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Abstract

This paper aims to study the Betti homology and de Rham cohomology of twisted
symmetric powers of the Kloosterman connection of rank two on the torus. We compute
the period pairing and, with respect to certain bases, interpret these associated period
numbers in terms of the Bessel moments. Via the rational structures on Betti homology
and de Rham cohomology, we prove the Q-linear and quadratic relations among these
Bessel moments.
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1 Introduction

Let Gp; = Spec (Qlz, z~1]) be the algebraic torus over Q with variable z, and
similarly for the torus G, ; with variable 7. Let Kl be the Kloosterman connection (of
rank two) on G, ; corresponding to the differential operator (z9; )2 —z. (For details, see
Sect. 2.) In [1], in order to study the Hodge aspects of the symmetric powers Sym* Kl,,
Fresan, Sabbah, and Yu consider the following settings. Let [2] : Gy — G ; be
the double cover induced by the ring homomorphism Q[z, z~'] — Q[¢, ™!, given
by z > t2. One obtains the pullback connection

Kl, = [2]T Kl,.
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The structure of Ile is much simpler since it is the restriction to Gy, of the Fourier
transform of a regular holonomic module on the affine line. In addition, the sym-
metric power Sym* K1, appears in the pushforward 2]+ Sym¥ Kl, naturally in the
decomposition [1, p. 1662]

[2], Sym* K, = Sym* Kl, @ +/Z Sym* Kls,

where /z Sym* Kl, = (OGm, d+ g_;) ® Sym* Klp. In [2], Fresdn, Sabbah, and Yu

compute the de Rham cohomology and Betti homology for Sym* Kl,. In this paper,
we study the analogues for ,/z SymX Kl,.

1.1 Historical results and our results

Let Ip(¢) and K(#) be modified Bessel functions. Define the Bessel moments

[ee]

KMy (a, b) = / Io(H)* Ko (1) 41bdr, )
0

provided that 0 < a < k are non-negative integers, b € Z, and the convergence of
this integral. The particular Bessel moments of the form IKM,;(a, 2c — 1) appear
in two-dimensional quantum field theory as Feynman integrals [3-5]. From a math-
ematical point of view, these moments are realized as period integrals of Sym* Kl,
and /7 Symk Kl,. For the details, we refer to [2]. In that paper, Fresan, Sabbah, and
Yu developed the Hodge theory on symmetric powers of the generalized Kloosterman
connection Kl,, 1 of rank (n + 1).

Sum rule identities

In [4, (220)], the authors provide the following conjecture on the Q(sr) linear relation
of Bessel moments which is called the “sum rule” in their paper.

Conjecture 1 For each pair of integers (n, k) with n > 2k > 2, the following combi-
nation of Bessel moments vanish

n/2) .

Z (-nH" (2 >n"2m1KM2n(n —2m,n —2k) =0.
m

m=0

Later in [6, (1.5)], Zhou uses the Hilbert transformation to prove this conjecture.
Moreover, he also proves a “sum rule”:

Formula 2 For each pair of integers (n,k) withn — 1 > 2k > 2, the following
combination of Bessel moments vanish

L(n+1)/2] .

> o=pm (2 1>n"_2m+llKM2n(n —2m+1,n—2k—1)=0.
m—

m=1
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When the involved exponents of 7 in (1) are odd, these two identities are both
reproved by Fresan et al. [2]. The proof involves studying the connection Sym* K1, on
Gm whose period integrals are those Bessel moments IKMy, (a, b) with odd b. In this
paper, by studying the connection /z Sym* Kl on G, we provide proofs of these
two identities involving even powers of ¢ using a similar approach in Sect. 5. The key
point to consider the twisted connection ,/z Sym* Kl is that the period integrals of
V7 Symk Kl, are those Bessel moments IKMy (a, b) with even b. For example, we
have the following result:

Formula 3 (Corollary 28) For k = 4r 4 4, a multiple of 4, one has
"\ (k)2
> ( ) )(—nfnZJIKMkaj, 2i)
j=0 v
) (=) R IKRM(2r 4+ 2,20)  if0<i<r,
| D R PRME 2r +2,20) ifr +1 < <[5,

The notation IKMieg (2r+2, 2i) above denotes the regularized Bessel moments (see
Lemma 21). Roughly speaking, the regularized Bessel moments are obtained from
those Bessel moments IKMy (a, b) with parameters k, a, b that makes IKMg(a, b)
diverge but minus their divergent asymptotic. Therefore, our sum rule generalizes the
sum rules in [4, 6].

Q-dimension of Bessel moments
In [7], Zhou considers the Q-vector subspace spanned by the Bessel moments in C.

This vector subspace is finite-dimensional due to the sum rule. Similarly, we have the
following upper bound of the dimension.

Theorem 4 (Corollary 30) For any k and any 0 < a < | (k — 1)/2], the dimension of
the Q-vector space generated by the Bessel moments has an upper bound:

dim spang {IKMy(a, 2j) | j € (0} UN} < [(k + 1)/2].

For k even, the dimension of the Q-vector space generated by the regularized Bessel
moments has an upper bound:

dim spangy {IKM,® (k/2,2j) | j € {0} UN} < [(k +1)/2].

Note that our statement involves the regularized Bessel moments. This conclusion
is a more general result than the one given by Zhou.

Quadratic relations of Bessel moments

In [8], the authors prove a general result of quadratic relations between periods given by
a self-dual connection. We apply this result and obtain the quadratic relation between
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1230 P.-H. Chuang, J.-D. Yu

the Bessel moments. Under certain bases of cohomologies, let B be the topological
pairing matrix on Betti homology, D be the Poincaré pairing matrix on de Rham
cohomology, and P, P. be the period pairing matrices between these two homology
and cohomology. Then, the quadratic relations on these periods (Bessel moments) are
given by

PD'P. = (—DFQr /=1 1 B. )

The entries of the matrices P and P. consist of (Q-linear combinations of Bessel
moments and regularized Bessel moments, which are obtained in Sect.5. Moreover,
due to the rational structure of Betti homology and de Rham cohomology, the corre-
sponding pairing matrices D, B consist of rational numbers.

Note that the quadratic relations among Bessel moments do not depend on the
choices of the bases. The effect of changing the bases of these homologies and coho-
mologies is just the conjugation of the matrices P, D, P., B and thus on (2).

Determinants of Bessel moment matrix

Another interesting result is to compute the determinants of certain matrices consisting
of Bessel moments. In [3, Conjectures 4, 7], Broadhurst conjectures closed formulae
of the determinants of the following two r x r matrices M, and N, involving the
Bessel moments:

M, = (IKMy41(a, 2b — 1)) N, = (IKMy42(a, 2b — 1))

1<a,b=r’ 1<a,b<r-

Later, in [9], Zhou uses an analytic method to prove these two determinant formulae.
Using a similar method as Zhou, we give explicit determinant formulae:

Formula 5 (Corollary 39) For r > 1, we have

. . r(r+1) r(r—3) — a4
det (IKMp,—1(i —1,2j —2)),_, j<r=ﬁ V2 H—Zaﬂ
e a1 V2a 1
(r41)2 r—1 _
. . Jr 1 Qa + 1)~
det (IKMzr(l —1.2j- 2))151"]'57 = (7! r(r+3) (a + Datl”
(%) v2 a=1

1.2 Approach

In [10], Bloch and Esnault study irregular connections on curves and provide the
associated homology theory. Due to their results, we study the de Rham cohomology
and Betti homology of \/z Sym* K1, on G, and provide explicit bases in order to find
the periods.

In Sect. 2, we introduce the twisted k-th symmetric power of the Kloosterman
connection /z SymF Kl», which is the main object in this paper. We discuss the ratio-
nal structures on the de Rham cohomology and Betti homology of the connection.
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On the periods of twisted moments of the Kloosterman connection 1231

Moreover, since the connection is self-dual, we introduce its algebraic and topological
self-pairings. These pairings will play an important role in our computations.

In Sect. 3, we study the de Rham cohomology and the de Rham cohomology with
compact support of /7 Sym* K1, and write down certain elements in these two coho-
mologies. Next, we introduce the Poincaré pairing between them and compute the
pairing with respect to the elements we have constructed. Using the dimension result
of de Rham cohomology, along with the non-vanishing determinant of the Poincaré
pairing, in Corollary 14, we conclude that the explicit elements in de Rham cohomol-
ogy form bases.

We study parallelly the Betti homology of /z Sym* K1, in Sect. 4. Since our ambi-
ent space is a non-compact space C*, we need to modify our Betti homology theory
by allowing the chain to go to 0 or co. By controlling the growth behaviors of the
horizontal sections, we study the moderate decay Betti homology and rapid decay
Betti homology on /z Sym* Kl,. Similarly, We first write down some elements in
the moderate decay homology and rapid decay homology and compute their topolog-
ical pairing explicitly. Moreover, by the duality of de Rham cohomology and Betti
homology, the dimension of Betti homology is the same as the de Rham cohomology.
Together with the topological pairing, we conclude that they are bases in Corollary
20.

Finally, in Sect. 5, we compute the period pairing between the de Rham cohomolo-
gies and the Betti homologies and interpret them in terms of the Bessel moments.
Note that our variety G, = Spec Q[z, 72711 and the connection JZ Symk Kl, are
defined over QQ and therefore, the de Rham cohomology and Betti homology are nat-
urally endowed with a Q-vector space structure. From the dimension constraint of
homologies, after computing the period pairing, we obtain the Q-linear relation of
Bessel moments (Formula 3) and an upper bound of (Q-dimension of space spanned
by the Bessel moments (Theorem 4). In addition, the self duality of \/z Sym* K1, gives
quadratic relations between these Bessel moments (2).

In Appendix A.l, we provide an accurate analysis of the symmetric powers of the
modified Bessel differential operator. The first usage belongs to Sect. 3, which enables
us to determine the dimension of the de Rham cohomology Hle (Gm, JZ Sym¥ Klz).
The second usage belongs to Appendix A.2, which allows us to analyze the leading
term of the Vanhove operator. This helps us to obtain the determinant formula (Formula
5).

2 The Kloosterman connection and its twisted symmetric powers

In this section, we recall the definition and basic properties of the Kloosterman connec-
tion and its symmetric powers from [1, 2]. Besides, we recall the twisted connection on
G obtained from the decomposition of the pushforward of trivial connection under
the cyclic cover of Gp,. Combining these connections, we obtain the twisted sym-
metric powers of the Kloosterman connection. Moreover, since these connections are
all self-dual, the duality induces the algebraic pairings on them and the topological
pairings on the sheaves of horizontal sections.
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1232 P.-H. Chuang, J.-D. Yu

2.1 Self-duality and pairing on Kl,

The connection Kl = (Og,,.vo ® Og,,.v1, V) consists of a rank 2 free sheaf on
Gm,; = SpecQlz, z~!'] with basis of sections vy and v; and the connection V on it
given by

0
ZV (v, v1) = (vo, V1) (1 8) dz.

Thatis, zVvg = v1dz and Vv; = vpdz. The connection KI5 is self-dual in the sense
that there exists an algebraic horizontal pairing (, )¢ on it:

01
<<Uiv Uj)alg)()gi,jfl B (_1 0) 7

such that A : Kl — KIy by (vo, v1) + (v, —vy) makes the following diagram
commute.

Kl x Kl &) Og,,, d)

Ax 1l /
natural

K]E/ x Kly

Here K13 denotes the dual connection with the dual basis {vy, v{}.
Recall that the modified Bessel functions Ip(¢) and Ko(¢) satisfy the differential
equation ((18)% — 13) y = 0 and the Wronskian relation

L) Ky(t) — Iyt Ko(t) = s (€)

Under the change of variable z = %, the differential equation ((¢9,)> — t%)y = 0
becomes 4((zd;)> — z)y = 0. Define Ao, By be the fundamental solutions to the
differential equation ((zd,)> — z)y = 0 by rescaling the modified Bessel functions. In
addition, define A1, B; by zd, differential of Ay, Bo:

Ao(2) = —210(2y/2),  A1(2) = 20:Ao(2);
Bo(z) = 2K0(24/z),  Bi(z) = z9;Bo(2).

Here, the function /7 is taken to be the principal branch on the range |argz | < 7.
For other z, these functions are defined via the analytic continuation. Throughout this
paper, the multivalued functions such as z¢/2 or z=1/4 are all treated in this way without
a mention. The functions Ag(z) and By(z) are annihilated by the operator (z 81)2 -z
and real-valued on the ray R~ ¢. This gives

0;A1(z) = Ap(z),  9;B1(z) = Bo(2).
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On the periods of twisted moments of the Kloosterman connection 1233

Together with the Wronskian relation AgB; — A1 By = 2 from (3), we obtain a
basis of horizontal sections of V on Kl

1 1
eo) = —(Agv; — Ajvo), e} = ———(Byv; — Bjv). 4
0 2(01 1v0) 1 2:1\/—_1(01 1v0) @

Denote K12V the local system of Q-vector space generated by e, ¢;. There exists a
topological pairing (, )top = 27 +/—1(, )aig ON KIZV:

01
((eia ej)top)ogi,jfl - <_1 0> '

2.2 Rational structures and pairings on (O¢,,, d + %d;z)

Consider the double cover [2] : G, — G ; induced by the ring homomorphism
Qlz,z 1 = Qlt,t7 ",z 2. LetT = (Og,,,»d) be the trivial connection on
Gm,;. Via the ring homomorphism Q[z, z7'] — Q[t,¢7'], we view Q[z,7 '] as a
Qlz, z~!1]-module. Then, from the decomposition of Q[z, z~]-modules

Qlt,t™"1=Qlz.z @1 Qlz, 27",
the pushforward connection [2] 7" decomposes into the direct sum
g, D)@ (t “Ogy,..» d) .

The second component (t - OG,,..» d) is isomorphic to (Og,, ,,d + %%) via the
following diagram

A9 =gy f & |
OGn: — 06z ® QGm,z

tlz s . )

d
t- OGm,z —_—t- OGm,z ® Qé}m,z

dz

The dual connection of (Og,, ., d+ %dz—z) is given by (Og,, ., d— ?), and the two

1
2
are isomorphic via multiplication by z, that is, the following diagram commutes.

d+3 &
23 1
OGmyZ OGm,Z ® QGm,Z

ZlZ . L e llZ

Og,,.z —5 0g,,.: ® Q%}m,z
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This induces a perfect algebraic horizontal pairing (, )aig on (Og,), ., d+ % %) given

by
(1’ 1)alg =Z.

On the other hand, the rational structure of the local system of horizontal sections

of (Og,,,, d) is generated by 1. Under the isomorphism (5), the rational structure of
1d

b

dual connection (Og,, ,,d — %df) has local system of horizontal sections generated

by /z. This induces a rational topological pairing (, )ip on (Og,, ., d + %%)V

local system of horizontal sections of (Og,, ., d + ) is generated by % = % Its

1 1 >
— =1
<ﬁ VZ iop
2.3 Algebraic and topological pairings on /z Sym* K1,

The k-th symmetric product of Klj, Symk Kly, is a rank k + 1 free sheaf over Og,,
with basis of sections

1
vgv]f“:@ o(v(?a@v?k*“) a=0,1,...,k,

O’EGk

where Gy is the symmetric group on k elements. It is endowed with the induced
connection from (Kl,, V). After twisting with the connection (OGm, d+ %%), we
define

1d
VZSymF K, = <O@m, d+ §—Z> ® Sym* Kl,.
Z

The induced connection V on ,/z SymF K1, is given by
a 1
Vvﬁv’fw =(k— a)ngv/f*‘“ldz + —vgflvlff’”ldz + Z—U(‘)lv/f*”dz. 6)
Z z

Note that /z Sym* Kl, is the same sheaf as Sym* K1, but endowed with a different
connection.
Via the self-duality on Kl, and on (O(;m, d+1 df) we have the perfect algebraic

2
pairing (, )4 0N VZ Sym* Kly:

(O
VZSymt Klp x /z Symk Kly, — % (Og,,, d),
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On the periods of twisted moments of the Kloosterman connection 1235

given by
<v]6 “vl,vg bv{’>alg—z5ka+b( 1) —_— (2n\/_)k< k= ae‘]‘,eg —b lf) e
Indeed,

- ( 8k—b o U(]@b)>

k—. k—b b
> e @ P, T @ v )ag ki,
0,716

1 1
k—a k=b_ b 2 ®k—a ®a
<U0 oo U1>alg <|6k| G< @ ) | Skl
ae@k IEGk alg
1

T w2

x “’l)alg«% RESE)
b

a!
(k,)z(tSk apklalb!(=1)%) - z = 28, atp(— 1)“ .

By the definition of e, e in (4) and the Wronskian relation A031 A1Byp=2,a

similar computation shows the formula for the algebraic pairing (eo e, eg bell’ )alg-

The local system (,/z Sym* K1)V is a Q-vector space generated by the horizontal
sections

1
Eeg’; Z (¥ ®eP*), a=0,1,...,k, ©)

UEGk

which are the products of the horizontal sections of the connections ((’)Gm, d+ 1 dz)

and Sym* Kl,. The topological pairing (, ) on K12v induces a topological pairing on
(Sym* K1)V and thus on (,/z Sym* K1,)V:

)top

(VzSymF K1)V x (/z Sym* K1)V ——2— Q,

where @Q on the right hand side is the constant sheaf associated with the field Q on
G- This pairing reads

a'b!
kU

1akal
— , —
<\/ZOI «/EO

b _k—b k—
e > = Skatp (=17
top

by the similar computation as above.

3 The de Rham cohomology

In this section, we study the de Rham cohomology of the twisted Kloosterman con-
nection HC%R (Gm, Vz Sym* Kl,) and its dual, compact support de Rham cohomology
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1236 P.-H. Chuang, J.-D. Yu

HJR cGm, V2 Symk Kl,). We will write down certain elements in these cohomolo-
gies explicitly and compute the Poincaré pairing between these elements. Finally, we
conclude that these elements form bases of these two cohomologies in the end of this
section.

3.1 Dimension of H (Gm, +/zSym*Kl)

Proposition 6 For the connection \/z Symk Kl on G,,, we have
k+1
dim H;R<Gm, Vz SymF Klz) = {%J )

Proof In [11, Lemma 2.9.13], we have the following formula.

Lemma7 On Gy, with parameter z, let D = Og,, [9;] be the ring of all differential
operators on Gy,. Write 0, = z9.. For a non-zero element L € D, write L into a finite
sum of the form ), z' P;(0;), where P;(x) € Q[x]. Define integers a, b by

ap '=max{i | P #0}; by :=min{i | P; # 0}.

Then the Euler characteristic of the D-module D /DL is given by x (G,,, D/DL) =
—(aL — br).

In this proof, we will follow the notations as in this lemma. Now, the differential
operator on G, associated with the connection Kl is given by 912 —z which annihilates
vo and has fundamental solutions A¢(z) and By(z). Then, the differential operator for
Sym* Kl, is given by the k-th symmetric power of 922 — z,1.e., the differential operator
annihilates 135 and has fundamental solutions ABB(I)‘*’ fori =0, ..., k. Denote this
operatorby Li11 € D.For /z Sym* Kl,, the corresponding differential operator reads
%LH]\/E =: L since the solution is now given by \/LEABB(])‘_’ fori =0,1,...,k.

Recall in Sect. 2.1, Ly = (t3;)> — ¢2 is the differential operator annihilates Io(¢)
and Ko(z). Write L4 to be the k-th symmetric power of (tE),)2 — 2. That is, Li41
annihilates 1§ (t)Ké‘*”(t) fora =0, ..., k. As discussed in Sect. 2.1, the change of
variable z = % sends Ly to Zk+1. By Proposition 37, we have that asz+1 =2 Lk%lj,
br,,, = 0. Therefore, by the degree 2 change of variable z = IT’ we conclude

k+1
Ak = L%J’ bzk+1 =0. - )

Using the fact that \%GZ\/E =0, + % we have %Lkﬂﬁ =P (6. + %)
whenever Zk+1 =y 7 P; (6;). This shows ay = af, ., and by = bzkﬂ. Therefore,
by Lemma 7, we have

X (Gm, /z Sym* K12) — % (Gm, D/DL) = — VleJ .

Similar to the behavior of Iy and K¢ [12, Sect. 10.30(i)], Ag is holomorphic at O and
has exponential growth near infinity, and By has a log pole at 0. These imply all of the
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On the periods of twisted moments of the Kloosterman connection 1237

solutions \%ABBS_’. are not algebraic solutions, and thus H(?R (Gm, V7 Symk K12) =
0. Hence, combining the fact that Hd2R (Gm, Sym* Klz) = 0 by Artin vanishing theo-
rem, we conclude that Hy (G, v/z Sym* K1) has dimension L%J o

Remark 8 In[11, Lemma 2.9.13], Katz provides the proof of Lemma 7 only in the case
Gm,c which is over C. Yet, the same proof still works in our situation G, ¢ which is
over Q.

3.2 Compactly supported de Rham cohomology

Write k' = L%J. Consider the k' 4+ 1 elements [véz’ % f:o in Hle((Gm, ﬁSymk
Klz). We will prove these elements form a Q-basis. (See Corollary 14.) The
Poincaré dual of the de Rham cohomology is the de Rham cohomology with
compact support. An element in the de Rham cohomology with compact sup-
port Hle,c(Gm,\/E SymfKl,) is represented by a triple (£, 7, w), where w €
HJx (G, +/zSym* K1) and &, 5 are formal solutions to V& = Vi = w at 0 and
oo respectively (see [8, Corollary 3.5]). The solutions are provided by the following
lemma.

Lemma9 Suppose that k = 0,1,3 mod 4. For 0 < i < k/, there exists (&, 7n;) €
(V2 Sym* Kb)5 @ (v/z Sym* Kby) o, such that V& = Vi = vz <.

On the other hand, let k = 2 mod 4, say k = 4r +2. For 0 < i < k' withi #r,
there exists (§;,1;) € (ﬁ Sym* Klz)a @ (ﬁ Sym* Klz)OAo such that

dz dz
V& =V = v'éz’? = Vk,i— rvﬁz P

where yi n € Q are the coefficients in the asymptotic expansion of (— Ao (z) Bo (z))k/2
given by (11) below.

Proof Near 0, we want to find
k k
g =) &a@uivi ™ € P Qlzlvgvi
a=0 a=0

such that V§; = voz’ & Using the connection formula (6) on VZ Sym* K1, we need
to solve:

d 1 :
FEk@ + (k= DE @) + 5@ =2
z 2z

d
oia@+ Kk —a+ Dia1(2)
Z

1
—&4.(z)=0fora=1,2,---  k—1,
2z
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1238 P.-H. Chuang, J.-D. Yu

d 1 1
—&0(2) + =&1(2) + =& 0(z) =0.
dz b4 2z

Write & o = Y v &ian2”. We solve & 4, recursively on n. Suppose that we
have solved &; , ; for j < n. Compare the coefficient of 7"~ ! of the above system of
equations and get

1
| n+ 2 Ei,O,n
n+5 k il
7 i,l,n
n -I— k—1 &i2n | = lower order combinations.
n—+ % 1 gi,k,n

Since the first square matrix is invertible, &; , , is determined uniquely. Thus, we

find & € @ Q[z]v§ v0 % such that V& = voz’ % In k = 2 mod 4 case, we only

need to replace &by & — vki—rkr.
Next, we turn to investigate the formal solutions at oo using horizontal frames. We

have the modified Bessel functions have the asymptotic expansions at % [13, Sect.
7.23]

> (2n =121
szz TR

2n — DHIH? 1 3
Ko(t) ~ e~ \/>Z( pyr (&1 DI ”23n ‘) ) - |argt| < Sm, (9)

Il—
(2n—DIN3 1
23ny) 12n°

Ip(t) ~ ¢

1
larg?| < s (8)

lo)Ko(®) ~ = Z

(10)

Here, the notation n!! is the double factorial of a positive integer n defined by

51-1

nt= [ @ —26.
k=0

Letw = % be the local coordinate at z = oc. For k even, by the last asymptotic
expansion, we have

(—Ao@ Bo@)** ~ w3y "y yw”, (11)
n=0

where yx 0 = 1 and y, , > 0 for all n > 0. For convenience, we set y;, ; = 0 for all
Jj <O.
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On the periods of twisted moments of the Kloosterman connection 1239

Following the notation in (4), let us set ey = m+/—1le;. Then %ﬁegak’“ are
horizontal sections. Using the Wronskian relation AgB; — A1 Bg = 2, we have vy =
Bpey — Age;. Then, we obtain

k k—a
.dz K\ (—Aog)*B 1 _
k_i § : 0 k a ¢
YoZ z (a) wit3/2 ﬁ rdw.

a=0

To solve the formal solution n; of Vn; = véz’ de , We first solve 1, , for each i, a

such that

(—Ao)* By~
dnia = —
Then, n; = — Zk ( )n, a }eé a e{ is the desired solution. Moreover, since the

function n; , have w*/4 and the exponential factor (see (12) below), we need to justify

that n; lies in @ﬁ:o Q[[w]]vgvll‘ @ (not just in EB —o Qw!/4, e_l/f]]v“ k=ay,
Near oo, we have the expansion

(—Ao)aB(I)Cia ﬁk*Zae—Z(k—Za)/a/wwk/4—i—3/2 . Fi,a’ a# %
- = ) k/2

3/2 4-i—3/2 2n—DHIH3 k

Wit WA (e, Gt ) L a=4,

where F; , € 1 + /wQ[/w]. When a # %, we can find an antiderivative n; , of

—An)4 kaa . .
(w0+3/2° with the expansion

k—2a
T o—2k=20) kA= (12)

Ni,a = k —2a i,a»

for some G;, € 1+ /wQ[/w]. We analyze ni,a%}eo “g4. Write e “2% back to

the expression in basis vg vll‘ =5,

ek 18t = 27  (Aguy — Alvo)"*“ - (Bovi — Bjvp)°
=27t VE f 2 (Fiuo — Fao)! ™ - e Ve /" (G vy — Govo)
T
_ =k 2(k—2a)/z j=2a—k . k—a - a
=2""e NZa (Frvo — Fov1)" "% (G1v1 — Gavp)©,

where Fy, F>, G1, G, € 11/4(@[[z_1/4]]. Thus,

27k . _
= mwkM 126G, o (Fivg — Fau)f=9(Grvy — Gawg)”,

—a—a
1

1 k—
nta\/zo
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1240 P.-H. Chuang, J.-D. Yu

where Fi, F2,G1,Gy € z'/4Q[z'/4]. We conclude that the desired 5, =
— Zk ( )n, a }eg a ¢{ has no exponential factor as a combination of monomials
g byb, that is, 7; lies in @ Q[[w”“]]v” k=a,

Next, we will prove ; lies in @ 220 (@ﬂwﬂvo ~% by showing 7; is invariant under
the Galois group action. Let o : w!'/4 > /=1 wl/ 4 be the generator of the Galois
group of the extension C(w'/*) of C(w). From the monodromy action [12, 10.34.5]
of Iy, Ko, the o action on A;, B; is given by

1 .
o (Aj’ Bj) = (n—\/_—lBj, —JTV—IAj> for j =0, 1,

and thus on eg, €1 by

o (e, €e1) = ( El,—ﬂ'«/—_1€0>; o <e§ “_a> — (\/_) —k 2a—k a—k —a

1
w4/ —1

Moreover, we have

Hence, when k = 1, 3 mod 4, the element 7; is fixed by o and

ni =—Z< >771a ek—agt e@@[{w]}vo k=a,

This gives Vi; = v’éz’ dzz
a pk—a
When k = 4r+4 and a = 2r +2, the exponents of w of the expansion of %

are in % + Z and one takes

writ1/2
. ~— G,
M e

where G; € 1 + wQ[w]. More precisely, we have

r—i+1/2
Gi=1 .
i +Zr—l+1/2+ Yi,nW

Moreover, 7;, 2r+2%§(e051)2’+2 has no exponential factor as a combination of

b

monomials vk v1 and is invariant under o. Hence, when £k = 0 mod 4, we take
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On the periods of twisted moments of the Kloosterman connection 1241

an element

k k
k [y k—
ni=-y_ <a>ni,aﬁeo ¢ e g@[[d]vé‘vl ‘.

This gives Vi, = v’ézidz—z.
Now, suppose that k = 4r + 2, a positive integer congruent to 2 modulo 4, and

a = 2r + 1. Using the expansion (11), we have the residue:

(—A0)* By

Resw W = Yk,i—r>

which vanishes if and only if i < r — 1. Therefore, for i > r, there exists

Mi 21~ w' - H;
such that

dniarir = (w772 — i w ™ 2) (Ao By aw,

where H; € 1 + wQ[w]. Also, n; 2741 \/l;(eoél)wr1 is invariant under o. Moreover,
Ni 2r+1 % (ege1)* 1 hasno exponential factor as a combination of monomials vgfb vf .

Thus, we have

dz dz £ (k\n Yhi—rT
k_i Y% k i,a — Vki—-rlra k—aq—
U()Zl ? - Vk,ifrvozr? =V]|- E (a) — = ¢ ae{f

a=0 ﬁ
a#k/2
_( k )ni,2r+1e2r+lz2r+l
ki2) vz 0 ! ’
k
and hence we find an element 7; in @Q[[z]]vgvlff" such that Vi; = v’ézldz—Z -
a=0
Vk,i—rvl(gzrdz_z- ]

Now, we define some elements in the de Rham cohomology and the de Rham coho-
mology with compact support. In next subsection, we will prove that these elements
form bases of the corresponding cohomology spaces (see Corollary 14).

Definition 10 In the de Rham cohomology Hjy (G, +/z Sym* K1), the classes wy;
are given as follows.
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1242 P.-H. Chuang, J.-D. Yu

1. When k = 0, 1, 3 mod 4, define the ¥’ + 1 elements:
.d
Wk,i = vlgzl—Z fori =0,1,2,...,k.
Z

2. When k = 2 mod 4, write k = 4r + 2 and define the k’ elements:

ki dz : .
UOZ?» OSlSr_]3

Wk,i = ki dz k. rdz ;
Vo2 T = Yki—rvpZ T r+1=<i<2r,

where yx, € Q are the coefficients in the asymptotic expansion of (—Ag (z)
By (2))*/? given by (11) above.

From the Lemma 9, we define the elements in the compactly supported de Rham
cohomology.

Definition 11 We define certain elements in the compactly supported de Rham coho-
mology Hle’c (Gm, J/Z Sym* Klz) as follows.

1. When k =0, 1, 3 mod 4, define k¥’ + 1 elements
@r,i = (&, mi, wii) for0 < i <k,

where V& = Vi, = wy ;.
2. When k = 2 mod 4, write k = 4r + 2 and define k’ elements

o = Eni,op)for0<i<r—landr+1<i <Kk,

where V& = Vn; = wx ;.
3. In the case that k = 2 mod 4, write k = 4r + 2 and further define

~ o
Moryl = (o, 2’<ﬁ(eoe1)2’+‘, 0) € HC}R,C(Gm, V/z Sym* K12>.

Here, e1 := m+/—1e; and eg, e are horizontal sections of Kl, defined in (4).

Remark 12 The pair of the formal solutions (&;, 1;) is unique except in the case that
there are solutions (¢, n) to V& = Vi = 0. The latter happens only whenk = 2 mod 4.
In this circumstance, we fix the choice of (&;, n;) to be the one constructed in the proof
of Lemma 9. These expressions will be used in the computations of Poincaré pairing
and period pairing in the rest of this paper.

Further, we define the middle part de Rham cohomology, Héﬁ d (Gm, JZ Symk Klz) R
to be the image of the projection Hjy .(Gm, v/Z SymF Kb) - HR(Gm, vz SymF
Kb), (¢, 7, ®) — o. We therefore have

1 k . / — .
ok € Hmid<Gm, JZ Sym Klg) for0 <i <k whenk =0, 1,3 mod 4;
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On the periods of twisted moments of the Kloosterman connection 1243

ki € HrLid<Gm, VzZ SymF K12> for0 <i <k/,i#rwhenk =4r+2.

We may regard H. (G, J/z Symk Kly) as a quotient of Hle’c (G, v/z Sym*
Klz) containing the class of elements @y ;.

3.3 Poincaré pairing
We have the following Poincaré pairing between the de Rham cohomology and the

compactly supported de Rham cohomology. Recall the algebraic pairing (, )y, is
introduced in Sect. 2.3.

Hlg (G, VZSym* Klo) @ Hly (G, vz Sym* Kl ) — Q(—k — 1)

(fﬂ\O» fn\ocn a)) ® nt > RCSZ (;Vl\(), n>alg

+Resy (Moo, Mg -

Here, a one-form 7 occurs in (71, 1)a1g. This algebraic pairing means (71, f)agdz
whenever n = fdz. The notation Q(—k — 1) is the (k 4 1)-time tensor product of
the Tate structures Q(—1). As a vector space, Q(—k — 1) is nothing but Q. Here, in
consideration of Hodge filtrations, we use Q(—k — 1) instead of Q to indicate the
Hodge filtrations on both sides respect the Poincaré pairing. Note that the Poincaré
pairing induces on the middle part de Rham cohomology which we still call it { )pgin:

> o1n
HYo(Gm, ZSymt K1) @ Hyo (G, 2 Symt Ky ) =2 @(—k — 1),

Proposition 13 Under the notation as in Definition 11, for j > 0, we have the Poincaré
pairing

0 ifi +j <k —1, k:arbitrary,
i (—2)’</§—ﬁ5 ifi+j=4k, k=13mod4,
~ ok _
@i, Vg2! — = (i) e
< Y Z>Pw.n 2,{(+11/2)1f1+]:k/,k50m0d4,k:4r+4,
(k/z)

—ls ifitj =K, k=2mod4, k=4r+2.

Moreover, if k = 4r + 2, we have
< X sz> _]o ifj<r,
mar+1, Vgl = .
< | poin Yk,j—r lf] >r.

In particular, the Poincaré pairing matrix between the k' + 1 elements in Definition

/

k
11 and the k' 41 elements {véz’ 4 } o in HdIR (Gm, 7z Symk Klg) is non-degenerate.
i=
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1244 P.-H. Chuang, J.-D. Yu

Proof In this proof, we will follow the notations as in the proof of Lemma 9. We first
discuss the residue at z = 0. For any k and 0 < i, j < k’, we compute

k_jdz

k—
E Resz<$lav0v ”,voz’—>
< alg

.dz
Res; Sl,voz —
z alg a=0

. dz
= Res, <Ei,ovlf, vlgz-’ —
< alg

= Res, ((—l)kéi,ozj> =0,

where & o € Q[z].
Next, we discuss the residue at z = co. When £ = 1, 3 mod 4 and for any 0 <

i, j < k', we compute

k k —a a
k idz
Z(a) Resw<ma T "">
=0 < alg
k a(f (- AO)th b k be[lyd >
alg

Z <z>( )Resw <maeoﬁe T it ﬁ

a,b=0

1 k 1
= 5% Z(_l)a (a> Resy, (ni,am(_AO)kiaBgdw>

lll
sz( il Res(“‘ DATIZITAG,  F gt

Resy, <771 s U()Zj >

a

(K KL i j =k

0 ifi+j<k'—1,
31

where G; 4, Fj r—a € 1+ JwQ[/w] and the last equality follows from [2, Lemma

3.18].
When k = 0 mod 4, write k = 4r + 4. Forany 0 < i, j < k', we compute

k k
d 1 -1 .
ReSw <nl’ v](;Z] ZZ> — ? E ﬂ Resw (w(k_l)/z_l_]_lGi,aFj,k—adw)
alg

= k —2a
a;é%
(—D2 (& 1 242
2—k k/2 Resw 77i,2r+2 ]Jrg/z( AOBO)r dw
k k
1 (_1)a( ) k—1)
_ S~ 7 \a) /2— 1
_zkz k—2; Resw< i—j- Gi, Fkadw)
a=0
a;ﬁ%
(i72) R
+ Res,, (w T -GiF2,+2dw)

k(r—i+1/2)
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0 ifit+j <k -1,
- —(k]/(Z) ifi+j=k
KG—it1/2) J =5
where Gig, Fjr-a € 1 + JwQ[Jw], Gi € 1 + wQ[w] and Fpqn =

2m—)m? L\ T2
St Gy "
When k = 2 mod 4, the computation is similar to the case k = 0 mod 4.

Finally, we compute

<2k(€051)2r+1 ' ]dZ>
Resy { ————=—, vgz/ —
\/E alg
k—b—b

k _ _
B [ NN
Uy
b \P vz W vz alg

_ _( k )R <2k(eogl)2r+l (—AOBO)ZH—] (6021)2r+1dw>
k2) N R Wit alg

2r+1
_ 2r+2 (—AoBo)
= (—1) r Resw (de

o0
= Res,, (u)k/4j3/2 Z Yi.n w"dw)

n=0

0 if j <r,
Yk, j—r lf] >r.
Combining these residues, we obtain this proposition. O
Corollary 14 (Bases in de Rham side) Let k be a positive integer.
. K
1. HJR ((Gm, /Z Sym* Klz) has basis {vng dz—z] ‘7
2. HL}R,C(Gm’ V/Z Sym¥ Kb has basis

j=0

(@), ifk =0, 1,3 mod 4,
{UN)k,j};;:) ) {67)k,j}l;:r+1 U{my 11} ifk=2mod 4 withk = 4r + 2.

3. Hig ia(Gm, +/zSym* Kbo) has basis

(o},  fk=0.1.3mod 4,
{ori)iZy Ulorili,,, ifk=2mod 4withk = 4r +2.

Proof Putting the dimension result in Proposition 6, the non-vanishing determinant of
the Poincaré pairing matrix in Proposition 13 together, we obtain this corollary, thanks
to the following simple observation in linear algebra. O
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Fact15 Let V and W be two n-dimensional vector spaces over a field F. Suppose that
():V x W — Fisa bilinear pairing. If {vi,...,v,} C Vand {wy,...,w,} W
are subsets of vectors such that the matrix

((Ul', wj))i,j:l...n € M, (F),
is invertible, then {v1, ..., vy} is a basis of V and {wy, ..., w,} is a basis of W.

4 The local system and the associated homology

In this section, we study the rapid decay homology and moderate decay homology of
the local system (/z Symk Kl)V. We write down the explicit cycles in these homolo-
gies and compute their Betti intersection pairing. In the end, we finish this section by
concluding the bases of these two homologies.

In order to write down the cycles in the homology, we need to understand the
monodromy action of the horizontal sections of ./z Symk Kl,. Recall {eg, e} is the
basis of the local system K12V defined in (4). From [12, 10.25(ii)], the modified Bessel
function Iy(¢) is entire. On the other hand, K((¢) extends analytically to a multival-
ued function on C* satisfying the monodromy Ko(e™ 1) = Ko(t) — /= 11o(t)
from [12, 10.34]. This implies eq, e; undergo the monodromy action 7 : (eq, 1) >
(€0, e1 + ep) near 0. Then the basis in (7) of the local system (/z Symk Kl,)V satisfies

T : ﬁe(‘;el]‘_” — :—éeg(el + ¢0)* % near 0.

4.1 Rapid decay cycles

Write k' = Lkz;lJ Denote the chains on C*:

oo = the unit circle, starting at 1 and oriented counterclockwise;

o4 = the interval [1, oo), starting at 1 toward + oo.

By the asymptotic expansion (8), (9), the horizontal sections %eg ell‘ ~¢ decay expo-
nentially along o fora = 0, 1, ..., k’. We have the following lemma describing some

elements in the rapid decay homology.

Lemma 16 For 0 < b < k', the elements

k—b
1 1 1 1
Sp =01 ® —ebef Tt — ® — bt 4 di—_p(n)o " ® —ebek_b, 13
b + NaaL 500 N n§:1kb()o N (13)
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are rapid decay cycles in H{d(Gm, Wz Symk Klz)v), where d, (i) are real numbers
satisfying

n
1
> dui) )" = —5 form=1,2,....n

i=1

i (1) S

In fact, by Cramer’s rule, one can write d,, (i) = n'2”+] Si—1 uniquely.

Proof We need to prove that d,(i) makes §, into a cycle, that is, 36, = 0. The
boundaries of chains o and oy in 8, support at the point 1 € C*. It suffices to check

that the coefficient of 1 € C* in 94 is 0. Indeed, considering the monodromy action
T described above, a direct computation shows the coefficient of 1 € C* in 94, is

1 b _k—b 1(1 b _k—b Ly k—b)
—epe — = | —=¢pe + —ep(e; +e
201 [01 ﬁo(l 0)

_ 1 _
+de »(n) (—e e’f b_ ﬁegm + 2nep)k ”)

Loy 1 L ks (k b>1b+/kb1
= —epe]  — = | —=e¢pe; ~ +
\/E 0¢1 2 «/2 0¢1 g \/‘ € €
k—b k—b
+ 3 diy() A b kb _ 3 (k *b)(zn)m eyt kb
N 0€1 m ﬁ ¢l
_ b
1 k—b ] b+ k b— k b b k—b—
= ( _ )7 e z( )de O

n=1

kb)( 1 X ) bt k—b—j
= . - — di—p()2n) | —e e =0,
() (4 S smn) ot

n=1

where the last equality is the assumption on real numbers d, (i). O
From this lemma, we have k' + 1 elements {Bb}’g/zo in the rapid decay homology

HY(Gp, (v/zSym* Kl»)V). At the end of this section, we will prove these elements
form a basis (see Corollary 20).

4.2 Moderate decay cycles
Define one more chain
R4 = the half line [0, co), starting at O toward + co.

By [12, Sect. 10.30(i)], the modified Bessel function Ky () has log pole

at 0, so the horizontal sections \I[eoe1 ¢ decay moderately along R near 0
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fora = 0,1,..., L%J. Moreover, by the expression (10), (IoKp)? decay poly-
nomially along R, near oco. Then, we define the moderate decay cycles in
H{" (G, (vzSym* KIp)Y)

1 k
ya=R+®Eege’;*“, fora=0,1,2,...,bJ. (14)

They are indeed a cycle. The proof is the same as the above lemma by taking the
homotopy as the radius of oy tends to 0 and o tends to R.. Since a rapid decay cycle
is a moderate decay cycle as well, we have the natural map

H{Y(Gp, (zSym*K1p)V) ——— H(Gp, (zSym*KLp)"Y).

This natural map sends 8, to y, for b = 0, 1, ..., k' by the homotopy argument.
(k—2)/4
. k/2
The following lemma shows when £k = 2 mod 4, E Y 82 belongs to the
; J
Jj=0

kernel of this map.

Lemma 17 In H"¢ (G, (v/z Sym* K1)V, one has

k/4

k/2 ,
> 0 )y2i =0ifk =0mod 4;
; 2j
Jj=0
k—2)/4
“2/4 .
> ")z =0ifk =2 mod 4.
— 2j
J:

Proof Let p : {(x,y) € R?* |0 <x,y,x+y <1} — C be the open simplicial 2-
chain

o (x,y) =tan w exp (4«/—1 tan~! X) ,
X
that covers C once. If k is even, by the asymptotic expansion (10), the singular chain
A=p® (L(el - eo)k/zek/2> ,
\/E 1

has moderate growth. The boundary of p consists of two positive real lines R . From
the monodromy action T : (eq, e1) > (eg, e1 + €p), one computes dA:

1 /2 1 k/2 k/2
IAN=R, Q| —(e] — e k/2, >~|—R ®<—e eo + e/
+ (ﬁ( 1 —e0) ' e + NG (eo +e1)
k/2 k/2

(k)2 1 k/2 [
= (—1)l< . >R+®—e’e "+ ( )R ® —epe
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/2

=Y+ 1))(()

When k = 0 mod 4, this reads

k/4
1 k/2
—dA = Z ( . ))/2]'.
2 s 2j
Thus, /: (2/] )ygj is homologous to zero in H{m’d (Gm, (Vz Sym* K1,)V). The
case when k = 2 mod 4 is similar. O

Here, we have written down the 1 + L’%J elements {ya}}lk:/éJ in the moderate decay
homology H{"¢(Gn, (y/z Sym* Kl»)V). At the end of this section, we will prove that
these elements form a basis modulo the linear relation given in the above lemma (see
Corollary 20).

Similar to the middle part de Rham cohomology in the previous section, we define
the middle part Betti homology H lmid (Gm, (/z Symk Klz)v) to be the image of
led (Gm, Wz Sym* Klz)v) in Hlm"d (Gm, Wz Sym* Klz)v). More precisely, we have

¥i € HM(Gp, (v/zSym*KI»)V) for 0 <i < k' when k =0, 1,3 mod 4;
y; € Hmld( ms (v/Z Sym* Klz)v) for 1 <i <k’ when k =2 mod 4.

Also, we may regard HlInid (Gm, Wz Sym¥ Klz)V) as the quotient of
H{d(Gm, Wz Symk Klz)v) containing the class of elements §,. At the end of this
section, we will prove these elements form a basis (see Corollary 20).

4.3 Betti intersection pairing

We use the topological pairing ( ), introduced in Sect. 2.3 to define the Betti inter-
section pairing

HI (G, (7 Symt K1) ¥) x HM(Gyy, (/Z Symk K1)Y) Ll Q

(8 =),0i®Sq,Y = Z_,‘ ;i ® ST/) ' Z Z <S<fwxf./>top .

i,j oiNtj

Here, we need to find representatives of § = } 0; ® s5; and y = }_7; ® sq;
in their homology classes respectively such that any two chains o; and 7; intersect
transversally for all 7, j. Then, for each pair (i, j), o; N 7 consists of only finitely
many topological intersection points. The sum over o; N 7; is then the sum of the
topological pairings of the corresponding sections at each intersection point. Note that
the Betti intersection pairing induces on the middle part Betti homology which we
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still call it (, )Beti:

Hmld(Gm’ (J_Sym Klz)v) X [{mld(((}m7 ([Sym Klz)v) ) Betti Q.

To compute the topological pairing with respect to the elements we had written
down, we need to introduce the Euler numbers and Euler polynomials. The Euler

polynomials E, (x) are given by the following power series, and we define the numbers
E, forn > 0asin [14],

o0 Z" 2
D En()y = o™ By = En(0),
=0

The first few E,, are

E()‘ E ‘EQ‘E3‘E4‘ Es ‘Eé
1 ‘—1/2‘ 0 ‘1/4‘ 0 ‘—1/2‘ (U

We have the inversion formula for Euler polynomials,

n—1

1
X' = E,(x) + 5 3 <Z>Ek(x).

k=0

Evaluating at x = 0, we get

Z( )Ek_— E,. (15)

Proposition 18 We have the Betti intersection pairing

(. -1 E (=D (k —a)!(k —b)!  Ex_ap
= Lk—a-b =

) 2 2 k! (k—a—b)

(81?’ ya)Bet[i = (_l)a

forb=0,...,kK anda=0,...,|5]

Proof Fix some —m < 6y < 0 and let x9 = exp(+/—16p). To compute the pairing

(8bs Va)Bewi>» We move the ray o by adding the scalar (xo — 1) and let the circle oy start

at xo. Then the component U({ ® \lfeg ell‘ ~ in the deformed §;, meets ¥, topologically

J times at the same point +1 € C*. At the i-th intersection, the factor fegell‘ —b

becomes (—1)i_1%eg(e1 + (i — l)eo)k_b and we have

‘)
(@

. 1 1 )
<(—1)’*1\—Ee3(e1+<i—1)eo)"*h ﬁese’f > = (=D = D=
d top
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By adding these contributions, we obtain

(k—b) k—b

(z—)<—1>“ > di b (M) Ti—a—p(2n),
a n=1

(8b, Va)Bem =

where
Tk =) (=D =—142" =+ (=D k= D"

Kim [14] gave the following relation for 7, (k):

_ (=D (7 n—t , En k+1
Tn(k)—Tg(E>E£k +7<1+(_1) )

Now, we have the following computation

k—b k—b ket g
> dip(MTk—a—p@n) =Y di_p(n) [7 > ( ) )Ee(zn)k—“—b—f}
n=1 n=1 £=0
k—a—b—1 k—b
-1 k—a—b k—a—b—t
=5 2 ( . >Ee > di—p(m)(2n)
£=0 n=1
1" k—a—b
T4 ¢ )P
=0
—1
= TEk—a—h,
where the last equality follows from (15). O

Consider the (k' 4+ 1) x (k' + 1) pairing matrix

(((Sbv yd)Betti) 0<b<k'. OSafng if k is odd,

(((Sbv J/(I>Be'[ti)()5b5k17 1§a<k if k is even.

=2

B, =

By Proposition 18, when k is even, we have

(Uhkwwm. . (DW“@MWEM
k! (k—1)! k! (k/2)!
Bk = M " ]
(UHkWWHwEm (DWHWWWHWJ_
k! (k/2)! : (D!
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and that

D k=DIk=D! Ex_

(=D*2 (k/2)'(k—1)! Ex2

2 G-I
Bi—1 = :

(=1) (k=D!k/2)! Exp2
2 Gk-DI &2

Then we obtain the relation

1
By = — diagk k=1,

A

2 (k=D!  (k/2)!

(=D*? (k/Dk/D)! E,

2 =D (!

Jk/24+1) - By_1. (16)

Thus, By and Bjy_; have the same rank whenever k is even. Moreover, we may
compute the determinant of By explicitly as given in the following proposition.

Proposition 19 The determinant of By, is given by the following.

1. When k is odd, we have

k/
det By = 271 1‘[ a2 (g 4 Y2,
a=1
2. When k is even, we have
k/
det B = (=) FVEDH T (@ 4 D247 2a 4 DFFI2
a=1

In particular, they are all non-vanishing.

Proof Set&y,_1 = (=122 1Ey, . Apply the result [15, Eq. H12] in the following

computations.
When k = 2k’ + 1 is odd, we have

2 Ey . Ep
(_])(k’+l)(k’+2)/2 k k! (K'+1)!
p— 'y : .
det By = —(2 s i!'| det : :
’ i=k'+1 Evyr E
(K'+1)! )
2 & . G
1 ﬁ 1 k! (k'+1)!
= — i!] ——=det :
kDK +L k' +1)2 :
@K i=k'+1 26D S &L
(K"+1)! (!
2
k kK .
1 2 k' (G —DP?
= i K=z ~ 7
2WDEF) (kFFT | 1;11 y K ,Hl @2j -2
1= =

k/

1 / /
— 2k+1 Hak +1—2cl(2a + 1)/{ —2a.

a=1
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When k = 2k’ 4 2 is even, we have

— - Eg1 . By
(—1)*+DE+4)/2 k=1 *=D)! ®+D)!
: i=k/ 1 By EL
- - &+ !
/ / [ k-1 T
(_1)(k +1)(k'+4)/2 o
= '@ + !
AN S| 1—[ L
(2 kD | i=k'+1 1
S Sen
(ﬁ)(k’+l)(k/+2) (k—1)! (K"+1)!
———det : . :
(k'+1)2 : :
2 T '
&+D)! !
(—H®HDE+H | A 2 KGR
= SE+DHE+2 K+l l_[ i+ D 2f H ; 2
2K +DE+2) (k1) e (k=D @j—D!

_DEHDE+3) K ) )
_ &b = H(a+l)k ~2a-1(34 4 YK +1-2a

a=1
O

Finally, before we conclude the basis of Betti homologies, we need to introduce
the period pairings here. However, the details of the pairings will be given in the next
section. By [2, Corollary 2.11], there exist two perfect pairings

(Dper

H{Y(Gm, (vzSym* KI2)V) o x Hig (Gm. vz Sym*Kly), ———— C ,

s)penc

(
Hle,c(Gm, VzSym* Kby) o x H™4(Gp, (/2 Sym* Klp)V), ——— C .

Here, the notation Vc means V ®¢q C. For the next corollary, we just need to use
the fact that these pairings are perfect. In the next section, we will compute these two
pairings explicitly.

Corollary 20 The natural map
H (G, (VzSym* KB)Y) ——— H"™4(G,,, (zSym* K1p)Y) |

sending §p to yp is an isomorphism whenk = 0, 1, 3 mod 4 and has a one-dimensional
kernel when k = 2 mod 4. Moreover, we find the following.

1. H(Gy, (/z Symk K1)V has basis (85)%_,.
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1254 P.-H. Chuang, J.-D. Yu

2. Hlmd(Gm, (V/z Sym* Klz)v) has basis

k2

{yaYs_y ifkis odd;
{val,=, ifkiseven.

3. H{nid(GW (v/z SymF Klz)v) has basis

{ya_y ifk=0,1,3 mod 4;
{yal*_, ifk =2mod 4.
Proof From the perfect period pairings, the dimension of rapid decay homology and
moderate decay homology are both k' + 1 by Proposition 6. Then, by the Fact 15 and
the non-vanishing determinant of By in Proposition 19, we conclude 1 and 2. This also
shows the natural map which sends 8 to y, forb = 0, ..., k' is an isomorphism when
k=1,3 mod 4. When k = 2 mod 4, Lemma 17 describes the one-dimensional kernel
of the natural map. Moreover, By, has full rank k/2 when k is even by the relation (16).
Hence, we conclude that the natural map is an isomorphism when k = 0 mod 4. 0O

5 Twisted moments as periods

In this section, we compute the period pairing of the basis of de Rham cohomology
and Betti homology in Corollaries 14 and 20. Also, we interpret these periods as the
Bessel moments and regularized Bessel moments.

5.1 Bessel moments and regularized Bessel moments

The Bessel moments are defined by
o
KMy (a, b) = f IEKE (it
0

provided the convergence of the integral, that is, for non-negative integers k, a, b
satisfyinga < k', b > Oora = '% 0 < b < k'. The justification is given in the
following lemma. Moreover, if a = % and b > k’, by analyzing the singular integral,

we could define the regularized Bessel moments IKM;eg (%, b) by subtracting the

singular part of the integral. The precise definition is also given in the following
lemma.

Lemma 21 The integral expression of Bessel moments

o
IKMj.(a, b) = / EKE(nibar,
0
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converges for non-negative integers k,a, b satisfying a < k', b > 0 ora = %
0 < b < k'. Moreover; in the case that k is even, a = % and b > k' with b even, the
following two limits exist for 2j > k':

1
k .
IKM;S® <§, 2 j) = lim / (IoKo)* +25% ds
—> 00
0

j—r—1 2m+1
Yk, j—r—1—mt .
Z 2k=2j+2m(Qm + 1) U i
m=0
k \ 2 [d
reg A N 2r+12j Yk, j—r s
IKM; (z’ 2f> = lim, / (UoKo)™ "s™ds =25y |
e—>0" \% &

j—r—1
_ Z yk,jfrflfmtzm+2
2k72j+2m+1(2m+2)

m=0

ifk =4r + 2.
Proof Near 0, by [12, Sect. 10.30(i)] we have the asymptotics

Io(t) =1+ 0(?); (17)

Ko(t) = — (y + log %) + O(?log 1), (18)

where y is the Euler constant. Then, the integral fol I (t)K(’;_“ (H)tPdt converges for
all0 <a < %andanybzo.

Near oo, from (8) and (9), when 0 < a <k, I§ (t)K(])‘_“ (t) decays exponentially
and hence the integral f 100 Iy (t)K(])‘*“ (Hebds converges.

When k is even and a = %, near 0o, by (11), we have the asymptotic expansion

. 1 & .
(IoKo)K/? 127 = 72 Z yk’n4nt—2n—k/2+2].
n=0

Taking integration, we have

t

t
; 1 & '
/(IoKo)k/ZSZst =5 Z V4" / §2n—k/242) 4
& n=0

&

Using the fact that f loo t*dt converges if and only if @ < —1 and fol t“dt converges
if and only if « > —1, the divergent part of the integral f; (1o Ko)k/2 s¥ds ast — oo,
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1256 P.-H. Chuang, J.-D. Yu

e — 0% is
jor—l 2m+1
Yk, j—r—1—m t . _
n;) F 3 G D) ifk = 4r + 4, (19)
1
2ykj —r dS A Vk,j—r—1—m ¢m+2
2k 2j / Z 2k=2j+2m+1 (2m +2) itk =dr+2. 20)

Hence, after subtracting the divergent part of the integral, we conclude that the
limits IKM, (%, 2/) exist. O

Remark 22 For a = & and b > k' with odd b, the integral [;° I§ (1)K~ (t)t"dt also
diverges. We may similarly define the regularized Bessel moments in this case. See
[2, Definitions 6.1, 6.4].

5.2 Period pairing and compactly supported period pairing

By [2, Corollary 2.11], there exist the following two perfect pairings. The period
pairing is defined to be

( )per

H{Y (G, (v2Sym* K1)Y) « x H{y (Gm, vz Sym* Kly), ——— C ,

by

Here, the notation Vc means V ®gC. There is a one-form w occurs in (egell‘ 7b, )top-

This topological pairing means (eg ]f_b, f)topdz whenever w = fdz. That is, we take
the pairing ( )p only on the coefficients. Note that the perlod pairing induces on the
middle part Betti homology H ““d(Gm, (v/z Sym* K1)V)¢ and middle part de Rham

cohomology mld(Gm,f Sym* K1) ¢ by the restriction:

) per

i (.
H" (G, (Z Sym* K1o)Y) o x HYy (G, /Z SymF K)o —— C .

Moreover, the compactly supported period pairing is defined to be

(, >per,c

Hle’C(Gm, J/Z Sym* Kly) - x H™ (G, (v/z Sym* Klz)v)(c C,
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by

1 bk—b> / 1 b k—b 1 b k—b
,N,w),0 ® —epe = —<a),ee > ——<,ee >
<(§ n, @) ﬁOI perc ﬁ 071 top ﬁ T €01 top
o

+_< ’ebek—b>
«/EE 0*1 top

Remark 23 Note that the order of homology and cohomology in these two pairing are
different. This is because we want to write down the matrix expression of quadratic
relation (22) preventing the transpose notation.

—_—

Proposition 24 The period pairing of the rapid decay cycle 8 in (13) and the de Rham
cohomology class wy j in Definition 10 is given by

.d .
<5b, vng_z> = (T = D2 (=) 02k 2 Ik My (b, 2),
per

forO<b <k'and0 < j<k.

Proof Denote oy to be the scaling of the chain oy, that is, oy is a chain of a circle of
radius ¢. Similarly, denote o to be the chain of the ray [¢, o). Then, since op and
o4 are homotopy to €0 and o respectively, we may replace op and o4 in §p, by e0q
and eo respectively in the following computation. We compute

dz
o]

per

1 _ -d
= / — <e(b)e]]‘ b, véz" —Z>

z Z f1op

oo~ oo+ L] dipmo)
= ()PP / Va(=Ag)? Bl P2/ dz
& (o+ - %60+Zﬁ;bl dk—p (n)a&”)
— (/Db (= 1)k—bok / 72022 Ko (22 Pz
8(0+—%00+Zﬁ;l,’ dk—b(n)a(?”)
o0

— (/Db (—1)kbok / NI NN L) e Ll

&

N S / NI NNl TN

g0

k—b
+ Y di—p(m)(rV/=DP (—1)F P2k / 2Nzl 2V Ko (2 P dz.
n=1

2n
8(70
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1258 P.-H. Chuang, J.-D. Yu

. . 2
Changing the coordinate by z = tz, the first term becomes

o0

(/=P (= 1)kbk=2) / Io()P Ko ()b dr.
NG

When & — 07, this term tends to (7 v/=1)” (=¥ P25/ TKMy (b, 2,/).
For the other two terms, [ z/7'/z10(2y/2)? K0(24/2)*~?dz tends to zero as & —
el
0™ for the following reason. As s — 0%, we have the asymptotic expansions (17) and
(18). Then, as ¢ — 0T for all j > 0, we have the estimate

/ 721022 Ko (22K P dz

P
9%

< / ‘zjflﬁlo(Zﬁ)bKo(Zﬁ)kfb‘|dZ|

el
2 p
< / e~ /e edo
0

I (2 8ei9)h Ko (2@)“

2 p

< sjﬁ/ ‘y +logveel?
0

k—b
do

2n p

:gj\/go/

k—b
dé — 0.

1
y+logﬁ+§i9

O

Proposition 25 The compactly supported period pairing of the compactly supported
de Rham cohomology @y ; in Definition 11 and moderate decay cycle y, in (14) is
given by

(@ Va)pm, = 2k2 (— ) (/=D - IKM,
where 0 < a < |k/2]|,0 < j <k’ with j #r ifk =2 mod 4, and

KM (a, 2)) if 4lka=k/2,r+1<j<k,
IKMi(@.2)) = vi j 2 K KM@, Ky if 41 (k+2.0<a<k.r+1<j<k,
IKM[8 (a, 2j) — ykyj,k//222/_k,IKM£€g(a, k) ifd| (k+2,a=k +1,r+1<j<k,

IKMy (a,2j) otherwise.

IKM =

@ Springer



On the periods of twisted moments of the Kloosterman connection 1259

Moreover, when k = 4r + 2, we have

. 1
(m2r+1’ Va)per,c = 8a,2r+1(77 V _1)a2km‘
k)2

Proof When k = 1, 3 mod 4. We compute the compactly supported period pairing

((Ej’ Nj» wk!./) ’ J/a>per,c

k
1 k :
=/E<Z< )( Ao(2))° Bo(2)* e e, efel™ a>topzjldz
1 k
+ (=D (=10 + —<Z§/,cv6v Legel” ”>
ﬁ c=0 top

— (=) (/D / (—A0(@) Bo(0) 7z 2/ dz

k
1
+(—1)a(]'[\/—1)a}’]j’a+ ﬁ<251 cvgl}]l( c 60611( a>
c=0 top

= (—1)*(m/— 192k / Io(s)* Ko(s) 5% ds 4+ (=D (/= 1)1 4

Ry

k—c k—a
<Z$] cvov ,e e > ,
top

where the last equality follows by the change of variable z = %. The first term
converges by Lemma 21. Since £ > 2a, by (12), the second term tends to zero as

s — oo. The third term tends to zero as s — 0 since all §; . € Q[[%]] and the
topological pairing gives a factor %.

When k = 0 mod 4, write k = 4r +4. We compute the compactly supported period
pairing

idz
k—
((gj ﬂ/vwk,) Va perc /\/_ Uo,eoe a>topZ]7
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1260 P.-H. Chuang, J.-D. Yu

1 k k\ n;
J:¢ k—c=c _a _k—a
- T = - 60 el, 6061
A% )
top
1 k
k—c _a _k—a
+—= £j.cv5v; s ee)
=

=2 (=) (V=1 / Io(s)* Ko(s)* s>/ ds

Ry

k
2 - -
+<—1)“(n¢—1>“n,»,a+;<§ £j.cU6v ", ey > :
c=0 top

where the last equality is the change of variable z = %. The third term tends to zero

ass — Osince all §; . € Q[[%]] and the topological pairing gives a factor %. By the

same argument above, whena = 0,1, ..., % = k/, that is, k > 2a, we have that
the first term converges and the second term tends to zero as s — oo.

Now, we turn to analyze the case that a = % The pairing becomes

S

(€72 152 @1)  Valpere = 25 (= /1) / Io()* Ko(t)* s/ ds
0

H(= v =D} 2r42.

This term converges as s — oo for the following reason:
The singular part of the integral (10K0)2’+2 s2J s given by (19) and n; 2,42 has
expansion

22r=2j+1

S 2n
. $22=1 G~ 922 Z 27" Yi,n g2i—2r=1-2n
r—j+1/2

Nj2r+2 7 r—j+1/2+n

n=0

Thus, both of the singular terms cancel.
When k = 2 mod 4, write k = 4r + 2. Recall from Definition 11 the elements

@, j and fp4 1 in Hle!c (Gm, +/z Sym* Kl,). If we use the convention that y; , = 0
whenever p < 0, we rewrite

i = (& mi, or.i)

k k
k— k-
= (E gi,a(z)vgvl — Vk,i—r E Sr,a(z)vgvl “,
a=0

a=0
£ k\n Yi,i—rT) k N\ ni2r41
i,a — Jd—rllr.a k—a—qa i,2r+ — \2r+1
_ — ¢ ey — (eger) ,
;0 (a) vz o (k/2> NG
a#k/2
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On the periods of twisted moments of the Kloosterman connection 1261

dz dz)
ki k_r %
Vp< — Vk,i-rVp2 —
0 Z 0 Z

In the pairing (@, ;. Va )per .» the third term

) k
. Cok—c Ja k—a
;<Z§J,cv0”1 L €pe) > ,
c=0 top

tends to zero as s — Osinceall§; . € (C[[%]] and the topological pairing gives a factor

2
- The other two terms are equal

Ly a k—a) jdz / 1 ( K a k—a> rdz
/ﬁ<v0,e0el wpz z Vk,j—r N Vg, €€ mpz .
+ Ry
1 R\ i = Ve b k \njor+1
Jjb = Vi, j—rlrb k—b—b J.2r+ = \2r+1 a _k—a
—_—{ - —_— e e, — epe , €epné
ﬁ< 2 (3) =t () 2 >

b#k/2 top

= (=D (/=% | 2k=2 / Io(s)* Ko(s) =952 ds — 282y i, / Io(s)* Ko (s) %5 ds

Ry R,
1] &k k
+ < Z ( ) (nj.b = Vkoj—rnrp) ekbel 4 ( )nj,zr+| (epe1)? 1, eﬁelf_“>
e\ = \b k)2
b#k/2 top

We analyze the convergence of these terms. When 2a < k or j < r, the integral
fot Io(s)* Ko (s)*~*s%/ds converges as t — oo by Lemma 21. The second term is equal
to

(_l)a(”\/__l)a (nj,a - Vk,j—rnr,a) .

By the expansion of 7; 4:

Ni,a ™~

k—2a k/4—i
VI s (AT G
k —2a 52 ha

where G; , € 1 + %Qﬂ%ﬂ, this term tends to 0 as s — oo.
When a = ’% and j > r, the integral fot Io(s)? Ko(s)¥~2s%/ ds has the singular part
(20). The second term is equal to

— — 14\
(_1)2r+1 (7T _1)2r+lnj,2r+l — (_1)2r+1(7_[ _1)2"“1’]_. (_2) . Hi,
r—J
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where H; € 1 + %Q[;izﬂ. Thus, the singular part of this term is

Jj-r —n
v (4
2 (/T2 Vij—r—n [ 4 _
(—D¥ (7 V/=1) 2 — ==
In consequence, the singular parts cancel.
Finally, fora =0, 1, ..., %, we have
2k 2k 11
0, == (ege)* !, 0) s Ve > =-—— <—(€051)2r+1, eSek“>
<( \/E ‘ per,c \/E ﬁ ! top

1
= Sa 21 (TV/=1)2" .
(k/z)

O
Corollary 26 The period matrix of the period pairing with respective to the bases

/ 14 .
{8;,}]1;:0 ole”l and {wk’./}jzo ofHL}R is P = (Pyj), where

d .

Py = <6b, v’o‘sz> = (m/ =D (=D P22 KM (b, 2),
per

for0<b <k'and0 < j < k'. Moreover, P is invertible.

Remark 27 (determinant of the period matrix) In fact,
det P = (r/— D} KH+D/2(_1)@=K)K+D/29k=K)YK'+D) get (IKM (b, 2)) ,
where

det (My41) if k is odd;

det IKMy (b, 2j)) =
( k6. 27)) det (Nk/+1) if k is even.

The definition of M, and N, are given in Appendix A.2 and their determinants are
given in Corollary 39 explicitly.

5.3 QQ-linear and quadratic relations on Bessel moments

We have now developed all the tools and computations to see the wonderful results in
Q-linear and quadratic relations on Bessel moments.

Corollary 28 For k = 4r + 4,

.
k/2 . —1)' a¥2RM (2r +2,2i) if 0<i<
Z</>(—1>’n2111<Mk(21,2i>= D K@rb. 20 JO0sisr

= 2j (=D P2IKMEE 2r +2,20) if r+1<i<Kk.

@ Springer



On the periods of twisted moments of the Kloosterman connection 1263

Fork =4r + 2,
"~ (k/2 Y
2(2.)<—1>Jn2111<Mk(2j,2i>
=0~
0 fo<i<r-—1I,

.
. k/2 , .
Veir 227y ( 2/]. )(—nfnzflkMk(zj, 2r) if r+1<i<2r.
Jj=0

1)

Proof By Lemma 17, we know that

k/4

k/2
Z(Z/_)y2j=()ifk50mod4;
=0

« D4 '
Z . |y2j =0ifk =2 mod 4.
= N

Then take the pairing with @y ; in the compactly supported de Rham cohomology.
Combining with the result of Proposition 25, we obtain the desired algebraic relation.
]

Remark 29 The above linear algebraic relations for i in the range 0 < i < r, under
the name sum rule identities, are previously proved by analytic method in [6] (see [6,
(1.3)] for k = 2 mod 4 and [6, (1.5)] for k = 0 mod 4).

Corollary 30 For any k and any 0 < a < k’/, the dimension of the Q-vector space
generated by the Bessel moments has an upper bound:

dim spangy {IKMj(a, 2j) | j € {0} UN} < k' + 1.

Ifk is even, the dimension of the Q-vector space generated by the regularized Bessel
moments has an upper bound:

dim spang {IKM,*(k/2,2j) | j € {0} UN} < k" + 1.

Here when 0 < j < L%J = r, we do not need to regularize the Bessel moments,
that is, IKM, ® (k/2,2j) = IKMy(k/2,2]) (see Lemma 21).

Proof We know that the dimensions of Hp(Gm,/zSym*Kl) and
H(}R’C (Gm, J/Z Sym¥ K12) are k' + 1.

For each integer s > K/, since {v’(;zj dz—z} o form a basis of
J=0,-,
1 k kosdz Nt A
Hir (Gm, /7 Sym Klz), we may express vz’ = as tile (9 linear combination of the
s dZ

basis. Then after we take the period pairing between vz* <= and the rapid decay cycle
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3,4 (see Proposition 24), the Q-linear relation becomes a Q-linear relation for the Bessel
moments

{IKMy(a,2j) | j =0,...,k'} U{IKM(a, 25)} .

If k is even, similarly, when s > k', express @ € Hle’c (Gm, vz Sym* K1) as the
Q-linear combination of the basis describe in Corollary 14. Then taking the compactly
supported period pairing (see Proposition 25), the Q-linear equivalence become the
Q-linear relation for the regularized Bessel moments

{IKMy(a,2j) | j=0,....r — JU{IKM,®(@,2j) | j=r,....k'}
U {IKM*(a, 25)} .

O

Remark 31 In [16], Borwein and Salvy provide a recurrence to find out the Q-linear
combination for Bessel moments by analyzing the symmetric power of the modified
Bessel differential operator. Moreover, Zhou proves a similar result in [7] for the
Q-linear dependence for Bessel moments IKMy (a, 2j — 1). Our result is parallel to
Zhou’s result.

Proposition 32 With respect to the bases of H{ d Hl’"”d, H a}R’ and H ;R . described in
Corollaries 14, 20, we form the pairing matrices:

B, the Betti intersection pairing matrix between H{d and Hl’””d in Proposition 18.
D, the Poincaré pairing matrix between H ;R, .and H agR in Proposition 13.

P, the period pairing matrix between H{ 4 and H L}R in Proposition 24.

P, the period pairing matrix between H le, . and Hlm"d in Proposition 25.

Binia, the Betti pairing matrix on H{”id.

Dig, the Poincaré pairing matrix on Hnlﬁ @

Puia, the period pairing matrix between H l’”’d and HJ”. d.l

Nk w b=

Then we have the algebraic quadratic relations

PD'P. = (—D)fQrv/=1) B, (22)
Pria Dy Prvig = (=1 @ v/=D ' B, (23)

mid
Proof This quadratic relation is a general phenomenon on periods of meromorphic
flat connection on complex manifolds. We refer to [8, Corollaries 2.14, 2.16] for more
details. O

From this proposition, when k = 0, 1, 3 mod 4, we see the Bessel moments have
quadratic relation given by (22). On the other hand, when £ = 2 mod 4, the relation
involves some combination of Bessel moments and regularized Bessel moments in the

L' B, D, P, P are square matrices of size k' + 1 and that Bmid, Dmid, Pmid are of size K’ + 1 — 84742 k-
When k =0, 1,3 mod 4, we have B = Bpig, D = Dpig, and Ppjg = P = PL.
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matrix P.. In the following discussion, we provide another expression of this relation,
and we will see the pure quadratic relation involving only Bessel moments.

When k = 2 mod 4, write k = 4r + 2 and define two (K’ 4+ 1) x k' matrices with
rational coefficients:

I, 0 k)2 k)2 k/2
0— (U -0 ="
Re=1|0 =1 —Yew—r |- Lk=< () Sj‘) (k)>
0 I k
By the linear relations (21) in Corollary 28, we have
PRy = Li Ppig-

Also, Ppjq is obtained by deleting the first row of Ly Ppjg. Set B = Ly BmidL;( and
D =Ry D;ild R}, which are square matrices of size K’ +1 with ~rati0nal coefficients. Then
Bnig is obtained by deleting the first row and column from B. Therefore, the quadratic
relation (23) (involving linear combinations of Bessel moments) now becomes

PDP' = (—=DFQr/—1'B,
(involving pure Bessel moments).

Remark 33 The matrices B and D in the above expression are singular because of the
linear relations (21) in Corollary 28. This expression is equivalent to the middle part
quadratic relation (23) together with linear relations (21).

Proposition 34 When k = 4r + 2, the middle part period matrix is a k' x k' matrix
given by

Foia = (((Sb’ wk’i)ﬂer>b=1 k=0, P K

The determinant of this matrix Py;q is given by

k/_l)zr(Zr-i—l) K (2a+1)k’+l—a

| +1
rt (a+ 1)¢

det Ppig = 7" 6+D /1"

Proof The matrix Ppiq appears in the upper left of the compactly supported period
pairing matrix P.. Just take determinant on (22) and then use the results of Propositions
13, 19, and Remark 27. O
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Appendix A: The Bessel operator and determinants of Bessel moments
A.1 Symmetric power of the modified Bessel differential operator

Consider the Weyl algebra Q(¢, ;) consisting of ordinary differential operators. Write
0 = t9;. The modified Bessel differential operator is an element in the subalgebra
Q(t?, 0) given by L, = 6% — ¢2. The corresponding solutions are the modified Bessel
functions Iy (t) and Ko(¢). The n-th symmetric power L, € Q <9, t2> of L has order
n + 1 and the corresponding solutions are I (1) Ky~ “(¢) for 0 < a < n. By [16, 17],
the operator L, +1 = L,+1,, can be obtained by the recurrence relation as follows:

LO,n = 1»
Ly,=0, (A1)
Ligin =0Lip—t2%k(n+1—=k)Lig_1,, 1 <k <n.
Here we provide two more concrete results about the operator L, 1.
Put the degree on Q(r,0) as degt = degf = 1. The associated graded ring

erQ(t,0) = QIt, 0] is a polynomial ring where 7 and 6 are the images of ¢ and
0, respectively.

Proposition 35 The image of L, 1 in Q[f, 0] is the polynomial

[T, (52 —(2i — 1)252) ifn+1=2ris even,

Ly1(t,0)=1_ _ ’
" 01— (92 — (Zi)zfz) if n+1=2r+1 isodd.

(A2)

Proof Taking the images in Q[7, 8] of the relation (A1), we obtain L, 11 = Lyi1.,
satisfying

ZO,n = 1» zl,n 25,
Ligin=0Lin—1*%k(n+1—k)Li1,, 1 <k <n.

The formula (A2) is then a consequence of the following combinatorics lemma. O
Lemma 36 For any m € N, set the recurrence for A, ,(x),n € NU {0},

)\O,m =1, )Ll,m =X,
AMetl,m = Xhem — k(m+1—k) Ae—1,m> k>1.

Then we have

[l (x> = Q@i—1D?), m+1=2r,

[T, (2= @2, m+1=2r+1 (A3)

)Lm+1,m(x) =
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Proof Notice that A; ,, is a monic integral polynomial of degree i for any m. Consider
the formal generating function’:

fm,x(Y) = Z)Li,m(x)yi-
=0

An induction on i immediately yields the relation f,; x—1 () + fmx+1 () =
2 fin—1.x (¥) for any m and x.3 In other words, Mm@ =D+ m(x4+1) =24 p—1(x)
for all i. Therefore we obtain

)\m+1,m(x -1+ )Lm—&—l,m(x +1)= 2)\m+l,m—1(x) = 2x}‘m,m—l(x):

by the recurrence. Thus, since A1, (x) is a monic polynomial of degree m + 1, it is
uniquely determined by the above functional equation when the polynomial A,,, ,,—1 (x)
is given. Hence, by the induction, it suffices to show that

i (c-12=@i-n?)+ I (12 =@i-1?)
i=1

1=

r—1

=22 <x2 - (2i)2) :
i=l1

= D[] ((x — 12— (2i)2) +@+ D[] ((x F 12— (2i)2)
i=1 i=1

r

= 2xH(x2 —Qi- 1)2),

i=1
which are straightforward to verify. O
Proposition 37 Write L, into the form Zi t'P; (0), where Pi(x) € Q[x]. Define
the integers a, b by

a=max{i | P, #0}; b=min{i | P; #0}.

Then we have a = 2 L%J and b = 0.

Proof By the recurrence (Al), if we set degt = 1 and degf = 0, we easily see
that L ; has degree 2 L%J by the interchanging relation ¢ = ¢ + 6. Thus, we have

a=2 L#J On the other hand, if we set degt = 0 and degf = 1, we see that

the leading term of Ly is given by 6%*!. Therefore, we conclude that b = 0 by
Proposition 35. O

2 This generating function satisfies the differential equation —y* £ (y) — 2y> — my®) f/(y) + (1 — xy +
my?) f(y) = 1.
3 Equality also holds when viewed as the solution of the corresponding differential equations.
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A.2 Two-scale Bessel moments

From now on, we take for granted the properties of modified Bessel functions

In(1), Ko(t) in the treatise [13].
Recall the Bessel moments IKMy (a, b) given in Sect. 5.1. For r € Z>, define the
two r X r matrices

M, = (IKMp,_1(i —1,2j — 2))@.’].?, Ny = (IKMy, (i —1,2j — 2))13.,&.

We aim to determine the two scalars det M,., det N, adapting the inductive methods

explored by Zhou [9].
For the initial values, we have [13, Sect. 13.21, Eq. (8)]

M, = /Ko(t)dt - % (Ad)
0

and, by [13, Sect. 13.72], one has

e8]

Ni :/Ko(t)dt

0

NI'~

8\8 0\8

00
/ 6721 cosh x cosh y dxdydt
00

dxdy
coshx coshy

4>|~

l
] et

=3,

For r € Z>o, let wa,4+1(x) be the Wronskian of the (2r + 1) functions f;(x)

0 + , <i<r,
f1 GO OKE T (1) dr 1<i<
i) =13% (AS5)

[ Ko I 'k o de, r<i<2r+1.
0

The functions f; are well-defined and analytic on the interval (0, 2) and hence so
is @zr41. In particular, o1 (x) = [;° Ko(x1) dt = £ by (A4).
For r € Z>1, let wy,(x) be the Wronskian of the 2r functions g; (x) where

00 . .
[ el K (0)d, 1<i<r,

gir)=3% _ ,
[ Ko I Ky () de, r<i <2r.
0
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All entries in the Wronskian matrix are well-defined analytic functions on the
interval (0, 1) and so is wy, (x).

Proposition 38 The determinant wy(x) and its evaluation at x = 1 are given by the
following formulae:

1. Forr € Z>y,

r(r+1)
(—1) (2i)? 2 r+15\2
w241 (x) = [ 2]_[ a3 } F( . ) (det V)2,

w2r+1(1) = (=1 )r(’“)/2 det M, - det M, ;.

2. Forr € Z>»,

wyr(x) = (—

o1 -2 ] 5
|:;1_[ (2i—1)2—x2:| (detMr) ,
i=l1

lim 27 (1 — x) wyr (x) = (=1 "+D/2( — 1)1 det N,_ - det N,

x—1-

The above proposition leads to the recursive formulae

2r+1
2"r\/2 1\2
det M, -det M, = |: r Tt :| F(;

G Jlsany® =

» [ar—nyvar]” )
det Ny_; - det N, = T T (det M,) (r >2).
(A6)
With the initial data M| = 2 , N1 = and the relation
r r+1 (r—=1)
F(E>F< 2 )= 7T VT

one immediately obtains the following results by induction.

Corollary 39 For positive integers r, we have

r—a

r—1
-3
det i, = &'V T
2a + 1
2 .
1 7 a4 1)
-

det N, = .
r(5) v2' o o @t her!
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In particular, the two scalars /(2r — D)!! =" det M, and 7~" det N, are posi-

2
tive rational numbers, where m, = w and n, = L@J

A.3 The Vanhove operators

The adjoint L, of Ly is derived under the convolution (¢, 9;) + (¢, —d;) (so
6 +— —(6+1)) and hence the leading term of the signed adjoint A, = (— 1)"+1L:Jrl
equals L,41(9,7) by Proposition 35. For F(xt) = Iy(xt), Ko(xt) and G(t) =
I§ (t) K~ “ (1), we have, by integration by parts,

/(An+1F(xt))G(t) dr = (=1)"*! / F(xt)(Lny1G (1)) dr = 0.
0 0

The Vanhove operator V,, 11 € Q (8x, xil)is of order (n+1) suchthat V41 F(xt) =
Ap1F(xt). So one has V41 fi = 0 for f;(x) in (AS) and consequently wjy4+1(x)
satisfies a first order linear differential equation (see (A7) below).

Lemma40 Let A,41(x) = Z,H_l(l, xHeQix™h of order 2 L"—;IJ with respect to
x~ L. Let 0, = x8,. One has

XA (x)
Va1 = )\n+1(x)9;l+] +n+1) |:)»n+1(x) + %} 0y + 81

n+1
= X" A+ S =x [+ DA () + x40 (O] 0 + 8,

where 81, 8> are of order at most (n — 1) with respect to 3y in Q(d,, xT1).
Proof By Vanhove [18], there exists Zn,l € Q(dy, xT1) of order (n — 1) such that

~ F(xt)
tLy_1F(xt) = Ayt P

The operator Zn_l is of the form ( [9, Eq.(4.29)])

n—1

Lyt =200y~ + o7 [2(” — DA(x) + x)/(x)} 0772 +3,

where 3 is of order at most (n — 3) with respect to 9, in Q(0y, X+l )4.

Set

An(Or) = Apy1(0r) — Apy1 (0 — 1.

4 Comparing L n—1(0x) with Zhou’s Vanhove operator L n—1(0y), we set his variable u = x2 and multiply
Ly—1(6u) by 2" 7",
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Since 9,% = %(9, —1)in Q (9,, t), we have

F(xt)
t
= [PPL100 + 2@ | Fan).

Anp1(O) F (x1) =t Apy1(6;)

+ A (0)) F(xt)

Since tzF(xt) = X%Q)?F(xt), we have

~ ~ 1
2Ly O F (x1) = Lyt (00) 07 F (x1)

1 ~
= —Ln-1(0: - 2)02F (x1),

and the differential operator reads

1
Aot 4 "Txx/(x)eg + 85,

where 83 is of order at most (n — 1) with respect to 9, in Q(dy, x*! ).
On the other hand, since 6; F (xt) = 6, F (xt) and by Proposition 35, we have

An(6)F (x1)
= [An+10) = Ang1 (0 = D] F (xt) = [((n + DA(x) +x2/(x)) 7 + 84] F (x1),

where &, is of order at most (n — 1) with respect to 9, in Q(0y, x! ). Therefore the
leading two terms of V;, | are determined. O

Rationality of @,41(x)

Lemma 40 yields
/ n+ 1 X)‘;H-l(x)
- 2) + ——— . A7
wn.t,_l(x) 2x |:(n +2)+ D1 (X) Wp+1(X) (A7)
Since wy+1(x) takes real values on (0, 1), one obtains
n+tl
ntl 7
wp+1(x) = Cy1 |:(_1)\‘ : Jxn_ﬂkn-',-l (x)] s

for some real constant C,, | for each n € Z>(. We shall determine C, by investi-
gating the limiting behavior of w, 1 (x) as x — 0.
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A.4 Singularities of ®p41(x)

For F(xt) = Ip(xt) or Ko(xt), we have
t
dF(xt) = tF'(xt), 92F(xt) = ——F'(xt) + t>F (x1).
X

So wy+1(x) coincides with the determinant of the matrix 2,41 (x) of size (n + 1)
whose (i, j)-entry is

:folo(xr)l({”<z)1<3*”‘(r>r"*' dr, l<j=|%]i=13..2[5]+1
Zo”éur)l({“(r>1<3‘-"“<r>t"*2 dr, I<j<["] =24 24,
(?Ko(xt)l({_r_l(t)Kg_HrH(t)fi_l de, [ <jsn+li=13...2[5]+1
FiRyen " ORI i dr, (2] < =t i=2.4,2 |2
0

Properties of Iy(t) and Ky (t)

We collect some properties of the modified Bessel functions Ip(¢) and Ky(¢) in order
to obtain information of w, 41 (x) as x — 07, 17,

The function Iy(¢) is entire and even; it is real and increasing on the half line [1, 00).
The function K (#) has a logarithmic pole at x = 0; it is real and decreasing o (0, 00).
On the half plane % (z) > 0, we have the asymptotic approximations

Ip(t) = \/% <1 + 0(;)) , Kot) = \/ge_’ (1 + 0(;)) ,

as t — oo. In particular, for a positive integer a,

Ip(H)K “ ! =0 !
Uo®KoOF = 552 = 057,

as t — oo along the real line. One has the boundedness

[tK (1) + 1]
SUp —————— < 0
>0 1(1+ |logz[)

For ¢ € Z>o, one has the evaluation [13, Sect. 13.21, Eq. (8)]

o0
c _ ~c—1 C+1 2
/Ko(t)t dt =2 r(—z ) .
0
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Integrations

With the data collected above, we list some consequences for the integrals that appear
in the entries of the matrix €2,41(x).
For 0 < a < b and ¢ > 0, one obtains

/ Ko(xt) I§ (1) Kb (1)1 dt = O(logx), (A8)
0
/ ) I¢(OKE ()¢ dr = O(x), (A9)
0
and
/ tKy(xet) IE () KE (1)e€ dr
0
- flg(t)Kg(t)tcdt—f(xtK(’)(xt)—i— D) I§(OKE(0)e° dr
X
0 0
= %/Ig(z)l(g(z)tfdr + O(log x), (A10)

asx — 01T.For0 < ¢ <aandasx — 0T, we thus have

o0 o0 1
/Ko(xt)lg(t)Kg(t)tC dr = o(f Ko(xt)dt) — 0(}>’ (A11)
0 0

i / i U 1
[tKO(xt)I(‘)’(t)Kg(t)tC dr = 0(/;1(0(”) dt) - O(F) (A12)
0 0

If0<a < candasx — 0T, then

i a a C OOK ( Z‘)Z‘Cid i a a 1 c
/Ko(xt)lo O Kg@)tdr = /%dt-ﬁ-/l(o(xt)[lo (HOKy (@) — (20“]: dr
0

0 0
(A13)
2072a=1 o g4 152 1
= ye—a+l F( 2 > + O<xr7a>’
K , tK/, (xt)t‘ —a T 1
/ 1Ky (xt) I (1) KE (edr = / 07 a4+ / tKO(xt) IEOK§ @) — (Zt)a]lfdt
0 0 0
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o0
_c—a+ 1 c—a 1
- /Ko(xt)t dr + o(x—z)

24x
0

_ O(L). (Al14)

xc—a+2

On the real line, we have [9, Lemma 4.5]

> To(xt)Ko(t) dt
lim Jo. To(xt)Ko(2) _ l
x—1-  —log(l —x) 2

and for ¢ € Z>o,
o0 | o0
lim (1 — x)¢t! / Io(xt) Ko@)t dt = % = lim (1 — x)*! /tl(’)(xt)Ko(t)tC dr.
—1- S1-
! 0 ! 0
Therefore fora > 1,a > c and x — 17, one has

/Io(xt)lg_l(t)Kg(t)tc dr :/Io(xt)Ko(t)[Ig_l(t)Kg_l(t)tc] dr
0 0

e¢]

= O(/Io(xt)Ko(t)dt) (A15)
0(10g(1 —x))

/rlg(xr)lg—l(z)Kg(t)f dt = /tlo(xt)Ko(t) kg o] de
0 0

o0
= 0</t16(xz)1<0(t)dt)
0
1
=0<1—x)' (A16)
Ifc>a>1andx — 17, then
o0
/ ToGen) IE™ (1)K (1)e€ de
0

® 1
_ / Io(xt)Ko(t)tc4F dr

2a—1
0
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o0

+ [ ko1 ok o -

0

W]tc dr

_ (c —a)! 1
- 2a(] — x)c—a+l + 0((1 — x)e—a+l )’
/t[é(xt)lg_l(t)K(‘)‘(t)t” dr

0
e

B / tIj(xt) Ko ()t~ t!

a1 dr

0
00

+/tIé(xt)Ko(t)[I{)"l(t)K(‘)H(f)—
0
(c—a+1)! ( 1 )

= 2a(1 _ x)c—a+2 (1 _ x)c—a+2

T ]zf dr (A17)

(A18)

Notice that the error terms in the above two formulas are of class small o; it is
needed in the investigation of the limit of wy, as x — 1~ below.

Evaluation of @341 (x) atx =1

All entries of 29,41(x) can be evaluated at x = 1. We move the 2i-th row to row
iin Qp,41(1) for 1 < i < r and then subtract the (r + j + 1)-st column from the
Jj-th column of the resulting matrix for 1 < j < r. By (3) on the upper-left block, we
obtain

r(r+1) M. *
wy11(1) = (=1)"2 det( Or M +l> .

Behavior of @541 (x) asx — 0%

Fix r > 1. We move row (2i — 1) of Q,41(x) torow i for | <i < r, which creates
a sign (=1)"=D/2 {5 the determinant w2r11(x). As x — 07T, the resulting matrix
decomposes into (r, r, 1) x (r, r, 1) blocks of the form

N, +o(l)  O(ogx) O(w)
O(x) =N, + O(logx) 0(%)
o) Ologx) 5T () +0(%).

by direct evaluation and (A9) in the left three blocks, (A8) and (A10) in the middle,
and (A11), (A12), (A14) and (A14) in the last column. The leading term of wy,+1(x),
which is of order x =+ comes from the diagonal blocks and one gets
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ren 1 12
lim x2+an, o (x) = (1) ‘z“)-r(”r ) det®N, .
x—0t 2
Behavior of @, (x)asx — 1~
Fix r > 2. We move 2i-th row of Q,,(x) torow i fori = 1,2,...,(r — 1) and

r-th column to the last, which adds a sign (—1)" (r+1)/2 {6 the determinant wy, (x). We
subtract j-th column by (r 4 j)-thfor j = 1,2, ..., (r—1). Asx — 17, the resulting
matrix decomposes into (r — 1,7, 1) x (r — 1, r, 1) blocks of the form

Nr—l +0(1) 0(1) 0((1_;)r*1)
0 Neto  O(gr) |
(r=1)! 1
o o) Fis +o(ty)

by (3) and direct evaluation in the left three blocks, direct evaluation in the middle,
and (A16), (A16), (A17) and (A18) in the last column. The leading term of wy, (x),
which is of order (1 — x)™", comes from the diagonal blocks. It yields

lim (1 — x) wyy(x) = (_l)r(r2+1) r—D!

x—1-

det N,_1det N,.

2r
Behavior of @5, (x) asx — 0t

Fix r > 2. We move row (2i — 1) of Q,(x) torow i for 1 <i < r, which adds a sign
(—1)"=D/2 to the determinant w>, (x). As x — 07, the resulting matrix decomposes
into four blocks of equal size of the form

M, +o(l)  O(logx)
Ox) =M.+ O(ogx) )’

by direct evaluation and (A9) in the left two blocks and (A8) and (A10) in the right.
This leads to

. r r(r+1)
Iim x @ (x) = (—=1)"2
x—0t

detzM,.

Remark 41 Proposition 38 indeed holds for w;(x) by the same analysis if we set
det Ny = 1; it is consistent with the relation (A6) for r = 1.
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