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Abstract.  The Cherenkov Telescope Array (CTA) will be the world’s largest and
most sensitive ground-based gamma-ray observatory in the energy range from a few
tens of GeV to tens of TeV. The LST-1 prototype, currently in its commissioning phase,
is the first of the four largest CTA telescopes, that will be built in the northern site
of CTA in La Palma, Canary Islands, Spain. In this contribution, we present a full-
image reconstruction method using a modified InceptionV3 deep convolutional neural
network applied on non-parametrized shower images. We evaluate the performance of
optimized networks on Monte Carlo simulations of LST-1 shower images, and compare
the results with the performance of the standard reconstruction method. We also show
how both methods work on real-data reconstruction.

1. Introduction

When primary gamma-ray photons or cosmic-ray particles enter the atmosphere, they
interact with atomic nuclei and produce showers of secondary particles emitting Cheren-
kov radiation. In ground-based gamma-ray astronomy, this radiation can be observed
by Imaging Atmospheric Cherenkov Telescopes (IACTs), forming roughly elliptical
images of the shower in the camera plane of a focusing telescope. In typical IACT ob-
servations, the trigger rate from diffuse cosmic-ray background is about 1000x higher
than the trigger rate from gamma-ray photons even for the brightest gamma-ray sources
in the sky, and therefore a strong background suppression is necessary. Besides reduc-
ing this background, the goal of the image analysis is to reconstruct the energy and
incoming direction of the primary gamma-ray. In this study, we compare the recon-
struction performance of standard Random Forests (RFs) (Breiman 2001) with a novel
method using a deep convolutional neural network (CNN) on Monte Carlo (MC) sim-
ulations (Heck et al. 1998; Bernlohr 2008) and first data from the LST-1 telescope
prototype for CTA (CTA Consortium 2019).

2. Methods

We used a modified InceptionV3 CNN architecture (Fig. 1) (Szegedy et al. 2016;
Lyard et al. 2020) consisting of a variable number of inception modules followed by
five sequential convolutional layers, whose capability of gamma/hadron separation was
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previously proven by Lyard et al. (2020). In this contribution, we study the perfor-
mance of this network for full event reconstruction. Our networks were trained on MC
gamma and MC proton shower images from a standard CTA MC production data set
(Prod5) for LST-1. We used adadelta and rmsprop optimizers for gamma/hadron
separation and energy/direction reconstruction, respectively. Unlike RFs, which need
image parameters on input leading to a loss of information, we trained CNN directly on
shower images and times of maxima of waveform in each pixel which follow a tempo-
ral gradient, calibrated in 1stchain v0.6.3 '. In order to get a standard rectangular
input image for the Keras Python library, hexagonal images from the telescope had to
be reshaped following the method introduced in Lyard et al. (2020). Our results sug-
gest that such reshaping doesn’t introduce any position reconstruction bias if more than
3 inception modules are used. We also applied relatively weak selection cuts on MC
events (Intensity? > 50 p.e., leakage® < 0.2), to create a MC sample that was used for
training/testing of CNNs and RFs consistently. The number of inception modules and
dropout were optimised for each reconstruction task on a subset of 10° training events
(left Fig. 2). Parameters providing the best results in terms of Area Under the Curve
(AUC)*, energy and angular resolution were used for final training of each CNN on
5 x 10° events.
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Figure 1.  Architecture of modified InceptionV3 used in this study. Number of
inception modules was optimized for each reconstruction task. Figure from Lyard
et al. (2020).

3. Reconstruction performance

Figure 3 (left) shows receiver operating characteristic curve (ROC) for gamma/hadron
separation trained on simulated diffuse gammas and diffuse protons. A comparison
with the separation power of RFs trained/tested on Hillas parameters extracted from
the same MC sample is also shown, and it can be clearly seen that CNN significantly
outperform RFs. Angular and energy resolution curves are shown in Figure 2 (right)
and Figure 3 (right), respectively. For the mid-energy range the angular resolution

'https://github.com/cta-observatory/cta-1stchain/releases/tag/v0.6.3

The total integrated signal in pixels containing Cherenkov light emitted by the shower particles, after
removal of the background pixels.

3The fraction of the shower signal contained in the two outermost pixel rings of the camera.

4 Area under the ROC curve, usually being used as a measure of the ability of a classifier to distinguish
between classes.



LST-1 Data Reconstruction Using Convolutional Neural Networks 81

Angular resolution

0.7

% CONN
064 * RFs

0.5
0.4
0.3
o

0.2 - ;
0.11 S %

Angular Resolution [deg]

0.0 =
1072 107t 10° 10t 102
Eg [TeV]

Figure 2.  Left: An example of angular resolution evaluated on testing point gam-
mas for different parameters of CNN. Right: Angular resolution of reconstruction by
optimized CNN compared with Random Forests.

improvement gained from CNN is not significant, but it’s very prominent for low and
high energies, which can be a hint that CNN are particularly good in the reconstruction
of noise-dominated low energy shower images, or showers cut by the camera edges. In
energy reconstruction, RFs outperform CNNs by 5%. The worse reconstruction power
of CNN in this case could be caused by image normalisation in the preprocessing step
and needs to be addressed in a following study.
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Figure 3.  Left: ROC for gamma/hadron separation evaluated on on-axis point
gammas and diffuse protons. Right: Energy resolution of CNN reconstruction com-
pared with Random Forests.

4. Analysis of real data

Despite its good performance on simulations, CNN often fails when applied to real data
due to subtle differences between the two (e.g. different night sky background level, or
stars present in the real field of view), and thus the evaluation of the performance on
the real data is essential. We used CNN and RF trained on the same MC events to
reconstruct events from Crab Nebula observations from November 2020 (19 mins on-
source and 15 mins off-source), and reached a similar detection significance of 6.2¢0 for
both methods after carefully matching background levels using an adaptive gammaness
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cut on the CNN reconstructed data (gammaness cut for RFs processed data was 0.8),
and common ©2 < 0.05 deg? cut on the source region. A significance map for the CNN
reconstructed data is shown in Figure 4 (left). The ®? distribution for both methods
(right Fig. 4) shows that contrary to the performance evaluated on MC, the angular
resolution of the CNN on data is worse than we expected, which is probably caused by
MC-data differences, which will be addressed in a following study.
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Figure 4. Left: Significance map of events reconstructed with CNN. Right: @
distribution of events in energy range 0.01- 10 TeV.

5. Conclusions

In this contribution, we demonstrated a potential of CNNs to be used not only for
gamma/hadron separation, but also for full event reconstruction with a competitive per-
formance to the standard RFs reconstruction. Even though the CNN performance on
real data seems to be slightly worse than expected from the full MC study, there is much
room for improvement, particularly in MC-data tuning.
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