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Abstract Through the last years, it was demonstrated that
quantum corrections of entropy, represented by logarithmic
and power law corrections terms, constituted an associa-
tion between semi-classical entropic areas and the curvature
correction in Einstein–Hilbert’s Lagrangian and vice-versa.
Loop quantum gravity approach provided the logarithmic
corrections, which arises from quantum and thermal equi-
librium fluctuations. On the other hand, Barrow’s entropy
was introduced from the fact that the black hole surface can
be modified due to quantum gravitational effects. The new
exponent � that appears in Barrow’s entropy is a measure
of this perturbation. In this letter we have analyzed the ther-
modynamical effects of the quantum fluctuations upon the
geometry of a Barrow’s black hole. We demonstrated that
new formulations of the equipartition law, which corresponds
to the horizon energy, can be constructed from both entropic
formalisms. Besides, we have calculated the heat capacity
for both formulations and we discussed their thermal viabil-
ity. We have also establish a condition on one of the constant
pre-factors of the logarithmic correction.

1 Introduction

In current days, we are living under the aftermath of the obser-
vations of type Ia supernovae, concerning dark energy (DE),
that constructed a Universe with two dark components. The
well known dark matter (DM) and DE [1–4]. The first one is
a matter without pressure. Its main function is to clarify both
the galactic rotation curves and the formation of large-scale
framework. About the second one, which is a negative pres-
sure exotic energy, it is utilized to depict the current cosmic-
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accelerated expansion. Nevertheless, its origin and nature are
not known yet. Even so, there exist several candidates that
bring an idea about its behavior and composition [5–8].

On the other hand, the holographic dark energy (HDE) is
one relevant and serious DE contestant that were suggested,
relied on the well known holographic principle [9,10]. From
the concept of holographic principle, the number of degrees
of freedom (DOF) in a bounded system should be finite. It
also has an association with the surface of the boundary of
the system [11,12]. When the holographic principle is used in
cosmology, we can compute the upper bound of the entropy
contained in the universe [13]. Besides, Li [14] questioned
if in QFT, the ultraviolet cut-off � could be connected to the
infrared cut-off L . The reason would be the fact that the limit
set by constructing a black hole (BH), namely, the quantum
zero-point energy of a system with size L can not be bigger
than the mass of a BH that has the same size, or, L3�3 ≤
(MpL)3/2. We can rewrite this last equation as L3ρλ ≤ LM2

p,
where ρ� ∼ �4 is the zero-point energy density and the cut-
off is �. And again, the last equation can be rewritten as
ρ� ≤ M2

pL
−2 or ρ� = 3c2M2

pL
−2, where M2

p = (8πG)−1

is the modified Planck mass and 3c2 is constant and it has
a convenient function. There is a huge literature concerning
the HDE models investigations [15–38].

The Bekenstein–Hawking entropy has an underlying rôle
in HDE model, where SBH = A/(4G) and it is used at the
horizon [39]. As a matter of fact, A ∼ L2 is the horizon’s
area. Since the HDE model is connected to the area law of
entropy, we have that a small adjustment to the area law of
entropy will change the HDE model energy density. One cor-
rection concerning the area law of entropy is the logarithmic
correction [40–42] given by

SBH = A

4G
+ α̃ ln

A

4G
+ ˜β , (1)
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where α̃ and ˜β are dimensionless constant pre-factors and
their values are being discussed and not yet confirmed even
within loop quantum gravity [43]. Several formulations con-
cerning BH entropy provided the logarithmic correction
yielding α̃ = −1/2 or −3/2 as standard values for this coef-
ficient [44,45]. However, there is no such agreement about
regarding the way one might fix the value of the logarith-
mic pre-factor α̃, e.g., with ˜β = 0, because it seems to be a
strongly model dependent parameter [46,47]. The correction
terms have an important and underlying function in both the
late-time acceleration and early-time inflation of the Uni-
verse [48]. It is easy to see that, for α̃ = ˜β = 0 we have
Bekenstein–Hawking entropy.

A general sign from almost all formulations of quantum
gravity is that the geometry of space-time will be formed
by quantum fluctuations near Planck scale. In such scenario,
it would not be feasible to investigate the geometric struc-
tures below Planck scale [49,50]. These quantum fluctua-
tions could be the origin of the well known virtual BHs [51].
In [52–54] the authors investigated the connection between
gravitational dynamics and thermodynamics in brane world
scenarios.

To organize the ideas here, we have organized the issues
in the following manner, in Sect. 2 we made a brief review
of the Barrow entropy and our previous results. After that,
in Sect. 3, we provided the logarithm correction to Barrow
formulation and in Sect. 4, we discussed the results and made
our final remarks.

2 Barrow black hole entropy

Recently, Barrow [55] analyzed the scenario where quantum
gravitational effects could cause about some intricate, fractal
structure on the BH surface. It changes its actual horizon
area, which in turn leads us to a new BH entropy relation,
namely,

SB =
(

A

Ao

)1+ �
2

, (2)

where A is the usual horizon area and Ao the Planck area.
The quantum gravitational perturbation is represented by the
new exponent �. There are some characteristic values for �.
For example, when � = 0 we have the simplest horizon con-
struction. In this case we obtain the well known Bekenstein–
Hawking entropy. On the other hand, when � = 1 we have
the so-called maximal deformation. Hence, although � is
not, obviously, a quantum quantity, it is the “quantum” effect
present in Barrow’s entropy expression.

Let us state now some physical motivations of Barrow’s
formula. Although Barrow BH entropy was constructed as a
toy model, there is some theoretical evidences that support

his ideas. In [56], the authors constructed Barrow holographic
energy. They used the standard holographic principle at a
cosmological structure and Barrow’s entropy, instead of the
well known Bekenstein–Hawking one. The authors demon-
strated precisely that Barrow holographic dark energy can
depict the Universe thermal history, with the sequence of
matter and dark energy eras [56]. A dark energy EoS param-
eter was obtained where the �-exponent affects this EoS and
several dark energy scenarios were obtained as functions of
�-value. In another support of Barrow’s ideas, in [57], the
authors analyzed the validity of the generalized second law
of thermodynamics using the Barrow entropy. The sum of the
entropy inside the apparent horizon plus the entropy of the
horizon itself is always a non-decreasing function of time.
Hence, also concerning Barrow’s entropy, the generalized
second law is confirmed. As another theoretical evidence, in
[58], the authors discussed modified cosmological scenar-
ios using Barrow entropy, The Friedmann equations were
obtained when � = 0. The new terms obtained constitute an
effective dark energy sector. They lead us to intriguing phe-
nomenological behavior and, for � = 0, we observe that the
�CDM concordance model is recovered. Experimentally, in
[59] the authors used observational data from Supernovae
(SNIa) Pantheon sample, together with direct measurements
of the Hubble parameter from the cosmic chronometers sam-
ple to obtain constraints concerning the scenario of Barrow
holographic dark energy. Barrow entropy is similar to Tsal-
lis entropy (see [60]), although the physical framework is
radically different. As a matter of fact, the equipartition the-
orem is central in Tsallis entropy. We strongly believe that,
although being a toy model, all these evidences at least moti-
vates, consistently, that Barrow’s new concept of entropy
deserves some profound investigation.

In our last work [61], we have computed the equiparti-
tion law compatible with Barrow’s BH entropy and its heat
capacity confirming the BH unstableness even in this not
fixed � scenario. In this paper we will analyze the thermo-
dynamical features of the logarithmically corrected entropy
and its Barrow’s version. We will calculate the temperature,
the heat capacity, its physical implications and a condition on
one of the pre-factors, α̃, for both scenarios. To accomplish
the task, we will use thermodynamic functions, which are
normally used in BHs physics, they are entropy and temper-
ature. The thermodynamics of BHs were constructed upon
the basis of the ideas of both the entropy and temperature of
BH [39,62–65]. The temperature of a BH horizon is directly
proportional to its surface gravity. In Einstein gravity theory,
the BH horizon entropy is proportional to its horizon area, i.e.,
the BH entropy area law. Throughout this letter we will use
h̄ = c = kB = 1. In the context of the usual BH area entropy
law, S = A/4G. We will also assume that the number N of
DOF of the horizon satisfy the standard equipartition law [66]
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M = 1

2
NT , (3)

where T is the temperature and M is the BH mass and we
assume here that there are no interaction among the DOF of
a BH.

Our main target will be the Schwarszchild BH entropy,
which will depict the horizon. Following Barrow deformed
entropy, given in Eq. (2) for BHs [67] it is given by

SB =
(

A

4G

)1+ �
2

, (4)

where G is the gravitation constant, 4G is the Planck area
and A is the standard horizon area. In BH physics, the area
A of the horizon can be associated with the source mass M
through the relation

A = 16πG2M2 . (5)

It will be assumed that the number of DOF, N , of the horizon
obey the standard equipartition theorem in Eq. (3) above [66].
In [61], we substituted the area in Eq. (5) into Eq. (4), we
had that

SB =
(

16πG2M2

4G

)1+ �
2

�⇒ SB =
(

4πGM2
)1+ �

2
.

(6)

The temperature is given by

1

T
= ∂S(M)

∂M
, (7)

where the expressions representing both BH entropy and tem-
perature have a kind of universality since both the horizon
area and surface gravity are geometric quantities altogether,
determined by the space-time geometry [68].

Now, using Eq. (6)

1

T
=

(

� + 2
)(

4πG
)1+ �

2
M1+� . (8)

If the area increases by a scaling A → κA, where κ ≥ 1,
consequently the BH’s Hawking lifetime tBH , fall as

tBH ∝ M3

κ2 ∝ 1

T 3κ2 (9)

since we saw in the last equation that T ∝ M−1 and κ

increases. Together with an increasing temperature, if there
is not upper bound on κ , primordial BHs will explode very
rapidly [55].

We will use that the number of DOF, N , in the horizon
can be obtained by [69]

N = 4 S, (10)

where S is the specific entropy that describes the horizon.
Hence, using Eqs. (6) and (10) we have that

N

4
=

(

4πG
)1+ �

2
M2+� , (11)

but, substituting the result in Eq. (8) for the temperature into
Eq. (11), we have that

M = 1

2

(

1 + �

2

)

N T , (12)

which corresponds to the horizon energy in Barrow’s entropy
model. From the last equation we can notice the appearance
of an extra term �/2 in the usual equipartition theorem, Eq.
(3). When we make � = 0 we recover the usual equipartition
law.

At this point, it is important to clarify our proposition here.
It is easy to understand that, for each entropy formulation we
have two main quantities, namely, the number of DOF and
the equipartition law. This last one is the energy of the event
horizon. The standard entropy is the Bekenstein–Hawking
one. Hence, we know that, for N = 4S DOF we have that
M = 1/2 NT . So, for other formulations we have to change
one of these two quantities. Let us explain better by taking
Barrow entropy for example. It can be shown [70] that its
number of DOF is N = 2(2 + �) SBarrow. However, if we
calculate the respective temperature, the final result is that
M = 1/2 NT , independent of �, and we have the same final
result for any DOF expression relative to a certain entropy.
But, on the other hand, if we keep the same number of DOF
relative to Bekenstein–Hawking entropy, of course we will
have a new expression for the equipartition law. And it is
exactly what we are doing here, we are following this second
path. Namely, we will find a new equipartition law for each
entropy formulation. In other words, considering the same
number of DOF for Bekenstein–Hawking entropy, we will
have different event horizon energies. In one of our previ-
ous works [71] we have obtained different horizon energies
relative to different entropy formulations.

The heat capacity is given by

C = − [S′
BH (M)]2

S
′′
BH (M)

, (13)

where the prime means a derivative relative to M and a neg-
ative heat capacity indicates that the temperature of the sys-
tem, the horizon temperature, increases as it evaporates and
the energy decreases, due to the Hawking radiation, which
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means a thermodynamical unstableness. In fact, it is expected
in BH scenarios since BHs are unstable thermodynamically.
So, following [61], substituting Barrow’s entropy in Eq. (6)
into Eq. (13) we have that

CB = −
[ (

4πG
)1+ �

2
(

2 + �
)]

1 + �
M2+� , (14)

which means that, for stability, we must have that

2 + �

1 + �
< 0 �⇒ −2 < � < −1 �⇒ CB > 0 .

(15)

Hence, for thermodynamical coherence with the equiparti-
tion law, we have that � has to be in the interval −2 < � <

−1. But the interval for � is 0 ≤ � ≤ 1 [55,61]. Therefore,
Barrow’s BH is unstable, as it is expected.

For � = 0 in Eq. (14), for a smooth spacetime structure,
we have that

CB = − 8πGM2 , (16)

which reproduces the usual value of the heat capacity of a
BH and it means, as well known, that a BH is thermally
unstable. The negative heat capacity in this scenario means
that a slight drop in BH’s temperature will cause an extra
drop as the energy keeps being absorbed.

For � = 1 in Eq. (14) we have that

CB = − 12
(

πG
)3/2

M3 . (17)

which corresponds to the heat capacity of a maximal defor-
mation of spacetime, i.e., for the most intricate.

As we said before, � represents the quantum fluctuations
and the fractal feature of spacetime, which are motivated by
LQG [55]. At the same time, we know that the introduction
of quantum effects, motivated by LQG caused by thermal
equilibrium and quantum fluctuations, conduct us to the cur-
vature correction in Einstein’s action known as the logarith-
mic entropy-correction described above in Eq. (1). Hence, we
see that it is completely adequate to carry out the logarithmic
correction concerning Barrow’s entropy since both are con-
nected by LQG fractal and quantum features. From now on,
we will demonstrate this last assertion and its consequences.

3 Barrow logarithm corrected-entropy

Now, our main target here is to consider the logarithmic cor-
rection, from Eq. (1) and using Eq. (5) we can write that

S = 4πGM2 + α̃ ln
(

4πGM2
)

+ ˜β. (18)

and substituting this equation into Eq. (7) we can calculate
the temperature, which is

T = M

2

(

1

α̃ + 4πGM2

)

, (19)

and the number of DOF is

N = 4 S = 16πGM2 + 4 α̃ ln
(

4πGM2
)

+ 4 ˜β. (20)

It is very important to stress that, as we said before, α̃ and ˜β

can have negative values, but we are considering that these
negativeness does not affect the positiveness of S, T and N .

From Eq. (19) we can write that

M =
(

8πGM2 + 2 α̃
)

T �⇒ 4πGM2 = M

2T
− α̃,

(21)

and from Eq. (20) we have

N

4
= 4πGM2 + α̃ ln

(

4πGM2
)

+ ˜β

∼= 4πGM2 + α̃ − α̃

4πGM2 + ˜β, (22)

where the second and higher orders of 1/(4πGM2) of the
logarithm expansion were neglected since the most popular
values of the pre-factors are small values around unity [43].
Besides, since the equipartition law is an average value of
energy, we can also use an approximate value for the energy
of the logarithmically corrected-entropy.

Substituting Eq. (21) into Eq. (22) we can write that

(

M

2T

)2

−
(

α̃ − N

4
− ˜β

) (

M

2T

)

+ α̃

(

N

4
− ˜β − 1

)

∼= 0 ,

(23)

which means that

M ∼=
[

N

4
+ α̃ − ˜β ±

√

[

N

4
−

(

α̃ + ˜β
)

]2

+ 4α̃

]

T .

(24)

Hence, we have two options, but we know that, for α̃ =
˜β = 0, we must have M = 1/2NT . Substituting these zero
values for α̃ and ˜β in both roots we have that the correct root
is

M ∼=
[

N

4
+ α̃ − ˜β +

√

[

N

4
−

(

α̃ + ˜β
)

]2

+ 4α̃

]

T ,

(25)

123



Eur. Phys. J. C           (2020) 80:776 Page 5 of 7   776 

which corresponds to the horizon energy for a logarithmically
corrected-entropy model. The other root, the negative one,
results M = 0.

For the heat capacity in Eq. (13), using Eq. (18)

C = − 2
(4πGM2 + α̃)2

4πGM2 − α̃
, (26)

which means that α̃ < 4πGM2 reflects the thermodynamical
unstableness of a BH and established a condition on α̃.

Let us construct a corrected-entropy version of Barrow’s
BH formulation, hence,

S =
(

A

4G

)1+ �
2 + α̃1 ln

(

A

4G

)

+ ˜β , (27)

where α̃1 = α̃
(

1 + �
2

)

. Using Eq. (5), we have that

S =
(

4πGM2
)1+ �

2 + α̃1 ln

(

4πGM2
)

+ ˜β . (28)

The temperature is given by

T = M

2

(

1

α̃1 + 22+�(πG)1+ �
2 M2+�

)

�⇒ M = 2

(

α̃1 + 22+�(πG)1+ �
2 M2+�

)

T , (29)

which means that we can write conveniently that

M

2T
− α̃1 = 22+�(πG)1+ �

2 M2+� . (30)

The number of DOF is

N = 4
[(

4πGM2
)1+ �

2 + α̃ ln
(

4πGM2
)1+ �

2 + ˜β
]

, (31)

where, using the same logarithm expansion and neglecting
the 1/M2 higher order terms, using Eq. (30) and after some
algebra we have that
(

M

2T

)2

− �1
M

2T
+ �2 ∼= 0

�⇒ M ∼=
[

�1 ± √

�1 − 4�2

]

T , (32)

where

�1 = N

4
+ α̃

(

1 + �
)

− ˜β , (33)

and

�2 = α̃1

(

1 + N

4
− α̃ − ˜β

)

− α̃ , (34)

where Eq. (32) represents the horizon approximate energy
for Barrow’s logarithmically corrected-entropy model. For
α̃ = ˜β = 0 we have �1 = N

4 and �2 = 0. Considering the
positive root of Eq. (32) we have M ∼= 1

2 NT , and the negative

one, M = 0. It is important to remember that α̃1 = α̃
(

1+�
2

)

,

so for α̃ = 0 we have �2 = 0 independent of the value of
Barrow’s exponent �.

Computing the heat capacity for the entropy in Eq. (27),
its value is,

C =

[

2 α̃1 + (2 + �) (4πG)1+ �
2 M2+�

]2

2 α̃1 − (2 + �)(1 + �) (4πG)1+ �
2 M2+�

, (35)

where the numerator is all positive, so the negative sign , or
not, has to come from the denominator. Hence, for a positive
heat capacity we must have

α̃ > (1 + �)(4πG)1+ �
2 M2+� , (36)

since α̃ is close to unity, this condition can not be obeyed and
we have an unstableness scenario which is expected. How-
ever, it is very well known that Schwarszchild black holes
have negative heat capacity, i.e., they are unstable. Conse-
quently, we have in fact an unstableness condition on α̃,
which is

α̃ < (1 + �)(4πG)1+ �
2 M2+� . (37)

Let us analyze some special cases of these conditions.
For � = 0, the Bekenstein–Hawking entropy case, the

heat capacity in Eq. (36) is given by

C = 2

[

α̃ + 4πGM2
]2

α̃ − 4πGM2 , (38)

which confirms the condition from Eq. (26) for unstableness.
For � = 1, fractal case scenario,

C = 3

[

α̃ + (4πG)3/2M3
]2

α̃ − (4πG)3/2M3 , (39)

and the fractality condition changes the unstableness condi-
tion on α̃, which is now, α̃ < (4πG)3/2M3.

We can see clearly that considering the standard Barrow’s
entropy expression, when the fractal effect factor � is zeroed,
i.e., when it is withdrawn from the expression in Eq. (12), we
obtain the standard equipartition theorem, which is a classical
expression. However, from Eqs. (32) to (34), it is also clear
that we do not need to touch the fractal factor in the corrected
equipartition law to obtain the standard classical one. Hence,
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if � represents also the quantum fluctuations, the classical or
semi-classical approximation procedure here does not mean
to zero directly the “quantum” object, as usual. Notice that
we are not saying that � is a quantum object, which is not, of
course. But it represents the effect of quantum fluctuations.

On the other hand, since this “quantum” object is directly
connected to α̃, via the value of α̃1 and its effects on Eq.
(32), we can say that in the case of logarithmically corrected-
Barrow’s entropy, the α̃ can be associated, in some still
unknown way, with the fractality of spacetime. We believe
that this is a new physical interpretation for the α̃-parameter.
Or α̃ can also be responsible for the quantum to classical
approximation, which is also a new interpretation for α̃.

4 Conclusions and final remarks

To conclude, we can mention that Barrow’s entropy origi-
nates from the fact that the BH surface can be perturbed by
the so-called quantum gravitational effects. In other words,
we could expect that quantum fluctuations of space-time can
cause a modification of the topology of spacetime at the
Planck scale. The result would be a foam-like framework
called the spacetime foam. Hence, considering Barrow’s for-
mulation, we can measure its deviation from the Bekenstein–
Hawking entropy through a new exponent �, where � = 0
means Bekenstein–Hawking entropy, and � = 1 means the
most intricate case.

In this work we have investigated the logarithmic correc-
tion of both Bekenstein–Hawking and Barrow’s entropies.
We calculated the expression of the equipartition law, which
corresponds to the horizon energy in both entropic models.
After that, to observe the application of the thermodynam-
ical coherence of the models, we have calculated the heat
capacity of both systems, which must be a positive quantity.
Concerning both formulations, we have analyzed the pos-
itivity condition based upon the value of the α̃-parameter.
Since the interval known for the validity of � is positive, the
results obtained showed that both BH’s models are unstable,
as it is expected. We obtained conditions on α̃ for some dif-
ferent scenarios, confirming that the value of the pre-factor
is dependent of the model.
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