pressures up to relatively high crustal
densities. In contrast, large differences are found when the
BCPM pressure is compared with the values provided by the
Moskow, LS-Ska, and Shen-TM1 models, in particular at
densities close to the crust-core transition, where the differ-
ences can be as large as a factor of two, which may have an
influence on the predictions of the mass-radius relationship
of neutron stars, particularly in small mass stars. In addition
to the spherical shape, we have evaluated the pressure for the
non-spherical WS cells and the hollow shapes in the regime
of high average baryon densities using the BCPM functional.
However, on the one hand, pasta phases appear as the pre-
ferred configuration only in narrow range of densities close
the crust-core transition density and, on the other hand, the
differences of pressure between the spherical and the pasta
phases are small, generally of the order of 1-2 keV/fm? or
less. Therefore, we have taken as a representative result for
the whole inner crust the pressure calculated in the spheri-
cal droplet configurations. A more detailed discussion about
the properties of the inner crust and the EoS in this region
provided by the BCPM functional can be found in Ref. [89]

5.3 The liquid core

In order to study the structure of the NS core, we have to
calculate the composition and the EoS of cold, neutrino-
free, catalyzed matter. As we discussed in the Introduction,
we consider a NS with a core of nucleonic matter without
hyperons or other exotic particles. We require that it con-
tains charge neutral matter consisting of neutrons, protons,
and leptons (e™, ™) in beta equilibrium, and compute the
EoS for charge neutral and beta-stable matter in the following
standard way [90,113]. The energy density of lepton/baryon
matter as a function of the different partial densities,

E
Ep,np,ne,ny) = (nnmn+npmp)+(nn+np)x(nna np)
+E(ny) + Ene), (35)

where we have used ultra-relativistic and relativistic approxi-
mations for the energy densities of electrons and muons [90],
respectively. As explained in [24], the nuclear part of the
energy per baryon can be written as a quadratic interpolation
of the binding energy of symmetric nuclear matter and pure
neutron matter in terms of the asymmetry (13) or, equiva-
lently, the proton fraction x, = n,/(n, +np).

Knowing the energy density Eq. (35), the various chemical
potentials (of the species i = n, p, e, ) can be computed
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Fig. 15 The pressureis displayed vs. the nucleon density for the several
EoSs discussed in the text, i.e. the BCPM (solid, red), the BSk21 (dot-
dashed-dashed, magenta), the Lattimer-Swesty (Ska, dashed, blue), the
Shen (dot-dashed, green), and the Douchin-Haensel (SLy4, dot-dot-
dashed, black). A detail of the region between n;, = 0.05 fm~3 and
0.30 fm~3 is shown in the inset. The incompressibility coefficients at
nuclear saturation density for these models are K = 214 MeV (BCPM),
230 MeV (SLy4), 246 MeV (BSk21), 263 MeV (Ska), and 281 MeV
(Shen)

straightforwardly,
€

Wi = ——, (36)
8nl~

and the equations for beta-equilibrium,

Wi = bipn — qi e, (37

(b; and g; denoting baryon number and charge of species i)
and charge neutrality,

> nigi =0, (38)
i

allow one to determine the equilibrium composition n; of
each spice at given baryon density n; and finally the EoS,

P(np) =nppn — €. (39)

The EoS of the liquid core is displayed in Fig. 15 together
with the predictions of the BSk21 [99-102], LS-Ska [92,93],
DH-SLy4 [97] and Shen-TM1 [94-96] a We notice a remark-
able similarity of our calculation with the DH-SLy4 EoS,
while differs considerably, in particular at high densities,
from the LS-Ska, Shen-TM1 and BSk21 EoSs. We recall
that the pressures from the Lattimer-Swesty EoS and the
Shen EoS had already been found to differ significantly from
BCPM and SLy4 for the matter at subsaturation density in the
inner crust (cf. discussion of Fig. 14). However, the BCPM
and SLy4 pressures in the inner crust showed a concordance
with BSk21 that remains within the core region up to about
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for details. Figure was taken from Ref. [89], reprinted with permission

0.2 fm=3 (see inset of Fig. 15) but is not maintained in
the extrapolation to higher densities, where the BSk21 and
Lattimer-Swesty models predict the stiffest EoSes of Fig. 15.

Once the EoS of the nuclear matter is known, one can
solve the Tolman—Oppenheimer—Volkoff [90] equations for
spherically symmetric NS:

dp o 1+P 1+47'[Pr3 | 2Gm -1
dr r2 £ m r

dm
dr

47 r2E, (40)

where G is the gravitational constant, P the pressure, € the
energy density, m the mass enclosed within a radius r, and
r the (relativistic) radius coordinate. To close the equations
we need the relation between pressure and energy density,
P = P(np),i.e. the EoS. The integration of these equations
produces the mass and radius of the star for given central
density. It turns out that the mass of the NS has a maximum
value as a function of radius (or central density), above which
the star is unstable against collapse to a black hole. The value
of the maximum mass depends on the nuclear EoS, so that
the observation of a mass higher than the maximum mass
allowed by a given EoS simply rules out that EoS. The con-
sidered EoSes are compatible with the largest mass observed
up to now, which s close t0 2.0140.04 M, [120], asitcan be
seen in Fig. 16, where the relation between mass and radius
(left panel) and central density (right panel) is displayed. The
observed trend is consistent with the equations of state dis-
played in Fig. 15. As expected, when the stiffness increases
the NS central density decreases for a given mass. We also
notice that the maximum mass calculated with the BCPM and
the SLy4 EoSs is characterized by a radius of about 10km,
which is somewhat smaller than the radius calculated with

Table 6 Properties of the maximum mass configuration for a given
EoS. The value of the radius R is given, as well as the radius for a star
of mass equal to 1.5Mg

EoS Mnax/Mo R (km) R;5 (km)
BCPM 2.03 9.9 11.67
SLy4 2.05 10 11.62
Ska 221 10.98 12.9
Shen 22 12.77 14.35
BSk21 2.28 11.03 12.57

the other considered EoSs. Recent analyses of observations
on quiescent low-mass X-ray binaries [121] and X-ray burst
[122] seem to point in this direction, though more studies
could be needed [123]. For a NS of 1.5 solar masses, the
BCPM EoS predicts a radius of 11.67 km (see Table 6), in
line with the recent analysis shown in [124] and recent obser-
vations from the NICER project [125,126]. High-precision
determinations of NS radii that may be achieved in the future
by planned observatories such as the Large Observatory for
X-ray Timing (LOFT), should prove a powerful complement
to maximum masses for resolving the equation of state of the
dense matter of compact stars.

6 Summary and conclusions

We have developed an energy density functional, dubbed
BCPM, aimed to describe nuclear masses and other prop-
erties of finite nuclei and nuclear matter. This functional is
built up in the framework of the Kohn—Sham method, which
implies that the energy density can be split in an uncorre-
lated kinetic energy term plus a potential interacting part.
In the spirit of the nuclear mass formula, the nuclear inter-
acting part is divided into the volume and surface contri-
butions. The interacting bulk part is largely based on ab
initio nuclear and neutron matter EoS, which are obtained
through a Brueckner—Hartree—Fock calculation, based on the
Brueckner-Bethe—Goldstone many-body theory, using the
microscopic two-body Argonne vig interaction plus three-
body forces computed with the Urbana model. The volume
contribution in asymmetric nuclear matter is obtained by a
quadratic interpolation in terms of the asymmetry parame-
ter B between the EoS of nuclear and neutron matter, whose
numerical values at a discrete set of densities are fitted once
for ever by educated fifth degree polynomials in the density.
In order to take into account surface properties, we add to
the volume part a phenomenological contribution provided
by the convolution of a Gaussian form factor with the neutron
and proton densities. It should be pointed out that the strength
of these terms are fixed from the second order coefficients of
the polynomial fits of the nuclear and neutron matter EoS. To
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describe finite nuclei the nuclear part of the BCPM energy
density functional is supplemented by the Coulomb term,
consisting of the direct and exchange energies, the later com-
puted using the local Slater approximation, and the uncorre-
lated spin-orbit part, which we choose zero-range and iden-
tical to the one used in Skyrme or Gogny effective forces. To
describe open shell nuclei we include pairing in the BCPM
model through a HFB calculation using zero-range density
dependent interaction adjusted to reproduce the neutron gap
predicted by the Gogny D1S force in nuclear matter.

The number of free parameters of the BCPM energy den-
sity functional available for fitting finite nuclei properties are
finally three, namely the binding energy per nucleon in sym-
metric nuclear matter, the range of the Gaussian form factor
in the phenomenological surface term and the strength of
the spin-orbit interaction. Once these three parameters are
fully determined from the masses of 579 even-even spher-
ical and deformed nuclei, one obtains an energy rms for
this set of nuclei of 1.58 MeV and a rms of 0.027 fm for
the charge radii of 313 nuclei experimentally known. These
rms are similar, or still better, than the corresponding val-
ues obtained using well calibrated Skyrme or Gogny interac-
tions for the same sets of nuclei. The BCPM energy density
functional predicts quadrupole and octupole deformations
and fission barrier similar to those provided by the Gogny
D1S force, which can be considered as a theoretical bench-
mark of deformation properties in finite nuclei. Although
surprising, it is very satisfying that two basic nuclear prop-
erties, the energy per particle in the bulk and the surface
energy, suffice to completely determine the BCPM energy
density functional predicting excellent ground-state proper-
ties of finite nuclei. We have also used the BCPM energy
density to estimate the excitation energies of the isoscalar
giant monopole and quadrupole resonances within the sum
rule approach. The excitation energies of the giant monopole
predicted by BCPM for nuclei from °Zr on are in reason-
able good agreement with the experimental values. This is
because the BCPM incompressibility modulus (212 MeV)
lies within the empirical window of values extracted from the
analysis of the experimental data for these resonances. How-
ever, BCPM overestimates the excitation energies of the giant
quadrupole because of its effective mass being equal to the
physical one. This behavior can be cured by introducing in the
model a density and isospin dependent effective mass. This
improved BCPM functional, called BCPM*, has an effective
mass 0.79 in symmetric nuclear matter, reproduces better
the experimental excitation energies of the quadrupole reso-
nance in finite nuclei, and also improves the rms of the charge
radii, which is now 0.024 fm. All these improvements do not
worsen the rms for the binding energies

An important application of the BCPM energy density
functional is the derivation of an unified EoS for neutron
stars from the surface to the center. As far as the density

@ Springer

in a neutron star covers about eight orders of magnitude,
there are different scenarios that require different theoreti-
cal descriptions. In the inner crust, where matter is arranged
as atomic nuclei permeated by an electron gas, the nuclear
masses, needed to obtain the EoS in this region, are provided
by the experiment, or if they are unknown, by HFB calcula-
tions using the BCPM functional. The EoS in the inner crust,
where we have in addition a neutron gas, is very compli-
cated to compute following the rules of quantum mechanics
and therefore we use instead the Thomas—Fermi approach
with the BCPM energy density, which also allows to describe
pasta phases. Although proton shell and pairing effects may
be important to obtain the composition of this region, they are
not very relevant to obtain the EoS. Finally, in the core region,
which is the largest one, the EoS is obtained from the BHF
calculations in bulk matter assuming charge and beta equi-
librium. This EoS is used to obtain the mass-radius relation-
ship by solving the relativistic Tolman-Oppenheimer-Volkov
equation, which in the case of the BCPM functional pre-
dicts a maximum mass of 2.03 Mg, in agreement with the
commonly accepted value of 2.01 = 0.04M extracted from
observations. Also the predicted radius of a standard neutron
star of 1.4 M is 11,67km, which is in line with the value
extracted from the analysis of recent astrophysical observa-
tions.
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