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I exhibit some new quantum symmetries that exist in a wide variety of integrable

quantum field theory in 1 + 1 dimensions. The conserved charges are generated by non-

local currents. The algebras of conserved charges are the g-deformation of Kac-Moody

algebras. S-matrices are completely characterized by the symmetry.

Symmetry is an important tool for obtaining
non-perturbative information about quantum field
theory. In 341 space-time dimensions the possible
symmetries of an S-matrix are severely imited by
the Coleman-Mandula theorem. In lower dimen-
sions some of the hypotheses of this theorem can
be relaxed in a non-trivial way.

In this talk I will describe some recent work
done in collaboration with Denis Bernard on quan-
tum symmetries in 1 + 1 dimensional integrable
quantum field theory [1]. In 1+ 1 dimensions, con-
served currents can have non-trivial braiding re-
lations. Generally, these braiding properties arise
from the non-locality of the currents. This non-
locality has the consequence that the action of
the conserved charges on multiparticle states is
not simply the sum of the action on each parti-
cle separately. This is the primary hypothesis of
the Coleman-Mandula theorem that is violated for
the currents we consider.

I will describe our results in the specific case of
the sine-Gordon theory. However, the formulation
we developed is applicable to many other theories.

Consider a conformal field theory perturbed

by a relevant operator

A
S = Scrr + E;/dzz Ppert.(2,2). (1)
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Let F(z), F(Z) be chiral primary fields in the con-
formal field theory, i.e. satisfying zF = 8,F = 0.
Furthermore, we suppose that these fields are lo-
cal with respect to the perturbing field Ppert..
Zamolodchikov has shown that to first order in

perturbation theory [2]:

dw
6; F(Z,E) = /\i % ‘ppert.(w,—z) F(Z) (2)
6, F(Z,?) = A fi g ‘I’pert.(zam) F(_Z')

Now consider the sine-Gordon (SG) theory

with the Euclidean action

1 A ~
S = Z;r-/d2z 3,99;P +; /sz : cos (ﬁ@) :
3)
In the massless limit the chiral components of the
SG field are

o) = 5(2e 0+ [ dros,n)

z (4)
(@(z,t) - /_oo dy 3t<I>(y,t)).

g(x’t) =

N = N =

Using the equation of motion (2), we find the fol-

lowing four conserved currents:

a‘EJ:t = 6zI{:h y az'_]-:i: = az'—l:{-:.l:a (5)



Ji(z,t) = exp (i%—i qS(:c,t)) (6a)

2

Ha(e, ) = ewp |2 > ) éa) ¥ 8 )

Ta(z,t) = exp (?% 3e.0) (6b)

2—-

Hy(z,t)= Aexp [;i (ﬂ 3) #(z,t) +if ¢(-’v,t)]-

From these currents we define four COﬂSCl‘VCd

Qs = %(/dﬂﬁ/dsﬂi)
0. = %(/dﬁi+/dzﬁi).

In addition to the above conserved currents,

charges

(7)

the SG theory has the conserved topological cur-

rent

~

B

T (z,t) = o "9, &(z,t),

with the topological charge T = [ dzJ°.

The conserved currents (6) are non-local due

®)

to the non-local expressions for the chiral compo-
nents of the SG field. They satisfy the following

braiding relations

Je(z,t) Tx(y,t) =
Jﬂ:(w?t) 7:k(y’t)

q—2 —J-=F(yat) Ji($7t)
q2 7:t(y,t) J:t(x’t)

Vz,y, where

g = exp(—2mi/B?) = —exp(~in /7).  (10)

Using these braiding relations and the operator
product expansion one finds that the charges sat-

isfy the following algebra

R+ Qe - Q4 Q4 =0 (11a)
Q-Q_-¢Q_Q- =0 (113)
Q+ Q_—¢2Q_Q4 = a(l - ‘127) (11¢)

Q-Qy-¢7Q, Q- = a(l — q‘”)(lld)
[T,Q+] = £2 Q1 (11e)
[7,Q.] = £2Q4,  (11f)
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where a = A/2~.

This algebra is isomorphic to a g-deformation
of the infinite dimensional centerless si(2) Kac-
Moody algebra [3][4]. This isomorphism is

Qs = cE /2 Q- = cEq ¢/
Q. =chd"? Q= cFdPl
7 = Hy = —-Hyp
(12)
where ¢ is a constant (¢ = ;2;(¢7% - 1)), and

E;,F;, H; are a Chevalley basis for the quantum
affine algebra. The last equation above reflects the
fact that the center of sE.(\Z) is zero. Note that
when ¢ = —i, (B = 2/V/3), the algebra (11) is a
topological extension of the N = 2 supersymmetry
algebra. This fact was recently used in the study of
perturbations of the N = 2 superconformal series
[1].

One can now use the above non-local currents
to obtain interesting non-perturbative information
about the theory. The fields that create SG soli-
tons are required to have topological charge +1,
and to have well-defined transformation proper-
ties with respect to the non-local charges. They

are given by

Ui(a,1) = exp (i-;; ¢(:c,t)>
e = on(Lben).

These fields are chosen such that the non-local
charges will transform solitons into anti-solitons
and vise versa. This fact is ensured by the op-

erator product expansions

1

J+(Z) \Il_(w) ~ Zz—__—w-)z—/?; \II+(w)+
1
J_(z) ¥y(w) ~ m—; U_(w)+---
(14)

The non-local currents and soliton fields are

all characterized by non-trivial Lorentz spin:



= spin(Q1) = —spin(Qy) =

==

2
52-—1 (15)

spin(¥x) = -spin (Ti) = 2—;,:; (16)

Note that the soliton fields only have spin 1/2 when
E = 1, which is known to correspond to a free the-
ory. Thus one concludes that the interpretation of
the SG solitons as the Thirring fermions is not a
unique one. This is perfectly consistent with the
fact that the Lorentz spin of a field is not an ob-
servable property of a particle in 1+ 1 dimensions.

In order to obtain non-perturbative informa-

tion about the S-matrix one must determine how

the non-local charges are represented on asymp-
We find the following

representation on one-particle states:

totic multisoliton states.

Qs = ¢t/ By AP
@i = ce ¥/ Eq q:FH/2 (17)
T =H

where c is a constant, H = diag(+1,~1) and Ey
are the Pauli spin matrices o4.

To find the action on multiparticle states one
must take into account the braiding relations be-

tween the currents and the soliton fields:

Ji(mat) -\TI-T(y,t) =
Ti(z,t) Ur(y,t) =

T Tr(y,1) Ji(z,t)

a7 U1 (y,t) Tx(z,t)
(18)
Vz,y. The action on two particle states defines the

comultiplication A:

AQs) = Q:®1+¢*@Qs (19a)
A@QL) = Q. ®1+477RQ,  (19)
A(H) = HR1+H®1. (19c¢)

The last relation follows from the additivity of the
topological charge 7.

It is remarkable that the soliton S-matrix is
completely determined by its symmetry with re-

spect to the above charges:

503

[5,8Q4)] = [5,A(Qu)] = [S,A(H)] = 0.
(20)
The minimal solution to the above equations is the
known result [5].

To summarize, I have shown that the SG the-
ory can be non-perturbatively defined by using the
non-local symmetry. It is interesting that a man-
ifestly local theory such as the SG theory can be
characterized by such symmetries. These results
generalize to the affine-Toda theories and numer-

ous others.
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CONTINUOUS AND DISCRETE SYMMETRY
FROM CONFORMAL FIELD THEORY

L. DOLAN
Department of Physics, University of North Carolina
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ABSTRACT

Locality is used to give an explicit construction of twisted conformal field theory. This fixes both
the continuous and discrete symmetries of the theory. In general, all weight one conformal fields close
to form an affine Kac-Moody algebra, whose zero modes generate the continuous symmetry group.
For the Z;-twisted bosonic theory associated with the Leech lattice, there is no continuous symmetry
and the discrete symmetry is the largest finite simple group, the Monster F;. For Zy-twisted fermion
conformal fields, the weight one-half and a subset of the weight one fields form a twisted super Kac-

Moody algebra, whose semidirect product with the super Virasoro algebra has zero mode commutators
equivalent to those of the untwisted super Kac-Moody algebra.

1. Introduction

Both continuous and discrete symmetries of
the dynamics of particle interactions are fixed by
conformal field theory (CFT), when string theory
is used to describe nature. In this talk, the concise
framework of consistent twisted conformal field the-
ory is reviewed!. The explicit construction of the
Zy-bosonic theory associated with a d-dimensional
momentum lattice, providesin the case of the Leech
lattice, the natural module? of the Monster group?.
It’s triality element is identified, and is seen to be
a generic feature of twisted conformal field theory*.
The construction of the vertex operators, i.e. the
conformal fields, for all the states is then extended
to Za-twisted fermionic conformal field theory. The
weight one-half states and a subset of all the weight
one states in a Zy-twisted CFT form a twisted su-
per Kac-Moody algebra, whose semidirect product
with the super Virasoro algebra is shown to have
zero mode commutators identical to those of the
untwisted super algebra. This follows from the fact
that, in general, in the Zy-twisted sectors, the in-
tertwining relations of the vertex operators requires
a shift in the definition of not only the Virasoro gen-
erator (which is familiar from the Ramond, i.e. Z,-
twisted sector), but also the super Virasoro genera-
tor and the Kac-Moody generators associated with
the Cartan subalgebra®.

This analysis is useful in studying the detailed
properties of the vertex operators in superconfor-
mal field theory. In particular, a viable low-energy
phenomenology predicted by Type II superstrings
in four-dimensions would be extremely economical,
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and thereby have a good chance to offer a pre-
cise connection® 1% between string theory and the
standard model. The spontaneous breakdown of
space-time supersymmetry and the associated non-
vanishing vacuum expectation value of the dila-
ton field provides a possible resolution of the
presently!! “missing quark doublet” in Type II
Even without supersymmetry breaking, a more
thorough investigation and the explicit construc-
tion of the conformal fields in the context of a
consistent local theory may well indicate that one
should take the string more seriously, i.e. that
the (supersymmetric) standard model is the ground
state of a conformal field theory. In this case, the
discrete symmetries of the CFT will be responsi-
ble for the absence of baryon and lepton violating
interactions!?, since unlike the conventional stan-
dard model, it is known that its supersymmetric
versions require additional symmetries to eliminate
such interactions.

2. Twisted Bosonic CFT
The twisted conformal field theory ’}?(A) asso-

ciated with a lattice A of dimension d is defined for
a Zj reflection twist by keeping the 8§ = 1 subset
of the states created by integrally-moded bosonic
operators /., 1 < j < d, m € Z from momen-
tum states |A),A € A. Here §|A) = |-)) and
fal 67! = —ai . To this we add in the § = 1 sub-
space of the space Hr(A) generated from an irre-
ducible representation space Xo(A) for the gamma
matrix algebra {yx : A € A} associated with A,
by half-integrally moded oscillators ¢i, 1 < j < d,
r€Z+ % In this case, the involution 8 is defined



by 8cl8~* = —cl. The oscillators satisfy the com-
mutation relations [a},, al] = by a8, [, cl] =
r6p_s6", and [a},,cl] = 0. From the locality
requirement of Eq.(12), we find that the twisted
CFT is bosonic and meromorphic provided that
d = dimA is a multiple of eight and both v/2A*
and A are even, a condition implied by self-duality
of the lattice. If A is the d = 24 Leech lattice, then

H(A) is the natural module for the Monster group.

In the twisted CFT, the untwisted and twisted
sectors of H(A) are the subspaces H*(A) and
HA(A) on which § = 1. H ¢ € HT(A), V(¢,2)
maps HT(A) — H*T(A) and HE(A) — HE(A)
whereas V(x,z) maps Ht(A) — HE(A) and
HE(A) - HH(A) if x € HE(A). Thus we can write

these vertex operators in matrix form

V(¢,z) = (V(Tg’z) VT(?ﬁ,z))

CER PR

In this notation, the vertex operators of the twisted
CFT H(A) are given by, for the untwisted states:

Y= (Hﬁlzl aj—‘m.) 1A),

(1)

(2)

V(g,2) = Y (X]: "2 [g)on

MEA

i
= (H (ma — 1)1

a==1

(3)

dm‘Xj" (z)

dz™ms

) exp{iA-X(z)}ox :

and

Vr(¥,2) = Vp(e* P9, 2)
= Z ’yx(A'! : eB("z) : eA("z)W)),

MNeEA

(4)

where

VR(b,2) = Y (42)"H g (N]: B )

AeA

= (H (mai_ 1! dm;ff:(z)) exp{i)-R(z)} :

(5)

(42) P

and

, . . J
Xi(z)=¢ —ip'logz +iy ﬁnﬁz—", (6)
nFD

505

o

R(z) =1 Z c;tz"";

r=—00

(1)

and for the twisted states: x = (Hﬁl cj_"MG) Ao,

the analogue of the fermion emission operator is
W(x,2) = et W, 2), (8)

where

Wi(x,z) = E ya(A] : €802 ;A2 |y) |
A€A

(9)

and’
Wix,z) = ™ W(e g 1/27) . (10)
In the above expressions we define
: 3y (1) e
A(z)_ﬁ Z (m)(n)ernam.a"'

m,n20
(mn)#(0,0)

11
Expressions for A(z), B(z), and F(z) are also vwErit?
ten as bilinears in oscillators and are given in
Ref.[1,5]. Note that the special state ¢, is given
in these CFT’s by %a_l-a_.IIO) and that its ver-
tex operator is L, = § Y o Gm Gn_m : from
Eq.(3), and LE =} Y mo__ ¢ CmeCnom : +75 from
Eq.(4). The cocycle operators o and 7, on the un-
twisted and twisted sectors respectively are defined
and discussed comprehensively in Ref. {1]. The lo-
cality relation satisfied by the vertex operators is:

V(#,2)V(¢,() =V($,()V(#,2).  (12)

3. Twisted Fermionic CFT

The space of states for the Z,-twisted fermionic
theory, H, is obtained by starting with the states
of the untwisted Neveu-Schwarz theory, H, adding
in a twisted Ramond sector, H7, and keeping only
the subspace of each defined by 6 = 1, with §2 = 1.
The states of the untwisted theory are generated by
the action of d infinite sets of half-integrally moded
oscillators, b, 1 < j < d, on the vacuum state, ¥,.
The twisted sector is obtained from the action of
d infinite sets of integrally moded oscillators, dZ,
on the twisted ground states which form a 2%/2 ir-
reducible representation, Xy, of the gamma matrix

Clifford algebra, {y7}. The involution 8 is defined


http://Ia_.j-a_.il0%7d

6br6—* = —b%, and on the twisted space, Hr,
by 9‘0) = %|0)g, 846 = —di, where X, =
[0)% + |0)z and we are assuming d is a multiple
of 8, (which is necessary for the spectrum of L¢ to
contain half-integral values).

This theory consists of fermionic and bosonic
fields. As in the bosonic case, the conformal field
theories discussed here are defined on the complex
plane, or rather the Riemann sphere, and are chiral,
i.e. holomorphic. In this case, the intertwining
relation (12) is generally defined by

Y (8,0) = eyaV($,OVH,2)  (13)
in the sense of analytic continuation, where ey¢ =1
if either of the states 9 or ¢ are bosons, and
eye = —1 if both of them are fermions. We will
construct (in the Fi- picture) the vertex operators
V(¢,z), i.e. conformal fields which are in one-to-
one correspondence with a basis of states for the

theory:
V($,2)[0) = ey, (14)

In the language of superconformal field theory,
these vertex operators are the lower components
of the superfields. Here |0) = ¥, is the vacuum
and L_; one of the moments of the special vertex
operator V(¢1,2) = ), La.2z""2, which satisfy
the Virasoro algebra: [Ly, Ln] = (m — n)Lpyn +
4 m(m? - 1)§,-n, where m,n run over the inte-

24
gers, LI = L_,, and L,[0) =0 for n > ~1.

The oscillators satisfy the anti-commutation
relations {b:,b/} = 6§, _,, {dm, n} = 5"j5m,_,,,
and {bi, d2} = 0, where bi = b ,, bij0) =
s> 0, d' =4, dijo)g = 0, n > 0. In
these theories, the special state % is given by
%b_;-b_;[O) and that its vertex operator is de-
fined by Lp = $ 30 _ (37 — 8) : bybn_y @ in
the untwisted sector from Eq. (15), and by L8 =
Ly eo(3n =m) : dp - dp_m : +E6no in the
twisted sector from Eq. (16).

The states in the Neveu-Schwarz sector are
given by ¥ = M b2, ) |0), where each s, is a
positive half-odd mteger, and the product is under-
stood to be written down in a definite order, e.g.
left to right, in order to avoid a sign ambiguity,,
and each oscillator occurs at most once. The ver-
tex operators for these states with (m, = 3, — 3)
are given by
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. 1 d™eb(2)

V(’ll),l) =. (Em I-Tz'"—h—> .
= (0']: eF(=2) . [¥), (15)

where we have introduced the Neveu-Schwarz fermion

conformal fields b(z) = "% biz=*~% and

VT("I’rz) = VTq(eA(z)'l’)z))
=(0]: B2 1 A2 jyy | (16)
where
1 dms dh z)
V :
T ¢)z) (al:[:l dzms )
=(0]: eB<-=) ), (17)
with the Ramond fermion fields defined as
& (z) = Z P (18)

n=—0o0

For the twisted states x = (Hf’il dj_‘ml) |0)%, the

fermion emission operator is

W(x,z) = e21 W(y,z), (19)
where
Wix,2) = (0] : ) : AGy) . (20)
In the above expressions, define A(z) = A(-z)
where
1 -1 -2 \r—s
A —_ 2 2 -T-sp B, .
=15 () () e
(21)

Similar expressions for B(z) and F(z) are also
written as bilinears in oscillators and are given

in Ref.[5]. In general these “lower component”
vertex operators are not meromorphlc for eg.
Vr( 1]0) z) = di(z) = Y, diz""%. There

fore although the intertwining relation is satisfied:

V(s 10), 2)W(10)%,¢) = W(I0)%, OV (¢, 10), 2),
the operator product expansion W(|0)%, ()V (b 3 |0)
1s double valued.



4. Twisted Super Kac-Moody Algebra

In fermionic conformal field field theory, the
weight one-half and a subset of the weight one fields
may form the “lower” and “upper” components of
massless superfields, which are the vertex operators
for the massless states in the Fy and Fy-pictures re-
spectively. The moments of these conformal fields
generate a super Kac-Moody algebra which forms
a semi-direct product with the super Virasoro alge-
bra. In the presence of Z y-twisted fermionic fields,
this set of operators will close to form a twisted
super Kac-Moody algebra, whose semi-direct prod-
uct with the super Virasoro algebra is shown to
have zero mode commutators identical to those of

the untwisted super algebra.’

In this case, the weight one-half fields are
given by hi(e?™z) = e™“hi(z) and h*(e?™z) =
ewe2mAapa(z)  where w = 0,1 for Neveu-
Schwarz and Ramond sectors respectively; 1, o label
the Cartan subalgebra and the roots, respectively
of a dimension d semi-simple Lie algebra g; and
the Zy-twist is labelled by the vector A such that

—% < Xa < 3. In analogy with Eq.(21) we find

(22)

A realization of the twisted super Kac-Moody and
super Virasoro algebras is given by the vertex
L(z), and G(2) as fol-
The necessity for the shift in the defini-
tion of H*(z) is seen from its identification as
= H(z), and from (22)
and (16), where h(z) replaces d(z). Here N(a,7v)
are the structure constants of g in the Cartan-Weyl

operators H'(z), E%(z),

lows.

V(L T, b2, 550),2)

basis, and Y a*a’ = cy6". Forw = 0:

E o*he(2)h™%(

E*(z) =Y o' (2)h%(2)

j

by Y Np W (=)

[
a~yroot

— 3 ..
-r-—511 11
P

———Zaa/\ (23)

(24)

Lz) = 2 dz

1« dhi(z

1 dh?(z
9+32

+ 47 ;(w)2 (25)
G(z) 25_1@'2'(,2; R (2)h(2)h%(2)
1 - —o
3 X NenaR R @h )
1 iy
- Y ata-Abi(2)) (26)
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CALABI-YAU MODULI SPACE, EFFECTIVE LAGRANGIANS AND
ALGEBRAIC GEOMETRY

S. FERRARA
CERN, Geneva, Switzerland

ABSTRACT

Recent results on the geometry of Calabi-Yau moduli space and the computation of effective couplings for
superstrings compactified on such manifolds are reported.

In this talk I will report on recent progress
that has been made in the construction of effec-
tive theories for four dimensions, resulting from
Calabi-Yau (CY) [1] compactifications of criti-
cal superstrings. Although the physically more
interesting superstrings are the heterotic ones [2],
I will talk about the application of cohomology
theory and the methods of algebraic geometry
for type II superstrings where the interplay of
geometry, topology, and local space-time super-
symmetry is deeper.

The massless modes for type 11 strings on (2,2)
vacua [3] are suitably described, in the point-field
theory limit, by the Kaluza~Klein compactifica-
tion of D=10, N=2 supergravity on CY vacua
[4-6].

For a CY space with SU(3) holonomy, type 11
superstrings give N=2 space— time supersymme-
try in four dimensions, and therefore the mass-
less multiplets are assigned to N=2 supergravity
multiplets, which are of three kinds: the graviton
multiplet, vector multiplets, and hypermultiplets
[4-6].

There are four bosonic degrees of freedom in
each of these multiplets: helicities A = £2 (grawvi-
ton) and A = +1 (graviphoton) in the gravi-
ton multiplet, two scalars and a vector, and four
scalars respectively for each vector multiplet and
hypermultiplet.

The number of matter (massless) vector multi-
plets is h(; 1) in type IIA superstrings and hs 1y
in type IIB superstrings, whilst the number of
hypermultiplets is h(; 1) is type ITA and h(; 1) In
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type IIB ! superstrings.

From results of matter couplings in N=2 su-
pergravity, it follows that vector multiplets con-
tain scalars that are coordinates of a special Kahler
manifold ([4] to [8]), whilst hypermultiplets con-
tain scalars that are coordinates of a quaternionic
manifold with a special value of the curvature [9].

The four degrees of freedom of each matter
multiplets come, at the string level, from the N-
S sector (two) and from the R-R sector (two).

‘The massless scalars coming from the N-S sec-
tor correspond to the moduli fields and are com-
mon to both type II and heterotic strings. This
1s why the target-space o-model for the moduli is
constrained to obey the special geometry of N=2
supergravity. Moreover, since the quaternionic
geometry of hypermultiplets in type IIA (type
IIB) is related to the special geometry of vector
multiplets in the chirality-reversed theory (A —
B), it follows that the quaternionic o-model is
also restricted [5].

The class of quaternionic ¢-models compatible
with CY compactifications has been called dual
quaternionic manifolds, and 1t was argued that
their metric can be explicitly constricted by using
three-dimensional duality for N=2 vector multi-
plets dimensionally reduced [5, 10] from D=4 to
D=3.

We may also wonder how general these results
are, since we are dealing with compactification
at the level of a point-field theory rather than at
the string level.

!Note that h(1,1y and h(3 1y are the two independent
Hodge numbers of a CY threefold.



Since field theory compactification is a reliable
approximation only if the size of the ‘internal
space’ is much larger than the string size, we may
expect that a field theory discussion only gives
reliable formulae for large values of the mod-
uli parameters for the Kahler class deformations
since these parameters are related to the size de-
formations of the internal manifold.

At the string level, these parameters [the (1,1)
moduli] (divided by the string size) appear as
(the inverse of) coupling constants of the world-
sheet o-model on the CY manifold, and this mi-
croscopic nterpretation of the moduli parame-
ters allows us to make some general statements
[4, 11]. The point-field theory limit is reliable
only for a weakly coupled o-model, and therefore
for large values of the (1,1) moduli parameters.

What about a strongly coupled o-model? The
(1,1) moduli parameters form supermultiplets
with the internal components of the antisymmet-
ric tensor B,,, with which there 1s an associ-
ated Peccei-Quinn symmetry that 1s due to the
o-model mterpretation of the B-couplings as a
topological term.

This symmetry is exact at each finite order of
o-model perturbation theory and is broken only
by world-sheet non-perturbative (instantons) phe
nomena, which are related to non-trivial maps of
the world-sheet on the (target-space) CY mani-
fold [12].

Recent investigations of the (2,2) orbifolds [13,
14] and mirror CY manifolds [15-17] have led
to the conclusion that these non-perturbative ef-
fects are controlled by the quantum duality sym-
metries of superstrings, which are a generaliza-
tion of the R — «'/R symmetry of toroidal com-
pactifications [18].

What about the other types of moduli that
exist in CY manifolds, namely the deformations
of the complex structure?

Owing to the product structure of the moduli
space for (1,1) and (2,1) moduli—which is also
a consequence of their multiplet assignment in
type II superstrings—the (2,1) moduli and their
o-model interactions do not depend on the o-
model coupling constants and are expected to
be correctly computed for the large size of the
manifold [11]. This means that string tree-level
results for (2,1) moduli can be exactly computed

in the point-field theory limit. We may also say
that for (2,1) moduli the classical and quantum
moduli spaces coincide, whilst they usually differ
for (1,1) moduli.

These results also imply that the field theoretic
Yukawa couplings in heterotic strings are exact
(up to string-loop non-perturbative phenomena)
for 27 families, whilst they get non-perturbative
world-sheet, corrections for 27 families.

This relation is due to the fact that Yukawa
couplings C;jz(¢) for 27 (or 27) families are ge-
ometrical quantities of the moduli space, in the
sense that the Kahler curvature of the special ge-
ometry of the two (Hodge) Kahler spaces for the
(1,1) and (2,1) moduli satisfy the identity {7, 8,
19]

Riip = GG + G Gyy — K Ci, G177 Ty,

(1)
where Cjip i1s a (completely symmetric tensor)
holomorphic section of the line-bundle associated
with the U(1) Kahler connection @ in such a way
that d@ 1s the Kahler form J:

Q = i(K,; de* — K ;dz"), (2)

G = 0K, J=dQ =iG;de* Adi. (3)

The relation between (2,2) conformal field the-
ories and CY compactifications gives a precise
meaning to the concept of ‘quantum’ CY space.

In conformal field-theory language, the (1,1)
and (2,1) moduli are associated with (2,2) chiral-
chiral and chiral-antichiral primary fields [20], so
that the two moduli differ only by the sign of the
right U(1) charge of the N=2 superconformal al-
gebra. The recent discovery of ‘isomorphic’ su-
perconformal field theories [15], in which the role
of (1,1) and (2,1) moduli is reversed, has led to
the concept of a mirror manifold of a given CY
manifold, in which the even and odd harmonic-
form cohomology classes are interchanged. Note
that this is possible only because h(g 0y = k(3 3y =
h(g’g) =hpzy = 1and by 1) = Rz

As a result of the previous observations, the
existence of mirror manifolds implies that exact
results for the (1,1) moduli of a given CY three-
fold can be obtained from results for the (2,1)
moduli of its mirror image. Therefore quantum
stringy effects and quantum duality symmetries
are related, through the mirror construction, to
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classical properties of the manifolds of complex
structure deformations, i.e. the moduli space for
the (2,1) moduli [16].

Let us apply the deformation theory of the
complex structure to the construction of effec-
tive Lagrangians of a given CY manifold and its
mirror image.

In type II theories, the (2,1) moduli corre-
spond to vector multiplets in type IIB theory and
to hypermultiplets in type IIA.

These results, for the mirror manifolds, will
also hold provided A-B are also interchanged.

Let us call ¥® the moduli coordinate for com-
plex structure deformations. The special geome-
try, derived from N=2 supergravity, implies that
there must exist [8] h + 1 holomorphic sections
LI($) (I = 0, ..., h) of the line-bundle associ-
ated with the Hodge-Kahler space [20], whose
curvature satisfies Eq. (1).

These holomorphic sections are related to the
‘periods’ of a (3,0)-form Q(v), which varies holo-
morphically with the moduli [6, 21].

Letuscall e, 82 (4,B =0, ..., hy 1) a (moduli-
independent) cohomology basis that is dual to
the homology cycles A4, By:

JaB 4 fcaaA/\ﬁB: "fBA'BB:
- [e 8P Naa=63. (4)
Then
A) = [a00)= [, Q@)AB%,  (5)

FAW) = if5 O$) = if, Q) Ao, (6)
from which follows that
Q) = L (¥)aa + iFa($)p4. (M)
Moreover, from the condition
o0
fCa Q) A 55+ =0 (8)

1t follows that

oF

Fy=—
47 314

with  F(AL?) = A*F(1%).

9)

Since  is a holomorphic section of a line-bundle,
Le. 1t is defined up to a holomorphic rescaling,

LA — [4e,
(10)

A special gauge, which defines a standard super-
gravity basis, is a choice of coordinates for which

[8]

dxX4
oye

The Kahler potential for the (3,1) moduli space
is the log of the scalar product of the three-form

Q:
(12)

under

Q¢) — Q(y) /O,

=64 with X4=1I4/1° (1)

K(X,X):—logifﬂ/\ﬁ,

ifQAQ = LAFA+I"Fy=4INL
= 2f+ )= (fa- Fa)x* =X,

f(X) =L F(D), (13)
Naw — L(_OF N O*F
AP T 4 \GLAGLE T 578578 )
For the (2,1) forms we have
o0
®; =Q — = 2t
r=Qr - K, Q 5r00  (14)
Where [16]
@9 _ (VL)
K; = —_— = = s L'®; =0.
"“@9 " InNL 1=90
It then follows that
Jg a
G]j = -a—L—I—gZ-—jK
] -
- b [ - WD)
LNL INL
1 -
= —— ANpg = —B 3'1 L .
(Q’Q)fso.r v 107log LNL
An important point coming from Egs. (4) to

(7) is that the cohomology basis is fixed up to a
(rigid) symplectic rotation Sp (bs; Z).

This is the discrete version, since o, are el-
ements of integral cohomology, of the possible
duality transformations of vector multiplets in
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N=2 supergravity [5]. More generally, one can
say that symplectic transformations of the form

§L=(B—iDF)L, (F=Fy), (16)

are the coordinate transformations that preserve
the special gauge. Note that the cohomology ba-
sis transforms as 2

$oa =—BTa—CB, 68=Da+Bp, (17)

where B is a (ha1 + 1) X (hg; + 1) real matrix
and C,D are (hy; + 1)(h21 + 1) symmetric real
matrices. Equation (17) follows from the fact
that (—iFy, LY) must transform as in Eq. (16)
to make Q invariant, which implies Eq. (17) by
virtue of the fact that L{ F;; = Fy. It is impor-
tant to give the transformations of the relevant
quantities under symplectic changes of the coho-
mology basis {17, 23]:

§¢ = —(BT —iFD)®, 6Q=0,
§F = —iC—-BTF—FB+iFDF, (18)
0K = 0.

Another relevant quantity for the vector couplings
and for the quaternionic manifold is the matrix
1- NL)(NL
(NL)(NL)g (19)

Ny = ZFIJ - INL

which transforms as

SN = z'—f— — BTN — N (B - 2iDN).

(20)

The N=2 vector multiplet and hypermultiplet
couplings for (2,1) moduli arise from a self-dual
five-form in the type IIB theory and from a real
three-form in the type [IA theory [23].

The contribution of the massless modes to these
two forms on My x Cj3 1s given by the real part
of the following complex forms [17, 22}

F~=iF (b Ty + 1), (21)

where F~7 is an anti-self-dual two-form in Mj,
the field strength of the massless vector fields’ su-
perpartners of the (2,1) moduli and the gravipho-
ton, coming from the R-R sector of the type IIB
theory; and

A =9;(d7 05 +dQ), (22)

2Although we use ‘small symplectic transformations’
which are not appropriate for integral cohomology, the
results we get for the relevant quantities are unaffected
by this limitation.
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where 1) are complex scalar fields (zero-forms)
in My, and are related to the massless modes
coming from the R-R sector of the type IIA the-
ory.

The real self-dual five-form and real three-forms
are simply given by Re ~ and Re A~

The coeflicients b, ¢, d, and a are functions of
the (2,1) moduli of complex structure deforma-
tions and are fixed by the invariance of 7~ and
A~ under symplectic changes of the three-form
cohomology basis [Eq. (17)]. Their expression
[17, 23] is

— J —
bIJ — 61.]_(NL)IL C]——(N )
TNT) N’
o=y, =R ()
LNL

Equations (21) and (22) are invariant under sym-
plectic changes provided the R-R fields trans-
form as follows:

§F~ = F (BT —4ND),
6 = —(B+4iDN), (24)
where N is the matrix given by Eq. (19).
The five-form Re F~ is conserved in M*:
8, Re F, = 0. (25)

Its periods, along the homology cycles, give the
Bianchi identities and the equations of motions
of N=2 vector fields coupled to the (2,1) moduli
scalars, as 1s obvious from the identity:
Fo=iFla;— 4N P800 (26)
For the type IIA theory, by using Eq. (22)
and integrating over the CY internal space, it
can be shown that we get the same non-linear
couplings as are obtained from three-dimensional
duality [10], thus giving an explicit construction
of the dual quaternionic manifolds [5] in super-
string theory.
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ALL ORDER RESULTS IN STRING THEORY

ENRIQUE ALVAREZ

Theory Division, CERN, 1211 Geneva 23, Switzerland

ABSTRACT

A review is given of some results which can be proved to be valid to all orders
in string theory. They include R-duality and $-duality, for toroidal compactifications
and thermal strings, respectively, and the critical behaviour, that is, the Hagedorn

temperature. Some remarks on non-perturbative effects are also included.

1. R-Duality and $-duality perturbation theory; to be explicit, if we define the

formal series:

A most remarkable property of strings is the
so-called duality transiiormation .w'hich, in its sim- F(x,R) = i 202 Fy(R)
plest form, relates physical quantities computed for poar;
a toroidal compactification at some radius R, with
the same quantities computed at another radius, -

i i- - 292

a//R. A related (although slightly more compli F(x,f) = Z K92 F(8)
cated due to the different GSO projections one has 9=0
t rf t finite t t t ist \ )
o perform at finite temperature) symmetry exists then the duality transformations are:
between the free energy computed at a temperature
B, and the same quantity computed at a tempera- F(x,R) = F(x*,R")
ture 72/8.

— d/2 1 pd
This symmetry stems from the exchange of 6" = ot /R

winding and momentum modes, and seems thus a
very "stringy” property. Its physical meaning could R =afR
be related with the ”generalized string uncertainty

principle”, posited in [1]; in addition, it could be and
that this symmetry is spontaneously broken due to

gaugino condensation, which is o‘f the 1.1tmost Tm- F(x, B) = 2 /ﬂzF (5, 8°)
portance from the phenomenological point of view

(cf. [2] for a discussion of this possibility). .
K =xr/f

In [3] we succeeded in packing together all soli-

ton contributions, (both for the free energy and for 3

/8

I

the simplest d-dimensional flat toroidal compacti-
fication) without background fields at genus g, in
a theta function of order 2¢g. By exploiting the
well-known properties of the thetas, we were able

to show that duality is an exact property of string
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2. Critical Behaviour

The density of states of any string theory grows
exponentially with the energy; this fact alone im-
plies that strings cannot be at equilibrium at tem-
peratures greater than a critical one, called Hage-
dorn temperature. When interactions are included,
however, most of the excited states are unstable,
and the physical question becomes a quantitative
one, as to whether they live enough as to persist
between two successive interactions. To be pre-
cise, a state with width T'(m) has a probability
exp —BT(m) of survive during one mean free time
(of order 3). This means that if we define

(9)

T= 1'}1_{1100 m/T(m)
then, when 7 = 0, the interactions render the
states so unstable that no critical temperature ex-
ists. On the other hand, if 7 diverges, we expect
that the critical temperature stays unchanged. The
marginal case corresponds to 7 = O(1); we expect

then numerical modifications to the values of the

critical temperature. Remarkably, the widths for
closed string states have been estimated in [4] ,with
the (numerical) result that 7 = oc. This is in per-
fect concordance with our own results, to be found
in the references [5] , which prove for the bosonic
string, and strongly suggest for the heterotic string,
that the critical temperature remains the same to

all orders in string perturbation theory.

3. Non-perturbative results

We know that the predictions of string pertur-
bation theory cannot be trusted in general, because
the perturbative series is divergent and non even
Borel summable [6]. Unfortunately, we do not even
know whether there is a region (like the asymptot-
ically free regime in QCD) in which these predic-

tions give a good indication of the ingoing physics.

Once we have identified a symmetry of string

perturbation theory, it is very important to check
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whether non-perturbative contributions are likely
to break it or not.This research was undertaken for
duality in (7], and further pursued for toy models
in [8], but the results are inconclusive for the time
being. We have been able to show, in particular,
that it is possible to define the Ising model in a ran-
dom lattice in such a way as to preserve Kramers-
Warnier duality. This property is of course non-
universal (it is already so in the simpler case of
standard, non-random lattices), which means that
we have to ” fine tune ” the potential to preserve
duality. These results cannot be, unfortunately
carried over the corresponding problem in string

theory, although work on this is in progress.

Gross and Klebanov [7] claim that the discrete
definitions which seem most natural not only break
duality (through a Kosterlitz-Thouless phase tran-
sition), but also fail to give a correct description of
some (apparently) well-established results of string
perturbation theory. It is possible in most cases,
however, to perform ”ad hoc” modifications of the
discrete action so as to preserve the perturbative

symmetries.

More work is needed, however, before the phys-
ical meaning of these non perturbative effects can

be unravelled.
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VORTICES, MONOPOLES AND LIOUVILLE THEORY

Burt A. OVRUT and Steven THOMAS*

Department of Physics, University of Pennsylvania,
Philadelphia, Pennsylvania 19104-6396, USA

ABSTRACT

We consider applications of recent results describing Kosterlitz-Thouless type phase transitions of vortices
and monopoles defined on a two dimensional space of spherical topology. It is argued that bosonic Liouville

theory, and its V = 1 supersymmetric generalization, are in the strong coupling phase unless D < 1. For the

N = 2 theory, however, it is unlikely that such a restriction is necessary; the theory being in the weak phase

for any value of D.

Recently there has been much investigation into
the phase structure of Liouville theory and its super-
symmetric generalizations.!'? In this talk we shall ex-
amine the possible role that worldsheet vortices and
monopoles play in explaining certain aspects of this
phase structure. In reference 3, the theory of vortices
and monopoles on a 2-sphere and the corresponding
Kosterlitz-Thouless* (K-T') phase transition was pre-
sented. The critical temperatures at which vortex-
antivortex (or monopole — antimonopole) pairs dis-
sociate was shown to equal that of a planar system.
This was in spite of the fact that a number of new
features, resulting from the presence of a non-flat
metric and compact topology, had to be taken into
account. In this talk we shall use these results in an
attempt to understand the interesting phase struc-
ture of bosonic Liouville theory'? and its N = 1 and

N = 2 supersymmetric extensions.

We begin by recalling some relevant facts about
the theory of vortices and monopoles moving on a
2-sphere of constant curvature,® which we shall need
later. Let X be a scalar field on 57 that is defined
modulo 27n (that is, X is an angular field) whose

action is

1
S1X) = 5 / /39" 0, X 9 X (1)
with gos the constant curvature metric on S2. It is

convenient to stereographically project S? onto the

complex plane in which case

—2
ds = (1 + V—) dzdz (2)

472
where z,Z are complex coordinates and » is the ra-

dius of the sphere. The angular function given by

qeZ
(3)

represents the simplest vortex distribution on §?,

X =¢{Imin(z - 2z) — Imln(z — z,)}

where Z is the set of integers. This is because, unlike
the Euclidean plane where one may have a single vor-
tex centered at z; described by gZmIn(z—z2;), on S?
there must also be a point z5 at which an antivortex
is present. This can be thought of as vortex charge
conservation on S%. As well as the vortex-antivortex
configuration of eq. (3), it is also possible to consider

monopole-antimonopole configurations

|z — 2]

"= e M_
T [1 {(1+|:‘T|:)1/2} 1 {(1_“:%?)1/2}]
(4)

* Work supported in part by the D.O.E. Contract No. DOE-AC02-76-ER0-3071 and NATO Grant Number 860684.
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Again (4) is the simplest monopole distribution one
can allow on S? for similar reasons to those given
above. Unlike the vortex charge ¢ in eq. (3), which
must be quantized due to the periodic nature of X,
g’ in (4) is not, a priori, quantized.

If we think of configurations like those in egs. (3)
and (4) as being due to thermal excitations in the
system described by (1), then the grand canonical

partition function is found to be

© ()N /dzzz' lg(:)]
7 = ny, [T
Mgv::o N'M‘ ;4; dme?r?

[35(21 zN;z;,,..z'M) (5)

X/42 z54/19(25)]
4relr?
where [qz'| =q Zf\;l ¢ = 0 for any N, Iqil =

EJ—1 ¢; = 0 for any M, and

!

S(Zla +ZNy Z17 =
$ oni (5o
—% q; 11
-,j-lq R P E)W 1+ CISNE
|z — 2} }
+ ‘Lq 2 2t
,;1 ! {2 (1+ LA 1+' )

+2¢ Z Z giq;ImIn(z — z§)j| (6)

i=1j=1

In equation (5), Z and z' are the fugacities for vor-
tex and monopole pair creation respectively, 8§ = ﬁ,
and ¢ is an infinitesimal angular cutoff around each
vortex. Single-valuedness of e#5(*1-#M), as one ro-
tates a monopole of point z; through an angle 2
about a vortex at z;, requires the quantization con-
dition

21Bq;=¢; , e;e 2 )
It can be shown® that the partition function (5) can

be expressed as a functional integral over an effective

theory
Z= / [dX]e#50:D | % = pgiltx  (8)
where

B8 (X) = / &z {20,%0.%
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yr [-a/Z zzrlaﬂ

s cos 213 2q(X(2) + X (2 ))
322 2\/“‘ 1-a'/
cos 2ox(K(6) - X(2) ]} )

and

e2

a=2n0q¢* and o = i (10)

Although we do not explicitly indicate it, we shall
assume that path integrals, such as the one given
in equation (8), are normalized by dividing by the
partition function corresponding to no vortices or
monopoles. The relative signs within the argument
of each cosine term follows from the fact that the
first such term in (9) arises from summing over
vortex-antivortex pairs and so must be periodic in
X = X(z) + X(2).

summation over monopole-antimonopole pairs which

The second term arises from

can occur even if X is not a periodic variable, hence
the relative — sign. We note that even though this
second term is periodic in X(z)— X(Z) this does not
imply periodicity in X.

The effect that summation of vortices and
monopoles has on the stability of the vacuum of
(1) can be summarized by the conformal dimensions
(Ag, Ay) and (A, A,) of the two kinds of cosine op-

erators in (9) with respect to the free stress tensors

T(z) and T(E) One finds
A, =

A, = (11)

R IR

The K-T phase transition induced by either vor-
tices or monopoles (or both) occurs when A, =1 or
A, =13 When either A < 1(> 1) the correspond-
ing operator deformations are relevant (irrelevant)
respectively. For relevant deformations, the system

is dissociated into free charges while, conversely, ir-

relevant operators imply a neutral dipole gas. In the



former case, fugacities are driven to large values by
renormalization group transformations and the vac-
vum of (1) is destabilized (strong coupling). In the
latter they are driven to zero (weak coupling). Be-
fore moving on to discuss Liouville theory we com-
ment that the partition function (8) is invariant un-

der vortex-monopole duality® defined by

8 , e (12)
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Now we wish to see if the ideas presented above
have any bearing on the structure of Liouville theory.
We shall concern ourselves with the theory defined
on a world sheet of spherical topology (tree level) and
with the cosmological constant set to zero. These are
just the conditions considered in ref. 1, in which the

Liouville action (in the conformal gauge) is written

as

2% - D §
Sp = ( T )/dzzﬁ{g ﬁ('La(%a%—aR} (13)

where gog is the (fixed) world sheet metric and R
the scalar curvature. The normalization of the ac-
tion (13) ensures that the contribution of o to the
background field Weyl anomaly cancels that from
the matter and ghost sectors’. Note that the ki-
netic term for ¢ is only positive definite for D < 25.
In the region D > 25, which is what we shall now
discuss, one way to maintain boundedness of the ac-
tion is to perform the analytic continuation o — ic.
Such a continuation has recently been discussed by
Das et al ® where they try to interpret o as a time
coordinate. In this context, the above analytic con-
tinuation might be thought of as a Wick rotation to

Fuclidean time. The action for o then becomes

D —25 .
St = ( 96 )/dza:\/g{g“ﬁaaa'aﬁa —-wR}
(14)
The continuation described above has produced a
very interesting result, namely that e™5r is peri-

odic for ¢ — o mod 27n (D—l_%—s-) Here we used the
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fact that X [ d?z,/gR = 2, the Euler number of the
sphere. Hence, for D > 25, & acts like a compacti-
fied coordinate. It is convenient to rescale o so that
it becomes an angular field defined modulo 27, like

the field X described earlier. Therefore, define

. D-25
7 ( 12 )‘7 (15)
The action for ¢ is then
. 3
5u(8) = 321D 25
o -0 o~ i ~
X /dzw\/g_{g P 0 Op — é—;aR} (16)

Since & is now an angular field we can consider the
contributions of both monopole and vortex config-
urations, equations (3) and (4) respectively, to the
partition function of &. Their action may be deter-
mined by expanding (16) about &+ (&, + &,) where
&4 are solutions to the & equations of motion derived
from (14). The field &, represents quantum (or ‘spin
wave’) fluctuations and &, represents monopole and
vortex configurations. The combination &, 4+ &, oc-
curs only quadratically in (16) since &, minimizes
Si(a).

ples from &, for the same reason that they do in

Moreover, the spin wave excitation decou-

planar systems®, since the quadratic part of (16) is
classically Weyl invariant and has the same form on
the sphere or Euclidean plane. (The decoupling is
basically due to the fact that &, is in a topologically
trivial sector compared to &,). Therefore the action

of 7, is determined to be
SL(& ) = ———-—3———/d2m\/§gaﬂa g Bp& (17)
v 27['(D . 25) avv v

Comparing this action to that of 3S(X) given ear-
lier (the Liouville partition function is defined by the
functional integral of ¢~52(%)) we may define an in-

verse ‘temperature’ for this system, given by

3

= D>25
x(D—25) ’ ”

Br (18)



Contributions from vortices and monopoles to the
Liouville partition function may be summed up as
described earlier. The condition that either vortices
or monopoles induce a K-T type phase transition are

found to be

ar, ™ 2

= = =1 Z 19
4 Z;BLq , g€ ( )
ol e?

L =1, Z 20
4 8fp °c (20)

for vortices and monopoles respectively, where in
(19) and (20) we have also used the quantization
condition (7), with 3 replaced by f;. For example,
taking ¢ = 41, (19) is solved by D = 3 while tak-
ing e = %1, (20) is solved with D = 49. Given
that < and 54'1‘ are the dimensions of the vortex and
monopole operators, it is clear that there is no region
for D > 25 where both these operators are irrelevant
so that the system appears strongly coupled. This
picture is not altered by considering higher values of
e and ¢.

What can we conclude from these results about
the region D < 257 The only consistent way to
make the action (16) valid for this region seems to
be again analytic continuation & — t&. This renders
& to be a strictly single valued field, so in partic-
ular no vortex configuration in & are allowed, only
those of monopoles. Even in the absence of vortices,
we will assume that the fundamental charge ¢’ on
monopoles for D < 25 still obeys the quantization
condition (7) with /3 replaced by 8; = 3/7(D — 25)
(the sign change in 8 is irrelevant in (7) since both
e and ¢ can be positive or negative). The condition
that monopoles induce a K-T phase transition for

D < 25 is then given by

3

5% D) (¢') = D <25

L,

(21)

or, using the quantization condition (7),

105-D) ,

5 3 , D <25.

(22)
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Taking e? = 1, we find that D = 1 solves (22). More-
over, unlike the situation for D > 25, for D < 1 there
is a stable region where monopoles are bound into
dipoles. For D > 1 they dissociate and there is insta-
bility. Remarkably this stability restriction, D < 1,
coincides with that found by other methods in the
quantization of Liouville theory! or of 2—d gravity
in the light cone gauge.?

At this point it is worth mentioning that other
authors have considered divergent field configura-
tions (or ‘spikes’) in Liouville theory™® and have ar-
gued that they are suppressed when D < 1. From
our point of view these ‘spikes’ are monopole configu-
rations in the variable &. In reference 8 the spikes are
in o with the action as given in equation (13), and it
had to be argued that the charge 2 spikes (which di-
verge as D — 1) were somehow more important than
others. In fact, this situation is far from satisfactory
because it was not shown that such configurations
were topologically stable. Our monopoles have the
advantage of being stable (due to charge quantiza-
tion) and of producing a phase transition at D =1
for the lowest value of |e|, namely 1. Johnston in
reference 9 has also shown that these spike configu-
rations persist at the 1-loop level in the bosonic and
N =1 super Liouville theories.

We end this talk by presenting the results of ex-
tending the previous ideas to N = 1 and N = 2
super Liouville theory*. The technical details may
be found elsewhere.® It turns out that summing
over vortices and monopoles produces effective La-
grangians that are of the N = 1 and N = 2 super-
symmetric Sine-Gordon type. For the N = 1 case,

the super K-T phase transition occurs when

1(9-D>2 1
S (S I R
8 2 2

For |e| = 1 this is again satisfied for D = 1. f D < 1

, €€ Z

(23)

we have weak coupling while for D > 1 the theory is



in a strong coupling phase.

In the N = 2 case we find qualitatively differ-
ent results. Now, D = 1 is the equivalent point to
D = 25 in the bosonic Liouville model. On either
side of D = 1 we find the theory stable to vortices
and/or monopoles. That is, the theory is in a weak
coupling regime for any value of D). Again, the sta-
bility requirements that D < 1 in the N = 1 theory
and no apparent restriction on D in N = 2 theory
coincides with restrictions on D obtained by quanti-
zation of super Liouville theory® or 2—d supergravity

in the light-cone gauge.?

References

1. J. Distler and H. Kawai, Nucl. Phys. B321
(1989) 509; J. Distler, Z. Hlousek and H. Kawai,
Int. Jour. Mod. Phys. A5 (1990) 391.

2. AM Polyakov, Mod. Phys. Lett. A2 (1987)
893; V.G. Knizhnik, A.M. Polyakov and A.B.
Zamolodchikov, Mod. Phys. Lett. A3 (1988)
819; M.T. Grisaru and R.M. Xu, Phys. Lett.
205B (1988) 486.

521

. B.A. Ovrut and S. Thomas, University of Penn-

sylvania Preprints UPR-0418T, UPR-0419T.

. J.M. Kosterlitz and D.J. Thouless, J. Phys.

C6 (1973) 1181; V.L. Berenzinski, Sov. Phys.
JETP 32 (1970) 493, 34 (1971) 610.

. J. Cardy, Nucl. Phys. B205 (1982) 17; J. Cardy

and E. Rabinovici, Nucl. Phys. B205 (1982) 1.

. S.R. Das, S. Naik and S.R. Wadia, Mod. Phys.

Lett. A4 (1989) 1043.

. M. Cates, Europhys. Lett. 8 (1988) 719.

. D. Johnston, Phys. Rev. D40 (1989) 3401;

Phys. Lett. B241 (1990) 41.

. B.A. Ovrut and S. Thomas preprint in preper-

ation.



FEYNMAN PATH INTEGRAL FOR THE SUM OF KAC-MOODY CHARACTERS

BELAL E. BAAQUIE
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ABSTRACT

A functional differential realization of the Kac-Moody (KM) algebra yeild a
Feynman path integral for the sum over the integrable irreps of the global {and

Tocal) characters.
the leading term.

1. INTRODUCTION

Let G be a compact Lie group. The KM-
algebra is given by
[Ku(o), KB(U )1 = 1CaBYKY(0)6(O-O )
. k ,
+ im0 8 08" (0-0) (1)

where o ¢ Si.

Let 8 :S! > G be the coordinates of the
KM-group minifold. Then [1]

- 8 k ‘
KOL(O) = fOLB(G)]-—S-e—B_('B-)-‘l' o FGB(O)e B(U) (2)

: Exact realization

where

£ = e = (ade) (1 - %) (3)
and from cohomology [2]

F = (ade) 1(f - 1) (4)

The point-split Virasoro generator is
given by

_ 1
Ly = 7k+Ch do(KoEo+e+ ?‘C')
¥ EZE" Iy (5)
where
c = 2kdimG/(2k + cp)

Let

T, = J doK (o): generators of G
Then [TysLo] = 0 and (TI,LO), Ie center of
G is the CSA of the KM-algebra.

Let A,(c):S? = G; an element of the KM-
group, dense in the neigborhood of the
identity, is given by

e = exp(ifdo A, (o)Ka(o)} (6)
The global KM-character for an irrep space
Hp is (ReT > 0)

eTAK e‘TLO)

chx,t,p,k] = ter( (7)
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A semi-classical expansion yields the Weyl-Kac demoninator as

The Zlocal KM-characters is defined for
constant maps Aa(o) = A, coords of G, and
ch(x,t,p,k) = ter(e1A“T“ e_TLO) (8)

To obtain a path integral for ch, we
need a coordinate representation of a

complete basis of Hp; this seems to be intra-
ctable. Consider instead the Hilbert space

H =p:$%zk Hp : irreps of KM-algebra
Then we have the completeness equation [3]
lH = IDO ‘9><el (9)
where the coordinate eignestate is
|e> = 7rl6 (o) »
oo’ o
Define
1= trH(e]AK e'TLO) (10)
= 1 chp,pyk,t] (11)

= L

p:pysk
2. PATH INTEGRAL FOR GLOBAL CHARACTERS
From completeness equation (9)

Z= fDe <ole”™o ™o (12)
Note
e1AK|e> = e]wl[k’e]le.x> (13)
where 6.) is pointwise multiplication in G
and [2]

= K Mdtdo 2 (o)F (th.6)!
wy[A,6] = ?}»Jo oA, o) O‘B(tx.e) tx.e)B

: 1 co-chain (14)
Hence
7= JDe elu1[1:8] g1o-thojg 5, (15)
Since L, is bounded from below

L Sk - et

<le” " 0lg.a> = 28 T 2t JDeeS (16)



w1th 8(0,0) = 0. A, 8(t,0) = o and S, defined

n (0,7) x 8!, given by
k+cA [d dod .
S= - rpall t oeaeuseyﬁey

+ K Jdtdo de F (17)

2 aB B
Note that S is non- po]ynom1a] and that
1) There is no kinetic term for
) Coupling in o-direction is topological
3) The last term is point-split
) S can be considered defined on Riemann
surface

3. GLOBAL U(1) KM-CHARACTERS

c = 1, CA =0
wy [A,0]= 7%-Jdo ro)o' (o) (18)
and
- ..k YIRFTEN
S = - I Jdtdc(eg - 16090+E) (19)
Since U(1) KM has no null vectors
+oo
Z= 7 chirp,k,t] (20)
p=-=
Let a(o) = + Z e (21)
The path 1ntegra1 y1e]ds (4]
2
; T
chir,p,k,t] = ﬁx%j-e]pxo e -
exp {- g— ] a T)IAn|2} (22)
where n=1
an(T) = n sinh{nt)/{cosh(nt) - 1} (23)

It is an intractable problem to obtain this
result solely from the KM-algebra. For
A = Ag» We recover the local U(1) result.

4. PATH INTEGRAL FOR LOCAL KM-CHARACTERS

Since [Ta,Lo] = 0, we can fold-in the
exp(1A T,) term into the time-slicing to
obta1n a s1mp1er form for Z| 5.1, namely

frlr ¢ s
= e2h"
I ocal = 87" 2F JDee L

where S| 1is defined on a torus and

2k+c
_ A Y
S = - g Idtdo(eaeas b
1k
toe Idtdo 6.F4a% (24)

On exacty performing the path integra-
tion, we should obtain an independent deri-
vation of the Weyl-Kac formula given by

Tcz(l)

hirpkorl= 1 ] N, kople 290R (1) (25)
where

I= nfl det(1 - e "Tada) (26)
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Note that m~! is the Generating function
for the number of states for a given level
of the Verma module.

Recall that Weyl character x,(A) has the
denominator I sin(ra/2) where o are the
positive roo%s of G.

The Weyl-Kac denominator D is given by
D = B sin(ae/2) B det(1 - e™""Adr) (27)

Hence, the semi-classical 1imit (k + =)
for Z) gca1 Will yeild D-! as the k-

independent term We obtain for k + «

= . Kok
S= - ¥ - g [dtd (62 éuca18 itg

. * K 3
+ 1eaea) + 0{e3) (28)

In the Weyl-Cartan basis

.k k
S -3

2 _ 2 3 A
T A HE.I{% 91 a§0 e-a
i A Lo
+ — I_ Aab 0 + !
T a50 o o Ya 1% 9191
+i 2§ ¢
1 >0 -a a}

(29)

Path integration yields as expected
5
—kx2
o kaz/2t

Liocal ®* 9 (30)

The singularities of the path integra-
tion are exactly cancelled by the prefactor
- Lt
e 267 . The null vectors are subtracted out,
as an expansion in 1/k, by the non-linear
terms in the action.

5. CONCLUSIONS

1. Can one project out a particular charac-
ter chp from Z? This is possible for u(1).
2. Can one constract modular invariant
theories from the global characters?

3. To give an exact derivation, using the
semi-classical expansion, of the Weyl-Kac
formula from the path integral.
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