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Abstract

We describe the design and characterization of the Spider balloon-borne experiment

which will launch from Antarctica in December 2014. The experiment is designed to measure

the polarization of the Cosmic Microwave Background (CMB) with unparalleled instantaneous

sensitivity, and in doing so, constrain early universe models. The experiment is ready to

deploy. We will emphasize: 1) The cryogenic architecture of the Spider flight cryostat. 2)

The design and characterization of a capillary assembly which provides a continuous flow of

superfluid helium to a 1.8 K temperature stage required to operate adsorption refrigerators

cooling each focal plane. 3) The design and build of a Fourier transform spectrometer used

to characterize the spectral response of the Spider detectors. 4) The optical characterization

of the Spider telescopes and simulations characterizing susceptibility to polarized sidelobes

contamination.

We also describe the analysis of the spatial (beam) response of the High Frequency

Instrument (HFI) onboard the Planck satellite. This characterization work is required for

high fidelity cosmological analysis of all-sky maps in six frequency bands spanning 100

to 857 GHz. The beam reconstruction error and bias are constrained using time-domain

simulations that include the most significant non-idealities that affect the analysis. Using

these simulations, we also verify the consistency of the beam product used for cosmological

analysis of the 2014 data release. As part of the beam reconstruction, we characterize the

flux of the five outer planets in the six HFI frequency bands. We also verify the absolute

photometric calibration of the experiment by comparing planet flux estimates with existing

models. Finally, we use planet flux measurements to show that the absolute calibrations of

the WMAP and Planck experiments are consistent at the half percent level.

iii



Ágrip

Í þessu doktorsverkefni fjöllum við um hönnun og kvörðun á Spider loftbelgs-tilrauninni

sem skotið verður upp frá Suðurskautslandinu í desember 2014. Tilrauninni er ætlað að mæla

skautun örbylgjukliðsins með meiri næmni en nokkur önnur núverandi tilraun. Með þessum

mælingum mun Spider skorða líkön er snúa að frumbernsku alheimsins. Hún er nú tilbúin

til notkunnar. Hér munum við leggja áherslu á: 1) Hönnun kuldahalds sem hýsir Spider

sjónaukana. 2) Hönnun og kvörðun á ofurþráðum sem veita stöðugt flæði af ofurflæðandi

helíum yfir í 1.8 K hitasvið sem að knýr ásogskælibúnað sem kælir ljósflögur sérhvers sjónauka.

3) Hönnun og smíði litrófsgreinis sem notaður er til þess að kvarða litrófssvörun Spider

sjónaukanna. 4) Kvörðun á ljósgeislum Spider sjónaukanna og hermanir sem að skorða

viðtak vegna skautaðra hliðargeira.

Í þessari ritgerð munum við einnig lýsa rannsóknum á ljósgeislum High Frequency

Instrument um borð í Planck gervitunglinu. Þessi kvörðun er nauðsynleg fyrir nákvæma

heimsfræðilega greiningu á himinkortum sem spanna sex tíðnisvið frá 100 til 857 GHz. Óvissa

og bjagi við kvörðun ljósgeislanna er áætluð með hermunum á tímaröðum sem innihalda

helstu óvissu- og bjögunarþætti. Með þessum hermunum sýnum við fram á samkvæmni

áætlaðra ljósgeisla sem að notaðir eru fyrir heimsfræðiniðurstöður sem að birtast í lok ársins

2014. Við staðfestum einnig ljósaflskvörðun mælitækjanna með því að bera saman niðurstöður

á mældu ljósafli ytri reikistjarnanna við spágildi líkanna. Við notum mælingar á ljósafli

þessara reikistjarna til þess að sýna fram á 0.5% samkvæmni í ljósaflskvörðun WMAP og

Planck gervitunglanna.
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Chapter 1

Introduction

Erst was the age, when nothing was;
sand was not, nor sea, nor biting surf;
Earth was not found, nor heaven above;
A yawning gap, and no grass.

– The Beguiling of Gylfi, from the Prose Edda

Cosmology is the study of the most extensive astrophysical phenomena. It embodies the

brash notion that the universe and its development can be characterized with at least some

scientific rigor. The ideas and questions involved most certainly predate the stone age, but

historical evidence suggests spells of enlightenment at numerous times in human history. An

explosion of 20th century observations spanning the entire electromagnetic spectrum has

left us with a multi-faceted picture of the universe which can take a lifetime to process. Yet

many argue that the properties of our universe can be captured by half a dozen parameters

in a straightforward physical model. In this chapter I will briefly describe some of the more

notable discoveries of modern cosmology with emphasis on experimental results. I will provide

an overview of the physics of the Cosmic Microwave Background (CMB) and conclude by

describing current experimental efforts in cosmology.

One could trace the beginning of modern cosmology to the development of large aperture

refracting telescopes which allowed astronomers to resolve the shape of far away galaxies. For

more than a century, we observed these phenomena through our telescopes unable to prove
1



that they were independent island universes. It was not until the early 20th century when,

working at the Harvard College Observatory, Henrietta Leavitt discovered a relation between

the luminosity and period of Cepheid variable stars. This established a galactic distance

calibrator [7] which in conjunction with spectroscopy allowed Hubble, Humason, Slipher, and

others to gather evidence for a linear relation between the redshift of nearby galaxies, caused

by their recessional velocity, v, and distance, d,

v = Hd. (1.1)

This is Hubble’s law, where H is the famous proportionality constant also named after Hubble.

The first estimates of this value were rather crude, with Hubble’s 1929 value, derived from two

dozen systems, at H = 500 km/s/Mpc [8], compared to modern estimates approximating to

H = 70 km/s/Mpc. This cosmic expansion was a remarkable concept, considering that only

five years prior to Hubble’s initial estimate, a New York Times article [9] revealed findings

that Andromeda had to be a distant galaxy separate from our own. The first paragraph read:

“Washington, Nov. 22. – Confirmation of the view that the spiral nebulae, which

appear in the heavens as whirling clouds, are in reality distant stellar systems, or

‘island universes,’ has been obtained by Dr. Edwin Hubbell [sic] of the Carnegie

Institution’s Mount Wilson observatory, through investigations carried out with

the observatory’s powerful telescopes.”

Like many concepts at the bleeding edge of science, the discovery was gradual, as other

astronomers had reported similar results [10].

Two years prior to Hubble’s famous 1929 paper, a Belgian physicist named Georges

Lemaître had published an article in an obscure journal of his home country [11]. The

article was not translated into English until 1931 [12], sparked by Hubble’s nascent law.

Using data gathered at Mount Wilson, and guided by Einstein’s general theory of relativity,

Lemaître devised a theory of the expanding universe. The proposed idea did not attract
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much attention even after the article had been translated to English, possibly due to inertia

in the scientific community and somewhat exacerbated by Einstein’s preference for a static

universe. Lemaître’s initial work described a dynamically evolving universe, not necessarily

one with a beginning. He eventually envisioned and described a “primeval atom” [13], formally

addressing the concept of the beginning of time [14]. In these manuscripts, Lemaître imagined

a quantum sphere that gave birth to the cosmos through a series of radioactive decays. It was

therefore fitting that his ideas proved to be a stepping stone for a group of nuclear physicists.

Another block in the theoretical foundation of cosmology was set in 1948 with Gamow’s

and Alpher’s formulation of big bang nucleosynthesis [15]. In this work the authors showed

how the lighter elements – hydrogen, helium, and lithium – could be formed in the first minutes

of a hot dense universe. That same year Alpher and Herman estimated the temperature of a

corresponding radiation afterglow at 5 K [16].1 The following year, an English astronomer by

the name of Fred Hoyle first coined the term “Big Bang” to describe a universe with a violent

beginning.2 He was himself a proponent of the steady-state theory which surmised that matter

is created continuously as the universe expands. At that time, galactic redshift remained

as the main observational evidence for the big bang scenario. In 1957 Hoyle together with

Margaret Burbidge, Geoffrey Burbidge, and William Fowler, showed how elements heavier

than lithium can be produced in stellar fusion [17]. This extensive paper established the

theory of stellar nucleosynthesis and showed how even the heaviest elements can be produced

during explosions of supernovae. At this point all the scientific ingredients of a hot big bang

scenario had been prepared; the idea only lacked observational evidence.

In the 1960’s a group of physicists at Princeton University began to search for the presence

of thermal radiation remaining from the primordial fireball. Their research was directed by

Robert Dicke, who by then had made contributions to a wide range of physics, including

radar development and atomic theory, but focused now on gravitation theory. A member

of that group, Jim Peebles, independently derived the results of Alpher and Herman [19].
1Surprisingly consistent with the correct value, TCMB = 2.73 K.
2It has been suggested that Hoyle meant for the term to be derogatory.
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Figure 1.1: The results of the two New Jersey measurements, published in 1966 [18], showing
intensity as a function of wavelength with a 3 K blackbody spectrum plotted for comparison.
Both the Bell Labs (7.35 cm) and the Princeton measurement (3.2 cm) were performed safely
within the Rayleigh-Jeans limit, almost two orders of magnitude below the peak value of a
3 K blackbody. Figure reproduced courtesy of P. J. E. Peebles.

Using microwave receiver technology that Dicke had developed twenty years earlier, called

the Dicke radiometer, the Princeton group set about measuring this relic radiation on the

roof of Guyot Hall in 1964. The experimental effort was led by Roll and Wilkinson [20]. As

the Princeton group was commencing its measurements another New Jersey duo, Penzias and

Wilson, had begun using a Dicke radiometer for radio astronomy. Battling an unknown noise

contaminant, the pair had exhausted all avenues of reason, as they resorted to the sweeping of

pigeon droppings inside their monstrous receiver horn. The Bell Labs researchers eventually

made contact with the Princeton group which helped them understand their predicament.

Penzias and Wilson had serendipitously discovered the cosmic microwave background, an

incredibly uniform blackbody signal coming from all directions on the sky [21]. Subsequent

work by physicists at Princeton helped define the results and their theoretical implications

4



[18, 22]. The discovery of the CMB brought the big bang universe to the forefront of modern

physics and effectively obviated the steady-state hypothesis.

Figure 1.1 shows the results from the first Bell Labs and Princeton measurements overlaid

on a 3 K blackbody spectrum. Despite common belief, the 1964 Bell Labs measurements did

not represent the first evidence for a uniform cosmic afterglow. The study of CN molecular

spectra, published as early as 1940, suggested “a maximum effective temperature of interstellar

space” of about 1–3 K [23, 24] and an excess temperature of space was reported during the

commissioning of the Bell Labs receiver [25, 26]. Regardless of who should be acknowledged

for the initial discovery, the study of this susurrant signal continued, and we now know that

the CMB is almost a perfect blackbody with temperature TCMB = 2.726 K [27]. Its spectral

radiance as a function of frequency, ν, follows the form

B(ν) =
2hν3

c2

1

exp(hν/kBT )− 1
, (1.2)

where h and kB are Planck and Boltzmann constants respectively, T is the blackbody

temperature, and c is the speed of light in vacuum.

During these early days of cosmology, indirect evidence for the existence of a dark matter

component had begun to emerge. Dark matter is hypothesized matter which interacts

gravitationally with normal matter, but does not absorb or emit electromagnetic radiation.

The first reference to dark matter was made by astronomer Fritz Zwicky, who observed

that galaxies in the Coma Cluster have peculiar velocities which are inconsistent with

velocities predicted by the virial theorem, given the estimated mass of visible matter [28, 29].

Observations of spiral galaxy rotation curves in the 1970’s, notably by Vera Rubin [30, 31],

showed that angular velocities outside the galactic bulges were much larger than expected,

given mass estimates.

The predicament of those times is neatly summarized by the first sentence of a 1974 paper

by Ostriker et al. [32]:
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“There are reasons, increasing in number and quality, to believe that the masses

of ordinary galaxies may have been underestimated by a factor of 10 or more.”

More recent measurements suggest the ratio of dark matter to ordinary matter is about six

to one. Unlike ordinary matter, dark matter is believed to reside in halos that are often

concentric with galactic centers.3 The presence of dark matter is seen not only in the velocity

profiles of galaxies but also by mapping the peculiar motion of clustering galaxies. By

mapping the phase space of galaxies we learn about the growth of structure in the universe

and the governing dynamics. Perhaps the most beguiling evidence for dark matter is found

in the beautiful composite images of the bullet cluster [33].

The popular literature contains a wealth of publications with brilliant descriptions of the

early days of cosmology [14, 34, 35, 36]. As astronomical observatories accumulated data,

it became clear that the universe contained a large number of galaxies similar to our own.

So far, nothing suggests our own galaxy is much different from the estimated hundreds of

billions of galaxies in the observable universe. Similarly, our location in the Milky Way, our

own galaxy, seems arbitrary. This gives some credence to the Copernican principle.

The Copernican principle states that we, as observers of the universe, do not have the

benefit of a privileged vantage point. As modern sky surveys suggest that our local universe

is isotropic and homogenous over the largest scales we conclude that so is the universe as a

whole. Upon closer inspection we notice, however, that galaxies tend to clump together in

halos with great lifeless voids in between. Figure 1.2 shows the distribution of approximately

a hundred thousand galaxies across two patches on the sky as measured by the 2dF Galaxy

Redshift Survey [37]. Similar distributions can only be seen in simulations that include a

dark matter component that dominates baryonic energy densities at the ratio of six to one

[38, 39].

Penzias’ and Wilson’s discovery of the cosmic microwave background, which later won them

a Nobel prize, seeded the main bough of observational cosmology. Numerous experimental
3Dark matter halos are normally assumed to be spherical, not disk shaped like the word might suggest.
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Figure 1.2: Results from the 2dF Galaxy Redshift Survey showing the distribution of galaxies
projected onto the plane. Reproduced with permission from the 2dF Galaxy Redshift Survey
Team [37, 40].

endeavors ensued, with efforts attempting to measure the uniformity [41] or spectral shape

[42] of this fossil signal. Arguably the most famous of these seedling experiments is the

Cosmic Background Explorer (COBE ) satellite. The satellite was launched in 1989 with three

instruments designed to measure different properties of the cosmic microwave background.

Using only 9 minutes of data spanning wavelengths of 1 cm to 0.5 mm, the FIRAS

instrument measured a background radiation which was fit well by a 2.7 K blackbody

spectrum [43]. During a 1992 meeting of the American Physical Society, measurements of

CMB anisotropies were revealed, causing much stir in the scientific community. Publications

of the main results followed in the Astrophysical Journal [44, 45]. After four years of

observation, the coarse resolution DMR instrument had constructed a full sky image of

the cosmic microwave background with fluctuation in the temperature of about ten parts

per million.4 This was, and continues to be, the strongest argument for isotropy and the
4Only the CMB dipole anisotropy had been measured before the DMR results.
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Copernican principle. At this point, observational cosmology had been established as an

avenue for answering fundamental questions about the nature of the universe. The hot big

bang scenario was no longer contested.

1.1 Modern Cosmology Theory – µReview

Modern Cosmology Theory is hardly summarized in a few page document. The end of this

section references more extensive review articles.

Using the aforementioned evidence and the theoretical foundation laid by Einstein’s

general relativity [46] we build the most general metric consistent with an isotropic expanding

universe:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.3)

with k ∈ {−1, 0, 1} for negative, zero, and positive curvature.5 This is called the Friedmann-

Lemaître-Robertston-Walker metric (FLRW for short) after the people that first studied it in

the early 20th century [47]. The time-dependent parameter a is referred to as the scale factor.

It describes the expansion of the universe.6 The redshift, z, of an object that is receding from

the observer due to the expansion of space can be related to the scale factor according to

1 + z =
a0

a(t)
, (1.4)

where a0 is the scale factor at the current epoch, and a(t) is the scale factor at an earlier

time, when the photons were emitted. Using Einstein’s field equations, which connect the

geometrical properties of spacetime to its energy content, and the FLRW metric one can

derive the two independent Friedmann equations

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.5)

5Note that any other values for k can be absorbed by rescaling a and r.
6We set c = 1 in our definition of the FLRW metric, more specifically, ds2 = −c2dt2. . .
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and
ä

a
= −4πG

3
(ρ+ 3p), (1.6)

where ρ is energy density, p represents pressure, and G is Newton’s gravitational constant.

The equations describe interactions between a homogenous fluid and spacetime curvature in

an FLRW universe and as such are applicable to the evolution of our universe on the largest

scales. In this framework, photons, matter, and dark energy, established by observations

as the key ingredients of our universe, develop differently as time progresses. Writing the

equation of state for a perfect fluid as p = wρ, we derive an equation for the scale factor in a

flat universe:

a(t) = a0t
2

3(w+1) . (1.7)

An ideal photon fluid is described by w = 1/3, whereas matter follows w = 0. The scale factor

will therefore grow more rapidly in a matter dominated universe. From this one concludes

that, being a mixture of photons, baryonic and dark matter, the universe will undergo phase

transitions as different energy forms govern the development of the scale factor.

Current evidence, including observations of the cosmic microwave background, suggest

that the energy budget of the universe is very close to the critical density required for a net

zero curvature [48, 49], a flat universe. This implies k = 0, and we see from the Friedmann

equations that the critical energy density required for a flat universe is

ρc =
3H2

8πG
, (1.8)

where H ≡ ȧ/a. Current best estimates of H yield a critical density of ρc ≈ 1× 10−29g/cm3,

approximately one proton per cubic meter. Common interpretation of the Friedmann

equations was that a universe with critical energy density would be perfectly balanced at

the transition between a recollapsing universe and one that would expand forever. At the

turn of the century, early observations of the cosmic microwave background combined with
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theoretical priors seemed to favor a flat universe,7 yet matter inventories could only account

for about a fifth of the critical density. Meanwhile, estimates for the age of the universe fell

short of the age of some globular clusters [50]. Then, measurements of Type Ia supernovae

came into view, suggesting that the universe was accelerating its expansion rate, as if some

mysterious force was pulling it apart with an ever increasing rate [51, 52]. The scientific

community must have been collectively scratching its head after this remarkable turn of

events. Shortly thereafter, measurements of the cosmic microwave background indicated a

spatially flat universe undergoing accelerated expansion [48], while measurements of baryon

acoustic oscillations provided independent evidence for this cosmic picture [53, 54]. The

phenomenon driving this acceleration has been given the name dark energy – a proper name,

since it encompasses several theoretical possibilities. Dark energy represents a persistent

cosmological component, which unlike baryonic and dark matter, is not watered down by

the continuous expansion of space. The parameter Λ in Einstein’s field equations, originally

used to balance forces such that a static universe could be realized, is now used to represent

this vacuum energy density, and is colloquially referred to as the cosmological constant. The

equation of state for dark energy is proposed as p = −ρ which leads to ρ̇ = 0, or ρ = ρ0.

From this we surmise that

a(t) = eHt. (1.9)

This implies an accelerated expansion of the universe, ä > 0, a condition which might also

have characterized another period in the history of the universe. First, it is worth emphasizing

some of the problems facing the standard cosmological models.

Observations of the CMB reveal an incredibly uniform sky, yet, due to the finite speed of

light two regions on opposite poles of the sky cannot have been causally connected at the

time when the CMB photons were emitted. This is referred to as the horizon problem. This

spectacular color coordination seems highly unlikely, unless these two regions were in causal

contact for the time duration required to achieve thermal equilibrium.
7COBE DMR showed that the CMB is very uniform, and the inflationary paradigm predicts a flat universe.
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Another issue, a type of fine-tuning problem, can be discerned from rearranging terms in

the first Friedmann equation and defining Ω = ρ/ρc:

ρa2(1− Ω−1) =
3k

8πG
. (1.10)

The right hand side of this equation is a constant, the left hand side must therefore also

remain constant as the universe evolves. In the time between the infant universe and the

present, the term ρa2 must decrease by many orders of magnitude. As current measurements

suggest Ω ≈ 1.0 the above equation would indicate careful tuning of the density parameter.

This is the flatness problem. These deficiencies of the big bang model, along with others,

motivated the development of the cosmic inflation paradigm.

The idea behind cosmic inflation was conceived by Alan Guth while studying the magnetic

monopole problem, yet another complication involving conditions of the early universe. The

creation of magnetic monopoles is expected at the high energy densities characteristic of

an infant universe. Guth found that a scenario involving rapid expansion of the universe,

sourced by a scalar field, could reduce the density of magnetic monopoles to present-day

densities; magnetic monopoles have so far eluded detection. Soon thereafter Guth realized

that inflation would also resolve the horizon and flatness problems [34, 55]. The theory of

inflation quickly gained momentum, with solutions to outstanding problems proposed by

Albrecht, Linde, Steinhardt, and others [56, 57, 58].

Scalar fields are widely used in physics. A prominent example is the hypothesized Higgs

field whose existence was arguably confirmed with the discovery of the Higgs boson in 2012

[59, 60]. Scalar fields are invariant under translation, yet they can possess both kinetic and

potential energy. The pressure and energy density associated with a scalar field are denoted

as

ρφ =
1

2
φ̇2 + V (φ), (1.11)

pφ =
1

2
φ̇2 − V (φ). (1.12)
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In the context of cosmology, the field φ is normally referred to as the inflaton. From Equation

1.10 we see that Ω is forced towards unity as long as ρa2 grows sufficiently. Defining inflation

as a period of accelerated expansion, ä > 0, in an era when the scalar energy density dominates

all other contributions, we can use the Friedmann equations to rephrase the condition as

φ̇2 < V (φ). (1.13)

Accelerated expansion requires that the scalar potential energy dominates the kinetic energy.

Such conditions can arise if the potential is very flat; a scalar field would then roll slowly

down the potential. In some sense, inflation represents a dynamical cosmological constant.

During inflation, regions that were disconnected become causally connected while Ω tends to

unity and exotic particles, such as magnetic monopoles, are redshifted to very low densities.

Inflation suppresses some of the complications associated with the hot big bang model. It

must conclude, however, with the conversion of the inflaton energy density into normal matter

during a period called reheating.

Slow-roll inflationary models make simplifying assumptions about the dynamics of a single

scalar field. In turn, these allow one to succinctly capture the requirements for inflation

and parametrize the corresponding predictions for observables. The following discussion

relies heavily on the wonderfully written textbook by Lyth and Liddle [61]. First we use the

continuity equation for a perfect fluid:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (1.14)

from which the second Friedmann equation is derived. This allows us to define the equations

of motion for an inflaton field: (
ȧ

a

)2

=
8πG

3

[
V (φ) +

1

2
φ̇2

]
, (1.15)

φ̈+ 3
ȧ

a
φ̇ = −V ′(φ). (1.16)
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Under the slow-roll assumption, it is assumed that terms can be dropped from the equations

to arrive at a much simpler set of equations:

H2 ' 1

3m2
P

V (φ), (1.17)

3Hφ̇ ' −V ′(φ), (1.18)

where we have used H = ȧ/a and m2
P ≡ (8πG)−1 to present more than one parametric

convention. It is useful to define the slow-roll parameters,

ε =
m2

P

2

V ′

V
, (1.19)

η = m2
P

V ′′

V
, (1.20)

where V now means V (φ). Within the slow-roll approximation, it can be seen that ε � 1

and |η| � 1 are necessary conditions for inflation.8 The slow-roll parameters encapsulate the

simplest set of models that produce smoothing, flattening, and monopole dilution, the basic

requirements of the inflationary paradigm. As it turns out, the slow-roll recipe produces a

little too much smoothing. The final ingredient draws from quantum mechanics.

Even though the average density of our universe corresponds to a proton per cubic meter,

this seemingly lifeless universe was able to facilitate the growth of galaxies, solar systems,

and planets – structure as it is known to us. To explain this we invoke primordial density

perturbations as quantum fluctuations of the inflaton, or more generally as perturbations

to the FLRW metric. Unlike the field itself, the quantum fluctuations are not translation

invariant. These perturbations, seeded during inflation, survive the transition from this

speculative embryonic era to a largely uncontested hot and dense infant universe developing

according to established laws of physics. The perturbations are therefore imprinted into

the spectrum of the cosmic microwave background, and with proper care, can shed light on
8For example, take the time derivative of Equation 1.15, plug the result into Equation 1.16, and use the

result to express V ′/V .
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inflation. In short, quantum fluctuations are stretched to cosmic length scales during rapid

expansion in the inflationary era. However, in order to extract that information we must first

understand how perturbed energy densities develop in the hot big bang scenario.

Gravitational attractions in the photon-baryon plasma tend to form halos with infalling

matter while increasing photon pressure impedes this process and erases anisotropies. Different

modes of compression and rarefication develop at the speed of sound in the plasma [62]. This

tug of war, referred to as acoustic oscillations, continues until the universe has expanded

enough, and therefore decreased in temperature, for protons and electrons to form hydrogen.

This is called recombination and happens at a redshift of z = 1090, approximately 380,000

years after the big bang [63]. The event defines a veil at the edge of our horizon, sometimes

referred to as the last scattering surface. The universe now becomes comparatively transparent

to light and the photons stream freely in every direction with a fraction bombarding our

detectors today. These are the CMB photons, and they carry with them information about the

fundamental oscillation modes at the time of recombination. By studying the properties of the

CMB, we can examine the matter composition of the universe, investigate the nature of dark

energy, and probe energy densities that are far beyond that of any terrestrial experiments.

The universe became electrically neutral at the time of recombination. However, we

observe that the hydrogen in the interstellar medium is now largely ionized. This matter

reionization occurred at around redshift of z ≈ 10, and is thought to have been sourced by

ultraviolet radiation from the first luminous objects.

CMB temperature anisotropies, T (n̂) = δT (n̂)/T0, are naturally decomposed using

spherical harmonics according to

T (n̂) =
∞∑
`=1

∑̀
m=−`

a`mY`m(θ, φ), (1.21)

where

aT`m =

∫
dΩ T (θ, φ)Y`m(θ, φ) (1.22)
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represent the expansion coefficients of a spherical harmonic decomposition. Assuming

rotational invariance, the following relation must hold

〈
aT`ma

T∗
`′m′

〉
= δ``′δmm′CTT

` (1.23)

where 〈 · 〉 implies an average over the statistical ensemble defined by infinite sky realizations

drawn from the same underlying theory. The angular power spectrum, CTT
` , then represents

the variance in power in a given `−mode. It follows that

〈T (n̂)T (n̂′)〉 =
1

4π

∞∑
`=1

(2`+ 1)CTT
` P`(n̂ · n̂′), (1.24)

where P`(n̂ · n̂′) is a Legendre polynomial of order ` and the following mathematical identity

has been used:

P`(n̂ · n̂′) =
4π

2`+ 1

∑̀
m=−`

Y`m(n̂)Y`m(n̂′). (1.25)

The angular power spectrum has been measured by numerous experiments (see Figure 1.3).

Recently, the Planck collaboration presented it’s first cosmological results [49, 64, 65, 66, 67].

The Planck survey covered the full sky and consequently the Planck derived TT power

spectrum estimate spans a remarkably wide `-range, corresponding to angular scales of 180

degrees down to approximately 3 arcmin. In Figure 1.3 the acoustic oscillations can be

seen as a series of peaks and throughs starting at degree angular scales, coinciding with

` ≈ 100. Normally the power spectra are plotted as a function of `, the multipole moment.

The conversion to corresponding angular scales is found by the approximate expression

θ ≈ π/` [rad]. The CMB temperature anisotropies represent variations in the intensity of

light from the last scattering surface. It turns out that this light can also be polarized.

The polarization of the CMB is caused by Thomson scattering from quadrupolar density

anisotropies at the epoch of photon decoupling. Polarization is only generated by quadrupolar

anisotropies as other temperature distributions, such as a dipole, do not share a common
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Figure 1.3: The temperature power spectrum from a few prominent experiments. The
solid line shows the best fit power spectrum derived from Planck data in conjunction with
polarization data from WMAP, high-` experiments, and experiments measuring baryon
acoustic oscillation [49]. Inset : The power spectrum plotted using a different scaling on the
y-axis to highlight its oscillatory nature and the available measurements. The leftmost peak
at ` ∼ 800 is the third acoustic peak. Data obtained from the Legacy Archive for Microwave
Background Analysis (LAMBDA) [68].

plane that is perpendicular to the direction of propagation (see Figure 1.4). These anisotropies

can be generated by perturbing the FLRW metric that describes our cosmology and these

perturbations can in turn be decomposed into scalar and tensor components which have

different properties. Scalar perturbations give rise to density waves that source the bulk of

the temperature and polarization anisotropies. The density waves are rotationally symmetric

about the direction of propagation, resulting in a polarization signal that is curl-free, hence

the name E-mode polarization. B-modes represent the geometrical negative of these shapes,

they appear to swirl around a fixed point on the sky. Figure 1.4 shows the geometrical shape

of these patterns on the sky.
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Figure 1.4: Left: Quadrupolar temperature anisotropies generate asymmetric oscillation
patterns in electrons, which in turn radiate polarized light towards an observer perpendicular
to the plane of the anisotropy. Figure presented with permission from [74] Right: The E- and
B-mode polarization patterns as viewed on the sky. E-mode patterns (yellow) are parallel or
perpendicular to a source while B-mode patterns (blue) have a specific handedness.

Polarization anisotropies generated by tensor perturbations, which are synonymous with

gravitational waves, do not have this symmetry and E- and B-modes are sourced at roughly

equal levels [69]. It is customary to decompose the spectrum of these perturbations in

Fourier space using comoving wave-vectors. We use the parameters PS(k) and PT(k) to

describe the power spectrum of scalar and tensor perturbations respectively. By assuming the

perturbations only depend on the amplitude of the wave-vector, k, we are imposing isotropy.

Characterization of the E- and B-mode power spectrum is ongoing [49, 70] with a number

of CMB experiments currently being developed and fielded to search for the B-mode signal

[71, 72, 73]. These experiments are designed to push the current B-mode sensitivity down by

an order of magnitude.

The intensity and polarization of the cosmic microwave background at any point on the
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sky are described by the Stokes parameters I, Q, U , and V . They are defined as

I =
〈
|Ex|2

〉
+
〈
|Ey|2

〉
,

Q =
〈
|Ex|2

〉
−
〈
|Ey|2

〉
,

U = 2Re
〈
ExE

∗
y

〉
,

V = 2Im
〈
ExE

∗
y

〉
, (1.26)

with Ex and Ey corresponding to the electric fields measured in the tangent plane, defined by

a fixed orthogonal coordinate system with unit vectors x̂ and ŷ, and 〈 · 〉 now corresponding

to the time-averaged field. Whereas the temperature field is invariant under rotation around

the unit direction vector, n̂, the Q, U , and V Stokes parameters are not. We can, however,

form a linear combination of the Q and U Stokes parameters that transforms under rotation

according to

Q(n̂)± iU(n̂) = e2i∆ψ(Q̃(n̂)± iŨ(n̂)). (1.27)

This is a spin-2 function (see [75] for definition) and there exists a set of function bases known

as the spin-s spherical harmonics that are appropriate for expanding these functions on the

sphere. The expansion of (Q± iU) using spin-2 spherical harmonics is similar to that of the

scalar quantity T (n̂), with the expansion coefficients given by

±2a`m =

∫
dΩ(Q± iU)±2Y`m(θ, φ). (1.28)

Here ±2Y`m represent the spin-2 spherical harmonic functions. The E- and B-mode coefficients

are then defined by the spin-2 coefficients according to

aE`m = −(2a`m + −2a`m)/2,

aB`m = i(2a`m − −2a`m)/2, (1.29)
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with the corresponding power spectra of these scalar quantities as

CEE
` =

〈
aE`ma

E∗
`m

〉
=

1

2`+ 1

∑̀
m=−`

aE`ma
E∗
`m,

CBB
` =

〈
aB`ma

B∗
`m

〉
=

1

2`+ 1

∑̀
m=−`

aB`ma
B∗
`m. (1.30)

The CMB temperature and polarization power spectra encapsulate information about eras

leading up to the epoch of photon decoupling. Up until this point, all data indicate that they

are consistent with Gaussian and adiabatic perturbations, suggesting that the CMB power

was imprinted while linear perturbations were still valid.

Using Newtonian physics one can show that the temperature anisotropies generated by

perturbations to a homogeneous matter-dominated universe are scale invariant, with C` scaling

like 1/`(`+ 1) in the power domain [76]. This is the reason the power spectra are normally

plotted multiplied with the `(`+ 1) prefactor. Scale invariance, however, does not imply a

featureless spectrum and many features in the power spectrum represent birthmarks of our

universe. On the largest scales, the Sachs-Wolfe effect, whereby gravitational effects modify

the spectrum, dominates the anisotropies [77]. At degree angular scales the anisotropies are

governed by oscillations in the densities of primordial plasma with the first peak of the power

spectrum corresponding to perturbation modes that had entered the Hubble horizon and

had time to develop overdensities. The location of the first peak therefore tells us about the

geometrical properties of the universe. No causal physics occurring at or before recombination

could imprint larger scales. These density perturbations were characterized by the propagation

speed of sound in the primordial plasma, hence the term acoustic oscillations. Subsequent

oscillations correspond to harmonics of these acoustic oscillations which are eventually

suppressed on smaller scales due to Silk damping, photon diffusion during recombination [78].

The temperature power spectrum has been characterized from the largest scales down to

` = 10, 000 corresponding to about 1 arcmin angular scales. For ` > 3000 the cosmic infrared

background appears to dominate the power budget, with contributions from radio sources as
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well as the thermal and kinematic Sunyaev-Zeldovich effect [79]. These are often referred to

as secondary anisotropies. The secondary anisotropies offer a rare view of reionization and

the growth of structure.

With results from the Planck satellite arguably extending the cosmic variance limit out to

` & 1500, the primordial temperature anisotropies have been somewhat rigorously quantified.

Conversely, the polarized power spectra require much work. Figure 1.5 shows the E- and

B-mode power spectra measurements and the best fit cosmological model (ΛCDM) based

on Planck measurements. Most constituents of the inflationary paradigm predict a set of

observable features in the CMB power spectrum, including a total energy close to the critical

value ρc, a nearly scale invariant spectrum9, tensor perturbations, and therefore B-mode

polarization. The first two of these have already been extensively verified. Most recently the

Planck collaboration reported a deviation from scale invariance at the 5.4σ level [49].

Model dependent constraints on inflationary parameters are possible through measure-

ments of the TT power spectrum alone [93, 94] as both tensor and scalar perturbations

contribute to the TT power. However, different inflationary models predict varying amplitude

of the spectral tilt and its derivatives. Conversely, inflationary models almost uniformly

predict tensor perturbations at some level, which are manifest in a primordial BB power

spectrum. Unlike others, the B-mode observables are generally not degenerate with a range

of other cosmological parameters.

Unfortunately, a number of sources produce B-mode polarization and a positive detection

does not mean that these were imprinted on the CMB at the last scattering surface. The

most prominent sources include polarized foregrounds, both synchrotron and dust emission

within our own Galaxy, as well as matter anisotropies within the last scattering surface

that gravitationally lens some of the E-modes into B-modes. Galactic foregrounds tend to

produce large-scale anisotropies (`� 100) and fall with ` whereas lensed B-modes do just the
9Models for slow-roll inflation predict small deviations from the Harrison-Zeldovich spectrum, characterized

by ns = 1.0.
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Figure 1.5: A combination of published EE and BB polarization power spectra from ACTPol
[80], QUaD [81], WMAP 9 year release [82, 83], CAPMAP [84], CBI [85], DASI [86], BICEP1
[87], BICEP2 [88], BOOMERanG [89], QUIET [90], and SPTpol [91]. For the EE spectrum
only 2σ detections are shown to increase clarity. The best fit ΛCDM model based on Planck
parameters is shown in black [49]. It is possible that primordial B-mode power have been
detected [88], and lensing of E-mode power into B-modes has been observed [92, 91]. The
r = {0.01, 0.03, 0.20} B-mode power spectra based on the best fit ΛCDM model are shown
in black and grey.

opposite. Primordial B-modes are expected to peak at degree angular scales, corresponding

to ` ∼ 100. This is where experiments looking for primordial B-modes focus their sensitivity.

Within the context of slow-roll inflation (see Equations 1.17 and 1.18) CMB observables can

be conveniently linked to the slow-roll parameters. The RMS amplitude of scalar fluctuations

has already been well constrained through measurements of the CMB; the temperature

anisotropies are incredibly uniform, with only 100 part in million fluctuations. Based on

this, we write PS(k0) ∼ 100× 10−6, where PS is the scalar perturbation power spectrum and
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k0 corresponds to the scale of the measurement. Having established this measurement, the

energy scale of inflation within the slow-roll scenario can be expressed as

V 1/4 = ε1/4 9× 1016GeV. (1.31)

Similarly, the spectral index, nS − 1 = d lnPS/d ln k, describing the scale dependence of

the curvature perturbations follows

nS = 2η − 6ε. (1.32)

A measurement of primordial B-modes constrains the amplitude of tensor perturbations, PT,

and therefore the so-called tensor-to-scalar ratio, r, which in turn is related to one of the

slow-roll parameters:

r ≡ PT(k0)

PS(k0)
= 16ε. (1.33)

Finally, the spectral tilt of the tensor power spectrum can be succinctly written as nT = −2ε.

Under the assumption that slow-roll inflation accurately captures the dynamics of the early

universe, a measurement of the tensor-to-scalar ratio constrains the energy scale of inflation.

A great number of inflationary models have been proposed. Although many of these

models fall under the umbrella of single field slow-roll inflation, there seem to be no limits to

the complexity that inflationary models can assume. Within the framework of single field

inflation, attempts have been made to gather all such models in the general description of

effective field theory [95], yet some will argue that such generalizations represent addition of

complexity that is not warranted. Although many claim that the observation of primordial

B-mode polarization would cement inflation’s role as a model of the early universe, it should

be pointed out that the inflationary paradigm is by no means the only viable physical model

that describes the early universe [96]. We also note that model complexity alone is not a
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damning feature. Instead, models are falsified by comparing their predicted values for various

observables with reality (see Section 1.2).

A plethora of textbooks and review articles describe the concepts briefly reviewed in this

text. Some of the more common textbooks include [61, 97]. Review articles that describe

cosmology theory in broad strokes include [98, 99, 100], while texts like [101] delve into the

gory details of cosmic perturbation theory. There also exist review articles highlighting some

of the differences between the various experiments involved in observational cosmology [102].

1.2 Observational Cosmology

As the first CMB measurements now approach their semicentennial anniversary, numerous

experiments have contributed to our understanding of the relic radiation. The COBE satellite,

launched in 1989, was the first of these to map out this radiation over the whole sky. More

recent satellite experiments, WMAP and Planck, launched in 2001 and 2009 respectively, have

made significant improvements in our understanding of the CMB and its anisotropies across

the entire sky. Figure 1.6 shows a composite of the temperature anisotropies as measured by

the three full-sky surveys. Note how the angular resolution improves with time.

Satellite experiments are expensive and rare, and other less costly experiments have

equally furthered our understanding of the microwave sky. The BOOMERanG balloon-borne

experiment, and others like it, measured the angular diameter distance to the surface of last

scattering; coupled with constraints on the Hubble parameter, these measurements showed

that the large-scale universe is flat [48, 103]. The DASI experiment was the first experiment

to conclusively detect the polarization of the CMB [104]. Large aperture experiments, such

as ACT and SPT, have identified the lensing field of large-scale structure through its effect

on the CMB polarization [66, 105, 106].

At the beginning of 2014, a few experiments had published constraints on r from polarized

maps of the cosmic microwave background (see Figure 1.5). The BICEP1 experiment

held the upper limit from polarized data alone, r < 0.65 at 95% confidence, [107, 70] with
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Figure 1.6: A composite Mollweide projection of the CMB anisotropies at approximately
100 GHz as observed by COBE DMR (1989), WMAP (2001), and Planck HFI (2009). The
color scale covers ±200 µK with the Galactic stripe saturating the scale. The insets in the
lower right show WMAP and Planck maps over a 8 degree square patch on the southern sky.
This marks the first instance of many in this document where the HEALPix package was
used to analyze results [4].

competitive measurements from the QUIET experiment [71]. At that point, best limits on r

were determined in a somewhat convolved manner, stemming from a combination of CMB

temperature anisotropies and measurements of baryon acoustic oscillations, with the WMAP

and Planck collaborations reporting r . 0.13 at 95% confidence [49, 82]. Those constraints

are found by assuming no running of the scalar spectral index; relaxing that requirement

gives r < 0.26.

The primordial B-mode signal is surpassed by lensing of E-modes into B-modes at small

angular scales. The detection of this gravitationally lensed B-mode signal was first reported

in 2013 by SPT [91] and independently measured by the POLARBEAR experiment [106].

In March of 2014 the POLARBEAR collaboration published a paper describing its
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measurements of the B-mode power in an multipole range of 500 < ` < 2100, further

constraining the impression of large-scale structure on B-mode polarization [92]. That

same month, the BICEP2 collaboration announced a detection of B-mode power at degree

angular scales, 30 < ` < 150, which appears to be consistent with r ≈ 0.20 under the

assumption of no foreground emission [88, 108].10 Many in the scientific community offered a

tempered interpretation, pointing out that foreground models and their uncertainties suggest a

comparable contribution from Galactic dust in this region. As the identification of a primordial

cosmological B-mode signal would mark a watershed moment in the history of cosmology, the

extraordinary announcement from the BICEP2 collaboration has invigorated other ground

based experiments currently observing the microwave sky, including the Atacama B-mode

Search (ABS) and the Keck Array. Concurrently, small scale experiments like SPTpol and

ACTPol are characterizing the lensing B-mode signal amplitude while developing technologies

and data analysis methods that allow them to push towards mass production of detectors and

larger angular scales [109, 110]. The cosmological community is anxiously awaiting results on

polarized foregrounds from the Planck HFI, planned for release at the end of 2014. These will

undoubtedly help shed some light on the BICEP2 results. Finally, Spider is a balloon-borne

experiment specifically designed to constrain the B-mode amplitude (see Chapter 2). The

payload will launch from McMurdo station in December 2014.

Many experiments not mentioned here have also helped improve our understanding of the

cosmic microwave background. Cosmology, however, is not derived from CMB data alone.

Instead, observational cosmology is now informed by data spanning the entire electromagnetic

spectrum.

Type Ia Supernovae

Much like Cepheid variables, Type Ia supernovae are astrophysical objects believed to have

a fixed intrinsic brightness; both are referred to as standard candles. By measuring their
10At this amplitude, cosmic variance could shift r by ∼ 0.05.
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apparent brightness we can estimate the physical separation. These catastrophic stellar events

outshine entire galaxies for many days allowing scientists to map the recessional velocity of

far-away galaxies. This method extends Hubble’s law out to redshift of z ∼ 1 with current best

estimates of the local value from the Hubble Space Telescope of H0 = 73.8± 2.4 kms−1Mpc−1

[111]. Such datasets have revealed an inflation of Type Ia luminosity distance at high redshifts,

suggesting accelerated expansion of the universe driven by dark energy [51, 52].

Baryon Acoustic Oscillations

Prior to recombination, interactions between radiation and matter left an imprint on the large-

scale distribution of matter across the universe. The phenomenon is referred to as Baryon

Acoustic Oscillations (BAOs) and its detection was first described in [53, 54]. Baryons and

dark matter couple gravitationally, yet dark matter lacks photon interactions and, therefore,

does not feel radiation pressure in overdense regions. Conversely, baryons are pushed outwards

from initial overdensities by this photon pressure. As this happens, the universe is expanding

and eventually the interaction subsides during recombination. Baryons are suddenly left

behind as the CMB photons shed their subluminal counterparts. Most of the baryons fall

back towards the overdense regions while a fraction remains in a shell as an echo from the

former era.

By mapping the distribution of tens of thousands of galaxies over a range of angles and

redshifts, scientists are able to measure this echo, the angular power spectrum of matter. The

characteristic angular scale corresponds to an overdensity in galaxy correlations at 150 Mpc

comoving scales. Current best limits are described in [112]. A great review article can be

found in [113].

Big Bang Nucleosynthesis

In the canonical cosmological model, Big Bang Nucleosynthesis (BBN) is a process which

took place in the first three minutes after the big bang. During this process, the chemical
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abundances of all the lightest elements and their isotopes, such as 2H, 3He, 4He, and 7Li were

generated [114]. Using spectroscopy, measurements of the chemical composition of metal-poor

star forming regions are used to constrain the global composition of our universe. Although

minor discrepancies exist, the overall BBN picture, as indicated by spectroscopy and the

CMB, seems quite consistent [49].

Together with the CMB, Type IA supernovae, BAO, and BBN data form some of the

main pillars of modern observational cosmology.

Concluding Remarks

Pioneering work published at the turn of the century proved that the density of the universe

is near the critical density required for a flat universe [48]. Despite that, it would seem that

only a small fraction of the universal energy density is provided by ordinary matter. A few

years earlier, and somewhat contradictory to the statement above, evidence of an expanding

universe emerged [51]. In 2013, the Planck satellite revealed maps of energy density variations

as probed by CMB backlight. Finally, this year, the potential discovery of primordial B-mode

polarization was announced [88]. The field of observational cosmology is clearly flourishing.

1.3 Thesis Work and Content

Throughout my graduate student career my primary responsibility has lain with the Spider

experiment and the integration of its flight cryostat with other scientific hardware. A

significant fraction of my time has been spent on designing, building, and characterizing

sub-systems of this scientific instrument, many of which operate at cryogenic temperatures.

During the commissioning phase of the flight cryostat, I worked on a thermal model that

has been used to predict its thermal performance while also helping with the cryostat build

process. One of my larger responsibilities included the design and build of two Fourier

Transform Spectrometers that are used to characterize the spectral response of the Spider
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telescopes. I also designed and built a capillary assembly that provides a steady supply of

superfluid helium to a 1.8 K temperature stage in the Spider flight cryostat.

In addition, I worked on the in-flight characterization of the Planck satellite where my

largest contribution was in the development of a simulation pipeline to characterize the

fidelity with which we can reconstruct the spatial response of the instrument. I developed

algorithms that merge multiple planet observations into a single beam map and probed the

fidelity of that process with simulations run on the local Feynman computer cluster. Variants

of these algorithms were incorporated into the official Planck analysis pipeline. Other work

includes validation of the pointing solutions and photometric calibrations from measurement

of planet flux densities.

The remainder of the thesis is structured as follows: Chapter 2 gives a general overview

of Spider, a balloon-borne polarimeter designed to constrain the B-mode power of the CMB

on degree angular scales over approximately 8% of the sky. The more detailed sections of

that chapter describe work where I have made significant contributions. Other sections are

presented in order to give a complete description of the experiment. Chapter 3 reports work

on the calibration of the Planck High Frequency Instrument (HFI). Among other topics,

that chapter describes a simulation pipeline which was constructed to constrain the error in

the reconstruction of the Planck HFI beam response. Chapter 4 discusses calibrations and

simulations of the optical response of the Spider telescopes building on concepts covered

in Chapter 3. Finally, Chapter 5 offers brief conclusions and a discussion of the theoretical

implications for a primordial B-mode discovery.

28



Chapter 2

Spider: A Balloon-Borne CMB

Polarization Experiment

2.1 Instrument Overview

Spider is a Long Duration Balloon-borne (LDB) experiment designed to measure the

polarization of the cosmic microwave background with unparalleled instantaneous sensitivity.

Novel detector architecture allows for illumination of approximately 2500 detectors through

an effective collecting area of roughly 0.5 m2. Spider will map the polarization of the CMB

over a tenth of the sky during an estimated twenty-day Antarctic balloon flight. Table 2.1

highlights some of the main characteristics of the experiment. The payload was integrated

and proven flight ready in the summer of 2013 in Palestine, Texas. The United States Federal

Government furlough in October of 2013 inhibited ballooning missions from McMurdo Station

that year, delayed the launch of the experiment by a year, and cast a pall over the entire

project. Apart from political vicissitudes, the project members have had to deal with fires,

strikes, dust storms, flooding, hurricanes, and countless power outages. The experiment, in

both design and instrumentation phase has been described in various journal articles and

conference proceedings [89, 115, 116].
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Figure 2.1 shows the fully integrated payload hanging from a launch vehicle during

compatibility testing. Six monochromatic telescopes observe the sky through the 3 mm thick

plastic windows at the top of the cryostat.1 Each telescope houses hundreds of polarization

sensitive detectors that are cryogenically cooled to 300 mK. The total mass of the payload as

seen in Figure 2.1, including cryogens, five telescopes, and all power and telemetry systems,

was measured to be 2450 kg.2

Signal from these detectors is sampled sequentially using time-domain multiplexing with

Multi-Channel Electronics (MCE) clocked at 50 MHz [117, 118]. Each telescope is read

out by an independent MCE system which is then connected to an MCE Computer (MCC)

through an optical fiber. Accounting for settling times, decimation rates, filtering, and so

forth, the readout system will sample detectors at approximately 120 Hz. The MCCs write

these data to a redundant file system consisting of both solid state and spinning disks housed

in pressure vessels. Two computers, named itsy and bitsy, form the heart of the Spider

flight computer system. A watchdog monitors the status of these and switches priority if a

computer malfunctions. The flight computers facilitate communications with the MCCs, the

attitude control system (ACS), and the Support Instrumentation Package (SIP) supplied by

the Columbia Scientific Ballooning Facility (CSBF). Custom housekeeping and motor control

electronics form an intermediary between the flight computers and the various electrical

readout devices onboard the payload. All communications with the payload go through the

ground station computer which routes signal to the flight computers through satellite or a

line-of-sight connection [119, 120].

2.1.1 Foregrounds and Noise

Spider will observe a 4000 deg2 window on the southern sky where Galactic foreground

contamination is expected to be minimal. Early estimates of a twenty-day flight suggested

that a Spider-like platform could measure r = 0.04 with 99% confidence in the absence
1The windows are made of Ultra High Molecular Weight Polyethylene (UHMWPE).
2The mass of your average Ford E-Series with a couple of people and a tool chest.
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Figure 2.1: The Spider payload during compatibility testing in Palestine, Texas, Summer
2013. Courtesy of Steven Benton. 31



Table 2.1: Primary characteristics of the Spider experiment.

Sky coverage 8%
Scan rate (az) 6 deg/s at peak
Polarization modulation Stepped HWP
Detector type Antenna-coupled TES
Multipole range 10 < ` < 300

Integration time∗ 17 days
Limits on r† 0.03

∗Assuming 85% duty cycle.
†Assuming no foregrounds, at 99% confidence.

Frequency [GHz]

94 150

Number of telescopes 3 3
Bandwidth [GHz] 22 36
Optical efficiency 30–45% 30–50%
Angular resolution? [arcmin] 42 30
Number of detectors‡ 690 1230
Internal loading�,[ [pW] 1.51 2.25
CMB loading[ [pW] 0.35 0.30
Atmosphere loading[ [pW] 0.09 0.19
NET per detector [µK

√
s] 120–150 110–150

?FWHM. ‡Assuming 80% yield. �Including sleeve, window, and baffle.
[Not accounting for optical efficiency.

of foregrounds [89]. Such statements were incomplete, as interstellar dust was expected to

dominate an r = 0.03 primordial B-mode signal at the largest angular scales [121, 122, 123].

More recent work [124] showed that two flights of a Spider-like payload, utilizing three

frequency bands, could constrain the amplitude of the B-mode signal to r < 0.03 even in

the presence of significant foregrounds. Such statements relied on foreground models which,

until very recently, have lacked data to characterize the amplitude of polarized emission

from interstellar dust [125]. Emission from electrons accelerated by Galactic magnetic fields,
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so-called synchrotron emission, is also expected to contribute significantly to the large scale

power at 94 GHz [124] (see Figure 2.2).

Spider’s observation region on the southern hemisphere is expected to be relatively void

of Galactic foregrounds. Assuming yield and noise characteristics described in Table 2.1,

the instantaneous sensitivity at 150 GHz is expected to be 4 µK
√

s, which is five times that

of Planck HFI at 143 GHz. A twenty-day flight with an 80% duty cycle should lead to

0.2 µK/deg2 sky sensitivity, compared to approximately 2.5 and 15 µK/deg2 for the 143 GHz

Planck HFI band and the 100 GHz WMAP band, respectively. Spider will be the most

sensitive experiment to measure this region of the sky. Signal calibrations will be performed

at degree angular scales using the already well characterized CMB temperature anisotropies.

As the window for detecting primordial B-modes is centered on degree angular scales we

bypass the need for extensive extrapolations of dipole calibrations performed by both Planck

HFI and WMAP.

Choosing between characterization of foregrounds or the extragalactic B-mode signal,

those working on CMB polarimeters would much rather constrain the latter. As polarized

foregrounds are so poorly constrained, selecting the ideal observation region, defined by lack

of foregrounds, represents something of a gamble. A tradeoff between focusing integration

time over a small region on the sky or extending coverage to find the cleanest region is

therefore established [126]. Unfortunately, the stochastic ensemble of dust particles in our

Galaxy is overshadowed by another group of terrestrial clamor; the photon noise caused by

everything between our detectors and the CMB.

CMB experiments strive to be photon noise limited, which means that the majority of a

detector’s noise inventory is due to the unavoidable intensity and statistical properties of

the CMB photons. This is easier said than done, as emission from the Earth’s atmosphere

greatly exceeds the intensity of the CMB. The CMB is a perfect blackbody which, according

to Wien’s law, peaks at around 160 GHz.3 As a result, most CMB experiments will distribute
3Note that CMB experiments are measuring dB/dT , the temperature derivative of Planck’s blackbody

function. This derivative peaks at 217.5 GHz at a blackbody temperature of TCMB = 2.726 K.
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their spectral sensitivity in the range of 50–300 GHz.4 Unlike the CMB, the intensity of

Earth’s atmosphere is plagued by intricate time and frequency dependence, which is difficult

to model [128]. This is the reason satellite missions are so desirable and the reason Spider

will fly on a stratospheric balloon, even though it results in only 20 days of observation.

Unlike all ground-based experiments, Spider will operate almost in the CMB photon noise

limit. At a float altitude of 37 km and an elevation angle of 40 deg, the loading from residual

atmosphere is similar to that of a 1–2 K blackbody, compared to the 2.7 K temperature of

the CMB. Unfortunately, in the case of Spider, the CMB photon noise equivalent power is

surpassed by a factor of two by internal loading from the warm vacuum window which is

required to prevent cryogenic loading from residual atmosphere. The Spider detectors also

see loading from the baffles and cooled optics sleeve, see Table 2.1. As internal loading in

stratospheric platforms dominates CMB power, satellite experiments will generally suffer less

from noise.

Bolometric noise modeling and inventory is discussed in a wide array of publications

[131, 132]. The most common noise terms involve statistical photon noise, Johnson noise in

the thermistors, phonon noise from the detector’s thermal environment, and detector readout

noise. See Section 2.8 for more extensive discussion of the Spider detector architecture. The

noise-equivalent power, Pphoton, in a polarization sensitive bolometer illuminated by a stream

of photon with time averaged power, P , is [74, 133]

Pphoton = 2hνP +
2P 2

∆ν
, (2.1)

where the first term on the right-hand-side corresponds to shot noise, fluctuations in arrival

times of light quanta, and the latter term accounts for occupation bunching.5,6 In the
4Developments in cryogenic bolometer technology, which took place around the turn of the 20th century,

allowed experiments to probe higher frequencies than those allowed by coherent HEMT receivers and extend
well past 100 GHz while being photon noise limited [127].

5Note that Pphoton has units of W2/Hz.
6Many use the term NEP to express noise-equivalent power, in this discussion I have chosen to use the

parameter Pphoton as it is more compact.
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Figure 2.2: The outlines of the Spider and BICEP2 observation regions are shown in
black and grey respectively. All maps are presented in equatorial coordinates using a
Mollweide projection. Top: The Planck HFI 353 GHz temperature map. Middle: Predicted
Q polarization of synchrotron emission at 90 GHz as predicted by the Planck Sky Model
[129]. Bottom: Dust Q polarization at 150 GHz from the O’Dea model [130].
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above expression, ν is the frequency of the incident photons, ∆ν is the bandwidth under

investigation, and h is Planck’s constant. Thermal fluctuations intrinsic to the bolometer

thermal environment are also unavoidable. For the following discussion we define ∆T ≡

(T − Tbase), where Tbase is the temperature of the thermal reservoir, T is the temperature

of the bolometer, and ε ≡ ∆T/Tbase ≈ 0.1 for a typical Spider detector. The phonon shot

noise term, intrinsic to the thermal conductance, corresponds to

Pphonon = 4kBT
2GF, (2.2)

where G represents the thermal conductivity of the link between the TES and its thermal

reservoir, and F is a correction factor which accounts for non-equilibrium temperature

differences across the path of conductance; F ≈ 0.5 in the case of Spider. Similarly, resistor

(Johnson) noise due to thermal fluctuations of charge carriers follows

PJohnson = 4kBTR. (2.3)

Careful accounting shows that the photon term, Equation 2.1, dominates the contributions

to the total noise budget of the Spider detectors.

The Spider detectors have been carefully tuned so that the unavoidable contribution

of photon noise dominates the total noise budget of the Spider detectors.7 First, it is

easy to see that G = Q/∆T ≈ P/∆T = P/εTbase if the photon loading is balanced by the

thermal link to the heat reservoir; note that Q represents heat flux between the reservoir and

the bolometer. Equating photon and phonon noise contributions, and assuming shot noise

dominates occupation bunching, we arrive at the following expression for the temperatures of

the bolometer and heat reservoir:

Tbase ≈
hεν

2kBF
. (2.4)

7This is a simplification. The detector properties are also tuned so that we do not saturate the aluminum
superconducting transition on the ground.

36



Evaluating this expression using a typical set of Spider device parameters, corresponding to

ν = 100GHz and ε = 0.1, we find that Tbase ≈ 480mK. In order for thermal fluctuation in the

bolometers to be sub-dominant to the expected contribution from the photon shot noise, we

have to cool them below 480 mK. This is the reason CMB detectors are cooled to sub-Kelvin

temperatures. Using measured device parameters, including thermal conductivities and

spectral bandwidth, we can model the relative contribution of noise terms for Spider’s

detectors under flight-like conditions. The noise properties can also be probed directly, for

example, by using a custom beam-filling cold load that can be bolted to the front of a test

cryostat at Caltech. The temperature of the cold load, which approximates a blackbody, can

be varied to simulate different thermal environments.

2.1.2 Recent Developments

Recent, potentially groundbreaking, measurements made by the BICEP2 collaboration have

drawn a lot of attention [88, 108]. It remains to be seen whether other experiments can

corroborate these findings. It is therefore interesting to compare BICEP2 and Spider. In

many ways, these two experiments are quite comparable. They share the same science goal:

to push down the limits on primordial B-mode amplitudes. The two employ a common

detector architecture and a very similar telecentric optical design, originally drafted for

the BICEP1 experiment. One is ground based, the other balloon borne, and since photon

incidence dominates the noise budget for both experiments, the two have wildly different

instantaneous sensitivities. As a result, twenty days of balloon borne observations yield map

depths that are comparable to 2–3 years of ground based observations. Both experiments

were conceived by a common scientific leader, Andrew E. Lange, who passed away in 2010.

Figure 2.2 shows a collection of sky maps with the Spider and BICEP2 observation

regions outlined. The maps are based on Planck data, the Planck Sky Model [129], and the

dust model of O’Dea et al. [130]. Spider will cover approximately seven times more sky

than BICEP2. As polarized foreground models remain data starved, estimates of foreground
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contamination in different regions suffer from significant uncertainties. Large sky coverage,

two frequency bands, and almost disjoint observation regions should allow Spider to set

limits on potential systematic inducing effects in the BICEP2 analysis. The dataset will

certainly help advance Galactic foreground removal techniques [134, 135, 136]. Furthermore,

assuming the BICEP2 measurements are sample variance limited, larger sky coverage will

also help constrain the signal variance.

Figure 2.3 shows the power spectrum of Galactic foregrounds at 94 and 150 GHz as

predicted by the Planck Sky Model [129] and O’Dea et al. [130]. The colored regions represent

the variation obtained by calculating the power spectrum from various BICEP2 sized patches

inside the Spider region. The models used for this analysis give results that are comparable to

the analysis presented in [88]. The foreground signal is approximately one order of magnitude

below a B-mode signal from r = 0.20. It has been pointed out that if foreground amplitude

were off by a factor of 2–3, the foreground power would become comparable to the measured

B-mode signal [125, 137].

Given Spider’s detector count, yields, scan strategy, and projected observation time,

Spider will produce sky maps with 200 nK sensitivity per deg2 compared to 83 nK quoted in

BICEP2’s B-mode paper [88], which was obtained from 2–3 years of observation. However,

neither of these quoted map depths account for information loss due to filtering of timelines.

As ground based experiments normally have to perform aggressive filtering compared to

balloon borne or satellite missions, we suspect that the effective map depth of these two

experiments will be quite similar. It is worth mentioning the Planck HFI map depth, which

is 1.0, 0.8, 1.3, 5.0 µK/deg2 at 100, 143, 217, and 353 GHz respectively [138].

Recent developments in detector manufacturing technology and the push for greater

sensitivities is giving rise to experiments that employ tens of thousands of detectors [110].

The Spider experiment is a step in that direction. The great success of the three orbital

CMB missions can be largely attributed to technology which was prototyped on sub-orbital
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Figure 2.3: The amplitude of 90 and 150 GHz Galactic foreground emission in the Spider
and BICEP2 observation regions, as predicted by the Planck Sky Model [129] for synchrotron
emission at 90 GHz, shown with light blue hues, and O’Dea et al. [130] for dust emission
at 150 GHz, shown with blue hues. Figure 2.2 shows some of the corresponding maps.
The width of the colored regions represents variations in foreground amplitudes over an
ensemble of BICEP2-sized maps drawn from the Spider region. Also shown are the BICEP2
measurements (yellow points) and the predicted sensitivity of a 20 day flight of the Spider
experiment as derived from Fisher matrix analysis (red points). The colored regions that
trace the r = 0.03 and r = 0.20 curves represent the cosmic variance for both 1% and 10%
sky fraction. Fisher analysis data courtesy of Anne Gambrel.

missions. Current stage balloon borne experiments, such as EBEX, PIPER, and Spider will

help prepare for the fourth generation inflation probe [139, 140].

2.2 Collaboration

The Spider experiment is a collaborative effort with contributions from many academic

institutions. Primary funding comes from NASA through an Astrophysics Research and
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Analysis (APRA) grant. Considerable financial support is also provided to our collaborators

at University of Toronto through the Canadian Space Agency, with additional funding for

this experimental effort from various other funding agencies, including the Gordon & Betty

Moore and David & Lucille Packard Foundations. The Spider instrument was first proposed

in 2005, but unsuccessfully. A second 2006 proposal for an APRA grant resulted in initial

funding that began in 2007. A second APRA proposal for the Spider experiment was

accepted in 2011. Quite a few experimentalists have made significant contributions during the

design and build phase of this experiment, and considerable heritage derives from previous

ballooning and ground based experiments, including BOOMERanG, BICEP1, BICEP2,

and the Keck Array. Detector development, screening, and characterization is primarily

done at the Jet Propulsion Laboratory (JPL) and the California Institute of Technology

(Caltech). Half-wave plate and baffle development took place at Case Western Reserve

University. Payload interfacing, including scanning control, pointing reconstruction, and

power systems were designed and built by the University of Toronto, while detector readout

systems are provided by the University of British Columbia. Cryogenic characterization and

general payload integration has taken place at Princeton University. Scientists from many

other institutions actively contribute to this experiment. Approximately 50 scientists have

made significant contributions to this effort with about 15–20 active experimentalists at any

given time.

2.3 Ballooning

Ballooning expertise for the Spider experiment is provided by the Columbia Scientific

Ballooning Facility (CSBF), a NASA institution established in 1961. The facility conducts

ballooning launches from various locations on the globe, including Esrange, Sweden; Alice

Springs, Australia; and Fort Sumner, New Mexico. The first Antarctic launch was conducted

in 1990 [141]. At the time of writing, 39 LDB flights lasting longer than 24 hours have flown

from McMurdo Station, the southernmost anchorage in the Antarctic. The mean duration of
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these flights is 20.1 days. Figure 2.4 shows a histogram of flight lengths as well as the best fit

log-normal distribution function. Various reasons factor into decisions to terminate flight,

with ease of payload recovery playing a large role.

Figure 2.5 shows the empirically determined probability density function of all scientific

balloon trajectories launched from McMurdo Station in the last 24 years as well as the

corresponding landing sites. That distribution of trajectories suggests a 79.2 deg mean latitude

with 3.5 deg standard deviation. From Figure 2.5 it is clear that flights are preferentially

terminated close to McMurdo Station.

Seasonal wind patterns in the polar vortex emerge during the Austral summer, allowing

for circumpolar trajectories at 79 deg latitude with 9–12 day periods. The Spider payload

will launch during this period, rising at an average velocity of 4 m/s, it will reach float altitude

after approximately 3 hours of flight. During ascent the payload is expected to experience

0.5 g accelerations due to wind shear and to rotate in an uncontrolled fashion with angular

velocities up to two revolutions per minute [142]. As the payload travels through the upper

regions of the troposphere, the temperatures can go as low as 200 K [143].

Electrical components are tested in a chamber that simulates the thermal environment,

which includes drops in both temperature and pressure, in order to ensure that they perform

adequately during ascent. Thermal modeling complements these tests and allows us to

determine proper placement of various flight computers and other electrical devices [143,

144, 145, 146]. No attempt is made to control pointing on ascent, as the forces experienced

would put too much strain on pointing motors. This way, also, batteries will not drain during

ascent. At a float altitude of 37 km, the pressure is approximately 5–10 torr with ambient

temperatures hovering around 250 K. At this altitude, most of the Earth’s atmosphere is

below the payload, which means that the sky is dark even during the day. Typically, the

payload will drift in the polar vortex at a steady rate of about 10 m/s, albeit with large

variations.

The Spider experiment will fly on 37 “Heavy”, a 20 µm thick, polyethylene balloon with
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Figure 2.4: A histogram of flight times for all Antarctic LDB flights and a best fit log-normal
distribution. The mean of all flight times is 20.1 days, while the best fit distribution suggests
a slightly smaller mean and a considerable tail towards longer flight times. Since the turn
of the century, there have been 26 flights, with a mean flight time of 23 days. The mean
flight duration is biased by the need to recover payloads in a short amount of time. This
means that flight terminations are predominantly near McMurdo Station, and for that reason,
flights often terminate sooner than strictly speaking necessary.

8000 pound gross lift capacity. At mission termination, a detonator separates the payload

from the balloon, resulting in free fall for approximately 5 seconds. A type of shock absorber,

a so-called rip-cord, is deployed during this process. It is designed to limit the acceleration

felt by the payload as the parachute is opening to no more than 5 g’s. The payload will

then slowly decelerate as it glides through the troposphere hitting the ground at a velocity of

8 m/s approximately 10 minutes after flight termination. After landing is confirmed, another

mechanism separates the payload from the parachute to prevent it from being dragged by

surface winds.

Steady wind patterns, specialized infrastructure, lack of populace, and predictable

geography make McMurdo Station and the Antarctic well suited for ballooning flights

lasting longer than a week. However, there are no technological or meteorological constraints
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Figure 2.5: An empirical probability density function derived from all long duration ballooning
flights in the last 24 years, or since the start of the Antarctic scientific ballooning [141]. Data
within 24 hours of launch are omitted. Balloons are launched from McMurdo Station, marked
by a green dot, and travel in a counter clockwise motion as seen on this map. The data
suggest a mean latitude of 79.2 deg with 3.5 deg standard deviation. Black markers show the
termination locations of all 39 flights used in this analysis. Data courtesy of CSBF [149].

preventing similar flights in the Northern Hemisphere. Successful circumpolar flights from

Svalbard, at approximately the same latitude as McMurdo Station, have been made, with

some in preparation [147, 148].

Long duration ballooning presents a cost-effective alternative to satellite missions, with

reduced overhead cost and shorter development cycles. At float altitude of 37 km, atmospheric

loading is minimal, resulting in almost space-like conditions. Ballooning, however, retains

many of the mass, power, and telemetry constraints experienced in satellite missions, and,

therefore, represents a great training platform for scientists.
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2.4 Cryogenic Architecture

The following section is largely based on an SPIE proceedings article [150], with further

results from an additional four years of cryogenic operations. We begin by reviewing the

cryogenic architecture and follow that with a discussion of standard cryogenic operations

and major results. We also describe a thermal model of the flight cryostat and present the

phenomenology of a helium leak in the main tank.

The Spider science goals require cooling of six 1.3 m long telescope inserts with 30 cm

apertures down to 1.8 K. The optical throughput and physical dimension of the science

instruments determine the scale of the cryostat as well as the minimum parasitic load to

the helium bath of several hundred mW. Early modeling suggested that the enthalpy of the

helium vapor produced by the expected load would provide enough cooling power at roughly

20 and 110 K to eliminate the need for a separate liquid nitrogen bath. Additionally, it was

found that the estimated load would allow for more than 25 day hold times assuming a tank

volume of at least 1000 L. It was concluded that a helium-only system would reduce the total

mass and simplify the design without compromising thermal performance.

During the design phase of the Spider experiment, it was also recognized that a 1000 L

flight cryostat posed a manufacturing risk. To further inform the design of the cryostat, three

test cryostats capable of housing a single telescope were built. These were built by a group of

engineers at Redstone Aerospace, in addition to William Jones, Peter Mason, Tracy Morford,

and Amy Trangsrud, all at Caltech at the time.8 Thermal characterization of these cryostats

confirmed predictions from simple thermal models (see Section 2.4.3).9 Based on these results,

design requirements were defined and agreed upon by Redstone Aerospace, the manufacturer

of the Spider flight cryostat. See Table 2.2 for an account of main characteristics.

The cylindrically shaped flight cryostat has five main components that are illustrated in
8Redstone Aerospace, Longmont, CO.
9One of the three cryostats was found to suffer from a microscopic helium leak which was later fixed.

The three test cryostats are now known as: “the Spider Test Cryostat”, “the Hienostat”, and “the BICEP2
Cryostat”.
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Table 2.2: Flight cryostat main specifications.

Property Value

Vacuum Vessel height 2.43 m
Vacuum Vessel diameter 2.11 m

Vacuum Vessel volume 5700 L

Main Tank net cryogenic volume 1284 L

Superfluid Tank net cryogenic volume 16 L

Mass of cryogenic assembly 850 kg

Hold time ≥ 25 days

Figure 2.6. Starting from the inside, the components are named: Superfluid Tank (SFT),

Main Tank (MT), Vapor Cooled Shields 1 and 2 (VCS1, VCS2), and Vacuum Vessel (VV).

The bulk of the cryostat is made of aluminum 1100 (VCS1, VCS2), chosen for its high thermal

conductivity, and aluminum 5083 (MT, SFT), which maintains its strength after welding.

The cryogenic assembly consists of a cylindrical 1284 L Liquid helium (LHe) main tank,

connected through a capillary system to a 16 L superfluid tank.

VCS1 surrounds both tanks and serves as a radiation shield from warmer stages, while

intercepting conduction and accommodating filters, which need to be maintained at low

temperatures to reduce in-band parasitics. VCS2 provides additional radiation shielding from

the VV, which is coupled to ambient temperatures. The dry weight of the cryogenic assembly

is roughly 850 kg.

The superfluid tank will operate at approximately 1.8 K, defined by the atmospheric

pressure at floating altitudes. Heat straps connect the superfluid tank to each of the telescope

tubes, providing a base temperature for 10 STPL closed-cycle 3He adsorption refrigerators

that cool each focal plane.10,11 Of order 10 g of activated charcoal are installed inside a single

refrigerator. When cooled to 4 K, the charcoal is capable of adsorbing all gaseous 3He in the

refrigerator. The adsorption refrigerator is equipped with a heat switch which can thermally
10STPL stands for Standard Temperature and Pressure Liter.
11Refrigerators supplied by Chase Research Cryogenics, Sheffield, UK.
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Figure 2.6: A cross section rendering of the flight cryostat with two inserts visible. The
outermost layer, the vacuum vessel, surrounds the two vapor cooled shields, shown in red
and blue. At the center, the main and superfluid tanks are colored in grey and light blue
respectively. Although not visible, the vacuum vessel pumpout port is a KF50 fitting located
at the bottom of the vacuum vessel. Another five plumbing lines exit at the bottom: the
main and superfluid tank fill and vent lines, and the VCS vent line.
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Figure 2.7: The view of the bottom of the main tank. Left: No inserts installed. Right: All
six telescopes installed.

link the refrigerator to the 1.8 K base temperature of the superfluid tank. With the heat

switch turned on, any 3He gas in the refrigerator will cool, condense, and eventually fall into

a small reservoir, located gravitationally below the heat switch contact. The heat switch is

normally flipped some time after the charcoal has been heated up. This ensures that all 10

STPL are gaseous at the time when liquification begins. With heating of the charcoal pumps

ceased, 3He gas will begin to adsorb again, resulting in a reduction in the vapor pressure of

the 3He bath and, therefore, the temperature of the bath. A successful fridge cycle results in

a 300 mK still temperature with hold times of 3–4 days.

2.4.1 Radiation Shields, Heat Exchangers, and MLI

Two intermediate aluminum 1100 vapor cooled radiation shields, VCS1 and VCS2, serve

as thermal anchors for multi-layer insulation, filter blocks, and heat exchangers. VCS1 is

supported by the MT, while VCS2 is supported from the VV. Six compact heat exchangers

are symmetrically placed on the top sides of both VCS1 and VCS2. Cryogenic boil-off is

forced to go through these flow-restrictive heat exchangers, cooling the respective stages, and
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thus providing negative feedback [151, 152]. The heat exchangers are made of stainless steel

blocks enclosing densely packed horizontal mesh (VCS1) or pellets (VCS2), both made of

copper.

The outer sides of VCS1 and VCS2 are layered with aluminized polyester films (known

as aluminized Mylar, MLI for Multi-Layer Insulation, or superinsulation), with 16 layers

on the outside of VCS1 and 52 layers on the outside of VCS2. These 6.4 µm thin layers

of thermoplastic polymer provide a lightweight substrate for highly reflective 35 nm thick

aluminum layers coated on both sides. The MLI is designed to provide sufficient radiation

suppression to maintain large temperature gradients between stages. A 0.1 mm thick, spun-

bound polyester sheet is placed between each layer of Mylar to reduce thermal conduction,

which has the potential to dominate radiative effects if the layers have strong thermal contacts.

The surface area of each stage ranges between 10–14 m2. The MLI packing density of 14

layers/cm reduces compression that would otherwise lead to undesirable conductance effects.

This is roughly a factor of two lower than the quoted optimal packaging density for MLI

[153, 154]. However, lower packaging densities enable more effective evacuation of the vacuum

vessel.

2.4.2 Flexures and Plumbing

The main tank is supported by the vacuum vessel through six G-10/aluminum flexures

symmetrically placed on the cylinder sides (see Figure 2.8). G-10, a lightweight, high tensile

strength fiberglass, is an extremely poor conductor of heat, and, therefore, ideal for cryogenic

flexures [155]. In order to dampen heat flow from the VV to the MT, the flexures are heat

sunk at VCS1 and VCS2 using copper straps (see Figure 2.9). Similar but considerably

smaller G-10 flexures, 33 mm long, 29 mm wide, and 0.8 mm thick, connect VCS1 to the MT

and VCS2 to the VV at six points on the cylinder sides. Three axial flexures help align VCS1

with respect to the MT, and six flexures connect the SFT to the bottom of the MT.
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Figure 2.8: Left: CAD model of the vacuum vessel, the outermost stage of the flight cryostat.
The dry weight of the cryogenic assembly, excluding telescope inserts, is 850 kg. All fill and
vent lines exit the VV at the bottom. Ports on the front side of the cylinder provide hermetic
connections to housekeeping electronics. Two trunnions on the center portion of the VV
walls attach to the elevation drive on the gondola. The center insert will not be used. A
cross section through the VV can be seen in Fig. 2.6. Right: CAD model of the main tank
and superfluid tank assemblies as viewed from the bottom. Note the seven telescope inserts
constituting extruded cuts through the MT. The SFT has a ring-like structure that connects
to another larger cryogenic volume located under the MT. Explosion-bonded thermal contact
areas, both on the MT and SFT, are connected to each insert to provide cooling power
directly from the 4 K and 1.8 K baths. The copper straps used for this purpose are not shown
on this schematic. The cylindrical MT is 1.69 m in diameter, 1.14 m long, and weighs 220 kg.
The insert diameter is 419 mm and the thickness of the MT walls varies between 4 and 6 mm.
Observations will be performed with the cryostat tilted at 25–40 deg elevation such that the
bulk of the SFT is above the ring like structure, which holds only about 0.5 L.

Spider will scan at a 25–40 deg elevation such that the liquid level of normal liquid

does not lie in the plane defined by the bottom of the main tank. For this reason, and since

the superfluid tank will never be entirely full, it is important that the helium in the SFT

is superfluid to ensure that sufficient cooling power is supplied to each insert. This fact

motivates the shape of the SFT, which can be seen in Figure 2.8, and the placement of thermal

contact areas on the ring-like structure. Explosion-bonded aluminum-to-copper transition

49



Figure 2.9: Left: One of the six main structural flexures which are symmetrically spaced
around the main tank cylinder. These flexures support the main tank off of the vacuum vessel
through a G-10 sheet which is thermally damped by copper heat straps connected to VCS1
and VCS2. The G-10 flexures are 1.6mm thick, 127mm wide, and 114mm long. Right: One of
the six heat exchangers placed on the top of VCS2. The 15 cm long rectangular compartment
is filled with copper pellets creating high flow impedance, which extracts enthalpy from the
helium boil-off. The heat exchanger system forms a double annular structure on each of
the vapor cooled shields. Helium vapor exiting the cryostat through the VCS vent must go
through one of the six heat exchangers on both VCS1 and VCS2. The cylindrical symmetry
of the heat exchanger system ensures that equal enthalpy is extracted by the heat exchangers.

plates provide reliable thermal contact areas from both the MT and the SFT.12 Parts of the

aluminum are milled out such that the copper is in direct contact with the cryogen. The

remaining aluminum is then welded on to the corresponding tank. The transition plates are

connected to custom-made copper heat straps, and supply the necessary cooling power to

telescope inserts and sub-Kelvin cooling stages. The MT thermal contact areas can also be

seen in Figure 2.8.

Plumbing lines are made of type 304 stainless steel, due to its low thermal conductivity

and suitability for welding. There are five plumbing lines leading from the outside of the

VV to either the MT or the SFT. These are: the MT fill and vent lines which have a 3/4

inch Outer Diameter (OD), the SFT fill and vent lines which have a 1/2 inch OD, and the

VCS vent line which has a 1/4 inch OD. Aluminum-to-stainless steel transitions are made
12High Energy Metals, Inc., Sequim, WA.
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Table 2.3: Cryogenic tasks required for cooldown – in chronological order.

Task Time

Multiple purge cycles 36–48 hours
Pump with turbomolecular station 3–4 days
Fill main tank and equilibrate at LN2 temperatures∗ 4–5 days
Cool to LHe temperatures∗∗ 3 days

Total 11–14 days
∗ LN2 = liquid nitrogen. ∗∗ LHe = liquid helium.

from explosion-bonded blocks that are welded in place. MT fill and vent lines will be capped

off prior to launch, forcing helium boil-off to leave the MT through the heat exchangers.

All plumbing lines, excluding the VCS vent line, are strategically heat sunk at VCS2 and

not at VCS1. The length of the MT/SFT vent and fill lines is approximately 2.7 m, while

the average travel of gas through the VCS vent line system is about 12 m. Vent lines are

positioned on cryogenic tanks such that boil-off will be able to exit the cryostat when it is

tilted at a 25–40 deg elevation angle and full of liquid.

2.4.3 Cryogenic Operations

The construction of the three Spider test cryostats informed the design of the flight cryostat.

Thermal qualification of those systems showed that a helium-only cryostat with two vapor

cooled shields could successfully cool an entire BICEP1-like telescope, while maintaining

minimal in-band loading from warmer temperature stages, and a reasonable cryogen boil-off

rate. From this it was concluded that the heat exchangers cooling the intermediate stages, and

thereby providing negative feedback, were operating as expected. The testing also suggested

that the multilayer insulation would provide sufficient insulation and that thermal conduction

paths to sub-Kelvin stages were adequate to cycle adsorption refrigerators. The build phase
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of the Spider flight cryostat began in the Fall of 2008 and was completed in the Summer of

2009. The cryostat13 was delivered to Princeton in January 2010.14

Cooling the Spider flight cryostat down to nominal temperatures requires approximately

two weeks of pumping and liquid nitrogen pre-cooling. The nitrogen pre-cooling effectively

removes 90% of the combined enthalpy of the telescopes and cryostat using 300–400 L of

liquid nitrogen. The remaining cooldown to 4 K requires approximately 500 L of liquid helium

before the cryostat has fully equilibrated at 4 K. Table 2.3 highlights the main aspects of the

cooldown schedule and their approximate duration. The considerable time requirement is set

by the net volume of the vacuum vessel – approximately 6 m3 – as well as the total mass that

is cooled to the 4 K base temperature – about 350 kg from the main tank and an additional

48 kg per insert. Of the 14 test runs performed since the cryostat was built, excluding the

liquid nitrogen runs performed at Redstone Aerospace, the cryostat has been cooled down to

liquid helium temperatures ten times. The remaining four runs only used liquid nitrogen.

The total liquid helium used for those ten runs amounts to little over 30,000 L. For two of

those runs, the cryostat has been fully populated with telescope inserts. Table 2.4 describes

some aspects of the cryogenic performance during all of the liquid helium runs conducted so

far.

Pumping

The vacuum vessel requires approximately one week of pumping before the initial liquid

nitrogen cooldown can begin. During the pumpdown procedure, we find that backfilling with

dry nitrogen helps to reduce the asymptotic absolute pressure. Our experience suggests three

to four gaseous nitrogen (GN2) backfilling procedures are useful, but any subsequent purge

does not seem to help reduce the asymptotic pressure. Figure 2.10 shows the pressure profiles

as a function of time for a few pumpdowns performed with a fully populated optical system,
13Within the collaboration, the flight cryostat is referred to as “Theo,” after Theodosia Burr. The act of

trying to understand Theo’s cryogenic behavior is sometimes jokingly referred to as “Theology.”
14At about the same time the BICEP2 cryostat, one of the three Spider test cryostats, began what would

become a three year cryogenic run with an average liquid helium consumption of about 22 L/day [108].
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Table 2.4: Cryogenic score sheet for all liquid helium runs of the Spider flight cryostat. From
left to right, TVCS1 and TVCS2 represent the average temperature of the two vapor cooled
shields, fVCS is the flow rate out of the main tank as measured by a flow meter on the output
of the VCS vent line in units of Standard Liters Per Minute (SLPM), thold is the hold time of
the cryostat assuming an initial charge of 1000 L, fHe represents an approximate estimate for
the quiescent helium background as measured by a leak checker placed close to the pump out
port while the cryostat is in equilibrium at 4 K, dpump is the number of days that we were
actively pumping on the vacuum vessel before starting initial liquid nitrogen fill, and Nins is
the number of telescope inserts in the cryostat.

Run Date TVCS1 TVCS2 fVCS thold fHe dpump Nins

[K] [K] [SLPM] [days] [mbar/l/s] [days]

3 03/2010 30± 3 160± 15 N/A N/A 2× 10−7 6 0
4 05/2010 28± 3 168± 15 20± 2 24± 2 4× 10−8 8 0
6 02/2011 26± 3 142± 15 20± 3 24± 2 4× 10−9 9 0
7 08/2011 28± 4 157± 15 21± 3 23± 2 8× 10−9 7 1
9 05/2012 31± 3 151± 15 23± 3 21± 2 6× 10−7 7 1
10 07/2012 32± 3 153± 15 24± 4 20± 2 2× 10−7 7 1
11 10/2012 33± 3 151± 15 23± 3 20± 2 1× 10−7 6 2
12 02/2013 31± 3 148± 15 25± 4 19± 2 N/A 12 2
13 06/2013 44± 3 160± 15 54± 5 9± 1 4× 10−7 7 5
14 02/2014 42± 3 157± 15 38± 4 13± 1 1× 10−6 14 6

cryogenic Runs 13 and 15. The idea behind dry gas purges is that the gas helps dislodge

water molecules that have desorbed to various surfaces inside the vacuum vessel while the

chamber was exposed to atmosphere. Under that assumption, the effectiveness of a dry gas

purge will depend on the time and ultimate pressure levels as well as the temperature and

mass of the gas that is used.15 We find that purging to higher pressure, say 760 torr rather

than 100 torr, is generally more effective. We use an Agilent TriScroll 600 for this initial

“rough-out” phase of the pumpdown.16 Figure 2.10 shows a dramatic change in pressure

profiles after the first GN2 purge during Run 13.

After approximately 36–48 hours of purge cycles, an Adixen turbomolecular station with
15We have not attempted to heat the purge gas to speed up outgassing during dry gas purges. Similarly,

no UV light source has been placed inside the vacuum vessel to speed up the desorption.
16Agilent Technologies, Santa Clara, CA.
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Figure 2.10: Left: Pumpdown profiles for the vacuum vessel prior to cooldown in Palestine,
Texas, during Run 13. In retrospect, the pumpdown labelled “purge 1” lasted too long.
Another dry nitrogen purge was warranted. Right: Pumpdown profiles for Run 15 (ongoing).
The first two pumpdowns were quick (they barely make it onto the plot). The third pumpdown
has the turbo pump placed significantly closer to the vacuum vessel. The change in pump
rate is drastic.

an ATP150 turbo unit is installed on the vacuum vessel manifold.17 We pump on the system

in this configuration for 5–6 days. During this process, we observe a marked difference in

measured vacuum vessel pressure depending on the length and diameter of the pump out

manifold. Ideally, the pump should be placed as close to the opening of the vacuum vessel

as possible. This reduces the flow impedance to the pump. Figure 2.10 also shows how the

pumping rate will increase when we change L/D4 by a factor of 100–200, where L is the

length of the pumping manifold and D is the effective diameter of the cross sectional area;

during Run 15, we mounted the turbo directly to the vacuum vessel.

Figure 2.10 shows that the asymptotic pressure after a few days of pumping is of order

1 mtorr. At this point we expect a significant fraction of the residual gas in the vacuum
17Pfeiffer Vacuum Inc., Nashua, NH.
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vessel to be water vapor. Water molecules at 1 mtorr have a mean free path of approximately

30 cm.18 This suggests that the system has reached the free molecular regime, defined as the

pressure where gas particles collide more frequently with walls inside the vacuum vessel than

with each other. As we continue pumping, we expect to reach an asymptotic pressure where

we are limited by the outgassing rate of objects inside the vacuum vessel, and not pumping

capacity.

2.4.4 Cryogenic Qualification

Once in equilibrium, VCS1 and VCS2, the intermediate radiation shields, stay at approx-

imately 40 and 160 K respectively, while the main tank boil off corresponds to 80 L/day

consumption and a flow rate of 38 SLPM.19 Both flow rates and equilibrium temperatures

greatly exceed predictions by thermal models (see Section 2.4.5). The measured flow rate

corresponds to 16 day hold time given the net volume of the main tank of 1284 L. As the

payload ascends into the stratosphere, the shell of the vacuum vessel will drop in temperature

to approximately 270 K [143]. Residual optical loading to the 4 K stage is also significantly

reduced at float altitude, compared to sea level. Both effects are expected to cause significant

reduction in loading at float. For example, predictions from some thermal models suggest a

200 mW reduction in loading to the main tank going from 300 to 270 K.

Custom Bolometer

Custom bolometers were constructed to characterize the radiative environment in the cryostat

during Run 7 (see Figure 2.11). The bolometers consisted of a macroscopic, 158 cm2 square

aluminum 3003 plate stood off from the main tank using four 3.4 cm long G-10 rods with

3.2 mm diameter. The rods were epoxied into metal plates using Stycast 2850FT. The plate

area corresponded to 1/280 and 1/15 times the area of the main tank and superfluid tank,

respectively. Knowing these dimensions, we can estimate the loading to the tanks in the form
18The mean free path scales inversely with pressure.
19Five times the flow rate out of a healthy set of lungs.
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Figure 2.11: A CAD model of the custom bolometer. The 158 cm2 square aluminum 3003
plate is stood off from the main tank using four 3.4 cm long G-10 rods.

of radiation or helium gas conduction. Two bolometers were manufactured this way. One

was enclosed in an aluminum radiation shield with a macroscopic aperture facing the bottom

of the main tank to minimize flow impedance for residual gas, including helium atoms.

We estimated the bolometer conductance using data from load curve measurements

performed at varying times during Run 7. This analysis suggests that the loading to the

shielded and control bolometers was 60 µW and 600 µW, respectively. Naïvely scaling the

control bolometer loading we estimate that the loading to the main tank and superfluid tank

is 170 and 9 mW, respectively. This is not enough to explain the observed excessive loading

to both cryogenic stages. We note that these results were found assuming that the radiative

and gas environment is uniform within the cryostat.

In a subsequent cryogenic trial, Run 9, the bolometer was placed at the top of the cryostat.

Data from that run suggested no significant change in thermal loading. It is worth noting, if

these results were multiplied by a factor of four, we would arrive at a value similar to the

discrepancy between predicted and realized loading. It is possible that the accommodation

coefficient is different between the walls of the main tank and a relatively polished plate

of aluminum used for the bolometer [156]. Because of the significant difference in loading

between the shielded and non-shielded bolometer, we decided to place an additional radiation

shield over the superfluid tank. The shield is an aluminum 1100 sheet metal formed in the

shape of the SFT. Surprisingly, the loading to the SFT was not reduced by more than 20%.
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SFT Load Curves

During Run 7, we also performed a load curve on the superfluid tank to estimate the

equilibrium loading to the tank at 4 K. With the superfluid tank empty and evacuated, we

heated the tank and watched the system reach a new equilibrium temperature.20 Extrapolating

the results of this load curve, the measurement suggested 40 mW cooling power from 4 K to

the SFT equilibrium temperature of approximately 12 K. This result is consistent with the

upper limits on SFT loading of 44 mW, which was established from the maximum superfluid

hold time.

2.4.5 Thermal Model

Various thermal models were constructed both during the design phase and as the cryostat

was being built. Such models allow us to make predictions about cryogenic performance

and bracket the loading through different thermal links. For example, a comparison of early

thermal performance with predictions of the thermal model suggest that the heat exchangers

are operating with efficiencies close to unity. This is not uncommon [157, 158]. The Spider

flight cryostat is a complicated system, and any thermal model describing it necessarily makes

many simplifying assumptions. The primary indicators of cryogenic performance are hold

time and the temperatures of intermediate stages. Intermediate stages should be as cold as

possible to minimize loading on detectors through emission from filters [159]. The cryostat is

modeled as a system with five isothermal temperature stages: the vacuum vessel shell, two

intermediate vapor cooled shields, the main tank, and the superfluid tank. Heat transfer

is modeled as conductive or radiative with accurate knowledge of dimensions and material

properties.

We use both liquid nitrogen and helium during a cryogenic run. Table 2.5 lists some

thermal properties for these two cryogens. Boiling temperatures represent the equilibrium

temperature of the main tank. The liquid density at boiling point, as well as latent heat of
20Note that this test was performed before the capillaries were installed (see Section 2.5).
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Table 2.5: Thermal properties of 4He and N2 [160, 161].

Boiling Point Density at Gas Specific Latent Heat
at 1 atm [K] B.P. [kg/m3] Heat† [J/gK] of Vap. [J/g]

4He 4.23 124.7 6.32–5.19 20.8
N2 77.35 806.1 1.12–1.05 199.2

†In the range between boiling point and 300 K.

vaporization, are used to calculate hold times, while the specific heat is used to calculate the

cooling power of the heat exchangers. The thermal model was originally written in Matlab.

The code was later verified and rewritten in Python by Zigmund Kermish. Some of the model

results are discussed further in [159].

If the assumptions made in our model are valid, it should be able to predict equilibrium

behavior at both 77 and 4 K. Model predictions were originally optimized using data obtained

at liquid nitrogen temperatures only. Five free parameters were varied to minimize a Chi-

squared penalty function: two describing the heat exchanger efficiency, two describing the

effective conductivity of multi-layer insulation, and one describing the emissivity of bulk

aluminum (see Appendix A). That model predicted equilibrium temperatures of VCS1 and

VCS2 at approximately 40 and 150 K respectively, with at least 60 days of hold time!

Measurements of VCS temperatures are quite consistent with these predictions, but the hold

time is off by a factor of three; we observe approximately 20 days. It was clear that the

thermal model needed revision to account for this discrepancy.

Despite the inability of the model to predict diminished cryogenic performance, it does

give a reasonable order of magnitude estimate for the contribution of various forms of heat

transfer between temperature stages in the cryostat. Dimensions of all components inside the

cryostat are known to high precision. With VCS1 and VCS2 at 40 and 160 K respectively

we estimate approximately 300 mW of loading to the main tank through G-10 flexures and

about 60 mW of loading through the stainless steel tubing. Note, that an equilibrium flow
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Figure 2.12: An example of predictions from the thermal model with a large component from
helium gas conduction. Note that the total loading to the main tank, left, sums up to 2.5 W
with VCS1 and VCS2 equilibrating at temperatures comparable to those of Run 14.

rate of 40 SLPM corresponds to a 2.5 W loading to the main tank. See further discussion in

Appendix A.

An extension to the thermal model, which incorporates residual helium gas conduction

in combination with light leaks, seems to reduce the discrepancy between thermal model

predictions and realized values. Figure 2.12 shows predictions from a thermal model which

includes a strong helium gas component. Note that the predicted loading to the main tank,

approximately 2.5 W, is consistent with current behavior.

2.4.6 Helium Leak

The main tank of the Spider flight cryostat has at least one microscopic fissure that leaks

helium. The leak was first detected in Longmont, Colorado, where the cryostat was built.

We have had mixed success in locating and sealing this leak. The leak is observed at room
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temperature, but only through pressurizing the tank with gaseous helium while pumping on

the vacuum vessel. This prevents us from localizing the leak while at room temperature. The

leak becomes more apparent as the cryostat is cooled to liquid nitrogen temperatures and

early attempts at localizing the leak by covering the affected area with liquid nitrogen proved

successful. We subsequently applied Stycast 2850FT to suspect areas and noticed a marked

change in helium backgrounds (compare Runs 4 and 6).

However, with time, the leak rate increased and became harder to localize. The large

number of aluminum welds as well as the complex shape and high density of threaded

holes were all suspect.21 Additionally, bulk aluminum is known to have microscopic fissures

extending through the entire thickness of a wall. Prior to Run 15, which is currently ongoing,

Stycast was reapplied to suspect areas. This appears to have reduced the helium background

levels down to values observed during Run 6. This could suggest that Stycast needs to be

applied regularly.

Helium leak checks are performed at various stages in the cooldown of the cryostat as

part of standard operating procedures. Although leak checkers report an absolute flow rate of

helium atoms, a straightforward interpretation of these values between runs can be difficult.22

During Run 14, our leak checker would report an approximately 1× 10−6 atm · cm3/s flow

of helium atoms. Table 2.4 shows the approximate helium leak rates as reported by a leak

detector placed on the vacuum vessel pump out port while pumping in parallel with a turbo

station.

Helium atoms reduce the vacuum integrity of our system and can, with sufficient density,

prevent the successful operation of the flight cryostat. To reduce the effect of residual helium,

we install materials with large surface areas that will adsorb these helium atoms and prevent

them from conducting heat in the cryostat. We have chosen to use activated charcoal which
21There are 17 m of aluminum welds on the main tank. A fraction of those were laser welded.
22Leak checkers are great at detecting leaks, but not establishing repeatable leak rate measurements with

high precision.
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Figure 2.13: Adsorption isotherms of helium on activated charcoal as a function of pressure
as calculated using Equation 3 in [162]. The ordinate shows how many grams of helium can
be adsorbed on one gram of charcoal.

we epoxy to copper flexures bolted to 4 K surfaces. The procedure results in a 0.1 g/cm2

surface density of activated charcoal.23

Figure 2.13 shows an estimate for the adsorption isotherms of activated charcoal as a

function of pressure. Activated charcoal is used for this purpose in a wide range of applications

[162, 163, 164, 165, 166].

2.5 Capillaries

The Spider capillary system provides continuous flow of 4He from the main tank to the

superfluid tank. The system is critical for a successful flight because the hold time of the

superfluid tank alone, when fully charged, is only 4 days, compared to the likely 20 day flight

duration.
23The charcoal is supplied by Fisher Scientific, Pittsburg, PA. We use 1.40–3.35 mm pellet size in our

measurements.
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The general design of the Spider capillary system is based on a paper by DeLong et

al. [167] wherein they describe a two stage 4He cryogenic system for a dilution refrigerator.

In that paper the authors establish an empirical relation between the room temperature

flow impedance and the cooling power of the capillaries by studying a few different capillary

assemblies. Their findings also suggest that for a fixed pumping speed the equilibrium

temperature of a capillary filled pot rises with the throughput of the capillaries. The standard

interpretation is that an increase in cooling power is balanced by heat input conducted

through a superfluid film. In their measurements, the authors find that the critical power, i.e.

the power needed to surpass the cooling capacity of the capillary system, was approximately

4.5 mW/10−4 mole/s. In other words, a flow rate of 10−4 mole/s between 4 and 1.8 K provides

4.5 mW of cooling power. This is roughly consistent with a 50% cooling efficiency, assuming

a latent heat of evaporation for 4He of l = 93 J/mole.

2.5.1 Brief Literature Review

In systems that are considered here, liquid helium flows as a result of a pressure differential.

With the helium vapor pressure below the superfluid transition point, a non-negligible fraction

of liquid will populate the quantum mechanical ground state intrinsic to the system once

it exits the capillaries. A number of publications describe capillary systems. Wrubel et al.

[168] describe a capillary assembly with four parallel polycarbonate capillaries and a needle

valve for controlling the flow impedance. Das et al. [169] discuss a helium evaporator that is

continuously fed by a fixed impedance line. Their measurements of room temperature flow

impedance and corresponding cooling power seem to agree with the results described in the

original capillary paper [167]. Fujiiyoshi et al. [170] describe a similar system with comparable

results. It is evident that authors arrive at their preferred flow impedance through trial and

error and reliance on empirical measurements, see for example [171, 172].

Some of the more theoretical aspects of helium superfluidity in capillaries are examined

in a paper by Koh [173]. A simple model that describes the evaporation rate and film creep
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Figure 2.14: The capillary assembly installed prior to Run 10. Four capillaries connect
the 4 K main tank box (bottom) to the 1.8 K superfluid box (top). The double volume
structure is supported by two 1/32 inch thick G-10 flexures. The thermal load conducted
through these flexures is negligible compared to the cooling power from the superfluid helium.
Porous stainless steel Mott filters located below each capillary prevent ice and other dirt from
entering and clogging this high impedance tubing. Superfluid helium exits the capillaries in
the smaller of the two boxes (top) which is connected to the superfluid tank through 6 inch
long bellows tubing with a 1/8 inch diameter.

in a sorption refrigerator is discussed in Lau et al. [174]. The model helps guide the design

parameters of an orifice that prevents undesirable superfluid creep. A large body of literature

has investigated the use of capillaries, which are sometimes called “fixed impedance lines,” in

cryogenic applications.
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2.5.2 Design

If successful, the capillaries will provide the superfluid tank with liquid helium as long as

there is liquid in the main tank. The following list describes the main design criteria for the

Spider capillary assembly:

◦ Continuous cooling power of approximately 60 mW to combat steady-state loading to

the superfluid tank.

◦ Superfluid base temperature of at most 1.8 K for effective cycling of the six adsorption

refrigerators that supply cooling power to the focal planes.

◦ No mechanical valves or moving parts.

◦ Robust operation for at least 50 days.

As described in Section 2.4.3, the steady-state loading on the superfluid volume has been

measured under in-flight conditions. These measurements suggest a steady-state loading of

40 mW. Implementing a safety factor of 1.5, we conclude that the capillary assembly must

provide at least 60 mW of continuous cooling power to the superfluid tank. The superfluid

bath also has to reach a base temperature below 1.8 K. This facilitates effective operations of

the 3He closed-cycle adsorption refrigerators inside each telescope. Cycling the adsorption

refrigerators creates an approximate 5 mW transient loading on the superfluid tank which

lasts for about an hour. The superfluid tank will have to sustain transients from cycling six

refrigerators once every 24–72 hours.

The Spider capillary system achieves this using three 35 cm long capillaries wrapped

around Teflon spools and silver soldered into 1/8 inch Swagelok glands with gender preserving

VCR fittings (see Figure 2.14).24 The capillaries connect two approximately 50 mL volumes

that are connected to the main tank and the superfluid tank through 1/8 inch bellows tubing,

which was custom built to size.
24Swagelok, Solon, OH.
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Figure 2.15: A cross section through one of the capsules. The ends of the capillaries are
located inside the Swagelok VCR glands, approximately 1 cm from the brass pucks. This
way the ends are shielded from mistreatment. After having silver soldered the capillary into
the puck on the left, the capillary is threaded through a tiny hole at the edge of the Teflon
spool. The spool then slides over the gland after which the capillaries are wrapped around
the spool. With only a couple of inches remaining, the capillary is threaded through another
hole at the edge of the spool, then through the Teflon cup, after which the other end is silver
soldered into the brass puck on the right. The stainless steel spring is then carefully wrapped
around the capillary and secured in the Teflon cup. Finally, heat-shrink tubing is positioned
around both the Teflon components and spring to shield the capillaries.

The capillary material is extruded 304 stainless steel with a 0.0035 inch inner diameter

and a 0.0025 inch wall thickness.25 The dimensions were chosen to resemble one of the

assemblies described in the original paper by DeLong et al. [167]. Having three capillaries

reduces susceptibility to constrictions from ice slush in the main tank. Failure of one capillary,

possibly due to an ice plug, should not affect the performance of the superfluid tank.

The stainless steel capillary lines are silver soldered into Swagelok VCR glands and then

wrapped around Teflon spools which are sealed with transparent shrink wrap. Small, custom-

made, brass pucks with 0.009 inch diameter holes fit snuggly into the Swagelok glands. A

capillary is threaded through one of the pucks before soldering. Post wrapping, the capillary

is routed back into the center of the Teflon spools and through stainless steel compression

springs that provide structural support to the whole assembly while keeping heat conduction

at a minimum. As the capillaries are internal to the springs, there is very little chance that
25Capillaries provided by Eagle Stainless, Warminster, PA.
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spring compression can pinch the capillaries. The springs allow us to gently modify the

overall length of the assembly to fit perfectly between the two glands that are welded to each

of the small boxes. The capillaries along with VCR fittings, Teflon components, and springs,

are referred to as capsules. Figure 2.15 shows a cross section of an individual capsule. The

design allows us to quickly replace capsules if necessary.

Stainless steel Mott filters are welded to the inside of the 4 K box so as to intercept large

particles before they enter the capillaries.26 The filters are spot welded to the inside of a

lid before performing the seam weld that attaches this lid to the box. Unfortunately, the

high packing density of Mott filters precludes seam welding. We measured the gap between

the filters and the inside surface of the boxes using thickness gauges and found that it was

less than 0.001 inch. If correctly installed, the particle capture efficiency of these filters is

such that they collect 99.9% of particles whose diameter is larger than 20% of the capillary

diameter. This should allow for effective operations of the capillaries without contributing

significantly to the overall flow impedance of the system. The superfluid tank and capillary

assembly are shown in Figure 2.16.

Measurements show that the design provides approximately 100 mW of cooling power to

a superfluid volume while conducting only 2 mW between the two temperature stages. The

net cooling power can be changed by simply altering the length of the capillaries in a way

that does not require any other change to the design. This allows us to quickly arrive at an

optimal cooling power by having a collection of interchangeable capsules.27

2.5.3 Experimental Results

Superfluid is characterized by inviscid flow of zero entropy liquid with almost infinite thermal

conductivity. It is observed when 4He is cooled below 2.17 K, referred to as the λ-point. This

phenomenon was first discovered in 1937 by Kapitsa, Allen, and Misener [175], and later
26Filters purchased from Mott Corporation, Farmington, CT. We use media grade 20 filters.
27A great number of backup capsules were constructed with wonderful care by Princeton undergraduates

Will Taylor and Charles J. Titus, class of 2014.
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garnered a phenomelogical description for which Landau received the Nobel prize [176].28

The elegant theory of superfluidity is contrasted by a medley of empirical evidence.

Capillary systems are commonly quantified by their cooling capacity, or critical power,

Qcrit, which is related to the flow rate through the capillaries. The critical power can be

estimated through the capillary impedance factor, an extrinsic quantity that can be measured

at room temperature [167]. A pressure differential, ∆P , is set up between the two ends of a

capillary system and the flow rate measured.29 The impedance factor is then

Z = (1/η)∆P/V̇ , (2.5)

where η is the dynamic viscosity of the fluid and V̇ is the volumetric flow rate. The warm

flow impedance can then be compared to the cooling power of the capillaries measured at

operational temperatures. For the Spider capillary assembly, we measure the flow impedance

by pressurizing the main tank to 15.7 psia, using either nitrogen or helium. We then evacuate

the superfluid tank and observe the pressure rise in the calibrated volume over hour timescales.

The room temperature dynamic viscosity of helium, η(He) = 20.0 kg/m/s, is larger than that

of nitrogen, η(N2) = 18.6 kg/m/s. We have to account for this in our calculation of flow

impedance. It is useful to note that dynamic viscosity is generally proportional to
√
T [177].

The critical power is measured by applying heat to an empty volume with a steady supply

of superfluid helium. The base temperature of the superfluid bath increases with heat input

until the superfluid flow is unable to compensate. A temperature runaway effect is then

observed where additional heat lifts the temperature of the superfluid enclosure past the

λ-point at a fast rate. The critical power can also be estimated from the equilibrium flow

rate out of the superfluid tank. The measured critical power can be compared to the warm

flow impedance to establish an empirical relation between the two parameters.

It seems difficult to estimate how superfluid helium flow rates depend on the geometry of
28Kapitsa won a Nobel prize for his work in low-temperature physics. He shared that price with Penzias

and Wilson.
29For example, by watching the pressure increase in a calibrated volume.

67



Figure 2.16: The superfluid tank and capillary assembly are mounted to the bottom of the
main tank (not shown), which in this case would be rotated at a 45 deg angle with respect
to the plane of the page. Thermal contact pads are welded into a ring like structure that
sits below the main volume. The fill and vent lines exit at the top to the right and left
respectively. The net volume of the superfluid tank is 16 L.

the capsules. Ideally, the Hagen-Poiseuille equation relates the pressure drop to the length

and the diameter of the capillaries as follows

∆P =
128ηLV̇

πd4
, (2.6)

where ∆P is the pressure drop over the cylindrical tube with diameter d and length L

such that L � d. Complications arise since the superfluid transition happens somewhere

within the capillaries. In the two-fluid model, the above equation is still valid for the normal

component whose flow should remain laminar. However, the superfluid component is likely

to become turbulent. In this case, the appropriate expression for the heat flow is derived by
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Schotte [178]. The two-fluid model in relation to capillaries is discussed further in Lages et

al. [179].

Two distinct capillary assemblies have been run in the Spider flight cryostat. The current

design was installed prior to Run 10. The size and complicated geometry of the superfluid

tank, chosen to accommodate six telescopes, heat straps, and the capillaries themselves

impedes thermal modeling. Both conduction and radiation contribute significantly to the

total thermal budget of the superfluid tank. Heat is conducted through the stainless steel

vent and fill lines and the G-10 flexures that suspend the superfluid tank from the main tank.

Radiation from the inner vapor cooled stage and any light leaks from warmer stages also

contribute to the loading at a significant level. Under equilibrium conditions, the enthalpy

of the system is kept in balance by the evaporation of liquid helium. We can write the

steady-state requirement as follows

ṁHvap(TSFT) ≈
∑

i

∫ T=4K

TSFT

Ci(T
′)dT ′ + σSBAeffT

4
V CS1, (2.7)

where ṁ is the mass flow rate out of the superfluid tank, Hvap is the temperature-dependent

enthalpy required to vaporize a unit mass of 4He, Ci represents the conduction through

one of the stainless steel or G-10 thermal paths, and the last term on the right-hand-side

represents the radiative loading to the SFT, with Aeff corresponding to the effective area

of the SFT-VCS1 system. From this we see that the equilibrium temperature of the SFT

depends on the flow rate. As the vapor pressure of the of helium bath is set by the pumping

capacity and the impedance of the capillaries, so will the equilibrium temperature of the

liquid bath. If the impedance of the capillaries is sufficiently low, the flow from the main

tank will negate evaporative liquid loss and an equilibrium state will be reached.

Table 2.6 shows the measured properties of the capillary assemblies for the six cryogenic

runs performed with them installed in the Spider flight cryostat. During Run 9 we found

that the cooling power of the capillaries was not sufficient to sustain a reasonable amount

of superfluid. This was surprising, as we expected approximately 40 mW of cooling power
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Table 2.6: Measured properties of various capillary assemblies. For Run 9 the cooling power
of the capillaries was less than the total equilibrium heat input to the superfluid tank. The
throughput of the capillaries was greatly increased between Runs 9 and 10 such that the
pumping speed limited the equilibrium temperature of the superfluid tank. A flow restriction
formed during Run 12, which limited the superfluid flow rate.

Property DeLong R9 R10 R11 R12 R13 R14

Impedance, Z × 109 [cm−3] 670 240 36 47 41 49 59
Critical power, Qcrit [mW] 15 18 154 N/A N/A N/A N/A
Eq. flow, fSFT [SLPM] 0.44 0.45 3.1 2.5 0.65 2.2 1.7
ZfSFT [109 SLPM/cm3] 295 109 112 118 27 107 100

based on the warm flow impedance measurement and the results of DeLong et al. [167]. Prior

to Run 10, we chose to increase the throughput of the capillaries assuming that the critical

power would greatly exceed the heat input to the superfluid system. At that point, we found

that the pumping capacity of our scroll pump was limiting the minimum temperature of the

system. Another, burlier, pump was acquired before Run 11 and one of the capsules was

removed to reduce the throughput and the loading to the main tank. Run 11 performance

was ideal.

Some flow restriction formed during Run 12, as we observed greatly reduced throughput

given expectations from the warm flow impedance. Even at decreased flow rate, we were still

able to efficiently cool both telescopes installed for that run down to 300 mK. The warm flow

impedance measured prior to Runs 14 and 15 are significantly different from Runs 11–13. It

is possible that one of the three capillaries has been damaged in a way which permanently

restricts flow.

We note that warm flow impedance is generally a great predictor for superfluid flow. This

is clear from the consistency of the product Z × fSFT, shown in the last row of Table 2.6.

For every cryogenic run, the cooling power has been measured by the method described

above. We find that using the relation described in [167] our measurement of the warm

flow impedance overestimates the critical power by a factor of three, but in a repeatable
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Figure 2.17: Left above: Flow rate out of the SFT and MT during a four week period during
cryogenic testing in Princeton, Run 11. Left below: Temperature of various parts of the
SFT as a function of time for the same time period. Right: A crude visualization of the
temperature profile of the SFT at the time indicated by vertical line on the left-hand side
plots. The black circles represent locations of thermometers.

manner. It is possible that the designs differ, for example, with regards to geometry, in some

crucial way. Their measurement of the flow impedance is performed with 3.1 torr pressure

differential whereas our measurement is performed with roughly 800 torr driving the flow.

Direct measurements of critical power were only performed for Runs 9 and 10. We know,

however, that the results scale linearly with equilibrium superfluid flow. Thermometers along

the superfluid tank allow us to monitor the temperature profile of the superfluid tank, and

to some extent, gauge the superfluid liquid level inside the tank (see Figure 2.17). The

equilibrium flow rate is continuously monitored using flow meters calibrated for low flow rates

which we install on the exhaust of our scroll pumps.30

30Omega Engineering Inc., Stamford, CT.
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2.5.4 Performance Characterization

The capillaries are at risk of becoming plugged, most likely with nitrogen ice, in the interim

between liquid nitrogen pre-cooldown and the initial liquid helium fill. The process is

inherently risky as residual nitrogen can solidify in the presence of liquid helium; it is fair

to assume that full risk mitigation is impossible without moving parts. So far, we have not

devised an operating procedure with a 100% success rate.

Given the long response time of the large cryostat, and the tight schedule afforded by

McMurdo ballooning, flow constriction in the capillaries poses significant risk to the schedule.

In the worst case scenario, plugged capillaries could require heating the cryostat back up to

room temperature and breaking vacuum, causing a 2–3 week slip in schedule at minimum.

So far, however, we have been successful in clearing plugged capillaries by suspending liquid

helium cool downs and heating the capillaries (which are well isolated from the main tank) up

to 300 K. This procedure requires approximately 2-3 days, and so far, it has a 100% success

rate.

The initial cool-down stage involves filling the main tank with few hundred liters of

liquid nitrogen while pressurizing the superfluid tank to 6 psig with gaseous helium and

maintaining approximately 1 SLPM of flow out of a pressure regulator on the SFT vent.

Once all liquid nitrogen has boiled out, the main tank is evacuated. The system is then

backfilled with gaseous helium at room temperature. We maintain the capillary assembly at

room temperature during the initial cool-down phase, approximately 270 K rather than 90 K.

This should ward off flow restrictions. This has to be done carefully, however, as overheating

might damage the capillaries.

Immediately following helium backfilling of the main tank we perform a capillary flow test

to determine the status of the capillaries before initial liquid helium transfer. The flow test is

performed with an approximately 90 K main tank pressurized to 15–16 psia with gaseous

helium. The superfluid tank is then evacuated with a scroll pump attached to the SFT vent

line manifold which is connected to an absolute pressure gauge. After evacuation, we valve

72



off the scroll pump and observe pressure rise in the 16–18 L volume of the superfluid tank

and manifold. The pressure increase is due to flow through the capillaries, driven by the

roughly 16 psi pressure differential. The rate of pressure increase as measured on the manifold

depends in a non-trivial way on temperature of the main tank, capillaries, superfluid tank,

and the room. As these sub-systems can have different temperatures at the time that the flow

test is performed, we have to correct for this in estimating the performance of the capillaries.

Informed by the data at hand we can derive a dimensionless quality factor, Q, that scales

linearly with observed superfluid flow,

Q ≡ η(Tcap)

∆P

VSFT + Vman

Teff

(
∆p

∆t

)
, (2.8)

Teff ≡
αTSFT + Troom

1 + α
, (2.9)

where VSFT and Vman represent the volume of the superfluid tank and the outside manifold,

respectively, ∆P is the pressure differential between the main tank and superfluid tank, η is

the effective dynamic viscosity of gaseous helium traveling through capillaries at temperature

Tcap, TSFT is the average temperature of the superfluid tank, Troom is the room temperature,

and ∆p/∆t is the rate of pressure increase in the superfluid tank during flow test. Finally, α

is a parameter that we use to fit our model to the realized behavior. In our system, we find

that setting α ≈ 0.5 maximizes the correlation between Q and realized flow rates.

This quantity is calculated immediately following a capillary flow test at liquid nitrogen

temperatures and just prior to the first proposed liquid helium fill of a given run. It is used

to estimate the health of the capillary assembly and determine whether the cryostat can be

filled with liquid helium.31

31The initial helium fill is time consuming. The process normally starts in the early morning and is rarely
over at a reasonable hour. The ability to quickly ascertain the health of the capillaries is essential.
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2.5.5 Launch Configuration

Flow out of the main tank is guided through the vapor cooled shields. An ensemble of Tavco

absolute pressure flow regulators are mounted on the end of the main tank and VCS vent

lines.32 These regulators set the pressure in the main tank. A couple of Tavcos set to open

at 13.5 psia are mounted on the end of the VCS vent line. We use two Tavcos to split the

flow and therefore reduce the effective cooling power to each Tavco. Given their intrinsic flow

impedance, we expect that the main tank will equilibrate at approximately 14.7 psia (1 atm)

at float. Another Tavco set to crack at 17.5 psia is installed on the MT. It will only open in

the event of MT overpressurization. This ensures that all flow out of the main tank is sent

through the VCSs.

Fill lines of the superfluid and main tank are capped with custom-made burst disk

assemblies that are set to burst at an absolute pressure of 25–32 psia. These were made by

Redstone Aerospace, the same company that built the flight cryostat. The design involves an

evacuated volume and two layers of burst disks. The inner disk cracks at 25–32 psi differential

pressure and is backed by vacuum while the outer is set at a lower bursting pressure such

that it will open as soon as the inner one does.

Atmospheric pressure changes rapidly during ascent. Such dramatic pressure changes can

affect the thermal performance of the superfluid tank. Figure 2.18 shows the pressure profiles

as a function of time for a 37H balloon, the balloon used for Spider, as well as the realized

ascent profile for the EBEX and B2K experiments.33 Based on the measured flow rate out of

the tank during boil off procedures, we estimate that the superfluid tank has about 2.0 L of

superfluid helium at equilibrium. An hour before launch, the scroll pump that is normally

used to pump on the tank will be removed. A compact, battery powered, diaphragm pump,

which is mounted on the cryostat, will then start pumping on the superfluid tank.34 As this

pump is not capable of sustaining 2 SLPM flow at 10 torr base pressure, the pressure in the
32Tavco, Inc., Chatsworth, CA, e-mail: tavcoinc@aol.com, fax: +1-818-998-8391.
33EBEX and B2K data courtesy of Shaul Hanany and Bill Jones respectively.
34KNF Neuberger Inc., Trenton, NJ.
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Figure 2.18: Atmospheric pressure as a function of time from launch. A typical flight reaches
float altitude after approximately 3 hours. The plot also shows the pressure profiles of an
emptied and valved off SFT as measured during cryogenic testing, see Run 12 and 13 curves.
The Run 14 curve shows the pressure profile when, instead of emptying the SFT, we start
pumping on the volume with the diaphragm pump. The dashed lines represent a one hour
delay between the time when the test begin and the time the payload is launched. The three
tests have been scaled to a common flow rate of 2.0 SLPM. In all cases, 10–20 torr pressure
oscillations at approximately 2 Hz were observed once the pressure reached about 50–100 torr.
This coincides with a change in the slope of the pressure profile.

SFT will begin to rise gradually, see Run 14 test in Figure 2.18.35 During this period, the

payload will also begin its ascent. Approximately 2.5 hours after the manifold reconfiguration,

the helium vapor pressure will exceed the λ-point. Shortly thereafter, the pressure profile will

change, see red curve in Figure 2.18. Of course, the atmospheric pressure is also dropping

with altitude. When the atmospheric pressure becomes lower than the helium vapor pressure

in the superfluid tank, a commandable valve will open and allow the atmosphere to pump
35During Runs 12 and 13, instead of using the diaphragm pump, we emptied the SFT (using heaters)

and waited for the pressure in the tank to drop to approximately 1 torr. We then valved off the SFT while
measuring the pressure rise as a function of time. The pressure profiles in Figure 2.18 show the difference
between emptying and valving off (Runs 12 and 13) and using a low power diaphragm pump (Run 14).
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on the superfluid tank. The vapor pressure in the SFT will asymptote to the approximately

10 torr float pressure. We expect this will happen no later than three hours after launch.

In order to limit contamination from residual atmosphere, such as water vapor, we want

to command the valve to open at as low pressure as possible. On the other hand, a violent

pumpdown due to large pressure gradients and low flow impedance could have negative effect

on the superfluid stage and therefore the sub-Kelvin stages in each telescope. We do not

know the ideal balance between minimizing pressure oscillations and preventing constrictions

due to residual atmosphere.

2.6 The Telescopes

The Spider telescopes are based on an optical design that is almost identical to that of the

BICEP1 and BICEP2 telescopes [180, 181]. Each telescope is a monochromatic telecentric

system (see Figure 2.19). The azimuthal symmetry of telecentric optics can in some cases

help reduce systematics that affect experiments lacking such symmetries. The compact

aperture allows for extreme baffling and aggressive sidelobe suppression. Finally, because

of the small aperture, the entire optics assembly can be cooled to 4 K up to and including

the cryogenic waveplate. Below the waveplate are two high density polyethylene (HDPE)

lenses, the objective and eyepiece. These form a f/2.3 and f/2.6 refracting system at 94 and

150 GHz respectively. The two lenses are anti-reflection (AR) coated using Teflon, which

has an index of refraction nTeflon = 1.57. Light enters the telescope through windows with a

330 mm diameter.

The telescope frame is constructed from carbon fiber structural members epoxied into

aluminum fixtures and mounted to aluminum rings at strategic intervals. The carbon fiber

provides a conductive and lightweight structure with outstanding rigidity. Measurements

show that the carbon fiber supports have a relatively high ratio of elastic modulus to thermal

conductivity when compared to other polymeric and composite structures [155]. A flexible

copper shim heat strap is routed internally, creating a thermal link between the focal plane
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and the still of the adsorption refrigerator that is mounted to the baseplate. This heat strap

ensures that the focal plane is cooled to 300 mK. Another heat strap connects the superfluid

temperature stage to the magnetically shielding spittoon.

Both the objective and eyepiece curvatures follow a conic equation

z =
cr2

1 +
√

1− (1 + k)c2r2
, (2.10)

with z describing the height profile of the lens and c and k representing the curvature and

conic constant, respectively.36 The parameters of the conic equation were optimized to

minimize aberration in the focal plane using Zemax.37 The Fraunhoffer far field defined as

D2/λ corresponds to 36 and 54 m for 94 and 150 GHz respectively.

A 280 mm cold stop is mounted in front of the objective inside the telescope tube and

cooled to 2 K. It is the coincidence of this optics stop with the objective which makes the

system telecentric. Cooling the optical stop from 4 to 2.0 K was found to significantly reduce

detector loading. This is understandable as approximately 25% of the antenna beam pattern

terminates on the cold stop. The location of the stop corresponds to a relatively aggressive

6 dB edge taper. The stop is part of a blackened optics sleeve which spans the majority

of the space between the two lenses. The sleeve is blackened using a mixture of Stycast

2850FT (cryogenic epoxy) and fine stainless steel powder. A set of eight blackened baffle

rings is mounted on the inside of the optics sleeve, extending approximately 1 cm from the

cylinder wall. These rings were implemented when measurements suggested 20% polarized

reflectivity of the blackened surface. The baffle rings increase internal reflections and the

effective absorptivity of the cooled optics sleeve.

A 4 (6) icm hot-pressed filter is mounted on top of the magnetically shielding spittoon of

a 94 (150) GHz telescope.38 At 120 and 180 GHz, these filters represent the lowest frequency
36Note that c and k are dimensionless constants. The curvature of the aspheric lens increases with the

absolute value of c while k defines the conic section. See [181] for further discussion.
37Zemax, LLC, Redmond, WA
38Use 30 GHz/icm to convert from icm units to GHz.
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Figure 2.19: A CAD model of the entire telescope assembly, measuring 2.02 m end-to-end.
The objective, 4 K filters, and half-wave plate are not clearly visible from this viewing angle.
The VCS filters are omitted to reveal the surface of the HWP.

cutoff in the Spider filter stack. Another collection of filters and IR shaders are mounted

above the objective and on both VCS1 and VCS2. These filters greatly reduce the radiative

load that would otherwise saturate the bolometers and load the 4 K main tank. The Spider

filter configuration is discussed in detail in [159].

Spurious signals can be generated in our timestreams from magnetic pickup in supercon-

ducting readout devices as the payload rotates in Earth’s magnetic dipole field. The telescopes

use high magnetic permeability materials to reduce susceptibility to magnetic disturbances.

Informed by finite element modeling, the focal plane, as well as the SQUID readout system

are surrounded by a 1.8 K spittoon made of Amumetal 4K (A4K), a proprietary nickel and

iron alloy.39 The SQUID mux chips are further shielded by a combination of the niobium

backshort, a niobium enclosure, and A4K sleeves. See Runyan et al. [182] for a comprehensive
39Amuneal Manufacturing Corp., Philadelphia, PA.
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description of the Spider magnetic shielding design. The telescope tubes are surrounded by

a two-layer concentric A4K or Cryoperm 10 magnetic shield assembly.40 The high magnetic

permeability materials essentially funnel magnetic field lines and reduce magnetic flux density

at the focal plane.

The 12 kg concentric cylinder shield assemblies represent the first wave of resistance

against unwanted magnetic fields. The theory of magnetic shielding in relation to cylinders is

discussed extensively in [183]. The dimensions of the shield assembly are greatly constrained

by the size of the telescope and the cryostat, such that only the thickness and number of shield

layers could be varied as design parameters. As for all flight hardware, we also needed to

limit the mass of the shields. We chose a 1 mm wall thickness two-layer assembly with 25 mm

differences in outside diameters. These concentric cylinders are 110 cm long, corresponding

to the length of the main tank, and the diameter of the inner shield is 38 cm. A two-layer

design was found to give superior shielding to mass ratio over a three-layer system.

2.7 Half-Wave Plate

A simple demonstration with polarizing sunglasses should convince people that many sources

of light are at least partially polarized. Unavoidably, objects inside our telescopes will emit

or reflect partially polarized light. Similarly, systematics of various origin are likely to create

spurious polarized signals in our detector timestreams. We use a rotating half-wave plate

(HWP) to mitigate these effects. A half-wave plate is a carefully selected piece of birefringent

material that can rotate polarization by a known amount. A slab of crystal is cut in the

plane of its principal axis, such that two indices of the symmetric dielectric tensor, nα and

nβ, and the thickness of the plate, d, fulfill

2d(nα − nβ) = λ0, (2.11)
40Cryoperm 10 was superseded by A4K during the build process.
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where λ0 is the band-center wavelength of the telescope. Rotating this plate by a known

amount allows us to separate internal non-idealities observed as polarization from those which

originate further skyward in the optical chain. The Spider HWP is extensively described in

[184].

Birefringence is produced by asymmetric crystal structure which causes opposite polar-

izations to move at different velocities through the material. This effectively rotates the

polarization of the light as shown in Figure 2.20. Birefringent sapphire, with an index of

refraction of n ≈ 3, was chosen for the Spider HWPs. This high refractive index would

cause substantial reflections if it were not for Anti-Reflection (AR) coatings which are bonded

to the sapphire. We use quartz and Cirlex (a polyamide) as AR coats for 94 and 150 GHz,

respectively.

Half-wave plates are used by a large number of millimeter and sub-millimeter receivers,

including ABS, EBEX, BLAST-Pol, and Polarbear [185, 109, 186, 187]. The addition of a

HWP naturally complicates any optical system and considerable work has gone into modeling

and characterizing HWP effects [188, 189, 190]. O’Dea et al. describes simulations that probe

how HWP non-idealities could affect Spider [130].

The Spider half-wave plate is mounted on a gold-plated Invar ring with compression

clips holding the sapphire in place (see Figure 2.20). The plate rotates on three bearings,

one of which is spring-loaded so the delicate plate can be easily removed from the assembly.

A cryogenic stepper motor spins a worm-gear that couples to the main gear of the plate.

Optical encoders read out the angular orientation of the sapphire plate. The half-wave plate

is mounted on top of the main tank, such that it equilibrates at approximately 7 K. An

estimate described in [184] finds that the AR coating should equilibrate at about 2 K above

the temperature of the plate. We therefore expect the AR coating and sapphire plate to stay

below 10 K during normal operations. Each HWP assembly weighs 6.5 kg. The nominal scan

strategy involves stepping the HWP by 22.5 deg every 24 hours. This effectively rotates Q

into U in an arbitrary coordinate system.

80



Figure 2.20: A birefringent crystal rotates the polarization of transmitted light. The exact
effect depends on the angle of incidence, thickness of crystal, and frequency of light. The
figure shows how the sapphire in the Spider HWP rotates the polarization vector of incoming
radiation by 90 deg. Orthogonally polarized waves that were originally in phase are completely
out of phase when exiting the plate.

To understand how a half-wave plate rotates polarization, and therefore reduces the effect

of spurious polarization, we present the following derivation. For this discussion, the Stokes

parameters Q and U are defined as (see Equation 1.26):

Q =
〈
|Ex|2

〉
−
〈
|Ey|2

〉
,

U = 2Re(ExE
∗
y), (2.12)

with Ex and Ey corresponding to the electric fields measured in the tangent plane and 〈 · 〉

representing the time-averaged field. Let us assume that a polarized signal, originating on

the sky, is being observed by one of Spider’s detectors as a pure Q polarization. In other

words, Q = Q0 and U = 0. Defining a right-handed coordinate system, x̂-ŷ, on the focal

plane, with its axis parallel to the symmetry axis of the phased antenna array, an arbitrary

electric field at that point in time can be represented by

Ef (θ = 0) = Exe
iωtx̂ + Eye

iωtŷ, (2.13)
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with θ indicating the orientation of the half-wave plate. The requirement of pureQ polarization

is then satisfied if Ex =
√
Q0 and Ey = 0. The half-wave plate is a uniaxial crystal with

a fast axis and a slow axis, meaning that two disparately polarized electromagnetic waves

propagating through the plate do so at different velocities. The thickness of the plate is

chosen such that orthogonally polarized electromagnetic waves propagating through the plate

have been phase shifted by 2× π/2 after exiting (see Figure 2.20). Just after entering the

plate, the two electric fields must have been out of phase by a half-wave, suggesting

Ei(θ = 0) = Exe
iωt+π/2x̂ + Eye

iωt−π/2ŷ, (2.14)

where Ei(θ = 0) represents the electric field of the light right as it enters the plate. If we

assume that the fast and slow axis of the HWP are represented by another right-handed

coordinate system with unit vectors â and b̂. Then, at this time, â is aligned with x̂, and

more generally we have cos θ ≡ â · x̂. Assume that the half-wave plate is now rotated by

some angle θ, such that the polarization axis of the plate are no longer aligned with the x̂-ŷ

coordinate system. Decomposing the two electric fields along the polarization axis of the

half-wave plate, â-b̂, it is clear that the electric field, as it has just entered the plate is

Ei(θ) =
(
cos θExe

iωt+π/2 − sin θEye
iωt−π/2) â,

+
(
sin θExe

iωt+π/2 + cos θEye
iωt−π/2) b̂, (2.15)

where we have simply applied the rotation matrix for counter-clockwise rotation in the x̂-ŷ

Cartesian plane,

R(θ) =

 cos θ − sin θ

sin θ cos θ

 , (2.16)

to the electric field Ef (θ = 0) as defined in Equation 2.13. As the electric field exits the plate,

the components of the field, as decomposed along the â and b̂ axis, have picked up a phase
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shift, so that

Ef (θ) =
(
cos θExe

iωt − sin θEye
iωt−π) â,

+
(
sin θExe

iωt+π + cos θEye
iωt
)
b̂. (2.17)

Note, that this is the same phase shift as we assigned in the step described by Equation

2.14. Finally, we can rotate back into the x̂-ŷ coordinate system by performing the inverse

rotation using R(−θ) = R−1(θ) and remembering that cos(2θ) = cos2 θ− sin2 θ and sin(2θ) =

2 cos θ sin θ. To save space we replace sin and cos with s and c respectively. This gives

Ef (θ) =
(
c2(θ)Exe

iωt − c(θ)s(θ)Eyeiωt−π + s2(θ)Exe
iωt+π + c(θ)s(θ)Eye

iωt
)
x̂

+
(
− c(θ)s(θ)Exeiωt + s2(θ)Eye

iωt−π + c(θ)s(θ)Exe
iωt+π + c2(θ)Eye

iωt
)
ŷ

=
[(

[c2(θ)− s2(θ)]Ex + 2c(θ)s(θ)Ey
)
x̂−

(
2c(θ)s(θ)Ex + [c2(θ)− s2(θ)]Ey

)
ŷ
]
eiωt

=
[(
c(2θ)Ex + s(2θ)Ey

)
x̂−

(
s(2θ)Ex − c(2θ)Ey

)
ŷ
]
eiωt. (2.18)

Comparison of the above result with Equation 2.13 shows that the end result is an electric

field with its polarization rotated by an angle 2θ, corresponding to two times the rotation

angle of the half-wave plate.41 Before the HWP was rotated, the signal was registering as

pure Q polarization. After this rotation we find, using Equation 2.12,

Q =
[
cos2(2θ)− sin2(2θ)

]
E2
x = cos(4θ)Q0, (2.19)

U = −2 cos(2θ) sin(2θ)E2
x = − sin(4θ)Q0. (2.20)

The signal no longer looks like pure Q polarization. From this derivation it is clear that

spinning the HWP by 22.5 deg will rotate a pure Q polarization into −U polarization. By

rotating the half-wave plate by a known amount, any polarized signal skywards of the plate
41Incidentally, the cumbersome notation might have caused people to look for alternatives, eventually

resulting in the development of the Jones and Mueller matrix formalisms.
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will be modulated, while spurious signals, internal to the half-wave plate, will not be affected.

This procedure therefore reduces contamination from false polarized signals.

2.8 Detector Architecture

Spider uses arrays of Transition Edge Sensors (TES), a cryogenic bolometer technology

[191], lithographed onto a silicon wafer. The detectors were designed and built by the

Microdevices Laboratory at the Jet Propulsion Laboratory in Pasadena, in collaboration with

the Caltech Observational Cosmology group. A network of dipole-antennas absorbs radiation

coherently and deposits it thermally on a detector element instrumented with tiny partially

superconducting thermometers. With 6× 6 and 8× 8 grids of dual-polarized detectors on

each tile for 94 and 150 GHz, respectively, and four tiles per focal plane, each telescope

employes either 288 or 512 detectors in total. The Spider detector architecture, focal plane,

and TES theory are described in various publications [182, 192, 193]. In this section we

present some of the basic concepts that are needed to understand the operational principles

of a TES bolometer.

Transition edge sensors represent a class of cryogenic detectors that are cooled to

superconducting temperatures and then voltage biased to a transition region where the

resistance of the sensor is a strong function of temperature. The TES architecture is

becoming ubiquitous in CMB experiments as almost all experiments currently in design phase

are utilizing such detectors. Figure 2.21 shows the resistance of a typical TES element as

a function of temperature. In order to achieve the temperature sensitivity offered by this

technology, the detector has to be accurately placed in the superconducting transition region.

This is accomplished by careful tuning of device parameters, voltage biasing, and inductive

current sensing.

The bolometer signal originates in a dual-polarization grid of antennas which absorbs

radiation and sums the signal coherently in a network of niobium microstrip lines. At 150 GHz,

this grid is composed of 2× 144 slot antennas which are placed a quarter wavelength above a
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Figure 2.21: Left: Resistance as a function of temperature for a typical TES. The steep
derivative near the transition temperature suggests that the device could function as a
thermometer. Right: The Joule power dissipated in a typical TES as a function of its
resistance.

superconducting niobium back short. This results in an angular response with a Gaussian

fullwidth at half maximum of approximately 15 deg [193]. The signal is then passed through

a third-order bandpass Chebyshev LC filter that defines both the upper and lower frequency

cutoff, before it is terminated in a gold meander located on the detector island. The island is

suspended with silicon nitride (Si3N4) legs and, therefore, thermally isolated and sensitive

to temperature fluctuations. Heat from the microstrip lines raises the temperature of the

voltage biased TES which we measure as a change in current. Figure 2.22 illustrates some of

the main elements of the Spider detector architecture while Figure 2.23 shows photos of

individual detectors as well as a full focal plane.

As Ohmic heating occurs in the gold meander located on the TES island the temperature

of the island is raised. This heat is slowly conducted away through the weakly connected

Si3N4 legs that support the island, see Figure 2.24. However, any rise in temperature of

the voltage biased transition edge sensor changes its resistance and, therefore, the current

flowing through the bias lines. With proper tuning of device parameters, the electrothermal

coupling causes a swift reduction in TES Joule heating which dominates heat flow through
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Figure 2.22: An illustration showing the main components of a Spider detector. Radiation
excites electrons in dipole slot antennas that are phased coherently. Tiny microstrip lines,
not shown here, connect the dipole antennas together and direct them towards a resistive
gold meander that is located on the TES island. Ohmic heating on the island elevates the
temperature of the TES detectors which registers as a change in current flowing through the
transition edge sensors.

the legs. This behavior is described by a set of coupled differential equations relating the

time development of current and temperature to physical properties of the detector assembly.

Simple heat balancing suggests

Plegs = PJoule +Q, (2.21)

where Q is the optical power dissipated in the meander, PJoule is the heating in the TES

element, and Plegs is the heat conducted away through the Si3N4 legs. For the voltage biased

TES element a change in PJoule corresponds to a change in current according to

PJoule = I2
TESRTES =

V 2
TES

RTES

. (2.22)
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Figure 2.23: A collection of photos showing the Spider TES architecture. Top left: The TES
island with its two TES detectors (left), gold meander (right), and the Si3N4 legs (far left).
Bottom left: A fraction of the antenna array surrounding the detector island. Middle: A
fraction of a detector tile, showing around 20 pixels. Right: A Spider focal plane populated
with three detector tiles and the flexible superconducting cables that send bias line towards
the SQUID assemblies located inside magnetically shielding enclosures.

At fixed bias voltage, any increase in meander heat dissipation must be compensated by an

equal drop in the loading through the TES or by cooling through the legs [194]. Figure 2.21

shows how the Joule power dissipation remains essentially constant while the detector is on

transition. This plateau is known as the saturation power. As long as the optical loading

does not exceed this power, the detector remains on transition.

The natural time constant dictated by the heat capacity of the island, C, and its

conductance, G, can be shown to follow τ = C/G. With the TES electrothermal feedback it

is found that the response time is enhanced by a dimensionless number LI ,

LI =
αIPJoule

GT
, (2.23)

where

αI =
T

R

dR

dT

∣∣∣∣∣
R

, (2.24)
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Figure 2.24: The approximate Spider TES thermoelectrical circuit. A shunt resistor
maintains a steady voltage bias over the TES island since RTES < Rshunt. A change in
temperature of the TES corresponds to a change in resistance which is measured through
inductive coupling using a superconducting quantum interference device (SQ1). A whole
column of SQ1 detectors are read out inductively through a summing network which is
connected in series with another SQUID (SQ2).

where R and T represent the resistance and temperature of the TES. The parameter LI is

called the loop gain and for a typical Spider detector we expect LI ≈ 40. Electrothermal

feedback can reduce the time constant of detectors by at least two orders of magnitude, down

to approximately 1 ms [195, 196].

A simplified electrical circuit of the detector is shown in Figure 2.24. A 3 mΩ shunt

resistor is placed in parallel with the TES, which, when kept at transition, has at least

five times the impedance of the shunt resistor. This means that most of the current of the

electrical circuit flows through the shunt resistor, maintaining fixed voltage bias over the

TES. From Figure 2.24 we infer the system of coupled differential equations

Vb = ITES(RL +RTES) + L
dI

dT
,

C
dT

dt
= Q+ I2

TESRTES − Plegs,(T,Tbase), (2.25)

where L is the inductance of the TES circuit and Tbase is the temperature of the heat reservoir
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on the other end of the legs. This system of differential equations is linearized and solved for

small signal amplitudes in [194].

Spider uses a two element TES design, with saturation powers designed for ground based

(Al) and in-flight (Ti) loading. The two TES elements are adjacent and connected in series on

the TES island such that the optical responsivity is identical. Since we know the impedance

of the titanium TES when driven normal, we are able to characterize the optical and spectral

response of the detectors on the ground without sacrificing the improved sensitivity offered

by reduced atmospheric loading. The architecture and characteristics of the Spider TES

detectors is described in [192, 197].

2.9 Fourier Transform Spectroscopy

Fourier Transform Spectroscopy refers to frequency decomposition of electromagnetic radiation.

An object that facilitates this is known as a spectrometer or a Fourier Transform Spectrometer

(FTS). A Martin-Puplett interferometer is a variant of FTSs that directs polarized light

through a wire grid beamsplitter. Its main advantage is wide spectral coverage afforded by

the wire grid beamsplitter over more traditional dielectric splitters [198].

Ideally, the spectral bandpass of the Spider detectors resembles a top-hat function, unity

in the passband and zero outside. Unfortunately, this can never be fully realized. The

spectral response of the Spider detectors has to be characterized with considerable accuracy

if the experiment is to reach its science goals. The effective bandwidth is required to analyze

detector noise and to constrain spectral gain mismatch due to differential frequency response

of a detector pair [199]. We estimate that approximately 1 GHz spectral resolution, between

roughly 50 and 300 GHz, is required to adequately characterize the Spider bandpass. An FTS

measurement can also identify non-idealities in the optical system, such as spectral fringing

due to AR coat delamination. It is especially important to verify that the bandpass has

minimal overlap with various atmospheric emission lines, such as those of oxygen (118 GHz)
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Figure 2.25: The average spectra of all six focal planes as measured in the Caltech test
cryostat. Red curve shows an estimate for the atmospheric opacity at 30 km, corresponding
to low float altitude. The lines at 118 and 183 GHz come from oxygen and precipitable
water vapor respectively. Some percent level overlap between the these two absorption
lines is present in both frequency bands. Two orange curves are shown as well, dashed line
represents the first temperature derivative of the Planck blackbody function evaluated at
TCMB = 2.726 K while the dashed line is the Planck blackbody function evaluated at the
same temperature.

and water (183 GHz). An FTS measurement determines F (ν), the relative detector response

as a function of frequency.

Using F (ν), the effective band center of the Spider detectors is calculated according to

νc =

∫
νF (ν)dν (2.26)

where F (ν) has been scaled so that its frequency integral is unity. The effective bandwidth is

defined in various ways in the literature. Here we choose the definition from Kraus’s famous
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Table 2.7: All six telescope band centers, bandwidths, and color corrections for dust and
synchrotron relative to the CMB.

Property X2 X4 X6 X1 X3 X5

Band center [GHz] 94.2 92.2 95.7 147.2 148.9 144.7
Bandwidth [GHz] 26.1 25.3 20.6 40.2 40.3 40.8
Cdust − 1 [%] 0.20 0.19 0.09 0.20 0.20 0.21
Csync − 1 [%] -3.1 -2.9 0.4 -2.9 -2.8 -3.1

textbook [200]:

∆ν =
(
∫
F (ν)dν)2∫
F 2(ν)dν

. (2.27)

Figure 2.25 shows the telescope-averaged spectra for all six telescopes. Note how the spectra

of the 150 GHz telescopes are bounded by the oxygen and water emission lines. Similarly,

Table 2.7 describes the telescope-averaged spectral characteristics of the Spider experiment

as measured using our FTSs. In particular, the color corrections Cdust and Csync quantify

how an absolute calibration on the CMB anisotropies, in units of KCMB, will differ from an

absolute calibration based on a region dominated with synchrotron radiation (β = −3.0) or

dust (β = 1.75). Knowing the spectral bandpass and, therefore, the color corrections, could

prove crucial for discriminating between CMB and foregrounds such as dust and synchrotron

radiation. The color correction for the dust component following a power law with β = 1.75

is defined as

Cdust =

∫
dνF (ν)(ν/νc)

β∫
dνF (ν)dB(TCMB,ν)

dT
/dB(TCMB,νc)

dT

. (2.28)

See Appendix D.3 for a more extensive discussion on color corrections. As Spider will likely

be calibrated on temperature anisotropies, Cdust describes by how much we need to multiply

our signal if we assume all of it comes from dust.

A schematic for a typical Martin-Puplett interferometer setup is shown in Figure 2.26.

Light is emitted from a source at the focus of a 90 deg off-axis collimating mirror. The

reflector directs the radiation towards a beam splitting wire grid which sends the light along
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Figure 2.26: A diagram showing the path of light in a Martin-Puplett interferometer. Light
is emitted from a source and subsequently passes through a polarizing wire grid. The source
is placed at the focal point of a 90 deg off-axis collimating mirror which creates a collimated
beam with a 6 inch diameter. The light passes through a wire grid beamsplitter, which split
the light between the two axes of the system. Signal is modulated by the translation of one
of the rooftop mirrors.

two different optical paths. After interacting with the polarizer for a second time the light is

directed towards a detector. The relative phase difference of the two light bundles causes a

modulation in radiation intensity as measured by the detector.

2.9.1 FTS Design

Two spectrometers for the Spider experiment were designed and built at Princeton University.

The first spectrometer was finalized in the Spring of 2010 and sent directly to Caltech for

calibration of telescopes mounted in the test cryostat.42 A second, lighter spectrometer was
42This FTS has since been used at Caltech for Spider (95/145 GHz), Keck Array (95/145/220 GHz),

BICEP3 (95 GHz), TIME (a 200–300 GHz spectrometer), MUSIC (a kinetic inductance detector operating
in the sub-mm range), and MAKO (a pathfinder instrument for 350 micron imaging arrays). It was also used
to characterize MUSIC in the field at the Caltech Submillimeter Observatory in Hawaii. A duplicate FTS,
built by Zak Staniszewski, based on this original design has been used by BICEP2 and the Keck Array at
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built in the spring of 2013. This spectrometer can be mounted on the flight cryostat and

used to calibrate telescopes in their final configuration. Because of the complicated mounting

scheme, the FTS needs to be lightweight.

The newer FTS design, including most optical components, is shown in Figure 2.27. The

base of these spectrometers is a 0.5 inch thick light-weighted aluminum cast plate cut by a

waterjet with threaded holes placed on a one inch square grid. We try to limit the height of

the FTS by bringing the symmetry axis of the modulated beam as close to the plane of the

breadboard as possible, with the strongest constraint set by the height of the linear stage.

This makes the instrument more susceptible to reflections from the breadboard which we

try to avoid by lining all elements with absorptive Eccosorb AN-72. As constructed, the

symmetry axis is located 6.0 inches from the surface of the breadboard. Optical elements are

aligned during the design process by placing fiducial crosshairs into the design. The FTS

would then be aligned, assuming all parts are accurately machined. Further alignment is

done by installing a source (such as an amplified broadband noise source) at the focal point

of the collimating mirror and aligning optical components to maximize signal as registered in

a broadband receiver at the output.

Appendix B contains some mathematical exploration of the Spider spectroscopic system

which might prove useful to a person designing a similar instrument. The following pages

describe various elements in the second FTS design.

Sources

Our hot source is a ceramic housing oven igniter located inside two thin stainless steel

cylinders. Radiative power is controlled using a variable voltage regulator. We found that

setting the regulator to 50–70 V is sufficient for O(103) Signal-to-Noise-Ratio (SNR) on the

Spider bolometers. An infrared thermometer suggests that the temperature of the element

the South Pole and at Harvard. A modified version with a longer throw (higher resolution) has been used
for the TIME spectrometer. Dr. Norman Jarosik, a Senior Research Physicist at the Princeton University
Physics Department, supplied the wire grids used in most of those spectrometers.
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Figure 2.27: A CAD model of the entire FTS assembly without the cover. The breadboard
measures 31× 21 inches. The hot source shown in the right of the figure can be modulated
by a chopper wheel. Baffling and Eccosorb intercepts stray radiation.

exceeds 800 K. The hot source can also be replaced by a Styrofoam box which we fill with

liquid nitrogen. Styrofoam is transparent at millimeter wavelengths, so the box is filled with

Eccosorb HR-10 which is highly emissive.

Collimating Mirror

A 90 deg off-axis parabolic mirror collimates light from the source and directs it towards the

wire grid beamsplitter. The surface of the mirror corresponds to a segment of a parabola

which has been cut into a plate rotated by 45 deg with respect to the symmetry axis of

the parabola, see Figure 2.28. A quick derivation shows that the mirror surface equation

corresponds to

z = 4
√

2f + x−
√

8f(4f +
√

2x)− y2, (2.29)
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where f is the focal length of the original parabola and x and y represent the translation

from the parabola coordinate system to a system that is centered on the mirror plate. The

effective focal length of the 90 deg off axis mirror is feff = 2f . The full derivation is given in

Appendix B.3.

To reduce mass, the parabolic mirror is made from ABS (black) thermoplastic instead of

aluminum.43 The surface of the mirror is coated with aluminum after machining. We used a

company named VTI Vacuum Technologies which specializes in RFI shielding solutions.44

They refer to their process as vacuum coating; it generates a 6–8 µm thick coat with superior

uniformity compared to conductive paint. Simple surface conductance measurements using a

voltmeter give Rsurf ≈ 0.3Ω. Figure 2.29 shows the surface of the aluminized mirrors before and

after polishing as viewed at 30x magnification. Measurements of mm-wavelength reflectance

suggest no difference between the aluminized material and a solid block of aluminum at the

few percent level.

The parabolic shape is cut from a black ABS plastic block on a 3-axis CNC mill using

a 1/4 inch ball mill which was stepped by 0.01 inches between cutting passes. The mill

is controlled using G-code, see Appendix B.4. The base of the code derives from Thomas

Essinger-Hileman [201] while William Dix, from the departmental machine shop at Princeton,

oversaw the machining of the mirror.

Wire Grid

The wire grids are expertly wrapped by Dr. Norman Jarosik, a Senior Research Physicist at

the Princeton Physics Department. We use gold-plated tungsten wire, with a d = 5×10−4 inch

diameter, strung at a spacing of ρ = 200 wires/inch.45 Since all electromagnetic waves should

be attenuated before they penetrate the gold film, one can assume that the conductance of the

wires is σ = 45.2 · 106 (Ωm)−1 to find that the cross polarization should be less than a percent
43The thermoplastic has an approximate density of 1.05 g/cm3 compared to 2.7 g/cm3 for aluminum.
44VTI Vacuum Technologies Inc., Reedsburg, WI. It costs $50 to coat the mirror.
45Tungsten wire supplied by Metal Cutting Corporation, Cedar Grove, NJ.

95



Figure 2.28: The shape of the collimating mirror as calculated from Equation 2.29. It should
be noted that the mirror surface is only left-right symmetric, meaning that there is only one
proper mounting orientation for the mirror inside the FTS.

over the Spider frequency range. Appendix B.1 describes estimates for cross-polarizing

properties of wire grids as a function of diameter and spacing.

Beam Splitter

A wire grid rotated at 45 deg in the plane of the breadboard (azimuth) is used as a beamsplitter.

The wires in the beamsplitter are oriented at a 45 deg angle with respect to the incoming

beam in order to utilize the rotation of polarization angle generated by the rooftop mirrors.

However, because of the azimuthal rotation of the wire grid, the viewing angle as seen from a

beam that bounces off the collimating mirror is not 45 deg if the grid is tilted at a 45 deg

elevation. Instead, a simple geometrical derivation will show that the wire grid needs to be

elevated at θel = 35.25 deg with respect to the surface of the breadboard. In our design,

the beam splitter constrains the maximum width of a circular collimated beam that can

propagate through the FTS. This circular beam has a diameter D = 4.6 inch. Its area

therefore corresponds to roughly 50% of the effective area of the focal plane. Because the

beam exiting the FTS is not completely uniform, and because its power cannot be easily

distributed between the four detector tiles, a typical FTS measurement is performed by

illuminating the focal plane in four different locations, one for each tile.
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Figure 2.29: Left: The wire grid beamsplitter and the collimating mirror mounted on the
FTS. Right: The surface of the collimating mirror as viewed at 30x magnification before
(top) and after (bottom) hand polishing with abrasive grease. The width of the squares is
approximately 2 mm. Note the black plastic surface which is revealed by polishing.

Rooftop Mirrors

The rooftop mirrors are 1/8 inch thick mirror finish aluminum plates screwed into precision

machined Y-shaped mounting brackets. The brackets are attached to posts that place the

center of the mirror at the proper elevation. The Y-shaped mounting blocks are machined

with a high tolerance on the 90 deg angle formed by the two arms of the bracket. This ensures

that the two sides of the rooftop mirror are perpendicular after they have been bolted to the

mounting bracket. One of the mirrors is mounted to a linear stage. The rooftop mirrors are

shown in Figure 2.27.

Carbon Fiber Enclosure

A lightweight carbon fiber enclosure allows us to make changes to the FTS configuration

while it is mounted on the cryostat. We use 1.3 mm thick carbon fiber panels supplied by

Protech Composites Inc.46 The panels are glued together using carbon fiber angle brackets
46Protech Composites Inc., Vancouver, WA.
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from Dragonplate47 and Scotchweld 2216 epoxy. The unibody cover is lined on the inside with

Eccosorb AN-72.48 The result is a surprisingly rigid assembly, weighing 3 kg, which can be

mounted over the FTS by a single person.49 This is especially useful when the FTS is mounted

on the Spider flight cryostat while the cryostat is tilted at 45 deg elevation. Figure 2.30

shows the FTS with the enclosure. The carbon fiber represents a conductive surface for the

Eccosorb mounting. This improves the shielding performance without compromising weight.

Linear Stage

A commercial solution is found for the linear stage with a Velmex BiSlide with 8.3 inches of

travel driven by a NEMA 23 stepper motor.50 An Elgo EMIX23 magnetic encoder with 1 µm

resolution and 6 µm repeat accuracy is mounted to the side of the stage. This particular FTS

is 1.1 sided, meaning that the mirror can move only slightly past the white-light fringe in one

direction with the majority of the throw used for a single side of the interferogram. In this

configuration the FTS will have a 0.85 GHz spectral resolution. Interferograms are acquired

with the linear stage moving at constant velocity, normally at a speed of around 2 mm/s. So

far, all analysis of interferograms assumes the linear stage is moving at a constant velocity

during the data acquisition. The encoder output, sampled at approximately 100 Hz, suggests

that the commanded and realized velocities, when commanded to move at 2 mm/s, agree to

within 0.01 mm/s with a 0.01 mm/s RMS error.

Output Mirror

Radiation that interacts with the wire grid beamsplitter for the second time is directed

towards a mirror on a simple two axis rotation stage. This mirror directs light through an

aperture in the breadboard and towards the telescopes. We use a pair of analog servomotors
47Dragonplate, Elbridge, NY.
48Emerson and Cuming Microwave Products, Randolph, MA.
49While standing on one leg perilously hunched over the flight cryostat.
50Velmex Inc., Bloomfield, NY.
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Figure 2.30: The covered FTS sitting on a lab stool. The mass of the entire assembly is
23 kg, making it possible to transport by a single person.

with 0.9 Nm stall torque and 0.3 deg per step.51 The two motors are controlled using an

Arduino Uno prototyping board and a simple joystick interface with an LCD panel. As the

maximum diameter of the beam that can propagate through the FTS is not large enough to

illuminate all of the focal plane at the same time, the rotatable mirror allows us to move the

beam over the focal plane. We find that we can illuminate the entire focal plane with O(103)

signal to noise ratio by moving the mirror to four distinct positions.

2.10 Outer Frame

The flight cryostat is mounted on a lightweight gondola structure made of reinforced carbon

fiber. The gondola and most of the outer frame components were designed and built by

members of Barth Netterfield’s group at the University of Toronto [143, ?, 146, 145]. The

carbon fiber inserts are epoxied into aluminum joints that are bolted together on custom-made

aluminum joints. The gondola is designed to sustain large angular acceleration during the

initial balloon jerk as well as a maximum 10 g parachute shock which could be realized during
51The servomotors are from HITEC RCD, Poway, California, named HS-645MG Ultra Torque.
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Figure 2.31: A rendering of the gondola assembly without the flight cryostat. The reaction
wheel is mounted over the enclosure for the CSBF support instrumentation package. The
trunnions of the flight cryostat are mounted to the pillow block shown at the top of the figure.

flight termination. The gondola design, including material selection, was informed by a large

ensemble of finite element studies and epoxy joints were validated with pull tests under flight

like conditions. The gondola design utilizes the high specific strength and stiffness of carbon

fiber resulting in a 143 kg structure that supports a fully loaded flight system weighing

approximately 1250 kg when full of liquid and loaded with six telescopes [143, 202].

The gondola is connected to the balloon using a three-leg bridle hitch configuration with

the suspension cables linking below a pivot. Figure 2.31 shows a rendering of the gondola,

including the reaction wheel and suspension cables. A set of linear actuators, not shown in

Figure 2.31, drive elevation arms affixed to the trunnions of the flight cryostat. This allows

the telescopes to step in elevation from 15 to 45 deg [120].

The Spider observation region is defined as a quadrangle on the fixed sky, with edges

defined as the great circles passing through those four points. Figure 2.2 shows the approximate

Spider observation region in Equatorial coordinates. This region is also truncated using

limits on azimuthal separation between the Sun and the boresight, 70 deg on the port side
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Figure 2.32: The integrated observation time as a function of location for an entire 150 GHz
telescope over 24 hour duration, courtesy of Sasha Rahlin and Jamil Shariff [145, 159].
Approximately 75% of the integration time is spent in 50% of the map. Dashed lines show
constant latitude and longitude in Equatorial coordinates.

and 90 deg on starboard. Spider will observe this region by scanning in azimuth with a

90 deg throw sinusoidal velocity profile and a peak angular acceleration of 0.8 deg/s2. This

corresponds to a maximum angular velocity of 6 deg/s in the center of the scan region and

an approximately 47-second period.52 The solar panels are oriented such that, given the

scan strategy, the time averaged solar flux is maximized. Azimuthal scanning is facilitated

by the combination of a pivot located right under the flight train and a reaction wheel

positioned under the cryostat. The pivot dumps angular momentum into the flight train,

which causes the balloon to rotate. The pointing control loop is carefully optimized to

minimize pendulations. This work is described further in [120, 145].

The Spider science scan involves a sinusoidal velocity profile to rotate in azimuth with

0.1 deg elevation steps approximately every third turnaround. Following a monotonic and

periodic function, these elevation steps span the entire range of the elevation drive, 20–45 deg,
52This corresponds to 21 mHz in the frequency domain.
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in approximately 12 hours. Using this scan strategy, a telescope will cover almost the entire

Spider observation region in 24 hours. This observation strategy is repeated every sidereal

day. For that reason, cross-linking comes primarily from non-negligible sky rotation at these

latitudes.53 During observations, the half-wave plates will be stepped by 22.5 deg once every

12 hours, although the exact HWP stepping strategy has yet to be fixed. Figure 2.32 shows

the integrated and normalized observation time for an entire 150 GHz telescope over 24 hours

of observation [203].

Two independent power systems, each connected to a 4-by-3 solar panel array, supply all

power for the duration of the experiment. The panels are wired into switched-mode DC power

supplies charging a set of 40 Ah sealed lead-acid batteries. The panels supply 1440 W on

average with 2100 W at normal solar incidence. We estimate a 20–25% average power margin

with some initial battery drainage during ascent, when azimuthal pointing is unconstrained.

The solar panels are mounted on a lightweight aluminum frame and connected to the gondola

using constant torque, friction hinges. The panels are deployed manually and locked into

position prior to launch. The panel mount was designed to sustain ground winds of up to

15 m/s.

Spider will employ a large number of in-flight pointing solutions [146, 204]. A combination

of attitude reconstruction devices, including differential GPS, magnetometers, and Sun-sensors

will provide in-flight pointing accuracy of approximately 1 deg. Pointing for science analysis is

generated by a combination of data from gyroscopes and star cameras. Two star cameras will

take 100 ms exposures every two seconds to determine the attitude of the outer frame at those

instances. Gyroscope data is then used to interpolate attitude between those intervals. The

pointing reconstruction has significant heritage from flight of the BLAST payload [187, 205].
53As telescopes scan the sky, their angular response, or beam, will cross a given point on the sky at a certain

angle, determined by the scan strategy. Integrated over the total observation period of that experiment,
the beam will most likely cross this point on the sky a number of times. Cross-linking then refers to the
distribution of crossing angles. A patch that has good cross-linking will be probed by a wide range of beam
crossing angles. Ideal cross-linking symmetrizes the effective beam.
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The relatively large size of the Spider beams implies modest requirements for pointing

reconstruction and realized performance greatly surpasses science goal requirements [124].

Line-of-sight communications are possible for the first 18–36 hours of the flight. This

provides a 1 Mbps link which should allow us to monitor housekeeping thermometry and

timestreams from approximately 300 detectors. A dedicated link is used to calibrate and focus

star cameras during this period. As the payload drifts past the Transantarctic Mountains,

all communications are limited to low bandwidth satellite links. A 6 kbps link with the

Pentagon run TDRSS satellite constellation should allow for 6–30 detector timestreams with

sparsely sampled housekeeping data. The most likely scenario is a 2 kbps link through

the commercially run Iridium system. This is only enough to provide sparsely sampled

pointing and housekeeping data in addition to a single detector timestream. Great deal of

automations is required because of the limited connectivity with the payload. This includes

code that cycles fridges, controls pointing, tunes SQUIDs, biases detectors, and flags and

remedies various detector performance issues. The development of the Spider flight code is

a demanding project (see further discussion in [159]).

2.11 Current Status

The Spider flight cryostat and all six telescopes are packed and ready to ship from the

Princeton High Bay. Payload integration and detector characterization is complete. The

experiment will ship to the Antarctic on August 26, 2014. The first wave of scientists will

arrive at McMurdo Station at the end of October.
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Chapter 3

Calibration of the Planck High

Frequency Instrument

In this chapter, we describe the absolute calibration and spatial response reconstruction of

the Planck High Frequency Instrument (HFI). We begin by discussing the dipole calibration,

which is used to obtain an absolute detector response. This procedure converts raw detector

units into a meaningful flux quantity. The spatial response, also known as the beam response

or the point spread function, relates the absolute calibration to different angular scales. We

describe an algorithm which employs two-dimensional Gauss-Hermite functions to reconstruct

the spatial response from planet observations. We also present a simulation pipeline which

estimates error and bias in the beam reconstruction. Using this simulation pipeline, we show

that the Gauss-Hermite reconstruction generates a beam response that is internally consistent.

This extends the validity of the dipole calibration to all angular scales used in cosmological

analysis of the HFI data. Finally, we compare the absolute calibration of the Planck HFI

detectors to models of planet fluxes. Our analysis suggests that the planet flux models are

consistent with the primary calibrations in all six HFI bands.
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Table 3.1: Summary of the Planck HFI and its band averaged properties [138, 207].

General properties

. . . . . . . . . . . . . . . . . . . . 1.5 m primary mirror . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 1.0 m secondary mirror . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . 99.999% sky coverage . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 100 mK detector temperature . . . . . . . . . . . . . . .

Center Frequency [GHz]

Property 100 143 217 353 545 857

Bandwidth [GHz] 33 46 65 101 171 246
Angular resolution? [arcmin] 9.65 7.25 4.99 4.82 4.68 4.33
Solid angle [arcmin2] 104.2 58.4 26.9 25.1 25.4 23.0
Number of detectors 8 12 12 12 4 4
Number of Spiderwebs 0 4 4 4 4 4
Number of PSB’s 8 8 8 8 0 0
NET [µK

√
s] 71 58 88 353 0.087† 0.085†

? FWHM. †MJy/sr/
√

Hz.

3.1 Instrument Overview

The Planck satellite was launched from French Guiana in May 2009.1 The primary science

goal of the satellite is to measure the temperature and polarization anisotropies of the CMB

over the full sky [206]. The satellite has two instruments with different scientific leadership.

They are the High and Low Frequency Instruments (HFI/LFI). I have been a member of

the Planck HFI core team since the summer of 2010. The satellite was commissioned by

the European Space Agency (ESA) although significant financial and scientific contributions

have been made by NASA and other institutions in the US.

Both instruments onboard the satellite are coupled to the sky through an off-axis Gregorian

telescope. Two mirrors, a 1.5 m primary and a 1.0 m secondary, each cooled to 45 K, focus

light into the 52 feedhorn coupled bolometric receivers that populate the HFI, see Figure 3.1.
1Even though the satellite has completed its observations, data are still being analyzed at the time of

writing. I will therefore use the present tense for most statements regarding the project.
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Figure 3.1: A cutaway drawing of the Planck satellite showing the cryogenic instruments
inside the Service Module (SVM), as well as the 1.5 m primary reflector and the focal plane
[208]. Two black star cameras, mounted on the side of the SVM, and a set of thrusters
that facilitate orbital maneuvers are visible. Four spherical titanium and Kevlar composite
structures, designed for 290 atm maximum pressure, hold the 4He and 3He needed for the
open-cycle dilution refrigerators [209]. The satellite spins around its vertical symmetry axis
while ensuring that the solar panels, mounted at the bottom, are always directly facing the
Sun. This provides a stable thermal environment and maximizes power generation. Figure
courtesy of ESA [210].
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The spectral coverage of these receivers is spread over six frequencies, with band centers

ranging from 100–857 GHz. Each bolometer has a unique identifier. For example, “100-1a”

refers to the A-polarization channel of a 100 GHz detector [138]. Parts of the receiver elements

are cooled to 100 mK through a series of passive and active coolers [209]. These refrigerators

made Planck the coldest known object in space while it was operational.

The HFI frequency coverage is optimized for study of CMB temperature and polarization

anisotropies and sensitivity to the Sunyaev-Zel’dovich (SZ) effect [211]. The higher frequency

channels enable characterization of Galactic foregrounds and studies of the cosmic infrared

background. More than half of the HFI detectors are Polarization Sensitive Bolometers (PSB)

[212], the remainder are Spiderweb Bolometers (SWB) [213]. The PSB’s are distributed over

the four lowest frequency bands, centered on 100, 143, 217, and 353 GHz [214]. These four

bands are often referred to as the CMB channels, even though the 353 GHz band sees a lot

of Galactic foregrounds and is not directly used to estimate the CMB power spectrum.

The two highest frequency bands, each with four SWBs, have band centers at 545 and

857 GHz. As 545 GHz corresponds to a 0.55 mm wavelength, these two bands are often called

the sub-millimeter channels [215, 216]. The sub-mm channels are multi-moded in order to

increase the throughput, and therefore, the signal-to-noise ratio of those channels at the cost

of limited resolution [217]. Neither scan strategy nor sample rate justify finer resolution at

those frequencies. Unfortunately, the multi-moded nature of the sub-mm channels seriously

complicates any analytical description of their spatial response.

The HFI focal plane is populated with back-to-back feed horns that couple light from the

secondary mirror onto the cryogenic bolometers . The feedhorns are designed to produce a

Gaussian response function with a −25–30 dB edge taper [218, 219]. Table 3.1 highlights

some of the main features of the Planck HFI.
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Figure 3.2: The location of Planck satellite, relative to the solar system and a depiction of
Planck ’s scan strategy – obviously not to scale.

3.2 Scan Strategy and Pointing

Planck is located at L2, a Lagrangian point outside Earth’s orbit with an identical sidereal

period (see Figure 3.2). The colocation of Earth and the Sun on the sky as viewed from L2

make it an optimal venue for satellites conducting full-sky surveys. Planck rotates around

its symmetry axis at 1 rpm while stepping azimuthally, or in the ecliptic plane, by 2 arcmin

every hour. This ensures that the satellite’s solar panels are pointed directly at the Sun at all

times, therefore, maintaining a stable thermal environment and minimizing stray radiation

[220]. In the time between these azimuthal steps, the satellite will trace out approximately

60 circles on the sky. The set of such circles is referred to as a “ring”. Additionally, the spin

axis precesses with a 7.5 deg amplitude over the duration of a survey to cover the poles [221].

Residual drifts and nutations are minimal and accounted for in pointing reconstruction [222].

With this scan strategy, Planck observes the whole sky in approximately 6 months.
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After a preliminary characterization phase, full-sky observations began in August 2009

[223]. Science observations continued relatively unperturbed until cryogens were exhausted in

January 2012, after 30 months of observations. This operational period corresponded exactly

to the projected lifetime of the refrigerators [206]. Over the duration of the experiment, the

HFI mapped the whole sky approximately 5 times. The final products are all-sky maps at a

HEALPix resolution characterized by Nside = 2048, corresponding to 1.8 arcmin pixel width

[4]. Given the satellite’s sky coverage and observation time, this corresponds to an average

integration time of 0.5 seconds per pixel.

Planck ’s scan strategy does not provide optimal coupling between large angular scales

and temporal scales that are short compared to the 1/f noise knee of its detectors. This

somewhat complicates calibration of the instrument. Furthermore, the scan-strategy provides

minimal cross-linking, whereby the satellite scans over a fixed location on the sky with a

varied ensemble of crossing angles. Finally, complications arise due to the relatively slow

time response of the HFI detectors, compared to the 6 deg/s scan rate.

The HFI bolometers have time constants in the range of 2–10 ms, corresponding to

1–4 arcmin at the nominal scan rate [213]. Time-domain deconvolution of the time-response

function makes the resultant signal response frequency independent and allows us to probe

angular scales up to and including the beam size in pixelized maps. Because of filtering

and errors in time-response deconvolution, the correlation of samples on the sky will depend

strongly on their angle relative to the primary scan direction. Influences producing temporal

correlations, such as cosmic rays, cause similar effects. The result is a dataset that has a

propensity for ring-aligned residuals. Detailed discussion is offered in the most-recent Planck

DPC paper [138] and the HFI time-response and beams paper from 2013 [207].

Data are matched with locations on the sky through post-processing of pointing infor-

mation. The pointing data are primarily supplied by the two time-delay integration star

cameras that are mounted on the side of the service module (see Figure 3.1). The cameras

are sampled at 8 Hz. Higher resolution pointing timelines are subsequently generated using
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quaternion interpolation. The satellite also houses gyroscopes which provide ancillary pointing

information. The relative orientation of the detectors with regards to the star cameras is

derived by fitting the detector point spread function to observation of the bright point sources

such as planets.

It is useful to define a Cartesian coordinate system for a small patch of the sky, with axis

aligned parallel and perpendicular the primary scan direction of the satellite. These axes are

called the co- and cross-scan directions, and they are shown in Figure 3.2. Using this new

terminology, we can make the following statement regarding Planck ’s scan strategy: Samples

separated in the cross-scan direction by more than 2 arcmin will be separated temporally by

at least one hour.

3.3 Absolute Photometric Calibration

The Planck HFI is calibrated using the CMB dipole signal generated from the motion of the

satellite relative to the rest frame of the CMB. This also causes aberration at all multipoles,

a minute signal, whose detection was first reported in [67]. The absolute calibration provides

a mapping from raw detector units to an effective CMB temperature, KCMB. The satellite

motion relative to the rest frame of the CMB can be separated into the orbital motion of the

satellite as it rotates around the Sun (orbital-dipole), and the peculiar velocity of the solar

system barycenter relative to the CMB rest frame (solar-dipole).

So far, Planck HFI has been calibrated using the solar-dipole assuming its properties, as

measured by WMAP, are valid [224, 225]. For the 2014 release, Planck HFI will be calibrated

using an orbital dipole template [226]. The calibrations of individual detectors are obtained

by varying gr to minimize the following ring-by-ring residual, Rr,

Rr =
∑
i∈r

|FPSM
i +Dorbit

i − (gr × si + or + ni) |, (3.1)

where the subscript i refers to individual detector samples, gr represents the conversion from
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raw detector units to KCMB, si is time ordered data, or is the ring-by-ring offset, which helps

capture the long time constant noise properties, ni is the time-dependent noise model, and

FPSM
i is a foreground model. Accurate information about the satellite’s peculiar velocity

relative to the CMB rest frame allows us to estimate Dorbit
i and constraint an orbital dipole

model. This equation is linearized and solved by iteration.

Temporal variations in gain, i.e. variation in Gd with time, have been observed [138] and

are due to non-linearity in the analog to digital readout electronics. This effect appears to

cause approximately 3% variation in Gd over the duration of the experiment. This effect is

rectified in the 2014 data release [226].

The absolute calibration of the dipole signal relates power on the largest angular scales

– over 180 degree angles – to the digital readout units of the flight computers. In order to

estimate the power spectrum of the CMB, this calibration has to be extended from the

largest angular scales towards the fundamental limits set by the angular resolution of the

instrument. The function that defines the angular sensitivity of the detectors in multipole

space is called the beam window function. It represents the azimuthally averaged spherical

harmonic transformation of the beam response on the unit sphere.

To justify this statement, we start by writing an approximate expression for a signal

registering in our detectors as the convolution of the instrument beam response, Ψ(n̂), and

the underlying temperature anisotropies2:

si =

∫
dΩΨ(n̂− n̂i)T (n̂),

=

∫
dΩΨ(n̂− n̂i)

∑
`,m

a`,mY`,m(n̂),

where T (n̂) represents the temperature anisotropies as defined in Equation 1.21. We can

then use Equation 1.24 to calculate the corresponding beam convolved power spectrum. This
2Neglecting time-response and frequency-dependent effects.

111



involves performing a double integral over the unit sphere

〈T (n̂)T (n̂′)〉beam =

∫∫
dΩdΩ′Ψ(n̂)Ψ(n̂′)× 〈T (n̂)T (n̂′)〉true ,

=

∫∫
dΩdΩ′Ψ(n̂)Ψ(n̂′)× 1

4π

∞∑
`=1

(2`+ 1)CTT
` P`(n̂ · n̂′),

=
1

4π

∞∑
`=1

(2`+ 1)CTT
`

∫∫
dΩdΩ′Ψ(n̂)Ψ(n̂′)P`(n̂ · n̂′), (3.2)

from which we conclude that

W` =

∫∫
dΩdΩ′Ψ(n̂)Ψ(n̂′)P`(n̂ · n̂′), (3.3)

and

C̃TT
` = W`C

TT
` , (3.4)

where W` is the window function, CTT
` is the true TT power spectrum of the sky and C̃TT

` is

the power spectrum as measured by the instrument [227]. Calibrating the absolute response

of the detectors using the CMB dipole corresponds to applying a multiplicative detector gain

such that W` is unity by definition at ` = 1. Beam calibration then amounts to estimating

Ψ(n̂) for all values of n̂ so that the window function, and therefore the absolute calibration,

can be extended to all angles.

The coefficients in the spherical harmonic decomposition of the beam function,

b`m =

∫
dΩΨ(n̂)Y`m(n̂), (3.5)

encapsulate the spatial beam response in multipole space. After determining the coefficients,

the beam window function can be found from [228]:

W` =
1

2`+ 1

∑̀
m=−`

|b`m|2. (3.6)
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For Planck HFI beam analysis, the beam response, Ψ(n̂), is first established. The spherical

harmonic transform of the beams then determines b`m and therefore W` [207].

To a very good approximation, all N detectors within a given frequency band are observing

the same microwave sky. Because of this, intra-frequency calibration tests are routinely

performed for the HFI cosmology channels. This is done by finding calibration coefficients,

αd, to minimize the residual

R` =
`max∑
`=`min

(
C` −

1

N

N∑
d=1

αdC`,d

)
, (3.7)

where

C` ≡
1

N

N∑
d=1

C`,d (3.8)

is the band average power spectrum, and C`,d are the temperature power spectra obtained

from individual detector maps. By varying the set of αd within a frequency band, the residual

can be minimized over some range of angular scales. This method will reveal systematic

effects with an angular scale dependence.

These intra-frequency calibrations provide a relative scaling among detectors in a given

frequency band. All that remains in order to correctly debias the power spectrum estimate is

to understand the band-averaged beam window function W `. However, that process is best

done by estimating Ψd(n̂), the angular sensitivity of individual detectors.3

3.3.1 Beam Definitions

Planck ’s scan strategy, time-response deconvolution errors, and filtering procedures generate

the need for three slightly different definitions of the function Ψ(n̂). These are referred

to as the physical beam, the scanning beam, and the effective beam. The physical beam

represents the true optical response of the instrument. It can be determined from an unfiltered
3In reality, the process is reversed. Individual detector beam window functions are determined from planet

observations before the intra-frequency calibration.
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timestream while observing a point source in the limit of slow (relative to time response)

scanning. The physical beam estimate is mainly used to compare with models describing the

in-flight alignment of optical elements.

The interplay between bolometer transfer function residuals, filtering, and scan rate

produces signal variations on arcminute scales [213, 207]. As all data are processed using the

same procedure, the scanning beam represents the point-source response that is applicable to

the processed timeline and is therefore necessary for accurate photometry. See [229] for the

most up-to-date description of the Planck HFI time-domain processing. Unlike the physical

beam, the scanning beam can change with revision to the official time-domain processing.

This means that a scanning beam appropriate for the 2013 data release need not be applicable

for future releases.

The effective beam represents the scanning beam averaged on the whole sky, taking the scan

strategy into account.4 In the limit of a rotationally symmetric beam, Ψ(n̂) = Ψ(θ, φ) = Ψ(θ),

the effective beam is identical to the scanning beam. In reality, the amount of symmetrization

due to scanning varies over the sky. This requires careful accounting for accurate cosmological

analysis (see discussion on cross-linking in Section 2.10). For Planck, cross linking is almost

non-existent in the ecliptic but maximal at the celestial poles. Because of this variation in

coverage, the effective beam also varies on the sky.

As the CMB is decomposed from a large fraction of the sky, the beam that is appropriate

to debias an angular power spectrum according to Equation 3.4 is formed by a scan-weighted

linear composition of effective beams centered on all pixels in the Planck maps that are

used in cosmological analysis. The effective beam window function therefore also depends

on the sky weighting used for cosmological analysis. The problem of efficiently calculating

an effective beam applicable for cosmological analysis of Planck data is described in the

literature (see for example [207, 230, 231]). However, in order to calculate an effective beam,
4Phrased differently, the effective beam is simply a full-sky average of the scanning beam, properly weighted

by the observation region.
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the scanning beam has to be determined. The first step invariably involves looking at bright

point sources such as planets.

3.3.2 Planet Observations

The outer planets entered Planck ’s field of view a few times during the lifetime of the

experiment. As the planets lie close to the ecliptic, the raster-like scanning of the instrument is

roughly perpendicular to their proper motion. This results in a characteristic 2 arcmin striping

of the planet data. Table 3.2 describes some features of the Planck HFI planet crossings.

Of the five outer planets, Mars, Jupiter, and Saturn are most useful for characterizing the

Planck HFI beams. Although Jupiter saturates detectors above 143 GHz, it can still be

used to characterize the near sidelobe response of the beams. With the exception of modest

SNR, Mars is almost ideal for characterizing the main beam. Its relatively small angular

size, lack of rings, large moons, and rare events, reduce features that are difficult to simulate.

Similarities between the peculiar motion of Mars and Planck ’s scanning strategy caused

the planet to stay in the field of view of the satellite for a prolonged time during the first

observation, resulting in significantly greater sample density compared to most of the other

planet observations.

Assuming constant beam response, distinct point source observations can be combined

to increase the signal to noise ratio in beam reconstruction. Such observation merging also

improves the sampling of the beam shape. However merging of observations potentially

induces systematics in beam determination that, if not done carefully, can negate improvement

in coverage. Here, time-domain simulations of the beam reconstruction become crucial.

Systematics induced by stacking observations include normalization and pointing errors,

discussed in greater detail in Section 3.5.
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Table 3.2: Some properties of the Planck planet observations as they pertain to channel
143-1b. Diameter represents the planet diameter as viewed from L2, averaged over all
observations. Sample density refers to the average sample density, accounting for flagging,
within a 40 arcmin wide field of view centered on the planet. The Signal-to-Noise Ratio,
SNR, is the ratio between a fit to the peak signal registering in the timeline and the noise
Root Mean Square (RMS).

Obs Diameter Sample density SNR
[arcsec] [samples/arcmin2]

Mars?,† 1–3 8 16 / 12 / 12 ∼ 70

Jupiter‡,◦,ς 1–5 40 9 / 13 / 14 / 9 / 11 ∼ 1200

Saturn‡,◦,ς 1–4 17 11 / 14 / 10 / 14 ∼ 230

Uranus? 1–5 3.5 12 / 12 / 13 / 12 / 9 ∼ 7

Neptune? 1–4 2.3 10 / 13 / 10 / 13 ∼ 3
?Astronomical background confusion. †Time-variation. ‡Rings.

◦Moons. ςRare events.

3.4 Beam Reconstruction

The scanning beam describes the data-processed response to a point source excitation

normalized to unity at peak responsivity. In addition to filtering, the time-domain processing

is further complicated by the presence of cosmic rays, electromagnetic interference from

cryocoolers, and ADC non-linearity. For example, approximately 15–20% of the Time-

Ordered Data (TOD) are flagged (removed) because of cosmic rays and the transients that

they produce [138]. These effects make it difficult to construct an optimal time-domain

processing algorithm.

Because of the satellite’s raster scan, data with only a few arcmin angular separation, can

be separated temporally by a similar number of hours. With no observation time dedicated to

beam characterization, all information about the beams come from raster scans with planets

more-or-less moving in the ecliptic, perpendicular to the primary scanning direction. The

Planck scan strategy and bolometer time-response therefore drive the optimal time-domain

processing. Even in the limit of perfectly Gaussian physical beams, due to filtering, the
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Figure 3.3: From left to right, 100, 143, 217, 353, 545, and 857 GHz maps. The color scale
is linear in signal amplitude. Placement of diagonal lines is chosen to emphasize the 353
GHz map. From this, one can surmise that three lowest frequency bands are most likely to
constrain the CMB signal amplitude. Maps extracted from [138].

Planck scanning beams are not azimuthally symmetric. The beams must be treated as

two-dimensional objects in analysis. When probing a sufficiently small patch on the sky, a

region of the unit sphere can be accurately described by a Cartesian coordinate system. As

the HFI beams are compact, all analysis is performed assuming the flat sky approximation.5

Sparse sampling and the requirement of reconstruction at arbitrary resolution bring about

the need for a functional form. The remainder of this section is devoted to the two-dimensional

Gauss-Hermite functions, an orthogonal function basis on R2, which can be used to describe

the scanning beam.
5In the following text, it is safe to assume that the cross-scan direction is parallel with the x-axis and the

co-scan direction parallel with the y-axis.
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3.4.1 The Gauss-Hermite Function Basis on R2

Many CMB experiments are designed to have angular sensitivity that can be described by an

azimuthally symmetric two-dimensional Gaussian function

Ψ(x) ∝ exp(−x2/2σ2), (3.9)

where σ represents the width of the beam. Optical aberrations will lead to asymmetries in

the angular sensitivity which can often be captured by assuming that the Gaussian beam

width is different along the two axis of a Cartesian coordinate system centered on the peak

response

Ψ(x, y) = exp(−1

2
[x2/σ2

x + y2/σ2
y]). (3.10)

This is referred to as an elliptical Gaussian function. A natural extension of this beam

parametrization is found in the Gauss-Hermite (GH) functions. This functional basis has

been used for beam modeling by other CMB experiments [232, 233], with Huffenberger

et al. describing the methodology in relation to Planck HFI [234]. The two-dimensional

Gauss-Hermite functions are defined here as

ψn1,n2(x, y) =
Hn1(x/σx)Hn2(y/σy)√

2n1+n2n1!n2!
exp

(
−1

2

[
x2

σ2
x

+
y2

σ2
y

])
, (3.11)

with the orthogonality relation

〈ψn1,n2ψn′
1,n

′
2
〉 = 2πσxσyδn1n′

1
δn2n′

2
. (3.12)

In this notation, the often quoted beam Full Width at Half Maximum (FWHM) is ap-

proximately θFWHM =
√

8 ln(2)σxσy. Beams can be modeled using an ensemble of these

functions

Ψ(x, y) =
∑

(n1+n2)≤Nmax

sn1,n2ψn1,n2(x, y), (3.13)
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where sn1,n2 is the decomposition coefficient of that Gauss-Hermite mode. The maximum

number of functions used in the Gauss-Hermite decomposition along any single dimension,

Nmax, is called the decomposition order parameter. This number should be chosen based

on the resolution of the raw maps which in turn depends on the spatial coverage. For

the Planck HFI beam analysis, Nmax has spanned 8–16, corresponding to 45–153 unique

two-dimensional functions (see discussion on mapping of indices in [234]).6 A higher value

for the decomposition order parameter leads to increase in systematic induced variance. For

results presented in this chapter, we set Nmax = 9. This corresponds to 55 Gauss-Hermite

coefficients.

In addition to the Gauss-Hermite coefficients, this beam description uses the five parame-

ters of an elliptical Gaussian fit, corresponding to beam centroids, rotation angle, and the beam

widths. The Gauss-Hermite functions are exponentially suppressed outside
√

2σxσyNmax,

see for example [232]. Figure 3.4 shows plots of the first few Gauss-Hermite functions of an

elliptical Gaussian beam for a typical 100 GHz channel. It is important to note that ψn1,n2

is an odd function if either n1 or n2 are odd. Odd functions do not contribute to the solid

angle of the beam.

The first step in the Gauss-Hermite reconstruction involves estimating the best-fit elliptical

Gaussian parameters. They are the beam widths, σx and σy, the beam center cx and cy, and

the rotation angle, φ, of the beam coordinate system relative to some predefined coordinate

system. Once these are established, the Gauss-Hermite coefficients are calculated in a

straightforward manner (see Appendix C).

The Gauss-Hermite functions are useful for beam reconstruction for a number of reasons.

The GH parameters can be decomposed quickly in the time-domain, generating a reasonable

parametrization of the beam in a few seconds.7 The parametrization therefore lends itself

easily to simulations of the beam reconstruction process. Furthermore, because the Gauss-

Hermite functions are eigenfunctions to the Fourier transform operator, the beam window
6The calculation time scales like N2

max.
7As measured in some pseudo-standardized way on a 3 GHz core.
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Figure 3.4: The first few Gauss-Hermite functions associated with an elliptical Gaussian
with θFWHM = 9.2 arcmin and a tilt angle φ = 33 deg. The maps are 20 arcmin on each side
and the FWHM of the elliptical Gaussian is shown in the top left corner.

function corresponding to a known set of GH parameters can be easily calculated using a

semi-analytical expressions. The expression is

W` =
(σxσy)

2

2π

∫ 2π

0

dφ
∑
n1,n2

s2
n1,n2

×

∣∣∣∣∣e−i(`
′ cos(φ)cx+

n1π
2

)Hn1(`
′ cos(φ)σx)

e`′2 cos2(φ)σ2
x/2
√

2n1n1!
× e−i(`

′ sin(φ)cy+
n2π
2

)Hn2(`
′ sin(φ)σy)

e`
′2 sin2(φ)σ2

y/2
√

2n2n2!

∣∣∣∣∣
2

,

(3.14)

where a numerical integral has to be performed over the angle φ for each Gauss-Hermite

parameter and `′ ≡ `+ 0.5. The full derivation is presented in Appendix C. Members of the
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Planck collaboration have used this expression to quickly estimate the Gauss-Hermite beam

window function.

The Gauss-Hermite function basis does have its limitations. The parametrization loses its

flexibility once the elliptical Gaussian basis and Nmax have been defined. As we limit the

number of functions, the shapes that we can describe with the GH function basis are also

restricted. Compare this with a cubic spline interpolation which sets less stringent constraints

on the beam shape [235]. Because of these constraints, the GH parametrization does not

fully capture some features in the beams, such as the acausal ringing caused by the filtering

of timelines. Increasing the number of GH functions to further capture secondary features

leads to unwanted noise fitting. To understand just how useful the Gauss-Hermite pipeline is

for Planck HFI beam reconstruction, we perform simulations.

3.5 Time-Domain Simulations

A range of non-idealities affect the scanning beam reconstruction. These include, but are not

limited to, pointing errors, time-variations, noise, residual glitches, incomplete astrophysical

background subtractions, intricate frequency dependence, and destriping. Figure 3.5 describes

the approximate order of simulation steps.

Analytic expressions for first order contributions of various beam non-idealities to

temperature and polarization spectra are discussed in the literature (see for example

[236, 237, 238]). Such estimates are only tractable for generalized scan strategies. Proper time-

domain simulations offer a tailored view of systematics induced by complicated time-domain

processing and beam reconstruction techniques.

3.5.1 Methodology

There is no single well-defined method for performing cosmological analysis using CMB

temperature and polarization maps. Experimental groups will employ varying analysis
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Figure 3.5: A flow diagram describing the rough simulation methodology. The simulated signal
is generated by a combination of a realistic beam input, which takes pointing information as
input, an estimate for the noise, and some set of non-idealities, which could include pointing
errors or a residual astrophysical background. The simulated timestream is fed into the beam
reconstruction pipeline, from which one can estimate the fidelity of beam reconstruction by
comparing against the input beam. The simulations are repeated a number of times to negate
sample variance.

methodologies. Generally, however, map-making algorithms will convert time-ordered data

into a pixelized map in the HEALPix data format [4]. The spherical harmonic transform

of those maps is then computed, which allows one to calculate an angular power spectrum.

Such spectra will be biased due to cut-sky, filtering, and spatial response effects. The act of

estimating the spherical harmonic transform from the windowed sky, is commonly referred to

as a pseudo-power spectrum estimate, or pseudo-C` [239, 240].

In the end, cosmological parameters are constrained by finding how their variations result

in power spectra which are consistent with measured values. In some cases, and for some

ranges of multipole, beam modeling errors constitute a significant fraction of the errors on

the power spectra. For that reason, the task of determining beam reconstruction errors with

high fidelity becomes pressing. In lieu of defining an exact process, I will offer the following

guidelines:
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◦ The beam simulation pipeline should incorporate the same data processing algorithms

as those used on real data.

◦ Simulations should include all known sources of that error that can be reasonably

simulated and injected into the data processing algorithm.

◦ Using data cuts (jackknives), beam products should be checked for internal consistency

against simulation results. This can be done by splitting the data used to derive

real beam products into two disjoint datasets before deriving a beam estimate. The

two resultant beams should be checked for consistency against an identical process

performed on simulated data.

All of these steps should be completed before publishing cosmological analysis.

3.5.2 Quantitative Description of Simulation Framework

Time-domain simulations can assume various levels of complexity. For an almost ideal

polarimeter, plagued only by cross-polarization, a given timestream sample can be written as

di = gi [T (n̂) + γi(Q(n̂) cos(2ψi) + U(n̂) sin(2ψi))] (3.15)

where T , Q, and U are the Stokes parameters on a location of the sky specified by the unit

vector n̂i, gi is the time-varying bolometer gain, ψi is the polarization angle of the detector

at the time when that sample was acquired, γi represents cross polar leakage, with

γi =
1− εi
1 + εi

, (3.16)

and εi corresponding to the fractional response of a polarized detector to orthogonally

polarized light. Polarimeters are generally affected by non-idealities such as non-negligible

detector response function, detector noise, variable gains, involved frequency and angular
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response functions, and so forth. A more truthful description of signal timestream therefore

follows

d(t) = K ∗
(
ni + gi

∫
dνAe(ν)F (ν)

∫
dn̂′Ψ(n̂′ − n̂i, ν)

× [T (n̂i) + γi(Q(n̂i) cos(2ψi) + U(n̂i) sin(2ψi))]

)
+ ñi,

(3.17)

where K∗ represents a convolution with the detector time response, ni is the noise, which

we assume is uncorrelated with signal, Ae(ν) represents the effective area of the telescope,

F (ν) is the spectral responsivity, and ñi represents noise terms that are not convolved by

the detector response, including readout noise. Full incorporation of all these factors in a

time-domain simulation pipeline is considered intractable. To make simulations manageable,

we assume that our input beam represents a frequency averaged scanning beam. We also

assume that the point sources are unpolarized.

Although the planets represent the brightest microwave sources on the sky, we cannot

neglect effects from the CMB and foregrounds such as the Galactic cirrus emission. We

therefore need to simulate planet crossings on realistic backgrounds, having some prior on

the shape and amplitude of those components from our measurements of the sky without the

wanderers in the field of view. In this case, a simple incarnation of a simulated timestream

takes the form

si = CpΨ(n̂i) + TCMB(n̂i) + FPSM(n̂i), (3.18)

where TCMB and FPSM are the beam convolved CMB and foreground signal derived using

the Planck Sky Model (PSM) [129], Ψ represents the input scanning beam assumed for these

simulations, and Cp is the peak intensity of the planet in the same units as TCMB and FPSM.

This process assumes that the frequency dependence suggested by Equation 3.17 can be

properly encapsulated by the sum of three independent terms which have been convolved

with the same input beam. Both CMB and foregrounds are removed from the timeline

during beam reconstruction. We do this using data that show the same region of the sky, but
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with the planet missing. The process is straightforward for Planck HFI, because the sky is

observed roughly five times during the lifetime of the experiment. Assuming perfect removal

of the CMB and any other astrophysical signal, the simulated signal finally reduces to

si = CpΨ(n̂i). (3.19)

The name of the game is then to use the beam modeling pipeline to estimate the input beam,

Ψ(n̂), in the presence of non-idealities. The beam reconstruction fidelity is then fully defined

by the residual ∆Ψ(n̂) ≡ Ψ(n̂)− Ψ̃(n̂) where Ψ̃ is the reconstructed beam response. Similarly,

we calculate the resultant error in window function using Equation 3.3. The stated window

function error, σ`, and bias, γ`, are

σ` =
1

N

N∑
i

(W ` − W̃ i
` ), (3.20)

γ` = W` −
1

N

N∑
i

W̃ i
` , (3.21)

where W̃ i
` represents the window function reconstructed from realization i, W ` is the ensemble

average of all those realizations, and W` is the true window function of the input beam.

3.5.3 Non-Idealities

With Equation 3.19 defining a method to simulate an ideal signal timeline, the next step

involves adding error inducing effects. Note that the pointing timeline, n̂i, is extracted from

the real timeline.8 Of course, the first ingredient that comes to mind is detector noise.
8The real timeline represents our best estimate for the actual pointing timeline. Pointing errors can be

added to this timeline.
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Figure 3.6: Left: A simulated 100-1a beam map combined from the four Saturn observations.
With contours from the official data derived DX11 beam map overlaid. Beginning from the
center, the contours represent -5, -10, -20, and -30 dB regions. Middle: The astrophysical
background obtained by combining four Saturn observations. The color scale has been inflated
by a factor of 300 with respect to the beam map for increased contrast. The contour line
shows the region of the beam where the beam amplitude is comparable to the astrophysical
background. Right: The combined noise map inflated by a factor of 500 with respect to the
main beam for increased contrast. The contour shows the region of the beam where the beam
amplitude is comparable to the noise RMS.

Noise

Noise can contribute significantly to the beam reconstruction error. For Planck HFI, the

band averaged Noise Equivalent Temperature (NET) is in the range of 50–90 µK
√

s for

100–217 GHz [138]. During a single planet observation, a detector will spend no more than 5

seconds inside a one FWHM diameter disk centered on the planet. Because of this restricted

observation time, noise can limit our ability to probe the shoulder of the beams where the

signal to noise ratio becomes low. We use a planet signal subtracted timeline as a baseline for

noise estimate. As expected, the noise timelines generated this way do in many cases show

clear signal of 4 K cooler lines [138]. It is crucial that noise realizations be generated from

data, as the amplitude of 4 K cooler lines, and residuals thereof, vary with time.

These noise Power Spectral Densities (PSDs) are subsequently used as templates for

Gaussian noise realizations which are added to the simulated timestream. Comparison with

officially vetted noise PSDs shows that the resultant noise RMS generated by our algorithm
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is consistent at the 10% level for all detectors. In the presence of noise, the generated signal

becomes

s(n̂i) = CpΨ(n̂i) + ni, (3.22)

where we assume that the noise contribution, ni, is uncorrelated with the signal amplitude so

that n(n̂i) = ni. The simulations inject noise from 1 Hz up to the 90 Hz Nyquist frequency,

where the noise has begun to roll off due to filtering. The simulations do not inject low

frequency noise below 1 Hz; neither does the subsequent analysis subtract low frequency

noise components from the timelines. The noise injected in these simulations is assumed to

be uncorrelated among detectors.

Figure 3.6 shows a decomposition of signal, astrophysical background, and noise obtained

by combining four Saturn observations. The contour of the beam where the noise RMS

becomes comparable to the signal from the planet observations is shown for comparison.

We did not include low frequency noise in the simulations used to generate these diagrams,

hence the trivial morphology of the noise map. In contrast, the astrophysical background

map clearly indicates complex morphology. Any error in background estimates will retain a

fraction of this structure.

To understand noise contributions to the beam reconstruction error we can run simulations

with noise as the only injected non-ideality. Figure 3.7 shows the bin-by-bin (1σ) standard

deviation on the scanning beam window function as derived from the first observations of

the three main beam calibrators, Mars, Jupiter, and Saturn. This particular simulation used

500 realizations of each observation, making sample variance of the underlying distribution

negligible. Even using Saturn, the noise error can affect the beam window function at the

1% level for ` ∼ 2000. The Jupiter observations are clearly not noise limited. As the beams

for the 2013 Planck data release were derived using only the first two Mars observations,

we conclude that the beam determination was likely noise limited. As the 2014 release uses

both Saturn and Jupiter observations [229], it is clear that statistical noise now plays a less

dominant role in the beam reconstruction error.
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Figure 3.7: The 1σ statistical error in scanning beam window function reconstruction
(compared to the input beam) based on one observation of Mars, Jupiter, and Saturn.
Presented here are the results for four detectors, 100-1b, 143-3a, 217-8a, and 353-4a. Note
the change in vertical scale between rows. The effect of noise is clearly strongest in beam
reconstruction using Mars observations. It would be almost negligible if we were to use
Jupiter for main beam reconstruction.

Pointing Error

The satellite pointing reconstruction uses data from two time-delay integration star cameras

that are mounted to the side of the service module. The satellite also houses gyroscopes which

provide ancillary pointing information. On the time-scales of days, pointing reconstruction

is verified by comparing beam centroids derived from observing bright point sources with

locations predicted by the JPL ephemerides database.

The five outer planets and some radio sources are primarily used to verify low frequency

pointing stability. Initially, this process revealed a strong correlation with temperatures on

the service module in the proximity of the star cameras. It was concluded that thermoelastic
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Figure 3.8: Beam reconstruction error for detectors 100-1b, 143-6, 217-8a, and 353-4a due
to random pointing jitter. Note the change in scale between the two rows. We see that the
errors are more or less consistent between observations.

deformations, caused by cycling of hydrogen sorption coolers, affected the star cameras,

resulting in few arcsec errors in the pointing which were subsequently corrected.

When generating simulated timelines, the real pointing timelines are used to sample a

fiducial input beam. Any pointing error is then added to the pointing solutions. This allows

us to accurately simulate realized sampling densities as well as any other features in the real

pointing timelines. Similarly, samples that are flagged for various reasons in the real data

timelines are also flagged in simulations. For example, if there is an unusually high density of

flagged data close to the beam center, the simulations will incorporate such an effect.

In our notation, a pointing error causes our assumed pointing η̂i to be offset from the true
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Figure 3.9: This figure shows the co- and cross-scan centroid offset and corresponding error
averaged over all HFI detectors as derived from DX11 data. Simulation results are also shown
for comparison. The vertical lines represent the standard deviation in the ensemble. The
results suggest few arcsec pointing errors on month time scales. Clearly cross-scan errors
are larger. This is understandable given Planck ’s raster-like scan strategy. Different colors
represent different planets.

pointing n̂i by a small amount δn̂i, i.e. η̂i = n̂i + δn̂i, with the corresponding signal offset

∆s(n̂i) = s(n̂i)− s(η̂i) ≈ −∇s(n̂i) · δn̂i. (3.23)

Clearly, pointing errors will broaden beam estimates.

Figure 3.8 shows beam reconstruction from simulations that include 2.5 arcsec RMS

pointing error as the only injected non-ideality. The injected pointing error is consistent with

that assumed for the 2013 papers [207]. Taken at face value, pointing jitters cause a 1σ shift

of 0.04% at ` = 2000 at 143 GHz. This is clearly a small effect.
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Traditionally, beam centroids have been derived using parameters of an elliptical Gaussian

fit. To probe the fidelity with which we can reconstruct the true centroids of those observations,

we simulate all twenty Planck observations of the outer planets. Each planet observation is

simulated a thousand times. We then fit an elliptical Gaussian beam to the simulated data

to determine the beam centroid. Figure 3.9 shows the cross- and co-scan centroid errors and

biases, averaged over all frequency bands, derived from simulations of the planet observations

and compares those to centroids derived from real data.

The simulations do not show variations in the pointing of the order suggested by the

observation averaged centroids. It is possible that correlated errors in the pointing realizations

would improve the consistency. Data derived results suggest that the assumed 2 arcsec co-scan

pointing errors are conservative.

Coverage Effects

Figure 3.10 shows a coverage map for both a single Jupiter observation and one which is

obtained by combining four Saturn observations. The color of each pixel in those maps

represents the number of times a sample was drawn from that location. The pointing data

have been corrected for the peculiar motion of Jupiter so that a planet centered map can

be constructed. Note how the number of data samples falling within a single pixel varies by

a factor of two in the 600 arcmin2 field of view. If these beam reconstruction simulations

were taking place before the satellite acquired data, we would have to assume that the planet

center could fall at an arbitrary location on that coverage map.9

The coverage maps shown in Figure 3.10 are made less uniform by a number of effects,

including cosmic rays, flagging algorithms, and scan non-uniformity. Note that two beam

contours are shown in each panel, one of which has been translated by 9 arcmin along both

co- and cross-scan directions. The number of samples falling within the 20 dB contours

differs significantly for the two cases. Beam reconstruction algorithms can be sensitive to
9This is similar to the concept of cosmic variance.
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such variations. However, now we know how the planet center falls with respect to Planck ’s

anisotropic coverage. Such variations in coverage should therefore not be included in an a

posteriori analysis.

However, there are counterarguments. A number of data processing steps are currently not

included in any beam simulation pipelines. For example, the Planck data are heavily flagged.

It is likely that some data samples are flagged when they shouldn’t be, and conversely, some

data are not flagged when they should. This will affect coverage. Flagging algorithms are not

probed in any simulations and shifting the beam center with respect to the coverage map

does in some sense probe sensitivity to such effects. Other data pre-processing steps are also

not simulated. Finally, this procedure probes the covariance between the elliptical Gaussian

parameters and the decomposed Gauss-Hermite coefficients. We therefore choose to include

this effect in our simulations.

Astrophysical Background Residuals

The beam reconstruction uses data that combine signals from planets as well as the CMB and

any other astrophysical background. Estimates for the latter are subtracted from timelines

prior to beam reconstruction. Inaccurate background estimates can therefore affect the beam

reconstruction. Figure 3.6 shows the astrophysical background obtained by combining four

Saturn observations. Striping and sub-degree scale anisotropies are visible. Signal errors

will most likely have similar morphologies. We simulate inaccurate background estimates by

assuming some fraction of the background remains after subtraction.

Input Beam

Simulation results depend on the input beam. Ideally, the input is almost identical to the true

beam response of the detector being simulated. Obviously, our ability to choose an input beam

is limited by our understanding of the real beam response. Additionally, simulations require

an input beam response function that can accept arbitrary pointing information. A simple
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Figure 3.10: Left: The outline of the DX11 beam product for channel 143-7 overlaid on a
coverage map from the first Jupiter observation. The three contour lines represent the -5,
-10, and -20 dB curves. Another version of the same beam is shown translated by 9 arcmin
in both co- and cross-scan direction. The coverage is normalized to unity, with 55 samples
falling on the pixel that is most often hit. The pixels are 1.8 arcmin wide. Right: The outlines
of the DX11 beam product for 143-7 overlaid on a coverage map which this time is obtained
by stacking all four Saturn observations. There are 196 samples populating the best covered
pixel.

elliptical Gaussian input beam is more easily described by a multivariate beam model than a

beam that is the result of complicated interplay between optical components and subject

to non-idealities. An input beam cannot be described using a function basis that is similar

to the basis used for reconstruction, as this can result in an unrealistic advantage. Possible

parametrization methods include Gaussian or elliptical Gaussian input beam, Gauss-Hermite

input beam, B-spline beam, and high resolution rasterized maps with nearest neighbor lookup

algorithm.

For the simulation of Gauss-Hermite beam reconstruction, we create a beam product

which merges all available Jupiter and Saturn observations. The data are then interpolated

using a cubic spline which captures both the high spatial frequency information in our beam

as well as the near sidelobes which extend many FWHM out from the beam center.
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Time-varying Planet Flux

The mm-wavelength luminosity of Mars is modeled by calculating the intensity of light

reflected from regions of the planet with varying albedo [241, 242]. As the planet rotates

around its axes with a period of nearly 25 hours, time-varying flux could affect the beam

reconstruction. We have simulated Mars observations with and without time-varying flux,

and found a small effect that we can correct. At the moment, Mars observations are not used

to derive beam products. The author is not aware of models that predict time-variations in

the flux of Jupiter or Saturn on hour timescales.

Cosmic Rays – Glitches

Planck HFI is constantly bombarded by Galactic cosmic rays which are modulated by

variation in the Sun’s activity.10 These cosmic rays affect a significant portion of the Planck

TOD. In fact, at the beginning of the mission, about 98% of the data were touched by a

deglitching algorithm which flags, removes, and corrects data due to cosmic rays [229] prior to

time response deconvolution.11 This number came down over time as the Galactic cosmic ray

incidence fell, yet more than 90% of the Planck HFI data have been affected by this algorithm.

Glitches and their temporal variations can affect beam reconstruction. Unfortunately, the

simulation of glitches and subsequent removal thereof is only possible within the official

Planck data processing pipeline, as the algorithm is highly specific.

Other Effects

A large number of non-idealities should be incorporated in an ideal simulation pipeline. We

have added the most significant of these effects, but some still remain. These include signal

non-linearity corrections, gain variations, and destriping and despiking errors, all of which can

affect beam reconstruction. For example, low frequency noise is removed from timelines by a
10The daily fraction of data that are flagged (omitted) as a result of cosmic rays fell from 20% to 13% over

the 30 months of observation [138]. This trend is highly correlated with indicators of the Sun’s activity.
11We sometimes use the word despiking to mean the same thing as deglitching.
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destriping algorithm. We find that turning this algorithm off, will have a significant effect on

the derived beam product. Any variations in the destriping algorithm could therefore affect

the final product.

The frequency dependence of the beam and effective area are not probed in these

simulations, nor are they fully understood [207]. As Equation 3.17 indicates, the effective area,

Ae(ν), and beam response, Ψ(n̂, ν), are frequency dependent. Since the beam response is

calibrated using planets, which have a Rayleigh-Jeans like spectrum to a good approximation,

the beam response appropriate for CMB observations might be slightly different. Physical

optics simulations have suggested that this effect could cause up to 1% error in beam window

function at ` = 2000 for the 217 GHz band [229]. This effect adds significant uncertainty to

our beam reconstruction.

Reconstruction Bias

Unlike beam reconstruction error, we find that the amplitude and sign of the bias in

beam reconstruction (see Equation 3.21) depends strongly on the input beam used for

simulations. We iterate the beam input to the simulations with the scanning beam derived

from the planetary observations. During this process, we have observed a range of beam

reconstruction errors, normally, however, these bias functions are comparable in amplitude

to the 1σ error estimates shown in Figure 3.12. As we do not know the exact shape and

functional form of the input beam, we choose not to correct for bias when performing

beam reconstruction. Comparison of different beam reconstruction algorithms suggests that

differential reconstruction bias is small (see Section 3.6.1).

3.5.4 Error Budget

Having probed various systematics, we can construct a window function error budget. This

quantifies the relative contribution of different systematics to the total beam reconstruction
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Figure 3.11: The fractional contribution of various non-idealities to the total window function
error budget as derived for a stacked beam product using all available Jupiter and Saturn
observations; shown here for four detectors. The white region represents the relative window
function error when all non-idealities are added at the same time. If they were completely
uncorrelated, the white region would begin at 0.5 for all multipoles.

error. In the limit of uncorrelated errors, the total window function error follows

∆W` =
nerr∑
j

σ`,j, (3.24)

where σ`,j represents the beam window function error from one of the nerr types of systematics

probed by simulations. Note that the window function is proportional to the square of

the spherical harmonic transform of the beam response. The above expression therefore

corresponds to a quadrature sum of errors in the decomposition coefficients. To see how the

errors correlate, we can run simulations which incorporate subsets of errors.
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Figure 3.11 shows the window function error budget of the Gauss-Hermite beams as

derived from a stacked beam product that includes the first four observations of both Saturn

and Jupiter. The simulations used to derive these results include 1000 realizations for every

non-ideality, as well as 1000 realizations with all effects added at the same time. The

total length of the timestreams generated this way corresponds to approximately 20 days

of integration time per detector. We simulate noise, coverage, pointing, and error in the

subtraction of astrophysical background.

The error budget shows how the detector (statistical) noise affects the beam reconstruction

error primarily at the lower frequencies. For 217 GHz and up, other errors are larger. It

is interesting that the error induced by coverage effects dominates in many cases. Pointing

error and incorrect subtraction of astrophysical background also affect the derived beam

window function. The white region in Figure 3.11 shows the relative size of the reconstruction

error when all non-idealities are included at the same time. In the limit where all errors are

uncorrelated, the white region would cover half of each graph with a lower boundary at 0.5.

The error correlation structure is noteworthy. For example, we see that the errors interfere

constructively for channel 353-4b such that the white region covers more than 50% of the

area at high multipoles.

3.5.5 Principal Component Analysis

A complete discussion of the Planck HFI cosmological analysis is found in [49, 64]. The

following excerpt describes how the beam window function error estimates are propagated

through the cosmological error analysis.

We performed Principal Component Analysis (PCA) on the Gauss-Hermite covariance

matrix to see whether reconstruction errors can be captured by a subset of the GH parameters.

This analysis does not suggest a significant reduction in matrix rank.12 Contrary to what is
12Although principal component analysis does not effectively compactify the real space variance of the

Gauss-Hermite simulations, such parametrization can be useful for error analysis in physical optics simulations
where one needs to generate an ensemble of beam realizations to compare against mirror deformations.
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Figure 3.12: Total beam reconstruction error for detectors 100-2a, 143-2a, 217-8a, and 353-4a
as derived from all available observations of Jupiter and Saturn. Green region is the 1σ
error envelope. The first five eigenmodes, scaled with their eigenvalue, are shown with green
dashed lines. The light green region represents the combined error due to noise and cosmic
variance calculated using the standard Fisher matrix approximation [133] while setting bin
width and sky fraction that are consistent with [49, 64]. Channel 353-4a only shows the noise
contribution.

seen with the GH coefficients, the window function error covariance matrices, established by

simulations, are smooth. We find that the first few eigenmodes capture a significant fraction

of the error (see detailed discussion in Appendix A.6 of [64] and Appendix G of [207]).

The beam window function error can be written as a sum of orthonormal error eigenmodes,

V`,k, multiplied by their respective eigenvalue

∆W` =

nMC∑
k=1

λkV`,k, (3.25)
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where nMC corresponds to the number of Monte-Carlo realizations. Because of low dimen-

sionality, the first few eigenmodes of the covariance matrix capture a large fraction of the

variance. For that reason, the eigenmodes used for cosmological analysis are truncated to a

small number. We write

∆W` ≈
nm∑
k=1

λkV`,k with
nm∑
k=1

λk �
nMC∑

k=nm+1

λk, (3.26)

where nm = 5 represents the number of beam window function error modes used in

cosmological analysis.

With these tools, we can perform statistical tests using the total window function error

derived from the Gauss-Hermite pipeline. Figure 3.12 shows the total beam window function

error and eigenmodes for four detectors as derived using all available Jupiter and Saturn

data. These are based on 1000 realizations per detector, using all four non-idealities described

in Section 3.5.4. The 1σ error envelope is represented by the brown region. The first five

eigenmodes, scaled with their eigenvalue, are shown by the dashed black lines. Note that the

error envelope is obtained by adding the first five eigenmodes in quadrature.

The Planck HFI analysis incorporates errors from beam reconstruction simulations into a

pseudo-spectrum likelihood approach.13 The beam error eigenmodes are used to construct

a generalized beam eigenmode appropriate for the 100, 143, and 217 GHz auto- and cross-

spectra. By propagating the beam errors through the entire cosmological analysis pipeline,

we can determine how the errors affect the final cosmological parameter estimates.

3.6 Data Derived Beams

In the first years of beam analysis, it was found that beams derived from Saturn and

Jupiter observations differed at the percent level in solid angle from ones derived from Mars
13Many likelihood pipelines exist within the Planck HFI collaboration. The one that was used to derive

the 2013 cosmological results is referred to as CamSpec and is maintained by George Efstathiou’s group at
Cambridge.
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observations alone. We thought that this could be due to poorly understood phenomena

associated with the Jovian planets. At the same time, the first Mars observation was thought

to provide greatest beam reconstruction fidelity due to high sample density. Finally, no beam

reconstruction algorithm which effectively combined many planet observations into a single

beam product appropriate for cosmological analysis had undergone sufficient characterization.

It was therefore decided that the beam product for the 2013 Planck release would only use

data from the first two Mars observations [207].

The final goal, however, had always been to use all of the planet observations to constrain

beams. In the 2014 data release, the official beams are derived using a hybrid beam model

which combines Saturn and Jupiter observations using a B-spline parametrization for the

main beam and an azimuthally symmetric power law added at large angular separation

[207, 229].14 As Saturn is significantly brighter than Mars, little is gained in signal to noise

ratio by adding Mars to the merged beam product. Currently, Mars observations are only

used for validation purposes.

The act of merging planet observations requires accurate centering and normalization.

We incorporate this into the Gauss-Hermite beam reconstruction algorithm. The simulations

allow us to estimate the accuracy with which we can perform these operations. In the

following subsections, we look at Gauss-Hermite beams reconstructed from real data. We

show that these products are internally consistent and compare them with the B-spline

results.

3.6.1 Pipeline Comparison

Comparative studies of the B-spline and Gauss-Hermite beams help spot outliers and improve

the quality of both algorithms. When analyzing the same data, the two beam reconstruction
14The planets are not perfect point sources, especially Jupiter. We correct for the finite size of the planets

in `-space [207]. This leads to an approximately 0.1% correction of the CMB channel window functions at
` = 2000.
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Figure 3.13: The channel 100-2b scanning beam derived from a combination of Jupiter and
Saturn observations using a B-Spline hybrid basis (left) and a Gauss-Hermite beam (right).
The beams are shown here on a log scale to accentuate differences in the shapes. Note that
the B-Spline beam has more variations on small angular scales.

methods should give similar answers. With simulations available for both pipelines, the

consistency tests on data derived products become more robust.

When comparing beam models, simulations suggest that the B-spline parametrization

captures the main beam response with greater fidelity than the Gauss-Hermite algorithm.

Based on those results, and since the B-spline pipeline was fully integrated with the official

HFI data processing infrastructure, it was decided that this method should be used to derive

the Planck HFI beam parameters. The B-spline pipeline as it pertains to Planck HFI beams

is described in [207, 235].

The Planck hybrid beam model is described in [229]. The hybrid model incorporates

planet data extending out to 100 arcmin from the beam center, while the Gauss-Hermite

pipeline, with Nmax = 9, can only extend out to 20 arcmin (see Section 3.4). For this reason,

we add a Ruze envelope to the Gauss-Hermite beam to capture structure in the near sidelobes

(see Section 3.6.3). Figure 3.13 shows a scanning beam map of channel 100-2b, reconstructed
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Table 3.3: The mean value of DX11 scanning beam parameters for each HFI band. The beam
full-width at half maximum, θFWHM, is derived from an elliptical Gaussian fit. Two values
for the beam solid angle are reported; the first is the solid angle obtained from the B-spline
hybrid model, ΩBSH, the latter, ΩGHR, is obtained by combining a Gauss-Hermite beam with
a Ruze envelope for the near sidelobes (see Section 3.6.3). The ellipticity, ε, defined as the
ratio of the larger beam width and the smaller beam width, is determined from an elliptical
Gaussian fit to data (out to 30 arcmin) that combine Jupiter and Saturn observations.

θFWHM ΩBSH ΩGHR ε

[arcmin] [arcmin2] [arcmin2]

100 GHz 9.55 ± 0.03 105.0 ± 1.0 104.9 ± 1.0 1.21 ± 0.01
143 GHz 7.11 ± 0.11 58.6 ± 1.9 58.7 ± 1.8 1.05 ± 0.02
217 GHz 4.88 ± 0.05 27.1 ± 0.6 27.3 ± 0.7 1.21 ± 0.03
353 GHz 4.65 ± 0.05 24.9 ± 0.6 24.9 ± 1.2 1.19 ± 0.03
545 GHz 4.68 ± 0.34 25.5 ± 3.0 26.0 ± 3.2 1.18 ± 0.12
857 GHz 4.29 ± 0.03 23.0 ± 0.8 27.8 ± 1.0 1.40 ± 0.11

from combined observations of Jupiter and Saturn. The beam maps suggest the B-spline

allows greater spatial frequency reconstruction.

Comparison of all HFI beams reveals good consistency between the two beam products.

For example, the band average solid angles for the two products, agree to within 0.2%, 0.15%,

0.3%, at 100, 143, and 217 GHz respectively. Table 3.3 describes some properties of the two

products as derived on data appropriate for the 2014 cosmology release (DX11). The B-spline

product has a slightly larger solid angle in all cases.

It is instructive to look at azimuthally averaged beam profiles. Despite the scan-strategy,

the data offer tremendous signal-to-noise ratio. Figure 3.14 shows the azimuthally averaged

data obtained by combining all available Jupiter and Saturn observations. Blue points

represent average values within a bin. Light-blue colored points emerge at the noise floor,

representing negative values. The blue curve in these plots is the beam profile used for the

2013 cosmological analysis (DX9). Note that the beam data were apodized, beginning at

roughly 12 arcmin. The 2014 beam profiles (DX11) are shown in orange. We also include the
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predicted beam profile derived from physical optics simulations in light-blue. Finally, a hybrid

beam using Gauss-Hermite functions for the main beam and a Ruze envelope at large angular

separations is shown with a red dashed line. The Gauss-Hermite main beam, sans Ruze

envelope, is shown with a solid red line. Section 3.6.3 describes the Ruze parametrization.

Clearly, the DX11 and hybridized Gauss-Hermite profiles agree well.

Two beams with identical solid angles can have very different window functions. Com-

parison of the beams in multipole space is therefore warranted. Figure 3.15 compares the

window function ratios of a few channels that are representative of the average consistency

within a frequency band. The error envelope for the Gauss-Hermite pipeline is shown. The

B-spline simulations appropriate for DX11 data are not yet available, precluding quantitative

consistency checks. We note that the two window functions appear to be consistent at

approximately the 1σ error envelope of the Gauss-Hermite beam. The low-` window function

difference is intriguing. This is likely caused by differences in the estimates of the near

sidelobes. Neither simulation pipeline incorporates the near sidelobe reconstruction. We

expect that the low-` reconstruction error is underestimated.

3.6.2 Consistency Tests

We can use the statistical tools presented in Section 3.5.5 to perform consistency tests of

the GH beams using subsets of planet observations included in the final beam product.

Comparison of data-derived and simulation results then provides a quantitative statement

about beam consistency. The test involves calculating a probability to exceed for the following

reduced chi-squared statistic

χ2 ≡ 1

nev

nev∑
k=0

(
λ̂k/λk

)2

, (3.27)

where λ̂k are the best-fit values in the nev element eigenvector decomposition required to

construct the discrepancy between the two observation subsets, and λk are the eigenvalues

derived from simulations. We split the planet observations into two independent subsets, each
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Figure 3.14: The azimuthally averaged beam profiles for four detectors spanning 100–353 GHz.
See description of plots in Section 3.6.
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Figure 3.15: Comparison of Gauss-Hermite (numerator) and B-spline (denominator) beam
window functions derived using all available Jupiter and Saturn data. The three channels
shown here, 100-3a, 143-2b, and 217-6b, are representative of the overall agreement between
the two pipelines. The colored region represents the 1σ error envelope for the Gauss-Hermite
pipeline derived using simulations.

incorporating four planet observations. The first subset uses the first and third Jupiter and

Saturn observations while the second subset combines the second and fourth observations.

For every realization, i, we calculate the ratio

∆W`,i ≡
W 13
`,i

W 24
`,i

, (3.28)

whereW 13
`,i andW 24

`,i are the window functions derived from the two independent subsets. After

performing principal component analysis on an ensemble of ratios generated by simulations,

we decompose the data derived window function ratio, W 13
` /W

24
` using the corresponding

eigenfunctions, V`,k. The best fit decomposition minimizes the residual, D`, defined as

D` ≡

(
W 13
`

W 24
`

−
nm∑
k=1

λ̂kV`,k

)2

, (3.29)
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Table 3.4: The band average consistency test results. Here, χ2 and χ2
M represent the band

average and band median values, while PTE corresponds to the probability to exceed for
the band median value. The three bands used for cosmology pass the consistency test. The
results suggest that the beam product generated this way are internally consistent.

χ2 χ2
M PTE

100 GHz 2.1 1.5 22%
143 GHz 1.2 0.3 57%
217 GHz 2.3 1.2 28%

over all angular scales used in cosmological analysis. Table 3.4 lists the band average result

of this consistency test for the three frequencies used in cosmological analysis. The results

suggest that the Gauss-Hermite beams are internally consistent.

3.6.3 Dimpling Lobes and Ruze Envelopes

A clear example of the connection between the reflector surface finish and the optical response

can be seen in the sub-mm channels. The high signal-to-noise-ratio, offered in part by the

multi-moded nature of the beams, allows us to probe further down the near-sidelobe to reveal

a hexagonal pattern of dimples (see Figure 3.16).

Prior to launch, deformations of Planck reflectors were measured using interferometric

techniques [218]. The results of these measurements are shown in Figure 3.17. It should

be noted that only the secondary was cooled to its operating temperature of about 50 K

during these measurements. The higher resolution measurement of the secondary clearly

indicates 20 µm deformations on 10 mm scales. A hexagonal pattern, corresponding to

the carbon-fiber reinforced plastic structure supporting the front-facing surface, can also

be seen in the interferogram of the secondary; these cells have a characteristic length of

approximately 60 mm. Only coarse resolution measurements exist for the primary. Those

indicate deformations of similar amplitude, approximately 20 µm, over the scales probed. The

two-dimensional Fourier transform of these deformation maps reveal a hexagonal structure
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Figure 3.16: Left: A beam map of channel 545-1 obtained by combining all available
observations of Jupiter and Saturn. Right: A beam map of 857-1 obtained through the same
process. The non-Gaussian shape of these multi-moded beams is clear. At least three sets of
dimpling lobes are also visible. Finally, detector time-response filtering residuals are visible
on both sides of planet crossing. Note that data from Jupiter have been excluded in regions
where the detector is saturated.

similar to the ones that are observed in Figure 3.16. This is a wonderful example of Fourier

optics.

Gaussian surface errors on reflector elements redistribute power from the main beam

to larger angles. Errors with large spatial correlation lengths (large dimples), compared to

the wavelength of reflected light, will distribute energy to relatively small angular scales.

Conversely, small dimples will distribute energy over large angular scales. The beam shoulder

generated this way is often called a Ruze-envelope. Ruze derived an expression for loss in

antenna gain due to uncorrelated surface errors with a Gaussian distributions of zero mean

deformations spanning a range of physical scales. The expression appropriate for the beam

response is [243]

Ψ(θ, φ) = Ψ0(θ, φ)e−δ
2

+

(
2πl

λ

)2

e−δ
2

∞∑
n=1

δ2
n

n× n!
e−(πl sin(θ)/λ)2/n, (3.30)
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Figure 3.17: Left: The Planck primary mirror deformations from a photogrammetric
measurements with 26 mm resolution. Right: The Planck secondary mirror deformations
observed when cooled to 50 K, corresponding to operational temperatures. Obtained at a
maximum resolution of 3–4 mm. Note that in both cases, these measurements are projected
onto a plane that is perpendicular to the head-on viewing angle, coincident with the rim of
the mirrors. More detail is provided in [218].

where l is the correlation length of the surface deformation, λ is the wavelength, Ψ0(θ, φ) is

the ideal beam shape and δ2 represents the variance of the phase errors. The equation is

applicable in the limit when D/(2l) � 1, where D is the diameter of the optical element.

According to Equation 3.30, loss in forward gain is mainly determined by the amplitude of

the RMS error and not correlation lengths.

Although the above formula serves as an excellent parametrization of near-sidelobes, we

have been unable to identify a set of correlation lengths and surface RMS errors that generate

near-sidelobe structure that is consistent with our measurement for all frequency bands (see

Figure 3.14). This is probably related to variation in reflector illumination and distribution

of surface errors.
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3.6.4 Bolometer Non-Linearity and Saturation

Of all the planets that Planck observes, Jupiter is by far the brightest (see Table 3.2). The

flux from Jupiter is so great that it saturates the detectors. Different types of signal processing

non-linearities affect the Planck data [138, 207]. Bolometric non-linearity corrections are

described in [138]. Even with signal non-linearity correction applied, above certain signal

amplitudes, the bolometer becomes saturated. A saturated detector will display zero or highly

non-linear response to flux variation. As Jupiter is still a point source compared to the HFI

beams, it is useful for characterizing the beam response. Because of saturation, data obtained

close to the planet center are not fit for use. However, below the saturation threshold, there

is little reason to throw away data, and the large signal to noise ratio makes Jupiter ideal

for characterizing the near-sidelobes response. We developed a method to normalize Jupiter

observations by fitting the response in the beam shoulders to Saturn observations. Since

Saturn does not saturate the bolometers, we can estimate the main beam and near sidelobes.

By normalizing the shoulders of Jupiter observations to Saturn, we extend the beam response

below the noise floor in Saturn timelines. The algorithm is as follows:

◦ Create a cubic spline interpolation function of two planet observations, one of which

potentially suffers from non-linearity.

◦ Use these two interpolation functions to recreate signal timelines within a region where

neither observation suffers from non-linearity. The interpolant function that describes

the non-linearity-prone observation is still valid in an annular region centered on the

planet.

◦ Find a normalization constant, C, that minimizes the squared residual of the two

observations.

With the last step, one can write

Ψ̃(x, y) = Ψ̃Sat(x, y) + CΨ̃Jup(x, y), (3.31)
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where Ψ̃(x, y) represents an approximation for the beam response using both Saturn and

Jupiter data. This method indicates detector saturation for Jupiter observations above

217 GHz. Analysis of the first three Jupiter observations suggested 7, 9, and 70% clipping at

353, 545, 857 GHz, respectively. This suggests that the maximum filtered signal amplitude for

these beam maps is between 7–70% lower than it should be, if the detector hadn’t saturated.

Independent analysis on the same dataset performed by Brendan Crill suggested 12, 12, and

66% clipping at 353, 545, 857 GHz respectively. A similar algorithm is used to merge Jupiter

and Saturn observations. This method also allows the estimation of flux from Jupiter, despite

detector saturation.

3.7 Validation of Absolute Calibration using Planets

Planck constrains the flux of the outer planets at mm and sub-mm wavelengths. For planetary

science, this helps inform radiative transfer modeling, which in turn constrains atmospheric

densities and chemical abundances. Planet observations can also be used to cross-calibrate

Planck HFI with other CMB experiments. Along those lines, point source flux reconstruction

offers one of the only viable checks on the solid angle of the far sidelobes. Finally, sufficiently

precise planet models can be used to bracket the absolute calibration of the instrument.

All planet observations are part of the standard raster scan of the satellite; generally, no

observation time is specially assigned to planets [223]. As Planck is a space based observatory,

Earth’s atmospheric signal does not add confusion to these measurements. In the analysis

presented here, we probe an extensive stretch of frequencies using a consistent method. The

results suggests that the absolute calibration of the Planck HFI and WMAP is consistent at

100 GHz.
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3.7.1 Planet Brightness Measurements

It is difficult to make definitive statements about annual variations in planet flux. Some

measurements of long-term trends exist [244, 245, 232]; however, measurements of fluxes

in the HFI frequency range are mostly sporadic. Assuming constant brightness, planet

observations allow cross calibration of different experiments. By comparing Mars brightness

derived by Planck HFI and WMAP, one can probe systematics in beam modeling and the

consistency of absolute calibration. Planet flux as measured by WMAP and ACT is described

in [246] and [247, 248] respectively. Many other CMB observatories have also reported planet

fluxes [249, 250].

Assuming planetary modeling is robust, measurements of planet flux can be used to

calibrate the absolute responsivity of the HFI; this would replace calibration using the CMB

orbital dipole. However, all models of planet flux in the mm and sub-mm range quote

approximately & 5% errors, which is worse than what can be achieved from the CMB dipole

below 545 GHz [224]. At and above 545 GHz, however, the CMB dipole signal is too weak.

Shortly after the first data were acquired, comparison of Uranus and Neptune flux mea-

surements with models of the brightness temperatures suggested that the absolute calibration

of sub-mm channels, as determined from cross-calibration with FIRAS measurements, was

inaccurate. As instruments onboard Planck ’s sister experiment, the Herschel satellite, base

their absolute calibration on observations of Uranus and Neptune, it was decided that the

absolute calibration of the Planck ’s sub-mm channels would be linked to those planet models.

The absolute calibration is obtained by scaling measurements of Uranus and Neptune flux so

that they are consistent with ESA models [251] (see further discussion in [224, 226] and in

Section 3.7.5).

Accurate calibration through planet flux measurements allows us to verify foreground

models such as the Planck sky model [129]. Such models include contributions from sources

such as the cosmic infrared background and Galactic foregrounds. As accurate foreground
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Figure 3.18: Composite showing four planets as viewed from the center of Earth around the
turn of year 2010. The view from L2 would be very similar. From left to right, the figure
shows Uranus, Mars, Saturn, and Jupiter. The planets are drawn on the same scale with
Jupiter approximately 40 arcsec in diameter. A fraction of a typical 143 GHz beam is shown
by the black line and the grey region, the diameter of the circle corresponds to the FWHM
of the beam. Planet diagrams extracted from [252].

estimates are required for cosmological analysis, high-fidelity planet flux reconstruction is

valuable.

Planet flux can be estimated in different ways. The most common approach is referred to

as aperture photometry, whereby pixelized maps are numerically integrated out to some cutoff

radius. This method can be imprecise, especially when coverage is poor. As an example,

determination of constant map offset is complicated by non-negligible contributions from

near sidelobes. Two related methods are commonly used: one involves extraction of the peak

planet flux using an elliptical Gaussian fit (or similar) to the data; the other extracts the

peak using a global fit of the beam Point Spread Function (PSF). With an estimate for the

peak signal, the flux from the planet can be derived.

We describe planet flux reconstructed from Planck HFI observations using Gauss-Hermite

estimates of peak brightness. Comparison with both aperture photometry and PSF fitting

methods suggest overall good agreement. For validation, we show predictions from ESA

models [242, 251]. We offer minimal interpretation of these results and refer the reader to

[224] as well as the 2014 collection of Planck HFI papers. Weiland et al. present a detailed

analysis of planet brightness as measured by WMAP [246]. Such analysis could be repeated

with these data.
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A detailed mathematical description of the method used to derive these results, including

error analysis, is presented in Appendix D.

3.7.2 Mars

The Martian orbital period corresponds to little less than two Earth years. The planet rotates

around its axis approximately once every 24.6 hours. The 25.2 deg axial tilt is comparable to

Earth, but the relatively large eccentricity makes the southern hemisphere experience greater

seasonal variations. The perceived brightness temperature is highly dependent on viewing

location as the Martian surface is far from homogeneous. Diurnal heating and cooling of the

atmosphere play a significant role. Finally, dynamical factors such as dust storms can affect

the planet’s albedo.

A number of models predicting Mars brightness temperature exist [253, 254]. We have

primarily considered the models of Lellouch et al. [242] and Weiland et al. [246]. The Lellouch

model has been used by the Herschel science collaboration. It incorporates surface and

sub-surface temperatures taken from the European Mars General Circulation Model [255] but

otherwise employs methodologies similar to [253, 254].15 The Weiland model is an alternative

version of a model that was originally constructed by Edward Wright [241]. This updated

version is used by the WMAP team and incorporates L2 viewing angles and extends the

spectral coverage down to WMAP frequencies.

Detectors on the HFI focal plane observe the same point on the sky within the span of

a week. For that reason, accurate beam reconstruction can depend on predictions about

rotational variations. Using the Lellouch model as a prior, we detect rotational variations

in Mars brightness with high significance. We correct for this in analysis, scaling measured

values to coincide with the time at which channel 100-1a observes the planet head on. For

example, this rescaling changes the standard deviation in measured brightness temperature

of the second Mars observation at 217 GHz from 3.1 to 2.0 KCMB.
15According to Lellouch, the model is validated by spatially resolved temperature measurements of the

surface.
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Figure 3.19: The measured brightness temperature for the three Planck HFI observations of
Mars (see Table 3.2). Black points represent band averages and the vertical lines standard
deviation in the ensemble. The vertical lines that have been shifted to the right of the points
represent the Monte-Carlo derived error estimate (see Section D.2.1). The predictions of the
Lellouch model (line), scaled by ζW, and the corresponding 5% errors (colored region) are
also shown.

Figure 3.19 compares the measured brightness temperature of Mars with predictions

by the Lellouch model. The model output has been convolved with spectral response of

the Planck detectors for accurate comparison. All brightness temperature estimates are

reported at the formal Planck HFI band centers, corresponding to 100, 143, 217, 353, 545,

and 857 GHz. Error bars indicate the standard deviation of measurements within a band,

not including Bessel’s correction. The Monte-Carlo derived errors are shown for comparison

(see Appendix D.2.1).

Because of seasonal variations, we compare different observations separately. Measure-
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ments are consistent with model predictions and their stated 5% modeling error. However,

we observe variations between frequencies that are common to all three observations. We do

not observe such systematic behavior in simulations of the flux extraction pipeline using the

Lellouch model as input. This could suggest a systematic intrinsic to the flux reconstruction.

We find that a global rescaling of the Lellouch model predictions by ζP = 0.973 minimizes

the residual between the model predictions and the three HFI measurements of Mars brightness

temperature. A similar recalibration of model predictions was performed in WMAP analysis

of the Weiland model [246]. Having access to both the Weiland and the Lellouch models, we

performed the same recalibration analysis using WMAP results. This suggests a rescaling

of the Wright model predictions of ζN = 0.953, consistent with reports in [246]. Using the

same method, we calibrate the Lellouch model predictions to WMAP results. This procedure

suggest a ζW = 0.968 rescaling of the Lellouch model minimizes the residual between model

predictions and WMAP results. The ratio of scaling factors, ζP/ζW = 1.005, suggests that

WMAP and Planck HFI are consistent in their absolute calibration at the percent level.

Finally, we note fluctuations in brightness temperature estimates which are common to

all three Mars observations. This could point to a systematic in the flux reconstruction or a

feature in the planet spectrum. We note that a similar jump at 143 GHz, is also observed in

Jupiter and Saturn measurements (see Sections 3.7.3 and 3.7.4).

3.7.3 Jupiter

There exists a rich literature on the mm and sub-mm flux densities of the Jovian planets

[256, 257]. Measurements in these wavelengths help constrain chemical abundances and

atmospheric models. According to [258], broad emission from ammonia (NH3) inversion lines

is the main source of opacity for Jupiter and Saturn at short cm and mm wavelengths.

Jupiter’s size and proximity make it the brightest planet on the sky as seen by Planck.

Although some detectors are driven to saturation, the planet’s brightness can still be estimated.

Applying the non-linearity corrections described in Section 3.6.4, we derive the planet’s flux
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Figure 3.20: The measured brightness temperature for the five Planck HFI observations of
Jupiter. Black points represent band averages and the vertical lines standard deviation in the
ensemble. The vertical lines that have been shifted to the right of the points represents the
Monte-Carlo derived error estimate (see Section D.2.1). The ESA1 model has been convolved
with the Planck HFI spectral bandpass in a way that makes the model, as presented here by
the orange region, only applicable at the HFI band center frequencies. The modeling error is
inflated from 5% to 10% between at 353 and 545 GHz [259]. The raw output of the model is
shown with a thin orange line. Note the ammonia line at 570 GHz.

at all frequencies. No simulations have been performed to characterize the fidelity with which

the non-linearity correction can be determined. Because of this, the flux reconstruction

error is inflated with increasing non-linearity correction. Figure 3.20 shows the flux at all

frequencies for the 5 observations available. We do not account for any contamination in flux

determination due to Jupiter’s rings and moons.

As seen from L2, Jupiter is approximately 40 arcsec in diameter. In performing background

subtraction of signal timelines, we account for planet occulting effects by nulling signal
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estimates which fall inside the planet disk. We apply this correction in all planet flux

reconstruction. It has a small, but non-negligible effect.

Jupiter is an ideal candidate to transfer WMAP ’s dipole calibration to another instrument

[232]. Assuming flux stationarity, we use our estimate for the observation averaged brightness

temperature to compare with WMAP brightness estimates at 94 GHz. The seasonal averaged

Jupiter brightness temperature at 94 GHz, as reported by WMAP, is TW
b = 174.6± 0.9 K.

The HFI measurement at 100 GHz is T̃P
b = 174.0± 1.4, with the 1σ error estimate derived

from the observed distribution. Using the ESA1 model to scale HFI predictions down to

94 GHz, we obtain TP
b = 173.8± 1.4. The ratio is TP

b /T
W
b = 0.995± 0.010.

Finally, we note the large variations in measured brightness temperature at 143–353 GHz.

These are not seen in corresponding simulations. We believe these large signal variations are

caused by increasing detector non-linearity and the onset of saturation.

3.7.4 Saturn

Saturn’s flux determination is complicated by the presence of extended rings. This spectacular

structure, primarily composed of ice [260], appears to have formed during a collision event

[261]. The structure is composed of multiple annular objects which extend out from the

planet’s center. During the four Planck observations of the planet, Saturn’s ring inclination

angle spanned 3 to 13 deg as viewed from L2. Using the methodology presented in Weiland

et al., one can fit a model which incorporates contributions from both the planet disk and

the rings. Here, we do not present the two-component analysis, but we note that the data

suggest T disk
b = 16± 3 K, which is consistent with WMAP analysis.

Figure 3.21 shows the observation averaged Saturn brightness temperature as a function

of frequency, assuming a single component model, and compares them with the ESA2 model

[259]. As we do not simulate variations due to the ring inclination angle, it is understandable

that the Monte-Carlo derived error is smaller. We observe an interesting similarity in
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Figure 3.21: The average measured brightness temperature for the four Planck HFI
observations of Saturn compared against the ESA2 model output after convolving with
the Planck HFI spectral bandpass. The model does not account for contributions from
Saturn’s rings. The three prominent absorption lines, including the one at 530 GHz, are
phosphine (PH3) absorption lines [256]. WMAP [246] and ACT [247] measurements are
included for comparison.

our measurement of the Jupiter and Saturn brightness temperatures. A minor jump in

temperature at 143 GHz and a significant dip at 545 GHz. We do not know if the 143 GHz

jump is physical or if represents a systematic effect. Note that this feature is not observed in

Uranus and Neptune (see Section 3.7.5). The dip near 545 GHz, observed in both Jupiter and

Saturn, is understood, and is due to absorption features from both PH3 and NH3. It is worth

noting that the 545 GHz observations of Saturn are subject to significant color corrections

(see Appendix D.3).
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Figure 3.22: The measured brightness temperature for the four Planck HFI observations
of Uranus compared to predictions of the ESA3 model after convolving with the spectral
response of the Planck HFI. Other data shown include results from WMAP [246] and ACT
[262].

3.7.5 Uranus and Neptune

The dimmest of the Jovian planets, Uranus and Neptune are often used as calibrators for

CMB experiments probing relatively small angular scales. The near millimeter brightness

temperature of Uranus and Neptune is discussed in [263]. For lack of a better way to determine

absolute calibration at those frequencies, the sub-mm channels have been calibrated such

that flux estimates from these two planets agree with predictions from ESA models. This

calibration was performed by Guilaine Lagache et al. [224]. The method involves aperture

photometry. For that reason, we do not expect identical results; those two algorithms will

have different intrinsic error and bias.

The two planets are quite dim at 100 and 143 GHz (see Table 3.2). Unlike Mars, Jupiter,
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Figure 3.23: The measured brightness temperature for the four Planck HFI observations of
Neptune compared to the convolved version of the ESA5 Neptune model. Other data shown
include results from WMAP [246].

and Saturn, where instrument calibration dominates uncertainty, statistical error is significant

in flux determination of Uranus and Neptune. Figures 3.22 and 3.23 show a comparison of

the predicted brightness temperature of these planets with the most up to date ESA models

at the time of writing [259], ESA2 for Uranus and ESA5 for Neptune. The models appear

consistent with these measurements, even in frequency bands which are not directly calibrated

to these observations.

A model of Uranus flux, attributed to Griffin and Orton [263], has recently been

incorporated into the set of available ESA models [251]. This model is discussed in ACT

analysis of Uranus flux [262]. The Griffin and Orton model of Uranus is referred to as ESA5

by scientists working on the calibration of SPIRE, an instrument on the Herschel satellite

[251, 259].
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Using Monte-Carlo derived errors, we see similar agreement between the Planck HFI

measurements and the ESA2 and ESA5 models. The χ2 per degree of freedom, as calculated

using the six band averaged HFI measurements, is 1.4 and 1.5 for ESA2 and ESA5, respectively.

However, the agreement is frequency dependent. Only considering 100-217 GHz, the χ2

per degree of freedom becomes 2.7 and 0.8 for ESA2 and ESA5, respectively. Conversely,

at 353–857 GHz, the χ2 per degree of freedom becomes 0.1 and 2.1. The ESA5 model is

therefore favored at low HFI frequencies and the ESA2 model at high frequencies. Note that

the ESA2 model was used to calibrate the absolute gain of the sub-millimeter channels, it is

therefore expected to agree quite well with these results at 545 and 857 GHz.

3.7.6 Summary

Figure 3.24 shows the difference between measured spectral flux density and that which is

predicted by the models that are presented in Sections 3.7.2–3.7.5. Note that, unlike the

brightness temperature, this ratio is linearly dependent on parameters that commonly affect

the calibration, such as the beam solid angle and gain. The dashed horizontal lines represent

the 5% model errors and the colored region is the standard deviation within the measurement

derived from data. The flux jump at 143 GHz is common to Mars, Jupiter, and Saturn.

Overall, the measurements are in good agreement with model predictions.

Uranus and Neptune are remarkably consistent with model predictions over all six Planck

HFI frequency bands. The measured flux from Mars appears systematically lower than the

Lellouch model by approximately three percent (see Section 3.7.2). This result is consistent

with the rescaling determined in WMAP analysis of the Wright model for Mars flux presented

in [241, 246]. We conclude that measurements of Mars flux density made by WMAP and

Planck HFI are in excellent agreement. Comparison of Jupiter measurements suggest similar

agreement.

Planck observed each of the outer planets approximately four times during a two-year
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Figure 3.24: The average ratio of measured flux (numerator) and model predicted flux
(denominator) as a function of frequency shown for all five outer planets. The model predicted
Mars spectral flux density is scaled by ζP = 0.973. Dashed horizontal lines represent 5%
errors envelopes. Overall, models agree well with the Planck HFI measurements.

period. Although we have not examined this in detail, apart from Mars, there is limited,

. 2σ, evidence for seasonal variation in planet flux.

3.7.7 Tabulated Results

The band averaged flux for each planet observation analyzed using this pipeline is presented

in Tables D.2–D.6 of Appendix D.
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Chapter 4

Calibrations and Simulations of the

Spider Optical System

The Spider telescopes have been extensively calibrated. The detectors, described in Chapter

2, have been screened and characterized both at JPL Microdevices Laboratory and in Caltech

using test cryostats large enough to cool down individual telescopes. Further characterization

with telescopes mounted inside the flight cryostat has taken place both at Princeton University

and the Columbia Scientific Ballooning Facility (CSBF) in Palestine, Texas. In this section I

will describe the phenomenology of Spider’s far sidelobe response, discuss simulations that

constrain B-mode contamination from polarized sidelobes, and compile band averaged main

beam statistics.

4.1 Baffles and Far Sidelobes

Sidelobes are generated by unwanted radiation that propagates through the optical system

all the way to the receivers, either through unlikely reflections, or low-level diffraction. Light

that propagates through these sidelobes can produce a spurious signal. Sidelobe pickup is

constrained through careful design of optical elements, including baffles.

The high packing density of the Spider baffles sets considerable constraints on the length
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Figure 4.1: A section view of the payload displaying sunshields, gondola, baffles, and the
internals of the cryostat. The window assembly, located just below the baffle accordion
segment, is omitted from this figure. The half-wave plates and VCS filters are not shown.
The payload is tilted at 40 deg elevation, corresponding to the upper region of the elevation
range. The high packing density of baffles is evident from this figure.

and opening angles of the baffles. Figure 4.1 shows a section view of the payload, with the

gondola sunshields in the background. An additional sunshield wing, not shown in Figure 4.1,

is mounted on the port side of the sunshield frame to prevent illumination of the inside of

the sunshields, as the boresight reaches the maximum extent of its azimuthal scan in the

direction of the Sun, corresponding to 70 deg.

4.1.1 Baffle Design and Sidelobe Phenomenology

Spider’s reflective baffles were designed by Johanna Nagy at Case Western Reserve University.

The baffles are conically shaped with an opening angle of 9.25 deg, with the base stretching
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Figure 4.2: A cross section through the Spider telescope truncated just below the focal plane.
Three rays represent different sources of sidelobes. Red represents reflections off the cooled
and blackened optics sleeve. Somewhat surprisingly, it was found that the cooled optics
sleeve is quite reflective in the mm-wavelength range. Blue represents window scattering;
light is absorbed and then remitted at oblique angles with respect to the boresight. Orange
represents diffraction off the edge of the baffle. This light is expected to be very polarized.
The edge of the vacuum vessel is shown with a vertical dashed line. Note that the window
deformation is exaggerated in this figure.

34 cm inside the cryostat where it meets the vacuum window and extending roughly 31 cm

out from the top surface of the cryostat (see Figures 2.19 and 4.2). One of the baffle elements

is shaped like an accordion in order to reduce large angle scattering at the window. Although

suggested ray tracing simulations, testing has not yet shown conclusively that this improves

the baffle performance.

Given the Spider optical system, sidelobe pickup is predominantly generated through

three distinct mechanisms (see illustration in Figure 4.2). These are:

◦ Reflections on cooled optics sleeve – shown in red: Light enters the window at a large

incident angle with respect to a detector’s principal ray, then reflects on the cooled

optics sleeve before generating a signal in the phased antenna array. Although the

cooled optics sleeve is blackened with a mixture of Stycast and Stainless Steel powder,

lab measurements suggest that the thin, . 1 mm, layer of this material is as much as

80% reflective at mm-wavelengths. Blackened baffle rings have been mounted internal to

the optics sleeve to reduce its effective reflectivity by increasing the number of bounces
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required to propagate to the focal plane. In addition, we have lined the inside of the

sleeve with Eccosorb HR-10.

◦ Window scattering – shown in dark blue: In the time reversed sense, rays emitted

from the focal plane are scattered by the 4.2 mm thick UHMW window to oblique

angles with respect to the boresight, sometimes bouncing off the reflective baffle in the

process. This effect can be reduced by making the baffle more absorptive, however,

this would increase detector loading and therefore, noise amplitude. We have opted to

make the baffle reflective at the risk of increasing susceptibility to large angle scattering.

Lab measurements suggest that the UHMW window absorbs about 0.7% of in-band

radiation.

◦ Diffraction on the baffle – shown in pink: Spider employs aggressive edge tapering, such

that rays emitted from the focal plane cannot hit the baffle without first diffracting. Yet,

lab measurements suggest approximately 5% of the beam terminates on a completely

absorptive baffle. This is due to diffraction on the various optical elements in the

telescope; note that ray tracing does not include diffraction. If the edge taper were

reduced, eventually some rays emitted from the FPU could hit the baffle without

diffracting first. Figure 4.3 compares measurements of the sidelobe response of a

single 150 GHz detector to both the polarized BICEP1 profile [264] and the target

for Spider’s science goal described in [124]. Our measurements still lack the signal

to noise ratio required to constrain the sidelobe response at the level set by Spider’s

science goal.

4.1.2 Spurious Polarization from Baffle Diffraction

At early stages in the development of the Spider experiment we generated an ensemble

of simulations to understand how the Galaxy could produce a false B-mode signal through

diffraction on the baffle edges (see pink ray in Figure 4.2). This work is discussed in more detail

166



Figure 4.3: The sidelobe profile for a single 150 GHz detector when illuminated by a polarized
source shown with blue and navy blue points. Note that the −23 dB peak at 7.5 deg
corresponds to a ghost beam (see Section 4.2.2). The figure also shows the polarized BICEP1
profile (red and dark red) and Spider’s target profile (pink and light blue), described in
[264, 124]. We do not currently have sufficient signal to noise ratio to constrain the Spider
sidelobe down to the limit set by our science goal.

in Section 2.3 of [124]. In order to establish mission requirements for the Spider sidelobe

response, a polarized sidelobe profile was constructed and convolved with a temperature

map of Galactic emission at 150 GHz discussed in O’Dea et al. [130]. Figure 4.4 shows a

temperature map convolved by a beam profile which captures the difference between the two

polarizations of the BICEP1 beam shown in Figure 4.3.

Because of its complex morphology and proximity to Spider’s observing region, the

Galaxy is expected to represent the most significant source of contamination on the scales

of interest. Of secondary interests are illumination of the optics by the balloon and Earth’s

limb. Such effects were not probed in these simulations.

The Spider main beam and near (2–12 deg) sidelobe profiles are informed by a physical-

optics model of the ideal optical chain internal to the cryostat (see Section 4.2) which includes
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Figure 4.4: The boundaries of the Spider (black) and BICEP1 (grey) observation regions
overlaid on a 150 GH temperature map smoothed with a BICEP1-like polarized sidelobe
profile identical to the one shown in Figure 4.3. The Galactic plane is clearly bleeding into
the sidelobe convolved map – see red regions which bleed into the outskirts of the observation
regions.

both lenses and the half-wave plate. Accurate modeling of the Spider far (>12 deg) sidelobes,

however, requires a complete simulation of the optical system including sunshield, baffle,

gondola, and balloon. This is a theoretically and computationally difficult task, which will

likely never be performed. Instead, we adopt a model of the Spider far sidelobe profile

as a power law out to 50 deg, where the beam is truncated. This model is consistent with

measurements of BICEP1 polarized sidelobe response [264]. The B-mode power spectrum

derived from the BICEP1-like sidelobe model is shown in Figure 4.5. Compared to the

primordial r = 0.03 B-mode signal, it is over 12 times fainter at ` = 100, while it is significantly

brighter at large angular scales (` . 25). The BICEP1 baffle, which was designed to provide

rejection at the level of r ∼ 0.1 while observing at relatively high Galactic latitudes, does not

provide sufficient rejection of the foreground signal for Spider’s large-scale measurements.

Our simulations suggest that Spider requires an additional −7–10 dB of attenuation beyond

12 deg off axis in order to reduce the systematic contribution to a level near or below the

r = 0.03 B-mode spectrum at all scales of interest. The contamination is then over an order

of magnitude fainter than the cosmological signal at ` ∼ 30, and entirely negligible at the

` ∼ 80 peak.

Although Spider beam sidelobe measurements still lack the signal to noise ratio needed
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Figure 4.5: The B-mode power spectra generated by Galactic pickup from BICEP1-like
polarized sidelobes shown in Figure 4.3. We caution against over interpretation of the
difference in power observed in the Spider and BICEP1 regions. The two spectra agree to
within a factor of 2–3 within the entire multipole range shown.

to demonstrate that its baffle will provide the required factor of ten improvement over the

BICEP1 measurement, it appears to be well within reach. For example, geometrical theory

of diffraction calculations indicate that the addition of another low-angle diffraction edge

to the baseline baffle provides the extra attenuation required [265]. For this reason, we are

considering adding a tapered angle on the edge of the baffles to reduce the polarization

fraction of this type of sidelobe pickup [265].

4.2 Beam Maps

All six Spider telescopes have been characterized at Caltech. Some fraction of all focal planes

was also probed during integration in Texas. At Caltech, the beam maps were acquired using

a custom-made beam mapping turret that accommodates the Caltech test cryostat. A hot

source, modulated at around 14 Hz, is placed 29 m away from the telescope window. Defining
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Figure 4.6: Beam maps of X6 (left) and X3 (right) obtained from stacking hundreds of
individual detector beam maps obtained at Caltech. A couple of sinc-like rings can be seen
in both frequencies along with detector cross talk ghosts above and below the main beam,
corresponding to the detector plate scale, approximately 1.6 deg. Note, that all detectors
scan the hot-source under approximately the same angle during the beam map. Beam
symmetrization from cross-linking, sky-rotation, and rotation of half-wave plates will improve
the symmetry of the effective beam.

the far field as D2/λ, which corresponds to 36 and 54 m for 94 and 150 GHz respectively, it

is clear that these beam maps are almost in the far-field. The turret then scans the room,

effectively mapping a 14× 14 deg patch. This process results in beam maps with 25–30 dB

signal to noise ratio at 150 GHz using a pixel width of 5 arcmin. By combining hundreds

of individual detector beam maps, features that are common to all detectors are revealed

at the -35–40 dB level. Band averaged beam window functions will be compared to the

effective window function derived from calibrating the Spider power spectra on degree scale

temperature anisotropies as measured by WMAP and Planck HFI. Ghosting from internal

reflections and fiducial beams due to inductive detector crosstalk in the SQUID multiplexing

system are of some concern. The analysis presented here will help quantify effects from such

non-idealities.
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Spider’s optical elements are expected to produce a sinc-like beam that is truncated

on an aggressive edge taper which is cooled to 2 K (see Figure 4.2).1 The sinc-function can

be adequately described by a symmetric Gaussian inside the region bounded by its first

minimum. To see that, note that equating the Taylor expansions of sinc(ρx) ≡ sin(ρx)/ρx

and exp(−x2/2σ2), where we keep the first two terms for both expansions and assume that

x� 1, gives σ =
√

3ρ. Although nothing is preventing us from using an asymmetric sinc-

function to describe Spider’s main beams we have chosen to use the asymmetric Gaussian

function instead, also known as an elliptical Gaussian function. See Appendix C for further

information about the mathematical properties of such functions.

4.2.1 Stacking Beams

An extensive discussion on Spider main beam shapes, non-idealities, and impact on

cosmological analysis can be found in [197]. Here, we briefly discuss the band averaged

beam shape and our ability to probe the near-sidelobes using ground based measurements.

The data used for this analysis was generated by the Caltech group.2

A simple stacking algorithm combines individual beam maps using centroids derived by

fitting elliptical Gaussian functions to the main beam. The stacked and re-normalized beam

map, Ψ(θ, φ) can be expressed as

Ψ(θ, φ) =
1

N

N∑
i=0

ψi(θ, φ), (4.1)

where ψi(θ, φ) are the individual beam maps, translated such that the beam centroid is at

the origin. This allows us to probe features that are common to all detectors within a given

telescope and effectively push through the noise floor of an individual detector beam map.

Using this method, features that are not spatially coherent among all detectors, such as

ghosts and crosstalk effects, are integrated down. Figure 4.6 shows a beam map acquired
1The sinc-function corresponds to the Fourier transform of a square aperture [266].
2Many thanks to Rebecca S. Tucker.
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Figure 4.7: The azimuthally averaged beam profiles for the stacked beam product of all six
telescopes, X1–X6. Also shown are the results of physical-optics simulations performed by
Marc Runyan. With the exception of X2, the noise floor is hit around −35–45 dB.

by applying the stacking method on beams from the X6 and X3 telescopes. We observe

smeared sinc-like features, which are in qualitative agreement with results from ray tracing

and physical-optics simulations. We expect some smearing of the sinc-function, not only

because of finite bandwidth, but also because of uncertainties in determination of centroids.

Crosstalk beams can be observed as well, approximately 1.6 deg away from the beam center,

along a direction corresponding to a detector mux column. These are due to inductive

coupling in the time-domain multiplexing system which causes correlation between adjacent

detectors. Figure 4.7 shows the band averaged beam profiles for all six Spider telescopes.

We have also included predictions from physical-optics modeling, shown as M94 and M150

for 94 and 150 GHz, respectively. Table 4.1 summarizes some beam properties obtained by
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Table 4.1: Telescope averaged beam properties as well as predictions from physical-optics
modeling, referred to as M94 and M150 for 94 and 150 GHz, respectively. Here, θFWHM

refers to the beam full width at half maximum, while ΩFWHM is the beam solid angle of a
Gaussian beam with the corresponding beam width. We can also estimate the beam solid
angle by numerically integrating the stacked beam maps, denoted Ω, which represents the
beam solid angle derived by integrating the beam out to 4× θFWHM. We chose to exclude
X2 in that calculation due to low signal to noise ratio. We expect significant discrepancies
between ΩFWHM and Ω as the beam is not fully captured by an elliptical Gaussian function.
Note that θFWHM =

√
8 ln(2)× σxσy, where σx and σy are the two beam width parameters

of an elliptical Gaussian model. Finally, ε represents the beam ellipticity defined as the ratio
between the major and minor axis of the elliptical Gaussian fit. Reported errors correspond
to one standard deviation in an ensemble drawn from individual beam map properties.

θFWHM ΩFWHM Ω ε

[arcmin] [deg2] [deg2]

X2 47.3 ± 2.0 0.704 ± 0.062 N/A 1.008 ± 0.006
X4 43.3 ± 0.7 0.590 ± 0.020 0.662 ± 0.023 1.032 ± 0.011
X6 42.6 ± 0.7 0.571 ± 0.018 0.611 ± 0.020 1.017 ± 0.009
M94 48.7 0.747 0.776 1.002
X1 30.1 ± 1.3 0.285 ± 0.025 0.306 ± 0.027 1.026 ± 0.016
X3 29.3 ± 0.5 0.270 ± 0.010 0.288 ± 0.010 1.014 ± 0.014
X5 29.7 ± 0.5 0.277 ± 0.009 0.289 ± 0.009 1.002 ± 0.009

M150 29.6 0.275 0.289 1.007

stacking beam maps within a given telescope, including errors derived from single detector

beams within that ensemble. It is instructive to compare this table with the average beam

properties derived from individual beam maps [197]. Overall, the agreement between the

two methods is quite good. Note that X2 appears to have a significantly larger θFWHM than

the other two 94 GHz telescopes. This is most likely due to noise bias in the beam map.

The noise floor is very clear in Figure 4.7. Beam maps produced so far allow us to push the

band averaged sidelobes down to −60 dB for a subset of detectors (see Figure 4.3). This

is not sufficient to rule out the presence of systematic inducing polarized sidelobes caused

by scattering on our baffle (see Section 4.1.2). It is, however, promising to see that the
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Figure 4.8: The squared Legendre transformation of the beam profiles shown in Figure 4.7.
Note that Spider’s sensitivity to any angular power spectrum is below 10% and 30% for
` = 300 at 94 and 150 GHz respectively.

sidelobe power continues to fall over the entire region probed. Beam maps performed either

in Princeton or in the field will hopefully allow us to further constrain sidelobe amplitudes.

It is interesting to propagate the beams into multipole space. We do this to first order

by taking the Legendre transform of the azimuthally symmetric beam profiles. If the

azimuthally averaged beam profile is expressed by the function b(θ), the corresponding

Legendre transformation becomes

b` = 2π

∫ −1

1

P 0
` (cos θ)b(θ)d(cos θ), (4.2)

where P 0
` represents the associated Legendre polynomial of order zero. The corresponding
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Figure 4.9: The ratio of stacked beam window functions compared to the ones derived from
physical-optics simulations, W ref

` . A line falling on unity represents perfect agreement with
predictions from simulations.

window function is then proportional to the square of b`. Neglecting any normalization factor,

we write W` = b2
` .

Calibrations of large sky surveys such as WMAP or Planck HFI are based on the CMB

dipole signal. Figure 4.8 shows the window function corresponding to the beam profiles

shown in Figure 4.7 while Figure 4.9 shows the corresponding ratio, with predictions from

physical-optics simulations in the denominator. The agreement with physical-optics modeling

is surprisingly good at 150 GHz, with the three 150 GHz telescopes consistent at the 2%

level out to ` = 300. At 94 GHz, physical-optics modeling does not agree that well with

realized window functions. We also note that there is significant spread among the three

telescopes. Part of this is likely due to inadequate signal to noise ratio in the beam maps,
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Figure 4.10: Telescope averaged difference beams obtained by stacking hundreds of individual
beam difference maps. Shown here on a linear scale, normalized relative to peak. All but X2
show similar features. Note the slightly different color scales used for the two frequencies.

especially for X2. We have been unable to compare the dimensions of optical components

used in the physical-optics simulations to the realized values. Spider will calibrate on degree

scale temperature anisotropies using data from Planck HFI. Such a procedure zeros the beam

error (on average) over this range, but it will also generate an effective beam window function

which will be compared to these measured beam window functions. Any discrepancy between

the two results will have to be understood.

Using this stacking algorithm we can also look at A/B polarization difference maps.

Figure 4.10 shows these for all telescopes as derived using beam maps that were acquired at

Caltech. In this case, the stacking algorithm translates both A and B polarization by the

same amount so as not to introduce spurious alignment issues. We have yet to determine if
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Figure 4.11: An inverse variance weighted stacked beam map from about a hundred detectors
on the X3 focal plane. Ghosts are visible as rows of diagonal blobs on either side of the main
beam. This beam map indicates the presence of cross talk beams, located diagonally about
2 deg from the main beam.

the lack of structure in the X2 difference maps is due to inadequate signal to noise ratio or

simply lack of structure in the A/B difference maps.

4.2.2 Optical Ghosting

Optical ghosting is caused by internal reflections whereby a fraction of the outward propagating

beam is cast down towards the focal plane before eventually propagating back out through

the telescope window. Ghosting is an unavoidable feature of simple refracting telescopes.3

Optical components have Anti Reflection (AR) coating to minimize these effects, but some

residual reflections are unavoidable, especially for an instrument with a 25% bandpass. An

example of a ghost beam is depicted in Figure 4.2.

In the Spider optical system, the primary cause of ghosting is due to the half-wave plate

(see Section 2.7). We have observed that the ghosting amplitude is dependent on the level

of delamination on the HWP’s anti-reflection coat. Changes to the AR coating procedure

are thought to have reduced the level of ghosting down to approximately 1% of the main

beam amplitude [184, 197]. Ghosts are observed even in cryogenic runs without the half-wave

plate installed. These are expected to be due to other lower-amplitude internal reflections,
3In photography, this effect is commonly referred to as a lens flare.
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Figure 4.12: A stacked beam map from an old incarnation of X3, showing ghosts of different
detectors compared to their main beam which has been centered on this map. The amplitude
of the main beam is representative of the band averaged beam while the amplitude of the
ghosts are suppressed as a result of the beam stacking. Note that the ghost morphology is
not constant and the ghosts seem to get more extended with radial distance from the FPU.
The HWP AR coat has been improved since these beam maps were acquired.

though we have been unable to identify a single optical element that is responsible for these

reflections.

Based on simple geometrical arguments we expect that the ghost location will depend on

the location of the detector on the focal plane. A hypothetical pixel at the center of the focal

plane will have its ghost reflected directly back into the center of the beam while the ghost

of a corner pixel will be reflected into the diagonal opposite of the focal plane [184]. The

coordinates of the ghost center, (θg, φg), relative to the main beam center can be described
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Figure 4.13: The location of X3 ghosts, as shown in Figure 4.12, in both elevation and
azimuth as a function of location on the focal plane along with the best fit line, providing
constraints on hθ and hφ.

according to

θg = hθ cos(ψ)c− hφ sin(ψ)r, (4.3)

φg = hφ cos(ψ)r + hθ sin(ψ)c, (4.4)

where hθ and hφ represent the linear dependence of ghost location on focal plane coordinates,

ψ is the rotation angle of the telescope focal plane around the boresight of each telescope

(roll), and r and c represent the physical location of the pixels on the focal plane. One can

think of r and c as the physical row and column index.

Figures 4.11 and 4.12 show a stacked beam map where the distribution of ghosts around

the main beam is clearly visible. Some ghosts are missing due to a combination of yield and

data processing effects. Since this is a stacked map, any feature that is not common to all

beams will be suppressed in amplitude. From a sub-set of the individual detector beam maps,

we can determine the location of the ghosts and compare with the location of the detector
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on the focal plane. Figure 4.13 shows the ghost location in both elevation and azimuth as a

function of detector location on the focal plane, see r and c in Equations 4.3 and 4.4. The

location of ghosts was obtained by extraction of local maximum after filtering the beam

map with an 42 arcmin wide pillbox kernel. The result indicates a very repeatable pattern.

According to these results, a shift by a single pixel along either a row or a column corresponds

to approximately 1.6 deg shift in the ghost location on the sky. The further the pixel is away

from the center of the focal plane, the larger the separation between the ghost and the main

beam.

Beam measurements, performed both at Caltech and in Palestine, have allowed us to

characterize the ghost amplitude, shape, and displacement as a function of position on the

focal plane. With the data in hand, we observe some correlation between both ghost shape

and amplitude with location on the focal plane. Although ideally, more data would help

quantify the ghost characteristics, this analysis suggests we can perform first order correction

to the ghosting effect in data processing, thereby reducing a potential systematic effect. Since

ghost amplitude, shape, and location can be affected by delamination, a seemingly stochastic

process, ghost characterization should be performed during a cryogenic run that coincides

with flight.

Recent analysis of ghost shapes and amplitudes suggests that the ghosts peak at approxi-

mately −20 dB compared to the main beam. Simulations probing how B-mode systematics

are induced through ghosts are discussed in MacTavish et al. [267], albeit for a different

flight than currently proposed. That work suggests that a 10% ghost will not create spurious

polarization exceeding a primordial B-mode signal generated by r = 0.01. More recent,

unpublished simulations, assuming an Antarctic flight, give similar results. Those simulations

assume no correction for ghost amplitude during data analysis. As first order corrections

will be implemented in data processing, we can feel confident that Spider’s ghosts will not

hinder cosmological analysis.
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Chapter 5

Conclusions

In this thesis, I described the design and characterization of the Spider experiment which will

launch from Antarctica in late 2014. The experiment is designed to advance our understanding

of the B-mode power spectrum.

This experiment, poised to have the greatest instantaneous sensitivity of any CMB

polarimeter so far, is currently shipping to Antarctica in preparation for a launch this austral

summer [203]. I also described calibration work required for high fidelity cosmological analysis

of the Planck HFI maps and report on flux measurements of the outer planets. These high

fidelity flux measurements will allow intercalibration of CMB experiments.

By marking faint gravitational wave echoes, these CMB observatories, and others like

them, are perhaps unveiling meteoric events in the embryonic universe. In combination with

data gathered by other cosmological observations, such measurements are furthering our

understanding of the cosmos.

In these brief conclusions, I present a qualitative discussion regarding our ability to

constrain early universe models. I will also speculate about future developments. Although I

try to offer an impartial view, my opinion on some matters may still have shone through.

The idea of cosmic inflation is incredibly powerful and compelling. It offers numerous

predictions, many of which preceded observations, and withstood detailed scrutiny. Inflation

not only solves the horizon and flatness problem, but also predicts: A nearly scale invariant
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temperature power spectrum; current best limits are nS = 0.9603 ± 0.0073 [49]. A flat

universe; best estimates combining CMB, Type Ia SNe, and BAO observations suggest Ω =

(0.9995±0.0065)ΩCrit [49]. Minimal non-Gaussianity; so far, the best limit is f local
NL = 2.7±5.8

[268]. Cosmological adiabaticity; this is well established [97]. Super horizon modes, clear from

the first release of the WMAP analysis and from the 2003 flight of BOOMERanG [269, 270].

The idea posits a scalar field, and indirect observations consistent with predictions about the

Higgs scalar field, reported in 2012 [59, 60], provide evidence for the existence of scalar fields.

If this were a football match, inflation has so far dribbled, in a “Messi-like” manner, through

a network of staunch defenders.1

Inflation is really an umbrella term for a number of models which utilize a common set of

ideas. Not long ago, there was a real dearth of information that differentiated constituents

of the standard inflationary paradigm. Now, limits on non-Gaussianity, spectral tilt, and

the B-mode amplitude – most recently from [49, 88] – have begun to discriminate between

previously viable inflationary theories. As non-Gaussianity and B-mode amplitudes are

further constrained, more models will slowly become inconsistent with observations.

The expression “Remarkable Simplicity∗” could have been a concise title of a news article

describing the Planck HFI 2013 results.2 The data showed no significant evidence for

deviations from Gaussianity in the anisotropies of the CMB. Proponents of the standard

inflationary paradigm generally view this as a remarkable victory for the theory. In fact,

some of the simplest models of inflation appear consistent with observations [271]. Although

inflation has triumphed over multiple trials, it has been pointed out – fairly so – that this

does not prove the theory.

A critic could fairly argue that discussions of the inflationary paradigm have been simplistic,

with professors and grad students alike – myself included – using catch phrases that involve

“holy grails” and “smoking guns.” The laws of physics are never proven – they can only
1My apologies for the cryptic analogy; the 2014 World Cup is ongoing.
2The asterisk referring to the ∼ 3σ deviation from ΛCDM at large angular scales. Real news article titles

included: “Planck reveals ‘almost perfect’ universe”, “First Planck results: the Universe is still weird and
interesting”, and my favorite “Universe as an Infant: Fatter Than Expected and Kind of Lumpy.”
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aspire to be falsified – and the detection of primordial B-modes would not necessarily mean

that inflation took place [96]. Others suggest that the inflationary paradigm is incomplete

or even defective [272]. For example, critics might contend that these theories represent

unimaginable fine-tuning [273, 274], although counterviews exist [275, 276, 277]. Similar

critiques of inflation often describe the concept of eternal inflation, a consequence of quantum

fluctuations in the inflaton potential, as highly unfeasible and unpredictive [278]. Nevertheless,

it is the case that the weight of circumstantial evidence is consistent with the expectations

of the simplest models of in the paradigm. Whether this points to a fundamental theory or

a convenient phenomenological framework is a matter of debate. This discussion has many

facets, some bordering on philosophy; it will likely continue indefinitely. We can, however, feel

optimistic that the group of currently funded CMB observatories will significantly constrain

the model space. A large subset of the following experiments will publish results in the near

future: ACTPol [80], ABS [72, 109], EBEX [186], Planck [64], POLARBEAR [92], Spider

[203], and SPTpol [279].

Constraining primordial B-modes requires electromagnetic, spatial, and angular con-

straints. Together, Planck HFI and Spider stand poised to fulfill these three requirements.

The complete sky coverage allows us to constrain both the degree angular scales, where

primordial B-modes are expected to peak, as well as the reionization bump on the largest

angular scales. Similarly, Spider’s 8% sky coverage will allow us to verify isotropy of any

B-mode detection. Finally, Planck ’s wide spectral coverage, and the frequency windows

afforded to balloon-borne experiments, will enable effective characterization of Galactic

foregrounds.

The inflationary paradigm currently offers the best model of the early universe. In

combination with novel instrumentation technologies [109, 280], future developments in the

field hinge on our ability to maintain growth in production rate of photon-limited detectors

[110]. This offers a plethora of challenges centered on automation and efficiency. Spider is

the next step in that direction.
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Appendix A

Thermal Modeling

This appendix describes the theory and some of the assumptions that were used in creating a

thermal model for the Spider flight cryostat.

A.1 Conduction

Thermal conduction between two points in a linear isotropic medium with a given cross-

sectional area A and length L can be calculated if the thermal conduction, k, is known as a

function of temperature:

Q =
A

L

T2∫
T1

k(T )dT. (A.1)

The model evaluates this integral for various materials connecting different stages, including

stainless steel, phosphor bronze, aluminum alloys, and G-10.

The heat input to the main tank goes into boiling off cryogenics such that a steady gas

flow out of the MT will be established at equilibrium. This gas is forced to go through the

heat exchangers at VCS1 and VCS2, providing negative feedback. The cooling power supplied
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by the heat exchangers on VCS1 can be written as

Q = ṁη

TVCS1∫
TMT

Cp(T )dT, (A.2)

where ṁ is the mass flow through the heat exchangers, η is the heat exchanger’s efficiency,

Cp is the specific heat of the gas, and TMT and TVCS1 are the mean temperatures of the MT

and VCS1 respectively. The cooling power to VCS2 can be written in a similar manner.

The flight cryostat has MLI installed in such a way that reduces compression, which

would otherwise increase conduction through the insulation, and enables proper evacuation

of interstitial gas [153, 154, 281]. However, thermal conduction is inevitable when adjacent

layers are in sporadic contact. A considerable fraction of the thermal budget is attributed

to MLI conduction. Due to complex geometries, uncertainties about compressive loads, etc.

it becomes difficult to estimate the MLI thermal conductance as a function of temperature.

Instead, somewhat empirical estimates are adopted. In the absence of a leak, the pressure

inside the VV remains roughly constant after equilibrium has been reached. Gas particles that

have not condensed will then conduct heat between stages at a steady rate. If the pressure

is sufficiently low the heat conduction through the MLI due to rarefied gas is negligible.

Thermal conduction is then due to electron and phonon propagation. As the rarefied gas

pressure increases, there comes a point when gas conductance becomes non-negligible. This

can be due to outgassing and poor evacuation of MLI layers. MLI conduction is then roughly

linearly proportional to gas number densities. At this point, gas is still in the free-molecular

regime, although it is starting to contribute significantly to heat transfer [282, 283] .This

behavior can also be seen in cryogenic systems that have microscopic leaks. Small leaks can

be negated by the installation of activated charcoal or zeolite adsorbers [164, 162].

The thermal model has free parameters which describe the effective thermal conductance,

excluding radiative transfer, through the MLI. Thermal characterization tests have helped

improve this estimate. It is assumed that the conductivity through MLI, denoted kMLI,
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is in the range of 0.5–2.0 µW/cm/K, which is comparable to observed values from other

experiments [284].

A.2 Radiation

Estimating radiative coupling between various stages is difficult due to the complex structure

of the Spider flight cryostat. No attempts have been made to calculate view factors for the

intricate cylindrical geometries inside the flight cryostat. Instead, different stages are assumed

to couple radiatively in the same way as parallel planes. This approximation becomes more

accurate when the physical separation between stages is small. The estimated effective area

of each stage then becomes a free parameter incorporating properties such as view factors.

The Hagen–Rubens relation, derived from Maxwell’s equations, states that the normal

spectral emissivity, ε, of a conductor is [285, 286]

ε =
√

16πε0ρν, (A.3)

where ρ is the resistivity of the conductor, ε0 is the vacuum permittivity, and ν is the

frequency of radiation emitted. It can also be shown that emissivity is angle-dependent, and

in the case of conductors, that the emissivity is highest at large angles normal to the plane.

In order to simplify calculations, this model uses the total hemispherical emissivity (from

here on simply referred to as emissivity), which is the emissivity averaged over frequency and

angle. Temperature dependence of emissivity is generally assumed to follow a power law.

The most simple approximation assumes a linear temperature profile through the MLI [153].

The radiative heat load per unit area between two infinite blackbody planes, ε = 1, at

temperatures TC and TH is

Q = σ(T 4
H − T 4

C), (A.4)

where σ is the Stefan–Boltzmann constant. The net radiative heat transfer per unit area
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between two parallel infinite plains at temperature TH and TC with emissivities εH and εC

can be shown to be

Q = σ

(
εHεC

εH + εC − εHεC

)(
T 4

H − T 4
C

)
. (A.5)

This is done by summing up infinite contributions due to reflection and absorption of radiation,

assuming no transmission. More complex geometries require the calculation of view factors

[152]. For N + 1 parallel infinite surfaces, here representing the layers in an MLI blanket, the

net radiative heat transfer per unit area can be shown to be

Q = σ

(
N∑
i=1

1

εi,i+1

)−1

(T 4
N+1 − T 4

1 ), (A.6)

where

εi,i+1 ≡
εiεi+1

εi + εi+1 − εiεi+1

(A.7)

is the effective emissivity between layers i and i + 1, having emissivities εi and εi+1, and

T1 and TN+1 are the temperatures of the first and the last layers respectively. Equation

A.6 is generally inversely proportional to N . Emissivity is temperature-dependent so the

temperature of all layers do affect the radiative load. In estimating radiative coupling between

the VV, VCS2, and VCS1, Equation (A.6) is employed with N = 52, and N = 16 respectively.

No MLI is present between VCS1 and the main tank and so N = 1 in that particular case.
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Appendix B

Fourier Transform Spectroscopy

In this appendix we discuss mathematical tools that have been useful for the design of Martin

Pupplet Interferometers for the Spider experiment.

B.1 Wire Spacing of Polarizing Beamsplitters

The Spider FTS’s use wire grids to effectively split radiation between the two arms of the

interferometer. The transmission of wire grids as well as the optimal wire radius and spacing

as a function of wavelength is studied in [287]. To first order, it is found that the optimal1

wire radius, a, and spacing, d, is

a '
[

λ5

(1− [sinα sin β]2)4π7σZ0

]1/6

, (B.1)

d ' 2πa (B.2)

where λ is the wavelength of the incident radiation, α is the rotation angle of the wire grid

with respect to the principles axis of the beam, in our case chosen to be α = π/4, β is the

incident angle of the beam with respect to the plane of the wire grid, also chosen to be

β = π/4, σ is the conductance of the wire and Z0 = 119.9π Ω is the impedance of free space.
1Here optimal refers to the minimal cross polarization
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Figure B.1: The wire grid dimensions that give the lowest cross polar leakage as a function
of frequency, see Equations B.1 and B.2.

The derivation is made in the approximation that d� λ. Figure B.1 shows the predictions of

the above equation for the frequency range of interest for a CMB experiment. The complex

reflection coefficients to lowest order become

R|| '
−1

1 + j[(2d sinα)/λ] ln[d/(2πa)]
, (B.3)

R⊥ ' −j sinα
π2a2

λd
. (B.4)

All of the Spider FTS wire grids use gold plated tungsten wire with radius a = 12.7 µm

and wire spacing of 200 wires per inch, corresponding to d = 39.4 µm. Figure B.2 shows the

absolute value of the complex reflection coefficients for three different wire grids. Solid lines

represent (1− R||), the wire grid transmission of light with an electric field parallel to the

wires, while dashed lines represent R⊥, the reflectance of light that is perpendicular to the

wires in the grid.
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Figure B.2: The cross polar leakage for three different wire grids as calculated by Equations
B.3 and B.4. Solid lines represent (1−R||), the wire grid transmission of light with an electric
field parallel to the wires, while dashed lines represent R⊥, the reflectance of light that is
perpendicular to the wires in the grid.

B.2 Propagation of Electric Fields in an FTS

Let’s define a coordinate system in the plane that is perpendicular to the propagation of light

at any time. In some cases, a bundle of light will propagate towards a wire grid, in that case

Figure B.3 represents the view from the wavefront along the direction of propagation. The

blue lines represent the wires in a wire grid. In this system, x̂ and ŷ define a right hand rule

coordinate system with ŷ pointing up from the plane of the FTS, or perpendicular to the

plane of incidence, whereas â and b̂ are parallel and perpendicular to the wires in the wire

grid respectively, such that

â =
1√
2

(x̂ + ŷ), b̂ =
1√
2

(ŷ − x̂).
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Figure B.3: Two coordinate systems formed with two sets of orthonormal basis vectors. The
blue lines represent the wires in the wire grid. This is the image that a mirror sees looking
towards the beamsplitter and the mobile rooftop mirror.

In the ideal scenario, when light interacts with the wire grid, any electric field oscillation

which is aligned with the wires will be reflected, while the perpendicular part of the electric

field is transmitted through the wires. The electric field of an arbitrarily polarized light

bundle being emitted from a monochromatic source with wavelength λ inside the FTS can

be written as

E = X0 cos(ωt)x̂ + Y0 cos(ωt)ŷ, (B.5)

where for unpolarized light, X0 = Y0. Note that ω = 2πν = 2πc/λ. The light is collimated

by the parabolic mirror and directed towards the wire grid. The electric field of the light

which is reflected of the wire grid is Er = (E · â)(x̂ + ŷ), or

Er =
1√
2

(X0 + Y0)(x̂ + ŷ) cos(ωt), (B.6)

whereas the transmitted light Et = (E · b̂)(ŷ − x̂),

Et =
1√
2

(Y0 −X0)(ŷ − x̂) cos(ωt). (B.7)
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The bundles of light, are reflected twice of the rooftop mirrors as they traverse the two arms

of the FTS. After two reflections the electric field in the plane of incidence, x̂, has flipped

directions, resulting in

E′r =
1√
2

(Y0 +X0)(ŷ − x̂) cos(ωt+ ∆), (B.8)

E′t =
1√
2

(Y0 −X0)(ŷ + x̂) cos(ωt), (B.9)

where we have also added a relative phase shift to Ê′r accounting for any differences in the

optical path lengths between the two arms. Before the two light bundles can combine on the

other side of the wire grid they have had to interact with the wires in the grid a second time.

The bundle that was transmitted now has to be reflected and vice versa. Calculating the

inner products like before we find E′′r = (E · b̂)(ŷ − x̂),

E′′r =
1

2
(Y0 +X0)(ŷ − x̂) cos(ωt+ ∆), (B.10)

and E′′t = (E · â)(x̂ + ŷ),

E′′t =
1

2
(Y0 −X0)(ŷ + x̂) cos(ωt). (B.11)

The two bundles of light combine on the other side of the wire grid. The total electric field

becomes the sum of the two Ef = E′′r + E′′t ,

Ef = x̂[(Y0 −X0) cos(ωt)− (Y0 +X0) cos(ωt+ ∆)]/2

+ ŷ[(Y0 +X0) cos(ωt+ ∆) + (Y0 −X0) cos(ωt)]/2. (B.12)

In the limit of a completely unpolarized source, X0 = Y0, we arrive at

Ef,unpol =
1

2
(−x̂(Y0 +X0) cos(ωt+ ∆) + ŷ(Y0 +X0) cos(ωt+ ∆)) . (B.13)
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The signal that is measured in a detector is proportional to the squared magnitude of the

inner product of the detector polarization vector, ê, with the electric field. In other words,

I ∝ |Ef · ê|2 . (B.14)

Writing ê = x0x̂ + y0ŷ we find that

Ef,unpol · ê =
1

2
(−x0(Y0 +X0) cos(ωt+ ∆) + y0(Y0 +X0) cos(ωt+ ∆)) . (B.15)

Calculating the squared modulus and taking the time average we find that there will be

no signal modulation. Note that the time average of terms such as cos2(ωt+ ∆) is simply

1/2. Any time-dependent phase shift ∆ = 2kxm(t) is negated by the fast signal modulation

provided by the term ωt = 2πνt where ν ≈ 100 GHz. Here xm(t) could encapsulate the fact

that one of the mirrors can be translated by a wire grid. Assuming that the source is 100%

polarized, which is true for example if X0 = E0 and Y0 = 0, we instead get

2Ef,pol = −x̂E0[cos(ωt) + cos(ωt+ ∆)] + ŷE0[cos(ωt+ ∆) + cos(ωt)]

= −x̂E0 cos

(
ωt+

∆

2

)
cos

(
∆

2

)
+ ŷE0 cos

(
ωt+

∆

2

)
cos

(
∆

2

)
,

where we have used the following trigonometric identities

2 cosα cos β = cos(α + β) + cos(α− β), (B.16)

cos2(α) =
1 + cos(2α)

2
. (B.17)

Aligning our detector with the x̂ direction and measuring the squared and time-averaged

modulus gives

|Ef · x̂|2 =
E2

0

8
cos2

(
∆

2

)
, (B.18)
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as the signal power as measured by our detector. The phase shift, ∆, is time-dependent if the

mobile mirror is being moved by the linear stage. Let’s assume that the mirror is moving at

a steady rate x(t) = 2v0t such that ∆ = 4πv0t/λ, where the additional factor of two accounts

for the fact that the light path is twice the translation of the mirror. This will cause signal

modulation with the frequency ωmirror = 4πv0.

If instead we align our detector such that ê = (x̂ + ŷ)/
√

2 we get

Ef,pol · ê = −E0/
√

2 cos

(
ωt+

∆

2

)
cos

(
∆

2

)
+ E0/

√
2 cos

(
ωt+

∆

2

)
cos

(
∆

2

)
= 0.

From this discussion it is clear that the signal measured by our detector will depend on its

polarization orientation w.r.t. the output of the FTS. Maximum signal amplitude is observed

if the polarization of the detectors is parallel to either x̂ or ŷ. If on the other hand the

detector is at a 45 degree angle w.r.t. the x̂-ŷ axis no scan modulation will be observed in

the interferogram. For any orientation other than the two extreme examples listed above,

the final electric field that is measured by the detector has an interesting time-dependence.

It will fluctuate between being linearly polarized and circularly polarized and then linearly

polarized again. All the time in between it will be elliptically polarized.

B.3 Collimating mirror

A number of papers derive the surface equations for off-axis parabolic mirrors [288, 289,

290, 291].2 A few parabolic off-axis collimating mirrors with focal lengths f = 5.5 inch were

machined on a three axis CNC mill. One can derive the surface equation for such a mirror

by starting with the equation for a parabolic surface

Z =
1

4f
(X2 + Y 2), (B.19)

2I am not convinced that all of them give the same result!
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and performing a coordinate transformation followed by rotation. The resulting system of

equations is

X = x0 + x cos(θ)− z sin(θ), (B.20)

Y = y, (B.21)

Z = x2
0/4f + x sin(θ) + z cos(θ). (B.22)

Where x, y, z are the coordinates after a transformation into a system where z is normal

to the machined plate and x, y define the plane with origin centered on the plate. Here,

x0 corresponds to the translation that needs to be made in the direction of X. For that

reason, we must have x0 = 2f tan(θ). Solving this system of equations for z with the included

constraint on x0 and assuming θ = π/4 leads to the following equation for the surface of the

mirror

z = 4
√

2f + x±
√

8f(4f +
√

2x)− y2. (B.23)

Note that the effective focal length of this system, x0, is equal to 2f , twice the focal length

of the original parabola.

The collimating mirrors that were constructed for the Spider FTS’s have a diameter of

D = 6 inch, but the wire grid mirror constricts the maximum diameter of a circular beam

that could propagate through the system to d = 4.6 inch, resulting in an effective f-number

of f/2.6. The mirror was designed so that the power inside a 5 deg FWHM Gaussian beam

located at the effective focus would propagate through the system.

B.4 G-code for collimating mirror

The following code segment was used to cut the parabolic mirror described in Section 2.9.1

and shown in Figure 2.29. This script might be useful for people wanting to cut a mirror on

the CNC in the Princeton Physics machine shop.
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Figure B.4: The shape of the collimating mirror as calculated from Equation B.23. Note
that the mirror surface is only left-right symmetric, meaning that there is only one proper
mounting orientation for the mirror inside the FTS.

1 G0G90X0Y0T3M6

2 ; Speed

3 S2000M3

4 ; Using a 1/4 inch b a l l m i l l f o r cutt ing , a l l un i t s are inche s

5 J1 = 0.010 ; Distance between m i l l pa s s e s

6 R1 = 4.3426 ; The cu t t i ng rad iu s

7 A1 = 5.5 ; The f o c a l l ength

8 B1 = 0.4852 ; The f u r t h e s t down the mirror w i l l go

9

10 Y1 = (−1.0) ∗R1

11 ; Move to home po s i t i o n above mirror

12 G0X0 .Y1Z0 .25

13 M8

14

15 ; Increment Y up and c a l c u l a t e X on c i r c l e g iven Y

16 L2

17 Y1 = Y1+J1

18 X2 = (−1.0) ∗SQR(R1∗R1−Y1∗Y1)

19 X1 = J1

20

21 ; Increment X down j u s t below ca l cu l a t ed value

22 L3
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23 X1 = X1−J1

24 ?X1<GT>X2

25 =L3 !

26

27 ; Move to c o r r e c t X and Y po s i t i o n

28 X2 = X2∗(−1)

29 G0X1Y1Z.25

30

31 ; Increment X up and check i f has reached i t s max f o r t h i s pass

32 L4

33 X1 = X1+J1

34 ?X1<GT>X2 ; I f X at max , go back , increment Y and begin next pass

35 =L2 !

36

37 Z1 = −B1+4∗SQR(2) ∗A1+Y1−SQR(8∗A1∗(4∗A1+SQR(2) ∗Y1)−2∗X1∗X1)

38

39 G1X1Y1Z1F10 . 0 ; Feed m i l l to new po s i t i o n

40 ?Y1<LT>R1 ; I f Y i s i n s i d e c i r c l e , cont inue machining

41 =L4 ! ; Otherwise , end program

42

43 G0X0 .Y0 . Z0 .25 ; Back to home po s i t i o n at end o f program
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Appendix C

Gauss-Hermite Math

A natural function basis for Gaussian beam parametrization is found in the Gauss-Hermite

functions. This appendix describes some of the math related to these functions. This

information is relevant for discussion in Section 3.4.

C.1 Preliminaries

The “physicist’s” Hermite polynomials, suitable to describe the eigenstates of the quantum

harmonic oscillator are defined as

Hn(x) = ex
2/2

(
x− d

dx

)n
e−x

2/2. (C.1)

The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12. (C.2)
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Note that they alternate between being even or odd functions [292]. The explicit expression

for these polynomials is

Hn(x) = n!

bn/2c∑
m=0

(−1)m

m!(n− 2m)!
(2x)n−2m. (C.3)

where b·c represents the floor function [293].

General forms of Gaussian integrals have well known analytical expressions. In particular

∫ ∞
−∞

xne−x
2/2σ2

=


√

2π(n− 1)!!σn+1 if n is even

0 if n is odd
(C.4)

Equations C.3 and C.4 suggest that

∫ ∞
−∞

Hn(x/σ)e−x
2/2σ2

dx = n!

bn/2c∑
m=0

(−1)m2n−2m

m!(n− 2m)!

∫ ∞
−∞

(x/σ)n−2me−x
2/2σ2

dx

=
√

2πσn!

n/2∑
m=0

(−1)m2n−2m

m!(n− 2m)!

∫ ∞
−∞

un−2me−u
2/2du

=
√

2πσn!

n/2∑
m=0

(−1)m2n−2m

m!(n− 2m)!
(n− 2m− 1)!!

=
√

2πσn!

n/2∑
m=0

(−1)m2n−2m

m!(n− 2m)!!
, (C.5)

if n is even, but zero if n is odd.

C.2 Gauss-Hermite Decomposition

As mentioned in Section 3.4, the two dimensional Gauss-Hermite functions are defined as

ψn1,n2(x, y) =
Hn1(x/σx)Hn2(y/σy)√

2n1+n2n1!n2!
e
− 1

2
( x

2

σ2x
+ y2

σ2y
)
. (C.6)
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The Gauss-Hermite functions represent an orthogonal function basis R2.

We can use these functions to describe beams that can be approximated by an elliptical

Gaussian. Although it is possible to fit all parameters at the same time, we choose to fit

the parameters of an elliptical Gaussian to the data before calculating the Gauss-Hermite

decomposition. This way the Gauss-Hermite function bases is fixed. The parameters of the

elliptical Gaussian fit are σx and σy, which describe the width of the beam, the tilt angle

φ which defines the tilt of the elliptical Gaussian with respect to the nominal x and y axis

in the map, and the beam center with coordinates (cx, cy) corresponding to a translation

from the center pixel. The Gauss-Hermite decomposition is then performed with the rotated

coordinates where  x′

y′

 =

 cosφ sinφ

− sinφ cosφ


 x− cx

y − cy

 . (C.7)

The Gauss-Hermite coefficients can be decomposed from a raw map by calculating the

overlap integral

ŝn =

∫
dx̂ψn(x̂′)M(x̂)Nobs(x̂), (C.8)

where M(x̂) is the raw map and Nobs(x̂) is a map of the number of observations, or time

stream samples, going into each pixel. This form of observation weighing reduces the effect

of pixels with poor sampling. Poor sampling can be caused by a number of effects, including

scan strategy and the flagging of time-ordered-data neighboring cosmic ray events. Since the

maps are discretized the integrals are estimated as sums

ŝn =
∑
i

dAψn(x̂′i)M(x̂i)Nobs(x̂i), (C.9)

where i represent the pixel indexing and dA is the area of each pixel. The planetary maps

are finite and the Gauss-Hermite functions form a complete basis only on the infinite 2-D

plane. This tends to bias the decomposed coefficients. Debiasing is done through calculation

200



of the overlap matrix

Imn =
∑

dAψn(x̂′i)ψm(x̂i)Nobs(x̂i), (C.10)

which is then used to calculate

sn = I−1
mnŝm, (C.11)

where sn are the debiased Gauss-Hermite coefficients. The Gauss-Hermite coefficients can also

be decomposed in the time-domain and we have found that this approach is more precise as it

preserves all positional information. The time-domain approach is described in Huffenberger

et al. [234]. In essence, this approach replaces the map response, M(x̂i), with the timestream,

removing Nobs from the above equations, and summing over all samples. I chose to present

the map domain approach for completeness.

The Planck scan strategy is such that the peak in a planetary transit can easily be missed.

By fitting a Gaussian function to the raw map the true value of the peak signal can be

recovered to some extent. The subsequent Gauss-Hermite decomposition helps to capture the

non-Gaussian properties of the beam. The beam can then be reconstructed at any resolution

using the parameters of the elliptical Gaussian and the coefficients of the Gauss-Hermite

functions. The estimated response function is

Ψ(x̂) =
∑
n

snψn(x̂′), (C.12)

from which maps can be reconstructed and numerically integrated to produce the total beam

solid angle, Ω, according to

Ω =
∑
i

Ψ(x̂i)dA/Ψmax, (C.13)

where Ψmax is the maximum response in the reconstructed map, dA is the pixel area, and the

summation is performed over all pixels. The discussion above suggests that a semi-analytical

expression for the total beam solid angle should exist. Using Equations C.3 and C.4 and the

decomposed Gauss-Hermite coefficients the explicit expression for the beam solid angle, Ω, is
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found to be

Ω =
Nmax−1∑
n1,n2=0

sn1,n2

∫∫
Hn1(x/σx)Hn2(y/σy)√

2n1+n2n1!n2!
e
− 1

2
( x

2

σ2x
+ y2

σ2y
)
dxdy

/
Ψmax

=
1

Ψmax

Nmax−1∑
n1,n2

sn1,n2 ×
∞∫

−∞

Hn1(x/σx)√
2n1n1!

e
− x2

2σ2x dx×
∞∫

−∞

Hn2(y/σy)√
2n2n2!

e
− y2

2σ2y dy

=
2πσxσy
Ψmax

Even∑
n1,n2

sn1,n2

√
n1!n2!

2n1+n2
×

n1/2∑
m=0

(−1)m2n1−2m

m!(n1 − 2m)!!

n2/2∑
k=0

(−1)k2n2−2k

k!(n2 − 2k)!!
.

(C.14)

The summation only takes place for even values of n1 and n2, since the odd valued functions

integrate to zero. This means that only functions with n1 and n2 as even numbers contribute

to the solid angle. This is an important property of the Gauss-Hermite polynomials. It should

also be noted that the Gauss-Hermite coefficients are decomposed such that they describe

the amplitude of Gauss-Hermite functions on a coordinate system that has been translated,

scaled, and finally rotated with respect to some nominal coordinate system. However, neither

the translation, nor the rotation, will affect the total solid angle of the Gauss-Hermite beam,

while the scaling is accounted for in the above derivation.

Unfortunately we do not have an expression for Ψmax and so it must be extracted from

the reconstructed map. Note that Ψmax = Ψ(cx, cy) does not necessarily hold although it is

often a very good approximation. Equation C.14 can be implemented with a few lines of

code and is less computationally demanding than the numerical approach. Fast methods,

like the semi-analytical expression described above, could prove useful for experiments with

tens of thousands of detectors.

C.3 Window Functions

The signal on the sky as measured by any CMB experiment is the convolution of the instrument

response function with the true sky signal. We are interested in the power spectrum of
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the true sky signal and need to be able to correct for the finite angular resolution of the

instrument. This involves calculating the window function. We follow the derivation in

Dodelson [97]

W` =

∫
dΩ

∫
dΩ′Ψ(x̂)Ψ(x̂′)P`(cos(x̂ · x̂′)), (C.15)

where Ψ is the beam response1, P` is the Legendre polynomial of order `, and the following

relation between spherical harmonics and Legendre polynomials has been used

∑
m

Y`m(x̂)Y ∗`m(x̂′) = (2`+ 1)P`(x̂ · x̂′). (C.16)

For what follows we will use the integral representation of the Bessel function of the first

kind [294]

Jn(`) =
1

2π

∫ π

−π
dφ exp(i[n`− ` sin(φ)]) (C.17)

We can simplify this expression for the case where n = 0 to find

J0(`) =
1

2π

∫ 2π

0

dφ exp(−i` cos(φ)), (C.18)

where we have used the phase relation and periodicity of trigonometric functions. In the

limit of large ` and small |x̂− x̂′| (the small angle approximation) Equation 8.722.2 in [294]

claims that one can write

lim
`→∞

P` (cos(|x̂− x̂′|)) = J0([`+ 0.5]|x̂− x̂′|)

=
1

2π

∫ 2π

0

dφe−i[`+0.5]|x̂−x̂′| cos(φ)

=
1

2π

∫ 2π

0

dφe−i`·(x̂−x̂
′). (C.19)

To arrive at this last expression we had to promote ` + 0.5 to a two dimensional vector `

and assume that φ is the angle between ` and (x̂− x̂′). One can decompose ` in Cartesian
1Note that this is identical to Equation 3.3. We’ve changed symbols however, using x̂ instead of n̂.
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coordinates, `x and `y, following

`+ 0.5 =
√
`2
x + `2

y,

φ = arctan(`y/`x). (C.20)

For future reference, we define `′ = `+ 0.5. The inverse transformation is then

`x = `′ cos(φ),

`y = `′ sin(φ). (C.21)

Wielding these mathematical acrobatics, we note that Equation C.15 can be written as

W` =

∫
dΩ

∫
dΩ′Ψ(x̂)Ψ(x̂′)P`(cos(|x̂− x̂′|)),

=
1

2π

∫ 2π

0

dφ

∫
dxΨ(x̂)e−i`·x̂

∫
dx′Ψ(x̂′)ei`·x̂

′
,

=
1

2π

∫ 2π

0

dφF(Ψ)F∗(Ψ). (C.22)

This shows that the Fourier transform of the beam response function is related to the beam

window function in the flat space approximation.

We now direct our attention to the Gauss-Hermite functions. The generating function for

the Hermite polynomials is [292]

exp(2xt− t2) =
∞∑
n=0

Hn(x)
tn

n!
. (C.23)

Using this expression, the Fourier transform of the Gauss-Hermite functions can be easily

derived. One finds that

F(Hn(x)e−x
2/2) = (−i)ne−k2/2Hn(k). (C.24)
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This means that the Fourier transform of a Gauss-Hermite function is a Gauss-Hermite

function with an added phase. In other words, the Gauss-Hermite functions are eigenfunctions

of the Fourier transform operator. This also suggests that the Fourier transform of the

instrument response is

F(Ψ) = F

(∑
n1,n2

sn1,n2

Hn1(x/σx)Hn2(y/σy)√
2n1+n2n1!n2!

e
− 1

2
( x

2

σ2x
+ y2

σ2y
)

)
(`),

=
∑
n1,n2

sn1,n2

F(Hn1(x/σx)e
−x2/2σ2

x)√
2n1n1!

× F(Hn2(y/σy)e
−y2/2σ2

y)√
2n2n2!

,

= σxσy
∑
n1,n2

sn1,n2

(−i)n1e−l
2
xσ

2
x/2Hn1(lxσx)√

2n1n1!
× (−i)n2e−l

2
yσ

2
y/2Hn2(lyσy)√

2n2n2!
,

(C.25)

where ` = (lx, ly) are used as the Fourier transform parameters and we have used the relation

F(f(x/a))(l) = aF (la), (C.26)

with F(f(x)) ≡ F (x). The Gauss-Hermite functions are defined on the coordinate system

x′ − y′ which has been translated, rotated, and scaled with respect to some other Cartesian

coordinate system, x− y. The translation of points in the x− y coordinate system results in

a phase shift in Fourier-space which can be easily accounted for. The Fourier transform is

angle preserving, meaning that any rotation of vectors in real-space will result in an identical

rotation in Fourier-space. We can then choose to perform the rotation after the Fourier

transform has been taken.

As Equation C.22 suggests, the calculation of the window function involves finding the

angular average through an integral. For a given pixelization of the sky, and knowledge

about the Planck scanning strategy, one should be able to calculate both the location within

a pixel and the angle of incidence of the scanning beam with respect to some Cartesian

coordinate system. The calculation of a pixel-based window function that takes into account
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all observations that fall inside that pixel should then be straightforward. We find

W`(n) =
1

2π

∫ 2π

0

dφF(Ψ)F∗(Ψ),

=
(σxσy)

2

2π

∫ 2π

0

dφ
∑
n1,n2

s2
n1,n2

×

∣∣∣∣∣e−i(`
′ cos(φ)cx+

n1π
2

)Hn1(`
′ cos(φ)σx)

e`′2 cos2(φ)σ2
x/2
√

2n1n1!
× e−i(`

′ sin(φ)cy+
n2π
2

)Hn2(`
′ sin(φ)σy)

e`
′2 sin2(φ)σ2

y/2
√

2n2n2!

∣∣∣∣∣
2

, (C.27)

where cx and cy represent the translation of the beam with respect to some origin located

within a distance from the pixel where the flat sky approximation is still valid. This semi-

analytical expression for the scanning beam window function can be used in concert with

information about the instrument scanning to calculate an effective beam window function.

To find the window function for multiple observations one should perform an additional

summation and normalization over samples before taking the squared modulus and calculating

the numerical integral.

C.4 Ruze Envelope

Imperfections of reflector surfaces will scatter light and reduce the forward gain of an optical

system [243]. The following functional form describes the Ruze envelope that is caused by

scattering off a reflector system with a uniform distribution of surface deformations

G(θ, φ) = G0(θ, φ)e−ρ
2

+

(
2πc

λ

)2

e−ρ
2

∞∑
n=1

ρ2
n

n× n!
e−(πc sin(θ)/λ)2/n (C.28)

where c is the correlation length of the surface deformation, λ is the wavelength, G0(θ, φ) is

the ideal beam shape and ρ2 represents the variance of the phase errors. We want to calculate

the window function corresponding to the second term in the above equation. We choose to

make the small angle approximation, sin θ ≈ θ and calculate the Fourier transform on the
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flat sky. Finding

F(ΨRuze) = F
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)2

e−ρ
2

∞∑
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n× n!

e−
nλ2

π2c2
l2 . (C.29)

The azimuthal symmetry should not come as a surprise. The Ruze contribution to the window

function is then the squared modulus of this value. A translation of the Ruze envelope with

respect to some Cartesian coordinate system will only result in a phase shift that can be

easily accounted for. The window function that combines the main beam and the Ruze

envelope is easily derived from Equations C.27 and C.29. It is the angular average of the

sum of the squared moduli of all terms. Since the Ruze envelope is azimuthally symmetric by

construction we expect all b`m to be zero where m 6= 0. The complete spherical harmonic

decomposition therefore follows naturally from the above expression.
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Appendix D

Photometric Calibration Using

Planet Flux Estimates

Here we discuss general concepts and some details of the analysis pipeline used to calculate

the flux densities presented in Section 3.7. This analysis has helped inform the absolute

photometric calibration of the instrument.

D.1 Describing Flux

Luminosity represents an intrinsic property of a light source, whereas flux depends on the

separation between the observer and the source, and is therefore an extrinsic property. While

luminosity is measured in units of Watts, flux is measured in units of Watts/m2. Another

extrinsic quantity is called spectral flux density, this one accounts for variation in perceived

power depending on the spectral bandpass of the receiver used to perform the measurement.

It implies that an integral is required in order to find the total flux from an object. In

astronomy, spectral flux density, also known as spectral irradiance, is commonly quoted using

a non-SI unit called Jansky (Jy), with 1 Jy = 10−26 W/m2/Hz.

Instead of reporting spectral flux density, astronomers will often use quantities that

describe the spectral radiance of planets, an intrinsic quantity, and expect others to derive the
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corresponding flux density appropriate for their instrument.1 The parameters referred to as

brightness temperature and Rayleigh-Jeans temperature are frequently used for this purpose.

The Rayleigh-Jeans temperature is often used at low frequencies or when the effective source

temperature is great. Unlike brightness temperature, the Rayleigh-Jeans temperature is

linearly related to spectral flux density. On the other hand, brightness temperature is

naturally related to Planck’s law for blackbody radiation.

Suppose a calibrated bolometer measures a peak signal, B, when pointed directly towards

a source that is much brighter than its surrounding area on the sky. Let’s also assume that

the calibration is such that the detector timestream is in units of Jy/sr. The flux from that

object, Fp, can then be found by the following expression

Fp = BΩp, (D.1)

where Ωp is the solid angle extended by the source. Note how B, the spectral radiance, differs

from spectral flux density in that it does not incorporate the solid angle of the emitter.

The spectral radiance of a source with brightness temperature Tb as measured by a

bolometer with band center frequency νc is

B(νc, Tb) =
2hν3

c

c2

1

ehνc/kTb − 1
. (D.2)

The above equation is the well known Planck formula for a blackbody with temperature Tb.

In the limit of high temperature or low frequency, the expression reduces to

B(νc, TRJ) ≈ 2ν2
ckTRJ

c2
, (D.3)

where TRJ is the Rayleigh-Jeans temperature. If a reference quotes a brightness temperature
1When reporting luminosity-related parameters, no single standard exists for experiments operating

at mm-wavelengths. Unit conversion can be cumbersome; relying on accurate estimates of the spectral
bandpasses of the detectors as well as the spectrum of the sources that are used for calibration.
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or a Rayleigh-Jeans temperature, the converse can be found by setting

2hν3
c

c2

1

ehνc/kTb − 1
=

2ν2
ckTRJ

c2
(D.4)

and solving for either Tb or TRJ.

The outer planets of our solar system can be approximated as Rayleigh-Jeans sources

in the spectral range of the Planck HFI detectors, but unfortunately none of the planets

are perfect blackbodies. This means that both the Rayleigh-Jeans temperature and the

brightness temperature are frequency dependent. The choice between using Rayleigh-Jeans

temperature or brightness temperature is therefore equally motivated and simply a matter of

taste.

D.2 Estimating Flux from Peak Signal

The following equation plays a central role in antenna theory [200]

λ2 = AeffΩb. (D.5)

For any element of a lossless optical system, the product of its effective area, A, and the beam

solid angle, Ωb, is constant and equal to the wavelength of the radiation squared. The AΩ

product is often referred as the optical throughput or étunde. In antenna theory, a detector’s

gain is defined as the ratio of power emitted in a particular direction compared to a detector

that emits its supplied power evenly over all 4π steradians

G(θ, φ) =
P (θ, φ)

Pavg/4π
. (D.6)

Under this definition, the gain of an isotropic radiator is unity.

The time-dependent signal from a bolometer, s(t), can be expressed by the following
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convolution

s(t) = (Z ∗ P )(t), (D.7)

where Z is the time dependent transfer function and P is the instantaneous power dissipated

in the receiver. Assuming an infinitely fast time response, a detector observing a point like

blackbody head on will measure an instantaneous background removed power according to

P = g

∫∫
dΩdνF̃ (ν)Ψ(θ, φ)Aeff(ν)B(ν, T )

= g
1

Ωb

∫∫
dΩdνNλ2F̃ (ν)Ψ(θ, φ)B(ν, T )

= g
Ωp

Ωb

∫
dνNλ2F̃ (ν)B(ν, T ) (D.8)

where g is the absolute gain, representing the efficiency with which incident radiation is

converted into energy of different form within the detector, Ψ(θ, φ) is the instrument beam,

normalized to unity at peak, F̃ (ν) is the normalized detector bandpass, Ωp is the time varying

planetary solid angle, Ωb is the scanning beam solid angle, and B(ν, T ) is Planck’s blackbody

function. The above description assumes that the spatial response, Ψ(θ, φ), does not vary

over the bandpass and adopts the relationship between the effective area, beam solid angle,

wavelength, and effective number of radiation modes N [295, 296].

Nλ2 = AeffΩb (D.9)

The integral in Equation D.8 is performed over all frequencies and the solid angle subtended

by the source. Assuming the source is very small compared to the resolution of the detector,

the integral over solid angle simply produces the solid angle of the source, Ωp.2 Most real

sources are not blackbodies, meaning that the brightness temperature is frequency dependent.

This is indeed the case for planets. Unfortunately, we can only sparsely sample this frequency

dependence with the HFI detectors. The exact definition of brightness temperature is
2Ψ(θ, φ) is approximately constant and equal to one over the solid angle spanned by a point source.
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somewhat ill-defined in the context of detectors with a finite bandpass. Assuming an impulse

shaped transfer function the signal at a given point in time becomes3

s = g
Ωp

Ωb

∫
dνF (ν)B(ν, T ), (D.10)

where F (ν) has been redefined to incorporate Nλ2 from Equation D.8 since Nλ2F̃ (ν) is the

standard output from a measurement of a detector’s spectral response. The lower frequency

channels are single-moded, so that N = 1 for all frequencies, but the 545 and 857 GHz bands

are multi-moded, having sacrificed resolution for increased optical throughput. This is also

measured and incorporated into F (ν) during analysis of the Planck HFI spectral response

[214].

For CMB experiments it is customary to convert raw detector units into CMB temperature

equivalent units. This is done to first order by taking the temperature derivative of the signal

evaluated at TCMB

ds

dT

∣∣∣∣
TCMB

=
d

dT

(
g

Ωb

Ωb

∫
dνF (ν)B(ν, T )

) ∣∣∣∣
TCMB

= g

∫
dνF (ν)

dB(ν, T )

dT

∣∣∣∣
TCMB

. (D.11)

In this case the instrument response is integrated over the whole sphere giving the detector

beam solid angle and not the planet solid angle. Higher order terms are not required as

B(ν, T ) is to a very good approximation a linear function of T for small values of ∆T relative

to the overall signal amplitude. By finding the ratio of the expressions described in Equations

D.10 and D.11 we can convert our results to CMB temperature. The corresponding CMB

temperature change from a planet, ∆Tp, is therefore

∆Tp =
gΩp

Ωb

∫
dνF (ν)B(ν, T )

g
∫
dνF (ν)dB(ν,T )

dT
|TCMB

, (D.12)

3Or a proper deconvolution of the detector time-response function. The assumption is also valid if the
window size is small compared to the time it takes P (t) to vary considerably.
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where

dB

dT
(ν, T ) =

2ν2k

c2

(
hν

kT

)2
e
hν
kT

(e
hν
kT − 1)2

(D.13)

=
2ν2k

c2

x2ex

(ex − 1)2
, (D.14)

with x = hν
kT

. Using this, the functional form for ∆Tp can be written out as

∆Tp =

Ωp

Ωb

∫
dνF (ν)B(ν, T )∫

dνF (ν)dB(ν,T )
dT

|TCMB

=
Ωp

Ωb

∫
dνF (ν)2hν3

c2
/(e

hν
kT − 1)∫

dνF (ν)2ν2k
c2

(
hν

kTCMB

)2

e
hν

kTCMB /(e
hν

kTCMB − 1)2

=
kT 2

CMB

h

Ωp

Ωb

∫
dνF (ν)ν3/(e

hν
kT − 1)∫

dνF (ν)ν4e
hν

kTCMB /(e
hν

kTCMB − 1)2
, (D.15)

where TCMB ≡ 2.725 K. This equation can be used to calculate the expected value of peak

temperature, ∆Tp, if the brightness temperature is known. Conversely, with a measurement

of some peak temperature one can solve for the constant T that best fits measurements. This

involves numerically solving a transcendental equation.

In the Rayleigh-Jeans limit, where hν � kT , the above equation can be approximated by

∆Tp = T

(
k2T 2

CMB

h2

Ωp

Ωb

) ∫
dνF (ν)ν2∫

dνF (ν)ν4e
hν

kTCMB /(e
hν

kTCMB − 1)2
. (D.16)

In that case the brightness temperature is linearly dependent on parameters such as Ω, Ωp,

and ∆Tp. This approximation is more accurate for large brightness temperature and low

frequencies.

Due to the finite bandpass of the HFI detectors these absolute photometric calibrations

are linked to the spectral shape of the calibrators. Photometric analysis of sources that

have a different spectral shape could therefore be inaccurate. We combat this by applying

213



color corrections, see Section D.3. The color correction is a simple scaling factor that can be

applied to the LHS of Equation D.15 before solving for T .

D.2.1 Estimating Photometric Parameters

The above section shows how we can derive the brightness temperature from estimates of the

beam solid angle, Ωb, the planet solid angle, Ωp, the detector spectral response, F (ν), and

the peak signal from the planet, ∆Tp.

The planet solid angles, Ωp, are estimated from the JPL ephemerides software [297] and

corrected for planet oblateness using methods described in [246]. The signal timestream

is used to estimate the time at which each channel observes the planet head on. This

corresponds to the time at which the peak signal is observed. This time is then input to

the time-dependent function Ωp(t). For this analysis, we assume 0.1% fractional error in the

planet solid angle estimate.

The scanning beam solid angle, Ωp, is based on the official DX11 hybrid B-Spline beam

with error estimates from the corresponding simulation pipeline [229]. The band-average

fractional scanning beam errors presented in the 2013 papers corresponded to 0.5% at 100 GHz

and 0.1% at all other HFI frequencies [207]. The updated DX11 hybrid B-Spline beam will

quote a smaller error. In this analysis we incorporate a conservative 0.3% scanning beam

error at all frequencies.

The detector spectral response, F (ν), is based on the official spectra, discussed in great

detail in [214]. We incorporate the color correction error described therein. The absolute

calibration used for the 2014 papers is presented in [226]. In this analysis we assume the

absolute calibration error corresponds to 0.1% at 100–217 GHz, 1% at 353 GHz, and 5% at

545 and 857 GHz.

Perhaps the most poorly described parameter in the above discussion is ∆Tp. Under

perfect conditions, infinite sampling of the sky, and with optimal deconvolution of the detector

time response, the scanning of a point source will generate the underlying scanning beam solid
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angle. Assuming the beam is Gaussian in shape, the maximum of that Gaussian, as registered

in the timestream, corresponds to the parameter ∆Tp as described above. Unfortunately,

non idealities such as noise, astrophysical background, and incomplete coverage make the

estimate of the peak signal from a planet observation non-trivial.

For the results presented in Section 3.7, the peak signals for all of the planet observations

are based on a Gauss-Hermite fit and informed by the time-domain simulations. The peak

signal estimate is based on a Gauss-Hermite decomposition (using Nmax = 9) of the signal

timestream. The corresponding Gauss-Hermite beam is then reconstructed from which the

peak signal is extracted.

Monte-Carlo simulations have been run for all of 22 planet observations. A known input

beam is used to generate a signal timestream. For every realization, the peak amplitude is

varied by a known amount which is sampled from a Gaussian distribution with unity mean

and 2% standard deviation. The input amplitude is consistent with the models discussed

in Section 3.7. The derived peak signal is then compared to the input to estimate the

reconstruction bias and error. The error and bias depend on the observation, especially on

the signal to noise ratio and the angular coverage in the region of the planet.

We assume all estimated errors are representative of Gaussian random variates. We use

these estimates to define a Monte-Carlo brightness temperature analysis. Each realization

draws from these Gaussian distributions. This allows us to estimate the distribution of errors

in measurements of brightness temperature. We assume the errors are uncorrelated between

detectors. The errors from this analysis are shown in Figures 3.19–3.23.

D.2.2 Defining Brightness Temperature – Subtle Differences

Some difficulties arise when the brightness temperature as defined in this document gets

compared to model predictions which generate brightness temperatures as a function of

frequency. This is due to the finite bandpass of the detectors. The above definitions creates a
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parameter that is constant over the spectral bandpass of the HFI detectors and allows us to

calculate the power incident on our detectors, see Equation D.10.

In reality, the power that is dissipated in the detectors per unit frequency is not constant

over the detector bandpass. On the other hand, the total power that is dissipated in the

detectors is determined by the spectral bandpass, the nature of the source, and the orientation

of our receiver. As bolometers only measure the total power, this allows for some flexibility

when it comes defining parameters that describe the properties of our source such as brightness

temperature. The brightness temperature that our detectors measure does not need to be

defined according to Equation D.10, instead we could write

s = g
Ωp

Ωb

∫
dνF (ν)B(ν, T (ν)) (D.17)

which implies that the brightness temperature is a function of frequency. We could also write

s = g
Ωp

Ωb

B(νc, T (νc))

∫
dνF (ν). (D.18)

Equation D.17 implies that the brightness temperature is frequency dependent. This is a

natural way to define brightness temperature since the spectral energy density of most sources

cannot be described by a single blackbody temperature. Unfortunately, the HFI detectors

cannot probe this frequency dependence. Instead, we could choose to probe the brightness

temperature for the band center according to Equation D.18. This has the benefit that the

output can be compared directly to model predictions at the band center frequency. The

only drawback is that the representation fails to capture the fact that the spectral energy

density changes with frequency.

For consistency, we use Equation D.18 when estimating brightness temperature and not

Equation D.10.4 Therefore, all brightness temperature estimates are reported at the formal

Planck HFI band centers, corresponding to 100, 143, 217, 353, 545, and 857 GHz. For the
4This also means that the derivation following Equation D.10 need to be slightly modified.
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models that we have considered, we find the that this definition of brightness temperature

can differ from the signal predicted by Equation D.18 by a non-negligible amount.

D.3 Color Corrections

Most of the Planck HFI channels are calibrated to the CMB orbital dipole [226], which has

a well known spectral shape. In the case of the sub-mm channels, 545 and 857 GHz, the

absolute calibration was originally based on FIRAS maps [298]. The FIRAS calibration

assumes that the spectral radiance of the signal follows

IFIRAS(ν) ∝ ν−1. (D.19)

However, as discussed in [224], the FIRAS calibrations was found to be inconsistent with

predictions of models on planet flux densities. Because of this, the sub-mm channels were

recalibrated so that the derived flux would agree with predictions from the ESA planet flux

models. Despite the recalibration, the sub-mm channels are calibrated for sources with the

spectral shape described by Equation D.19. Needless to say, not all sources on the sky have

this spectral shape. This is remedied by implementing a color correction which is dependent

on the assumed spectral shape of the source.

Similarly, the first order color correction to the CMB channels (100–353 GHz) is brought

about by the difference in spectral shape of the 2.73 K blackbody temperature derivative

compared to other astrophysical sources. This includes the planets, which to a good

approximation have a spectral index α = 2 over the Planck HFI frequency range.

In the case of planet brightness temperature, the color corrections for the two scenarios
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Table D.1: The band average color corrections appropriate for analysis of planet flux densities
within the framework described above. These numbers are derived using Equations D.20 and
the band average spectral response. Further detail, including error estimates, found in [214].

Band CRJ CMars CJupiter CSaturn CUranus CNeptune

100 GHz 0.961 0.961 0.962 0.963 0.969 0.974
143 GHz 1.006 1.007 1.008 1.008 1.012 1.013
217 GHz 0.928 0.936 0.938 0.953 0.949 0.962
353 GHz 0.931 0.934 0.939 0.941 0.949 0.937
545 GHz 0.935 0.936 0.929 0.818 0.951 0.964
857 GHz 0.980 0.983 0.999 0.999 0.992 0.998

are:

CCMB =

∫
dνF (ν)B(T, ν)/B(Tc, νc)∫

dνF (ν)dB(TCMB,ν)
dT

/dB(TCMB,νc)
dT

,

CFIRAS =

∫
dνF (ν)B(T, ν)/B(Tc, νc)∫

dνF (ν)IFIRAS(ν)/IFIRAS(νc)
, (D.20)

where B is the Planck blackbody function, with the frequency dependent planet brightness

temperature T as input, and IFIRAS represents the power law assumed in the sub-millimeter

calibration to the FIRAS data. Here νc and Tc represent the band center frequency, the

first frequency moment weighted by the spectral response, and the corresponding brightness

temperature. The temperature derivative of the blackbody function is described in Equation

D.14.

The color correction is a unitless number that corrects for the difference in spectral shape

between the calibration source and the observed source. These color corrections can be

applied to Equation D.15 before solving for the brightness temperature. These and similar

procedures are described in [214].

Under the Rayleigh-Jeans assumption the intensity of the planets, Iplanet can be written

as

Iplanet ≈
2kT

c2
ν2. (D.21)
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The first order color correction can then be obtained by assuming that the planets are

Rayleigh-Jeans sources. Equations D.20 then take the approximate form

CCMB =

∫
dνF (ν)ν2/ν2

c∫
dνF (ν)dB(TCMB,ν)

dT
/dB(TCMB,νc)

dT

,

CFIRAS =

∫
dνF (ν)ν2/ν2

c∫
dνF (ν)νc/ν

. (D.22)

Table D.1 highlights the color corrections appropriate for analysis of the planet flux.

Clearly, the Rayleigh-Jeans approximation is not valid for all of the planets. The columns

represent the band-average color corrections for each of the five outer planets based on

estimates of planet spectra from ESA models.

D.4 Measured Planet Fluxes

The following tables show the band-averaged results of the Planck HFI planet flux measure-

ments. Interpretations of these results are described in Section 3.7.
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Table D.2: Band averaged properties of Mars and Jupiter observations.

Unix time ΩPlanet Peak Value I TB

[arcsec2] [KCMB] [Jy] [K]

Mars 1

100 GHz 1256289161 43.9± 0.1 0.0297± 0.0005 61.9± 0.6 197± 2

143 GHz 1256753797 47.0± 0.2 0.074± 0.001 140± 1 205± 2

217 GHz 1256441015 44.9± 0.2 0.298± 0.007 303± 4 203± 1

353 GHz 1256545814 45.61± 0.01 1.48± 0.03 832± 7 211± 1

545 GHz 1256625171 46.15± 0.01 980± 90 1950± 20 209± 2

857 GHz 1256625892 46.15± 0.01 2440± 50 4700± 100 214± 5

Mars 2

100 GHz 1271303236 52.5± 0.1 0.0332± 0.0007 69± 1 184± 4

143 GHz 1270959570 56.0± 0.2 0.082± 0.001 155± 1 190± 1

217 GHz 1271187753 53.6± 0.2 0.326± 0.006 332± 7 187± 3

353 GHz 1271109495 54.47± 0.01 1.62± 0.03 910± 8 194± 1

545 GHz 1271050444 55.08± 0.02 1000± 100 2110± 30 191± 2

857 GHz 1271049935 55.09± 0.01 2800± 100 5420± 90 205± 3

Mars 3

100 GHz 1324421229 52.7± 0.1 0.0354± 0.0007 73± 1 195± 4

143 GHz 1324748380 56.1± 0.2 0.090± 0.001 169± 1 207± 1

217 GHz 1324532241 53.8± 0.2 0.352± 0.007 358± 7 200± 3

353 GHz 1324607842 54.67± 0.01 1.77± 0.04 995± 9 210± 1

545 GHz 1324664652 55.27± 0.01 1100± 100 2300± 30 207± 2

857 GHz 1324664723 55.27± 0.01 3120± 80 6000± 100 225± 4

Jupiter 1

100 GHz 1256804823 1278± 1 0.759± 0.007 1580± 10 173± 1

143 GHz 1256534511 1304± 2 1.79± 0.04 3360± 30 178± 2

217 GHz 1256713680 1287± 2 7.0± 0.2 7100± 100 169± 4

353 GHz 1256652527 1293.2± 0.1 33± 1 18600± 700 168± 6

545 GHz 1256606080 1297.7± 0.1 17000± 1000 34600± 700 137± 2

857 GHz 1256605881 1297.7± 0.1 44000± 2000 87200± 700 146± 1
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Table D.3: Band averaged properties of the Jupiter observations.

Unix time ΩPlanet Peak Value I TB

[arcsec2] [KCMB] [Jy] [K]

Jupiter 2

100 GHz 1278225694 1292± 1 0.772± 0.007 1600± 10 174± 1

143 GHz 1278579274 1327± 2 1.83± 0.04 3430± 40 178± 2

217 GHz 1278345800 1304± 2 7.1± 0.1 7200± 100 169± 3

353 GHz 1278425937 1312.5± 0.1 33± 1 18900± 700 168± 6

545 GHz 1278485682 1318.4± 0.1 17900± 800 35000± 1000 138± 5

857 GHz 1278486082 1318.5± 0.1 48000± 7000 90000± 10000 150± 20

Jupiter 3

100 GHz 1292133769 1251± 1 0.742± 0.006 1540± 10 173± 1

143 GHz 1291744072 1289± 3 1.77± 0.04 3320± 30 178± 2

217 GHz 1292003329 1264± 3 6.9± 0.1 7000± 100 169± 3

353 GHz 1291915176 1272.6± 0.1 32± 1 18400± 600 169± 5

545 GHz 1291848252 1279.2± 0.2 17000± 1000 34500± 700 138± 2

857 GHz 1291847952 1279.3± 0.1 49000± 6000 90000± 10000 160± 20

Jupiter 4

100 GHz 1312417985 1232.91± 0.02 0.741± 0.006 1534± 9 174± 1

143 GHz 1312662015 1255± 1 1.73± 0.04 3260± 40 179± 2

217 GHz 1312506435 1241± 1 6.9± 0.2 7000± 100 171± 4

353 GHz 1312558365 1245.86± 0.09 32± 1 18100± 600 170± 5

545 GHz 1312597508 1249.5± 0.1 16400± 600 34300± 100 140.9± 0.7

857 GHz 1312597688 1249.5± 0.1 44000± 3000 86000± 3000 149± 4

Jupiter 5

100 GHz N/A N/A N/A N/A N/A

143 GHz 1326219900 1297± 2 1.78± 0.04 3360± 30 178± 2

217 GHz 1326403694 1279.0± 0.1 6.9± 0.1 7100± 100 170± 4

353 GHz 1326353402 1284.1± 0.1 33± 1 18600± 600 169± 5

545 GHz 1326301018 1289.4± 0.1 17000± 1000 34000± 1000 136± 3

857 GHz 1326300638 1289.4± 0.1 49000± 7000 90000± 10000 160± 20
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Table D.4: Band averaged properties of the Saturn observations.

Unix time ΩPlanet Peak Value I TB

[arcsec2] [KCMB] [Jy] [K]

Saturn 1

100 GHz 1262597043 228.1± 0.1 0.112± 0.001 234± 1 144.8± 0.8

143 GHz 1262915364 231.1± 0.2 0.260± 0.006 491± 3 147± 1

217 GHz 1262701476 229.1± 0.2 1.01± 0.02 1050± 10 140± 1

353 GHz 1262771326 229.79± 0.01 4.7± 0.1 2660± 20 137± 1

545 GHz 1262823882 230.29± 0.01 2400± 100 4200± 100 98± 2

857 GHz 1262823612 230.29± 0.01 5900± 70 11500± 200 113± 2

Saturn 2

100 GHz 1276766784 219.8± 0.1 0.110± 0.001 230± 1 147± 1

143 GHz 1276382297 223.3± 0.2 0.257± 0.006 483± 3 149± 1

217 GHz 1276638930 221.0± 0.2 0.99± 0.03 1020± 10 141± 1

353 GHz 1276553040 221.82± 0.01 4.5± 0.1 2560± 30 136± 1

545 GHz 1276485989 222.44± 0.02 2400± 200 4170± 60 100± 1

857 GHz 1276485689 222.44± 0.01 5300± 200 10360± 70 107.0± 0.6

Saturn 3

100 GHz 1295357862 224.8± 0.1 0.1097± 0.0009 228± 1 143± 1

143 GHz 1295630470 227.3± 0.1 0.257± 0.006 483± 4 147± 1

217 GHz 1295449103 225.6± 0.2 1.01± 0.02 1047± 7 141.6± 0.9

353 GHz 1295511028 226.217± 0.009 4.7± 0.1 2670± 20 139± 1

545 GHz 1295557771 226.64± 0.01 2410± 90 4420± 20 103.5± 0.4

857 GHz 1295558411 226.65± 0.01 6000± 200 12000± 600 119± 5

Saturn 4

100 GHz 1309789178 212.4± 0.1 0.1053± 0.0009 219± 1 145.2± 0.9

143 GHz 1309435409 215.5± 0.2 0.247± 0.006 465± 4 149± 1

217 GHz 1309673017 213.4± 0.2 0.94± 0.02 980± 10 140± 2

353 GHz 1309593546 214.17± 0.01 4.4± 0.1 2530± 30 139± 1

545 GHz 1309532233 214.70± 0.01 2400± 200 4130± 90 102± 2

857 GHz 1309531334 214.71± 0.01 5700± 100 11400± 400 119± 3
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Table D.5: Band averaged properties of the Uranus observations.

Unix time ΩPlanet Peak Value I TB

[arcsec2] [KCMB] [Jy] [K]

Uranus 1

100 GHz 1260424458 9.536± 0.002 0.0039± 0.0001 8.3± 0.2 123± 3

143 GHz 1260073106 9.603± 0.005 0.0077± 0.0002 14.6± 0.5 106± 4

217 GHz 1260306288 9.558± 0.005 0.028± 0.001 29.5± 0.6 95± 2

353 GHz 1260226976 9.5738± 0.0003 0.114± 0.002 65± 1 83± 1

545 GHz 1260165303 9.5856± 0.0004 59± 4 119± 4 70± 1

857 GHz 1260163194 9.5860± 0.0002 122± 5 236± 1 64.9± 0.3

Uranus 2

100 GHz 1277961137 9.623± 0.003 0.0036± 0.0001 7.6± 0.2 113± 4

143 GHz 1278298015 9.686± 0.005 0.0077± 0.0001 14.7± 0.2 106± 1

217 GHz 1278072634 9.644± 0.005 0.0283± 0.0009 29.2± 0.7 94± 2

353 GHz 1278148270 9.6588± 0.0002 0.112± 0.006 63± 4 81± 4

545 GHz 1278205148 9.6694± 0.0001 62± 5 124.7± 0.5 72.4± 0.2

857 GHz 1278206729 9.6697± 0.0001 123± 1 243± 6 65± 1

Uranus 3

100 GHz 1292414071 9.529± 0.003 0.0039± 0.0001 8.2± 0.2 122± 3

143 GHz 1292062524 9.596± 0.005 0.0079± 0.0002 15.0± 0.2 109± 1

217 GHz 1292299959 9.551± 0.005 0.028± 0.002 28± 1 94± 5

353 GHz 1292219674 9.5667± 0.0004 0.112± 0.007 64± 4 82± 5

545 GHz 1292158338 9.5784± 0.0004 59± 5 120± 1 70.9± 0.9

857 GHz 1292158138 9.5785± 0.0003 118± 6 232± 7 64± 1

Uranus 4

100 GHz 1309934421 9.652± 0.002 0.00396± 0.00009 8.3± 0.1 121± 2

143 GHz 1310260667 9.713± 0.004 0.0081± 0.0002 15.3± 0.1 110± 1

217 GHz 1310042675 9.673± 0.004 0.029± 0.001 30± 1 97± 3

353 GHz 1310116967 9.6870± 0.0002 0.112± 0.005 64± 1 81± 2

545 GHz 1310174518 9.6978± 0.0003 61± 7 123± 3 71± 1

857 GHz 1310173569 9.6976± 0.0002 122± 6 236± 3 64.3± 0.7
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Table D.6: Band averaged properties of the Neptune observations.

Unix time ΩPlanet Peak Value I TB

[arcsec2] [KCMB] [Jy] [K]

Neptune 1

100 GHz 1257362717 4.0655± 0.0006 0.00167± 0.00006 3.5± 0.1 122± 5

143 GHz 1257087407 4.080± 0.001 0.0034± 0.0001 6.5± 0.2 112± 4

217 GHz 1257260311 4.0710± 0.0009 0.0118± 0.0005 12.4± 0.8 94± 6

353 GHz 1257209543 4.07376± 0.00008 0.047± 0.001 26.6± 0.9 80± 2

545 GHz 1257158872 4.0764± 0.0001 25± 2 52± 2 72± 2

857 GHz 1257158412 4.0765± 0.0001 50± 1 99± 3 64± 1

Neptune 2

100 GHz 1274153625 4.0077± 0.0008 0.0016± 0.0001 3.5± 0.2 125± 7

143 GHz 1274495091 4.025± 0.001 0.0033± 0.0001 6.3± 0.1 109± 2

217 GHz 1274263215 4.013± 0.001 0.0116± 0.0006 12.1± 0.5 93± 3

353 GHz 1274342572 4.0177± 0.0001 0.045± 0.002 25.5± 0.8 78± 2

545 GHz 1274402518 4.0208± 0.0001 23± 2 48± 1 68± 1

857 GHz 1274402277 N/A N/A N/A N/A

Neptune 3

100 GHz 1289100641 4.0689± 0.0007 0.0015± 0.0001 3.3± 0.2 115± 9

143 GHz 1288822732 4.083± 0.001 0.0031± 0.0001 5.9± 0.2 102± 4

217 GHz 1289011048 4.073± 0.001 0.0115± 0.0006 12.0± 0.4 92± 3

353 GHz 1288949782 4.0770± 0.0002 0.049± 0.005 28± 3 84± 9

545 GHz 1288896433 4.07989± 0.00008 24± 2 50.1± 0.1 69.5± 0.2

857 GHz 1288896853 4.07986± 0.00006 52± 3 104± 5 66± 2

Neptune 4

100 GHz 1305932952 4.0114± 0.0007 0.00149± 0.00008 3.1± 0.1 110± 6

143 GHz 1306289285 4.030± 0.001 0.0031± 0.0001 5.9± 0.2 103± 4

217 GHz 1306051735 4.017± 0.001 0.0117± 0.0009 12.3± 0.7 95± 5

353 GHz 1306123564 4.0214± 0.0002 0.046± 0.002 25.8± 0.9 79± 2

545 GHz 1306188841 4.0249± 0.0002 23± 2 48.3± 0.3 68.2± 0.4

857 GHz 1306190022 4.0249± 0.0001 54± 3 107± 4 68± 2
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