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I exhibit some new quantum symmetries that exist in a wide variety of integrable 

quantum field theory in 1 + 1 dimensions. The conserved charges are generated by non­

local currents. The algebras of conserved charges are the ^-deformation of Kac-Moody 

algebras. S-matrices are completely characterized by the symmetry. 

Symmetry is an important tool for obtaining 

non-perturbative information about quantum field 

theory. In 3 + 1 space-time dimensions the possible 

symmetries of an S-matrix are severely limited by 

the Coleman-Mandula theorem. In lower dimen­

sions some of the hypotheses of this theorem can 

be relaxed in a non-trivial way. 

In this talk I will describe some recent work 

done in collaboration with Denis Bernard on quan­

tum symmetries in 1 + 1 dimensional integrable 

quantum field theory [1]. In 1 + 1 dimensions, con­

served currents can have non-trivial braiding re­

lations. Generally, these braiding properties arise 

from the non-locality of the currents. This non-

locality has the consequence that the action of 

the conserved charges on multiparticle states is 

not simply the sum of the action on each parti­

cle separately. This is the primary hypothesis of 

the Coleman-Mandula theorem that is violated for 

the currents we consider. 

I will describe our results in the specific case of 

the sine-Gordon theory. However, the formulation 

we developed is applicable to many other theories. 

Consider a conformai field theory perturbed 

by a relevant operator 

Let F(z), F(z) be chiral primary fields in the con-

formal field theory, i.e. satisfying djF = dzF = 0. 

Furthermore, we suppose that these fields are lo­

cal with respect to the perturbing field $pert.-

Zamolodchikov has shown that to first order in 

perturbation theory [2]: 

Using the equation of motion (2), we find the fol­

lowing four conserved currents: 

<W± = d,H± dzJ± = dgH±, (5) 
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Now consider the sine-Gordon (SG) theory 

with the Euclidean action 

In the massless limit the chiral components of the 

S G field are 



In addition to the above conserved currents, 

the SG theory has the conserved topological cur­

rent 

These fields are chosen such that the non-local 

charges will transform solitons into anti-solitons 

and vise versa. This fact is ensured by the op­

erator product expansions 

5 0 2 

Vx,y, where 

with the topological charge T = J d x j u . 

The conserved currents (6) are non-local due 

to the non-local expressions for the chiral compo­

nents of the SG field. They satisfy the following 

braiding relations 

Using these braiding relations and the operator 

product expansion one finds that the charges sat­

isfy the following algebra 

where a = A/27TÏ. 

This algebra is isomorphic to a q-deformation 

of the infinite dimensional centerless 5/(2) Kac-

Moody algebra [3] [4]. This isomorphism is 

where c is a constant (c^ = ^ ( t f — and 

Ei,Fi,Hi axe a Chevalley basis for the quantum 

affine algebra. The last equation above reflects the 

fact that the center of slq(2) is zero. Note that 

when q = —i, (/? = 2/>/3), the algebra (11) is a 

topological extension of the N = 2 supersymmetry 

algebra. This fact was recently used in the study of 

perturbations of the N = 2 superconformai series 

One can now use the above non-local currents 

to obtain interesting non-perturbative information 

about the theory. The fields that create SG soli-

tons are required to have topological charge ± 1 , 

and to have well-defined transformation proper­

ties with respect to the non-local charges. They 

are given by 

The non-local currents and soliton fields are 

all characterized by non-trivial Lorentz spin: 



The minimal solution to the above equations is the 

known result [5], 

To summarize, I have shown that the SG the­

ory can be non-perturbatively defined by using the 

non-local symmetry. It is interesting that a man­

ifestly local theory such as the SG theory can be 

characterized by such symmetries. These results 

generalize to the affine-Toda theories and numer­

ous others. 
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Note that the soliton fields only have spin 1 /2 when 

p = 1, which is known to correspond to a free the­

ory. Thus one concludes that the interpretation of 

the S G solitons as the Thirring fermions is not a 

unique one. This is perfectly consistent with the 

fact that the Lorentz spin of a field is not an ob­

servable property of a particle in 1 + 1 dimensions. 

In order to obtain non-perturbative informa­

tion about the S-matrix one must determine how 

the non-local charges are represented on asymp­

totic multisoliton states. We find the following 

representation on one-particle states: 

where c is a constant, H = diag(-fl,—1) and E± 

are the Pauli spin matrices <r±. 

To find the action on multiparticle states one 

must take into account the braiding relations be­

tween the currents and the soliton fields: 

Vrc, y. The action on two particle states defines the 

comultiplication A: 

The last relation follows from the additivity of the 

topological charge T. 

It is remarkable that the soliton S-matrix is 

completely determined by its symmetry with re­

spect to the above charges: 
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ABSTRACT 

Locality is used to give an explicit construction of twisted conformai field theory. This fixes both 
the continuous and discrete symmetries of the theory. In general, all weight one conformai fields close 
to form an affine Kac-Moody algebra, whose zero modes generate the continuous symmetry group. 
For the Z%-twisted bosonic theory associated with the Leech lattice, there is no continuous symmetry 
and the discrete symmetry is the largest finite simple group, the Monster JF1. For ^-twisted fermion 
conformai fields, the weight one-half and a subset of the weight one fields form a twisted super Kac-
Moody algebra, whose semidirect product with the super Virasoro algebra has zero mode commutators 
equivalent to those of the untwisted super Kac-Moody algebra. 

1. Introduct ion 

Both continuous and discrete symmetries of 
the dynamics of particle interactions are fixed by 
conformai field theory (CFT), when string theory 
is used to describe nature. In this talk, the concise 
framework of consistent twisted conformai field the­
ory is reviewed1. The explicit construction of the 
Z2-bosonic theory associated with a d-dimensional 
momentum lattice, provides in the case of the Leech 
lattice, the natural module 2 of the Monster group 3. 
It's triality element is identified, and is seen to be 
a generic feature of twisted conformai field theory 4. 
The construction of the vertex operators, i.e. the 
conformai fields, for all the states is then extended 
to ^-twisted fermionic conformai field theory. The 
weight one-half states and a subset of all the weight 
one states in a Z//-twisted CFT form a twisted su­
per Kac-Moody algebra, whose semidirect product 
with the super Virasoro algebra is shown to have 
zero mode commutators identical to those of the 
untwisted super algebra. This follows from the fact 
that, in general, in the ^ - twis ted sectors, the in­
tertwining relations of the vertex operators requires 
a shift in the definition of not only the Virasoro gen­
erator (which is familiar from the Ramond, i.e. Z 2 -
twisted sector), but also the super Virasoro genera­
tor and the Kac-Moody generators associated with 
the Cart an subalgebra5. 

This analysis is useful in studying the detailed 
properties of the vertex operators in superconfor-
mal field theory. In particular, a viable low-energy 
phenomenology predicted by Type II superstrings 
in four-dimensions would be extremely economical, 

and thereby have a good chance to offer a pre­
cise connect ion 6 - 1 0 between string theory and the 
standard model. The spontaneous breakdown of 
space-time supersymmetry and the associated non-
vanishing vacuum expectation value of the dila-
ton field provides a possible resolution of the 
presently1 1 "missing quark doublet" in Type II. 
Even without supersymmetry breaking, a more 
thorough investigation and the explicit construc­
tion of the conformai fields in the context of a 
consistent local theory may well indicate that one 
should take the string more seriously, i.e. that 
the (supersymmetric) standard model is the ground 
state of a conformai field theory. In this case, the 
discrete symmetries of the CFT will be responsi­
ble for the absence of baryon and lepton violating 
interactions12, since unlike the conventional stan­
dard model, it is known that its supersymmetric 
versions require additional symmetries to eliminate 
such interactions. 

2 . Twisted Bosonic C F T 

The twisted conformai field theory H(A) asso­
ciated with a lattice A of dimension d is defined for 
a Z-i reflection twist by keeping the 8 = 1 subset 
of the states created by integrally-moded bosonic 
operators aJ

m, 1 < j < d, m 6 Z from momen­
tum states |A),À G A. Here 6\\) = |~A) and 
Oa^O"1 = - a ^ . To this we add in the 6 = 1 sub-
space of the space HT(A) generated from an irre­
ducible representation space Xo(A) for the gamma 
matrix algebra { 7 * : À E A } associated with A, 
by half-integrally moded oscillators c j , 1 < j < d, 
r E Z + | . In this case, the involution 0 is denned 
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by 6cir6~~l = —c£. The oscillators satisfy the com­

mutation relations [aj^aj] = m8m-n8
xii [cj,,c£] = 

r 6^-36**, and [ax

m, c%

r] — 0. From the locality 

requirement of Eq.(12), we find that the twisted 

CFT is bosonic and meromorphic provided that 

d = dim A is a multiple of eight and both \/2A* 

and A are even, a condition implied by self-duality 

of the lattice. If A is the d = 24 Leech lattice, then 

H(A) is the natural module for the Monster group. 

In the twisted CFT, the untwisted and twisted 

sectors of H(A) are the subspaces H+(A) and 

W$(A) on which 0 = 1. If j> e W + ( A ) , VftM) 
maps W+(A) -> W + ( A ) and Wj(A) -> « $ ( A ) 

whereas V(x>z) maps W + ( A ) ~> W^(A) and 

W$(A) « + ( A ) if x € «J( A ) - Thus we can write 

these vertex operators in matrix form 

In this notation, the vertex operators of the twisted 

CFT H(A) are given by, for the untwisted states: 

and 

where 

and 
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3. Twisted Fermionic C F T 

The space of states for the ^-twisted fermionic 

theory, H, is obtained by starting with the states 

of the untwisted Neveu-Schwarz theory, adding 

in a twisted Ramond sector, HTJ and keeping only 

the subspace of each defined by & = 1, with d2 — 1. 

The states of the untwisted theory are generated by 

the action of d infinite sets of half-integrally moded 

oscillators, 6 ,̂ 1 < j < d, on the vacuum state, $Q. 
The twisted sector is obtained from the action of 

d infinite sets of integrally moded oscillators, d£, 

on the twisted ground states which form a 2dl2 ir­

reducible representation, Xo, of the gamma matrix 

Clifford algebra, { T 7 } . The involution 9 is defined 

Expressions for A(z), B(z), and F(z) are also writ­

ten as bilinears in oscillators and are given in 

Ref.[l,5]. Note that the special state t/ji is given 

in these CFT's by Ia_.j-a_.il0} and that its ver­

tex operator is Ln = -| £ m = - o o : a m -a n _ m : from 

Eq.(3), and Lc

n = * £ m = ~ o o : c m - c n _ m : + ± from 

Eq.(4). The cocycle operators cr\ and j \ on the un­

twisted and twisted sectors respectively are defined 

and discussed comprehensively in Réf. [1], The lo­

cality relation satisfied by the vertex operators is: 

and for the twisted states: % = ( i l f i i c-ma) ^o , 

the analogue of the fermion emission operator is 

http://Ia_.j-a_.il0%7d
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in the sense of analytic continuation, where = 1 

if either of the states if; or $ are bosons, and 

= —1 if both of them are fermions. We will 

construct (in the F\- picture) the vertex operators 

V ( ^ , z ) , i.e. conformai fields which are in one-to-

one correspondence with a basis of states for the 

theory: 

In the language of superconformai field theory, 

these vertex operators are the lower components 

of the superadds. Here |0} = is the vacuum 

and L-i one of the moments of the special vertex 

operator V($L}Z) = J2nLnz~~n~2, which satisfy 

the Virasoro algebra: [ L m , Ln] — (m — n)Lm+n + 

j^m(m2 - l)<$ m >_ n , where ra,n run over the inte­

gers, = L-m and Ln\Q) = 0 for n > —1. 

The oscillators satisfy the anti-commutation 

relations = * « * r > _ „ { 4 . 4 } = * t f * « , - n , 

and fa 4 } = 0, where 6} f = 5J|0) = 0, 

s > 0, d£ = dLn, 4 | 0 ) * = 0, n > 0. In 

these theories, the special state tyi is given by 

| i_3-fc_I |0) and that its vertex operator is de­

fined by Ln = f £ £ L o o ( 2 N ~ *) : 6,-&n-j : in 

the untwisted sector from Eq. (15), and by Là

n = 

2 E m = - o o ( 2 N -m) : dm- dn-m : +TESno in the 

twisted sector from Eq. (16). 

The states in the Neveu-Schwarz sector are 

given by $ = ( f l ^ i i ^ - # a ) |0)> w n e r e each sa is a 

positive half-odd integer, and the product is under­

stood to be written down in a definite order, e.g. 

left to right, in order to avoid a sign ambiguity,, 

and each oscillator occurs at most once. The ver­

tex operators for these states with (ma = sa — |) 

are given by 

bimilar expressions for B(z) and F(z) are also 

written as bilinears in oscillators and are given 

in Ref.[5]. In general these "lower component" 

vertex operators are not meromorphic, for eg. 

Vr(VM,z) = d?{z) = There-

fore although the intertwining relation is satisfied: 

VT{V_M,z)W{\Q)U) = W(\Q)t, QV{VM,M), 

the operator product expansion Wf(|0}^, ()V(V_ X |0) 

is double valued. 

In the above expressions, define A(z) = À(—z) 
where 

where 

For the twisted states x = ( i l f l i d - m 0 ) |0) | , the 

fermion emission operator is 

with the Ramond fermion fields defined as 

where 

where we have introduced the Neveu-Schwarz fermion, 

conformai fields b^(z) = ^ ^ 1 _ 0 0 Wsz~s~^ and 



4. Twisted Super K a c - M o o d y Algebra 

In fermionic conformai field field theory, the 
weight one-half and a subset of the weight one fields 
may form the "lower" and "upper" components of 
massless superfields, which are the vertex operators 
for the massless states in the JF\ and JF2-pictures re­
spectively. The moments of these conformai fields 
generate a super Kac-Moody algebra which forms 
a semi-direct product with the super Virasoro alge­
bra. In the presence of Zjy-twisted fermionic fields, 
this set of operators will close to form a twisted 
super Kac-Moody algebra, whose semi-direct prod­
uct with the super Virasoro algebra is shown to 
have zero mode commutators identical to those of 
the untwisted super algebra.5 

In this case, the weight one-half fields are 
given by ( e 2 * * ) = ê^h^z) and ha(e2wiz) = 
eivwe-2wiX'aha(z)} where w = 0,1 for Neveu-
Schwarz and Ramond sectors respectively; i} a label 
the Cart an subalgebra and the roots, respectively 
of a dimension d semi-simple Lie algebra g; and 
the Zjy-twist is labelled by the vector À such that 
- | < A a < | . In analogy with Eq,(21) we find 

A realization of the twisted super Kac-Moody and 
super Virasoro algebras is given by the vertex 
operators H^z), Ea(z), L(z), and G(z) as fol­
lows. The necessity for the shift in the defini­
tion of Hl(z) is seen from its identification as 

v(f Ea« < 6 V : | i °>>*) = &(*)>and from (22) 
and (16), where h(z) replaces d(z). Here N(a,j) 

are the structure constants of g in the Cartan-Weyl 

basis, and Yla

 a%a^ ~ C ^ * J * ^ o r ^ = 0: 
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C A L A B I - Y A U MODULI SPACE, EFFECTIVE LAGRANGIANS A N D 
ALGEBRAIC GEOMETRY 

S. FERRARA 
CERN, Geneva, Switzerland 

ABSTRACT 

Recent results on the geometry of Calabi-Yau moduli space and the computation of effective couplings for 
superstrings compactified on such manifolds are reported. 

In this talk I will report on recent progress 
that has been made in the construction of effec­
tive theories for four dimensions, resulting from 
Calabi-Yau (CY) [1] compactifications of criti­
cal superstrings. Although the physically more 
interesting superstrings are the heterotic ones [2], 
I will talk about the application of cohomology 
theory and the methods of algebraic geometry 
for type II superstrings where the interplay of 
geometry, topology, and local space-time super-
symmetry is deeper. 

The massless modes for type II strings on (2,2) 
vacua [3] are suitably described, in the point-field 
theory limit, by the Kaluza-Klein compactifica-
tion of D=10, N=2 supergravity on CY vacua 
[4-6]. 

For a CY space with SU(3) holonomy, type II 
superstrings give N=2 space™ time supersymme-
try in four dimensions, and therefore the mass-
less multiplets are assigned to N=2 supergravity 
multiplets, which are of three kinds: the graviton 
multiplet, vector multiplets, and hypermultiplets 
[4-6], 

There are four bosonic degrees of freedom in 
each of these multiplets: helicities À = ±2 (gravi­
ton) and A = ± 1 (graviphoton) in the gravi­
ton multiplet, two scalars and a vector, and four 
scalars respectively for each vector multiplet and 
hypermultiplet. 

The number of matter (massless) vector multi­
plets is fyi,!) in type IIA superstrings and /i( 2 ji) 
in type IIB superstrings, whilst the number of 
hypermultiplets is h(2,i)18 tyPe HA and fy^i) in 

type IIB 1 superstrings. 
From results of matter couplings in N—2 su­

pergravity, it follows that vector multiplets con­
tain scalars that are coordinates of a special Kâhler 
manifold ([4] to [8]), whilst hypermultiplets con­
tain scalars that are coordinates of a quaternionic 
manifold with a special value of the curvature [9]. 

The four degrees of freedom of each matter 
multiplets come, at the string level, from the N-
S sector (two) and from the R-R sector (two). 

The massless scalars coming from the N-S sec­
tor correspond to the moduli fields and are com­
mon to both type II and heterotic strings. This 
is why the target-space cr-model for the moduli is 
constrained to obey the special geometry of N=2 
supergravity. Moreover, since the quaternionic 
geometry of hypermultiplets in type IIA (type 
IIB) is related to the special geometry of vector 
multiplets in the chirality-reversed theory (A —* 
B), it follows that the quaternionic cr-model is 
also restricted [5]. 

The class of quaternionic cr-models compatible 
with CY compactifications has been called dual 
quaternionic manifolds, and it was argued that 
their metric can be explicitly constricted by using 
three-dimensional duality for N=2 vector multi­
plets dimensionally reduced [5, 10] from D=4 to 
D = 3 . 

We may also wonder how general these results 
are, since we are dealing with compactification 
at the level of a point-field theory rather than at 
the string level. 

1Note that fy^i) and / i (2 , i ) are the two independent 
Hodge numbers of a CY threefold. 
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Since field theory compactification is a reliable 
approximation only if the size of the 'internal 
space' is much larger than the string size, we may 
expect that a field theory discussion only gives 
reliable formulae for large values of the mod­
uli parameters for the Kâhler class deformations 
since these parameters are related to the size de­
formations of the internal manifold. 

At the string level, these parameters [the (1,1) 
moduli] (divided by the string size) appear as 
(the inverse of) coupling constants of the world-
sheet cr-model on the CY manifold, and this mi­
croscopic interpretation of the moduli parame­
ters allows us to make some general statements 
[4, 11], The point-field theory limit is reliable 
only for a weakly coupled cr-model, and therefore 
for large values of the (1,1) moduli parameters. 

What about a strongly coupled cr-model? The 
(1,1) moduli parameters form supermultiplets 
with the internal components of the antisymmet­
ric tensor B^, with which there is an associ­
ated Peccei-Quinn symmetry that is due to the 
cr-model interpretation of the B-couplings as a 
topological term. 

This symmetry is exact at each finite order of 
cr-model perturbation theory and is broken only 
by world-sheet non-perturbative (instantons) phe­
nomena, which are related to non-trivial maps of 
the world-sheet on the (target-space) CY mani­
fold [12]. 

Recent investigations of the (2,2) orbifolds [13, 
14] and mirror CY manifolds [15-17] have led 
to the conclusion that these non-perturbative ef­
fects are controlled by the quantum duality sym­
metries, of superstrings, which are a generaliza­
tion of the R —• a ' /R symmetry of toroidal com-
pactifications [18]. 

What about th*. other types of moduli that 
exist in CY manifolds, namely the deformations 
of the complex structure? 

Owing to the product structure of the moduli 
space for (1,1) and (2,1) moduli—which is also 
a consequence of their multiplet assignment in 
type II superstrings—the (2,1) moduli and their 
(7-model interactions do not depend on the cr-
model coupling constants and are expected to 
be correctly computed for the large size of the 
manifold [11]. This means that string tree-level 
results for (2,1) moduli can be exactly computed 

in the point-field theory limit. We may also say 
that for (2,1) moduli the classical and quantum 
moduli spaces coincide, whilst they usually differ 
for (1,1) moduli. 

These results also imply that the field theoretic 
Yukawa couplings in heterotic strings are exact 
(up to string-loop non-perturbative phenomena) 
for 27 families, whilst they get non-perturbative 
world-sheet corrections for 27 families. 

This relation is due to the fact that Yukawa 
couplings Cijk($) for 27 (or 27) families are ge­
ometrical quantities of the moduli space, in the 
sense that the Kahler curvature of the special ge­
ometry of the two (Hodge) Kàhler spaces for the 
(1,1) and (2,1) moduli satisfy the identity [7, 8, 
19] 
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where Cup is a (completely symmetric tensor) 
holomorphic section of the line-bundle associated 
with the U(l) Kâhler connection Q in such a way 
that dQ is the Kâhler form J: 

lhe relation between (2,2) conformai held the­
ories and CY compactifications gives a precise 
meaning to the concept of 'quantum' CY space. 

In conformai field-theory language, the (1,1) 
and (2,1) moduli are associated with (2,2) chiral-
chiral and chiral-antichiral primary fields [20], so 
that the two moduli differ only by the sign of the 
right U(l) charge of the N=2 superconformai al­
gebra. The recent discovery of 'isomorphic' su­
perconformai field theories [15], in which the role 
of (1,1) and (2,1) moduli is reversed, has led to 
the concept of a mirror manifold of a given CY 
manifold, in which the even and odd harmonic-
form cohomology classes are interchanged. Note 
that this is possible only because fyo.o) — ^ ( 3 , 3 ) = 

^ ( 3 , 0 ) = fy(),3) = 1 and h(iti) = / * (2 ,2) -

As a result of the previous observations, the 
existence of mirror manifolds implies that exact 
results for the (1,1) moduli of a given CY three­
fold can be obtained from results for the (2,1) 
moduli of its mirror image. Therefore quantum 
stringy effects and quantum duality symmetries 
are related, through the mirror construction, to 



classical properties of the manifolds of complex 
structure deformations, i.e. the moduli space for 
the (2,1) moduli [16]. 

Let us apply the deformation theory of the 
complex structure to the construction of effec­
tive Lagrangians of a given CY manifold and its 
mirror image. 

In type II theories, the (2,1) moduli corre­
spond to vector multiplets in type IIB theory and 
to hypermultiplets in type IIA. 

These results, for the mirror manifolds, will 
also hold provided A-B are also interchanged. 

Let us call the moduli coordinate for com­
plex structure deformations. The special geome­
try, derived from N=2 supergravity, implies that 
there must exist [8] h + 1 holomorphic sections 
LJ(il>) (I = 0, h) of the line-bundle associ­
ated with the Hodge-Kahler space [20], whose 
curvature satisfies Eq. (1). 

These holomorphic sections are related to the 
'periods' of a (3,0)-form O("0), which varies holo-
morphically with the moduli [6, 21]. 

Let us call a^, fiB (A, B = 0 , h 2 i i ) a (moduli 
independent) cohomology basis that is dual to 
the homology cycles AA

yB^ 

Since 0 is a holomorphic section of a line-bundle, 
i.e. it is defined up to a holomorphic rescaling, 

under 

A special gauge, which defines a standard super-
gravity basis, is a choice of coordinates for which 
[8] 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) ' 
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An important point coming from Eqs. (4) to 
(7) is that the cohomology basis is fixed up to a 
(rigid) symplectic rotation Sp ( 6 3 ; Z ) . 

This is the discrete version, since a, /? are el­
ements of integral cohomology, of the possible 
duality transformations of vector multiplets in 

Then 

from which follows that 

Moreover, from the condition 

it follows that 

The Kâhler potential for the (3,1) moduli space 
is the log of the scalar product of the three-form 
Q: 

It then follows that 

For the (2,1) forms we have 

Where [16] 



N=2 supergravity [5]. More generally, one can 
say that symplectic transformations of the form 

where tpj are complex scalar fields (zero-forms) 
in M 4 , and are related to the massless modes 
coming from the R-R sector of the type IIA the­
ory. 

The real self-dual five-form and real three-forms 
are simply given by Re f~ and Re A". 

The coefficients 6, c, d, and a are functions of 
the (2,1) moduli of complex structure deforma­
tions and are fixed by the invariance of and 
A" under symplectic changes of the three-form 
cohomology basis [Eq. (17)]. Their expression 
[17, 23] is 

where B is a (/121 + 1) x (/121 + 1) real matrix 
and C,D are (/121 + l)(^2i + 1) symmetric real 
matrices. Equation (17) follows from the fact 
that (—iFitL1) must transform as in Eq. (16) 
to make Q, invariant, which implies Eq. (17) by 
virtue of the fact that L1 Fjj — Fj. It is impor­
tant to give the transformations of the relevant 
quantities under symplectic changes of the coho­
mology basis [17, 23]: 

are the coordinate transformations that preserve 
the special gauge. Note that the cohomology ba­
sis transforms as 2 

Another relevant quantity for the vector couplings 
and for the quaternionic manifold is the matrix 

Equations (21) and (22) are invariant under sym­
plectic changes provided the R-R fields trans­
form as follows: 

where Af is the matrix given by Eq. (19). 
The five-form Re J7" is conserved in M 4 : 

Its periods, along the homology cycles, give the 
Bianchi identities and the equations of motions 
of N=2 vector fields coupled to the (2,1) moduli 
scalars, as is obvious from the identity: 

For the type IIA theory, by using Eq. (22) 
and integrating over the CY internal space, it 
can be shown that we get the same non-linear 
couplings as are obtained from three-dimensional 
duality [10], thus giving an explicit construction 
of the dual quaternionic manifolds [5] in super-
string theory. 

The N=2 vector multiplet and hypermultiplet 
couplings for (2,1) moduli arise from a self-dual 
five-form in the type IIB theory and from a real 
three-form in the type IIA theory [23]. 

The contribution of the massless modes to these 
two forms on M 4 x C3 is given by the real part 
of the following complex forms [17, 22]: 

which transforms as 

where F"1 is an anti-self-dual two-form in M 4 , 
the field strength of the massless vector fields' su­
perpartners of the (2,1) moduli and the gravipho-
ton, coming from the R-R sector of the type IIB 
theory; and 

2Although we use 'small symplectic transformations' 
which are not appropriate for integral cohomology, the 
results we get for the relevant quantities are unaffected 
by this limitation. 
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ALL ORDER RESULTS IN STRING THEORY 

ENRIQUE A L V A R E Z 

Theory Division, CERN, 1211 Geneva 23, Switzerland 

A B S T R A C T 

A review is given of some results which can be proved to be valid to all orders 

in string theory. They include jR-duality and /^-duality, for toroidal compactifications 

and thermal strings, respectively, and the critical behaviour, that is, the Hagedorn 

temperature. Some remarks on non-perturbative effects are also included. 

1. i?-Duality and ^-duality 

A most remarkable property of strings is the 

so-called duality transformation which, in its sim­

plest form, relates physical quantities computed for 

a toroidal compactification at some radius i?, with 

the same quantities computed at another radius, 

af/R, A related (although slightly more compli­

cated due to the different GSO projections one has 

to perform at finite temperature) symmetry exists 

between the free energy computed at a temperature 

/?, and the same quantity computed at a tempera­

ture 7 T 2 / / ? . 

This symmetry stems from the exchange of 

winding and momentum modes, and seems thus a 

very "stringy" property. Its physical meaning could 

be related with the "generalized string uncertainty 

principle", posited in [1]; in addition, it could be 

that this symmetry is spontaneously broken due to 

gaugino condensation, which is of the utmost im­

portance from the phenomenological point of view 

(cf. [2] for a discussion of this possibility). 

In [3] we succeeded in packing together all soli­

ton contributions, (both for the free energy and for 

the simplest d-dimensional flat toroidal compacti­

fication) without background fields at genus in 

a theta function of order 2g. By exploiting the 

well-known properties of the thetas, we were able 

to show that duality is an exact property of string 

perturbation theory; to be explicit, if we define the 

formal series: 
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then the duality transformations are: 

and 



2. Critical Behaviour 

The density of states of any string theory grows 

exponentially with the energ}'; this fact alone im­

plies that strings cannot be at equilibrium at tem­

peratures greater than a critical one, called Hage-

dorn temperature. When interactions are included, 

however, most of the excited states are unstable, 

and the physical question becomes a quantitative 

one, as to whether they live enough as to persist 

between two successive interactions. To be pre­

cise, a state with width F(7n) has a probability 

exp — /?r(ra) of survive during one mean free time 

(of order /?). This means that if we define 

whether non-perturbative contributions are likely 

to break it or not.This research was undertaken for 

duality in [7], and further pursued for toy models 

in [8], but the results are inconclusive for the time 

being. We have been able to show, in particular, 

that it is possible to define the Ising model in a ran­

dom lattice in such a way as to preserve Kramers-

Warnier duality. This property is of course non-

universal (it is already so in the simpler case of 

standard, non-random lattices), which means that 

we have to " fine tune " the potential to preserve 

duality. These results cannot be, unfortunately 

carried over the corresponding problem in string 

theory, although work on this is in progress. 

Gross and Klebanov [7] claim that the discrete 

definitions which seem most natural not only break 

duality (through a Kosterlitz-Thouless phase tran­

sition), but also fail to give a correct description of 

some (apparently) well-established results of string 

perturbation theory. It is possible in most cases, 

however, to perform "ad hoc" modifications of the 

discrete action so as to preserve the perturbative 

symmetries. 

More work is needed, however, before the phys­

ical meaning of these non perturbative effects can 

be unravelled. 
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then, when r = 0, the interactions render the 

states so unstable that no critical temperature ex­

ists. On the other hand, if r diverges, we expect 

that the critical temperature stays unchanged. The 

marginal case corresponds to r = 0(1) ; we expect 

then numerical modifications to the values of the 

critical temperature. Remarkably, the widths for 

closed string states have been estimated in [4] ,with 

the (numerical) result that r = oc. This is in per­

fect concordance with our own results, to be found 

in the references [5] , which prove for the bosonic 

string, and strongly suggest for the heterotic string, 

that the critical temperature remains the same to 

all orders in string perturbation theory. 

3. Non-perturbative results 

We know that the predictions of string pertur­

bation theory cannot be trusted in general, because 

the perturbative series is divergent and non even 

Borel summable [6]. Unfortunately, we do not even 

know whether there is a region (like the asymptot­

ically free regime in QCD) in which these predic­

tions give a good indication of the ingoing physics. 

Once we have identified a symmetry of string 

perturbation theory, it is very important to check 
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VORTICES, MONOPOLES AND LIOUVILLE THEORY 

Burt A. OVRUT and Steven THOMAS* 

Department of Physics, University of Pennsylvania, 
Philadelphia, Pennsylvania 19104-6396, USA 

ABSTRACT 

We consider applications of recent results describing Kosterlitz-Thouless type phase transitions of vortices 
and monopoles defined on a two dimensional space of spherical topology. It is argued that bosonic Liouville 
theory, and its N — 1 supersymmetric generalization, are in the strong coupling phase unless D < 1. For the 
N ~ 2 theory, however, it is unlikely that such a restriction is necessary; the theory being in the weak phase 
for any value of D. 

Recently there has been much investigation into 

the phase structure of Liouville theory and its super-

symmetric generalizations.1,2 In this talk we shall ex­

amine the possible role that worldsheet vortices and 

monopoles play in explaining certain aspects of this 

phase structure. In reference 3, the theory of vortices 

and monopoles on a 2-sphere and the corresponding 

Kosterlitz-Thouless4 (K-T) phase transition was pre­

sented. The critical temperatures at which vortex-

antivortex (or monopole - antimonopole) pairs dis­

sociate was shown to equal that of a planar system. 

This was in spite of the fact that a number of new 

features, resulting from the presence of a non-flat 

metric and compact topology, had to be taken into 

account. In this talk we shall use these results in an 

attempt to understand the interesting phase struc­

ture of bosonic Liouville theory 1 , 2 and its N — 1 and 

N — 2 supersymmetric extensions. 

We begin by recalling some relevant facts about 

the theory of vortices and monopoles moving on a 

2-sphere of constant curvature,3 which we shall need 

later. Let X be a scalar field on S2 that is denned 

modulo 2irn (that is, X is an angular field) whose 

* Work supported in part by the D.O.E. Contract No. DOE-AC02-76-ERO-3071 and NATO Grant Number 860684. 
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action is 

with gap the constant curvature metric on S2. It is 

convenient to stereographically project S2 onto the 

complex plane in which case 

where z, z are complex coordinates and r is the ra­

dius of the sphere. The angular function given by 

represents the simplest vortex distribution on 5 2 , 

where Z is the set of integers. This is because, unlike 

the Euclidean plane where one may have a single vor­

tex centered at z\ described by qXmhi(z — z\), on S2 

there must also be a point z^ at which an antivortex 

is present. This can be thought of as vortex charge 

conservation on S*2. As well as the vortex-antivortex 

configuration of eq. (3), it is also possible to consider 

monopole-antimonopole configurations 



where 

pS,tf{X) = J d2z {2dzX3-zX 

and 

Although we do not explicitly indicate it, we shall 

assume that path integrals, such as the one given 

in equation (8), are normalized by dividing by the 

partition function corresponding to no vortices or 

monopoles. The relative signs within the argument 

of each cosine term follows from the fact that the 

first such term in (9) arises from summing over 

vortex-antivortex pairs and so must be periodic in 

X — X(z) + X(z). The second term arises from 

summation over monopole-antimonopole pairs which 

can occur even if X is not a periodic variable, hence 

the relative — sign. We note that even though this 

second term is periodic in X(z) — X(z) this does not 

imply periodicity in X. 

The effect that summation of vortices and 

monopoles has on the stability of the vacuum of 

(1) can be summarized by the conformai dimensions 

(A 9 , Aq) and ( A e , A c ) of the two kinds of cosine op­

erators in (9) with respect to the free stress tensors 

T(z) and f (z). One finds 

The K-T phase transition induced by either vor­

tices or monopoles (or both) occurs when Aq = 1 or 

A e = 1 3 . When either A < 1(> 1) the correspond­

ing operator deformations are relevant (irrelevant) 

respectively. For relevant deformations, the system 

is dissociated into free charges while, conversely, ir­

relevant operators imply a neutral dipole gas. In the 
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Again (4) is the simplest monopole distribution one 

can allow on S2 for similar reasons to those given 

above. Unlike the vortex charge q in eq. (3), which 

must be quantized due to the periodic nature of X , 

q' in (4) is not, a priori, quantized. 

If we think of configurations like those in eqs. (3) 

and (4) as being due to thermal excitations in the 

system described by (1), then the grand canonical 

partition function is found to be 

In equation (5), z and z! are the fugacities for vor­

tex and monopole pair creation respectively, (3 = 

and e is an infinitesimal angular cutoff around each 

vortex. Single-valuedness of e ^ s ^ z l " , z M \ as one ro­

tates a monopole of point Zj through an angle 2TT 

about a vortex at z;, requires the quantization con­

dition 

It can be shown that the partition iunction [b) can 

be expressed as a functional integral over an effective 

theory 

( i i ) 

(9) 

(10) 



former case, fugacities are driven to large values by 

renormalization group transformations and the vac­

uum of (1) is destabilized (strong coupling). In the 

latter they are driven to zero (weak coupling). Be­

fore moving on to discuss Liouville theory we com­

ment that the partition function (8) is invariant un­

der vortex-monopole duality5 defined by 

fact that ^ / (Px^/gR = 2 , the Euler number of the 

sphere. Hence, for D > 25, a acts like a compacti-

fied coordinate. It is convenient to rescale a so that 

it becomes an angular field defined modulo 27rn, like 

the field X described ear Her. Therefore, define 

(15) 
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Now we wish to see if the ideas presented above 

have any bearing on the structure of Liouville theory. 

We shall concern ourselves with the theory defined 

on a world sheet of spherical topology (tree level) and 

with the cosmological constant set to zero. These are 

just the conditions considered in réf. 1, in which the 

Liouville action (in the conformai gauge) is written 

as 

where gap is the (fixed) world sheet metric and R 

the scalar curvature. The normalization of the ac­

tion (13) ensures that the contribution of a to the 

background field Weyl anomaly cancels that from 

the matter and ghost sectors1. Note that the ki­

netic term for a is only positive definite for D < 25. 

In the region D > 25, which is what we shall now 

discuss, one way to maintain boundedness of the ac­

tion is to perform the analytic continuation a —» ia. 

Such a continuation has recently been discussed by 

Das et al 6 where they try to interpret a as a time 

coordinate. In this context, the above analytic con­

tinuation might be thought of as a Wick rotation to 

Euclidean time. The action for a then becomes 

The continuation described above has produced a 

very interesting result, namely that e~Sh is peri­

odic for <J —> a mod 2-KU ( ^ l ^ ) • Here we used the 

Since â is now an angular field we can consider the 

contributions of both monopole and vortex config­

urations, equations (3) and (4) respectively, to the 

partition function of <r. Their action may be deter­

mined by expanding (16) about vc\ + (àv + àq) where 

âci are solutions to the a equations of motion derived 

from (14). The field âq represents quantum (or 'spin 

wave') fluctuations and âv represents monopole and 

vortex configurations. The combination crv + âq oc­

curs only quadratically in (16) since crci minimizes 

5 L ( < T ) . Moreover, the spin wave excitation decou­

ples from av for the same reason that they do in 

planar systems3, since the quadratic part of (16) is 

classically Weyl invariant and has the same form on 

the sphere or Euclidean plane. (The decoupling is 

basically due to the fact that <jq is in a topologically 

trivial sector compared to crv). Therefore the action 

of uv is determined to be 

The action for cr is then 

Comparing this action to that of fiS(X) given ear­

lier (the Liouville partition function is defined by the 

functional integral of e~Slj^) we may define an in­

verse 'temperature' for this system, given by 

(18) 

(16) 



Contributions from vortices and monopoles to the 

Liouville partition function may be summed up as 

described earlier. The condition that either vortices 

or monopoles induce a K-T type phase transition are 

found to be 

(19) 

(20) 

(22) 

Taking e 2 = 1, we find that D = 1 solves (22). More­

over, unlike the situation for D > 25, for D < 1 there 

is a stable region where monopoles are bound into 

dipoles. For D > 1 they dissociate and there is insta­

bility. Remarkably this stability restriction, D < 1, 

coincides with that found by other methods in the 

quantization of Liouville theory1 or of 2—d gravity 

in the light cone gauge.2 

At this point it is worth mentioning that other 

authors have considered divergent field configura­

tions (or 'spikes') in Liouville theory7~,s and have ar­

gued that they are suppressed when D < 1. From 

our point of view these 'spikes' are monopole configu­

rations in the variable cr. In reference 8 the spikes are 

in a with the action as given in equation (13), and it 

had to be argued that the charge 2 spikes (which di­

verge as D —> 1) were somehow more important than 

others. In fact, this situation is far from satisfactory 

because it was not shown that such configurations 

were topologically stable. Our monopoles have the 

advantage of being stable (due to charge quantiza­

tion) and of producing a phase transition at D = 1 

for the lowest value of |e|, namely 1. Johnston in 

reference 9 has also shown that these spike configu­

rations persist at the 1-loop level in the bosonic and 

JV — 1 super Liouville theories. 

We end this talk by presenting the results of ex­

tending the previous ideas to N = 1 and N — 2 

super Liouville theory1. The technical details may 

be found elsewhere.9 It turns out that summing 

over vortices and monopoles produces effective La-

grangians that are of the N = 1 and N = 2 super-

symmetric Sine-Gordon type. For the N — .1 case, 

the super K-T phase transition occurs when 

For |e| = 1 this is again satisfied for D = 1. If D < 1 

we have weak coupling while for D > 1 the theory is 
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for vortices and monopoles respectively, where in 

(19) and (20) we have also used the quantization 

condition (7), with f3 replaced by For example, 

taking q = ± 1 , (19) is solved by D = f while tak­

ing e = ± 1 , (20) is solved with D = 49. Given 

that ^ and ^ are the dimensions of the vortex and 
4 4 

monopole operators, it is clear that there is no region 

for D > 25 where both these operators are irrelevant 

so that the system appears strongly coupled. This 

picture is not altered by considering higher values of 

e and q. 

What can we conclude from these results about 

the region D < 25? The only consistent way to 

make the action (16) valid for this region seems to 

be again analytic continuation a —> iâ. This renders 

5- to be a strictly single valued field, so in partic­

ular no vortex configuration in a are allowed, only 

those of monopoles. Even in the absence of vortices, 

we will assume that the fundamental charge q' on 

monopoles for D < 25 still obeys the quantization 

condition (7) with /? replaced by 0L — 3/TT(2? - 25) 

(the sign change in (3 is irrelevant in (7) since both 

e and ql can be positive or negative). The condition 

that monopoles induce a K-T phase transition for 

D < 25 is then given by 

or, using the quantization condition (7), 

(23) 



in a strong coupling phase. 

In the N = 2 case we find qualitatively differ­

ent results. Now, D = 1 is the equivalent point to 

D — 25 in the bosonic Liouville model. On either 

side of D — 1 we find the theory stable to vortices 

and/or monopoles. That is, the theory is in a weak 

coupling regime for any value of D. Again, the sta­

bility requirements that D < 1 in the N = 1 theory 

and no apparent restriction on D in N = 2 theory 

coincides with restrictions on D obtained by quanti­

zation of super Liouville theory1 or 2—d supergravity 

in the Ught-cone gauge.2 
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FEYNMAN PATH INTEGRAL FOR THE SUM OF KAC-MOODY CHARACTERS 
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ABSTRACT 
A functional differential realization of the Kac-Moody (KM) algebra yeild a 

Feynman path integral for the sum over the integrable irreps of the global (and 
local) characters. A semi-classical expansion yields the Weyl-Kac denominator as 
the leading term. 

1. INTRODUCTION 

Let G be a compact Lie group. The KM-
alqebra is given by 

where a e S 1. 
Let e iS1 G be the coordinates of the 

KM-group mini fold. Then [1] 

: Exact realization 
where 

(1) 

(2) 

(3) 

(4) 
is 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

( I D 

(12) 

(13) 

(14) 

(15) 

(16) 
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where 

and from cohomology [2] 

THE nlnhal KM-CHARACTER FOR AN IRREN SNACE 

The local KM-characters is defined for 
constant maps X (A) = X : coords of G, and 

R A ' A 9 

To obtain a path integral for ch, we 
need a coordinate representation of a 
complete basis of Hp; this seems to be intra­
ctable. Consider instead the Hilbert space 

2. PATH INTEGRAL FOR GLOBAL CHARACTERS 
From completeness equation (9) 

[3] 

Hence 

Since L Q is bounded from below 

where e.x is pointwise multiplication in G 
and f2l 

Note 

UENNE 

where the coordinate eignestate is 

Then we have the completeness equation 

Then [Ta,L0] = 0 and (Tj,L Q), U center of 
G is the CSA of the KM-algebra. 
Let x a(a):S 1 + G; an element of the KM-
group, dense in the neigborhood of the 
identity, is given by 

ine p u i n i - b p i I L v i r d h u r u y e n e r d t u r 
n i v p n hv 



with e(0,a) = e.X, e(x,a) = e and S, defined 
on (0,T) x S 1, given by 

Note that S is non-polynomial and that 
1) There is no kinetic term for 
2) Coupling in a-direction is topological 
3) The last term is point-split 
4) S can be considered defined on Riemann 

surface 

3. GLOBAL 11(1) KM-CHARACTERS 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(22) 

(24) 

(25) 

(26) 
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(29) 

(30) 

(28) 

The singularities of the path integra­
tion are exactly cancelled by the prefactor 

_ C T 

e ^i 7" . The null vectors are subtracted out, 
as an expansion in 1/k, by the non-linear 
terms in the action. 

5. CONCLUSIONS 

1. Can one project out a particular charac­
ter chp from Z? This is possible for U(l). 
2. Can one constract modular invariant 
theories from the global characters? 
3. To give an exact derivation, using the 
semi-classical expansion, of the Weyl-Kac 
formula from the path integral. 
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Note that I T 1 is the generating function 
for the number of states for a given level 
of the Verma module. 
Recall that Weyl character x&U) has the 
denominator n Q sin(xa/2) where a are the 
positive rooïs of G. 

The Weyl-Kac denominator D is given by 

Hence, the semi-classical limit (k + «>) 
for Z L o c a l will yeild D"1 as the k-
independent term. We obtain, for k + °° 

In the Weyl-Cartan basis 

Path integration yields as expected 

and 

Since U(l) KM has no null vectors 

where 

On exacty performing the path integra­
tion, we should obtain an independent deri­
vation of the Weyl-Kac formula given by 

where 

It is an intractable problem to obtain this 
result solely from the KM-algebra. For 
X = A 0 , we recover the local U(l) result. 

4. PATH INTEGRAL FOR LOCAL KM-CHARACTERS 

Since [T a jL 0] = 0, we can fold-in the 
exp(ix aT a) term into the time-slicing to 
obtain a simpler form for Z L o c a-|, namely 

where S[_ is defined on a torus and 
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