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Abstract
This paper aims to study the Betti homology and de Rham cohomology of twisted
symmetric powers of theKloostermanconnectionof rank twoon the torus.Wecompute
the period pairing and, with respect to certain bases, interpret these associated period
numbers in terms of the Bessel moments. Via the rational structures on Betti homology
and de Rham cohomology, we prove theQ-linear and quadratic relations among these
Bessel moments.
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1 Introduction

Let Gm,z = Spec (Q[z, z−1]) be the algebraic torus over Q with variable z, and
similarly for the torusGm,t with variable t . Let Kl2 be the Kloosterman connection (of
rank two) onGm,z corresponding to the differential operator (z∂z)2−z. (For details, see
Sect. 2.) In [1], in order to study the Hodge aspects of the symmetric powers Symk Kl2,
Fresán, Sabbah, and Yu consider the following settings. Let [2] : Gm,t → Gm,z be
the double cover induced by the ring homomorphism Q[z, z−1] → Q[t, t−1], given
by z �→ t2. One obtains the pullback connection

˜Kl2 = [2]+ Kl2.
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1228 P.-H. Chuang, J.-D. Yu

The structure of ˜Kl2 is much simpler since it is the restriction to Gm of the Fourier
transform of a regular holonomic module on the affine line. In addition, the sym-
metric power Symk Kl2 appears in the pushforward [2]+ Symk

˜Kl2 naturally in the
decomposition [1, p. 1662]

[2]+ Symk
˜Kl2 ∼= Symk Kl2 ⊕ √

z Symk Kl2,

where
√
z Symk Kl2 =

(

OGm , d + dz
2z

)

⊗ Symk Kl2. In [2], Fresán, Sabbah, and Yu

compute the de Rham cohomology and Betti homology for Symk Kl2. In this paper,
we study the analogues for

√
z Symk Kl2.

1.1 Historical results and our results

Let I0(t) and K0(t) be modified Bessel functions. Define the Bessel moments

IKMk(a, b) =
∞
∫

0

I0(t)
aK0(t)

k−atbdt, (1)

provided that 0 ≤ a ≤ k are non-negative integers, b ∈ Z, and the convergence of
this integral. The particular Bessel moments of the form IKMa+b(a, 2c − 1) appear
in two-dimensional quantum field theory as Feynman integrals [3–5]. From a math-
ematical point of view, these moments are realized as period integrals of Symk Kl2
and

√
z Symk Kl2. For the details, we refer to [2]. In that paper, Fresán, Sabbah, and

Yu developed the Hodge theory on symmetric powers of the generalized Kloosterman
connection Kln+1 of rank (n + 1).

Sum rule identities

In [4, (220)], the authors provide the following conjecture on theQ(π) linear relation
of Bessel moments which is called the “sum rule” in their paper.

Conjecture 1 For each pair of integers (n, k) with n ≥ 2k ≥ 2, the following combi-
nation of Bessel moments vanish

�n/2

∑

m=0

(−1)m
(

n

2m

)

πn−2mIKM2n(n − 2m, n − 2k) = 0.

Later in [6, (1.5)], Zhou uses the Hilbert transformation to prove this conjecture.
Moreover, he also proves a “sum rule”:

Formula 2 For each pair of integers (n, k) with n − 1 ≥ 2k ≥ 2, the following
combination of Bessel moments vanish

�(n+1)/2

∑

m=1

(−1)m
(

n

2m − 1

)

πn−2m+1IKM2n(n − 2m + 1, n − 2k − 1) = 0.
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On the periods of twisted moments of the Kloosterman connection 1229

When the involved exponents of t in (1) are odd, these two identities are both
reproved by Fresán et al. [2]. The proof involves studying the connection Symk Kl2 on
Gm whose period integrals are those Bessel moments IKMk(a, b) with odd b. In this
paper, by studying the connection

√
z Symk Kl2 on Gm, we provide proofs of these

two identities involving even powers of t using a similar approach in Sect. 5. The key
point to consider the twisted connection

√
z Symk Kl2 is that the period integrals of√

z Symk Kl2 are those Bessel moments IKMk(a, b) with even b. For example, we
have the following result:

Formula 3 (Corollary 28) For k = 4r + 4, a multiple of 4, one has

r
∑

j=0

(

k/2

2 j

)

(−1) jπ2 j IKMk(2 j, 2i)

=
{

(−1)rπ2r+2IKMk(2r + 2, 2i) if 0 ≤ i ≤ r ,

(−1)rπ2r+2IKMreg
k (2r + 2, 2i) ifr + 1 ≤ i ≤ � k−1

2 
.

The notation IKMreg
k (2r+2, 2i) above denotes the regularizedBesselmoments (see

Lemma 21). Roughly speaking, the regularized Bessel moments are obtained from
those Bessel moments IKMk(a, b) with parameters k, a, b that makes IKMk(a, b)
diverge but minus their divergent asymptotic. Therefore, our sum rule generalizes the
sum rules in [4, 6].

Q-dimension of Bessel moments

In [7], Zhou considers the Q-vector subspace spanned by the Bessel moments in C.
This vector subspace is finite-dimensional due to the sum rule. Similarly, we have the
following upper bound of the dimension.

Theorem 4 (Corollary 30) For any k and any 0 ≤ a ≤ �(k − 1)/2
, the dimension of
the Q-vector space generated by the Bessel moments has an upper bound:

dim spanQ {IKMk(a, 2 j) | j ∈ {0} ∪ N} ≤ �(k + 1)/2
.

For k even, the dimension of theQ-vector space generated by the regularized Bessel
moments has an upper bound:

dim spanQ
{

IKMreg
k (k/2, 2 j) | j ∈ {0} ∪ N

} ≤ �(k + 1)/2
.

Note that our statement involves the regularized Bessel moments. This conclusion
is a more general result than the one given by Zhou.

Quadratic relations of Bessel moments

In [8], the authors prove a general result of quadratic relations between periods given by
a self-dual connection. We apply this result and obtain the quadratic relation between
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1230 P.-H. Chuang, J.-D. Yu

the Bessel moments. Under certain bases of cohomologies, let B be the topological
pairing matrix on Betti homology, D be the Poincaré pairing matrix on de Rham
cohomology, and P, Pc be the period pairing matrices between these two homology
and cohomology. Then, the quadratic relations on these periods (Bessel moments) are
given by

PD−1Pc = (−1)k(2π
√−1)k+1B. (2)

The entries of the matrices P and Pc consist of Q-linear combinations of Bessel
moments and regularized Bessel moments, which are obtained in Sect. 5. Moreover,
due to the rational structure of Betti homology and de Rham cohomology, the corre-
sponding pairing matrices D, B consist of rational numbers.

Note that the quadratic relations among Bessel moments do not depend on the
choices of the bases. The effect of changing the bases of these homologies and coho-
mologies is just the conjugation of the matrices P, D, Pc, B and thus on (2).

Determinants of Bessel moment matrix

Another interesting result is to compute the determinants of certainmatrices consisting
of Bessel moments. In [3, Conjectures 4, 7], Broadhurst conjectures closed formulae
of the determinants of the following two r × r matrices Mr and Nr involving the
Bessel moments:

Mr = (IKM2r+1(a, 2b − 1)
)

1≤a,b≤r , Nr = (IKM2r+2(a, 2b − 1)
)

1≤a,b≤r .

Later, in [9], Zhou uses an analyticmethod to prove these two determinant formulae.
Using a similar method as Zhou, we give explicit determinant formulae:

Formula 5 (Corollary 39) For r ≥ 1, we have

det
(

IKM2r−1(i − 1, 2 j − 2)
)

1≤i, j≤r = √
π
r(r+1)√

2
r(r−3)

r−1
∏

a=1

ar−a

√
2a + 1

2a+1 ,

det
(

IKM2r (i − 1, 2 j − 2)
)

1≤i, j≤r =
√

π
(r+1)2

�
( r+1

2

)

1
√
2
r(r+3)

r−1
∏

a=1

(2a + 1)r−a

(a + 1)a+1 .

1.2 Approach

In [10], Bloch and Esnault study irregular connections on curves and provide the
associated homology theory. Due to their results, we study the de Rham cohomology
and Betti homology of

√
z Symk Kl2 onGm and provide explicit bases in order to find

the periods.
In Sect. 2, we introduce the twisted k-th symmetric power of the Kloosterman

connection
√
z Symk Kl2, which is the main object in this paper. We discuss the ratio-

nal structures on the de Rham cohomology and Betti homology of the connection.
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On the periods of twisted moments of the Kloosterman connection 1231

Moreover, since the connection is self-dual, we introduce its algebraic and topological
self-pairings. These pairings will play an important role in our computations.

In Sect. 3, we study the de Rham cohomology and the de Rham cohomology with
compact support of

√
z Symk Kl2 and write down certain elements in these two coho-

mologies. Next, we introduce the Poincaré pairing between them and compute the
pairing with respect to the elements we have constructed. Using the dimension result
of de Rham cohomology, along with the non-vanishing determinant of the Poincaré
pairing, in Corollary 14, we conclude that the explicit elements in de Rham cohomol-
ogy form bases.

We study parallelly the Betti homology of
√
z Symk Kl2 in Sect. 4. Since our ambi-

ent space is a non-compact space C×, we need to modify our Betti homology theory
by allowing the chain to go to 0 or ∞. By controlling the growth behaviors of the
horizontal sections, we study the moderate decay Betti homology and rapid decay
Betti homology on

√
z Symk Kl2. Similarly, We first write down some elements in

the moderate decay homology and rapid decay homology and compute their topolog-
ical pairing explicitly. Moreover, by the duality of de Rham cohomology and Betti
homology, the dimension of Betti homology is the same as the de Rham cohomology.
Together with the topological pairing, we conclude that they are bases in Corollary
20.

Finally, in Sect. 5, we compute the period pairing between the de Rham cohomolo-
gies and the Betti homologies and interpret them in terms of the Bessel moments.
Note that our variety Gm = SpecQ[z, z−1] and the connection

√
z Symk Kl2 are

defined over Q and therefore, the de Rham cohomology and Betti homology are nat-
urally endowed with a Q-vector space structure. From the dimension constraint of
homologies, after computing the period pairing, we obtain the Q-linear relation of
Bessel moments (Formula 3) and an upper bound of Q-dimension of space spanned
by the Bessel moments (Theorem 4). In addition, the self duality of

√
z Symk Kl2 gives

quadratic relations between these Bessel moments (2).
In Appendix A.1, we provide an accurate analysis of the symmetric powers of the

modified Bessel differential operator. The first usage belongs to Sect. 3, which enables
us to determine the dimension of the de Rham cohomology H1

dR

(

Gm,
√
z Symk Kl2

)

.
The second usage belongs to Appendix A.2, which allows us to analyze the leading
termof theVanhove operator. This helps us to obtain the determinant formula (Formula
5).

2 The Kloosterman connection and its twisted symmetric powers

In this section, we recall the definition and basic properties of theKloosterman connec-
tion and its symmetric powers from [1, 2]. Besides, we recall the twisted connection on
Gm obtained from the decomposition of the pushforward of trivial connection under
the cyclic cover of Gm. Combining these connections, we obtain the twisted sym-
metric powers of the Kloosterman connection. Moreover, since these connections are
all self-dual, the duality induces the algebraic pairings on them and the topological
pairings on the sheaves of horizontal sections.
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1232 P.-H. Chuang, J.-D. Yu

2.1 Self-duality and pairing onKl2

The connection Kl2 = (OGm,zv0 ⊕ OGm,zv1,∇) consists of a rank 2 free sheaf on
Gm,z = SpecQ[z, z−1] with basis of sections v0 and v1 and the connection ∇ on it
given by

z∇ (v0, v1) = (v0, v1)

(

0 z
1 0

)

dz.

That is, z∇v0 = v1dz and∇v1 = v0dz. The connection Kl2 is self-dual in the sense
that there exists an algebraic horizontal pairing 〈 , 〉alg on it:

(

〈

vi , v j
〉

alg

)

0≤i, j≤1
=
(

0 1
−1 0

)

,

such that λ : Kl2 → Kl∨2 by (v0, v1) �→ (

v∨
1 ,−v∨

0

)

makes the following diagram
commute.

Kl2 × Kl2 (OGm , d)

Kl∨2 × Kl2

〈 ,〉alg

λ×1
natural

.

Here Kl∨2 denotes the dual connection with the dual basis {v∨
0 , v∨

1 }.
Recall that the modified Bessel functions I0(t) and K0(t) satisfy the differential

equation ((t∂t )2 − t2)y = 0 and the Wronskian relation

I0(t)K
′
0(t) − I ′

0(t)K0(t) = −1

t
. (3)

Under the change of variable z = t2
4 , the differential equation ((t∂t )2 − t2)y = 0

becomes 4((z∂z)2 − z)y = 0. Define A0, B0 be the fundamental solutions to the
differential equation ((z∂z)2 − z)y = 0 by rescaling the modified Bessel functions. In
addition, define A1, B1 by z∂z differential of A0, B0:

A0(z) = −2I0(2
√
z), A1(z) = z∂z A0(z);

B0(z) = 2K0(2
√
z), B1(z) = z∂z B0(z).

Here, the function
√
z is taken to be the principal branch on the range | arg z | < π .

For other z, these functions are defined via the analytic continuation. Throughout this
paper, themultivalued functions such as zk/2 or z−1/4 are all treated in this waywithout
a mention. The functions A0(z) and B0(z) are annihilated by the operator (z∂z)2 − z
and real-valued on the ray R>0. This gives

∂z A1(z) = A0(z), ∂z B1(z) = B0(z).
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On the periods of twisted moments of the Kloosterman connection 1233

Together with the Wronskian relation A0B1 − A1B0 = 2 from (3), we obtain a
basis of horizontal sections of ∇ on Kl2

e0 = 1

2
(A0v1 − A1v0), e1 = 1

2π
√−1

(B0v1 − B1v0). (4)

Denote Kl∇2 the local system of Q-vector space generated by e0, e1. There exists a
topological pairing 〈 , 〉top = 2π

√−1〈 , 〉alg on Kl∇2 :

(

〈

ei , e j
〉

top

)

0≤i, j≤1
=
(

0 1
−1 0

)

.

2.2 Rational structures and pairings on (OGm,d + 1
2
dz
z ).

Consider the double cover [2] : Gm,t → Gm,z induced by the ring homomorphism
Q[z, z−1] → Q[t, t−1], z �→ t2. Let T = (OGm,t , d) be the trivial connection on
Gm,t . Via the ring homomorphism Q[z, z−1] → Q[t, t−1], we view Q[t, t−1] as a
Q[z, z−1]-module. Then, from the decomposition of Q[z, z−1]-modules

Q[t, t−1] = Q[z, z−1] ⊕ t · Q[z, z−1],

the pushforward connection [2]+ T decomposes into the direct sum

(OGm,z , d) ⊕ (t · OGm,z , d
)

.

The second component
(

t · OGm,z , d
)

is isomorphic to (OGm,z , d + 1
2
dz
z ) via the

following diagram

OGm,z OGm,z ⊗ �1
Gm,z

t · OGm,z t · OGm,z ⊗ �1
Gm,z

d+ dt
t =d+ 1

2
dz
z

t � t�
d

. (5)

The dual connection of
(OGm,z , d+ 1

2
dz
z

)

is given by
(OGm,z , d− 1

2
dz
z

)

, and the two
are isomorphic via multiplication by z, that is, the following diagram commutes.

OGm,z OGm,z ⊗ �1
Gm,z

OGm,z OGm,z ⊗ �1
Gm,z

d+ 1
2
dz
z

z � z�
d− 1

2
dz
z

.
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This induces a perfect algebraic horizontal pairing 〈 , 〉alg on (OGm,z , d+ 1
2
dz
z ) given

by

〈1, 1〉alg = z.

On the other hand, the rational structure of the local system of horizontal sections
of (OGm,t , d) is generated by 1. Under the isomorphism (5), the rational structure of
local system of horizontal sections of (OGm,z , d + 1

2
dz
z ) is generated by 1

t = 1√
z . Its

dual connection (OGm,z , d − 1
2
dz
z ) has local system of horizontal sections generated

by
√
z. This induces a rational topological pairing 〈 , 〉top on (OGm,z , d + 1

2
dz
z )∇

〈

1√
z
,

1√
z

〉

top
= 1.

2.3 Algebraic and topological pairings on
√
z SymkKl2

The k-th symmetric product of Kl2, Symk Kl2, is a rank k + 1 free sheaf over OGm

with basis of sections

va0v
k−a
1 = 1

|Sk |
∑

σ∈Sk

σ
(

v⊗a
0 ⊗ v⊗k−a

1

)

a = 0, 1, . . . , k,

where Sk is the symmetric group on k elements. It is endowed with the induced

connection from (Kl2,∇). After twisting with the connection
(

OGm , d + 1
2
dz
z

)

, we

define

√
z Symk Kl2 =

(

OGm , d + 1

2

dz

z

)

⊗ Symk Kl2.

The induced connection ∇ on
√
z Symk Kl2 is given by

∇va0v
k−a
1 = (k − a)va+1

0 vk−a−1
1 dz + a

z
va−1
0 vk−a+1

1 dz + 1

2z
va0v

k−a
1 dz. (6)

Note that
√
z Symk Kl2 is the same sheaf as Symk Kl2 but endowed with a different

connection.
Via the self-duality on Kl2 and on

(

OGm , d + 1
2
dz
z

)

, we have the perfect algebraic

pairing 〈, 〉alg on √
z Symk Kl2:

√
z Symk Kl2 × √

z Symk Kl2
(OGm , d

)

,
〈, 〉alg
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On the periods of twisted moments of the Kloosterman connection 1235

given by

〈

vk−a
0 va1 , v

k−b
0 vb1

〉

alg
= zδk,a+b(−1)a

a!b!
k! = (2π

√−1)k
〈

ek−a
0 ea1 , e

k−b
0 eb1

〉

alg
.

Indeed,

〈

vk−a
0 va1 , v

k−b
0 vb1

〉

alg
=
〈

1

|Sk |
∑

σ∈Sk

σ
(

v⊗k−a
0 ⊗ v⊗a

1

)

,
1

|Sk |
∑

τ∈Sk

τ
(

v⊗k−b
0 ⊗ v⊗b

1

)

〉

alg

= 1

(k!)2
∑

σ,τ∈Sk

〈σ(v⊗k−a
0 ⊗ v⊗a

1 ), τ (v⊗k−b
0 ⊗ v⊗b

1 )〉alg,Kl2

× 〈1, 1〉alg,(OGm ,d+ 1
2
dz
z )

= 1

(k!)2 (δk−a,bk!a!b!(−1)a) · z = zδk,a+b(−1)a
a!b!
k! .

By the definition of e0, e1 in (4) and the Wronskian relation A0B1 − A1B0 = 2, a
similar computation shows the formula for the algebraic pairing 〈ek−a

0 ea1 , e
k−b
0 eb1〉alg.

The local system (
√
z Symk Kl2)∇ is a Q-vector space generated by the horizontal

sections

1√
z
ea0e

k−a
1 = 1√

z

∑

σ∈Sk

σ
(

e⊗a
0 ⊗ e⊗k−a

1

)

, a = 0, 1, . . . , k, (7)

which are the products of the horizontal sections of the connections
(

OGm , d + 1
2
dz
z

)

and Symk Kl2. The topological pairing 〈 , 〉 on Kl∇2 induces a topological pairing on
(Symk Kl2)∇ and thus on (

√
z Symk Kl2)∇ :

(
√
z Symk Kl2)∇ × (

√
z Symk Kl2)∇ Q,

〈 ,〉top

where Q on the right hand side is the constant sheaf associated with the field Q on
Gm. This pairing reads

〈

1√
z
ea0e

k−a
1 ,

1√
z
eb0e

k−b
1

〉

top
= δk,a+b(−1)k−a a!b!

k! ,

by the similar computation as above.

3 The de Rham cohomology

In this section, we study the de Rham cohomology of the twisted Kloosterman con-
nection H1

dR(Gm,
√
z Symk Kl2) and its dual, compact support de Rham cohomology
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H1
dR,c(Gm,

√
z Symk Kl2). We will write down certain elements in these cohomolo-

gies explicitly and compute the Poincaré pairing between these elements. Finally, we
conclude that these elements form bases of these two cohomologies in the end of this
section.

3.1 Dimension of H1
dR

(
Gm,

√
z SymkKl2

)

Proposition 6 For the connection
√
z Symk Kl2 on Gm, we have

dim H1
dR

(

Gm,
√
z Symk Kl2

)

=
⌊

k + 1

2

⌋

.

Proof In [11, Lemma 2.9.13], we have the following formula.

Lemma 7 On Gm with parameter z, let D = OGm [∂z] be the ring of all differential
operators onGm. Write θz = z∂z . For a non-zero element L ∈ D, write L into a finite
sum of the form

∑

i z
i Pi (θz), where Pi (x) ∈ Q[x]. Define integers a, b by

aL := max {i | Pi �= 0} ; bL := min {i | Pi �= 0} .

Then the Euler characteristic of theD-moduleD/DL is given byχ (Gm,D/DL) =
− (aL − bL).

In this proof, we will follow the notations as in this lemma. Now, the differential
operator onGm associatedwith the connectionKl2 is given by θ2z −z which annihilates
v0 and has fundamental solutions A0(z) and B0(z). Then, the differential operator for
Symk Kl2 is given by the k-th symmetric power of θ2z − z, i.e., the differential operator
annihilates vk0 and has fundamental solutions Ai

0B
k−i
0 for i = 0, . . . , k. Denote this

operator by˜Lk+1 ∈ D. For
√
z Symk Kl2, the corresponding differential operator reads

1√
z
˜Lk+1

√
z =: L since the solution is now given by 1√

z A
i
0B

k−i
0 for i = 0, 1, . . . , k.

Recall in Sect. 2.1, L2 = (t∂t )2 − t2 is the differential operator annihilates I0(t)
and K0(t). Write Lk+1 to be the k-th symmetric power of (t∂t )2 − t2. That is, Lk+1
annihilates I a0 (t)Kk−a

0 (t) for a = 0, . . . , k. As discussed in Sect. 2.1, the change of

variable z = t2
4 sends Lk+1 to˜Lk+1. By Proposition 37, we have that aLk+1 = 2� k+1

2 
,
bLk+1 = 0. Therefore, by the degree 2 change of variable z = t2

4 , we conclude
a
˜Lk+1

= � k+1
2 
, b

˜Lk+1
= 0.

Using the fact that 1√
z θz

√
z = θz + 1

2 , we have 1√
z
˜Lk+1

√
z = ∑

zi Pi
(

θz + 1
2

)

whenever ˜Lk+1 = ∑

zi Pi (θz). This shows aL = a
˜Lk+1

and bL = b
˜Lk+1

. Therefore,
by Lemma 7, we have

χ
(

Gm,
√
z Symk Kl2

)

= χ (Gm,D/DL) = −
⌊

k + 1

2

⌋

.

Similar to the behavior of I0 and K0 [12, Sect. 10.30(i)], A0 is holomorphic at 0 and
has exponential growth near infinity, and B0 has a log pole at 0. These imply all of the
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On the periods of twisted moments of the Kloosterman connection 1237

solutions 1√
z A

i
0B

k−i
0 are not algebraic solutions, and thus H0

dR

(

Gm,
√
z Symk Kl2

) =
0. Hence, combining the fact that H2

dR

(

Gm,Symk Kl2
) = 0 by Artin vanishing theo-

rem, we conclude that H1
dR

(

Gm,
√
z Symk Kl2

)

has dimension
⌊ k+1

2

⌋

. ��
Remark 8 In [11, Lemma 2.9.13], Katz provides the proof of Lemma 7 only in the case
Gm,C which is over C. Yet, the same proof still works in our situation Gm,Q which is
over Q.

3.2 Compactly supported de Rham cohomology

Write k′ = � k−1
2 
. Consider the k′ + 1 elements

{

vk0z
i dz
z

}k′

i=0
in H1

dR

(

Gm,
√
z Symk

Kl2
)

. We will prove these elements form a Q-basis. (See Corollary 14.) The
Poincaré dual of the de Rham cohomology is the de Rham cohomology with
compact support. An element in the de Rham cohomology with compact sup-
port H1

dR,c

(

Gm,
√
z Symk Kl2

)

is represented by a triple (ξ, η, ω), where ω ∈
H1
dR

(

Gm,
√
z Symk Kl2

)

and ξ, η are formal solutions to ∇ξ = ∇η = ω at 0 and
∞ respectively (see [8, Corollary 3.5]). The solutions are provided by the following
lemma.

Lemma 9 Suppose that k ≡ 0, 1, 3 mod 4. For 0 ≤ i ≤ k′, there exists (ξi , ηi ) ∈
(√

z Symk Kl2
)

̂0 ⊕ (√z Symk Kl2
)

∞̂ such that ∇ξi = ∇ηi = vk0z
i dz
z .

On the other hand, let k ≡ 2 mod 4, say k = 4r + 2. For 0 ≤ i ≤ k′ with i �= r ,
there exists (ξi , ηi ) ∈ (√z Symk Kl2

)

̂0 ⊕ (√z Symk Kl2
)

∞̂ such that

∇ξi = ∇ηi = vk0z
i dz

z
− γk,i−rv

k
0z

r dz

z
,

where γk,n ∈ Q are the coefficients in the asymptotic expansion of (−A0 (z) B0 (z))k/2

given by (11) below.

Proof Near 0, we want to find

ξi =
k
∑

a=0

ξi,a(z)v
a
0v

k−a
1 ∈

k
⊕

a=0

Q�z�va0v
k−a
1 ,

such that ∇ξi = vk0z
i dz
z . Using the connection formula (6) on

√
z Symk Kl2, we need

to solve:

d

dz
ξi,k(z) + (k − 1)ξi,k−1(z) + 1

2z
ξi,k(z) = zi−1,

d

dz
ξi,a(z) + (k − a + 1)ξi,a−1(z)

+ a + 1

z
ξi,a+1(z) + 1

2z
ξi,a(z) = 0 for a = 1, 2, · · · , k − 1,
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1238 P.-H. Chuang, J.-D. Yu

d

dz
ξi,0(z) + 1

z
ξi,1(z) + 1

2z
ξi,0(z) = 0.

Write ξi,a = ∑∞
n=0 ξi,a,nzn . We solve ξi,a,n recursively on n. Suppose that we

have solved ξi,a, j for j < n. Compare the coefficient of zn−1 of the above system of
equations and get

⎛

⎜

⎜

⎜

⎜

⎜

⎝

n + 1
2

n + 1
2 k

n + 1
2 k − 1

. .
.

. .
.

n + 1
2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

ξi,0,n
ξi,1,n
ξi,2,n

...

ξi,k,n

⎞

⎟

⎟

⎟

⎟

⎠

= lower order combinations.

Since the first square matrix is invertible, ξi,a,n is determined uniquely. Thus, we

find ξi ∈
k
⊕

a=0

Q�z�va0v
k−a
1 such that ∇ξi = vk0z

i dz
z . In k ≡ 2 mod 4 case, we only

need to replace ξi by ξi − γk,i−r ξr .
Next, we turn to investigate the formal solutions at ∞ using horizontal frames. We

have the modified Bessel functions have the asymptotic expansions at 1
t [13, Sect.

7.23]

I0(t) ∼ et
1√
2π t

∞
∑

n=0

((2n − 1)!!)2
23nn!

1

tn
, | arg t | <

1

2
π, (8)

K0(t) ∼ e−t

√

π

2t

∞
∑

n=0

(−1)n
((2n − 1)!!)2

23nn!
1

tn
, | arg t | <

3

2
π, (9)

I0(t)K0(t) ∼ 1

2t

∞
∑

n=0

((2n − 1)!!)3
23nn!

1

t2n
. (10)

Here, the notation n!! is the double factorial of a positive integer n defined by

n!! =
� n
2 �−1
∏

k=0

(n − 2k).

Let w = 1
z be the local coordinate at z = ∞. For k even, by the last asymptotic

expansion, we have

(−A0(z)B0(z))
k/2 ∼ w1/4

∞
∑

n=0

γk,nw
n, (11)

where γk,0 = 1 and γk,n > 0 for all n > 0. For convenience, we set γk, j = 0 for all
j < 0.
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Following the notation in (4), let us set e1 = π
√−1e1. Then 1√

z e
a
0e1

k−a are
horizontal sections. Using the Wronskian relation A0B1 − A1B0 = 2, we have v0 =
B0e0 − A0e1. Then, we obtain

vk0z
i dz

z
= −

k
∑

a=0

(

k

a

)

(−A0)
a Bk−a

0

wi+3/2

1√
z
ek−a
0 ea1dw.

To solve the formal solution ηi of ∇ηi = vk0z
i dz
z , We first solve ηi,a for each i, a

such that

dηi,a = (−A0)
a Bk−a

0

wi+3/2 .

Then, ηi = −∑k
a=0

(k
a

)

ηi,a
1√
z e

k−a
0 ea1 is the desired solution. Moreover, since the

function ηi,a have wk/4 and the exponential factor (see (12) below), we need to justify
that ηi lies in

⊕k
a=0 Q�w�va0v

k−a
1 (not just in

⊕k
a=0 Q�w1/4, e−1/

√
w�va0v

k−a
1 ).

Near ∞, we have the expansion

(−A0)
a Bk−a

0

wi+3/2 =
⎧

⎨

⎩

√
π
k−2ae−2(k−2a)/

√
wwk/4−i−3/2 · Fi,a, a �= k

2

wk/4−i−3/2
(

∑∞
n=0

((2n−1)!!)3
25nn! wn

)k/2
, a = k

2 ,

where Fi,a ∈ 1 + √
wQ�

√
w�. When a �= k

2 , we can find an antiderivative ηi,a of
(−A0)

a Bk−a
0

wi+3/2 with the expansion

ηi,a =
√

π
k−2a

k − 2a
e−2(k−2a)/

√
wwk/4−i · Gi,a, (12)

for some Gi,a ∈ 1 + √
wQ�

√
w�. We analyze ηi,a

1√
z e

k−a
0 ea1. Write ek−a

0 ea1 back to

the expression in basis vb0v
k−b
1 :

ek−a
0 ea1 = 2−k(A0v1 − A1v0)

k−a · (B0v1 − B1v0)
a

= 2−ke2(k−a)
√
z 1√

π
k−a

(F1v0 − F2v1)
k−a · e−2a

√
z√π

a
(G1v1 − G2v0)

a

= 2−ke2(k−2a)
√
z√π

2a−k
(F1v0 − F2v1)

k−a(G1v1 − G2v0)
a,

where F1, F2,G1,G2 ∈ z1/4Q�z−1/4�. Thus,

ηi,a
1√
z
ek−a
0 ea1 = 2−k

k − 2a
wk/4−i+1/2Gi,a(F1v0 − F2v1)

k−a(G1v1 − G2v0)
a,
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where F1, F2,G1,G2 ∈ z1/4Q�z−1/4�. We conclude that the desired ηi =
−∑k

a=0

(k
a

)

ηi,a
1√
z e

k−a
0 ea1 has no exponential factor as a combination of monomials

vk−b
0 vb1 , that is, ηi lies in

⊕k
a=0 Q�w1/4�va0v

k−a
1 .

Next, we will prove ηi lies in
⊕k

a=0 Q�w�va0v
k−a
1 by showing ηi is invariant under

the Galois group action. Let σ : w1/4 �→ √−1w1/4 be the generator of the Galois
group of the extension C(w1/4) of C(w). From the monodromy action [12, 10.34.5]
of I0, K0, the σ action on Ai , Bi is given by

σ
(

A j , Bj
) =

(

1

π
√−1

Bj ,−π
√−1A j

)

for j = 0, 1,

and thus on e0, e1 by

σ (e0, e1) =
(

1

π
√−1

e1,−π
√−1e0

)

; σ
(

ek−a
0 ea1

)

= (
√−1)−kπ2a−kea0e

k−a
1 .

Moreover, we have

σ

(

ηi,a
1√
z
ek−a
0 ea1

)

= ηi,k−a
1√
z
ea0e

k−a
1 .

Hence, when k ≡ 1, 3 mod 4, the element ηi is fixed by σ and

ηi = −
k
∑

a=0

(

k

a

)

ηi,a
1√
z
ek−a
0 ea1 ∈

k
⊕

a=0

Q�w�va0v
k−a
1 .

This gives ∇ηi = vk0z
i dz
z .

When k = 4r+4 and a = 2r+2, the exponents ofw of the expansion of
(−A0)

a Bk−a
0

wi+3/2

are in 1
2 + Z and one takes

ηi,2r+2 ∼ wr−i+1/2

r − i + 1/2
Gi ,

where Gi ∈ 1 + wQ�w�. More precisely, we have

Gi = 1 +
∞
∑

n=1

r − i + 1/2

r − i + 1/2 + n
γk,nw

n .

Moreover, ηi,2r+2
1√
z (e0e1)

2r+2 has no exponential factor as a combination of

monomials vk−b
0 vb1 and is invariant under σ . Hence, when k ≡ 0 mod 4, we take
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an element

ηi = −
k
∑

a=0

(

k

a

)

ηi,a
1√
z
ek−a
0 ea1 ∈

k
⊕

a=0

Q�z�va0v
k−a
1 .

This gives ∇ηi = vk0z
i dz
z .

Now, suppose that k = 4r + 2, a positive integer congruent to 2 modulo 4, and
a = 2r + 1. Using the expansion (11), we have the residue:

Resw
(−A0)

a Bk−a
0

wi+3/2 = γk,i−r ,

which vanishes if and only if i ≤ r − 1. Therefore, for i ≥ r , there exists

ηi,2r+1 ∼ 1

r − i
wr−i · Hi ,

such that

dηi,2r+1 =
(

w−i−3/2 − γk,i−rw
−r−3/2

)

(−A0B0)
2r+1dw,

where Hi ∈ 1 + wQ�w�. Also, ηi,2r+1
1√
z (e0e1)

2r+1 is invariant under σ . Moreover,

ηi,2r+1
1√
z (e0e1)

2r+1 has no exponential factor as a combination ofmonomials vk−b
0 vb1 .

Thus, we have

vk0z
i dz

z
− γk,i−rv

k
0z

r dz

z
= ∇

⎛

⎜

⎜

⎝

−
k
∑

a=0
a �=k/2

(

k

a

)

ηi,a − γk,i−rηr ,a√
z

ek−a
0 ea1

−
(

k

k/2

)

ηi,2r+1√
z

e2r+1
0 e2r+1

1

⎞

⎟

⎟

⎠

,

and hence we find an element ηi in
k
⊕

a=0

Q�z�va0v
k−a
1 such that ∇ηi = vk0z

i dz
z −

γk,i−rv
k
0z

r dz
z . ��

Now, we define some elements in the de Rham cohomology and the de Rham coho-
mology with compact support. In next subsection, we will prove that these elements
form bases of the corresponding cohomology spaces (see Corollary 14).

Definition 10 In the de Rham cohomology H1
dR

(

Gm,
√
z Symk Kl2

)

, the classes ωk,i

are given as follows.
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1. When k ≡ 0, 1, 3 mod 4, define the k′ + 1 elements:

ωk,i = vk0z
i dz

z
for i = 0, 1, 2, . . . , k′.

2. When k ≡ 2 mod 4, write k = 4r + 2 and define the k′ elements:

ωk,i =
{

vk0z
i dz
z , 0 ≤ i ≤ r − 1;

vk0z
i dz
z − γk,i−rv

k
0z

r dz
z , r + 1 ≤ i ≤ 2r ,

where γk,n ∈ Q are the coefficients in the asymptotic expansion of (−A0 (z)
B0 (z))k/2 given by (11) above.

From the Lemma 9, we define the elements in the compactly supported de Rham
cohomology.

Definition 11 We define certain elements in the compactly supported de Rham coho-
mology H1

dR,c

(

Gm,
√
z Symk Kl2

)

as follows.

1. When k ≡ 0, 1, 3 mod 4, define k′ + 1 elements

ω̃k,i = (ξi , ηi , ωk,i ) for 0 ≤ i ≤ k′,

where ∇ξi = ∇ηi = ωk,i .
2. When k ≡ 2 mod 4, write k = 4r + 2 and define k′ elements

ω̃k,i = (ξi , ηi , ωk,i ) for 0 ≤ i ≤ r − 1 and r + 1 ≤ i ≤ k′,

where ∇ξi = ∇ηi = ωk,i .
3. In the case that k ≡ 2 mod 4, write k = 4r + 2 and further define

m̂2r+1 =
(

0, 2k
1√
z
(e0e1)

2r+1, 0

)

∈ H1
dR,c

(

Gm,
√
z Symk Kl2

)

.

Here, e1 := π
√−1e1 and e0, e1 are horizontal sections of Kl2 defined in (4).

Remark 12 The pair of the formal solutions (ξi , ηi ) is unique except in the case that
there are solutions (ξ, η) to∇ξ = ∇η = 0. The latter happens onlywhen k ≡ 2 mod 4.
In this circumstance, we fix the choice of (ξi , ηi ) to be the one constructed in the proof
of Lemma 9. These expressions will be used in the computations of Poincaré pairing
and period pairing in the rest of this paper.

Further, we define themiddle part de Rham cohomology, H1
mid

(

Gm,
√
z Symk Kl2

)

,
to be the image of the projection H1

dR,c

(

Gm,
√
z Symk Kl2

) → H1
dR

(

Gm,
√
z Symk

Kl2
)

, (ξ, η, ω) �→ ω. We therefore have

ωk,i ∈ H1
mid

(

Gm,
√
z Symk Kl2

)

for 0 ≤ i ≤ k′ when k ≡ 0, 1, 3 mod 4;
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ωk,i ∈ H1
mid

(

Gm,
√
z Symk Kl2

)

for 0 ≤ i ≤ k′, i �= r when k = 4r + 2.

We may regard H1
mid

(

Gm,
√
z Symk Kl2

)

as a quotient of H1
dR,c

(

Gm,
√
z Symk

Kl2
)

containing the class of elements ω̃k,i .

3.3 Poincaré pairing

We have the following Poincaré pairing between the de Rham cohomology and the
compactly supported de Rham cohomology. Recall the algebraic pairing 〈 , 〉alg is
introduced in Sect. 2.3.

H1
dR,c

(

Gm,
√
z Symk Kl2

)

⊗ H1
dR

(

Gm,
√
z Symk Kl2

)

Q(−k − 1)

(m̂0, m̂∞, ω) ⊗ η Resz 〈m̂0, η〉alg
+Resw 〈m̂∞, η〉alg .

〈 , 〉Poin

Here, a one-form η occurs in 〈m̂, η〉alg. This algebraic pairing means 〈m̂, f 〉algdz
whenever η = f dz. The notation Q(−k − 1) is the (k + 1)-time tensor product of
the Tate structures Q(−1). As a vector space, Q(−k − 1) is nothing but Q. Here, in
consideration of Hodge filtrations, we use Q(−k − 1) instead of Q to indicate the
Hodge filtrations on both sides respect the Poincaré pairing. Note that the Poincaré
pairing induces on the middle part de Rham cohomology which we still call it 〈 〉Poin:

H1
mid

(

Gm,
√
z Symk Kl2

)

⊗ H1
mid

(

Gm,
√
z Symk Kl2

)

Q(−k − 1).
〈 ,〉Poin

Proposition 13 Under the notation as inDefinition 11, for j ≥ 0, we have the Poincaré
pairing

〈

ω̃k,i , v
k
0z

j dz

z

〉

Poin
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 if i + j ≤ k′ − 1, k : arbitrary,
(−2)k

′ k′!
k!! if i + j = k′, k ≡ 1, 3 mod 4,

( k
k/2)

2k (r−i+1/2)
if i + j = k′, k ≡ 0 mod 4, k = 4r + 4,

− ( k
k/2)

2k (r−i)
if i + j = k′, k ≡ 2 mod 4, k = 4r + 2.

Moreover, if k = 4r + 2, we have

〈

m̂2r+1, v
k
0z

j dz

z

〉

Poin
=
{

0 if j < r ,

γk, j−r if j ≥ r .

In particular, the Poincaré pairing matrix between the k′ +1 elements in Definition

11 and the k′ +1 elements
{

vk0z
i dz
z

}k′

i=0
in H1

dR

(

Gm,
√
z Symk Kl2

)

is non-degenerate.
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Proof In this proof, we will follow the notations as in the proof of Lemma 9. We first
discuss the residue at z = 0. For any k and 0 ≤ i, j ≤ k′, we compute

Resz

〈

ξi , v
k
0z

j dz

z

〉

alg
=

k
∑

a=0

Resz

〈

ξi,av
a
0v

k−a
1 , vk0z

j dz

z

〉

alg

= Resz

〈

ξi,0v
k
1, v

k
0z

j dz

z

〉

alg

= Resz
(

(−1)kξi,0z
j
)

= 0,

where ξi,0 ∈ Q�z�.
Next, we discuss the residue at z = ∞. When k ≡ 1, 3 mod 4 and for any 0 ≤

i, j ≤ k′, we compute

Resw

〈

ηi , v
k
0 z

j dz

z

〉

alg
= −

k
∑

a=0

(

k

a

)

Resw

〈

ηi,a
ek−a
0 ea1√

z
, vk0 z

j dz

z

〉

alg

=
k
∑

a,b=0

(

k

a

)(

k

b

)

Resw

〈

ηi,a
ek−a
0 ea1√

z
,
(−A0)

b Bk−b
0

w j+3/2

ek−b
0 eb1√

z
dw

〉

alg

= 1

2k

k
∑

a=0

(−1)a
(

k

a

)

Resw

(

ηi,a
1

w j+3/2 (−A0)
k−a Ba

0 dw

)

= 1

2k

k
∑

a=0

(−1)a
(k
a

)

k − 2a
Resw

(

w(k−1)/2−i− j−1Gi,a Fj,k−adw
)

=
{

0 if i + j ≤ k′ − 1,

(−2)k
′ k′!
k!! if i + j = k′ .

where Gi,a, Fj,k−a ∈ 1+ √
wQ�

√
w� and the last equality follows from [2, Lemma

3.18].
When k ≡ 0 mod 4, write k = 4r + 4. For any 0 ≤ i, j ≤ k′, we compute

Resw

〈

ηi , v
k
0z

j dz

z

〉

alg
= 1

2k

k
∑

a=0
a �= k

2

(−1)a
(k
a

)

k − 2a
Resw

(

w(k−1)/2−i− j−1Gi,a Fj,k−adw
)

+ (−1)k/2

2k

(

k

k/2

)

Resw

(

ηi,2r+2
1

w j+3/2 (−A0B0)
2r+2dw

)

= 1

2k

k
∑

a=0
a �= k

2

(−1)a
(k
a

)

k − 2a
Resw

(

w(k−1)/2−i− j−1Gi,a Fj,k−adw
)

+
( k
k/2

)

2k(r − i + 1/2)
Resw

(

wk′−i− j−1 · Gi F2r+2dw
)
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=
⎧

⎨

⎩

0 if i + j ≤ k′ − 1,
( k
k/2)

2k (r−i+1/2)
if i + j = k′,

where Gi,a, Fj,k−a ∈ 1 + √
wQ�

√
w�, Gi ∈ 1 + wQ�w� and F2r+2 =

(

∑∞
n=0

((2n−1)!!)3
25nn! wn

)2r+2
.

When k ≡ 2 mod 4, the computation is similar to the case k ≡ 0 mod 4.
Finally, we compute

Resw

〈

2k(e0e1)2r+1

√
z

, vk0z
j dz

z

〉

alg

= −
k
∑

b=0

(

k

b

)

Resw

〈

2k(e0e1)2r+1

√
z

,
(−A0)

bBk−b
0

w j+3/2

ek−b
0 eb1√

z
dw

〉

alg

= −
(

k

k/2

)

Resw

〈

2k(e0e1)2r+1

√
z

,
(−A0B0)

2r+1

w j+3/2

(e0e1)2r+1

√
z

dw

〉

alg

= (−1)2r+2 Resw

(

(−A0B0)
2r+1

w j+3/2 dw

)

= Resw

(

wk/4− j−3/2
∞
∑

n=0

γk,nw
ndw

)

=
{

0 if j < r ,

γk, j−r if j ≥ r .

Combining these residues, we obtain this proposition. ��
Corollary 14 (Bases in de Rham side) Let k be a positive integer.

1. H1
dR

(

Gm,
√
z Symk Kl2

)

has basis
{

vk0z
j dz
z

}k′

j=0
.

2. H1
dR,c

(

Gm,
√
z Symk Kl2

)

has basis

⎧

⎨

⎩

{

ω̃k, j
}k′
j=0 if k ≡ 0, 1, 3 mod 4,

{

ω̃k, j
}r−1
j=0 ∪ {ω̃k, j

}k′
j=r+1 ∪ {m̂2r+1} if k ≡ 2 mod 4 with k = 4r + 2.

3. H1
dR,mid

(

Gm,
√
z Symk Kl2

)

has basis

{

{

ωk,i
}k′
i=0 if k ≡ 0, 1, 3 mod 4,

{

ωk,i
}r−1
i=0 ∪ {ωk,i

}k′
i=r+1 if k ≡ 2 mod 4 with k = 4r + 2.

Proof Putting the dimension result in Proposition 6, the non-vanishing determinant of
the Poincaré pairing matrix in Proposition 13 together, we obtain this corollary, thanks
to the following simple observation in linear algebra. ��
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Fact 15 Let V and W be two n-dimensional vector spaces over a field F. Suppose that
〈 〉 : V × W → F is a bilinear pairing. If {v1, . . . , vn} ⊆ V and {w1, . . . , wn} ⊆ W
are subsets of vectors such that the matrix

(〈vi , w j 〉
)

i, j=1...n ∈ Mn(F),

is invertible, then {v1, . . . , vn} is a basis of V and {w1, . . . , wn} is a basis of W .

4 The local system and the associated homology

In this section, we study the rapid decay homology and moderate decay homology of
the local system (

√
z Symk Kl2)∇ . We write down the explicit cycles in these homolo-

gies and compute their Betti intersection pairing. In the end, we finish this section by
concluding the bases of these two homologies.

In order to write down the cycles in the homology, we need to understand the
monodromy action of the horizontal sections of

√
z Symk Kl2. Recall {e0, e1} is the

basis of the local system Kl∇2 defined in (4). From [12, 10.25(ii)], the modified Bessel
function I0(t) is entire. On the other hand, K0(t) extends analytically to a multival-
ued function on C× satisfying the monodromy K0(eπ

√−1t) = K0(t) − π
√−1I0(t)

from [12, 10.34]. This implies e0, e1 undergo the monodromy action T : (e0, e1) �→
(e0, e1 + e0) near 0. Then the basis in (7) of the local system (

√
z Symk Kl2)∇ satisfies

T : 1√
z e

a
0e

k−a
1 �→ −1√

z e
a
0(e1 + e0)k−a near 0.

4.1 Rapid decay cycles

Write k′ = ⌊ k−1
2

⌋

. Denote the chains on C×:

σ0 = the unit circle, starting at 1 and oriented counterclockwise;
σ+ = the interval [1,∞) , starting at 1 toward + ∞.

By the asymptotic expansion (8), (9), the horizontal sections 1√
z e

a
0e

k−a
1 decay expo-

nentially along σ+ for a = 0, 1, . . . , k′.We have the following lemma describing some
elements in the rapid decay homology.

Lemma 16 For 0 ≤ b ≤ k′, the elements

δb = σ+ ⊗ 1√
z
eb0e

k−b
1 − 1

2
σ0 ⊗ 1√

z
eb0e

k−b
1 +

k−b
∑

n=1

dk−b(n)σ 2n
0 ⊗ 1√

z
eb0e

k−b
1 , (13)
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are rapid decay cycles in Hrd
1

(

Gm, (
√
z Symk Kl2)∇

)

, where dn(i) are real numbers
satisfying

n
∑

i=1

dn(i) (2i)m = −1

2
, for m = 1, 2, . . . , n.

In fact, by Cramer’s rule, one can write dn(i) = (−1)i

n!2n+1

(n
i

)

(2n−1)!!
2i−1 uniquely.

Proof We need to prove that dn(i) makes δb into a cycle, that is, ∂δb = 0. The
boundaries of chains σ+ and σ0 in δb support at the point 1 ∈ C×. It suffices to check
that the coefficient of 1 ∈ C× in ∂δb is 0. Indeed, considering the monodromy action
T described above, a direct computation shows the coefficient of 1 ∈ C× in ∂δb is

1√
z
eb0e

k−b
1 − 1

2

(

1√
z
eb0e

k−b
1 + 1√

z
eb0(e1 + e0)

k−b
)

+
k−b
∑

n=1

dk−b(n)

(

1√
z
eb0e

k−b
1 − 1√

z
eb0(e1 + 2ne0)

k−b
)

= 1√
z
eb0e

k−b
1 − 1

2

⎛

⎝

1√
z
eb0e

k−b
1 +

k−b
∑

j=0

(

k − b

j

)

1√
z
eb+ j
0 ek−b− j

1

⎞

⎠

+
k−b
∑

n=1

dk−b(n)

(

1√
z
eb0e

k−b
1 −

k−b
∑

m=0

(

k − b

m

)

(2n)m
1√
z
eb+m
0 ek−b−m

1

)

= −1

2

k−b
∑

j=1

(

k − b

j

)

1√
z
eb+ j
0 ek−b− j

1 −
k−b
∑

m=1

(

k − b

m

) k−b
∑

n=1

dk−b(n)(2n)m
1√
z
eb+m
0 ek−b−m

1

=
k−b
∑

j=1

(

k − b

j

)

(

−1

2
−

k−b
∑

n=1

dk−b(n)(2n) j

)

1√
z
eb+ j
0 ek−b− j

1 = 0,

where the last equality is the assumption on real numbers dn(i). ��
From this lemma, we have k′ + 1 elements {δb}k′

b=0 in the rapid decay homology
H rd
1

(

Gm, (
√
z Symk Kl2)∇

)

. At the end of this section, we will prove these elements
form a basis (see Corollary 20).

4.2 Moderate decay cycles

Define one more chain

R+ = the half line [0,∞) , starting at 0 toward + ∞.

By [12, Sect. 10.30(i)], the modified Bessel function K0 (t) has log pole
at 0, so the horizontal sections 1√

z e
a
0e

k−a
1 decay moderately along R+ near 0
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for a = 0, 1, . . . , � k
2
. Moreover, by the expression (10), (I0K0)

a decay poly-
nomially along R+ near ∞. Then, we define the moderate decay cycles in
Hmod
1

(

Gm, (
√
z Symk Kl2)∇

)

γa = R+ ⊗ 1√
z
ea0e

k−a
1 , for a = 0, 1, 2, . . . ,

⌊

k

2

⌋

. (14)

They are indeed a cycle. The proof is the same as the above lemma by taking the
homotopy as the radius of σ0 tends to 0 and σ+ tends toR+. Since a rapid decay cycle
is a moderate decay cycle as well, we have the natural map

H rd
1

(

Gm, (
√
z Symk Kl2)∇

)

Hmod
1

(

Gm, (
√
zSymkKl2)∇

)

.

This natural map sends δb to γb for b = 0, 1, . . . , k′ by the homotopy argument.

The following lemma shows when k ≡ 2 mod 4,
(k−2)/4
∑

j=0

(

k/2

2 j

)

δ2 j belongs to the

kernel of this map.

Lemma 17 In Hmod
1

(

Gm, (
√
z Symk Kl2)∇

)

, one has

k/4
∑

j=0

(

k/2

2 j

)

γ2 j = 0 if k ≡ 0 mod 4;

(k−2)/4
∑

j=0

(

k/2

2 j

)

γ2 j = 0 if k ≡ 2 mod 4.

Proof Let ρ : {(x, y) ∈ R2 | 0 < x, y, x + y < 1
} → C be the open simplicial 2-

chain

ρ (x, y) = tan
π (x + y)

2
exp
(

4
√−1 tan−1 y

x

)

,

that covers C once. If k is even, by the asymptotic expansion (10), the singular chain

� = ρ ⊗
(

1√
z
(e1 − e0)

k/2ek/21

)

,

has moderate growth. The boundary of ρ consists of two positive real lines R+. From
the monodromy action T : (e0, e1) �→ (e0, e1 + e0), one computes ∂�:

∂� = R+ ⊗
(

1√
z
(e1 − e0)

k/2ek/21

)

+ R+ ⊗
(

1√
z
ek/21 (e0 + e1)

k/2
)

=
k/2
∑

i=0

(−1)i
(

k/2

i

)

R+ ⊗ 1√
z
ei0e

k−i
1 +

k/2
∑

i=0

(

k/2

i

)

R+ ⊗ 1√
z
ei0e

k−i
1
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=
k/2
∑

i=0

(1 + (−1)i )

(

k/2

i

)

γi .

When k ≡ 0 mod 4, this reads

1

2
∂� =

k/4
∑

j=0

(

k/2

2 j

)

γ2 j .

Thus,
∑k/4

j=0

(k/2
2 j

)

γ2 j is homologous to zero in Hmod
1 (Gm, (

√
z Symk Kl2)∇). The

case when k ≡ 2 mod 4 is similar. ��
Here, we have written down the 1+ � k

2
 elements {γa}�k/2
a=0 in the moderate decay
homology Hmod

1

(

Gm, (
√
z Symk Kl2)∇

)

. At the end of this section, we will prove that
these elements form a basis modulo the linear relation given in the above lemma (see
Corollary 20).

Similar to the middle part de Rham cohomology in the previous section, we define
the middle part Betti homology Hmid

1

(

Gm, (
√
z Symk Kl2)∇

)

to be the image of
H rd
1

(

Gm, (
√
z Symk Kl2)∇

)

in Hmod
1

(

Gm, (
√
z Symk Kl2)∇

)

.More precisely, we have

γi ∈ Hmid
1

(

Gm, (
√
z Symk Kl2)

∇) for 0 ≤ i ≤ k′ when k ≡ 0, 1, 3 mod 4;
γi ∈ Hmid

1

(

Gm, (
√
z Symk Kl2)

∇) for 1 ≤ i ≤ k′ when k ≡ 2 mod 4.

Also, we may regard Hmid
1

(

Gm, (
√
z Symk Kl2)∇

)

as the quotient of
H rd
1

(

Gm, (
√
z Symk Kl2)∇

)

containing the class of elements δb. At the end of this
section, we will prove these elements form a basis (see Corollary 20).

4.3 Betti intersection pairing

We use the topological pairing 〈 〉top introduced in Sect. 2.3 to define the Betti inter-
section pairing

H rd
1

(

Gm, (
√
z Symk Kl2)∇

)× Hmod
1

(

Gm, (
√
z Symk Kl2)∇

)

Q

(

δ =∑i σi ⊗ sσi , γ =∑ j τ j ⊗ sτ j
)

∑

i, j

∑

σi∩τ j

〈

sσi , sτ j
〉

top

〈 ,〉Betti

.

Here, we need to find representatives of δ = ∑

σi ⊗ sσi and γ = ∑

τ j ⊗ sτ j
in their homology classes respectively such that any two chains σi and τ j intersect
transversally for all i, j . Then, for each pair (i, j), σi ∩ τ j consists of only finitely
many topological intersection points. The sum over σi ∩ τ j is then the sum of the
topological pairings of the corresponding sections at each intersection point. Note that
the Betti intersection pairing induces on the middle part Betti homology which we
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still call it 〈 , 〉Betti:

Hmid
1 (Gm, (

√
z Symk Kl2)∇) × Hmid

1 (Gm, (
√
z Symk Kl2)∇) Q

〈 ,〉Betti
.

To compute the topological pairing with respect to the elements we had written
down, we need to introduce the Euler numbers and Euler polynomials. The Euler
polynomials En(x) are given by the following power series, andwe define the numbers
En for n ≥ 0 as in [14],

∞
∑

n=0

En(x)
zn

n! = 2

ez + 1
exz, En = En(0).

The first few En are

E0 E1 E2 E3 E4 E5 E6

1 −1/2 0 1/4 0 −1/2 0
.

We have the inversion formula for Euler polynomials,

xn = En(x) + 1

2

n−1
∑

k=0

(

n

k

)

Ek(x).

Evaluating at x = 0, we get

n−1
∑

k=0

(

n

k

)

Ek = −2En . (15)

Proposition 18 We have the Betti intersection pairing

〈δb, γa〉Betti = (−1)a
(k−b

a

)

(k
a

)

−1

2
Ek−a−b = (−1)a+1

2

(k − a)!(k − b)!
k!

Ek−a−b

(k − a − b)! ,

for b = 0, . . . , k′ and a = 0, . . . ,
⌊ k
2

⌋

.

Proof Fix some −π < θ0 < 0 and let x0 = exp(
√−1θ0). To compute the pairing

〈δb, γa〉Betti, wemove the ray σ+ by adding the scalar (x0−1) and let the circle σ0 start
at x0. Then the component σ j

0 ⊗ 1√
z e

b
0e

k−b
1 in the deformed δb meets γa topologically

j times at the same point +1 ∈ C×. At the i-th intersection, the factor 1√
z e

b
0e

k−b
1

becomes (−1)i−1 1√
z e

b
0(e1 + (i − 1)e0)k−b and we have

〈

(−1)i−1 1√
z
eb0(e1 + (i − 1)e0)

k−b,
1√
z
ea0e

k−a
1

〉

top
= (−1)i−1(i − 1)k−a−b(−1)a

(k−b
a

)

(k
a

) .
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By adding these contributions, we obtain

〈δb, γa〉Betti =
(k−b

a

)

(k
a

) (−1)a
k−b
∑

n=1

dk−b(n)Tk−a−b(2n),

where

Tn(k) =
k−1
∑

�=0

(−1)��n = −1 + 2n − · · · + (−1)k−1(k − 1)n .

Kim [14] gave the following relation for Tn(k):

Tn(k) = (−1)k+1

2

n−1
∑

�=0

(

n

�

)

E�k
n−� + En

2

(

1 + (−1)k+1
)

.

Now, we have the following computation

k−b
∑

n=1

dk−b(n)Tk−a−b(2n) =
k−b
∑

n=1

dk−b(n)

[

−1

2

k−a−b−1
∑

�=0

(

k − a − b

�

)

E�(2n)k−a−b−�

]

= −1

2

k−a−b−1
∑

�=0

(

k − a − b

�

)

E�

k−b
∑

n=1

dk−b(n)(2n)k−a−b−�

= 1

4

k−a−b−1
∑

�=0

(

k − a − b

�

)

E�

= −1

2
Ek−a−b,

where the last equality follows from (15). ��
Consider the (k′ + 1) × (k′ + 1) pairing matrix

Bk =
⎧

⎨

⎩

(〈δb, γa〉Betti
)

0≤b≤k′, 0≤a≤� k
2 
 if k is odd,

(〈δb, γa〉Betti
)

0≤b≤k′, 1≤a≤ k
2

if k is even.

By Proposition 18, when k is even, we have

Bk =

⎛

⎜

⎜

⎝

(−1)2

2
(k−1)!k!

k!
Ek−1

(k−1)! · · · (−1)k/2+1

2
(k/2)!k!

k!
Ek/2

(k/2)!
...

. . .
...

(−1)2

2
(k−1)!(k/2+1)!

k!
Ek/2

(k/2)! · · · (−1)k/2+1

2
(k/2)!(k/2+1)!

k!
E1
(1)!

⎞

⎟

⎟

⎠

,
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and that

Bk−1 =

⎛

⎜

⎜

⎝

(−1)
2

(k−1)!(k−1)!
(k−1)!

Ek−1
(k−1)! · · · (−1)k/2

2
(k/2)!(k−1)!

(k−1)!
Ek/2

(k/2)!
...

. . .
...

(−1)
2

(k−1)!(k/2)!
(k−1)!

Ek/2
(k/2)! · · · (−1)k/2

2
(k/2)!(k/2)!

(k−1)!
E1
(1)!

⎞

⎟

⎟

⎠

.

Then we obtain the relation

Bk = −1

k
diag(k, k − 1, · · · , k/2 + 1) · Bk−1. (16)

Thus, Bk and Bk−1 have the same rank whenever k is even. Moreover, we may
compute the determinant of Bk explicitly as given in the following proposition.

Proposition 19 The determinant of Bk is given by the following.

1. When k is odd, we have

det Bk = 2−k−1
k′
∏

a=1

ak
′+1−2a(2a + 1)k

′−2a .

2. When k is even, we have

det Bk = (−1)(k
′+1)(k′+3)2−k

k′
∏

a=1

(a + 1)k
′−2a−1(2a + 1)k

′+1−2a .

In particular, they are all non-vanishing.

Proof Set E2n−1 = (−1)n22n−1E2n−1. Apply the result [15, Eq. H12] in the following
computations.

When k = 2k′ + 1 is odd, we have

det Bk = (−1)(k
′+1)(k′+2)/2

(2 · k!)k′+1

⎡

⎣

k
∏

i=k′+1

i !
⎤

⎦

2

det

⎛

⎜

⎜

⎝

Ek
k! · · · Ek′+1

(k′+1)!
...

. . .
...

Ek′+1
(k′+1)! · · · E1

(1)!

⎞

⎟

⎟

⎠

= 1

(2 · k!)k′+1

⎡

⎣

k
∏

i=k′+1

i !
⎤

⎦

2
1

2(k′+1)2
det

⎛

⎜

⎜

⎝

Ek
k! · · · Ek′+1

(k′+1)!
...

. . .
...

Ek′+1
(k′+1)! · · · E1

(1)!

⎞

⎟

⎟

⎠

= 1

2(k′+1)(k′+2)(k!)k′+1

⎡

⎣

k
∏

i=k′+1

i !
⎤

⎦

2

2k
′2 k′!
k!

k′
∏

j=1

( j − 1)!2
(2 j − 1)!2

= 1

2k+1

k′
∏

a=1

ak
′+1−2a(2a + 1)k

′−2a .
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When k = 2k′ + 2 is even, we have

det Bk = (−1)(k
′+1)(k′+4)/2

(2 · k!)k′+1

⎡

⎣

k−1
∏

i=k′+1

i ! (i + 1)!
⎤

⎦ det

⎛

⎜

⎜

⎝

Ek−1
(k−1)! · · · Ek′+1

(k′+1)!
...

. . .
...

Ek′+1
(k′+1)! · · · E1

(1)!

⎞

⎟

⎟

⎠

= (−1)(k
′+1)(k′+4)/2

(2 · k!)k′+1

⎡

⎣

k−1
∏

i=k′+1

i ! (i + 1)!
⎤

⎦

× (
√−1)(k

′+1)(k′+2)

2(k′+1)2
det

⎛

⎜

⎜

⎝

Ek−1
(k−1)! · · · Ek′+1

(k′+1)!
...

. . .
...

Ek′+1
(k′+1)! · · · E1

(1)!

⎞

⎟

⎟

⎠

= (−1)(k
′+1)(k′+3)

2(k′+1)(k′+2)(k!)k′+1

⎡

⎣

k−1
∏

i=k′+1

i ! (i + 1)!
⎤

⎦ 2k
′2 k′!

(k − 1)!
k′
∏

j=1

( j − 1)!2
(2 j − 1)!2

= (−1)(k
′+1)(k′+3)

2k

k′
∏

a=1

(a + 1)k
′−2a−1(2a + 1)k

′+1−2a .

��
Finally, before we conclude the basis of Betti homologies, we need to introduce

the period pairings here. However, the details of the pairings will be given in the next
section. By [2, Corollary 2.11], there exist two perfect pairings

H rd
1

(

Gm, (
√
z Symk Kl2)∇

)

C
× H1

dR

(

Gm,
√
z Symk Kl2

)

C
C

〈 ,〉per
,

H1
dR,c

(

Gm,
√
z Symk Kl2

)

C
× Hmod

1

(

Gm, (
√
z Symk Kl2)∇

)

C
C

〈 ,〉per,c
.

Here, the notation VC means V ⊗Q C. For the next corollary, we just need to use
the fact that these pairings are perfect. In the next section, we will compute these two
pairings explicitly.

Corollary 20 The natural map

Hrd
1

(

Gm, (
√
zSymk Kl2)∇

)

Hmod
1

(

Gm, (
√
zSymk Kl2)∇

)

,

sending δb to γb is an isomorphismwhen k ≡ 0, 1, 3 mod 4 and has a one-dimensional
kernel when k ≡ 2 mod 4. Moreover, we find the following.

1. Hrd
1

(

Gm, (
√
z Symk Kl2)∇

)

has basis {δb}k′
b=0.
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2. Hmod
1

(

Gm, (
√
z Symk Kl2)∇

)

has basis

{

{γa}k′
a=0 if k is odd;

{γa}k/2a=1 if k is even.

3. Hmid
1

(

Gm, (
√
z Symk Kl2)∇

)

has basis

{

{γa}k′
a=0 if k ≡ 0, 1, 3 mod 4;

{γa}k′
a=1 if k ≡ 2 mod 4.

Proof From the perfect period pairings, the dimension of rapid decay homology and
moderate decay homology are both k′ + 1 by Proposition 6. Then, by the Fact 15 and
the non-vanishing determinant of Bk in Proposition 19, we conclude 1 and 2. This also
shows the natural map which sends δb to γb for b = 0, . . . , k′ is an isomorphism when
k ≡ 1, 3 mod 4.When k ≡ 2 mod 4, Lemma 17 describes the one-dimensional kernel
of the natural map. Moreover, Bk has full rank k/2 when k is even by the relation (16).
Hence, we conclude that the natural map is an isomorphism when k ≡ 0 mod 4. ��

5 Twistedmoments as periods

In this section, we compute the period pairing of the basis of de Rham cohomology
and Betti homology in Corollaries 14 and 20. Also, we interpret these periods as the
Bessel moments and regularized Bessel moments.

5.1 Bessel moments and regularized Bessel moments

The Bessel moments are defined by

IKMk(a, b) =
∞
∫

0

I a0 (t)Kk−a
0 (t)tbdt,

provided the convergence of the integral, that is, for non-negative integers k, a, b
satisfying a ≤ k′, b ≥ 0 or a = k

2 , 0 ≤ b < k′. The justification is given in the
following lemma. Moreover, if a = k

2 and b ≥ k′, by analyzing the singular integral,
we could define the regularized Bessel moments IKMreg

k

( k
2 , b
)

by subtracting the
singular part of the integral. The precise definition is also given in the following
lemma.

Lemma 21 The integral expression of Bessel moments

IKMk(a, b) =
∞
∫

0

I a0 (t)Kk−a
0 (t)tbdt,
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converges for non-negative integers k, a, b satisfying a ≤ k′, b ≥ 0 or a = k
2 ,

0 ≤ b < k′. Moreover, in the case that k is even, a = k
2 , and b ≥ k′ with b even, the

following two limits exist for 2 j ≥ k′:

IKMreg
k

(

k

2
, 2 j

)

:= lim
t→∞

⎛

⎝

t
∫

0

(I0K0)
2r+2s2 j ds

−
j−r−1
∑

m=0

γk, j−r−1−mt2m+1

2k−2 j+2m(2m + 1)

⎞

⎠ if k = 4r + 4,

IKMreg
k

(

k

2
, 2 j

)

:= lim
t→∞
ε→0+

⎛

⎝

t
∫

ε

(I0K0)
2r+1s2 j ds − 2γk, j−r

2k−2 j

t
∫

ε

ds

s

−
j−r−1
∑

m=0

γk, j−r−1−mt2m+2

2k−2 j+2m+1(2m + 2)

⎞

⎠

if k = 4r + 2.

Proof Near 0, by [12, Sect. 10.30(i)] we have the asymptotics

I0(t) = 1 + O(t2); (17)

K0(t) = −
(

γ + log
t

2

)

+ O(t2 log t), (18)

where γ is the Euler constant. Then, the integral
∫ 1
0 I a0 (t)Kk−a

0 (t)tbdt converges for
all 0 ≤ a ≤ k

2 and any b ≥ 0.

Near ∞, from (8) and (9), when 0 ≤ a ≤ k′, I a0 (t)Kk−a
0 (t) decays exponentially

and hence the integral
∫∞
1 I a0 (t)Kk−a

0 (t)tbdt converges.
When k is even and a = k

2 , near ∞, by (11), we have the asymptotic expansion

(I0K0)
k/2 t2 j = 1

2k/2

∞
∑

n=0

γk,n4
nt−2n−k/2+2 j .

Taking integration, we have

t
∫

ε

(I0K0)
k/2s2 jds = 1

2k/2

∞
∑

n=0

γk,n4
n

t
∫

ε

s−2n−k/2+2 jds.

Using the fact that
∫∞
1 tαdt converges if and only if α < −1 and

∫ 1
0 tαdt converges

if and only if α > −1, the divergent part of the integral
∫ t
ε (I0K0)

k/2 s2 jds as t → ∞,
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ε → 0+ is

j−r−1
∑

m=0

γk, j−r−1−m

2k−2 j+2m

t2m+1

(2m + 1)
if k = 4r + 4, (19)

2γk, j−r

2k−2 j

t
∫

ε

ds

s
+

j−r−1
∑

m=0

γk, j−r−1−m

2k−2 j+2m+1

t2m+2

(2m + 2)
if k = 4r + 2. (20)

Hence, after subtracting the divergent part of the integral, we conclude that the
limits IKMreg

k ( k2 , 2 j) exist. ��

Remark 22 For a = k
2 and b ≥ k′ with odd b, the integral

∫∞
0 I a0 (t)Kk−a

0 (t)tbdt also
diverges. We may similarly define the regularized Bessel moments in this case. See
[2, Definitions 6.1, 6.4].

5.2 Period pairing and compactly supported period pairing

By [2, Corollary 2.11], there exist the following two perfect pairings. The period
pairing is defined to be

H rd
1

(

Gm, (
√
z Symk Kl2)∇

)

C
× H1

dR

(

Gm,
√
z Symk Kl2

)

C
C

〈 〉per
,

by

〈

σ ⊗ 1√
z
eb0e

k−b
1 , ω

〉

per
=
∫

σ

1√
z

〈

eb0e
k−b
1 , ω

〉

top
.

Here, the notationVCmeansV⊗QC. There is a one-formω occurs in 〈eb0ek−b
1 , ω〉top.

This topological pairing means 〈eb0ek−b
1 , f 〉topdz whenever ω = f dz. That is, we take

the pairing 〈 〉top only on the coefficients. Note that the period pairing induces on the
middle part Betti homology Hmid

1 (Gm, (
√
z Symk Kl2)∇)C and middle part de Rham

cohomology H1
mid(Gm,

√
z Symk Kl2)C by the restriction:

Hmid
1

(

Gm, (
√
z Symk Kl2)∇

)

C
× H1

mid

(

Gm,
√
z Symk Kl2

)

C
C

〈 ,〉per
.

Moreover, the compactly supported period pairing is defined to be

H1
dR,c

(

Gm,
√
z Symk Kl2

)

C
× Hmod

1

(

Gm, (
√
z Symk Kl2)∇

)

C
C

〈 ,〉per,c
,
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by

〈

(ξ, η, ω), σ ⊗ 1√
z
eb0e

k−b
1

〉

per,c
=
∫

σ

1√
z

〈

ω, eb0e
k−b
1

〉

top
− 1√

z

〈

η, eb0e
k−b
1

〉

top

+ 1√
z

〈

ξ, eb0e
k−b
1

〉

top
.

Remark 23 Note that the order of homology and cohomology in these two pairing are
different. This is because we want to write down the matrix expression of quadratic
relation (22) preventing the transpose notation.

Proposition 24 The period pairing of the rapid decay cycle δb in (13) and the de Rham
cohomology class ωk, j in Definition 10 is given by

〈

δb, v
k
0z

j dz

z

〉

per
= (π

√−1)b(−1)k−b2k−2 j IKMk(b, 2 j),

for 0 ≤ b ≤ k′ and 0 ≤ j ≤ k′.

Proof Denote εσ0 to be the scaling of the chain σ0, that is, εσ0 is a chain of a circle of
radius ε. Similarly, denote εσ+ to be the chain of the ray [ε,∞). Then, since σ0 and
σ+ are homotopy to εσ0 and σ+ respectively, we may replace σ0 and σ+ in δb by εσ0
and εσ+ respectively in the following computation. We compute

〈

δb, v
k
0 z

j dz

z

〉

per

=
∫

ε
(

σ+− 1
2 σ0+∑k−b

n=1 dk−b(n)σ 2n
0

)

1√
z

〈

eb0e
k−b
1 , vk0 z

j dz

z

〉

top

= (−1)k−b(π
√−1)b

∫

ε
(

σ+− 1
2 σ0+∑k−b

n=1 dk−b(n)σ 2n
0

)

√
z(−A0)

bBk−b
0 z j−1dz

= (π
√−1)b(−1)k−b2k

∫

ε
(

σ+− 1
2 σ0+∑k−b

n=1 dk−b(n)σ 2n
0

)

z j−1√z I0(2
√
z)bK0(2

√
z)k−bdz

= (π
√−1)b(−1)k−b2k

∞
∫

ε

z j−1√z I0(2
√
z)bK0(2

√
z)k−bdz

− 1

2
(π

√−1)b(−1)k−b2k
∫

εσ0

z j−1√z I0(2
√
z)bK0(2

√
z)k−bdz

+
k−b
∑

n=1

dk−b(n)(π
√−1)b(−1)k−b2k

∫

εσ 2n
0

z j−1√z I0(2
√
z)bK0(2

√
z)k−bdz.
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Changing the coordinate by z = t2
4 , the first term becomes

(π
√−1)b(−1)k−b2k−2 j

∞
∫

2
√

ε

I0(t)
bK0(t)

k−bt2 jdt .

When ε → 0+, this term tends to (π
√−1)b(−1)k−b2k−2 j IKMk(b, 2 j).

For the other two terms,
∫

εσ
p
0

z j−1√z I0(2
√
z)bK0(2

√
z)k−bdz tends to zero as ε →

0+ for the following reason. As s → 0+, we have the asymptotic expansions (17) and
(18). Then, as ε → 0+ for all j ≥ 0, we have the estimate

∣

∣

∣

∣

∣

∣

∣

∣

∫

εσ
p
0

z j−1√z I0(2
√
z)bK0(2

√
z)k−bdz

∣

∣

∣

∣

∣

∣

∣

∣

≤
∫

εσ
p
0

∣

∣

∣z j−1√z I0(2
√
z)bK0(2

√
z)k−b

∣

∣

∣ |dz|

≤
2π p
∫

0

ε j−1√ε

∣

∣

∣

∣

I0
(

2
√

εeiθ
)b

K0

(

2
√

εeiθ
)k−b

∣

∣

∣

∣

εdθ

≤ ε j√ε

2π p
∫

0

∣

∣

∣γ + log
√

εeiθ
∣

∣

∣

k−b
dθ

= ε j√ε

2π p
∫

0

∣

∣

∣

∣

γ + log
√

ε + 1

2
iθ

∣

∣

∣

∣

k−b

dθ → 0.

��

Proposition 25 The compactly supported period pairing of the compactly supported
de Rham cohomology ω̃k, j in Definition 11 and moderate decay cycle γa in (14) is
given by

〈

ω̃k, j , γa
〉

per,c = 2k−2 j (−1)k−a(π
√−1)a · IKM,

where 0 ≤ a ≤ �k/2
, 0 ≤ j ≤ k′ with j �= r if k ≡ 2 mod 4, and

IKM =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

IKMreg
k (a, 2 j) if 4 | k, a = k/2, r + 1 ≤ j ≤ k′,

IKMk (a, 2 j) − γk, j−k′/222 j−k′
IKMk (a, k′) if 4 | (k + 2), 0 ≤ a ≤ k′, r + 1 ≤ j ≤ k′,

IKMreg
k (a, 2 j) − γk, j−k′/222 j−k′

IKMreg
k (a, k′) if 4 | (k + 2), a = k′ + 1, r + 1 ≤ j ≤ k′,

IKMk (a, 2 j) otherwise.
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On the periods of twisted moments of the Kloosterman connection 1259

Moreover, when k = 4r + 2, we have

〈m̂2r+1, γa〉per,c = δa,2r+1(π
√−1)a2k

1
( k
k/2

) .

Proof When k ≡ 1, 3 mod 4. We compute the compactly supported period pairing

〈(

ξ j , η j , ωk, j
)

, γa
〉

per,c

=
∫

R+

1√
z

〈

vk0, e
a
0e

k−a
1

〉

top
z j

dz

z
− 1√

z

〈

−
k
∑

c=0

(

k

c

)

η j,c√
z
ek−c
0 ec1, e

a
0e

k−a
1

〉

top

+ 1√
z

〈

k
∑

c=0

ξ j,cv
c
0v

k−c
1 , ea0e

k−a
1

〉

top

=
∫

R+

1√
z

〈

k
∑

c=0

(

k

c

)

(−A0(z))
c B0(z)

k−cek−c
0 ec1, e

a
0e

k−a
1

〉

top

z j−1dz

+ (π
√−1)a(−1)aη j,a + 1√

z

〈

k
∑

c=0

ξ j,cv
c
0v

k−c
1 , ea0e

k−a
1

〉

top

= (−1)a(π
√−1)a

∫

R+

(−A0(z))
a B0(z)

k−a√z z j−1dz

+ (−1)a(π
√−1)aη j,a + 1√

z

〈

k
∑

c=0

ξ j,cv
c
0v

k−c
1 , ea0e

k−a
1

〉

top

= (−1)a(π
√−1)a2k−2 j

∫

R+

I0(s)
aK0(s)

k−as2 jds + (−1)a(π
√−1)aη j,a

+ 2

s

〈

k
∑

c=0

ξ j,cv
c
0v

k−c
1 , ea0e

k−a
1

〉

top

,

where the last equality follows by the change of variable z = s2
4 . The first term

converges by Lemma 21. Since k > 2a, by (12), the second term tends to zero as
s → ∞. The third term tends to zero as s → 0 since all ξ j,c ∈ Q� s

2

4 � and the

topological pairing gives a factor s2
4 .

When k ≡ 0 mod 4, write k = 4r+4.We compute the compactly supported period
pairing

〈(

ξ j , η j , ωk, j
)

, γa
〉

per,c =
∫

R+

1√
z

〈

vk0, e
a
0e

k−a
1

〉

top
z j

dz

z
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− 1√
z

〈

−
k
∑

c=0

(

k

c

)

η j,c√
z
ek−c
0 ec1, e

a
0e

k−a
1

〉

top

+ 1√
z

〈

k
∑

c=0

ξ j,cv
c
0v

k−c
1 , ea0e

k−a
1

〉

top

= 2k−2 j (−1)a(π
√−1)a

∫

R+

I0(s)
aK0(s)

k−as2 jds

+ (−1)a(π
√−1)aη j,a + 2

s

〈

k
∑

c=0

ξ j,cv
c
0v

k−c
1 , ea0e

k−a
1

〉

top

,

where the last equality is the change of variable z = s2
4 . The third term tends to zero

as s → 0 since all ξ j,c ∈ Q� s
2

4 � and the topological pairing gives a factor s2
4 . By the

same argument above, when a = 0, 1, . . . , k−2
2 = k′, that is, k > 2a, we have that

the first term converges and the second term tends to zero as s → ∞.
Now, we turn to analyze the case that a = k

2 . The pairing becomes

〈(

ξ j , η j , ωk, j
)

, γa
〉

per,c = 2k−2 j (−π
√−1)a

s
∫

0

I0(t)
aK0(t)

k−as2 jds

+(−π
√−1)aη j,2r+2.

This term converges as s → ∞ for the following reason:
The singular part of the integral (I0K0)

2r+2 s2 j is given by (19) and η j,2r+2 has
expansion

η j,2r+2 ∼ 22r−2 j+1

r − j + 1/2
s2 j−2r−1 · Gi ∼ 22r−2 j+1

∞
∑

n=0

22nγk,n
r − j + 1/2 + n

s2 j−2r−1−2n .

Thus, both of the singular terms cancel.
When k ≡ 2 mod 4, write k = 4r + 2. Recall from Definition 11 the elements

ω̃k, j and m̂2r+1 in H1
dR,c

(

Gm,
√
z Symk Kl2

)

. If we use the convention that γk,p = 0
whenever p < 0, we rewrite

ω̃k,i = (ξi , ηi , ωk,i
)

=
(

k
∑

a=0

ξi,a(z)v
a
0v

k−a
1 − γk,i−r

k
∑

a=0

ξr ,a(z)v
a
0v

k−a
1 ,

−
k
∑

a=0
a �=k/2

(

k

a

)

ηi,a − γk,i−rηr ,a√
z

ek−a
0 ea1 −

(

k

k/2

)

ηi,2r+1√
z

(e0e1)
2r+1,
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vk0z
i dz

z
− γk,i−rv

k
0z

r dz

z

)

In the pairing
〈

ω̃k, j , γa
〉

per,c, the third term

2

s

〈

k
∑

c=0

ξ j,cv
c
0v

k−c
1 , ea0e

k−a
1

〉

top

,

tends to zero as s → 0 since all ξ j,c ∈ C� s
2

4 � and the topological pairing gives a factor
s2
4 . The other two terms are equal
⎛

⎜

⎝

∫

R+

1√
z

〈

vk0 , e
a
0e

k−a
1

〉

top
z j

dz

z
− γk, j−r

∫

R+

1√
z

〈

vk0 , e
a
0e

k−a
1

〉

top
zr
dz

z

⎞

⎟

⎠

− 1√
z

〈

−
k
∑

b=0
b �=k/2

(

k

b

)

η j,b − γk, j−rηr ,b√
z

ek−b
0 eb1 −

(

k

k/2

)

η j,2r+1√
z

(e0e1)
2r+1, ea0e

k−a
1

〉

top

= (−1)a(π
√−1)a

⎛

⎜

⎝
2k−2 j

∫

R+

I0(s)
aK0(s)

k−as2 jds − 2k−2rγk, j−r

∫

R+

I0(s)
aK0(s)

k−as2rds

⎞

⎟

⎠

+ 1

z

〈

k
∑

b=0
b �=k/2

(

k

b

)

(

η j,b − γk, j−rηr ,b
)

ek−b
0 eb1 +

(

k

k/2

)

η j,2r+1(e0e1)
2r+1, ea0e

k−a
1

〉

top

.

We analyze the convergence of these terms. When 2a < k or j < r , the integral
∫ t
0 I0(s)aK0(s)k−as2 jds converges as t → ∞ by Lemma 21. The second term is equal
to

(−1)a(π
√−1)a

(

η j,a − γk, j−rηr ,a
)

.

By the expansion of ηi,a :

ηi,a ∼
√

π
k−2a

k − 2a
e−(k−2a)s

(

4

s2

)k/4−i

· Gi,a,

where Gi,a ∈ 1 + 2
sQ� 2s �, this term tends to 0 as s → ∞.

When a = k
2 and j ≥ r , the integral

∫ t
0 I0(s)aK0(s)k−as2 jds has the singular part

(20). The second term is equal to

(−1)2r+1(π
√−1)2r+1η j,2r+1 = (−1)2r+1(π

√−1)2r+1 1

r − j

(

4

s2

)r− j

· Hi ,
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where Hi ∈ 1 + 4
s2
Q� 4

s2
�. Thus, the singular part of this term is

(−1)2r+1(π
√−1)2r+1

j−r
∑

n=1

−γk, j−r−n

n

(

4

s2

)−n

.

In consequence, the singular parts cancel.
Finally, for a = 0, 1, . . . , k

2 , we have

〈(

0,
2k√
z
(e0e1)

2r+1, 0

)

, γa

〉

per,c
= − 2k√

z

〈

1√
z
(e0e1)

2r+1, ea0e
k−a
1

〉

top

= δa,2r+1(π
√−1)a2k

1
( k
k/2

) .

��
Corollary 26 The period matrix of the period pairing with respective to the bases

{δb}k′
b=0 of H

rd
1 and

{

ωk, j
}k′
j=0 of H

1
dR is P = (Pbj ), where

Pbj =
〈

δb, v
k
0z

j dz

z

〉

per
= (π

√−1)b(−1)k−b2k−2 j IKMk(b, 2 j),

for 0 ≤ b ≤ k′ and 0 ≤ j ≤ k′. Moreover, P is invertible.

Remark 27 (determinant of the period matrix) In fact,

det P = (π
√−1)k

′(k′+1)/2(−1)(2k−k′)(k′+1)/22(k−k′)(k′+1) det (IKMk(b, 2 j)) ,

where

det (IKMk(b, 2 j)) =
{

det
(

Mk′+1
)

if k is odd;

det
(

Nk′+1
)

if k is even.

The definition of Mr and Nr are given in Appendix A.2 and their determinants are
given in Corollary 39 explicitly.

5.3 Q-linear and quadratic relations on Bessel moments

We have now developed all the tools and computations to see the wonderful results in
Q-linear and quadratic relations on Bessel moments.

Corollary 28 For k = 4r + 4,

r
∑

j=0

(

k/2

2 j

)

(−1) jπ2 j IKMk(2 j, 2i) =
{

(−1)rπ2r+2IKMk(2r + 2, 2i) if 0 ≤ i ≤ r ,

(−1)rπ2r+2IKMreg
k (2r + 2, 2i) if r + 1 ≤ i ≤ k′.
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For k = 4r + 2,

r
∑

j=0

(

k/2

2 j

)

(−1) jπ2 j IKMk(2 j, 2i)

=

⎧

⎪

⎨

⎪

⎩

0 if 0 ≤ i ≤ r − 1,

γk,i−r22i−2r
r
∑

j=0

(

k/2

2 j

)

(−1) jπ2 j IKMk(2 j, 2r) if r + 1 ≤ i ≤ 2r .
(21)

Proof By Lemma 17, we know that

k/4
∑

j=0

(

k/2

2 j

)

γ2 j = 0 if k ≡ 0 mod 4;

(k−2)/4
∑

j=0

(

k/2

2 j

)

γ2 j = 0 if k ≡ 2 mod 4.

Then take the pairing with ω̃k,i in the compactly supported de Rham cohomology.
Combining with the result of Proposition 25, we obtain the desired algebraic relation.

��
Remark 29 The above linear algebraic relations for i in the range 0 ≤ i ≤ r , under
the name sum rule identities, are previously proved by analytic method in [6] (see [6,
(1.3)] for k ≡ 2 mod 4 and [6, (1.5)] for k ≡ 0 mod 4).

Corollary 30 For any k and any 0 ≤ a ≤ k′, the dimension of the Q-vector space
generated by the Bessel moments has an upper bound:

dim spanQ {IKMk(a, 2 j) | j ∈ {0} ∪ N} ≤ k′ + 1.

If k is even, the dimension of theQ-vector space generated by the regularized Bessel
moments has an upper bound:

dim spanQ
{

IKMreg
k (k/2, 2 j) | j ∈ {0} ∪ N

} ≤ k′ + 1.

Here when 0 ≤ j ≤ ⌊ k−1
4

⌋ = r , we do not need to regularize the Bessel moments,
that is, IKMreg

k (k/2, 2 j) = IKMk(k/2, 2 j) (see Lemma 21).

Proof We know that the dimensions of H1
dR

(

Gm,
√
z Symk Kl2

)

and
H1
dR,c

(

Gm,
√
z Symk Kl2

)

are k′ + 1.

For each integer s > k′, since
{

vk0z
j dz
z

}

j=0,··· ,k′ form a basis of

H1
dR

(

Gm,
√
z Symk Kl2

)

, we may express vk0z
s dz
z as the Q-linear combination of the

basis. Then after we take the period pairing between vk0z
s dz
z and the rapid decay cycle
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δa (see Proposition 24), theQ-linear relation becomes aQ-linear relation for theBessel
moments

{

IKMk(a, 2 j) | j = 0, . . . , k′} ∪ {IKMk(a, 2s)} .

If k is even, similarly, when s > k′, express ω̃k,s ∈ H1
dR,c

(

Gm,
√
z Symk Kl2

)

as the
Q-linear combination of the basis describe in Corollary 14. Then taking the compactly
supported period pairing (see Proposition 25), the Q-linear equivalence become the
Q-linear relation for the regularized Bessel moments

{IKMk(a, 2 j) | j = 0, . . . , r − 1} ∪ {IKMreg
k (a, 2 j) | j = r , . . . , k′}

∪ {IKMreg
k (a, 2s)

}

.

��
Remark 31 In [16], Borwein and Salvy provide a recurrence to find out the Q-linear
combination for Bessel moments by analyzing the symmetric power of the modified
Bessel differential operator. Moreover, Zhou proves a similar result in [7] for the
Q-linear dependence for Bessel moments IKMk(a, 2 j − 1). Our result is parallel to
Zhou’s result.

Proposition 32 With respect to the bases of Hrd
1 , Hmod

1 , H1
dR, and H1

dR,c described in
Corollaries 14, 20, we form the pairing matrices:

1. B, the Betti intersection pairing matrix between Hrd
1 and Hmod

1 in Proposition 18.
2. D, the Poincaré pairing matrix between H1

dR,c and H1
dR in Proposition 13.

3. P, the period pairing matrix between Hrd
1 and H1

dR in Proposition 24.
4. Pc, the period pairing matrix between H1

dR,c and Hmod
1 in Proposition 25.

5. Bmid, the Betti pairing matrix on Hmid
1 .

6. Dmid, the Poincaré pairing matrix on H1
mid.

7. Pmid, the period pairing matrix between Hmid
1 and H1

mid.
1

Then we have the algebraic quadratic relations

PD−1Pc = (−1)k(2π
√−1)k+1B, (22)

PmidD
−1
midP

t
mid = (−1)k(2π

√−1)k+1Bmid. (23)

Proof This quadratic relation is a general phenomenon on periods of meromorphic
flat connection on complex manifolds. We refer to [8, Corollaries 2.14, 2.16] for more
details. ��

From this proposition, when k ≡ 0, 1, 3 mod 4, we see the Bessel moments have
quadratic relation given by (22). On the other hand, when k ≡ 2 mod 4, the relation
involves some combination of Bessel moments and regularized Bessel moments in the

1 B, D, P, Pc are square matrices of size k′ + 1 and that Bmid, Dmid, Pmid are of size k′ + 1 − δ4Z+2,k .
When k ≡ 0, 1, 3 mod 4, we have B = Bmid, D = Dmid, and Pmid = P = Pt

c .

123



On the periods of twisted moments of the Kloosterman connection 1265

matrix Pc. In the following discussion, we provide another expression of this relation,
and we will see the pure quadratic relation involving only Bessel moments.

When k ≡ 2 mod 4, write k = 4r + 2 and define two (k′ + 1) × k′ matrices with
rational coefficients:

Rk =
⎛

⎝

Ir 0
0 −γk,1 · · · −γk,k′−r
0 Ir

⎞

⎠ , Lk =
(

0 −(k/22
)

0 −(k/24
) · · · 0 −(k/2k′

)

Ik′

)

.

By the linear relations (21) in Corollary 28, we have

PRk = Lk Pmid.

Also, Pmid is obtained by deleting the first row of Lk Pmid. Set ˜B = Lk BmidLt
k and

˜D = RkD
−1
midR

t
k which are squarematrices of size k′+1with rational coefficients. Then

Bmid is obtained by deleting the first row and column from ˜B. Therefore, the quadratic
relation (23) (involving linear combinations of Bessel moments) now becomes

P˜DPt = (−1)k(2π
√−1)k+1

˜B,

(involving pure Bessel moments).

Remark 33 The matrices ˜B and ˜D in the above expression are singular because of the
linear relations (21) in Corollary 28. This expression is equivalent to the middle part
quadratic relation (23) together with linear relations (21).

Proposition 34 When k = 4r + 2, the middle part period matrix is a k′ × k′ matrix
given by

Pmid =
(

〈

δb, ωk,i
〉

per

)

b=1,...,k′, i=0,...,r̂ ,...,k′ .

The determinant of this matrix Pmid is given by

det Pmid = πr(k+1)
√−1

r(k′−1) 2r(2r+1)

r !
k′
∏

a=1

(2a + 1)k
′+1−a

(a + 1)a+1 .

Proof The matrix Pmid appears in the upper left of the compactly supported period
pairingmatrix Pc. Just take determinant on (22) and then use the results of Propositions
13, 19, and Remark 27. ��
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AppendixA: TheBessel operator anddeterminants of Besselmoments

A.1 Symmetric power of themodified Bessel differential operator

Consider theWeyl algebraQ〈t, ∂t 〉 consisting of ordinary differential operators. Write
θ = t∂t . The modified Bessel differential operator is an element in the subalgebra
Q〈t2, θ〉 given by L2 = θ2 − t2. The corresponding solutions are the modified Bessel
functions I0(t) and K0(t). The n-th symmetric power Ln+1 ∈ Q

〈

θ, t2
〉

of L2 has order
n + 1 and the corresponding solutions are I a0 (t)Kn−a

0 (t) for 0 ≤ a ≤ n. By [16, 17],
the operator Ln+1 = Ln+1,n can be obtained by the recurrence relation as follows:

L0,n = 1,

L1,n = θ,

Lk+1,n = θLk,n − t2k (n + 1 − k) Lk−1,n, 1 ≤ k ≤ n.

(A1)

Here we provide two more concrete results about the operator Ln+1.
Put the degree on Q〈t, θ〉 as deg t = deg θ = 1. The associated graded ring

grQ〈t, θ〉 = Q[t, θ ] is a polynomial ring where t and θ are the images of t and
θ , respectively.

Proposition 35 The image of Ln+1 in Q[t, θ ] is the polynomial

Ln+1(t, θ) =
⎧

⎨

⎩

∏r
i=1

(

θ
2 − (2i − 1)2t2

)

if n + 1 = 2r is even,

θ
∏r

i=1

(

θ
2 − (2i)2t2

)

if n + 1 = 2r + 1 is odd.
(A2)

Proof Taking the images in Q[t, θ ] of the relation (A1), we obtain Ln+1 = Ln+1,n
satisfying

L0,n = 1, L1,n = θ,

Lk+1,n = θ Lk,n − t2k (n + 1 − k) Lk−1,n, 1 ≤ k ≤ n.

The formula (A2) is then a consequence of the following combinatorics lemma. ��
Lemma 36 For any m ∈ N, set the recurrence for λn,m(x), n ∈ N ∪ {0},

λ0,m = 1, λ1,m = x,

λk+1,m = xλk,m − k (m + 1 − k) λk−1,m, k ≥ 1.

Then we have

λm+1,m(x) =
{

∏r
i=1

(

x2 − (2i − 1)2
)

, m + 1 = 2r ,

x
∏r

i=1

(

x2 − (2i)2
)

, m + 1 = 2r + 1.
(A3)
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Proof Notice that λi,m is a monic integral polynomial of degree i for any m. Consider
the formal generating function2:

fm,x (y) =
∞
∑

i=0

λi,m(x)yi .

An induction on i immediately yields the relation fm,x−1 (y) + fm,x+1 (y) =
2 fm−1,x (y) for anym and x .3 In other words, λi,m(x−1)+λi,m(x+1) = 2λi,m−1(x)
for all i . Therefore we obtain

λm+1,m(x − 1) + λm+1,m(x + 1) = 2λm+1,m−1(x) = 2xλm,m−1(x),

by the recurrence. Thus, since λm+1,m(x) is a monic polynomial of degree m + 1, it is
uniquely determined by the above functional equationwhen the polynomialλm,m−1(x)
is given. Hence, by the induction, it suffices to show that

r
∏

i=1

(

(x − 1)2 − (2i − 1)2
)

+
r
∏

i=1

(

(x + 1)2 − (2i − 1)2
)

= 2x2
r−1
∏

i=1

(

x2 − (2i)2
)

;

(x − 1)
r
∏

i=1

(

(x − 1)2 − (2i)2
)

+ (x + 1)
r
∏

i=1

(

(x + 1)2 − (2i)2
)

= 2x
r
∏

i=1

(

x2 − (2i − 1)2
)

,

which are straightforward to verify. ��
Proposition 37 Write Ln+1 into the form

∑

i t
i Pi (θ), where Pi (x) ∈ Q [x]. Define

the integers a, b by

a = max {i | Pi �= 0} ; b = min {i | Pi �= 0} .

Then we have a = 2
⌊ n+1

2

⌋

and b = 0.

Proof By the recurrence (A1), if we set deg t = 1 and deg θ = 0, we easily see

that L j has degree 2
⌊

j
2

⌋

by the interchanging relation θ t = t + tθ . Thus, we have

a = 2
⌊ n+1

2

⌋

. On the other hand, if we set deg t = 0 and deg θ = 1, we see that
the leading term of Lk+1 is given by θk+1. Therefore, we conclude that b = 0 by
Proposition 35. ��
2 This generating function satisfies the differential equation −y4 f ′′(y) − (2y3 −my3) f ′(y) + (1− xy +
my2) f (y) = 1.
3 Equality also holds when viewed as the solution of the corresponding differential equations.
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A.2 Two-scale Bessel moments

From now on, we take for granted the properties of modified Bessel functions
I0(t), K0(t) in the treatise [13].

Recall the Bessel moments IKMk(a, b) given in Sect. 5.1. For r ∈ Z≥1, define the
two r × r matrices

Mr = (IKM2r−1(i − 1, 2 j − 2)
)

1≤i, j≤r , Nr = (IKM2r (i − 1, 2 j − 2)
)

1≤i, j≤r .

We aim to determine the two scalars det Mr , det Nr adapting the inductive methods
explored by Zhou [9].

For the initial values, we have [13, Sect. 13.21, Eq. (8)]

M1 =
∞
∫

0

K0(t) dt = π

2
, (A4)

and, by [13, Sect. 13.72], one has

N1 =
∞
∫

0

K 2
0 (t) dt = 1

2

∞
∫

0

∞
∫

−∞

∞
∫

−∞
e−2t cosh x cosh y dxdydt

= 1

4

∞
∫

−∞

∞
∫

−∞

dxdy

cosh x cosh y

= π2

4
.

For r ∈ Z≥0, let ω2r+1(x) be the Wronskian of the (2r + 1) functions fi (x)

fi (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞
∫

0
I0(xt)I

i−1
0 (t)K 2r−i+1

0 (t) dt, 1 ≤ i ≤ r ,

∞
∫

0
K0(xt)I

i−r−1
0 (t)K 3r−i+1

0 (t) dt, r < i ≤ 2r + 1.
(A5)

The functions fi are well-defined and analytic on the interval (0, 2) and hence so
is ω2r+1. In particular, ω1(x) = ∫∞

0 K0(xt) dt = π
2x by (A4).

For r ∈ Z≥1, let ω2r (x) be the Wronskian of the 2r functions gi (x) where

gi (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞
∫

0
I0(xt)I

i−1
0 (t)K 2r−i

0 (t) dt, 1 ≤ i ≤ r ,

∞
∫

0
K0(xt)I

i−r−1
0 (t)K 3r−i

0 (t) dt, r < i ≤ 2r .
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All entries in the Wronskian matrix are well-defined analytic functions on the
interval (0, 1) and so is ω2r (x).

Proposition 38 The determinant ωk(x) and its evaluation at x = 1 are given by the
following formulae:

1. For r ∈ Z≥1,

ω2r+1(x) = (−1)
r(r+1)

2

2

[

1

x2

r
∏

i=1

(2i)2

(2i)2 − x2

] 2r+1
2

�
(r + 1

2

)2(
det Nr

)2
,

ω2r+1(1) = (−1)r(r+1)/2 det Mr · det Mr+1.

2. For r ∈ Z≥2,

ω2r (x) = (−1)
r(r+1)

2

[

1

x

r
∏

i=1

(2i − 1)2

(2i − 1)2 − x2

]r
(

det Mr
)2

,

lim
x→1− 2r (1 − x)rω2r (x) = (−1)r(r+1)/2(r − 1)! det Nr−1 · det Nr .

The above proposition leads to the recursive formulae

det Mr · det Mr+1 = 1

2

[

2r r !√2r + 1

(2r + 1)!!

]2r+1

�
(r + 1

2

)2(
det Nr

)2
(r ≥ 1),

det Nr−1 · det Nr = 2r

(r − 1)!

[

(2r − 1)!!√2r

2r r !

]2r
(

det Mr
)2

(r ≥ 2).

(A6)

With the initial data M1 = π
2 , N1 = π2

4 and the relation

�
( r

2

)

�

(

r + 1

2

)

= (r − 1)!
2r−1

√
π,

one immediately obtains the following results by induction.

Corollary 39 For positive integers r , we have

det Mr = √
π
r(r+1)√

2
r(r−3)

r−1
∏

a=1

ar−a

√
2a + 1

2a+1 ,

det Nr = 1

�
( r+1

2

)

√
π

(r+1)2

√
2
r(r+3)

r−1
∏

a=1

(2a + 1)r−a

(a + 1)a+1 .
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In particular, the two scalars
√

(2r − 1)!! π−mr det Mr and π−nr det Nr are posi-

tive rational numbers, where mr = r(r+1)
2 and nr =

⌊

(r+1)2

2

⌋

.

A.3 TheVanhove operators

The adjoint L∗
n+1 of Ln+1 is derived under the convolution (t, ∂t ) �→ (t,−∂t ) (so

θ �→ −(θ+1)) and hence the leading termof the signed adjoint�n+1 = (−1)n+1L∗
n+1

equals Ln+1(θ, t) by Proposition 35. For F(xt) = I0(xt), K0(xt) and G(t) =
I a0 (t)Kn−a

0 (t), we have, by integration by parts,

∞
∫

0

(�n+1F(xt))G(t) dt = (−1)n+1

∞
∫

0

F(xt)(Ln+1G(t)) dt = 0.

TheVanhove operator Vn+1 ∈ Q
〈

∂x , x±1
〉

is of order (n+1) such thatVn+1F(xt) =
�n+1F(xt). So one has Vn+1 fi = 0 for fi (x) in (A5) and consequently ωn+1(x)
satisfies a first order linear differential equation (see (A7) below).

Lemma 40 Let λn+1(x) = Ln+1(1, x−1) ∈ Q[x−1] of order 2 ⌊ n+1
2

⌋

with respect to
x−1. Let θx = x∂x . One has

Vn+1 = λn+1(x)θ
n+1
x + (n + 1)

[

λn+1(x) + xλ′
n+1(x)

2

]

θnx + δ1

= xn+1λn+1(x)∂
n+1
x + n + 1

2
xn
[

(n + 2)λn+1(x) + xλ′
n+1(x)

]

∂nx + δ2,

where δ1, δ2 are of order at most (n − 1) with respect to ∂x in Q〈∂x , x±1〉.
Proof By Vanhove [18], there exists ˜Ln−1 ∈ Q〈∂x , x±1〉 of order (n − 1) such that

t˜Ln−1F(xt) = �n+1
F(xt)

t
.

The operator ˜Ln−1 is of the form ( [9, Eq. (4.29)])

˜Ln−1 = x2λ(x)θn−1
x + x2

[

2(n − 1)λ(x) + n − 1

2
xλ′(x)

]

θn−2
x +˜δ,

where˜δ is of order at most (n − 3) with respect to ∂x in Q〈∂x , x±1〉4.
Set

�n(θt ) = �n+1(θt ) − �n+1(θt − 1).

4 Comparing ˜Ln−1(θx ) with Zhou’s Vanhove operator ˜Ln−1(θu), we set his variable u = x2 and multiply
˜Ln−1(θu) by 2n−1.

123



On the periods of twisted moments of the Kloosterman connection 1271

Since θt
1
t = 1

t (θt − 1) in Q 〈∂t , t〉, we have

�n+1(θt )F(xt) = t�n+1(θt )
F(xt)

t
+ �n(θt )F(xt)

=
[

t2˜Ln−1(θx ) + �n(θt )
]

F(xt).

Since t2F(xt) = 1
x2

θ2x F(xt), we have

t2˜Ln−1(θx )F(xt) = ˜Ln−1(θx )
1

x2
θ2x F(xt)

= 1

x2
˜Ln−1(θx − 2)θ2x F(xt),

and the differential operator reads

λ(x)θn+1
x + n − 1

2
xλ′(x)θnx + δ3,

where δ3 is of order at most (n − 1) with respect to ∂x in Q〈∂x , x±1〉.
On the other hand, since θt F(xt) = θx F(xt) and by Proposition 35, we have

�n(θt )F(xt)

= [�n+1 (θ) − �n+1 (θ − 1)
]

F (xt) = [((n + 1)λ(x) + xλ′(x)
)

θnx + δ4
]

F(xt),

where δ4 is of order at most (n − 1) with respect to ∂x in Q〈∂x , x−1〉. Therefore the
leading two terms of Vn+1 are determined. ��

Rationality of!n+1(x)

Lemma 40 yields

ω′
n+1(x) = −n + 1

2x

[

(n + 2) + xλ′
n+1(x)

λn+1(x)

]

ωn+1(x). (A7)

Since ωn+1(x) takes real values on (0, 1), one obtains

ωn+1(x) = Cn+1

[

(−1)

⌊

n+1
2

⌋

xn+2λn+1(x)

]− n+1
2

,

for some real constant Cn+1 for each n ∈ Z≥0. We shall determine Cn+1 by investi-
gating the limiting behavior of ωn+1(x) as x → 0+.
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A.4 Singularities of!n+1(x)

For F(xt) = I0(xt) or K0(xt), we have

∂x F(xt) = t F ′(xt), ∂2x F(xt) = − t

x
F ′(xt) + t2F(xt).

So ωn+1(x) coincides with the determinant of the matrix �n+1(x) of size (n + 1)
whose (i, j)-entry is
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∞
∫

0
I0(xt)I

j−1
0 (t)Kn− j+1

0 (t)t i−1 dt, 1 ≤ j ≤ ⌊ n+1
2

⌋

, i = 1, 3, . . . , 2
⌊ n
2

⌋+ 1,

∞
∫

0
t I ′

0(xt)I
j−1
0 (t)Kn− j+1

0 (t)t i−2 dt, 1 ≤ j ≤ ⌊ n+1
2

⌋

, i = 2, 4, . . . , 2
⌊ n+1

2

⌋

,

∞
∫

0
K0(xt)I

j−r−1
0 (t)Kn− j+r+1

0 (t)t i−1 dt,
⌊ n+1

2

⌋

< j ≤ n + 1, i = 1, 3, . . . , 2
⌊ n
2

⌋+ 1,

∞
∫

0
t K ′

0(xt)I
j−r−1
0 (t)Kn− j+r+1

0 (t)t i−2 dt,
⌊ n+1

2

⌋

< j ≤ n + 1, i = 2, 4, . . . , 2
⌊ n+1

2

⌋

.

Properties of I0(t) and K0(t)

We collect some properties of the modified Bessel functions I0(t) and K0(t) in order
to obtain information of ωn+1(x) as x → 0+, 1−.

The function I0(t) is entire and even; it is real and increasing on the half line [1,∞).
The function K0(t) has a logarithmic pole at x = 0; it is real and decreasing o (0,∞).
On the half plane �(t) > 0, we have the asymptotic approximations

I0(t) = et√
2π t

(

1 + O
(1

t

)

)

, K0(t) =
√

π

2t
e−t
(

1 + O
(1

t

)

)

,

as t → ∞. In particular, for a positive integer a,

[I0(t)K0(t)]a − 1

(2t)a
= O

( 1

ta+1

)

,

as t → ∞ along the real line. One has the boundedness

sup
t>0

|t K ′
0(t) + 1|

t(1 + | log t |) < ∞.

For c ∈ Z≥0, one has the evaluation [13, Sect. 13.21, Eq. (8)]

∞
∫

0

K0(t)t
c dt = 2c−1�

(c + 1

2

)2
.
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Integrations

With the data collected above, we list some consequences for the integrals that appear
in the entries of the matrix �n+1(x).

For 0 ≤ a < b and c ≥ 0, one obtains

∞
∫

0

K0(xt)I
a
0 (t)Kb

0 (t)tc dt = O(log x), (A8)

∞
∫

0

I ′
0(xt)I

a
0 (t)Kb

0 (t)tc dt = O(x), (A9)

and

∞
∫

0

t K ′
0(xt)I

a
0 (t)Kb

0 (t)tc dt

= −1

x

⎡

⎣

∞
∫

0

I a0 (t)Kb
0 (t)tc dt −

∞
∫

0

(

xtK ′
0(xt) + 1

)

I a0 (t)Kb
0 (t)tc dt

⎤

⎦

= −1

x

∞
∫

0

I a0 (t)Kb
0 (t)tc dt + O(log x), (A10)

as x → 0+. For 0 ≤ c ≤ a and as x → 0+, we thus have

∞
∫

0

K0(xt)I
a
0 (t)Ka

0 (t)tc dt = O
(

∞
∫

0

K0(xt) dt
)

= O
(1

x

)

, (A11)

∞
∫

0

t K ′
0(xt)I

a
0 (t)Ka

0 (t)tc dt = O
(

∞
∫

0

t K ′
0(xt) dt

)

= O
( 1

x2

)

. (A12)

If 0 ≤ a < c and as x → 0+, then

∞
∫

0

K0(xt)I
a
0 (t)Ka

0 (t)tcdt =
∞
∫

0

K0(xt)tc−a

2a
dt +

∞
∫

0

K0(xt)
[

I a0 (t)Ka
0 (t) − 1

(2t)a

]

tcdt

(A13)

= 2c−2a−1

xc−a+1 �
( c − a + 1

2

)2 + O
( 1

xc−a

)

,

∞
∫

0

t K ′
0(xt)I

a
0 (t)Ka

0 (t)tcdt =
∞
∫

0

t K ′
0(xt)t

c−a

2a
dt +

∞
∫

0

t K ′
0(xt)

[

I a0 (t)Ka
0 (t) − 1

(2t)a

]

tcdt
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= c − a + 1

2ax

∞
∫

0

K0(xt)t
c−a dt + O

( 1

x2

)

= O
( 1

xc−a+2

)

. (A14)

On the real line, we have [9, Lemma 4.5]

lim
x→1−

∫∞
0 I0(xt)K0(t) dt

− log(1 − x)
= 1

2
,

and for c ∈ Z≥0,

lim
x→1−(1 − x)c+1

∞
∫

0

I0(xt)K0(t)t
c+1 dt = c!

2
= lim

x→1−(1 − x)c+1

∞
∫

0

t I ′
0(xt)K0(t)t

c dt .

Therefore for a ≥ 1, a > c and x → 1−, one has

∞
∫

0

I0(xt)I
a−1
0 (t)Ka

0 (t)tc dt =
∞
∫

0

I0(xt)K0(t)
[

I a−1
0 (t)Ka−1

0 (t)tc
]

dt

= O
(

∞
∫

0

I0(xt)K0(t) dt
)

(A15)

= O
(

log(1 − x)
)

,

∞
∫

0

t I ′
0(xt)I

a−1
0 (t)Ka

0 (t)tc dt =
∞
∫

0

t I ′
0(xt)K0(t)

[

I a−1
0 (t)Ka−1

0 (t)tc
]

dt

= O
(

∞
∫

0

t I ′
0(xt)K0(t) dt

)

= O
( 1

1 − x

)

. (A16)

If c ≥ a ≥ 1 and x → 1−, then

∞
∫

0

I0(xt)I
a−1
0 (t)Ka

0 (t)tc dt

=
∞
∫

0

I0(xt)K0(t)tc−a+1

2a−1 dt
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+
∞
∫

0

I0(xt)K0(t)
[

I a−1
0 (t)Ka−1

0 (t) − 1

(2t)a−1

]

tc dt

= (c − a)!
2a(1 − x)c−a+1 + o

( 1

(1 − x)c−a+1

)

,

∞
∫

0

t I ′
0(xt)I

a−1
0 (t)Ka

0 (t)tc dt

=
∞
∫

0

t I ′
0(xt)K0(t)tc−a+1

2a−1 dt

+
∞
∫

0

t I ′
0(xt)K0(t)

[

I a−1
0 (t)Ka−1

0 (t) − 1

(2t)a−1

]

tc dt (A17)

= (c − a + 1)!
2a(1 − x)c−a+2 + o

( 1

(1 − x)c−a+2

)

. (A18)

Notice that the error terms in the above two formulas are of class small o; it is
needed in the investigation of the limit of ω2r as x → 1− below.

Evaluation of!2r+1(x) at x = 1

All entries of �2r+1(x) can be evaluated at x = 1. We move the 2i-th row to row
i in �2r+1(1) for 1 ≤ i ≤ r and then subtract the (r + j + 1)-st column from the
j-th column of the resulting matrix for 1 ≤ j ≤ r . By (3) on the upper-left block, we
obtain

ω2r+1(1) = (−1)
r(r+1)

2 det

(

Mr ∗
0 Mr+1

)

.

Behavior of!2r+1(x) as x → 0+

Fix r ≥ 1. We move row (2i − 1) of �2r+1(x) to row i for 1 ≤ i ≤ r , which creates
a sign (−1)r(r−1)/2 to the determinant ω2r+1(x). As x → 0+, the resulting matrix
decomposes into (r , r , 1) × (r , r , 1) blocks of the form

⎛

⎜

⎝

Nr + o(1) O(log x) O
( 1
xr
)

O(x) −1
x Nr + O(log x) O

( 1
xr
)

O(1) O(log x) 1
2xr+1 �

( r+1
2

)2 + O
( 1
xr
)

,

⎞

⎟

⎠

by direct evaluation and (A9) in the left three blocks, (A8) and (A10) in the middle,
and (A11), (A12), (A14) and (A14) in the last column. The leading term of ω2r+1(x),
which is of order x−(2r+1), comes from the diagonal blocks and one gets
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lim
x→0+ x2r+1ω2r+1(x) = (−1)

r(r+1)
2

1

2
�
(r + 1

2

)2
det2Nr .

Behavior of!2r(x) as x → 1−

Fix r ≥ 2. We move 2i-th row of �2r (x) to row i for i = 1, 2, . . . , (r − 1) and
r -th column to the last, which adds a sign (−1)r(r+1)/2 to the determinant ω2r (x). We
subtract j-th column by (r+ j)-th for j = 1, 2, . . . , (r−1). As x → 1−, the resulting
matrix decomposes into (r − 1, r , 1) × (r − 1, r , 1) blocks of the form

⎛

⎜

⎝

Nr−1 + o(1) O(1) O
( 1

(1−x)r−1

)

0 Nr + o(1) O
( 1

(1−x)r−1

)

O(1) O(1) (r−1)!
2r (1−x)r + o

( 1
(1−x)r

)

⎞

⎟

⎠
,

by (3) and direct evaluation in the left three blocks, direct evaluation in the middle,
and (A16), (A16), (A17) and (A18) in the last column. The leading term of ω2r (x),
which is of order (1 − x)−r , comes from the diagonal blocks. It yields

lim
x→1−(1 − x)rω2r (x) = (−1)

r(r+1)
2

(r − 1)!
2r

det Nr−1 det Nr .

Behavior of!2r(x) as x → 0+

Fix r ≥ 2. We move row (2i − 1) of �2r (x) to row i for 1 ≤ i ≤ r , which adds a sign
(−1)r(r−1)/2 to the determinant ω2r (x). As x → 0+, the resulting matrix decomposes
into four blocks of equal size of the form

(

Mr + o(1) O(log x)
O(x) −1

x Mr + O(log x)

)

,

by direct evaluation and (A9) in the left two blocks and (A8) and (A10) in the right.
This leads to

lim
x→0+ xrω2r (x) = (−1)

r(r+1)
2 det2Mr .

Remark 41 Proposition 38 indeed holds for ω2(x) by the same analysis if we set
det N0 = 1; it is consistent with the relation (A6) for r = 1.
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